1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, 124 MakeLibCallOptions CallOptions, 125 const SDLoc &dl, 126 SDValue InChain) const { 127 if (!InChain) 128 InChain = DAG.getEntryNode(); 129 130 TargetLowering::ArgListTy Args; 131 Args.reserve(Ops.size()); 132 133 TargetLowering::ArgListEntry Entry; 134 for (unsigned i = 0; i < Ops.size(); ++i) { 135 SDValue NewOp = Ops[i]; 136 Entry.Node = NewOp; 137 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 138 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 139 CallOptions.IsSExt); 140 Entry.IsZExt = !Entry.IsSExt; 141 142 if (CallOptions.IsSoften && 143 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 144 Entry.IsSExt = Entry.IsZExt = false; 145 } 146 Args.push_back(Entry); 147 } 148 149 if (LC == RTLIB::UNKNOWN_LIBCALL) 150 report_fatal_error("Unsupported library call operation!"); 151 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 152 getPointerTy(DAG.getDataLayout())); 153 154 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 155 TargetLowering::CallLoweringInfo CLI(DAG); 156 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 157 bool zeroExtend = !signExtend; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 161 signExtend = zeroExtend = false; 162 } 163 164 CLI.setDebugLoc(dl) 165 .setChain(InChain) 166 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 167 .setNoReturn(CallOptions.DoesNotReturn) 168 .setDiscardResult(!CallOptions.IsReturnValueUsed) 169 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 170 .setSExtResult(signExtend) 171 .setZExtResult(zeroExtend); 172 return LowerCallTo(CLI); 173 } 174 175 bool 176 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 177 unsigned Limit, uint64_t Size, 178 unsigned DstAlign, unsigned SrcAlign, 179 bool IsMemset, 180 bool ZeroMemset, 181 bool MemcpyStrSrc, 182 bool AllowOverlap, 183 unsigned DstAS, unsigned SrcAS, 184 const AttributeList &FuncAttributes) const { 185 // If 'SrcAlign' is zero, that means the memory operation does not need to 186 // load the value, i.e. memset or memcpy from constant string. Otherwise, 187 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 188 // is the specified alignment of the memory operation. If it is zero, that 189 // means it's possible to change the alignment of the destination. 190 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 191 // not need to be loaded. 192 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 193 return false; 194 195 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 196 IsMemset, ZeroMemset, MemcpyStrSrc, 197 FuncAttributes); 198 199 if (VT == MVT::Other) { 200 // Use the largest integer type whose alignment constraints are satisfied. 201 // We only need to check DstAlign here as SrcAlign is always greater or 202 // equal to DstAlign (or zero). 203 VT = MVT::i64; 204 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 205 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 206 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 207 assert(VT.isInteger()); 208 209 // Find the largest legal integer type. 210 MVT LVT = MVT::i64; 211 while (!isTypeLegal(LVT)) 212 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 213 assert(LVT.isInteger()); 214 215 // If the type we've chosen is larger than the largest legal integer type 216 // then use that instead. 217 if (VT.bitsGT(LVT)) 218 VT = LVT; 219 } 220 221 unsigned NumMemOps = 0; 222 while (Size != 0) { 223 unsigned VTSize = VT.getSizeInBits() / 8; 224 while (VTSize > Size) { 225 // For now, only use non-vector load / store's for the left-over pieces. 226 EVT NewVT = VT; 227 unsigned NewVTSize; 228 229 bool Found = false; 230 if (VT.isVector() || VT.isFloatingPoint()) { 231 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 232 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 233 isSafeMemOpType(NewVT.getSimpleVT())) 234 Found = true; 235 else if (NewVT == MVT::i64 && 236 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 237 isSafeMemOpType(MVT::f64)) { 238 // i64 is usually not legal on 32-bit targets, but f64 may be. 239 NewVT = MVT::f64; 240 Found = true; 241 } 242 } 243 244 if (!Found) { 245 do { 246 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 247 if (NewVT == MVT::i8) 248 break; 249 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 250 } 251 NewVTSize = NewVT.getSizeInBits() / 8; 252 253 // If the new VT cannot cover all of the remaining bits, then consider 254 // issuing a (or a pair of) unaligned and overlapping load / store. 255 bool Fast; 256 if (NumMemOps && AllowOverlap && NewVTSize < Size && 257 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 258 MachineMemOperand::MONone, &Fast) && 259 Fast) 260 VTSize = Size; 261 else { 262 VT = NewVT; 263 VTSize = NewVTSize; 264 } 265 } 266 267 if (++NumMemOps > Limit) 268 return false; 269 270 MemOps.push_back(VT); 271 Size -= VTSize; 272 } 273 274 return true; 275 } 276 277 /// Soften the operands of a comparison. This code is shared among BR_CC, 278 /// SELECT_CC, and SETCC handlers. 279 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 280 SDValue &NewLHS, SDValue &NewRHS, 281 ISD::CondCode &CCCode, 282 const SDLoc &dl, const SDValue OldLHS, 283 const SDValue OldRHS) const { 284 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 285 && "Unsupported setcc type!"); 286 287 // Expand into one or more soft-fp libcall(s). 288 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 289 bool ShouldInvertCC = false; 290 switch (CCCode) { 291 case ISD::SETEQ: 292 case ISD::SETOEQ: 293 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 294 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 295 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 296 break; 297 case ISD::SETNE: 298 case ISD::SETUNE: 299 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 300 (VT == MVT::f64) ? RTLIB::UNE_F64 : 301 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 302 break; 303 case ISD::SETGE: 304 case ISD::SETOGE: 305 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 306 (VT == MVT::f64) ? RTLIB::OGE_F64 : 307 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 308 break; 309 case ISD::SETLT: 310 case ISD::SETOLT: 311 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 312 (VT == MVT::f64) ? RTLIB::OLT_F64 : 313 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 314 break; 315 case ISD::SETLE: 316 case ISD::SETOLE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 318 (VT == MVT::f64) ? RTLIB::OLE_F64 : 319 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 320 break; 321 case ISD::SETGT: 322 case ISD::SETOGT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 324 (VT == MVT::f64) ? RTLIB::OGT_F64 : 325 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 326 break; 327 case ISD::SETUO: 328 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 329 (VT == MVT::f64) ? RTLIB::UO_F64 : 330 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 331 break; 332 case ISD::SETO: 333 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 334 (VT == MVT::f64) ? RTLIB::O_F64 : 335 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 336 break; 337 case ISD::SETONE: 338 // SETONE = SETOLT | SETOGT 339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 340 (VT == MVT::f64) ? RTLIB::OLT_F64 : 341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 342 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 343 (VT == MVT::f64) ? RTLIB::OGT_F64 : 344 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 345 break; 346 case ISD::SETUEQ: 347 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 348 (VT == MVT::f64) ? RTLIB::UO_F64 : 349 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 350 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 351 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 352 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 353 break; 354 default: 355 // Invert CC for unordered comparisons 356 ShouldInvertCC = true; 357 switch (CCCode) { 358 case ISD::SETULT: 359 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 360 (VT == MVT::f64) ? RTLIB::OGE_F64 : 361 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 362 break; 363 case ISD::SETULE: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 365 (VT == MVT::f64) ? RTLIB::OGT_F64 : 366 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 367 break; 368 case ISD::SETUGT: 369 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 370 (VT == MVT::f64) ? RTLIB::OLE_F64 : 371 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 372 break; 373 case ISD::SETUGE: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 375 (VT == MVT::f64) ? RTLIB::OLT_F64 : 376 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 377 break; 378 default: llvm_unreachable("Do not know how to soften this setcc!"); 379 } 380 } 381 382 // Use the target specific return value for comparions lib calls. 383 EVT RetVT = getCmpLibcallReturnType(); 384 SDValue Ops[2] = {NewLHS, NewRHS}; 385 TargetLowering::MakeLibCallOptions CallOptions; 386 EVT OpsVT[2] = { OldLHS.getValueType(), 387 OldRHS.getValueType() }; 388 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 389 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first; 390 NewRHS = DAG.getConstant(0, dl, RetVT); 391 392 CCCode = getCmpLibcallCC(LC1); 393 if (ShouldInvertCC) { 394 assert(RetVT.isInteger()); 395 CCCode = getSetCCInverse(CCCode, RetVT); 396 } 397 398 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 399 SDValue Tmp = DAG.getNode( 400 ISD::SETCC, dl, 401 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 402 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 403 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first; 404 NewLHS = DAG.getNode( 405 ISD::SETCC, dl, 406 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 407 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 408 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 409 NewRHS = SDValue(); 410 } 411 } 412 413 /// Return the entry encoding for a jump table in the current function. The 414 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 415 unsigned TargetLowering::getJumpTableEncoding() const { 416 // In non-pic modes, just use the address of a block. 417 if (!isPositionIndependent()) 418 return MachineJumpTableInfo::EK_BlockAddress; 419 420 // In PIC mode, if the target supports a GPRel32 directive, use it. 421 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 422 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 423 424 // Otherwise, use a label difference. 425 return MachineJumpTableInfo::EK_LabelDifference32; 426 } 427 428 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 429 SelectionDAG &DAG) const { 430 // If our PIC model is GP relative, use the global offset table as the base. 431 unsigned JTEncoding = getJumpTableEncoding(); 432 433 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 434 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 435 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 436 437 return Table; 438 } 439 440 /// This returns the relocation base for the given PIC jumptable, the same as 441 /// getPICJumpTableRelocBase, but as an MCExpr. 442 const MCExpr * 443 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 444 unsigned JTI,MCContext &Ctx) const{ 445 // The normal PIC reloc base is the label at the start of the jump table. 446 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 447 } 448 449 bool 450 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 451 const TargetMachine &TM = getTargetMachine(); 452 const GlobalValue *GV = GA->getGlobal(); 453 454 // If the address is not even local to this DSO we will have to load it from 455 // a got and then add the offset. 456 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 457 return false; 458 459 // If the code is position independent we will have to add a base register. 460 if (isPositionIndependent()) 461 return false; 462 463 // Otherwise we can do it. 464 return true; 465 } 466 467 //===----------------------------------------------------------------------===// 468 // Optimization Methods 469 //===----------------------------------------------------------------------===// 470 471 /// If the specified instruction has a constant integer operand and there are 472 /// bits set in that constant that are not demanded, then clear those bits and 473 /// return true. 474 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 475 TargetLoweringOpt &TLO) const { 476 SDLoc DL(Op); 477 unsigned Opcode = Op.getOpcode(); 478 479 // Do target-specific constant optimization. 480 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 481 return TLO.New.getNode(); 482 483 // FIXME: ISD::SELECT, ISD::SELECT_CC 484 switch (Opcode) { 485 default: 486 break; 487 case ISD::XOR: 488 case ISD::AND: 489 case ISD::OR: { 490 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 491 if (!Op1C) 492 return false; 493 494 // If this is a 'not' op, don't touch it because that's a canonical form. 495 const APInt &C = Op1C->getAPIntValue(); 496 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 497 return false; 498 499 if (!C.isSubsetOf(Demanded)) { 500 EVT VT = Op.getValueType(); 501 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 502 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 503 return TLO.CombineTo(Op, NewOp); 504 } 505 506 break; 507 } 508 } 509 510 return false; 511 } 512 513 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 514 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 515 /// generalized for targets with other types of implicit widening casts. 516 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 517 const APInt &Demanded, 518 TargetLoweringOpt &TLO) const { 519 assert(Op.getNumOperands() == 2 && 520 "ShrinkDemandedOp only supports binary operators!"); 521 assert(Op.getNode()->getNumValues() == 1 && 522 "ShrinkDemandedOp only supports nodes with one result!"); 523 524 SelectionDAG &DAG = TLO.DAG; 525 SDLoc dl(Op); 526 527 // Early return, as this function cannot handle vector types. 528 if (Op.getValueType().isVector()) 529 return false; 530 531 // Don't do this if the node has another user, which may require the 532 // full value. 533 if (!Op.getNode()->hasOneUse()) 534 return false; 535 536 // Search for the smallest integer type with free casts to and from 537 // Op's type. For expedience, just check power-of-2 integer types. 538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 539 unsigned DemandedSize = Demanded.getActiveBits(); 540 unsigned SmallVTBits = DemandedSize; 541 if (!isPowerOf2_32(SmallVTBits)) 542 SmallVTBits = NextPowerOf2(SmallVTBits); 543 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 544 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 545 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 546 TLI.isZExtFree(SmallVT, Op.getValueType())) { 547 // We found a type with free casts. 548 SDValue X = DAG.getNode( 549 Op.getOpcode(), dl, SmallVT, 550 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 551 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 552 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 553 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 554 return TLO.CombineTo(Op, Z); 555 } 556 } 557 return false; 558 } 559 560 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 561 DAGCombinerInfo &DCI) const { 562 SelectionDAG &DAG = DCI.DAG; 563 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 564 !DCI.isBeforeLegalizeOps()); 565 KnownBits Known; 566 567 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 568 if (Simplified) { 569 DCI.AddToWorklist(Op.getNode()); 570 DCI.CommitTargetLoweringOpt(TLO); 571 } 572 return Simplified; 573 } 574 575 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 576 KnownBits &Known, 577 TargetLoweringOpt &TLO, 578 unsigned Depth, 579 bool AssumeSingleUse) const { 580 EVT VT = Op.getValueType(); 581 APInt DemandedElts = VT.isVector() 582 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 583 : APInt(1, 1); 584 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 585 AssumeSingleUse); 586 } 587 588 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 589 // TODO: Under what circumstances can we create nodes? Constant folding? 590 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 591 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 592 SelectionDAG &DAG, unsigned Depth) const { 593 // Limit search depth. 594 if (Depth >= SelectionDAG::MaxRecursionDepth) 595 return SDValue(); 596 597 // Ignore UNDEFs. 598 if (Op.isUndef()) 599 return SDValue(); 600 601 // Not demanding any bits/elts from Op. 602 if (DemandedBits == 0 || DemandedElts == 0) 603 return DAG.getUNDEF(Op.getValueType()); 604 605 unsigned NumElts = DemandedElts.getBitWidth(); 606 KnownBits LHSKnown, RHSKnown; 607 switch (Op.getOpcode()) { 608 case ISD::BITCAST: { 609 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 610 EVT SrcVT = Src.getValueType(); 611 EVT DstVT = Op.getValueType(); 612 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 613 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 614 615 if (NumSrcEltBits == NumDstEltBits) 616 if (SDValue V = SimplifyMultipleUseDemandedBits( 617 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 618 return DAG.getBitcast(DstVT, V); 619 620 // TODO - bigendian once we have test coverage. 621 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 622 DAG.getDataLayout().isLittleEndian()) { 623 unsigned Scale = NumDstEltBits / NumSrcEltBits; 624 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 625 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 626 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 627 for (unsigned i = 0; i != Scale; ++i) { 628 unsigned Offset = i * NumSrcEltBits; 629 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 630 if (!Sub.isNullValue()) { 631 DemandedSrcBits |= Sub; 632 for (unsigned j = 0; j != NumElts; ++j) 633 if (DemandedElts[j]) 634 DemandedSrcElts.setBit((j * Scale) + i); 635 } 636 } 637 638 if (SDValue V = SimplifyMultipleUseDemandedBits( 639 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 640 return DAG.getBitcast(DstVT, V); 641 } 642 643 // TODO - bigendian once we have test coverage. 644 if ((NumSrcEltBits % NumDstEltBits) == 0 && 645 DAG.getDataLayout().isLittleEndian()) { 646 unsigned Scale = NumSrcEltBits / NumDstEltBits; 647 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 648 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 649 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 650 for (unsigned i = 0; i != NumElts; ++i) 651 if (DemandedElts[i]) { 652 unsigned Offset = (i % Scale) * NumDstEltBits; 653 DemandedSrcBits.insertBits(DemandedBits, Offset); 654 DemandedSrcElts.setBit(i / Scale); 655 } 656 657 if (SDValue V = SimplifyMultipleUseDemandedBits( 658 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 659 return DAG.getBitcast(DstVT, V); 660 } 661 662 break; 663 } 664 case ISD::AND: { 665 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 666 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 667 668 // If all of the demanded bits are known 1 on one side, return the other. 669 // These bits cannot contribute to the result of the 'and' in this 670 // context. 671 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 672 return Op.getOperand(0); 673 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 674 return Op.getOperand(1); 675 break; 676 } 677 case ISD::OR: { 678 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 679 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 680 681 // If all of the demanded bits are known zero on one side, return the 682 // other. These bits cannot contribute to the result of the 'or' in this 683 // context. 684 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 685 return Op.getOperand(0); 686 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 687 return Op.getOperand(1); 688 break; 689 } 690 case ISD::XOR: { 691 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 692 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 693 694 // If all of the demanded bits are known zero on one side, return the 695 // other. 696 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 697 return Op.getOperand(0); 698 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 699 return Op.getOperand(1); 700 break; 701 } 702 case ISD::SIGN_EXTEND_INREG: { 703 // If none of the extended bits are demanded, eliminate the sextinreg. 704 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 705 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 706 return Op.getOperand(0); 707 break; 708 } 709 case ISD::INSERT_VECTOR_ELT: { 710 // If we don't demand the inserted element, return the base vector. 711 SDValue Vec = Op.getOperand(0); 712 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 713 EVT VecVT = Vec.getValueType(); 714 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 715 !DemandedElts[CIdx->getZExtValue()]) 716 return Vec; 717 break; 718 } 719 case ISD::VECTOR_SHUFFLE: { 720 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 721 722 // If all the demanded elts are from one operand and are inline, 723 // then we can use the operand directly. 724 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 725 for (unsigned i = 0; i != NumElts; ++i) { 726 int M = ShuffleMask[i]; 727 if (M < 0 || !DemandedElts[i]) 728 continue; 729 AllUndef = false; 730 IdentityLHS &= (M == (int)i); 731 IdentityRHS &= ((M - NumElts) == i); 732 } 733 734 if (AllUndef) 735 return DAG.getUNDEF(Op.getValueType()); 736 if (IdentityLHS) 737 return Op.getOperand(0); 738 if (IdentityRHS) 739 return Op.getOperand(1); 740 break; 741 } 742 default: 743 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 744 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 745 Op, DemandedBits, DemandedElts, DAG, Depth)) 746 return V; 747 break; 748 } 749 return SDValue(); 750 } 751 752 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 753 /// result of Op are ever used downstream. If we can use this information to 754 /// simplify Op, create a new simplified DAG node and return true, returning the 755 /// original and new nodes in Old and New. Otherwise, analyze the expression and 756 /// return a mask of Known bits for the expression (used to simplify the 757 /// caller). The Known bits may only be accurate for those bits in the 758 /// OriginalDemandedBits and OriginalDemandedElts. 759 bool TargetLowering::SimplifyDemandedBits( 760 SDValue Op, const APInt &OriginalDemandedBits, 761 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 762 unsigned Depth, bool AssumeSingleUse) const { 763 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 764 assert(Op.getScalarValueSizeInBits() == BitWidth && 765 "Mask size mismatches value type size!"); 766 767 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 768 assert((!Op.getValueType().isVector() || 769 NumElts == Op.getValueType().getVectorNumElements()) && 770 "Unexpected vector size"); 771 772 APInt DemandedBits = OriginalDemandedBits; 773 APInt DemandedElts = OriginalDemandedElts; 774 SDLoc dl(Op); 775 auto &DL = TLO.DAG.getDataLayout(); 776 777 // Don't know anything. 778 Known = KnownBits(BitWidth); 779 780 // Undef operand. 781 if (Op.isUndef()) 782 return false; 783 784 if (Op.getOpcode() == ISD::Constant) { 785 // We know all of the bits for a constant! 786 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 787 Known.Zero = ~Known.One; 788 return false; 789 } 790 791 // Other users may use these bits. 792 EVT VT = Op.getValueType(); 793 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 794 if (Depth != 0) { 795 // If not at the root, Just compute the Known bits to 796 // simplify things downstream. 797 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 798 return false; 799 } 800 // If this is the root being simplified, allow it to have multiple uses, 801 // just set the DemandedBits/Elts to all bits. 802 DemandedBits = APInt::getAllOnesValue(BitWidth); 803 DemandedElts = APInt::getAllOnesValue(NumElts); 804 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 805 // Not demanding any bits/elts from Op. 806 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 807 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 808 // Limit search depth. 809 return false; 810 } 811 812 KnownBits Known2, KnownOut; 813 switch (Op.getOpcode()) { 814 case ISD::TargetConstant: 815 llvm_unreachable("Can't simplify this node"); 816 case ISD::SCALAR_TO_VECTOR: { 817 if (!DemandedElts[0]) 818 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 819 820 KnownBits SrcKnown; 821 SDValue Src = Op.getOperand(0); 822 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 823 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 824 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 825 return true; 826 Known = SrcKnown.zextOrTrunc(BitWidth, false); 827 break; 828 } 829 case ISD::BUILD_VECTOR: 830 // Collect the known bits that are shared by every demanded element. 831 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 832 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 833 return false; // Don't fall through, will infinitely loop. 834 case ISD::LOAD: { 835 LoadSDNode *LD = cast<LoadSDNode>(Op); 836 if (getTargetConstantFromLoad(LD)) { 837 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 838 return false; // Don't fall through, will infinitely loop. 839 } 840 break; 841 } 842 case ISD::INSERT_VECTOR_ELT: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Scl = Op.getOperand(1); 845 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 846 EVT VecVT = Vec.getValueType(); 847 848 // If index isn't constant, assume we need all vector elements AND the 849 // inserted element. 850 APInt DemandedVecElts(DemandedElts); 851 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 852 unsigned Idx = CIdx->getZExtValue(); 853 DemandedVecElts.clearBit(Idx); 854 855 // Inserted element is not required. 856 if (!DemandedElts[Idx]) 857 return TLO.CombineTo(Op, Vec); 858 } 859 860 KnownBits KnownScl; 861 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 862 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 863 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 864 return true; 865 866 Known = KnownScl.zextOrTrunc(BitWidth, false); 867 868 KnownBits KnownVec; 869 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 870 Depth + 1)) 871 return true; 872 873 if (!!DemandedVecElts) { 874 Known.One &= KnownVec.One; 875 Known.Zero &= KnownVec.Zero; 876 } 877 878 return false; 879 } 880 case ISD::INSERT_SUBVECTOR: { 881 SDValue Base = Op.getOperand(0); 882 SDValue Sub = Op.getOperand(1); 883 EVT SubVT = Sub.getValueType(); 884 unsigned NumSubElts = SubVT.getVectorNumElements(); 885 886 // If index isn't constant, assume we need the original demanded base 887 // elements and ALL the inserted subvector elements. 888 APInt BaseElts = DemandedElts; 889 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 890 if (isa<ConstantSDNode>(Op.getOperand(2))) { 891 const APInt &Idx = Op.getConstantOperandAPInt(2); 892 if (Idx.ule(NumElts - NumSubElts)) { 893 unsigned SubIdx = Idx.getZExtValue(); 894 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 895 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 896 } 897 } 898 899 KnownBits KnownSub, KnownBase; 900 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 901 Depth + 1)) 902 return true; 903 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 904 Depth + 1)) 905 return true; 906 907 Known.Zero.setAllBits(); 908 Known.One.setAllBits(); 909 if (!!SubElts) { 910 Known.One &= KnownSub.One; 911 Known.Zero &= KnownSub.Zero; 912 } 913 if (!!BaseElts) { 914 Known.One &= KnownBase.One; 915 Known.Zero &= KnownBase.Zero; 916 } 917 break; 918 } 919 case ISD::EXTRACT_SUBVECTOR: { 920 // If index isn't constant, assume we need all the source vector elements. 921 SDValue Src = Op.getOperand(0); 922 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 923 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 924 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 925 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 926 // Offset the demanded elts by the subvector index. 927 uint64_t Idx = SubIdx->getZExtValue(); 928 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 929 } 930 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 931 return true; 932 break; 933 } 934 case ISD::CONCAT_VECTORS: { 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 EVT SubVT = Op.getOperand(0).getValueType(); 938 unsigned NumSubVecs = Op.getNumOperands(); 939 unsigned NumSubElts = SubVT.getVectorNumElements(); 940 for (unsigned i = 0; i != NumSubVecs; ++i) { 941 APInt DemandedSubElts = 942 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 943 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 944 Known2, TLO, Depth + 1)) 945 return true; 946 // Known bits are shared by every demanded subvector element. 947 if (!!DemandedSubElts) { 948 Known.One &= Known2.One; 949 Known.Zero &= Known2.Zero; 950 } 951 } 952 break; 953 } 954 case ISD::VECTOR_SHUFFLE: { 955 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 956 957 // Collect demanded elements from shuffle operands.. 958 APInt DemandedLHS(NumElts, 0); 959 APInt DemandedRHS(NumElts, 0); 960 for (unsigned i = 0; i != NumElts; ++i) { 961 if (!DemandedElts[i]) 962 continue; 963 int M = ShuffleMask[i]; 964 if (M < 0) { 965 // For UNDEF elements, we don't know anything about the common state of 966 // the shuffle result. 967 DemandedLHS.clearAllBits(); 968 DemandedRHS.clearAllBits(); 969 break; 970 } 971 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 972 if (M < (int)NumElts) 973 DemandedLHS.setBit(M); 974 else 975 DemandedRHS.setBit(M - NumElts); 976 } 977 978 if (!!DemandedLHS || !!DemandedRHS) { 979 SDValue Op0 = Op.getOperand(0); 980 SDValue Op1 = Op.getOperand(1); 981 982 Known.Zero.setAllBits(); 983 Known.One.setAllBits(); 984 if (!!DemandedLHS) { 985 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 986 Depth + 1)) 987 return true; 988 Known.One &= Known2.One; 989 Known.Zero &= Known2.Zero; 990 } 991 if (!!DemandedRHS) { 992 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 993 Depth + 1)) 994 return true; 995 Known.One &= Known2.One; 996 Known.Zero &= Known2.Zero; 997 } 998 999 // Attempt to avoid multi-use ops if we don't need anything from them. 1000 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1001 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1002 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1003 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1004 if (DemandedOp0 || DemandedOp1) { 1005 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1006 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1007 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1008 return TLO.CombineTo(Op, NewOp); 1009 } 1010 } 1011 break; 1012 } 1013 case ISD::AND: { 1014 SDValue Op0 = Op.getOperand(0); 1015 SDValue Op1 = Op.getOperand(1); 1016 1017 // If the RHS is a constant, check to see if the LHS would be zero without 1018 // using the bits from the RHS. Below, we use knowledge about the RHS to 1019 // simplify the LHS, here we're using information from the LHS to simplify 1020 // the RHS. 1021 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1022 // Do not increment Depth here; that can cause an infinite loop. 1023 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1024 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1025 if ((LHSKnown.Zero & DemandedBits) == 1026 (~RHSC->getAPIntValue() & DemandedBits)) 1027 return TLO.CombineTo(Op, Op0); 1028 1029 // If any of the set bits in the RHS are known zero on the LHS, shrink 1030 // the constant. 1031 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1032 return true; 1033 1034 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1035 // constant, but if this 'and' is only clearing bits that were just set by 1036 // the xor, then this 'and' can be eliminated by shrinking the mask of 1037 // the xor. For example, for a 32-bit X: 1038 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1039 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1040 LHSKnown.One == ~RHSC->getAPIntValue()) { 1041 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1042 return TLO.CombineTo(Op, Xor); 1043 } 1044 } 1045 1046 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1047 Depth + 1)) 1048 return true; 1049 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1050 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1051 Known2, TLO, Depth + 1)) 1052 return true; 1053 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1054 1055 // Attempt to avoid multi-use ops if we don't need anything from them. 1056 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1057 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1058 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1059 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1060 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1061 if (DemandedOp0 || DemandedOp1) { 1062 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1063 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1064 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1065 return TLO.CombineTo(Op, NewOp); 1066 } 1067 } 1068 1069 // If all of the demanded bits are known one on one side, return the other. 1070 // These bits cannot contribute to the result of the 'and'. 1071 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1072 return TLO.CombineTo(Op, Op0); 1073 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1074 return TLO.CombineTo(Op, Op1); 1075 // If all of the demanded bits in the inputs are known zeros, return zero. 1076 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1077 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1078 // If the RHS is a constant, see if we can simplify it. 1079 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1080 return true; 1081 // If the operation can be done in a smaller type, do so. 1082 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1083 return true; 1084 1085 // Output known-1 bits are only known if set in both the LHS & RHS. 1086 Known.One &= Known2.One; 1087 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1088 Known.Zero |= Known2.Zero; 1089 break; 1090 } 1091 case ISD::OR: { 1092 SDValue Op0 = Op.getOperand(0); 1093 SDValue Op1 = Op.getOperand(1); 1094 1095 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1096 Depth + 1)) 1097 return true; 1098 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1099 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1100 Known2, TLO, Depth + 1)) 1101 return true; 1102 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1103 1104 // Attempt to avoid multi-use ops if we don't need anything from them. 1105 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1106 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1107 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1108 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1109 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1110 if (DemandedOp0 || DemandedOp1) { 1111 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1112 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1113 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1114 return TLO.CombineTo(Op, NewOp); 1115 } 1116 } 1117 1118 // If all of the demanded bits are known zero on one side, return the other. 1119 // These bits cannot contribute to the result of the 'or'. 1120 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1121 return TLO.CombineTo(Op, Op0); 1122 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1123 return TLO.CombineTo(Op, Op1); 1124 // If the RHS is a constant, see if we can simplify it. 1125 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1126 return true; 1127 // If the operation can be done in a smaller type, do so. 1128 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1129 return true; 1130 1131 // Output known-0 bits are only known if clear in both the LHS & RHS. 1132 Known.Zero &= Known2.Zero; 1133 // Output known-1 are known to be set if set in either the LHS | RHS. 1134 Known.One |= Known2.One; 1135 break; 1136 } 1137 case ISD::XOR: { 1138 SDValue Op0 = Op.getOperand(0); 1139 SDValue Op1 = Op.getOperand(1); 1140 1141 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1142 Depth + 1)) 1143 return true; 1144 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1145 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1146 Depth + 1)) 1147 return true; 1148 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1149 1150 // Attempt to avoid multi-use ops if we don't need anything from them. 1151 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1152 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1153 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1154 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1155 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1156 if (DemandedOp0 || DemandedOp1) { 1157 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1158 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1159 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1160 return TLO.CombineTo(Op, NewOp); 1161 } 1162 } 1163 1164 // If all of the demanded bits are known zero on one side, return the other. 1165 // These bits cannot contribute to the result of the 'xor'. 1166 if (DemandedBits.isSubsetOf(Known.Zero)) 1167 return TLO.CombineTo(Op, Op0); 1168 if (DemandedBits.isSubsetOf(Known2.Zero)) 1169 return TLO.CombineTo(Op, Op1); 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 // If all of the unknown bits are known to be zero on one side or the other 1175 // (but not both) turn this into an *inclusive* or. 1176 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1177 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1178 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1179 1180 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1181 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1182 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1183 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1184 1185 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1186 // If one side is a constant, and all of the known set bits on the other 1187 // side are also set in the constant, turn this into an AND, as we know 1188 // the bits will be cleared. 1189 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1190 // NB: it is okay if more bits are known than are requested 1191 if (C->getAPIntValue() == Known2.One) { 1192 SDValue ANDC = 1193 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1194 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1195 } 1196 1197 // If the RHS is a constant, see if we can change it. Don't alter a -1 1198 // constant because that's a 'not' op, and that is better for combining 1199 // and codegen. 1200 if (!C->isAllOnesValue()) { 1201 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1202 // We're flipping all demanded bits. Flip the undemanded bits too. 1203 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1204 return TLO.CombineTo(Op, New); 1205 } 1206 // If we can't turn this into a 'not', try to shrink the constant. 1207 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1208 return true; 1209 } 1210 } 1211 1212 Known = std::move(KnownOut); 1213 break; 1214 } 1215 case ISD::SELECT: 1216 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1217 Depth + 1)) 1218 return true; 1219 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1220 Depth + 1)) 1221 return true; 1222 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1223 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1224 1225 // If the operands are constants, see if we can simplify them. 1226 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1227 return true; 1228 1229 // Only known if known in both the LHS and RHS. 1230 Known.One &= Known2.One; 1231 Known.Zero &= Known2.Zero; 1232 break; 1233 case ISD::SELECT_CC: 1234 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1235 Depth + 1)) 1236 return true; 1237 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1238 Depth + 1)) 1239 return true; 1240 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1241 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1242 1243 // If the operands are constants, see if we can simplify them. 1244 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1245 return true; 1246 1247 // Only known if known in both the LHS and RHS. 1248 Known.One &= Known2.One; 1249 Known.Zero &= Known2.Zero; 1250 break; 1251 case ISD::SETCC: { 1252 SDValue Op0 = Op.getOperand(0); 1253 SDValue Op1 = Op.getOperand(1); 1254 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1255 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1256 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1257 // -1, we may be able to bypass the setcc. 1258 if (DemandedBits.isSignMask() && 1259 Op0.getScalarValueSizeInBits() == BitWidth && 1260 getBooleanContents(VT) == 1261 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1262 // If we're testing X < 0, then this compare isn't needed - just use X! 1263 // FIXME: We're limiting to integer types here, but this should also work 1264 // if we don't care about FP signed-zero. The use of SETLT with FP means 1265 // that we don't care about NaNs. 1266 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1267 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1268 return TLO.CombineTo(Op, Op0); 1269 1270 // TODO: Should we check for other forms of sign-bit comparisons? 1271 // Examples: X <= -1, X >= 0 1272 } 1273 if (getBooleanContents(Op0.getValueType()) == 1274 TargetLowering::ZeroOrOneBooleanContent && 1275 BitWidth > 1) 1276 Known.Zero.setBitsFrom(1); 1277 break; 1278 } 1279 case ISD::SHL: { 1280 SDValue Op0 = Op.getOperand(0); 1281 SDValue Op1 = Op.getOperand(1); 1282 1283 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1284 // If the shift count is an invalid immediate, don't do anything. 1285 if (SA->getAPIntValue().uge(BitWidth)) 1286 break; 1287 1288 unsigned ShAmt = SA->getZExtValue(); 1289 if (ShAmt == 0) 1290 return TLO.CombineTo(Op, Op0); 1291 1292 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1293 // single shift. We can do this if the bottom bits (which are shifted 1294 // out) are never demanded. 1295 // TODO - support non-uniform vector amounts. 1296 if (Op0.getOpcode() == ISD::SRL) { 1297 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1298 if (ConstantSDNode *SA2 = 1299 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1300 if (SA2->getAPIntValue().ult(BitWidth)) { 1301 unsigned C1 = SA2->getZExtValue(); 1302 unsigned Opc = ISD::SHL; 1303 int Diff = ShAmt - C1; 1304 if (Diff < 0) { 1305 Diff = -Diff; 1306 Opc = ISD::SRL; 1307 } 1308 1309 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1310 return TLO.CombineTo( 1311 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1312 } 1313 } 1314 } 1315 } 1316 1317 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1318 Known, TLO, Depth + 1)) 1319 return true; 1320 1321 // Try shrinking the operation as long as the shift amount will still be 1322 // in range. 1323 if ((ShAmt < DemandedBits.getActiveBits()) && 1324 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1325 return true; 1326 1327 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1328 // are not demanded. This will likely allow the anyext to be folded away. 1329 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1330 SDValue InnerOp = Op0.getOperand(0); 1331 EVT InnerVT = InnerOp.getValueType(); 1332 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1333 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1334 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1335 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1336 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1337 ShTy = InnerVT; 1338 SDValue NarrowShl = 1339 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1340 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1341 return TLO.CombineTo( 1342 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1343 } 1344 // Repeat the SHL optimization above in cases where an extension 1345 // intervenes: (shl (anyext (shr x, c1)), c2) to 1346 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1347 // aren't demanded (as above) and that the shifted upper c1 bits of 1348 // x aren't demanded. 1349 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1350 InnerOp.hasOneUse()) { 1351 if (ConstantSDNode *SA2 = 1352 isConstOrConstSplat(InnerOp.getOperand(1))) { 1353 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1354 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1355 DemandedBits.getActiveBits() <= 1356 (InnerBits - InnerShAmt + ShAmt) && 1357 DemandedBits.countTrailingZeros() >= ShAmt) { 1358 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1359 Op1.getValueType()); 1360 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1361 InnerOp.getOperand(0)); 1362 return TLO.CombineTo( 1363 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1364 } 1365 } 1366 } 1367 } 1368 1369 Known.Zero <<= ShAmt; 1370 Known.One <<= ShAmt; 1371 // low bits known zero. 1372 Known.Zero.setLowBits(ShAmt); 1373 } 1374 break; 1375 } 1376 case ISD::SRL: { 1377 SDValue Op0 = Op.getOperand(0); 1378 SDValue Op1 = Op.getOperand(1); 1379 1380 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1381 // If the shift count is an invalid immediate, don't do anything. 1382 if (SA->getAPIntValue().uge(BitWidth)) 1383 break; 1384 1385 unsigned ShAmt = SA->getZExtValue(); 1386 if (ShAmt == 0) 1387 return TLO.CombineTo(Op, Op0); 1388 1389 EVT ShiftVT = Op1.getValueType(); 1390 APInt InDemandedMask = (DemandedBits << ShAmt); 1391 1392 // If the shift is exact, then it does demand the low bits (and knows that 1393 // they are zero). 1394 if (Op->getFlags().hasExact()) 1395 InDemandedMask.setLowBits(ShAmt); 1396 1397 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1398 // single shift. We can do this if the top bits (which are shifted out) 1399 // are never demanded. 1400 // TODO - support non-uniform vector amounts. 1401 if (Op0.getOpcode() == ISD::SHL) { 1402 if (ConstantSDNode *SA2 = 1403 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1404 if (!DemandedBits.intersects( 1405 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1406 if (SA2->getAPIntValue().ult(BitWidth)) { 1407 unsigned C1 = SA2->getZExtValue(); 1408 unsigned Opc = ISD::SRL; 1409 int Diff = ShAmt - C1; 1410 if (Diff < 0) { 1411 Diff = -Diff; 1412 Opc = ISD::SHL; 1413 } 1414 1415 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1416 return TLO.CombineTo( 1417 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1418 } 1419 } 1420 } 1421 } 1422 1423 // Compute the new bits that are at the top now. 1424 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1425 Depth + 1)) 1426 return true; 1427 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1428 Known.Zero.lshrInPlace(ShAmt); 1429 Known.One.lshrInPlace(ShAmt); 1430 1431 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1432 } 1433 break; 1434 } 1435 case ISD::SRA: { 1436 SDValue Op0 = Op.getOperand(0); 1437 SDValue Op1 = Op.getOperand(1); 1438 1439 // If this is an arithmetic shift right and only the low-bit is set, we can 1440 // always convert this into a logical shr, even if the shift amount is 1441 // variable. The low bit of the shift cannot be an input sign bit unless 1442 // the shift amount is >= the size of the datatype, which is undefined. 1443 if (DemandedBits.isOneValue()) 1444 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1445 1446 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1447 // If the shift count is an invalid immediate, don't do anything. 1448 if (SA->getAPIntValue().uge(BitWidth)) 1449 break; 1450 1451 unsigned ShAmt = SA->getZExtValue(); 1452 if (ShAmt == 0) 1453 return TLO.CombineTo(Op, Op0); 1454 1455 APInt InDemandedMask = (DemandedBits << ShAmt); 1456 1457 // If the shift is exact, then it does demand the low bits (and knows that 1458 // they are zero). 1459 if (Op->getFlags().hasExact()) 1460 InDemandedMask.setLowBits(ShAmt); 1461 1462 // If any of the demanded bits are produced by the sign extension, we also 1463 // demand the input sign bit. 1464 if (DemandedBits.countLeadingZeros() < ShAmt) 1465 InDemandedMask.setSignBit(); 1466 1467 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1468 Depth + 1)) 1469 return true; 1470 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1471 Known.Zero.lshrInPlace(ShAmt); 1472 Known.One.lshrInPlace(ShAmt); 1473 1474 // If the input sign bit is known to be zero, or if none of the top bits 1475 // are demanded, turn this into an unsigned shift right. 1476 if (Known.Zero[BitWidth - ShAmt - 1] || 1477 DemandedBits.countLeadingZeros() >= ShAmt) { 1478 SDNodeFlags Flags; 1479 Flags.setExact(Op->getFlags().hasExact()); 1480 return TLO.CombineTo( 1481 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1482 } 1483 1484 int Log2 = DemandedBits.exactLogBase2(); 1485 if (Log2 >= 0) { 1486 // The bit must come from the sign. 1487 SDValue NewSA = 1488 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1489 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1490 } 1491 1492 if (Known.One[BitWidth - ShAmt - 1]) 1493 // New bits are known one. 1494 Known.One.setHighBits(ShAmt); 1495 } 1496 break; 1497 } 1498 case ISD::FSHL: 1499 case ISD::FSHR: { 1500 SDValue Op0 = Op.getOperand(0); 1501 SDValue Op1 = Op.getOperand(1); 1502 SDValue Op2 = Op.getOperand(2); 1503 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1504 1505 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1506 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1507 1508 // For fshl, 0-shift returns the 1st arg. 1509 // For fshr, 0-shift returns the 2nd arg. 1510 if (Amt == 0) { 1511 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1512 Known, TLO, Depth + 1)) 1513 return true; 1514 break; 1515 } 1516 1517 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1518 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1519 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1520 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1521 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1522 Depth + 1)) 1523 return true; 1524 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1525 Depth + 1)) 1526 return true; 1527 1528 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1529 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1530 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1531 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1532 Known.One |= Known2.One; 1533 Known.Zero |= Known2.Zero; 1534 } 1535 break; 1536 } 1537 case ISD::BITREVERSE: { 1538 SDValue Src = Op.getOperand(0); 1539 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1540 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1541 Depth + 1)) 1542 return true; 1543 Known.One = Known2.One.reverseBits(); 1544 Known.Zero = Known2.Zero.reverseBits(); 1545 break; 1546 } 1547 case ISD::BSWAP: { 1548 SDValue Src = Op.getOperand(0); 1549 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1550 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1551 Depth + 1)) 1552 return true; 1553 Known.One = Known2.One.byteSwap(); 1554 Known.Zero = Known2.Zero.byteSwap(); 1555 break; 1556 } 1557 case ISD::SIGN_EXTEND_INREG: { 1558 SDValue Op0 = Op.getOperand(0); 1559 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1560 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1561 1562 // If we only care about the highest bit, don't bother shifting right. 1563 if (DemandedBits.isSignMask()) { 1564 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1565 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1566 // However if the input is already sign extended we expect the sign 1567 // extension to be dropped altogether later and do not simplify. 1568 if (!AlreadySignExtended) { 1569 // Compute the correct shift amount type, which must be getShiftAmountTy 1570 // for scalar types after legalization. 1571 EVT ShiftAmtTy = VT; 1572 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1573 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1574 1575 SDValue ShiftAmt = 1576 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1577 return TLO.CombineTo(Op, 1578 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1579 } 1580 } 1581 1582 // If none of the extended bits are demanded, eliminate the sextinreg. 1583 if (DemandedBits.getActiveBits() <= ExVTBits) 1584 return TLO.CombineTo(Op, Op0); 1585 1586 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1587 1588 // Since the sign extended bits are demanded, we know that the sign 1589 // bit is demanded. 1590 InputDemandedBits.setBit(ExVTBits - 1); 1591 1592 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1593 return true; 1594 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1595 1596 // If the sign bit of the input is known set or clear, then we know the 1597 // top bits of the result. 1598 1599 // If the input sign bit is known zero, convert this into a zero extension. 1600 if (Known.Zero[ExVTBits - 1]) 1601 return TLO.CombineTo( 1602 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1603 1604 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1605 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1606 Known.One.setBitsFrom(ExVTBits); 1607 Known.Zero &= Mask; 1608 } else { // Input sign bit unknown 1609 Known.Zero &= Mask; 1610 Known.One &= Mask; 1611 } 1612 break; 1613 } 1614 case ISD::BUILD_PAIR: { 1615 EVT HalfVT = Op.getOperand(0).getValueType(); 1616 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1617 1618 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1619 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1620 1621 KnownBits KnownLo, KnownHi; 1622 1623 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1624 return true; 1625 1626 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1627 return true; 1628 1629 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1630 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1631 1632 Known.One = KnownLo.One.zext(BitWidth) | 1633 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1634 break; 1635 } 1636 case ISD::ZERO_EXTEND: 1637 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1638 SDValue Src = Op.getOperand(0); 1639 EVT SrcVT = Src.getValueType(); 1640 unsigned InBits = SrcVT.getScalarSizeInBits(); 1641 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1642 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1643 1644 // If none of the top bits are demanded, convert this into an any_extend. 1645 if (DemandedBits.getActiveBits() <= InBits) { 1646 // If we only need the non-extended bits of the bottom element 1647 // then we can just bitcast to the result. 1648 if (IsVecInReg && DemandedElts == 1 && 1649 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1650 TLO.DAG.getDataLayout().isLittleEndian()) 1651 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1652 1653 unsigned Opc = 1654 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1655 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1656 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1657 } 1658 1659 APInt InDemandedBits = DemandedBits.trunc(InBits); 1660 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1661 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1662 Depth + 1)) 1663 return true; 1664 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1665 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1666 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1667 break; 1668 } 1669 case ISD::SIGN_EXTEND: 1670 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1671 SDValue Src = Op.getOperand(0); 1672 EVT SrcVT = Src.getValueType(); 1673 unsigned InBits = SrcVT.getScalarSizeInBits(); 1674 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1675 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1676 1677 // If none of the top bits are demanded, convert this into an any_extend. 1678 if (DemandedBits.getActiveBits() <= InBits) { 1679 // If we only need the non-extended bits of the bottom element 1680 // then we can just bitcast to the result. 1681 if (IsVecInReg && DemandedElts == 1 && 1682 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1683 TLO.DAG.getDataLayout().isLittleEndian()) 1684 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1685 1686 unsigned Opc = 1687 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1688 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1689 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1690 } 1691 1692 APInt InDemandedBits = DemandedBits.trunc(InBits); 1693 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1694 1695 // Since some of the sign extended bits are demanded, we know that the sign 1696 // bit is demanded. 1697 InDemandedBits.setBit(InBits - 1); 1698 1699 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1700 Depth + 1)) 1701 return true; 1702 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1703 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1704 1705 // If the sign bit is known one, the top bits match. 1706 Known = Known.sext(BitWidth); 1707 1708 // If the sign bit is known zero, convert this to a zero extend. 1709 if (Known.isNonNegative()) { 1710 unsigned Opc = 1711 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1712 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1713 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1714 } 1715 break; 1716 } 1717 case ISD::ANY_EXTEND: 1718 case ISD::ANY_EXTEND_VECTOR_INREG: { 1719 SDValue Src = Op.getOperand(0); 1720 EVT SrcVT = Src.getValueType(); 1721 unsigned InBits = SrcVT.getScalarSizeInBits(); 1722 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1723 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1724 1725 // If we only need the bottom element then we can just bitcast. 1726 // TODO: Handle ANY_EXTEND? 1727 if (IsVecInReg && DemandedElts == 1 && 1728 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1729 TLO.DAG.getDataLayout().isLittleEndian()) 1730 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1731 1732 APInt InDemandedBits = DemandedBits.trunc(InBits); 1733 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1734 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1735 Depth + 1)) 1736 return true; 1737 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1738 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1739 Known = Known.zext(BitWidth, false /* => any extend */); 1740 break; 1741 } 1742 case ISD::TRUNCATE: { 1743 SDValue Src = Op.getOperand(0); 1744 1745 // Simplify the input, using demanded bit information, and compute the known 1746 // zero/one bits live out. 1747 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1748 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1749 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1750 return true; 1751 Known = Known.trunc(BitWidth); 1752 1753 // Attempt to avoid multi-use ops if we don't need anything from them. 1754 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1755 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1756 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1757 1758 // If the input is only used by this truncate, see if we can shrink it based 1759 // on the known demanded bits. 1760 if (Src.getNode()->hasOneUse()) { 1761 switch (Src.getOpcode()) { 1762 default: 1763 break; 1764 case ISD::SRL: 1765 // Shrink SRL by a constant if none of the high bits shifted in are 1766 // demanded. 1767 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1768 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1769 // undesirable. 1770 break; 1771 1772 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1773 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1774 break; 1775 1776 SDValue Shift = Src.getOperand(1); 1777 uint64_t ShVal = ShAmt->getZExtValue(); 1778 1779 if (TLO.LegalTypes()) 1780 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1781 1782 APInt HighBits = 1783 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1784 HighBits.lshrInPlace(ShVal); 1785 HighBits = HighBits.trunc(BitWidth); 1786 1787 if (!(HighBits & DemandedBits)) { 1788 // None of the shifted in bits are needed. Add a truncate of the 1789 // shift input, then shift it. 1790 SDValue NewTrunc = 1791 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1792 return TLO.CombineTo( 1793 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1794 } 1795 break; 1796 } 1797 } 1798 1799 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1800 break; 1801 } 1802 case ISD::AssertZext: { 1803 // AssertZext demands all of the high bits, plus any of the low bits 1804 // demanded by its users. 1805 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1806 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1807 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1808 TLO, Depth + 1)) 1809 return true; 1810 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1811 1812 Known.Zero |= ~InMask; 1813 break; 1814 } 1815 case ISD::EXTRACT_VECTOR_ELT: { 1816 SDValue Src = Op.getOperand(0); 1817 SDValue Idx = Op.getOperand(1); 1818 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1819 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1820 1821 // Demand the bits from every vector element without a constant index. 1822 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1823 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1824 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1825 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1826 1827 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1828 // anything about the extended bits. 1829 APInt DemandedSrcBits = DemandedBits; 1830 if (BitWidth > EltBitWidth) 1831 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1832 1833 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1834 Depth + 1)) 1835 return true; 1836 1837 Known = Known2; 1838 if (BitWidth > EltBitWidth) 1839 Known = Known.zext(BitWidth, false /* => any extend */); 1840 break; 1841 } 1842 case ISD::BITCAST: { 1843 SDValue Src = Op.getOperand(0); 1844 EVT SrcVT = Src.getValueType(); 1845 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1846 1847 // If this is an FP->Int bitcast and if the sign bit is the only 1848 // thing demanded, turn this into a FGETSIGN. 1849 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1850 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1851 SrcVT.isFloatingPoint()) { 1852 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1853 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1854 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1855 SrcVT != MVT::f128) { 1856 // Cannot eliminate/lower SHL for f128 yet. 1857 EVT Ty = OpVTLegal ? VT : MVT::i32; 1858 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1859 // place. We expect the SHL to be eliminated by other optimizations. 1860 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1861 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1862 if (!OpVTLegal && OpVTSizeInBits > 32) 1863 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1864 unsigned ShVal = Op.getValueSizeInBits() - 1; 1865 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1866 return TLO.CombineTo(Op, 1867 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1868 } 1869 } 1870 1871 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1872 // Demand the elt/bit if any of the original elts/bits are demanded. 1873 // TODO - bigendian once we have test coverage. 1874 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1875 TLO.DAG.getDataLayout().isLittleEndian()) { 1876 unsigned Scale = BitWidth / NumSrcEltBits; 1877 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1878 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1879 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1880 for (unsigned i = 0; i != Scale; ++i) { 1881 unsigned Offset = i * NumSrcEltBits; 1882 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1883 if (!Sub.isNullValue()) { 1884 DemandedSrcBits |= Sub; 1885 for (unsigned j = 0; j != NumElts; ++j) 1886 if (DemandedElts[j]) 1887 DemandedSrcElts.setBit((j * Scale) + i); 1888 } 1889 } 1890 1891 APInt KnownSrcUndef, KnownSrcZero; 1892 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1893 KnownSrcZero, TLO, Depth + 1)) 1894 return true; 1895 1896 KnownBits KnownSrcBits; 1897 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1898 KnownSrcBits, TLO, Depth + 1)) 1899 return true; 1900 } else if ((NumSrcEltBits % BitWidth) == 0 && 1901 TLO.DAG.getDataLayout().isLittleEndian()) { 1902 unsigned Scale = NumSrcEltBits / BitWidth; 1903 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1904 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1905 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1906 for (unsigned i = 0; i != NumElts; ++i) 1907 if (DemandedElts[i]) { 1908 unsigned Offset = (i % Scale) * BitWidth; 1909 DemandedSrcBits.insertBits(DemandedBits, Offset); 1910 DemandedSrcElts.setBit(i / Scale); 1911 } 1912 1913 if (SrcVT.isVector()) { 1914 APInt KnownSrcUndef, KnownSrcZero; 1915 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1916 KnownSrcZero, TLO, Depth + 1)) 1917 return true; 1918 } 1919 1920 KnownBits KnownSrcBits; 1921 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1922 KnownSrcBits, TLO, Depth + 1)) 1923 return true; 1924 } 1925 1926 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1927 // recursive call where Known may be useful to the caller. 1928 if (Depth > 0) { 1929 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1930 return false; 1931 } 1932 break; 1933 } 1934 case ISD::ADD: 1935 case ISD::MUL: 1936 case ISD::SUB: { 1937 // Add, Sub, and Mul don't demand any bits in positions beyond that 1938 // of the highest bit demanded of them. 1939 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1940 SDNodeFlags Flags = Op.getNode()->getFlags(); 1941 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1942 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1943 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1944 Depth + 1) || 1945 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1946 Depth + 1) || 1947 // See if the operation should be performed at a smaller bit width. 1948 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1949 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1950 // Disable the nsw and nuw flags. We can no longer guarantee that we 1951 // won't wrap after simplification. 1952 Flags.setNoSignedWrap(false); 1953 Flags.setNoUnsignedWrap(false); 1954 SDValue NewOp = 1955 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1956 return TLO.CombineTo(Op, NewOp); 1957 } 1958 return true; 1959 } 1960 1961 // Attempt to avoid multi-use ops if we don't need anything from them. 1962 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1963 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1964 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1965 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1966 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1967 if (DemandedOp0 || DemandedOp1) { 1968 Flags.setNoSignedWrap(false); 1969 Flags.setNoUnsignedWrap(false); 1970 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1971 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1972 SDValue NewOp = 1973 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1974 return TLO.CombineTo(Op, NewOp); 1975 } 1976 } 1977 1978 // If we have a constant operand, we may be able to turn it into -1 if we 1979 // do not demand the high bits. This can make the constant smaller to 1980 // encode, allow more general folding, or match specialized instruction 1981 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1982 // is probably not useful (and could be detrimental). 1983 ConstantSDNode *C = isConstOrConstSplat(Op1); 1984 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1985 if (C && !C->isAllOnesValue() && !C->isOne() && 1986 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1987 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1988 // Disable the nsw and nuw flags. We can no longer guarantee that we 1989 // won't wrap after simplification. 1990 Flags.setNoSignedWrap(false); 1991 Flags.setNoUnsignedWrap(false); 1992 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1993 return TLO.CombineTo(Op, NewOp); 1994 } 1995 1996 LLVM_FALLTHROUGH; 1997 } 1998 default: 1999 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2000 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2001 Known, TLO, Depth)) 2002 return true; 2003 break; 2004 } 2005 2006 // Just use computeKnownBits to compute output bits. 2007 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2008 break; 2009 } 2010 2011 // If we know the value of all of the demanded bits, return this as a 2012 // constant. 2013 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2014 // Avoid folding to a constant if any OpaqueConstant is involved. 2015 const SDNode *N = Op.getNode(); 2016 for (SDNodeIterator I = SDNodeIterator::begin(N), 2017 E = SDNodeIterator::end(N); 2018 I != E; ++I) { 2019 SDNode *Op = *I; 2020 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2021 if (C->isOpaque()) 2022 return false; 2023 } 2024 // TODO: Handle float bits as well. 2025 if (VT.isInteger()) 2026 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2027 } 2028 2029 return false; 2030 } 2031 2032 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2033 const APInt &DemandedElts, 2034 APInt &KnownUndef, 2035 APInt &KnownZero, 2036 DAGCombinerInfo &DCI) const { 2037 SelectionDAG &DAG = DCI.DAG; 2038 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2039 !DCI.isBeforeLegalizeOps()); 2040 2041 bool Simplified = 2042 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2043 if (Simplified) { 2044 DCI.AddToWorklist(Op.getNode()); 2045 DCI.CommitTargetLoweringOpt(TLO); 2046 } 2047 2048 return Simplified; 2049 } 2050 2051 /// Given a vector binary operation and known undefined elements for each input 2052 /// operand, compute whether each element of the output is undefined. 2053 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2054 const APInt &UndefOp0, 2055 const APInt &UndefOp1) { 2056 EVT VT = BO.getValueType(); 2057 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2058 "Vector binop only"); 2059 2060 EVT EltVT = VT.getVectorElementType(); 2061 unsigned NumElts = VT.getVectorNumElements(); 2062 assert(UndefOp0.getBitWidth() == NumElts && 2063 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2064 2065 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2066 const APInt &UndefVals) { 2067 if (UndefVals[Index]) 2068 return DAG.getUNDEF(EltVT); 2069 2070 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2071 // Try hard to make sure that the getNode() call is not creating temporary 2072 // nodes. Ignore opaque integers because they do not constant fold. 2073 SDValue Elt = BV->getOperand(Index); 2074 auto *C = dyn_cast<ConstantSDNode>(Elt); 2075 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2076 return Elt; 2077 } 2078 2079 return SDValue(); 2080 }; 2081 2082 APInt KnownUndef = APInt::getNullValue(NumElts); 2083 for (unsigned i = 0; i != NumElts; ++i) { 2084 // If both inputs for this element are either constant or undef and match 2085 // the element type, compute the constant/undef result for this element of 2086 // the vector. 2087 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2088 // not handle FP constants. The code within getNode() should be refactored 2089 // to avoid the danger of creating a bogus temporary node here. 2090 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2091 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2092 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2093 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2094 KnownUndef.setBit(i); 2095 } 2096 return KnownUndef; 2097 } 2098 2099 bool TargetLowering::SimplifyDemandedVectorElts( 2100 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2101 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2102 bool AssumeSingleUse) const { 2103 EVT VT = Op.getValueType(); 2104 APInt DemandedElts = OriginalDemandedElts; 2105 unsigned NumElts = DemandedElts.getBitWidth(); 2106 assert(VT.isVector() && "Expected vector op"); 2107 assert(VT.getVectorNumElements() == NumElts && 2108 "Mask size mismatches value type element count!"); 2109 2110 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2111 2112 // Undef operand. 2113 if (Op.isUndef()) { 2114 KnownUndef.setAllBits(); 2115 return false; 2116 } 2117 2118 // If Op has other users, assume that all elements are needed. 2119 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2120 DemandedElts.setAllBits(); 2121 2122 // Not demanding any elements from Op. 2123 if (DemandedElts == 0) { 2124 KnownUndef.setAllBits(); 2125 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2126 } 2127 2128 // Limit search depth. 2129 if (Depth >= SelectionDAG::MaxRecursionDepth) 2130 return false; 2131 2132 SDLoc DL(Op); 2133 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2134 2135 switch (Op.getOpcode()) { 2136 case ISD::SCALAR_TO_VECTOR: { 2137 if (!DemandedElts[0]) { 2138 KnownUndef.setAllBits(); 2139 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2140 } 2141 KnownUndef.setHighBits(NumElts - 1); 2142 break; 2143 } 2144 case ISD::BITCAST: { 2145 SDValue Src = Op.getOperand(0); 2146 EVT SrcVT = Src.getValueType(); 2147 2148 // We only handle vectors here. 2149 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2150 if (!SrcVT.isVector()) 2151 break; 2152 2153 // Fast handling of 'identity' bitcasts. 2154 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2155 if (NumSrcElts == NumElts) 2156 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2157 KnownZero, TLO, Depth + 1); 2158 2159 APInt SrcZero, SrcUndef; 2160 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2161 2162 // Bitcast from 'large element' src vector to 'small element' vector, we 2163 // must demand a source element if any DemandedElt maps to it. 2164 if ((NumElts % NumSrcElts) == 0) { 2165 unsigned Scale = NumElts / NumSrcElts; 2166 for (unsigned i = 0; i != NumElts; ++i) 2167 if (DemandedElts[i]) 2168 SrcDemandedElts.setBit(i / Scale); 2169 2170 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2171 TLO, Depth + 1)) 2172 return true; 2173 2174 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2175 // of the large element. 2176 // TODO - bigendian once we have test coverage. 2177 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2178 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2179 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2180 for (unsigned i = 0; i != NumElts; ++i) 2181 if (DemandedElts[i]) { 2182 unsigned Ofs = (i % Scale) * EltSizeInBits; 2183 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2184 } 2185 2186 KnownBits Known; 2187 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2188 return true; 2189 } 2190 2191 // If the src element is zero/undef then all the output elements will be - 2192 // only demanded elements are guaranteed to be correct. 2193 for (unsigned i = 0; i != NumSrcElts; ++i) { 2194 if (SrcDemandedElts[i]) { 2195 if (SrcZero[i]) 2196 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2197 if (SrcUndef[i]) 2198 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2199 } 2200 } 2201 } 2202 2203 // Bitcast from 'small element' src vector to 'large element' vector, we 2204 // demand all smaller source elements covered by the larger demanded element 2205 // of this vector. 2206 if ((NumSrcElts % NumElts) == 0) { 2207 unsigned Scale = NumSrcElts / NumElts; 2208 for (unsigned i = 0; i != NumElts; ++i) 2209 if (DemandedElts[i]) 2210 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2211 2212 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2213 TLO, Depth + 1)) 2214 return true; 2215 2216 // If all the src elements covering an output element are zero/undef, then 2217 // the output element will be as well, assuming it was demanded. 2218 for (unsigned i = 0; i != NumElts; ++i) { 2219 if (DemandedElts[i]) { 2220 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2221 KnownZero.setBit(i); 2222 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2223 KnownUndef.setBit(i); 2224 } 2225 } 2226 } 2227 break; 2228 } 2229 case ISD::BUILD_VECTOR: { 2230 // Check all elements and simplify any unused elements with UNDEF. 2231 if (!DemandedElts.isAllOnesValue()) { 2232 // Don't simplify BROADCASTS. 2233 if (llvm::any_of(Op->op_values(), 2234 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2235 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2236 bool Updated = false; 2237 for (unsigned i = 0; i != NumElts; ++i) { 2238 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2239 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2240 KnownUndef.setBit(i); 2241 Updated = true; 2242 } 2243 } 2244 if (Updated) 2245 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2246 } 2247 } 2248 for (unsigned i = 0; i != NumElts; ++i) { 2249 SDValue SrcOp = Op.getOperand(i); 2250 if (SrcOp.isUndef()) { 2251 KnownUndef.setBit(i); 2252 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2253 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2254 KnownZero.setBit(i); 2255 } 2256 } 2257 break; 2258 } 2259 case ISD::CONCAT_VECTORS: { 2260 EVT SubVT = Op.getOperand(0).getValueType(); 2261 unsigned NumSubVecs = Op.getNumOperands(); 2262 unsigned NumSubElts = SubVT.getVectorNumElements(); 2263 for (unsigned i = 0; i != NumSubVecs; ++i) { 2264 SDValue SubOp = Op.getOperand(i); 2265 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2266 APInt SubUndef, SubZero; 2267 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2268 Depth + 1)) 2269 return true; 2270 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2271 KnownZero.insertBits(SubZero, i * NumSubElts); 2272 } 2273 break; 2274 } 2275 case ISD::INSERT_SUBVECTOR: { 2276 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2277 break; 2278 SDValue Base = Op.getOperand(0); 2279 SDValue Sub = Op.getOperand(1); 2280 EVT SubVT = Sub.getValueType(); 2281 unsigned NumSubElts = SubVT.getVectorNumElements(); 2282 const APInt &Idx = Op.getConstantOperandAPInt(2); 2283 if (Idx.ugt(NumElts - NumSubElts)) 2284 break; 2285 unsigned SubIdx = Idx.getZExtValue(); 2286 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2287 APInt SubUndef, SubZero; 2288 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2289 Depth + 1)) 2290 return true; 2291 APInt BaseElts = DemandedElts; 2292 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2293 2294 // If none of the base operand elements are demanded, replace it with undef. 2295 if (!BaseElts && !Base.isUndef()) 2296 return TLO.CombineTo(Op, 2297 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2298 TLO.DAG.getUNDEF(VT), 2299 Op.getOperand(1), 2300 Op.getOperand(2))); 2301 2302 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2303 Depth + 1)) 2304 return true; 2305 KnownUndef.insertBits(SubUndef, SubIdx); 2306 KnownZero.insertBits(SubZero, SubIdx); 2307 break; 2308 } 2309 case ISD::EXTRACT_SUBVECTOR: { 2310 SDValue Src = Op.getOperand(0); 2311 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2312 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2313 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2314 // Offset the demanded elts by the subvector index. 2315 uint64_t Idx = SubIdx->getZExtValue(); 2316 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2317 APInt SrcUndef, SrcZero; 2318 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2319 Depth + 1)) 2320 return true; 2321 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2322 KnownZero = SrcZero.extractBits(NumElts, Idx); 2323 } 2324 break; 2325 } 2326 case ISD::INSERT_VECTOR_ELT: { 2327 SDValue Vec = Op.getOperand(0); 2328 SDValue Scl = Op.getOperand(1); 2329 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2330 2331 // For a legal, constant insertion index, if we don't need this insertion 2332 // then strip it, else remove it from the demanded elts. 2333 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2334 unsigned Idx = CIdx->getZExtValue(); 2335 if (!DemandedElts[Idx]) 2336 return TLO.CombineTo(Op, Vec); 2337 2338 APInt DemandedVecElts(DemandedElts); 2339 DemandedVecElts.clearBit(Idx); 2340 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2341 KnownZero, TLO, Depth + 1)) 2342 return true; 2343 2344 KnownUndef.clearBit(Idx); 2345 if (Scl.isUndef()) 2346 KnownUndef.setBit(Idx); 2347 2348 KnownZero.clearBit(Idx); 2349 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2350 KnownZero.setBit(Idx); 2351 break; 2352 } 2353 2354 APInt VecUndef, VecZero; 2355 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2356 Depth + 1)) 2357 return true; 2358 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2359 break; 2360 } 2361 case ISD::VSELECT: { 2362 // Try to transform the select condition based on the current demanded 2363 // elements. 2364 // TODO: If a condition element is undef, we can choose from one arm of the 2365 // select (and if one arm is undef, then we can propagate that to the 2366 // result). 2367 // TODO - add support for constant vselect masks (see IR version of this). 2368 APInt UnusedUndef, UnusedZero; 2369 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2370 UnusedZero, TLO, Depth + 1)) 2371 return true; 2372 2373 // See if we can simplify either vselect operand. 2374 APInt DemandedLHS(DemandedElts); 2375 APInt DemandedRHS(DemandedElts); 2376 APInt UndefLHS, ZeroLHS; 2377 APInt UndefRHS, ZeroRHS; 2378 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2379 ZeroLHS, TLO, Depth + 1)) 2380 return true; 2381 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2382 ZeroRHS, TLO, Depth + 1)) 2383 return true; 2384 2385 KnownUndef = UndefLHS & UndefRHS; 2386 KnownZero = ZeroLHS & ZeroRHS; 2387 break; 2388 } 2389 case ISD::VECTOR_SHUFFLE: { 2390 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2391 2392 // Collect demanded elements from shuffle operands.. 2393 APInt DemandedLHS(NumElts, 0); 2394 APInt DemandedRHS(NumElts, 0); 2395 for (unsigned i = 0; i != NumElts; ++i) { 2396 int M = ShuffleMask[i]; 2397 if (M < 0 || !DemandedElts[i]) 2398 continue; 2399 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2400 if (M < (int)NumElts) 2401 DemandedLHS.setBit(M); 2402 else 2403 DemandedRHS.setBit(M - NumElts); 2404 } 2405 2406 // See if we can simplify either shuffle operand. 2407 APInt UndefLHS, ZeroLHS; 2408 APInt UndefRHS, ZeroRHS; 2409 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2410 ZeroLHS, TLO, Depth + 1)) 2411 return true; 2412 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2413 ZeroRHS, TLO, Depth + 1)) 2414 return true; 2415 2416 // Simplify mask using undef elements from LHS/RHS. 2417 bool Updated = false; 2418 bool IdentityLHS = true, IdentityRHS = true; 2419 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2420 for (unsigned i = 0; i != NumElts; ++i) { 2421 int &M = NewMask[i]; 2422 if (M < 0) 2423 continue; 2424 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2425 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2426 Updated = true; 2427 M = -1; 2428 } 2429 IdentityLHS &= (M < 0) || (M == (int)i); 2430 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2431 } 2432 2433 // Update legal shuffle masks based on demanded elements if it won't reduce 2434 // to Identity which can cause premature removal of the shuffle mask. 2435 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2436 SDValue LegalShuffle = 2437 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2438 NewMask, TLO.DAG); 2439 if (LegalShuffle) 2440 return TLO.CombineTo(Op, LegalShuffle); 2441 } 2442 2443 // Propagate undef/zero elements from LHS/RHS. 2444 for (unsigned i = 0; i != NumElts; ++i) { 2445 int M = ShuffleMask[i]; 2446 if (M < 0) { 2447 KnownUndef.setBit(i); 2448 } else if (M < (int)NumElts) { 2449 if (UndefLHS[M]) 2450 KnownUndef.setBit(i); 2451 if (ZeroLHS[M]) 2452 KnownZero.setBit(i); 2453 } else { 2454 if (UndefRHS[M - NumElts]) 2455 KnownUndef.setBit(i); 2456 if (ZeroRHS[M - NumElts]) 2457 KnownZero.setBit(i); 2458 } 2459 } 2460 break; 2461 } 2462 case ISD::ANY_EXTEND_VECTOR_INREG: 2463 case ISD::SIGN_EXTEND_VECTOR_INREG: 2464 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2465 APInt SrcUndef, SrcZero; 2466 SDValue Src = Op.getOperand(0); 2467 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2468 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2469 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2470 Depth + 1)) 2471 return true; 2472 KnownZero = SrcZero.zextOrTrunc(NumElts); 2473 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2474 2475 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2476 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2477 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2478 // aext - if we just need the bottom element then we can bitcast. 2479 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2480 } 2481 2482 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2483 // zext(undef) upper bits are guaranteed to be zero. 2484 if (DemandedElts.isSubsetOf(KnownUndef)) 2485 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2486 KnownUndef.clearAllBits(); 2487 } 2488 break; 2489 } 2490 2491 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2492 // MAX, saturated math, etc. 2493 case ISD::OR: 2494 case ISD::XOR: 2495 case ISD::ADD: 2496 case ISD::SUB: 2497 case ISD::FADD: 2498 case ISD::FSUB: 2499 case ISD::FMUL: 2500 case ISD::FDIV: 2501 case ISD::FREM: { 2502 APInt UndefRHS, ZeroRHS; 2503 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2504 ZeroRHS, TLO, Depth + 1)) 2505 return true; 2506 APInt UndefLHS, ZeroLHS; 2507 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2508 ZeroLHS, TLO, Depth + 1)) 2509 return true; 2510 2511 KnownZero = ZeroLHS & ZeroRHS; 2512 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2513 break; 2514 } 2515 case ISD::SHL: 2516 case ISD::SRL: 2517 case ISD::SRA: 2518 case ISD::ROTL: 2519 case ISD::ROTR: { 2520 APInt UndefRHS, ZeroRHS; 2521 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2522 ZeroRHS, TLO, Depth + 1)) 2523 return true; 2524 APInt UndefLHS, ZeroLHS; 2525 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2526 ZeroLHS, TLO, Depth + 1)) 2527 return true; 2528 2529 KnownZero = ZeroLHS; 2530 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2531 break; 2532 } 2533 case ISD::MUL: 2534 case ISD::AND: { 2535 APInt SrcUndef, SrcZero; 2536 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2537 SrcZero, TLO, Depth + 1)) 2538 return true; 2539 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2540 KnownZero, TLO, Depth + 1)) 2541 return true; 2542 2543 // If either side has a zero element, then the result element is zero, even 2544 // if the other is an UNDEF. 2545 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2546 // and then handle 'and' nodes with the rest of the binop opcodes. 2547 KnownZero |= SrcZero; 2548 KnownUndef &= SrcUndef; 2549 KnownUndef &= ~KnownZero; 2550 break; 2551 } 2552 case ISD::TRUNCATE: 2553 case ISD::SIGN_EXTEND: 2554 case ISD::ZERO_EXTEND: 2555 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2556 KnownZero, TLO, Depth + 1)) 2557 return true; 2558 2559 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2560 // zext(undef) upper bits are guaranteed to be zero. 2561 if (DemandedElts.isSubsetOf(KnownUndef)) 2562 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2563 KnownUndef.clearAllBits(); 2564 } 2565 break; 2566 default: { 2567 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2568 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2569 KnownZero, TLO, Depth)) 2570 return true; 2571 } else { 2572 KnownBits Known; 2573 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2574 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2575 TLO, Depth, AssumeSingleUse)) 2576 return true; 2577 } 2578 break; 2579 } 2580 } 2581 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2582 2583 // Constant fold all undef cases. 2584 // TODO: Handle zero cases as well. 2585 if (DemandedElts.isSubsetOf(KnownUndef)) 2586 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2587 2588 return false; 2589 } 2590 2591 /// Determine which of the bits specified in Mask are known to be either zero or 2592 /// one and return them in the Known. 2593 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2594 KnownBits &Known, 2595 const APInt &DemandedElts, 2596 const SelectionDAG &DAG, 2597 unsigned Depth) const { 2598 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2599 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2600 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2601 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2602 "Should use MaskedValueIsZero if you don't know whether Op" 2603 " is a target node!"); 2604 Known.resetAll(); 2605 } 2606 2607 void TargetLowering::computeKnownBitsForTargetInstr( 2608 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2609 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2610 unsigned Depth) const { 2611 Known.resetAll(); 2612 } 2613 2614 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2615 KnownBits &Known, 2616 const APInt &DemandedElts, 2617 const SelectionDAG &DAG, 2618 unsigned Depth) const { 2619 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2620 2621 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2622 // The low bits are known zero if the pointer is aligned. 2623 Known.Zero.setLowBits(Log2_32(Align)); 2624 } 2625 } 2626 2627 /// This method can be implemented by targets that want to expose additional 2628 /// information about sign bits to the DAG Combiner. 2629 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2630 const APInt &, 2631 const SelectionDAG &, 2632 unsigned Depth) const { 2633 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2634 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2635 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2636 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2637 "Should use ComputeNumSignBits if you don't know whether Op" 2638 " is a target node!"); 2639 return 1; 2640 } 2641 2642 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2643 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2644 TargetLoweringOpt &TLO, unsigned Depth) const { 2645 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2646 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2647 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2648 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2649 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2650 " is a target node!"); 2651 return false; 2652 } 2653 2654 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2656 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2657 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2658 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2659 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2660 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2661 "Should use SimplifyDemandedBits if you don't know whether Op" 2662 " is a target node!"); 2663 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2664 return false; 2665 } 2666 2667 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2668 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2669 SelectionDAG &DAG, unsigned Depth) const { 2670 assert( 2671 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2672 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2673 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2674 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2675 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2676 " is a target node!"); 2677 return SDValue(); 2678 } 2679 2680 SDValue 2681 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2682 SDValue N1, MutableArrayRef<int> Mask, 2683 SelectionDAG &DAG) const { 2684 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2685 if (!LegalMask) { 2686 std::swap(N0, N1); 2687 ShuffleVectorSDNode::commuteMask(Mask); 2688 LegalMask = isShuffleMaskLegal(Mask, VT); 2689 } 2690 2691 if (!LegalMask) 2692 return SDValue(); 2693 2694 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2695 } 2696 2697 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2698 return nullptr; 2699 } 2700 2701 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2702 const SelectionDAG &DAG, 2703 bool SNaN, 2704 unsigned Depth) const { 2705 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2706 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2707 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2708 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2709 "Should use isKnownNeverNaN if you don't know whether Op" 2710 " is a target node!"); 2711 return false; 2712 } 2713 2714 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2715 // work with truncating build vectors and vectors with elements of less than 2716 // 8 bits. 2717 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2718 if (!N) 2719 return false; 2720 2721 APInt CVal; 2722 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2723 CVal = CN->getAPIntValue(); 2724 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2725 auto *CN = BV->getConstantSplatNode(); 2726 if (!CN) 2727 return false; 2728 2729 // If this is a truncating build vector, truncate the splat value. 2730 // Otherwise, we may fail to match the expected values below. 2731 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2732 CVal = CN->getAPIntValue(); 2733 if (BVEltWidth < CVal.getBitWidth()) 2734 CVal = CVal.trunc(BVEltWidth); 2735 } else { 2736 return false; 2737 } 2738 2739 switch (getBooleanContents(N->getValueType(0))) { 2740 case UndefinedBooleanContent: 2741 return CVal[0]; 2742 case ZeroOrOneBooleanContent: 2743 return CVal.isOneValue(); 2744 case ZeroOrNegativeOneBooleanContent: 2745 return CVal.isAllOnesValue(); 2746 } 2747 2748 llvm_unreachable("Invalid boolean contents"); 2749 } 2750 2751 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2752 if (!N) 2753 return false; 2754 2755 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2756 if (!CN) { 2757 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2758 if (!BV) 2759 return false; 2760 2761 // Only interested in constant splats, we don't care about undef 2762 // elements in identifying boolean constants and getConstantSplatNode 2763 // returns NULL if all ops are undef; 2764 CN = BV->getConstantSplatNode(); 2765 if (!CN) 2766 return false; 2767 } 2768 2769 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2770 return !CN->getAPIntValue()[0]; 2771 2772 return CN->isNullValue(); 2773 } 2774 2775 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2776 bool SExt) const { 2777 if (VT == MVT::i1) 2778 return N->isOne(); 2779 2780 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2781 switch (Cnt) { 2782 case TargetLowering::ZeroOrOneBooleanContent: 2783 // An extended value of 1 is always true, unless its original type is i1, 2784 // in which case it will be sign extended to -1. 2785 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2786 case TargetLowering::UndefinedBooleanContent: 2787 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2788 return N->isAllOnesValue() && SExt; 2789 } 2790 llvm_unreachable("Unexpected enumeration."); 2791 } 2792 2793 /// This helper function of SimplifySetCC tries to optimize the comparison when 2794 /// either operand of the SetCC node is a bitwise-and instruction. 2795 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2796 ISD::CondCode Cond, const SDLoc &DL, 2797 DAGCombinerInfo &DCI) const { 2798 // Match these patterns in any of their permutations: 2799 // (X & Y) == Y 2800 // (X & Y) != Y 2801 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2802 std::swap(N0, N1); 2803 2804 EVT OpVT = N0.getValueType(); 2805 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2806 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2807 return SDValue(); 2808 2809 SDValue X, Y; 2810 if (N0.getOperand(0) == N1) { 2811 X = N0.getOperand(1); 2812 Y = N0.getOperand(0); 2813 } else if (N0.getOperand(1) == N1) { 2814 X = N0.getOperand(0); 2815 Y = N0.getOperand(1); 2816 } else { 2817 return SDValue(); 2818 } 2819 2820 SelectionDAG &DAG = DCI.DAG; 2821 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2822 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2823 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2824 // Note that where Y is variable and is known to have at most one bit set 2825 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2826 // equivalent when Y == 0. 2827 assert(OpVT.isInteger()); 2828 Cond = ISD::getSetCCInverse(Cond, OpVT); 2829 if (DCI.isBeforeLegalizeOps() || 2830 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2831 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2832 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2833 // If the target supports an 'and-not' or 'and-complement' logic operation, 2834 // try to use that to make a comparison operation more efficient. 2835 // But don't do this transform if the mask is a single bit because there are 2836 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2837 // 'rlwinm' on PPC). 2838 2839 // Bail out if the compare operand that we want to turn into a zero is 2840 // already a zero (otherwise, infinite loop). 2841 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2842 if (YConst && YConst->isNullValue()) 2843 return SDValue(); 2844 2845 // Transform this into: ~X & Y == 0. 2846 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2847 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2848 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2849 } 2850 2851 return SDValue(); 2852 } 2853 2854 /// There are multiple IR patterns that could be checking whether certain 2855 /// truncation of a signed number would be lossy or not. The pattern which is 2856 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2857 /// We are looking for the following pattern: (KeptBits is a constant) 2858 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2859 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2860 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2861 /// We will unfold it into the natural trunc+sext pattern: 2862 /// ((%x << C) a>> C) dstcond %x 2863 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2864 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2865 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2866 const SDLoc &DL) const { 2867 // We must be comparing with a constant. 2868 ConstantSDNode *C1; 2869 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2870 return SDValue(); 2871 2872 // N0 should be: add %x, (1 << (KeptBits-1)) 2873 if (N0->getOpcode() != ISD::ADD) 2874 return SDValue(); 2875 2876 // And we must be 'add'ing a constant. 2877 ConstantSDNode *C01; 2878 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2879 return SDValue(); 2880 2881 SDValue X = N0->getOperand(0); 2882 EVT XVT = X.getValueType(); 2883 2884 // Validate constants ... 2885 2886 APInt I1 = C1->getAPIntValue(); 2887 2888 ISD::CondCode NewCond; 2889 if (Cond == ISD::CondCode::SETULT) { 2890 NewCond = ISD::CondCode::SETEQ; 2891 } else if (Cond == ISD::CondCode::SETULE) { 2892 NewCond = ISD::CondCode::SETEQ; 2893 // But need to 'canonicalize' the constant. 2894 I1 += 1; 2895 } else if (Cond == ISD::CondCode::SETUGT) { 2896 NewCond = ISD::CondCode::SETNE; 2897 // But need to 'canonicalize' the constant. 2898 I1 += 1; 2899 } else if (Cond == ISD::CondCode::SETUGE) { 2900 NewCond = ISD::CondCode::SETNE; 2901 } else 2902 return SDValue(); 2903 2904 APInt I01 = C01->getAPIntValue(); 2905 2906 auto checkConstants = [&I1, &I01]() -> bool { 2907 // Both of them must be power-of-two, and the constant from setcc is bigger. 2908 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2909 }; 2910 2911 if (checkConstants()) { 2912 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2913 } else { 2914 // What if we invert constants? (and the target predicate) 2915 I1.negate(); 2916 I01.negate(); 2917 assert(XVT.isInteger()); 2918 NewCond = getSetCCInverse(NewCond, XVT); 2919 if (!checkConstants()) 2920 return SDValue(); 2921 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2922 } 2923 2924 // They are power-of-two, so which bit is set? 2925 const unsigned KeptBits = I1.logBase2(); 2926 const unsigned KeptBitsMinusOne = I01.logBase2(); 2927 2928 // Magic! 2929 if (KeptBits != (KeptBitsMinusOne + 1)) 2930 return SDValue(); 2931 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2932 2933 // We don't want to do this in every single case. 2934 SelectionDAG &DAG = DCI.DAG; 2935 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2936 XVT, KeptBits)) 2937 return SDValue(); 2938 2939 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2940 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2941 2942 // Unfold into: ((%x << C) a>> C) cond %x 2943 // Where 'cond' will be either 'eq' or 'ne'. 2944 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2945 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2946 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2947 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2948 2949 return T2; 2950 } 2951 2952 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2953 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2954 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2955 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2956 assert(isConstOrConstSplat(N1C) && 2957 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2958 "Should be a comparison with 0."); 2959 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2960 "Valid only for [in]equality comparisons."); 2961 2962 unsigned NewShiftOpcode; 2963 SDValue X, C, Y; 2964 2965 SelectionDAG &DAG = DCI.DAG; 2966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2967 2968 // Look for '(C l>>/<< Y)'. 2969 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2970 // The shift should be one-use. 2971 if (!V.hasOneUse()) 2972 return false; 2973 unsigned OldShiftOpcode = V.getOpcode(); 2974 switch (OldShiftOpcode) { 2975 case ISD::SHL: 2976 NewShiftOpcode = ISD::SRL; 2977 break; 2978 case ISD::SRL: 2979 NewShiftOpcode = ISD::SHL; 2980 break; 2981 default: 2982 return false; // must be a logical shift. 2983 } 2984 // We should be shifting a constant. 2985 // FIXME: best to use isConstantOrConstantVector(). 2986 C = V.getOperand(0); 2987 ConstantSDNode *CC = 2988 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2989 if (!CC) 2990 return false; 2991 Y = V.getOperand(1); 2992 2993 ConstantSDNode *XC = 2994 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2995 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2996 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 2997 }; 2998 2999 // LHS of comparison should be an one-use 'and'. 3000 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3001 return SDValue(); 3002 3003 X = N0.getOperand(0); 3004 SDValue Mask = N0.getOperand(1); 3005 3006 // 'and' is commutative! 3007 if (!Match(Mask)) { 3008 std::swap(X, Mask); 3009 if (!Match(Mask)) 3010 return SDValue(); 3011 } 3012 3013 EVT VT = X.getValueType(); 3014 3015 // Produce: 3016 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3017 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3018 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3019 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3020 return T2; 3021 } 3022 3023 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3024 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3025 /// handle the commuted versions of these patterns. 3026 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3027 ISD::CondCode Cond, const SDLoc &DL, 3028 DAGCombinerInfo &DCI) const { 3029 unsigned BOpcode = N0.getOpcode(); 3030 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3031 "Unexpected binop"); 3032 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3033 3034 // (X + Y) == X --> Y == 0 3035 // (X - Y) == X --> Y == 0 3036 // (X ^ Y) == X --> Y == 0 3037 SelectionDAG &DAG = DCI.DAG; 3038 EVT OpVT = N0.getValueType(); 3039 SDValue X = N0.getOperand(0); 3040 SDValue Y = N0.getOperand(1); 3041 if (X == N1) 3042 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3043 3044 if (Y != N1) 3045 return SDValue(); 3046 3047 // (X + Y) == Y --> X == 0 3048 // (X ^ Y) == Y --> X == 0 3049 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3050 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3051 3052 // The shift would not be valid if the operands are boolean (i1). 3053 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3054 return SDValue(); 3055 3056 // (X - Y) == Y --> X == Y << 1 3057 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3058 !DCI.isBeforeLegalize()); 3059 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3060 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3061 if (!DCI.isCalledByLegalizer()) 3062 DCI.AddToWorklist(YShl1.getNode()); 3063 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3064 } 3065 3066 /// Try to simplify a setcc built with the specified operands and cc. If it is 3067 /// unable to simplify it, return a null SDValue. 3068 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3069 ISD::CondCode Cond, bool foldBooleans, 3070 DAGCombinerInfo &DCI, 3071 const SDLoc &dl) const { 3072 SelectionDAG &DAG = DCI.DAG; 3073 const DataLayout &Layout = DAG.getDataLayout(); 3074 EVT OpVT = N0.getValueType(); 3075 3076 // Constant fold or commute setcc. 3077 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3078 return Fold; 3079 3080 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3081 // TODO: Handle non-splat vector constants. All undef causes trouble. 3082 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3083 if (isConstOrConstSplat(N0) && 3084 (DCI.isBeforeLegalizeOps() || 3085 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3086 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3087 3088 // If we have a subtract with the same 2 non-constant operands as this setcc 3089 // -- but in reverse order -- then try to commute the operands of this setcc 3090 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3091 // instruction on some targets. 3092 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3093 (DCI.isBeforeLegalizeOps() || 3094 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3095 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3096 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3097 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3098 3099 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3100 const APInt &C1 = N1C->getAPIntValue(); 3101 3102 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3103 // equality comparison, then we're just comparing whether X itself is 3104 // zero. 3105 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3106 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3107 N0.getOperand(1).getOpcode() == ISD::Constant) { 3108 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3109 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3110 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3111 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3112 // (srl (ctlz x), 5) == 0 -> X != 0 3113 // (srl (ctlz x), 5) != 1 -> X != 0 3114 Cond = ISD::SETNE; 3115 } else { 3116 // (srl (ctlz x), 5) != 0 -> X == 0 3117 // (srl (ctlz x), 5) == 1 -> X == 0 3118 Cond = ISD::SETEQ; 3119 } 3120 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3121 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3122 Zero, Cond); 3123 } 3124 } 3125 3126 SDValue CTPOP = N0; 3127 // Look through truncs that don't change the value of a ctpop. 3128 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3129 CTPOP = N0.getOperand(0); 3130 3131 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3132 (N0 == CTPOP || 3133 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3134 EVT CTVT = CTPOP.getValueType(); 3135 SDValue CTOp = CTPOP.getOperand(0); 3136 3137 // (ctpop x) u< 2 -> (x & x-1) == 0 3138 // (ctpop x) u> 1 -> (x & x-1) != 0 3139 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3140 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3141 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3142 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3143 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3144 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3145 } 3146 3147 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3148 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3149 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3150 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3151 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3152 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3153 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3154 assert(CTVT.isInteger()); 3155 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3156 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3157 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3158 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3159 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3160 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3161 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3162 } 3163 } 3164 3165 // (zext x) == C --> x == (trunc C) 3166 // (sext x) == C --> x == (trunc C) 3167 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3168 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3169 unsigned MinBits = N0.getValueSizeInBits(); 3170 SDValue PreExt; 3171 bool Signed = false; 3172 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3173 // ZExt 3174 MinBits = N0->getOperand(0).getValueSizeInBits(); 3175 PreExt = N0->getOperand(0); 3176 } else if (N0->getOpcode() == ISD::AND) { 3177 // DAGCombine turns costly ZExts into ANDs 3178 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3179 if ((C->getAPIntValue()+1).isPowerOf2()) { 3180 MinBits = C->getAPIntValue().countTrailingOnes(); 3181 PreExt = N0->getOperand(0); 3182 } 3183 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3184 // SExt 3185 MinBits = N0->getOperand(0).getValueSizeInBits(); 3186 PreExt = N0->getOperand(0); 3187 Signed = true; 3188 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3189 // ZEXTLOAD / SEXTLOAD 3190 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3191 MinBits = LN0->getMemoryVT().getSizeInBits(); 3192 PreExt = N0; 3193 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3194 Signed = true; 3195 MinBits = LN0->getMemoryVT().getSizeInBits(); 3196 PreExt = N0; 3197 } 3198 } 3199 3200 // Figure out how many bits we need to preserve this constant. 3201 unsigned ReqdBits = Signed ? 3202 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3203 C1.getActiveBits(); 3204 3205 // Make sure we're not losing bits from the constant. 3206 if (MinBits > 0 && 3207 MinBits < C1.getBitWidth() && 3208 MinBits >= ReqdBits) { 3209 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3210 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3211 // Will get folded away. 3212 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3213 if (MinBits == 1 && C1 == 1) 3214 // Invert the condition. 3215 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3216 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3217 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3218 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3219 } 3220 3221 // If truncating the setcc operands is not desirable, we can still 3222 // simplify the expression in some cases: 3223 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3224 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3225 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3226 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3227 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3228 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3229 SDValue TopSetCC = N0->getOperand(0); 3230 unsigned N0Opc = N0->getOpcode(); 3231 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3232 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3233 TopSetCC.getOpcode() == ISD::SETCC && 3234 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3235 (isConstFalseVal(N1C) || 3236 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3237 3238 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3239 (!N1C->isNullValue() && Cond == ISD::SETNE); 3240 3241 if (!Inverse) 3242 return TopSetCC; 3243 3244 ISD::CondCode InvCond = ISD::getSetCCInverse( 3245 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3246 TopSetCC.getOperand(0).getValueType()); 3247 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3248 TopSetCC.getOperand(1), 3249 InvCond); 3250 } 3251 } 3252 } 3253 3254 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3255 // equality or unsigned, and all 1 bits of the const are in the same 3256 // partial word, see if we can shorten the load. 3257 if (DCI.isBeforeLegalize() && 3258 !ISD::isSignedIntSetCC(Cond) && 3259 N0.getOpcode() == ISD::AND && C1 == 0 && 3260 N0.getNode()->hasOneUse() && 3261 isa<LoadSDNode>(N0.getOperand(0)) && 3262 N0.getOperand(0).getNode()->hasOneUse() && 3263 isa<ConstantSDNode>(N0.getOperand(1))) { 3264 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3265 APInt bestMask; 3266 unsigned bestWidth = 0, bestOffset = 0; 3267 if (Lod->isSimple() && Lod->isUnindexed()) { 3268 unsigned origWidth = N0.getValueSizeInBits(); 3269 unsigned maskWidth = origWidth; 3270 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3271 // 8 bits, but have to be careful... 3272 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3273 origWidth = Lod->getMemoryVT().getSizeInBits(); 3274 const APInt &Mask = N0.getConstantOperandAPInt(1); 3275 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3276 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3277 for (unsigned offset=0; offset<origWidth/width; offset++) { 3278 if (Mask.isSubsetOf(newMask)) { 3279 if (Layout.isLittleEndian()) 3280 bestOffset = (uint64_t)offset * (width/8); 3281 else 3282 bestOffset = (origWidth/width - offset - 1) * (width/8); 3283 bestMask = Mask.lshr(offset * (width/8) * 8); 3284 bestWidth = width; 3285 break; 3286 } 3287 newMask <<= width; 3288 } 3289 } 3290 } 3291 if (bestWidth) { 3292 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3293 if (newVT.isRound() && 3294 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3295 SDValue Ptr = Lod->getBasePtr(); 3296 if (bestOffset != 0) 3297 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3298 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3299 SDValue NewLoad = DAG.getLoad( 3300 newVT, dl, Lod->getChain(), Ptr, 3301 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3302 return DAG.getSetCC(dl, VT, 3303 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3304 DAG.getConstant(bestMask.trunc(bestWidth), 3305 dl, newVT)), 3306 DAG.getConstant(0LL, dl, newVT), Cond); 3307 } 3308 } 3309 } 3310 3311 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3312 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3313 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3314 3315 // If the comparison constant has bits in the upper part, the 3316 // zero-extended value could never match. 3317 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3318 C1.getBitWidth() - InSize))) { 3319 switch (Cond) { 3320 case ISD::SETUGT: 3321 case ISD::SETUGE: 3322 case ISD::SETEQ: 3323 return DAG.getConstant(0, dl, VT); 3324 case ISD::SETULT: 3325 case ISD::SETULE: 3326 case ISD::SETNE: 3327 return DAG.getConstant(1, dl, VT); 3328 case ISD::SETGT: 3329 case ISD::SETGE: 3330 // True if the sign bit of C1 is set. 3331 return DAG.getConstant(C1.isNegative(), dl, VT); 3332 case ISD::SETLT: 3333 case ISD::SETLE: 3334 // True if the sign bit of C1 isn't set. 3335 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3336 default: 3337 break; 3338 } 3339 } 3340 3341 // Otherwise, we can perform the comparison with the low bits. 3342 switch (Cond) { 3343 case ISD::SETEQ: 3344 case ISD::SETNE: 3345 case ISD::SETUGT: 3346 case ISD::SETUGE: 3347 case ISD::SETULT: 3348 case ISD::SETULE: { 3349 EVT newVT = N0.getOperand(0).getValueType(); 3350 if (DCI.isBeforeLegalizeOps() || 3351 (isOperationLegal(ISD::SETCC, newVT) && 3352 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3353 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3354 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3355 3356 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3357 NewConst, Cond); 3358 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3359 } 3360 break; 3361 } 3362 default: 3363 break; // todo, be more careful with signed comparisons 3364 } 3365 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3366 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3367 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3368 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3369 EVT ExtDstTy = N0.getValueType(); 3370 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3371 3372 // If the constant doesn't fit into the number of bits for the source of 3373 // the sign extension, it is impossible for both sides to be equal. 3374 if (C1.getMinSignedBits() > ExtSrcTyBits) 3375 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3376 3377 SDValue ZextOp; 3378 EVT Op0Ty = N0.getOperand(0).getValueType(); 3379 if (Op0Ty == ExtSrcTy) { 3380 ZextOp = N0.getOperand(0); 3381 } else { 3382 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3383 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3384 DAG.getConstant(Imm, dl, Op0Ty)); 3385 } 3386 if (!DCI.isCalledByLegalizer()) 3387 DCI.AddToWorklist(ZextOp.getNode()); 3388 // Otherwise, make this a use of a zext. 3389 return DAG.getSetCC(dl, VT, ZextOp, 3390 DAG.getConstant(C1 & APInt::getLowBitsSet( 3391 ExtDstTyBits, 3392 ExtSrcTyBits), 3393 dl, ExtDstTy), 3394 Cond); 3395 } else if ((N1C->isNullValue() || N1C->isOne()) && 3396 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3397 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3398 if (N0.getOpcode() == ISD::SETCC && 3399 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3400 (N0.getValueType() == MVT::i1 || 3401 getBooleanContents(N0.getOperand(0).getValueType()) == 3402 ZeroOrOneBooleanContent)) { 3403 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3404 if (TrueWhenTrue) 3405 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3406 // Invert the condition. 3407 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3408 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3409 if (DCI.isBeforeLegalizeOps() || 3410 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3411 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3412 } 3413 3414 if ((N0.getOpcode() == ISD::XOR || 3415 (N0.getOpcode() == ISD::AND && 3416 N0.getOperand(0).getOpcode() == ISD::XOR && 3417 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3418 isa<ConstantSDNode>(N0.getOperand(1)) && 3419 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3420 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3421 // can only do this if the top bits are known zero. 3422 unsigned BitWidth = N0.getValueSizeInBits(); 3423 if (DAG.MaskedValueIsZero(N0, 3424 APInt::getHighBitsSet(BitWidth, 3425 BitWidth-1))) { 3426 // Okay, get the un-inverted input value. 3427 SDValue Val; 3428 if (N0.getOpcode() == ISD::XOR) { 3429 Val = N0.getOperand(0); 3430 } else { 3431 assert(N0.getOpcode() == ISD::AND && 3432 N0.getOperand(0).getOpcode() == ISD::XOR); 3433 // ((X^1)&1)^1 -> X & 1 3434 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3435 N0.getOperand(0).getOperand(0), 3436 N0.getOperand(1)); 3437 } 3438 3439 return DAG.getSetCC(dl, VT, Val, N1, 3440 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3441 } 3442 } else if (N1C->isOne()) { 3443 SDValue Op0 = N0; 3444 if (Op0.getOpcode() == ISD::TRUNCATE) 3445 Op0 = Op0.getOperand(0); 3446 3447 if ((Op0.getOpcode() == ISD::XOR) && 3448 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3449 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3450 SDValue XorLHS = Op0.getOperand(0); 3451 SDValue XorRHS = Op0.getOperand(1); 3452 // Ensure that the input setccs return an i1 type or 0/1 value. 3453 if (Op0.getValueType() == MVT::i1 || 3454 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3455 ZeroOrOneBooleanContent && 3456 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3457 ZeroOrOneBooleanContent)) { 3458 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3459 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3460 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3461 } 3462 } 3463 if (Op0.getOpcode() == ISD::AND && 3464 isa<ConstantSDNode>(Op0.getOperand(1)) && 3465 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3466 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3467 if (Op0.getValueType().bitsGT(VT)) 3468 Op0 = DAG.getNode(ISD::AND, dl, VT, 3469 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3470 DAG.getConstant(1, dl, VT)); 3471 else if (Op0.getValueType().bitsLT(VT)) 3472 Op0 = DAG.getNode(ISD::AND, dl, VT, 3473 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3474 DAG.getConstant(1, dl, VT)); 3475 3476 return DAG.getSetCC(dl, VT, Op0, 3477 DAG.getConstant(0, dl, Op0.getValueType()), 3478 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3479 } 3480 if (Op0.getOpcode() == ISD::AssertZext && 3481 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3482 return DAG.getSetCC(dl, VT, Op0, 3483 DAG.getConstant(0, dl, Op0.getValueType()), 3484 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3485 } 3486 } 3487 3488 // Given: 3489 // icmp eq/ne (urem %x, %y), 0 3490 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3491 // icmp eq/ne %x, 0 3492 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3493 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3494 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3495 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3496 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3497 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3498 } 3499 3500 if (SDValue V = 3501 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3502 return V; 3503 } 3504 3505 // These simplifications apply to splat vectors as well. 3506 // TODO: Handle more splat vector cases. 3507 if (auto *N1C = isConstOrConstSplat(N1)) { 3508 const APInt &C1 = N1C->getAPIntValue(); 3509 3510 APInt MinVal, MaxVal; 3511 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3512 if (ISD::isSignedIntSetCC(Cond)) { 3513 MinVal = APInt::getSignedMinValue(OperandBitSize); 3514 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3515 } else { 3516 MinVal = APInt::getMinValue(OperandBitSize); 3517 MaxVal = APInt::getMaxValue(OperandBitSize); 3518 } 3519 3520 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3521 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3522 // X >= MIN --> true 3523 if (C1 == MinVal) 3524 return DAG.getBoolConstant(true, dl, VT, OpVT); 3525 3526 if (!VT.isVector()) { // TODO: Support this for vectors. 3527 // X >= C0 --> X > (C0 - 1) 3528 APInt C = C1 - 1; 3529 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3530 if ((DCI.isBeforeLegalizeOps() || 3531 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3532 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3533 isLegalICmpImmediate(C.getSExtValue())))) { 3534 return DAG.getSetCC(dl, VT, N0, 3535 DAG.getConstant(C, dl, N1.getValueType()), 3536 NewCC); 3537 } 3538 } 3539 } 3540 3541 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3542 // X <= MAX --> true 3543 if (C1 == MaxVal) 3544 return DAG.getBoolConstant(true, dl, VT, OpVT); 3545 3546 // X <= C0 --> X < (C0 + 1) 3547 if (!VT.isVector()) { // TODO: Support this for vectors. 3548 APInt C = C1 + 1; 3549 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3550 if ((DCI.isBeforeLegalizeOps() || 3551 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3552 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3553 isLegalICmpImmediate(C.getSExtValue())))) { 3554 return DAG.getSetCC(dl, VT, N0, 3555 DAG.getConstant(C, dl, N1.getValueType()), 3556 NewCC); 3557 } 3558 } 3559 } 3560 3561 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3562 if (C1 == MinVal) 3563 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3564 3565 // TODO: Support this for vectors after legalize ops. 3566 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3567 // Canonicalize setlt X, Max --> setne X, Max 3568 if (C1 == MaxVal) 3569 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3570 3571 // If we have setult X, 1, turn it into seteq X, 0 3572 if (C1 == MinVal+1) 3573 return DAG.getSetCC(dl, VT, N0, 3574 DAG.getConstant(MinVal, dl, N0.getValueType()), 3575 ISD::SETEQ); 3576 } 3577 } 3578 3579 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3580 if (C1 == MaxVal) 3581 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3582 3583 // TODO: Support this for vectors after legalize ops. 3584 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3585 // Canonicalize setgt X, Min --> setne X, Min 3586 if (C1 == MinVal) 3587 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3588 3589 // If we have setugt X, Max-1, turn it into seteq X, Max 3590 if (C1 == MaxVal-1) 3591 return DAG.getSetCC(dl, VT, N0, 3592 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3593 ISD::SETEQ); 3594 } 3595 } 3596 3597 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3598 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3599 if (C1.isNullValue()) 3600 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3601 VT, N0, N1, Cond, DCI, dl)) 3602 return CC; 3603 } 3604 3605 // If we have "setcc X, C0", check to see if we can shrink the immediate 3606 // by changing cc. 3607 // TODO: Support this for vectors after legalize ops. 3608 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3609 // SETUGT X, SINTMAX -> SETLT X, 0 3610 if (Cond == ISD::SETUGT && 3611 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3612 return DAG.getSetCC(dl, VT, N0, 3613 DAG.getConstant(0, dl, N1.getValueType()), 3614 ISD::SETLT); 3615 3616 // SETULT X, SINTMIN -> SETGT X, -1 3617 if (Cond == ISD::SETULT && 3618 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3619 SDValue ConstMinusOne = 3620 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3621 N1.getValueType()); 3622 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3623 } 3624 } 3625 } 3626 3627 // Back to non-vector simplifications. 3628 // TODO: Can we do these for vector splats? 3629 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3631 const APInt &C1 = N1C->getAPIntValue(); 3632 EVT ShValTy = N0.getValueType(); 3633 3634 // Fold bit comparisons when we can. 3635 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3636 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3637 N0.getOpcode() == ISD::AND) { 3638 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3639 EVT ShiftTy = 3640 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3641 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3642 // Perform the xform if the AND RHS is a single bit. 3643 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3644 if (AndRHS->getAPIntValue().isPowerOf2() && 3645 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3646 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3647 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3648 DAG.getConstant(ShCt, dl, ShiftTy))); 3649 } 3650 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3651 // (X & 8) == 8 --> (X & 8) >> 3 3652 // Perform the xform if C1 is a single bit. 3653 unsigned ShCt = C1.logBase2(); 3654 if (C1.isPowerOf2() && 3655 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3656 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3657 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3658 DAG.getConstant(ShCt, dl, ShiftTy))); 3659 } 3660 } 3661 } 3662 } 3663 3664 if (C1.getMinSignedBits() <= 64 && 3665 !isLegalICmpImmediate(C1.getSExtValue())) { 3666 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3667 // (X & -256) == 256 -> (X >> 8) == 1 3668 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3669 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3670 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3671 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3672 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3673 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3674 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3675 SDValue Shift = 3676 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3677 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3678 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3679 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3680 } 3681 } 3682 } 3683 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3684 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3685 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3686 // X < 0x100000000 -> (X >> 32) < 1 3687 // X >= 0x100000000 -> (X >> 32) >= 1 3688 // X <= 0x0ffffffff -> (X >> 32) < 1 3689 // X > 0x0ffffffff -> (X >> 32) >= 1 3690 unsigned ShiftBits; 3691 APInt NewC = C1; 3692 ISD::CondCode NewCond = Cond; 3693 if (AdjOne) { 3694 ShiftBits = C1.countTrailingOnes(); 3695 NewC = NewC + 1; 3696 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3697 } else { 3698 ShiftBits = C1.countTrailingZeros(); 3699 } 3700 NewC.lshrInPlace(ShiftBits); 3701 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3702 isLegalICmpImmediate(NewC.getSExtValue()) && 3703 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3704 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3705 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3706 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3707 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3708 } 3709 } 3710 } 3711 } 3712 3713 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3714 auto *CFP = cast<ConstantFPSDNode>(N1); 3715 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3716 3717 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3718 // constant if knowing that the operand is non-nan is enough. We prefer to 3719 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3720 // materialize 0.0. 3721 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3722 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3723 3724 // setcc (fneg x), C -> setcc swap(pred) x, -C 3725 if (N0.getOpcode() == ISD::FNEG) { 3726 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3727 if (DCI.isBeforeLegalizeOps() || 3728 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3729 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3730 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3731 } 3732 } 3733 3734 // If the condition is not legal, see if we can find an equivalent one 3735 // which is legal. 3736 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3737 // If the comparison was an awkward floating-point == or != and one of 3738 // the comparison operands is infinity or negative infinity, convert the 3739 // condition to a less-awkward <= or >=. 3740 if (CFP->getValueAPF().isInfinity()) { 3741 if (CFP->getValueAPF().isNegative()) { 3742 if (Cond == ISD::SETOEQ && 3743 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3744 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3745 if (Cond == ISD::SETUEQ && 3746 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3747 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3748 if (Cond == ISD::SETUNE && 3749 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3750 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3751 if (Cond == ISD::SETONE && 3752 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3753 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3754 } else { 3755 if (Cond == ISD::SETOEQ && 3756 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3757 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3758 if (Cond == ISD::SETUEQ && 3759 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3760 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3761 if (Cond == ISD::SETUNE && 3762 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3763 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3764 if (Cond == ISD::SETONE && 3765 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3766 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3767 } 3768 } 3769 } 3770 } 3771 3772 if (N0 == N1) { 3773 // The sext(setcc()) => setcc() optimization relies on the appropriate 3774 // constant being emitted. 3775 assert(!N0.getValueType().isInteger() && 3776 "Integer types should be handled by FoldSetCC"); 3777 3778 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3779 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3780 if (UOF == 2) // FP operators that are undefined on NaNs. 3781 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3782 if (UOF == unsigned(EqTrue)) 3783 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3784 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3785 // if it is not already. 3786 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3787 if (NewCond != Cond && 3788 (DCI.isBeforeLegalizeOps() || 3789 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3790 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3791 } 3792 3793 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3794 N0.getValueType().isInteger()) { 3795 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3796 N0.getOpcode() == ISD::XOR) { 3797 // Simplify (X+Y) == (X+Z) --> Y == Z 3798 if (N0.getOpcode() == N1.getOpcode()) { 3799 if (N0.getOperand(0) == N1.getOperand(0)) 3800 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3801 if (N0.getOperand(1) == N1.getOperand(1)) 3802 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3803 if (isCommutativeBinOp(N0.getOpcode())) { 3804 // If X op Y == Y op X, try other combinations. 3805 if (N0.getOperand(0) == N1.getOperand(1)) 3806 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3807 Cond); 3808 if (N0.getOperand(1) == N1.getOperand(0)) 3809 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3810 Cond); 3811 } 3812 } 3813 3814 // If RHS is a legal immediate value for a compare instruction, we need 3815 // to be careful about increasing register pressure needlessly. 3816 bool LegalRHSImm = false; 3817 3818 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3819 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3820 // Turn (X+C1) == C2 --> X == C2-C1 3821 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3822 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3823 DAG.getConstant(RHSC->getAPIntValue()- 3824 LHSR->getAPIntValue(), 3825 dl, N0.getValueType()), Cond); 3826 } 3827 3828 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3829 if (N0.getOpcode() == ISD::XOR) 3830 // If we know that all of the inverted bits are zero, don't bother 3831 // performing the inversion. 3832 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3833 return 3834 DAG.getSetCC(dl, VT, N0.getOperand(0), 3835 DAG.getConstant(LHSR->getAPIntValue() ^ 3836 RHSC->getAPIntValue(), 3837 dl, N0.getValueType()), 3838 Cond); 3839 } 3840 3841 // Turn (C1-X) == C2 --> X == C1-C2 3842 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3843 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3844 return 3845 DAG.getSetCC(dl, VT, N0.getOperand(1), 3846 DAG.getConstant(SUBC->getAPIntValue() - 3847 RHSC->getAPIntValue(), 3848 dl, N0.getValueType()), 3849 Cond); 3850 } 3851 } 3852 3853 // Could RHSC fold directly into a compare? 3854 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3855 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3856 } 3857 3858 // (X+Y) == X --> Y == 0 and similar folds. 3859 // Don't do this if X is an immediate that can fold into a cmp 3860 // instruction and X+Y has other uses. It could be an induction variable 3861 // chain, and the transform would increase register pressure. 3862 if (!LegalRHSImm || N0.hasOneUse()) 3863 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3864 return V; 3865 } 3866 3867 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3868 N1.getOpcode() == ISD::XOR) 3869 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3870 return V; 3871 3872 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3873 return V; 3874 } 3875 3876 // Fold remainder of division by a constant. 3877 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3878 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3879 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3880 3881 // When division is cheap or optimizing for minimum size, 3882 // fall through to DIVREM creation by skipping this fold. 3883 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3884 if (N0.getOpcode() == ISD::UREM) { 3885 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3886 return Folded; 3887 } else if (N0.getOpcode() == ISD::SREM) { 3888 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3889 return Folded; 3890 } 3891 } 3892 } 3893 3894 // Fold away ALL boolean setcc's. 3895 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3896 SDValue Temp; 3897 switch (Cond) { 3898 default: llvm_unreachable("Unknown integer setcc!"); 3899 case ISD::SETEQ: // X == Y -> ~(X^Y) 3900 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3901 N0 = DAG.getNOT(dl, Temp, OpVT); 3902 if (!DCI.isCalledByLegalizer()) 3903 DCI.AddToWorklist(Temp.getNode()); 3904 break; 3905 case ISD::SETNE: // X != Y --> (X^Y) 3906 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3907 break; 3908 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3909 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3910 Temp = DAG.getNOT(dl, N0, OpVT); 3911 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3912 if (!DCI.isCalledByLegalizer()) 3913 DCI.AddToWorklist(Temp.getNode()); 3914 break; 3915 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3916 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3917 Temp = DAG.getNOT(dl, N1, OpVT); 3918 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3919 if (!DCI.isCalledByLegalizer()) 3920 DCI.AddToWorklist(Temp.getNode()); 3921 break; 3922 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3923 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3924 Temp = DAG.getNOT(dl, N0, OpVT); 3925 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3926 if (!DCI.isCalledByLegalizer()) 3927 DCI.AddToWorklist(Temp.getNode()); 3928 break; 3929 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3930 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3931 Temp = DAG.getNOT(dl, N1, OpVT); 3932 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3933 break; 3934 } 3935 if (VT.getScalarType() != MVT::i1) { 3936 if (!DCI.isCalledByLegalizer()) 3937 DCI.AddToWorklist(N0.getNode()); 3938 // FIXME: If running after legalize, we probably can't do this. 3939 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3940 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3941 } 3942 return N0; 3943 } 3944 3945 // Could not fold it. 3946 return SDValue(); 3947 } 3948 3949 /// Returns true (and the GlobalValue and the offset) if the node is a 3950 /// GlobalAddress + offset. 3951 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3952 int64_t &Offset) const { 3953 3954 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3955 3956 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3957 GA = GASD->getGlobal(); 3958 Offset += GASD->getOffset(); 3959 return true; 3960 } 3961 3962 if (N->getOpcode() == ISD::ADD) { 3963 SDValue N1 = N->getOperand(0); 3964 SDValue N2 = N->getOperand(1); 3965 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3966 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3967 Offset += V->getSExtValue(); 3968 return true; 3969 } 3970 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3971 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3972 Offset += V->getSExtValue(); 3973 return true; 3974 } 3975 } 3976 } 3977 3978 return false; 3979 } 3980 3981 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3982 DAGCombinerInfo &DCI) const { 3983 // Default implementation: no optimization. 3984 return SDValue(); 3985 } 3986 3987 //===----------------------------------------------------------------------===// 3988 // Inline Assembler Implementation Methods 3989 //===----------------------------------------------------------------------===// 3990 3991 TargetLowering::ConstraintType 3992 TargetLowering::getConstraintType(StringRef Constraint) const { 3993 unsigned S = Constraint.size(); 3994 3995 if (S == 1) { 3996 switch (Constraint[0]) { 3997 default: break; 3998 case 'r': 3999 return C_RegisterClass; 4000 case 'm': // memory 4001 case 'o': // offsetable 4002 case 'V': // not offsetable 4003 return C_Memory; 4004 case 'n': // Simple Integer 4005 case 'E': // Floating Point Constant 4006 case 'F': // Floating Point Constant 4007 return C_Immediate; 4008 case 'i': // Simple Integer or Relocatable Constant 4009 case 's': // Relocatable Constant 4010 case 'p': // Address. 4011 case 'X': // Allow ANY value. 4012 case 'I': // Target registers. 4013 case 'J': 4014 case 'K': 4015 case 'L': 4016 case 'M': 4017 case 'N': 4018 case 'O': 4019 case 'P': 4020 case '<': 4021 case '>': 4022 return C_Other; 4023 } 4024 } 4025 4026 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4027 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4028 return C_Memory; 4029 return C_Register; 4030 } 4031 return C_Unknown; 4032 } 4033 4034 /// Try to replace an X constraint, which matches anything, with another that 4035 /// has more specific requirements based on the type of the corresponding 4036 /// operand. 4037 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4038 if (ConstraintVT.isInteger()) 4039 return "r"; 4040 if (ConstraintVT.isFloatingPoint()) 4041 return "f"; // works for many targets 4042 return nullptr; 4043 } 4044 4045 SDValue TargetLowering::LowerAsmOutputForConstraint( 4046 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4047 SelectionDAG &DAG) const { 4048 return SDValue(); 4049 } 4050 4051 /// Lower the specified operand into the Ops vector. 4052 /// If it is invalid, don't add anything to Ops. 4053 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4054 std::string &Constraint, 4055 std::vector<SDValue> &Ops, 4056 SelectionDAG &DAG) const { 4057 4058 if (Constraint.length() > 1) return; 4059 4060 char ConstraintLetter = Constraint[0]; 4061 switch (ConstraintLetter) { 4062 default: break; 4063 case 'X': // Allows any operand; labels (basic block) use this. 4064 if (Op.getOpcode() == ISD::BasicBlock || 4065 Op.getOpcode() == ISD::TargetBlockAddress) { 4066 Ops.push_back(Op); 4067 return; 4068 } 4069 LLVM_FALLTHROUGH; 4070 case 'i': // Simple Integer or Relocatable Constant 4071 case 'n': // Simple Integer 4072 case 's': { // Relocatable Constant 4073 4074 GlobalAddressSDNode *GA; 4075 ConstantSDNode *C; 4076 BlockAddressSDNode *BA; 4077 uint64_t Offset = 0; 4078 4079 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4080 // etc., since getelementpointer is variadic. We can't use 4081 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4082 // while in this case the GA may be furthest from the root node which is 4083 // likely an ISD::ADD. 4084 while (1) { 4085 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4086 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4087 GA->getValueType(0), 4088 Offset + GA->getOffset())); 4089 return; 4090 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4091 ConstraintLetter != 's') { 4092 // gcc prints these as sign extended. Sign extend value to 64 bits 4093 // now; without this it would get ZExt'd later in 4094 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4095 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4096 BooleanContent BCont = getBooleanContents(MVT::i64); 4097 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4098 : ISD::SIGN_EXTEND; 4099 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4100 : C->getSExtValue(); 4101 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4102 SDLoc(C), MVT::i64)); 4103 return; 4104 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4105 ConstraintLetter != 'n') { 4106 Ops.push_back(DAG.getTargetBlockAddress( 4107 BA->getBlockAddress(), BA->getValueType(0), 4108 Offset + BA->getOffset(), BA->getTargetFlags())); 4109 return; 4110 } else { 4111 const unsigned OpCode = Op.getOpcode(); 4112 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4113 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4114 Op = Op.getOperand(1); 4115 // Subtraction is not commutative. 4116 else if (OpCode == ISD::ADD && 4117 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4118 Op = Op.getOperand(0); 4119 else 4120 return; 4121 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4122 continue; 4123 } 4124 } 4125 return; 4126 } 4127 break; 4128 } 4129 } 4130 } 4131 4132 std::pair<unsigned, const TargetRegisterClass *> 4133 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4134 StringRef Constraint, 4135 MVT VT) const { 4136 if (Constraint.empty() || Constraint[0] != '{') 4137 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4138 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4139 4140 // Remove the braces from around the name. 4141 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4142 4143 std::pair<unsigned, const TargetRegisterClass *> R = 4144 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4145 4146 // Figure out which register class contains this reg. 4147 for (const TargetRegisterClass *RC : RI->regclasses()) { 4148 // If none of the value types for this register class are valid, we 4149 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4150 if (!isLegalRC(*RI, *RC)) 4151 continue; 4152 4153 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4154 I != E; ++I) { 4155 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4156 std::pair<unsigned, const TargetRegisterClass *> S = 4157 std::make_pair(*I, RC); 4158 4159 // If this register class has the requested value type, return it, 4160 // otherwise keep searching and return the first class found 4161 // if no other is found which explicitly has the requested type. 4162 if (RI->isTypeLegalForClass(*RC, VT)) 4163 return S; 4164 if (!R.second) 4165 R = S; 4166 } 4167 } 4168 } 4169 4170 return R; 4171 } 4172 4173 //===----------------------------------------------------------------------===// 4174 // Constraint Selection. 4175 4176 /// Return true of this is an input operand that is a matching constraint like 4177 /// "4". 4178 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4179 assert(!ConstraintCode.empty() && "No known constraint!"); 4180 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4181 } 4182 4183 /// If this is an input matching constraint, this method returns the output 4184 /// operand it matches. 4185 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4186 assert(!ConstraintCode.empty() && "No known constraint!"); 4187 return atoi(ConstraintCode.c_str()); 4188 } 4189 4190 /// Split up the constraint string from the inline assembly value into the 4191 /// specific constraints and their prefixes, and also tie in the associated 4192 /// operand values. 4193 /// If this returns an empty vector, and if the constraint string itself 4194 /// isn't empty, there was an error parsing. 4195 TargetLowering::AsmOperandInfoVector 4196 TargetLowering::ParseConstraints(const DataLayout &DL, 4197 const TargetRegisterInfo *TRI, 4198 ImmutableCallSite CS) const { 4199 /// Information about all of the constraints. 4200 AsmOperandInfoVector ConstraintOperands; 4201 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4202 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4203 4204 // Do a prepass over the constraints, canonicalizing them, and building up the 4205 // ConstraintOperands list. 4206 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4207 unsigned ResNo = 0; // ResNo - The result number of the next output. 4208 4209 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4210 ConstraintOperands.emplace_back(std::move(CI)); 4211 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4212 4213 // Update multiple alternative constraint count. 4214 if (OpInfo.multipleAlternatives.size() > maCount) 4215 maCount = OpInfo.multipleAlternatives.size(); 4216 4217 OpInfo.ConstraintVT = MVT::Other; 4218 4219 // Compute the value type for each operand. 4220 switch (OpInfo.Type) { 4221 case InlineAsm::isOutput: 4222 // Indirect outputs just consume an argument. 4223 if (OpInfo.isIndirect) { 4224 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4225 break; 4226 } 4227 4228 // The return value of the call is this value. As such, there is no 4229 // corresponding argument. 4230 assert(!CS.getType()->isVoidTy() && 4231 "Bad inline asm!"); 4232 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4233 OpInfo.ConstraintVT = 4234 getSimpleValueType(DL, STy->getElementType(ResNo)); 4235 } else { 4236 assert(ResNo == 0 && "Asm only has one result!"); 4237 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4238 } 4239 ++ResNo; 4240 break; 4241 case InlineAsm::isInput: 4242 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4243 break; 4244 case InlineAsm::isClobber: 4245 // Nothing to do. 4246 break; 4247 } 4248 4249 if (OpInfo.CallOperandVal) { 4250 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4251 if (OpInfo.isIndirect) { 4252 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4253 if (!PtrTy) 4254 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4255 OpTy = PtrTy->getElementType(); 4256 } 4257 4258 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4259 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4260 if (STy->getNumElements() == 1) 4261 OpTy = STy->getElementType(0); 4262 4263 // If OpTy is not a single value, it may be a struct/union that we 4264 // can tile with integers. 4265 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4266 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4267 switch (BitSize) { 4268 default: break; 4269 case 1: 4270 case 8: 4271 case 16: 4272 case 32: 4273 case 64: 4274 case 128: 4275 OpInfo.ConstraintVT = 4276 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4277 break; 4278 } 4279 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4280 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4281 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4282 } else { 4283 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4284 } 4285 } 4286 } 4287 4288 // If we have multiple alternative constraints, select the best alternative. 4289 if (!ConstraintOperands.empty()) { 4290 if (maCount) { 4291 unsigned bestMAIndex = 0; 4292 int bestWeight = -1; 4293 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4294 int weight = -1; 4295 unsigned maIndex; 4296 // Compute the sums of the weights for each alternative, keeping track 4297 // of the best (highest weight) one so far. 4298 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4299 int weightSum = 0; 4300 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4301 cIndex != eIndex; ++cIndex) { 4302 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4303 if (OpInfo.Type == InlineAsm::isClobber) 4304 continue; 4305 4306 // If this is an output operand with a matching input operand, 4307 // look up the matching input. If their types mismatch, e.g. one 4308 // is an integer, the other is floating point, or their sizes are 4309 // different, flag it as an maCantMatch. 4310 if (OpInfo.hasMatchingInput()) { 4311 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4312 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4313 if ((OpInfo.ConstraintVT.isInteger() != 4314 Input.ConstraintVT.isInteger()) || 4315 (OpInfo.ConstraintVT.getSizeInBits() != 4316 Input.ConstraintVT.getSizeInBits())) { 4317 weightSum = -1; // Can't match. 4318 break; 4319 } 4320 } 4321 } 4322 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4323 if (weight == -1) { 4324 weightSum = -1; 4325 break; 4326 } 4327 weightSum += weight; 4328 } 4329 // Update best. 4330 if (weightSum > bestWeight) { 4331 bestWeight = weightSum; 4332 bestMAIndex = maIndex; 4333 } 4334 } 4335 4336 // Now select chosen alternative in each constraint. 4337 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4338 cIndex != eIndex; ++cIndex) { 4339 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4340 if (cInfo.Type == InlineAsm::isClobber) 4341 continue; 4342 cInfo.selectAlternative(bestMAIndex); 4343 } 4344 } 4345 } 4346 4347 // Check and hook up tied operands, choose constraint code to use. 4348 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4349 cIndex != eIndex; ++cIndex) { 4350 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4351 4352 // If this is an output operand with a matching input operand, look up the 4353 // matching input. If their types mismatch, e.g. one is an integer, the 4354 // other is floating point, or their sizes are different, flag it as an 4355 // error. 4356 if (OpInfo.hasMatchingInput()) { 4357 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4358 4359 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4360 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4361 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4362 OpInfo.ConstraintVT); 4363 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4364 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4365 Input.ConstraintVT); 4366 if ((OpInfo.ConstraintVT.isInteger() != 4367 Input.ConstraintVT.isInteger()) || 4368 (MatchRC.second != InputRC.second)) { 4369 report_fatal_error("Unsupported asm: input constraint" 4370 " with a matching output constraint of" 4371 " incompatible type!"); 4372 } 4373 } 4374 } 4375 } 4376 4377 return ConstraintOperands; 4378 } 4379 4380 /// Return an integer indicating how general CT is. 4381 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4382 switch (CT) { 4383 case TargetLowering::C_Immediate: 4384 case TargetLowering::C_Other: 4385 case TargetLowering::C_Unknown: 4386 return 0; 4387 case TargetLowering::C_Register: 4388 return 1; 4389 case TargetLowering::C_RegisterClass: 4390 return 2; 4391 case TargetLowering::C_Memory: 4392 return 3; 4393 } 4394 llvm_unreachable("Invalid constraint type"); 4395 } 4396 4397 /// Examine constraint type and operand type and determine a weight value. 4398 /// This object must already have been set up with the operand type 4399 /// and the current alternative constraint selected. 4400 TargetLowering::ConstraintWeight 4401 TargetLowering::getMultipleConstraintMatchWeight( 4402 AsmOperandInfo &info, int maIndex) const { 4403 InlineAsm::ConstraintCodeVector *rCodes; 4404 if (maIndex >= (int)info.multipleAlternatives.size()) 4405 rCodes = &info.Codes; 4406 else 4407 rCodes = &info.multipleAlternatives[maIndex].Codes; 4408 ConstraintWeight BestWeight = CW_Invalid; 4409 4410 // Loop over the options, keeping track of the most general one. 4411 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4412 ConstraintWeight weight = 4413 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4414 if (weight > BestWeight) 4415 BestWeight = weight; 4416 } 4417 4418 return BestWeight; 4419 } 4420 4421 /// Examine constraint type and operand type and determine a weight value. 4422 /// This object must already have been set up with the operand type 4423 /// and the current alternative constraint selected. 4424 TargetLowering::ConstraintWeight 4425 TargetLowering::getSingleConstraintMatchWeight( 4426 AsmOperandInfo &info, const char *constraint) const { 4427 ConstraintWeight weight = CW_Invalid; 4428 Value *CallOperandVal = info.CallOperandVal; 4429 // If we don't have a value, we can't do a match, 4430 // but allow it at the lowest weight. 4431 if (!CallOperandVal) 4432 return CW_Default; 4433 // Look at the constraint type. 4434 switch (*constraint) { 4435 case 'i': // immediate integer. 4436 case 'n': // immediate integer with a known value. 4437 if (isa<ConstantInt>(CallOperandVal)) 4438 weight = CW_Constant; 4439 break; 4440 case 's': // non-explicit intregal immediate. 4441 if (isa<GlobalValue>(CallOperandVal)) 4442 weight = CW_Constant; 4443 break; 4444 case 'E': // immediate float if host format. 4445 case 'F': // immediate float. 4446 if (isa<ConstantFP>(CallOperandVal)) 4447 weight = CW_Constant; 4448 break; 4449 case '<': // memory operand with autodecrement. 4450 case '>': // memory operand with autoincrement. 4451 case 'm': // memory operand. 4452 case 'o': // offsettable memory operand 4453 case 'V': // non-offsettable memory operand 4454 weight = CW_Memory; 4455 break; 4456 case 'r': // general register. 4457 case 'g': // general register, memory operand or immediate integer. 4458 // note: Clang converts "g" to "imr". 4459 if (CallOperandVal->getType()->isIntegerTy()) 4460 weight = CW_Register; 4461 break; 4462 case 'X': // any operand. 4463 default: 4464 weight = CW_Default; 4465 break; 4466 } 4467 return weight; 4468 } 4469 4470 /// If there are multiple different constraints that we could pick for this 4471 /// operand (e.g. "imr") try to pick the 'best' one. 4472 /// This is somewhat tricky: constraints fall into four classes: 4473 /// Other -> immediates and magic values 4474 /// Register -> one specific register 4475 /// RegisterClass -> a group of regs 4476 /// Memory -> memory 4477 /// Ideally, we would pick the most specific constraint possible: if we have 4478 /// something that fits into a register, we would pick it. The problem here 4479 /// is that if we have something that could either be in a register or in 4480 /// memory that use of the register could cause selection of *other* 4481 /// operands to fail: they might only succeed if we pick memory. Because of 4482 /// this the heuristic we use is: 4483 /// 4484 /// 1) If there is an 'other' constraint, and if the operand is valid for 4485 /// that constraint, use it. This makes us take advantage of 'i' 4486 /// constraints when available. 4487 /// 2) Otherwise, pick the most general constraint present. This prefers 4488 /// 'm' over 'r', for example. 4489 /// 4490 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4491 const TargetLowering &TLI, 4492 SDValue Op, SelectionDAG *DAG) { 4493 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4494 unsigned BestIdx = 0; 4495 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4496 int BestGenerality = -1; 4497 4498 // Loop over the options, keeping track of the most general one. 4499 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4500 TargetLowering::ConstraintType CType = 4501 TLI.getConstraintType(OpInfo.Codes[i]); 4502 4503 // If this is an 'other' or 'immediate' constraint, see if the operand is 4504 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4505 // the operand is an integer in the range [0..31] we want to use I (saving a 4506 // load of a register), otherwise we must use 'r'. 4507 if ((CType == TargetLowering::C_Other || 4508 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4509 assert(OpInfo.Codes[i].size() == 1 && 4510 "Unhandled multi-letter 'other' constraint"); 4511 std::vector<SDValue> ResultOps; 4512 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4513 ResultOps, *DAG); 4514 if (!ResultOps.empty()) { 4515 BestType = CType; 4516 BestIdx = i; 4517 break; 4518 } 4519 } 4520 4521 // Things with matching constraints can only be registers, per gcc 4522 // documentation. This mainly affects "g" constraints. 4523 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4524 continue; 4525 4526 // This constraint letter is more general than the previous one, use it. 4527 int Generality = getConstraintGenerality(CType); 4528 if (Generality > BestGenerality) { 4529 BestType = CType; 4530 BestIdx = i; 4531 BestGenerality = Generality; 4532 } 4533 } 4534 4535 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4536 OpInfo.ConstraintType = BestType; 4537 } 4538 4539 /// Determines the constraint code and constraint type to use for the specific 4540 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4541 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4542 SDValue Op, 4543 SelectionDAG *DAG) const { 4544 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4545 4546 // Single-letter constraints ('r') are very common. 4547 if (OpInfo.Codes.size() == 1) { 4548 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4549 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4550 } else { 4551 ChooseConstraint(OpInfo, *this, Op, DAG); 4552 } 4553 4554 // 'X' matches anything. 4555 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4556 // Labels and constants are handled elsewhere ('X' is the only thing 4557 // that matches labels). For Functions, the type here is the type of 4558 // the result, which is not what we want to look at; leave them alone. 4559 Value *v = OpInfo.CallOperandVal; 4560 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4561 OpInfo.CallOperandVal = v; 4562 return; 4563 } 4564 4565 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4566 return; 4567 4568 // Otherwise, try to resolve it to something we know about by looking at 4569 // the actual operand type. 4570 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4571 OpInfo.ConstraintCode = Repl; 4572 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4573 } 4574 } 4575 } 4576 4577 /// Given an exact SDIV by a constant, create a multiplication 4578 /// with the multiplicative inverse of the constant. 4579 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4580 const SDLoc &dl, SelectionDAG &DAG, 4581 SmallVectorImpl<SDNode *> &Created) { 4582 SDValue Op0 = N->getOperand(0); 4583 SDValue Op1 = N->getOperand(1); 4584 EVT VT = N->getValueType(0); 4585 EVT SVT = VT.getScalarType(); 4586 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4587 EVT ShSVT = ShVT.getScalarType(); 4588 4589 bool UseSRA = false; 4590 SmallVector<SDValue, 16> Shifts, Factors; 4591 4592 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4593 if (C->isNullValue()) 4594 return false; 4595 APInt Divisor = C->getAPIntValue(); 4596 unsigned Shift = Divisor.countTrailingZeros(); 4597 if (Shift) { 4598 Divisor.ashrInPlace(Shift); 4599 UseSRA = true; 4600 } 4601 // Calculate the multiplicative inverse, using Newton's method. 4602 APInt t; 4603 APInt Factor = Divisor; 4604 while ((t = Divisor * Factor) != 1) 4605 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4606 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4607 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4608 return true; 4609 }; 4610 4611 // Collect all magic values from the build vector. 4612 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4613 return SDValue(); 4614 4615 SDValue Shift, Factor; 4616 if (VT.isVector()) { 4617 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4618 Factor = DAG.getBuildVector(VT, dl, Factors); 4619 } else { 4620 Shift = Shifts[0]; 4621 Factor = Factors[0]; 4622 } 4623 4624 SDValue Res = Op0; 4625 4626 // Shift the value upfront if it is even, so the LSB is one. 4627 if (UseSRA) { 4628 // TODO: For UDIV use SRL instead of SRA. 4629 SDNodeFlags Flags; 4630 Flags.setExact(true); 4631 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4632 Created.push_back(Res.getNode()); 4633 } 4634 4635 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4636 } 4637 4638 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4639 SelectionDAG &DAG, 4640 SmallVectorImpl<SDNode *> &Created) const { 4641 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4643 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4644 return SDValue(N, 0); // Lower SDIV as SDIV 4645 return SDValue(); 4646 } 4647 4648 /// Given an ISD::SDIV node expressing a divide by constant, 4649 /// return a DAG expression to select that will generate the same value by 4650 /// multiplying by a magic number. 4651 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4652 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4653 bool IsAfterLegalization, 4654 SmallVectorImpl<SDNode *> &Created) const { 4655 SDLoc dl(N); 4656 EVT VT = N->getValueType(0); 4657 EVT SVT = VT.getScalarType(); 4658 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4659 EVT ShSVT = ShVT.getScalarType(); 4660 unsigned EltBits = VT.getScalarSizeInBits(); 4661 4662 // Check to see if we can do this. 4663 // FIXME: We should be more aggressive here. 4664 if (!isTypeLegal(VT)) 4665 return SDValue(); 4666 4667 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4668 if (N->getFlags().hasExact()) 4669 return BuildExactSDIV(*this, N, dl, DAG, Created); 4670 4671 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4672 4673 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4674 if (C->isNullValue()) 4675 return false; 4676 4677 const APInt &Divisor = C->getAPIntValue(); 4678 APInt::ms magics = Divisor.magic(); 4679 int NumeratorFactor = 0; 4680 int ShiftMask = -1; 4681 4682 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4683 // If d is +1/-1, we just multiply the numerator by +1/-1. 4684 NumeratorFactor = Divisor.getSExtValue(); 4685 magics.m = 0; 4686 magics.s = 0; 4687 ShiftMask = 0; 4688 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4689 // If d > 0 and m < 0, add the numerator. 4690 NumeratorFactor = 1; 4691 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4692 // If d < 0 and m > 0, subtract the numerator. 4693 NumeratorFactor = -1; 4694 } 4695 4696 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4697 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4698 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4699 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4700 return true; 4701 }; 4702 4703 SDValue N0 = N->getOperand(0); 4704 SDValue N1 = N->getOperand(1); 4705 4706 // Collect the shifts / magic values from each element. 4707 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4708 return SDValue(); 4709 4710 SDValue MagicFactor, Factor, Shift, ShiftMask; 4711 if (VT.isVector()) { 4712 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4713 Factor = DAG.getBuildVector(VT, dl, Factors); 4714 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4715 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4716 } else { 4717 MagicFactor = MagicFactors[0]; 4718 Factor = Factors[0]; 4719 Shift = Shifts[0]; 4720 ShiftMask = ShiftMasks[0]; 4721 } 4722 4723 // Multiply the numerator (operand 0) by the magic value. 4724 // FIXME: We should support doing a MUL in a wider type. 4725 SDValue Q; 4726 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4727 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4728 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4729 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4730 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4731 SDValue LoHi = 4732 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4733 Q = SDValue(LoHi.getNode(), 1); 4734 } else 4735 return SDValue(); // No mulhs or equivalent. 4736 Created.push_back(Q.getNode()); 4737 4738 // (Optionally) Add/subtract the numerator using Factor. 4739 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4740 Created.push_back(Factor.getNode()); 4741 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4742 Created.push_back(Q.getNode()); 4743 4744 // Shift right algebraic by shift value. 4745 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4746 Created.push_back(Q.getNode()); 4747 4748 // Extract the sign bit, mask it and add it to the quotient. 4749 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4750 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4751 Created.push_back(T.getNode()); 4752 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4753 Created.push_back(T.getNode()); 4754 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4755 } 4756 4757 /// Given an ISD::UDIV node expressing a divide by constant, 4758 /// return a DAG expression to select that will generate the same value by 4759 /// multiplying by a magic number. 4760 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4761 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4762 bool IsAfterLegalization, 4763 SmallVectorImpl<SDNode *> &Created) const { 4764 SDLoc dl(N); 4765 EVT VT = N->getValueType(0); 4766 EVT SVT = VT.getScalarType(); 4767 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4768 EVT ShSVT = ShVT.getScalarType(); 4769 unsigned EltBits = VT.getScalarSizeInBits(); 4770 4771 // Check to see if we can do this. 4772 // FIXME: We should be more aggressive here. 4773 if (!isTypeLegal(VT)) 4774 return SDValue(); 4775 4776 bool UseNPQ = false; 4777 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4778 4779 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4780 if (C->isNullValue()) 4781 return false; 4782 // FIXME: We should use a narrower constant when the upper 4783 // bits are known to be zero. 4784 APInt Divisor = C->getAPIntValue(); 4785 APInt::mu magics = Divisor.magicu(); 4786 unsigned PreShift = 0, PostShift = 0; 4787 4788 // If the divisor is even, we can avoid using the expensive fixup by 4789 // shifting the divided value upfront. 4790 if (magics.a != 0 && !Divisor[0]) { 4791 PreShift = Divisor.countTrailingZeros(); 4792 // Get magic number for the shifted divisor. 4793 magics = Divisor.lshr(PreShift).magicu(PreShift); 4794 assert(magics.a == 0 && "Should use cheap fixup now"); 4795 } 4796 4797 APInt Magic = magics.m; 4798 4799 unsigned SelNPQ; 4800 if (magics.a == 0 || Divisor.isOneValue()) { 4801 assert(magics.s < Divisor.getBitWidth() && 4802 "We shouldn't generate an undefined shift!"); 4803 PostShift = magics.s; 4804 SelNPQ = false; 4805 } else { 4806 PostShift = magics.s - 1; 4807 SelNPQ = true; 4808 } 4809 4810 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4811 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4812 NPQFactors.push_back( 4813 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4814 : APInt::getNullValue(EltBits), 4815 dl, SVT)); 4816 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4817 UseNPQ |= SelNPQ; 4818 return true; 4819 }; 4820 4821 SDValue N0 = N->getOperand(0); 4822 SDValue N1 = N->getOperand(1); 4823 4824 // Collect the shifts/magic values from each element. 4825 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4826 return SDValue(); 4827 4828 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4829 if (VT.isVector()) { 4830 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4831 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4832 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4833 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4834 } else { 4835 PreShift = PreShifts[0]; 4836 MagicFactor = MagicFactors[0]; 4837 PostShift = PostShifts[0]; 4838 } 4839 4840 SDValue Q = N0; 4841 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4842 Created.push_back(Q.getNode()); 4843 4844 // FIXME: We should support doing a MUL in a wider type. 4845 auto GetMULHU = [&](SDValue X, SDValue Y) { 4846 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4847 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4848 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4849 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4850 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4851 SDValue LoHi = 4852 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4853 return SDValue(LoHi.getNode(), 1); 4854 } 4855 return SDValue(); // No mulhu or equivalent 4856 }; 4857 4858 // Multiply the numerator (operand 0) by the magic value. 4859 Q = GetMULHU(Q, MagicFactor); 4860 if (!Q) 4861 return SDValue(); 4862 4863 Created.push_back(Q.getNode()); 4864 4865 if (UseNPQ) { 4866 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4867 Created.push_back(NPQ.getNode()); 4868 4869 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4870 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4871 if (VT.isVector()) 4872 NPQ = GetMULHU(NPQ, NPQFactor); 4873 else 4874 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4875 4876 Created.push_back(NPQ.getNode()); 4877 4878 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4879 Created.push_back(Q.getNode()); 4880 } 4881 4882 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4883 Created.push_back(Q.getNode()); 4884 4885 SDValue One = DAG.getConstant(1, dl, VT); 4886 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4887 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4888 } 4889 4890 /// If all values in Values that *don't* match the predicate are same 'splat' 4891 /// value, then replace all values with that splat value. 4892 /// Else, if AlternativeReplacement was provided, then replace all values that 4893 /// do match predicate with AlternativeReplacement value. 4894 static void 4895 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4896 std::function<bool(SDValue)> Predicate, 4897 SDValue AlternativeReplacement = SDValue()) { 4898 SDValue Replacement; 4899 // Is there a value for which the Predicate does *NOT* match? What is it? 4900 auto SplatValue = llvm::find_if_not(Values, Predicate); 4901 if (SplatValue != Values.end()) { 4902 // Does Values consist only of SplatValue's and values matching Predicate? 4903 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4904 return Value == *SplatValue || Predicate(Value); 4905 })) // Then we shall replace values matching predicate with SplatValue. 4906 Replacement = *SplatValue; 4907 } 4908 if (!Replacement) { 4909 // Oops, we did not find the "baseline" splat value. 4910 if (!AlternativeReplacement) 4911 return; // Nothing to do. 4912 // Let's replace with provided value then. 4913 Replacement = AlternativeReplacement; 4914 } 4915 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4916 } 4917 4918 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4919 /// where the divisor is constant and the comparison target is zero, 4920 /// return a DAG expression that will generate the same comparison result 4921 /// using only multiplications, additions and shifts/rotations. 4922 /// Ref: "Hacker's Delight" 10-17. 4923 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4924 SDValue CompTargetNode, 4925 ISD::CondCode Cond, 4926 DAGCombinerInfo &DCI, 4927 const SDLoc &DL) const { 4928 SmallVector<SDNode *, 5> Built; 4929 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4930 DCI, DL, Built)) { 4931 for (SDNode *N : Built) 4932 DCI.AddToWorklist(N); 4933 return Folded; 4934 } 4935 4936 return SDValue(); 4937 } 4938 4939 SDValue 4940 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4941 SDValue CompTargetNode, ISD::CondCode Cond, 4942 DAGCombinerInfo &DCI, const SDLoc &DL, 4943 SmallVectorImpl<SDNode *> &Created) const { 4944 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4945 // - D must be constant, with D = D0 * 2^K where D0 is odd 4946 // - P is the multiplicative inverse of D0 modulo 2^W 4947 // - Q = floor(((2^W) - 1) / D) 4948 // where W is the width of the common type of N and D. 4949 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4950 "Only applicable for (in)equality comparisons."); 4951 4952 SelectionDAG &DAG = DCI.DAG; 4953 4954 EVT VT = REMNode.getValueType(); 4955 EVT SVT = VT.getScalarType(); 4956 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4957 EVT ShSVT = ShVT.getScalarType(); 4958 4959 // If MUL is unavailable, we cannot proceed in any case. 4960 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4961 return SDValue(); 4962 4963 bool ComparingWithAllZeros = true; 4964 bool AllComparisonsWithNonZerosAreTautological = true; 4965 bool HadTautologicalLanes = false; 4966 bool AllLanesAreTautological = true; 4967 bool HadEvenDivisor = false; 4968 bool AllDivisorsArePowerOfTwo = true; 4969 bool HadTautologicalInvertedLanes = false; 4970 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 4971 4972 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 4973 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4974 if (CDiv->isNullValue()) 4975 return false; 4976 4977 const APInt &D = CDiv->getAPIntValue(); 4978 const APInt &Cmp = CCmp->getAPIntValue(); 4979 4980 ComparingWithAllZeros &= Cmp.isNullValue(); 4981 4982 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 4983 // if C2 is not less than C1, the comparison is always false. 4984 // But we will only be able to produce the comparison that will give the 4985 // opposive tautological answer. So this lane would need to be fixed up. 4986 bool TautologicalInvertedLane = D.ule(Cmp); 4987 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 4988 4989 // If all lanes are tautological (either all divisors are ones, or divisor 4990 // is not greater than the constant we are comparing with), 4991 // we will prefer to avoid the fold. 4992 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 4993 HadTautologicalLanes |= TautologicalLane; 4994 AllLanesAreTautological &= TautologicalLane; 4995 4996 // If we are comparing with non-zero, we need'll need to subtract said 4997 // comparison value from the LHS. But there is no point in doing that if 4998 // every lane where we are comparing with non-zero is tautological.. 4999 if (!Cmp.isNullValue()) 5000 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5001 5002 // Decompose D into D0 * 2^K 5003 unsigned K = D.countTrailingZeros(); 5004 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5005 APInt D0 = D.lshr(K); 5006 5007 // D is even if it has trailing zeros. 5008 HadEvenDivisor |= (K != 0); 5009 // D is a power-of-two if D0 is one. 5010 // If all divisors are power-of-two, we will prefer to avoid the fold. 5011 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5012 5013 // P = inv(D0, 2^W) 5014 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5015 unsigned W = D.getBitWidth(); 5016 APInt P = D0.zext(W + 1) 5017 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5018 .trunc(W); 5019 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5020 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5021 5022 // Q = floor((2^W - 1) u/ D) 5023 // R = ((2^W - 1) u% D) 5024 APInt Q, R; 5025 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5026 5027 // If we are comparing with zero, then that comparison constant is okay, 5028 // else it may need to be one less than that. 5029 if (Cmp.ugt(R)) 5030 Q -= 1; 5031 5032 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5033 "We are expecting that K is always less than all-ones for ShSVT"); 5034 5035 // If the lane is tautological the result can be constant-folded. 5036 if (TautologicalLane) { 5037 // Set P and K amount to a bogus values so we can try to splat them. 5038 P = 0; 5039 K = -1; 5040 // And ensure that comparison constant is tautological, 5041 // it will always compare true/false. 5042 Q = -1; 5043 } 5044 5045 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5046 KAmts.push_back( 5047 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5048 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5049 return true; 5050 }; 5051 5052 SDValue N = REMNode.getOperand(0); 5053 SDValue D = REMNode.getOperand(1); 5054 5055 // Collect the values from each element. 5056 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5057 return SDValue(); 5058 5059 // If all lanes are tautological, the result can be constant-folded. 5060 if (AllLanesAreTautological) 5061 return SDValue(); 5062 5063 // If this is a urem by a powers-of-two, avoid the fold since it can be 5064 // best implemented as a bit test. 5065 if (AllDivisorsArePowerOfTwo) 5066 return SDValue(); 5067 5068 SDValue PVal, KVal, QVal; 5069 if (VT.isVector()) { 5070 if (HadTautologicalLanes) { 5071 // Try to turn PAmts into a splat, since we don't care about the values 5072 // that are currently '0'. If we can't, just keep '0'`s. 5073 turnVectorIntoSplatVector(PAmts, isNullConstant); 5074 // Try to turn KAmts into a splat, since we don't care about the values 5075 // that are currently '-1'. If we can't, change them to '0'`s. 5076 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5077 DAG.getConstant(0, DL, ShSVT)); 5078 } 5079 5080 PVal = DAG.getBuildVector(VT, DL, PAmts); 5081 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5082 QVal = DAG.getBuildVector(VT, DL, QAmts); 5083 } else { 5084 PVal = PAmts[0]; 5085 KVal = KAmts[0]; 5086 QVal = QAmts[0]; 5087 } 5088 5089 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5090 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5091 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5092 assert(CompTargetNode.getValueType() == N.getValueType() && 5093 "Expecting that the types on LHS and RHS of comparisons match."); 5094 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5095 } 5096 5097 // (mul N, P) 5098 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5099 Created.push_back(Op0.getNode()); 5100 5101 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5102 // divisors as a performance improvement, since rotating by 0 is a no-op. 5103 if (HadEvenDivisor) { 5104 // We need ROTR to do this. 5105 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5106 return SDValue(); 5107 SDNodeFlags Flags; 5108 Flags.setExact(true); 5109 // UREM: (rotr (mul N, P), K) 5110 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5111 Created.push_back(Op0.getNode()); 5112 } 5113 5114 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5115 SDValue NewCC = 5116 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5117 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5118 if (!HadTautologicalInvertedLanes) 5119 return NewCC; 5120 5121 // If any lanes previously compared always-false, the NewCC will give 5122 // always-true result for them, so we need to fixup those lanes. 5123 // Or the other way around for inequality predicate. 5124 assert(VT.isVector() && "Can/should only get here for vectors."); 5125 Created.push_back(NewCC.getNode()); 5126 5127 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5128 // if C2 is not less than C1, the comparison is always false. 5129 // But we have produced the comparison that will give the 5130 // opposive tautological answer. So these lanes would need to be fixed up. 5131 SDValue TautologicalInvertedChannels = 5132 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5133 Created.push_back(TautologicalInvertedChannels.getNode()); 5134 5135 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5136 // If we have a vector select, let's replace the comparison results in the 5137 // affected lanes with the correct tautological result. 5138 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5139 DL, SETCCVT, SETCCVT); 5140 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5141 Replacement, NewCC); 5142 } 5143 5144 // Else, we can just invert the comparison result in the appropriate lanes. 5145 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5146 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5147 TautologicalInvertedChannels); 5148 5149 return SDValue(); // Don't know how to lower. 5150 } 5151 5152 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5153 /// where the divisor is constant and the comparison target is zero, 5154 /// return a DAG expression that will generate the same comparison result 5155 /// using only multiplications, additions and shifts/rotations. 5156 /// Ref: "Hacker's Delight" 10-17. 5157 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5158 SDValue CompTargetNode, 5159 ISD::CondCode Cond, 5160 DAGCombinerInfo &DCI, 5161 const SDLoc &DL) const { 5162 SmallVector<SDNode *, 7> Built; 5163 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5164 DCI, DL, Built)) { 5165 assert(Built.size() <= 7 && "Max size prediction failed."); 5166 for (SDNode *N : Built) 5167 DCI.AddToWorklist(N); 5168 return Folded; 5169 } 5170 5171 return SDValue(); 5172 } 5173 5174 SDValue 5175 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5176 SDValue CompTargetNode, ISD::CondCode Cond, 5177 DAGCombinerInfo &DCI, const SDLoc &DL, 5178 SmallVectorImpl<SDNode *> &Created) const { 5179 // Fold: 5180 // (seteq/ne (srem N, D), 0) 5181 // To: 5182 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5183 // 5184 // - D must be constant, with D = D0 * 2^K where D0 is odd 5185 // - P is the multiplicative inverse of D0 modulo 2^W 5186 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5187 // - Q = floor((2 * A) / (2^K)) 5188 // where W is the width of the common type of N and D. 5189 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5190 "Only applicable for (in)equality comparisons."); 5191 5192 SelectionDAG &DAG = DCI.DAG; 5193 5194 EVT VT = REMNode.getValueType(); 5195 EVT SVT = VT.getScalarType(); 5196 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5197 EVT ShSVT = ShVT.getScalarType(); 5198 5199 // If MUL is unavailable, we cannot proceed in any case. 5200 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5201 return SDValue(); 5202 5203 // TODO: Could support comparing with non-zero too. 5204 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5205 if (!CompTarget || !CompTarget->isNullValue()) 5206 return SDValue(); 5207 5208 bool HadIntMinDivisor = false; 5209 bool HadOneDivisor = false; 5210 bool AllDivisorsAreOnes = true; 5211 bool HadEvenDivisor = false; 5212 bool NeedToApplyOffset = false; 5213 bool AllDivisorsArePowerOfTwo = true; 5214 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5215 5216 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5217 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5218 if (C->isNullValue()) 5219 return false; 5220 5221 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5222 5223 // WARNING: this fold is only valid for positive divisors! 5224 APInt D = C->getAPIntValue(); 5225 if (D.isNegative()) 5226 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5227 5228 HadIntMinDivisor |= D.isMinSignedValue(); 5229 5230 // If all divisors are ones, we will prefer to avoid the fold. 5231 HadOneDivisor |= D.isOneValue(); 5232 AllDivisorsAreOnes &= D.isOneValue(); 5233 5234 // Decompose D into D0 * 2^K 5235 unsigned K = D.countTrailingZeros(); 5236 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5237 APInt D0 = D.lshr(K); 5238 5239 if (!D.isMinSignedValue()) { 5240 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5241 // we don't care about this lane in this fold, we'll special-handle it. 5242 HadEvenDivisor |= (K != 0); 5243 } 5244 5245 // D is a power-of-two if D0 is one. This includes INT_MIN. 5246 // If all divisors are power-of-two, we will prefer to avoid the fold. 5247 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5248 5249 // P = inv(D0, 2^W) 5250 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5251 unsigned W = D.getBitWidth(); 5252 APInt P = D0.zext(W + 1) 5253 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5254 .trunc(W); 5255 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5256 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5257 5258 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5259 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5260 A.clearLowBits(K); 5261 5262 if (!D.isMinSignedValue()) { 5263 // If divisor INT_MIN, then we don't care about this lane in this fold, 5264 // we'll special-handle it. 5265 NeedToApplyOffset |= A != 0; 5266 } 5267 5268 // Q = floor((2 * A) / (2^K)) 5269 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5270 5271 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5272 "We are expecting that A is always less than all-ones for SVT"); 5273 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5274 "We are expecting that K is always less than all-ones for ShSVT"); 5275 5276 // If the divisor is 1 the result can be constant-folded. Likewise, we 5277 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5278 if (D.isOneValue()) { 5279 // Set P, A and K to a bogus values so we can try to splat them. 5280 P = 0; 5281 A = -1; 5282 K = -1; 5283 5284 // x ?% 1 == 0 <--> true <--> x u<= -1 5285 Q = -1; 5286 } 5287 5288 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5289 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5290 KAmts.push_back( 5291 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5292 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5293 return true; 5294 }; 5295 5296 SDValue N = REMNode.getOperand(0); 5297 SDValue D = REMNode.getOperand(1); 5298 5299 // Collect the values from each element. 5300 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5301 return SDValue(); 5302 5303 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5304 if (AllDivisorsAreOnes) 5305 return SDValue(); 5306 5307 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5308 // since it can be best implemented as a bit test. 5309 if (AllDivisorsArePowerOfTwo) 5310 return SDValue(); 5311 5312 SDValue PVal, AVal, KVal, QVal; 5313 if (VT.isVector()) { 5314 if (HadOneDivisor) { 5315 // Try to turn PAmts into a splat, since we don't care about the values 5316 // that are currently '0'. If we can't, just keep '0'`s. 5317 turnVectorIntoSplatVector(PAmts, isNullConstant); 5318 // Try to turn AAmts into a splat, since we don't care about the 5319 // values that are currently '-1'. If we can't, change them to '0'`s. 5320 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5321 DAG.getConstant(0, DL, SVT)); 5322 // Try to turn KAmts into a splat, since we don't care about the values 5323 // that are currently '-1'. If we can't, change them to '0'`s. 5324 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5325 DAG.getConstant(0, DL, ShSVT)); 5326 } 5327 5328 PVal = DAG.getBuildVector(VT, DL, PAmts); 5329 AVal = DAG.getBuildVector(VT, DL, AAmts); 5330 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5331 QVal = DAG.getBuildVector(VT, DL, QAmts); 5332 } else { 5333 PVal = PAmts[0]; 5334 AVal = AAmts[0]; 5335 KVal = KAmts[0]; 5336 QVal = QAmts[0]; 5337 } 5338 5339 // (mul N, P) 5340 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5341 Created.push_back(Op0.getNode()); 5342 5343 if (NeedToApplyOffset) { 5344 // We need ADD to do this. 5345 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5346 return SDValue(); 5347 5348 // (add (mul N, P), A) 5349 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5350 Created.push_back(Op0.getNode()); 5351 } 5352 5353 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5354 // divisors as a performance improvement, since rotating by 0 is a no-op. 5355 if (HadEvenDivisor) { 5356 // We need ROTR to do this. 5357 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5358 return SDValue(); 5359 SDNodeFlags Flags; 5360 Flags.setExact(true); 5361 // SREM: (rotr (add (mul N, P), A), K) 5362 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5363 Created.push_back(Op0.getNode()); 5364 } 5365 5366 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5367 SDValue Fold = 5368 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5369 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5370 5371 // If we didn't have lanes with INT_MIN divisor, then we're done. 5372 if (!HadIntMinDivisor) 5373 return Fold; 5374 5375 // That fold is only valid for positive divisors. Which effectively means, 5376 // it is invalid for INT_MIN divisors. So if we have such a lane, 5377 // we must fix-up results for said lanes. 5378 assert(VT.isVector() && "Can/should only get here for vectors."); 5379 5380 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5381 !isOperationLegalOrCustom(ISD::AND, VT) || 5382 !isOperationLegalOrCustom(Cond, VT) || 5383 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5384 return SDValue(); 5385 5386 Created.push_back(Fold.getNode()); 5387 5388 SDValue IntMin = DAG.getConstant( 5389 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5390 SDValue IntMax = DAG.getConstant( 5391 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5392 SDValue Zero = 5393 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5394 5395 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5396 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5397 Created.push_back(DivisorIsIntMin.getNode()); 5398 5399 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5400 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5401 Created.push_back(Masked.getNode()); 5402 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5403 Created.push_back(MaskedIsZero.getNode()); 5404 5405 // To produce final result we need to blend 2 vectors: 'SetCC' and 5406 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5407 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5408 // constant-folded, select can get lowered to a shuffle with constant mask. 5409 SDValue Blended = 5410 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5411 5412 return Blended; 5413 } 5414 5415 bool TargetLowering:: 5416 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5417 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5418 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5419 "be a constant integer"); 5420 return true; 5421 } 5422 5423 return false; 5424 } 5425 5426 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG, 5427 bool LegalOperations, bool ForCodeSize, 5428 unsigned Depth) const { 5429 // fneg is removable even if it has multiple uses. 5430 if (Op.getOpcode() == ISD::FNEG) 5431 return 2; 5432 5433 // Don't allow anything with multiple uses unless we know it is free. 5434 EVT VT = Op.getValueType(); 5435 const SDNodeFlags Flags = Op->getFlags(); 5436 const TargetOptions &Options = DAG.getTarget().Options; 5437 if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND && 5438 isFPExtFree(VT, Op.getOperand(0).getValueType()))) 5439 return 0; 5440 5441 // Don't recurse exponentially. 5442 if (Depth > SelectionDAG::MaxRecursionDepth) 5443 return 0; 5444 5445 switch (Op.getOpcode()) { 5446 case ISD::ConstantFP: { 5447 if (!LegalOperations) 5448 return 1; 5449 5450 // Don't invert constant FP values after legalization unless the target says 5451 // the negated constant is legal. 5452 return isOperationLegal(ISD::ConstantFP, VT) || 5453 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5454 ForCodeSize); 5455 } 5456 case ISD::BUILD_VECTOR: { 5457 // Only permit BUILD_VECTOR of constants. 5458 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5459 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5460 })) 5461 return 0; 5462 if (!LegalOperations) 5463 return 1; 5464 if (isOperationLegal(ISD::ConstantFP, VT) && 5465 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5466 return 1; 5467 return llvm::all_of(Op->op_values(), [&](SDValue N) { 5468 return N.isUndef() || 5469 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5470 ForCodeSize); 5471 }); 5472 } 5473 case ISD::FADD: 5474 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5475 return 0; 5476 5477 // After operation legalization, it might not be legal to create new FSUBs. 5478 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5479 return 0; 5480 5481 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5482 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5483 ForCodeSize, Depth + 1)) 5484 return V; 5485 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5486 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5487 ForCodeSize, Depth + 1); 5488 case ISD::FSUB: 5489 // We can't turn -(A-B) into B-A when we honor signed zeros. 5490 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5491 return 0; 5492 5493 // fold (fneg (fsub A, B)) -> (fsub B, A) 5494 return 1; 5495 5496 case ISD::FMUL: 5497 case ISD::FDIV: 5498 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5499 if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5500 ForCodeSize, Depth + 1)) 5501 return V; 5502 5503 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5504 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5505 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5506 return 0; 5507 5508 return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5509 ForCodeSize, Depth + 1); 5510 5511 case ISD::FMA: 5512 case ISD::FMAD: { 5513 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5514 return 0; 5515 5516 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5517 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5518 char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations, 5519 ForCodeSize, Depth + 1); 5520 if (!V2) 5521 return 0; 5522 5523 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5524 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5525 ForCodeSize, Depth + 1); 5526 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5527 ForCodeSize, Depth + 1); 5528 char V01 = std::max(V0, V1); 5529 return V01 ? std::max(V01, V2) : 0; 5530 } 5531 5532 case ISD::FP_EXTEND: 5533 case ISD::FP_ROUND: 5534 case ISD::FSIN: 5535 return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5536 ForCodeSize, Depth + 1); 5537 } 5538 5539 return 0; 5540 } 5541 5542 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5543 bool LegalOperations, 5544 bool ForCodeSize, 5545 unsigned Depth) const { 5546 // fneg is removable even if it has multiple uses. 5547 if (Op.getOpcode() == ISD::FNEG) 5548 return Op.getOperand(0); 5549 5550 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5551 "getNegatedExpression doesn't match isNegatibleForFree"); 5552 const SDNodeFlags Flags = Op->getFlags(); 5553 5554 switch (Op.getOpcode()) { 5555 case ISD::ConstantFP: { 5556 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5557 V.changeSign(); 5558 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5559 } 5560 case ISD::BUILD_VECTOR: { 5561 SmallVector<SDValue, 4> Ops; 5562 for (SDValue C : Op->op_values()) { 5563 if (C.isUndef()) { 5564 Ops.push_back(C); 5565 continue; 5566 } 5567 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5568 V.changeSign(); 5569 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5570 } 5571 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5572 } 5573 case ISD::FADD: 5574 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5575 Flags.hasNoSignedZeros()) && 5576 "Expected NSZ fp-flag"); 5577 5578 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5579 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5580 Depth + 1)) 5581 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5582 getNegatedExpression(Op.getOperand(0), DAG, 5583 LegalOperations, ForCodeSize, 5584 Depth + 1), 5585 Op.getOperand(1), Flags); 5586 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5587 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5588 getNegatedExpression(Op.getOperand(1), DAG, 5589 LegalOperations, ForCodeSize, 5590 Depth + 1), 5591 Op.getOperand(0), Flags); 5592 case ISD::FSUB: 5593 // fold (fneg (fsub 0, B)) -> B 5594 if (ConstantFPSDNode *N0CFP = 5595 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5596 if (N0CFP->isZero()) 5597 return Op.getOperand(1); 5598 5599 // fold (fneg (fsub A, B)) -> (fsub B, A) 5600 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5601 Op.getOperand(1), Op.getOperand(0), Flags); 5602 5603 case ISD::FMUL: 5604 case ISD::FDIV: 5605 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5606 if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5607 Depth + 1)) 5608 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5609 getNegatedExpression(Op.getOperand(0), DAG, 5610 LegalOperations, ForCodeSize, 5611 Depth + 1), 5612 Op.getOperand(1), Flags); 5613 5614 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5615 return DAG.getNode( 5616 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5617 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5618 ForCodeSize, Depth + 1), 5619 Flags); 5620 5621 case ISD::FMA: 5622 case ISD::FMAD: { 5623 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5624 Flags.hasNoSignedZeros()) && 5625 "Expected NSZ fp-flag"); 5626 5627 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5628 ForCodeSize, Depth + 1); 5629 5630 char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, 5631 ForCodeSize, Depth + 1); 5632 char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations, 5633 ForCodeSize, Depth + 1); 5634 // TODO: This is a hack. It is possible that costs have changed between now 5635 // and the initial calls to isNegatibleForFree(). That is because we 5636 // are rewriting the expression, and that may change the number of 5637 // uses (and therefore the cost) of values. If the negation costs are 5638 // equal, only negate this value if it is a constant. Otherwise, try 5639 // operand 1. A better fix would eliminate uses as a cost factor or 5640 // track the change in uses as we rewrite the expression. 5641 if (V0 > V1 || (V0 == V1 && isa<ConstantFPSDNode>(Op.getOperand(0)))) { 5642 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5643 SDValue Neg0 = getNegatedExpression( 5644 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5645 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5646 Op.getOperand(1), Neg2, Flags); 5647 } 5648 5649 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5650 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5651 ForCodeSize, Depth + 1); 5652 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5653 Op.getOperand(0), Neg1, Neg2, Flags); 5654 } 5655 5656 case ISD::FP_EXTEND: 5657 case ISD::FSIN: 5658 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5659 getNegatedExpression(Op.getOperand(0), DAG, 5660 LegalOperations, ForCodeSize, 5661 Depth + 1)); 5662 case ISD::FP_ROUND: 5663 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5664 getNegatedExpression(Op.getOperand(0), DAG, 5665 LegalOperations, ForCodeSize, 5666 Depth + 1), 5667 Op.getOperand(1)); 5668 } 5669 5670 llvm_unreachable("Unknown code"); 5671 } 5672 5673 //===----------------------------------------------------------------------===// 5674 // Legalization Utilities 5675 //===----------------------------------------------------------------------===// 5676 5677 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5678 SDValue LHS, SDValue RHS, 5679 SmallVectorImpl<SDValue> &Result, 5680 EVT HiLoVT, SelectionDAG &DAG, 5681 MulExpansionKind Kind, SDValue LL, 5682 SDValue LH, SDValue RL, SDValue RH) const { 5683 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5684 Opcode == ISD::SMUL_LOHI); 5685 5686 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5687 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5688 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5689 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5690 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5691 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5692 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5693 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5694 5695 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5696 return false; 5697 5698 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5699 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5700 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5701 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5702 5703 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5704 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5705 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5706 5707 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5708 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5709 bool Signed) -> bool { 5710 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5711 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5712 Hi = SDValue(Lo.getNode(), 1); 5713 return true; 5714 } 5715 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5716 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5717 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5718 return true; 5719 } 5720 return false; 5721 }; 5722 5723 SDValue Lo, Hi; 5724 5725 if (!LL.getNode() && !RL.getNode() && 5726 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5727 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5728 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5729 } 5730 5731 if (!LL.getNode()) 5732 return false; 5733 5734 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5735 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5736 DAG.MaskedValueIsZero(RHS, HighMask)) { 5737 // The inputs are both zero-extended. 5738 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5739 Result.push_back(Lo); 5740 Result.push_back(Hi); 5741 if (Opcode != ISD::MUL) { 5742 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5743 Result.push_back(Zero); 5744 Result.push_back(Zero); 5745 } 5746 return true; 5747 } 5748 } 5749 5750 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5751 RHSSB > InnerBitSize) { 5752 // The input values are both sign-extended. 5753 // TODO non-MUL case? 5754 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5755 Result.push_back(Lo); 5756 Result.push_back(Hi); 5757 return true; 5758 } 5759 } 5760 5761 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5762 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5763 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5764 // FIXME getShiftAmountTy does not always return a sensible result when VT 5765 // is an illegal type, and so the type may be too small to fit the shift 5766 // amount. Override it with i32. The shift will have to be legalized. 5767 ShiftAmountTy = MVT::i32; 5768 } 5769 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5770 5771 if (!LH.getNode() && !RH.getNode() && 5772 isOperationLegalOrCustom(ISD::SRL, VT) && 5773 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5774 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5775 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5776 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5777 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5778 } 5779 5780 if (!LH.getNode()) 5781 return false; 5782 5783 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5784 return false; 5785 5786 Result.push_back(Lo); 5787 5788 if (Opcode == ISD::MUL) { 5789 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5790 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5791 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5792 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5793 Result.push_back(Hi); 5794 return true; 5795 } 5796 5797 // Compute the full width result. 5798 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5799 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5800 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5801 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5802 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5803 }; 5804 5805 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5806 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5807 return false; 5808 5809 // This is effectively the add part of a multiply-add of half-sized operands, 5810 // so it cannot overflow. 5811 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5812 5813 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5814 return false; 5815 5816 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5817 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5818 5819 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5820 isOperationLegalOrCustom(ISD::ADDE, VT)); 5821 if (UseGlue) 5822 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5823 Merge(Lo, Hi)); 5824 else 5825 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5826 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5827 5828 SDValue Carry = Next.getValue(1); 5829 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5830 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5831 5832 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5833 return false; 5834 5835 if (UseGlue) 5836 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5837 Carry); 5838 else 5839 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5840 Zero, Carry); 5841 5842 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5843 5844 if (Opcode == ISD::SMUL_LOHI) { 5845 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5846 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5847 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5848 5849 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5850 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5851 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5852 } 5853 5854 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5855 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5856 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5857 return true; 5858 } 5859 5860 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5861 SelectionDAG &DAG, MulExpansionKind Kind, 5862 SDValue LL, SDValue LH, SDValue RL, 5863 SDValue RH) const { 5864 SmallVector<SDValue, 2> Result; 5865 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5866 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5867 DAG, Kind, LL, LH, RL, RH); 5868 if (Ok) { 5869 assert(Result.size() == 2); 5870 Lo = Result[0]; 5871 Hi = Result[1]; 5872 } 5873 return Ok; 5874 } 5875 5876 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5877 SelectionDAG &DAG) const { 5878 EVT VT = Node->getValueType(0); 5879 5880 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5881 !isOperationLegalOrCustom(ISD::SRL, VT) || 5882 !isOperationLegalOrCustom(ISD::SUB, VT) || 5883 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5884 return false; 5885 5886 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5887 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5888 SDValue X = Node->getOperand(0); 5889 SDValue Y = Node->getOperand(1); 5890 SDValue Z = Node->getOperand(2); 5891 5892 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5893 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5894 SDLoc DL(SDValue(Node, 0)); 5895 5896 EVT ShVT = Z.getValueType(); 5897 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5898 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5899 5900 SDValue ShAmt; 5901 if (isPowerOf2_32(EltSizeInBits)) { 5902 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5903 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5904 } else { 5905 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5906 } 5907 5908 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5909 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5910 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5911 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5912 5913 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5914 // and that is undefined. We must compare and select to avoid UB. 5915 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5916 5917 // For fshl, 0-shift returns the 1st arg (X). 5918 // For fshr, 0-shift returns the 2nd arg (Y). 5919 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5920 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5921 return true; 5922 } 5923 5924 // TODO: Merge with expandFunnelShift. 5925 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5926 SelectionDAG &DAG) const { 5927 EVT VT = Node->getValueType(0); 5928 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5929 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5930 SDValue Op0 = Node->getOperand(0); 5931 SDValue Op1 = Node->getOperand(1); 5932 SDLoc DL(SDValue(Node, 0)); 5933 5934 EVT ShVT = Op1.getValueType(); 5935 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5936 5937 // If a rotate in the other direction is legal, use it. 5938 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5939 if (isOperationLegal(RevRot, VT)) { 5940 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5941 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5942 return true; 5943 } 5944 5945 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5946 !isOperationLegalOrCustom(ISD::SRL, VT) || 5947 !isOperationLegalOrCustom(ISD::SUB, VT) || 5948 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5949 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5950 return false; 5951 5952 // Otherwise, 5953 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5954 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5955 // 5956 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5957 "Expecting the type bitwidth to be a power of 2"); 5958 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5959 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5960 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5961 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5962 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5963 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5964 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5965 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5966 return true; 5967 } 5968 5969 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5970 SelectionDAG &DAG) const { 5971 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5972 SDValue Src = Node->getOperand(OpNo); 5973 EVT SrcVT = Src.getValueType(); 5974 EVT DstVT = Node->getValueType(0); 5975 SDLoc dl(SDValue(Node, 0)); 5976 5977 // FIXME: Only f32 to i64 conversions are supported. 5978 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5979 return false; 5980 5981 if (Node->isStrictFPOpcode()) 5982 // When a NaN is converted to an integer a trap is allowed. We can't 5983 // use this expansion here because it would eliminate that trap. Other 5984 // traps are also allowed and cannot be eliminated. See 5985 // IEEE 754-2008 sec 5.8. 5986 return false; 5987 5988 // Expand f32 -> i64 conversion 5989 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5990 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5991 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5992 EVT IntVT = SrcVT.changeTypeToInteger(); 5993 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5994 5995 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 5996 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 5997 SDValue Bias = DAG.getConstant(127, dl, IntVT); 5998 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 5999 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6000 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6001 6002 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6003 6004 SDValue ExponentBits = DAG.getNode( 6005 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6006 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6007 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6008 6009 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6010 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6011 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6012 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6013 6014 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6015 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6016 DAG.getConstant(0x00800000, dl, IntVT)); 6017 6018 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6019 6020 R = DAG.getSelectCC( 6021 dl, Exponent, ExponentLoBit, 6022 DAG.getNode(ISD::SHL, dl, DstVT, R, 6023 DAG.getZExtOrTrunc( 6024 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6025 dl, IntShVT)), 6026 DAG.getNode(ISD::SRL, dl, DstVT, R, 6027 DAG.getZExtOrTrunc( 6028 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6029 dl, IntShVT)), 6030 ISD::SETGT); 6031 6032 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6033 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6034 6035 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6036 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6037 return true; 6038 } 6039 6040 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6041 SDValue &Chain, 6042 SelectionDAG &DAG) const { 6043 SDLoc dl(SDValue(Node, 0)); 6044 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6045 SDValue Src = Node->getOperand(OpNo); 6046 6047 EVT SrcVT = Src.getValueType(); 6048 EVT DstVT = Node->getValueType(0); 6049 EVT SetCCVT = 6050 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6051 6052 // Only expand vector types if we have the appropriate vector bit operations. 6053 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6054 ISD::FP_TO_SINT; 6055 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6056 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6057 return false; 6058 6059 // If the maximum float value is smaller then the signed integer range, 6060 // the destination signmask can't be represented by the float, so we can 6061 // just use FP_TO_SINT directly. 6062 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6063 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6064 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6065 if (APFloat::opOverflow & 6066 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6067 if (Node->isStrictFPOpcode()) { 6068 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6069 { Node->getOperand(0), Src }); 6070 Chain = Result.getValue(1); 6071 } else 6072 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6073 return true; 6074 } 6075 6076 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6077 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6078 6079 bool Strict = Node->isStrictFPOpcode() || 6080 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6081 6082 if (Strict) { 6083 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6084 // signmask then offset (the result of which should be fully representable). 6085 // Sel = Src < 0x8000000000000000 6086 // FltOfs = select Sel, 0, 0x8000000000000000 6087 // IntOfs = select Sel, 0, 0x8000000000000000 6088 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6089 6090 // TODO: Should any fast-math-flags be set for the FSUB? 6091 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6092 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6093 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6094 DAG.getConstant(0, dl, DstVT), 6095 DAG.getConstant(SignMask, dl, DstVT)); 6096 SDValue SInt; 6097 if (Node->isStrictFPOpcode()) { 6098 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6099 { Node->getOperand(0), Src, FltOfs }); 6100 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6101 { Val.getValue(1), Val }); 6102 Chain = SInt.getValue(1); 6103 } else { 6104 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6105 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6106 } 6107 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6108 } else { 6109 // Expand based on maximum range of FP_TO_SINT: 6110 // True = fp_to_sint(Src) 6111 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6112 // Result = select (Src < 0x8000000000000000), True, False 6113 6114 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6115 // TODO: Should any fast-math-flags be set for the FSUB? 6116 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6117 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6118 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6119 DAG.getConstant(SignMask, dl, DstVT)); 6120 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6121 } 6122 return true; 6123 } 6124 6125 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6126 SDValue &Chain, 6127 SelectionDAG &DAG) const { 6128 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6129 SDValue Src = Node->getOperand(OpNo); 6130 EVT SrcVT = Src.getValueType(); 6131 EVT DstVT = Node->getValueType(0); 6132 6133 if (SrcVT.getScalarType() != MVT::i64) 6134 return false; 6135 6136 SDLoc dl(SDValue(Node, 0)); 6137 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6138 6139 if (DstVT.getScalarType() == MVT::f32) { 6140 // Only expand vector types if we have the appropriate vector bit 6141 // operations. 6142 if (SrcVT.isVector() && 6143 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6144 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6145 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 6146 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6147 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6148 return false; 6149 6150 // For unsigned conversions, convert them to signed conversions using the 6151 // algorithm from the x86_64 __floatundidf in compiler_rt. 6152 SDValue Fast; 6153 if (Node->isStrictFPOpcode()) { 6154 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {DstVT, MVT::Other}, 6155 {Node->getOperand(0), Src}); 6156 Chain = SDValue(Fast.getNode(), 1); 6157 } else 6158 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 6159 6160 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 6161 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 6162 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 6163 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 6164 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 6165 6166 SDValue Slow; 6167 if (Node->isStrictFPOpcode()) { 6168 SDValue SignCvt = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, 6169 {DstVT, MVT::Other}, {Chain, Or}); 6170 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DstVT, MVT::Other }, 6171 { SignCvt.getValue(1), SignCvt, SignCvt }); 6172 Chain = Slow.getValue(1); 6173 } else { 6174 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 6175 Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 6176 } 6177 6178 // TODO: This really should be implemented using a branch rather than a 6179 // select. We happen to get lucky and machinesink does the right 6180 // thing most of the time. This would be a good candidate for a 6181 // pseudo-op, or, even better, for whole-function isel. 6182 EVT SetCCVT = 6183 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6184 6185 SDValue SignBitTest = DAG.getSetCC( 6186 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 6187 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 6188 return true; 6189 } 6190 6191 if (DstVT.getScalarType() == MVT::f64) { 6192 // Only expand vector types if we have the appropriate vector bit 6193 // operations. 6194 if (SrcVT.isVector() && 6195 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6196 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6197 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6198 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6199 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6200 return false; 6201 6202 // Implementation of unsigned i64 to f64 following the algorithm in 6203 // __floatundidf in compiler_rt. This implementation has the advantage 6204 // of performing rounding correctly, both in the default rounding mode 6205 // and in all alternate rounding modes. 6206 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6207 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6208 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6209 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6210 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6211 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6212 6213 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6214 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6215 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6216 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6217 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6218 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6219 if (Node->isStrictFPOpcode()) { 6220 SDValue HiSub = 6221 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6222 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6223 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6224 {HiSub.getValue(1), LoFlt, HiSub}); 6225 Chain = Result.getValue(1); 6226 } else { 6227 SDValue HiSub = 6228 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6229 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6230 } 6231 return true; 6232 } 6233 6234 return false; 6235 } 6236 6237 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6238 SelectionDAG &DAG) const { 6239 SDLoc dl(Node); 6240 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6241 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6242 EVT VT = Node->getValueType(0); 6243 if (isOperationLegalOrCustom(NewOp, VT)) { 6244 SDValue Quiet0 = Node->getOperand(0); 6245 SDValue Quiet1 = Node->getOperand(1); 6246 6247 if (!Node->getFlags().hasNoNaNs()) { 6248 // Insert canonicalizes if it's possible we need to quiet to get correct 6249 // sNaN behavior. 6250 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6251 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6252 Node->getFlags()); 6253 } 6254 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6255 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6256 Node->getFlags()); 6257 } 6258 } 6259 6260 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6261 } 6262 6263 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6264 // instead if there are no NaNs. 6265 if (Node->getFlags().hasNoNaNs()) { 6266 unsigned IEEE2018Op = 6267 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6268 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6269 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6270 Node->getOperand(1), Node->getFlags()); 6271 } 6272 } 6273 6274 // If none of the above worked, but there are no NaNs, then expand to 6275 // a compare/select sequence. This is required for correctness since 6276 // InstCombine might have canonicalized a fcmp+select sequence to a 6277 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6278 // expansion to libcall, we might introduce a link-time dependency 6279 // on libm into a file that originally did not have one. 6280 if (Node->getFlags().hasNoNaNs()) { 6281 ISD::CondCode Pred = 6282 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6283 SDValue Op1 = Node->getOperand(0); 6284 SDValue Op2 = Node->getOperand(1); 6285 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6286 // Copy FMF flags, but always set the no-signed-zeros flag 6287 // as this is implied by the FMINNUM/FMAXNUM semantics. 6288 SDNodeFlags Flags = Node->getFlags(); 6289 Flags.setNoSignedZeros(true); 6290 SelCC->setFlags(Flags); 6291 return SelCC; 6292 } 6293 6294 return SDValue(); 6295 } 6296 6297 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6298 SelectionDAG &DAG) const { 6299 SDLoc dl(Node); 6300 EVT VT = Node->getValueType(0); 6301 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6302 SDValue Op = Node->getOperand(0); 6303 unsigned Len = VT.getScalarSizeInBits(); 6304 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6305 6306 // TODO: Add support for irregular type lengths. 6307 if (!(Len <= 128 && Len % 8 == 0)) 6308 return false; 6309 6310 // Only expand vector types if we have the appropriate vector bit operations. 6311 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6312 !isOperationLegalOrCustom(ISD::SUB, VT) || 6313 !isOperationLegalOrCustom(ISD::SRL, VT) || 6314 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6315 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6316 return false; 6317 6318 // This is the "best" algorithm from 6319 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6320 SDValue Mask55 = 6321 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6322 SDValue Mask33 = 6323 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6324 SDValue Mask0F = 6325 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6326 SDValue Mask01 = 6327 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6328 6329 // v = v - ((v >> 1) & 0x55555555...) 6330 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6331 DAG.getNode(ISD::AND, dl, VT, 6332 DAG.getNode(ISD::SRL, dl, VT, Op, 6333 DAG.getConstant(1, dl, ShVT)), 6334 Mask55)); 6335 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6336 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6337 DAG.getNode(ISD::AND, dl, VT, 6338 DAG.getNode(ISD::SRL, dl, VT, Op, 6339 DAG.getConstant(2, dl, ShVT)), 6340 Mask33)); 6341 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6342 Op = DAG.getNode(ISD::AND, dl, VT, 6343 DAG.getNode(ISD::ADD, dl, VT, Op, 6344 DAG.getNode(ISD::SRL, dl, VT, Op, 6345 DAG.getConstant(4, dl, ShVT))), 6346 Mask0F); 6347 // v = (v * 0x01010101...) >> (Len - 8) 6348 if (Len > 8) 6349 Op = 6350 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6351 DAG.getConstant(Len - 8, dl, ShVT)); 6352 6353 Result = Op; 6354 return true; 6355 } 6356 6357 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6358 SelectionDAG &DAG) const { 6359 SDLoc dl(Node); 6360 EVT VT = Node->getValueType(0); 6361 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6362 SDValue Op = Node->getOperand(0); 6363 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6364 6365 // If the non-ZERO_UNDEF version is supported we can use that instead. 6366 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6367 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6368 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6369 return true; 6370 } 6371 6372 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6373 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6374 EVT SetCCVT = 6375 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6376 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6377 SDValue Zero = DAG.getConstant(0, dl, VT); 6378 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6379 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6380 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6381 return true; 6382 } 6383 6384 // Only expand vector types if we have the appropriate vector bit operations. 6385 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6386 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6387 !isOperationLegalOrCustom(ISD::SRL, VT) || 6388 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6389 return false; 6390 6391 // for now, we do this: 6392 // x = x | (x >> 1); 6393 // x = x | (x >> 2); 6394 // ... 6395 // x = x | (x >>16); 6396 // x = x | (x >>32); // for 64-bit input 6397 // return popcount(~x); 6398 // 6399 // Ref: "Hacker's Delight" by Henry Warren 6400 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6401 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6402 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6403 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6404 } 6405 Op = DAG.getNOT(dl, Op, VT); 6406 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6407 return true; 6408 } 6409 6410 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6411 SelectionDAG &DAG) const { 6412 SDLoc dl(Node); 6413 EVT VT = Node->getValueType(0); 6414 SDValue Op = Node->getOperand(0); 6415 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6416 6417 // If the non-ZERO_UNDEF version is supported we can use that instead. 6418 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6419 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6420 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6421 return true; 6422 } 6423 6424 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6425 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6426 EVT SetCCVT = 6427 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6428 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6429 SDValue Zero = DAG.getConstant(0, dl, VT); 6430 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6431 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6432 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6433 return true; 6434 } 6435 6436 // Only expand vector types if we have the appropriate vector bit operations. 6437 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6438 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6439 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6440 !isOperationLegalOrCustom(ISD::SUB, VT) || 6441 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6442 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6443 return false; 6444 6445 // for now, we use: { return popcount(~x & (x - 1)); } 6446 // unless the target has ctlz but not ctpop, in which case we use: 6447 // { return 32 - nlz(~x & (x-1)); } 6448 // Ref: "Hacker's Delight" by Henry Warren 6449 SDValue Tmp = DAG.getNode( 6450 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6451 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6452 6453 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6454 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6455 Result = 6456 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6457 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6458 return true; 6459 } 6460 6461 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6462 return true; 6463 } 6464 6465 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6466 SelectionDAG &DAG) const { 6467 SDLoc dl(N); 6468 EVT VT = N->getValueType(0); 6469 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6470 SDValue Op = N->getOperand(0); 6471 6472 // Only expand vector types if we have the appropriate vector operations. 6473 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6474 !isOperationLegalOrCustom(ISD::ADD, VT) || 6475 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6476 return false; 6477 6478 SDValue Shift = 6479 DAG.getNode(ISD::SRA, dl, VT, Op, 6480 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6481 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6482 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6483 return true; 6484 } 6485 6486 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6487 SelectionDAG &DAG) const { 6488 SDLoc SL(LD); 6489 SDValue Chain = LD->getChain(); 6490 SDValue BasePTR = LD->getBasePtr(); 6491 EVT SrcVT = LD->getMemoryVT(); 6492 ISD::LoadExtType ExtType = LD->getExtensionType(); 6493 6494 unsigned NumElem = SrcVT.getVectorNumElements(); 6495 6496 EVT SrcEltVT = SrcVT.getScalarType(); 6497 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6498 6499 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6500 assert(SrcEltVT.isByteSized()); 6501 6502 SmallVector<SDValue, 8> Vals; 6503 SmallVector<SDValue, 8> LoadChains; 6504 6505 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6506 SDValue ScalarLoad = 6507 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6508 LD->getPointerInfo().getWithOffset(Idx * Stride), 6509 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6510 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6511 6512 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6513 6514 Vals.push_back(ScalarLoad.getValue(0)); 6515 LoadChains.push_back(ScalarLoad.getValue(1)); 6516 } 6517 6518 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6519 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6520 6521 return DAG.getMergeValues({Value, NewChain}, SL); 6522 } 6523 6524 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6525 SelectionDAG &DAG) const { 6526 SDLoc SL(ST); 6527 6528 SDValue Chain = ST->getChain(); 6529 SDValue BasePtr = ST->getBasePtr(); 6530 SDValue Value = ST->getValue(); 6531 EVT StVT = ST->getMemoryVT(); 6532 6533 // The type of the data we want to save 6534 EVT RegVT = Value.getValueType(); 6535 EVT RegSclVT = RegVT.getScalarType(); 6536 6537 // The type of data as saved in memory. 6538 EVT MemSclVT = StVT.getScalarType(); 6539 6540 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6541 unsigned NumElem = StVT.getVectorNumElements(); 6542 6543 // A vector must always be stored in memory as-is, i.e. without any padding 6544 // between the elements, since various code depend on it, e.g. in the 6545 // handling of a bitcast of a vector type to int, which may be done with a 6546 // vector store followed by an integer load. A vector that does not have 6547 // elements that are byte-sized must therefore be stored as an integer 6548 // built out of the extracted vector elements. 6549 if (!MemSclVT.isByteSized()) { 6550 unsigned NumBits = StVT.getSizeInBits(); 6551 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6552 6553 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6554 6555 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6556 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6557 DAG.getConstant(Idx, SL, IdxVT)); 6558 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6559 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6560 unsigned ShiftIntoIdx = 6561 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6562 SDValue ShiftAmount = 6563 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6564 SDValue ShiftedElt = 6565 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6566 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6567 } 6568 6569 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6570 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6571 ST->getAAInfo()); 6572 } 6573 6574 // Store Stride in bytes 6575 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6576 assert(Stride && "Zero stride!"); 6577 // Extract each of the elements from the original vector and save them into 6578 // memory individually. 6579 SmallVector<SDValue, 8> Stores; 6580 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6581 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6582 DAG.getConstant(Idx, SL, IdxVT)); 6583 6584 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6585 6586 // This scalar TruncStore may be illegal, but we legalize it later. 6587 SDValue Store = DAG.getTruncStore( 6588 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6589 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6590 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6591 6592 Stores.push_back(Store); 6593 } 6594 6595 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6596 } 6597 6598 std::pair<SDValue, SDValue> 6599 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6600 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6601 "unaligned indexed loads not implemented!"); 6602 SDValue Chain = LD->getChain(); 6603 SDValue Ptr = LD->getBasePtr(); 6604 EVT VT = LD->getValueType(0); 6605 EVT LoadedVT = LD->getMemoryVT(); 6606 SDLoc dl(LD); 6607 auto &MF = DAG.getMachineFunction(); 6608 6609 if (VT.isFloatingPoint() || VT.isVector()) { 6610 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6611 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6612 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6613 LoadedVT.isVector()) { 6614 // Scalarize the load and let the individual components be handled. 6615 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 6616 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 6617 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 6618 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 6619 } 6620 6621 // Expand to a (misaligned) integer load of the same size, 6622 // then bitconvert to floating point or vector. 6623 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6624 LD->getMemOperand()); 6625 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6626 if (LoadedVT != VT) 6627 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6628 ISD::ANY_EXTEND, dl, VT, Result); 6629 6630 return std::make_pair(Result, newLoad.getValue(1)); 6631 } 6632 6633 // Copy the value to a (aligned) stack slot using (unaligned) integer 6634 // loads and stores, then do a (aligned) load from the stack slot. 6635 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6636 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6637 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6638 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6639 6640 // Make sure the stack slot is also aligned for the register type. 6641 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6642 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6643 SmallVector<SDValue, 8> Stores; 6644 SDValue StackPtr = StackBase; 6645 unsigned Offset = 0; 6646 6647 EVT PtrVT = Ptr.getValueType(); 6648 EVT StackPtrVT = StackPtr.getValueType(); 6649 6650 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6651 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6652 6653 // Do all but one copies using the full register width. 6654 for (unsigned i = 1; i < NumRegs; i++) { 6655 // Load one integer register's worth from the original location. 6656 SDValue Load = DAG.getLoad( 6657 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6658 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6659 LD->getAAInfo()); 6660 // Follow the load with a store to the stack slot. Remember the store. 6661 Stores.push_back(DAG.getStore( 6662 Load.getValue(1), dl, Load, StackPtr, 6663 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6664 // Increment the pointers. 6665 Offset += RegBytes; 6666 6667 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6668 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6669 } 6670 6671 // The last copy may be partial. Do an extending load. 6672 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6673 8 * (LoadedBytes - Offset)); 6674 SDValue Load = 6675 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6676 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6677 MinAlign(LD->getAlignment(), Offset), 6678 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6679 // Follow the load with a store to the stack slot. Remember the store. 6680 // On big-endian machines this requires a truncating store to ensure 6681 // that the bits end up in the right place. 6682 Stores.push_back(DAG.getTruncStore( 6683 Load.getValue(1), dl, Load, StackPtr, 6684 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6685 6686 // The order of the stores doesn't matter - say it with a TokenFactor. 6687 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6688 6689 // Finally, perform the original load only redirected to the stack slot. 6690 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6691 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6692 LoadedVT); 6693 6694 // Callers expect a MERGE_VALUES node. 6695 return std::make_pair(Load, TF); 6696 } 6697 6698 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6699 "Unaligned load of unsupported type."); 6700 6701 // Compute the new VT that is half the size of the old one. This is an 6702 // integer MVT. 6703 unsigned NumBits = LoadedVT.getSizeInBits(); 6704 EVT NewLoadedVT; 6705 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6706 NumBits >>= 1; 6707 6708 unsigned Alignment = LD->getAlignment(); 6709 unsigned IncrementSize = NumBits / 8; 6710 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6711 6712 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6713 if (HiExtType == ISD::NON_EXTLOAD) 6714 HiExtType = ISD::ZEXTLOAD; 6715 6716 // Load the value in two parts 6717 SDValue Lo, Hi; 6718 if (DAG.getDataLayout().isLittleEndian()) { 6719 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6720 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6721 LD->getAAInfo()); 6722 6723 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6724 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6725 LD->getPointerInfo().getWithOffset(IncrementSize), 6726 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6727 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6728 } else { 6729 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6730 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6731 LD->getAAInfo()); 6732 6733 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6734 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6735 LD->getPointerInfo().getWithOffset(IncrementSize), 6736 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6737 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6738 } 6739 6740 // aggregate the two parts 6741 SDValue ShiftAmount = 6742 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6743 DAG.getDataLayout())); 6744 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6745 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6746 6747 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6748 Hi.getValue(1)); 6749 6750 return std::make_pair(Result, TF); 6751 } 6752 6753 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6754 SelectionDAG &DAG) const { 6755 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6756 "unaligned indexed stores not implemented!"); 6757 SDValue Chain = ST->getChain(); 6758 SDValue Ptr = ST->getBasePtr(); 6759 SDValue Val = ST->getValue(); 6760 EVT VT = Val.getValueType(); 6761 int Alignment = ST->getAlignment(); 6762 auto &MF = DAG.getMachineFunction(); 6763 EVT StoreMemVT = ST->getMemoryVT(); 6764 6765 SDLoc dl(ST); 6766 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6767 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6768 if (isTypeLegal(intVT)) { 6769 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6770 StoreMemVT.isVector()) { 6771 // Scalarize the store and let the individual components be handled. 6772 SDValue Result = scalarizeVectorStore(ST, DAG); 6773 return Result; 6774 } 6775 // Expand to a bitconvert of the value to the integer type of the 6776 // same size, then a (misaligned) int store. 6777 // FIXME: Does not handle truncating floating point stores! 6778 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6779 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6780 Alignment, ST->getMemOperand()->getFlags()); 6781 return Result; 6782 } 6783 // Do a (aligned) store to a stack slot, then copy from the stack slot 6784 // to the final destination using (unaligned) integer loads and stores. 6785 MVT RegVT = getRegisterType( 6786 *DAG.getContext(), 6787 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6788 EVT PtrVT = Ptr.getValueType(); 6789 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6790 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6791 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6792 6793 // Make sure the stack slot is also aligned for the register type. 6794 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6795 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6796 6797 // Perform the original store, only redirected to the stack slot. 6798 SDValue Store = DAG.getTruncStore( 6799 Chain, dl, Val, StackPtr, 6800 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6801 6802 EVT StackPtrVT = StackPtr.getValueType(); 6803 6804 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6805 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6806 SmallVector<SDValue, 8> Stores; 6807 unsigned Offset = 0; 6808 6809 // Do all but one copies using the full register width. 6810 for (unsigned i = 1; i < NumRegs; i++) { 6811 // Load one integer register's worth from the stack slot. 6812 SDValue Load = DAG.getLoad( 6813 RegVT, dl, Store, StackPtr, 6814 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6815 // Store it to the final location. Remember the store. 6816 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6817 ST->getPointerInfo().getWithOffset(Offset), 6818 MinAlign(ST->getAlignment(), Offset), 6819 ST->getMemOperand()->getFlags())); 6820 // Increment the pointers. 6821 Offset += RegBytes; 6822 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6823 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6824 } 6825 6826 // The last store may be partial. Do a truncating store. On big-endian 6827 // machines this requires an extending load from the stack slot to ensure 6828 // that the bits are in the right place. 6829 EVT LoadMemVT = 6830 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6831 6832 // Load from the stack slot. 6833 SDValue Load = DAG.getExtLoad( 6834 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6835 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6836 6837 Stores.push_back( 6838 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6839 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6840 MinAlign(ST->getAlignment(), Offset), 6841 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6842 // The order of the stores doesn't matter - say it with a TokenFactor. 6843 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6844 return Result; 6845 } 6846 6847 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6848 "Unaligned store of unknown type."); 6849 // Get the half-size VT 6850 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6851 int NumBits = NewStoredVT.getSizeInBits(); 6852 int IncrementSize = NumBits / 8; 6853 6854 // Divide the stored value in two parts. 6855 SDValue ShiftAmount = DAG.getConstant( 6856 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6857 SDValue Lo = Val; 6858 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6859 6860 // Store the two parts 6861 SDValue Store1, Store2; 6862 Store1 = DAG.getTruncStore(Chain, dl, 6863 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6864 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6865 ST->getMemOperand()->getFlags()); 6866 6867 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6868 Alignment = MinAlign(Alignment, IncrementSize); 6869 Store2 = DAG.getTruncStore( 6870 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6871 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6872 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6873 6874 SDValue Result = 6875 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6876 return Result; 6877 } 6878 6879 SDValue 6880 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6881 const SDLoc &DL, EVT DataVT, 6882 SelectionDAG &DAG, 6883 bool IsCompressedMemory) const { 6884 SDValue Increment; 6885 EVT AddrVT = Addr.getValueType(); 6886 EVT MaskVT = Mask.getValueType(); 6887 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6888 "Incompatible types of Data and Mask"); 6889 if (IsCompressedMemory) { 6890 // Incrementing the pointer according to number of '1's in the mask. 6891 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6892 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6893 if (MaskIntVT.getSizeInBits() < 32) { 6894 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6895 MaskIntVT = MVT::i32; 6896 } 6897 6898 // Count '1's with POPCNT. 6899 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6900 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6901 // Scale is an element size in bytes. 6902 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6903 AddrVT); 6904 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6905 } else 6906 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6907 6908 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6909 } 6910 6911 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6912 SDValue Idx, 6913 EVT VecVT, 6914 const SDLoc &dl) { 6915 if (isa<ConstantSDNode>(Idx)) 6916 return Idx; 6917 6918 EVT IdxVT = Idx.getValueType(); 6919 unsigned NElts = VecVT.getVectorNumElements(); 6920 if (isPowerOf2_32(NElts)) { 6921 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6922 Log2_32(NElts)); 6923 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6924 DAG.getConstant(Imm, dl, IdxVT)); 6925 } 6926 6927 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6928 DAG.getConstant(NElts - 1, dl, IdxVT)); 6929 } 6930 6931 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6932 SDValue VecPtr, EVT VecVT, 6933 SDValue Index) const { 6934 SDLoc dl(Index); 6935 // Make sure the index type is big enough to compute in. 6936 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6937 6938 EVT EltVT = VecVT.getVectorElementType(); 6939 6940 // Calculate the element offset and add it to the pointer. 6941 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6942 assert(EltSize * 8 == EltVT.getSizeInBits() && 6943 "Converting bits to bytes lost precision"); 6944 6945 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6946 6947 EVT IdxVT = Index.getValueType(); 6948 6949 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6950 DAG.getConstant(EltSize, dl, IdxVT)); 6951 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 6952 } 6953 6954 //===----------------------------------------------------------------------===// 6955 // Implementation of Emulated TLS Model 6956 //===----------------------------------------------------------------------===// 6957 6958 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6959 SelectionDAG &DAG) const { 6960 // Access to address of TLS varialbe xyz is lowered to a function call: 6961 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6962 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6963 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6964 SDLoc dl(GA); 6965 6966 ArgListTy Args; 6967 ArgListEntry Entry; 6968 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6969 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6970 StringRef EmuTlsVarName(NameString); 6971 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6972 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6973 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6974 Entry.Ty = VoidPtrType; 6975 Args.push_back(Entry); 6976 6977 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6978 6979 TargetLowering::CallLoweringInfo CLI(DAG); 6980 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6981 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6982 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6983 6984 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6985 // At last for X86 targets, maybe good for other targets too? 6986 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6987 MFI.setAdjustsStack(true); // Is this only for X86 target? 6988 MFI.setHasCalls(true); 6989 6990 assert((GA->getOffset() == 0) && 6991 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 6992 return CallResult.first; 6993 } 6994 6995 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 6996 SelectionDAG &DAG) const { 6997 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 6998 if (!isCtlzFast()) 6999 return SDValue(); 7000 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7001 SDLoc dl(Op); 7002 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7003 if (C->isNullValue() && CC == ISD::SETEQ) { 7004 EVT VT = Op.getOperand(0).getValueType(); 7005 SDValue Zext = Op.getOperand(0); 7006 if (VT.bitsLT(MVT::i32)) { 7007 VT = MVT::i32; 7008 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7009 } 7010 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7011 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7012 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7013 DAG.getConstant(Log2b, dl, MVT::i32)); 7014 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7015 } 7016 } 7017 return SDValue(); 7018 } 7019 7020 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7021 unsigned Opcode = Node->getOpcode(); 7022 SDValue LHS = Node->getOperand(0); 7023 SDValue RHS = Node->getOperand(1); 7024 EVT VT = LHS.getValueType(); 7025 SDLoc dl(Node); 7026 7027 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7028 assert(VT.isInteger() && "Expected operands to be integers"); 7029 7030 // usub.sat(a, b) -> umax(a, b) - b 7031 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7032 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7033 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7034 } 7035 7036 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7037 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7038 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7039 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7040 } 7041 7042 unsigned OverflowOp; 7043 switch (Opcode) { 7044 case ISD::SADDSAT: 7045 OverflowOp = ISD::SADDO; 7046 break; 7047 case ISD::UADDSAT: 7048 OverflowOp = ISD::UADDO; 7049 break; 7050 case ISD::SSUBSAT: 7051 OverflowOp = ISD::SSUBO; 7052 break; 7053 case ISD::USUBSAT: 7054 OverflowOp = ISD::USUBO; 7055 break; 7056 default: 7057 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7058 "addition or subtraction node."); 7059 } 7060 7061 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7062 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7063 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7064 LHS, RHS); 7065 SDValue SumDiff = Result.getValue(0); 7066 SDValue Overflow = Result.getValue(1); 7067 SDValue Zero = DAG.getConstant(0, dl, VT); 7068 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7069 7070 if (Opcode == ISD::UADDSAT) { 7071 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7072 // (LHS + RHS) | OverflowMask 7073 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7074 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7075 } 7076 // Overflow ? 0xffff.... : (LHS + RHS) 7077 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7078 } else if (Opcode == ISD::USUBSAT) { 7079 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7080 // (LHS - RHS) & ~OverflowMask 7081 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7082 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7083 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7084 } 7085 // Overflow ? 0 : (LHS - RHS) 7086 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7087 } else { 7088 // SatMax -> Overflow && SumDiff < 0 7089 // SatMin -> Overflow && SumDiff >= 0 7090 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7091 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7092 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7093 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7094 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7095 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7096 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7097 } 7098 } 7099 7100 SDValue 7101 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7102 assert((Node->getOpcode() == ISD::SMULFIX || 7103 Node->getOpcode() == ISD::UMULFIX || 7104 Node->getOpcode() == ISD::SMULFIXSAT || 7105 Node->getOpcode() == ISD::UMULFIXSAT) && 7106 "Expected a fixed point multiplication opcode"); 7107 7108 SDLoc dl(Node); 7109 SDValue LHS = Node->getOperand(0); 7110 SDValue RHS = Node->getOperand(1); 7111 EVT VT = LHS.getValueType(); 7112 unsigned Scale = Node->getConstantOperandVal(2); 7113 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7114 Node->getOpcode() == ISD::UMULFIXSAT); 7115 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7116 Node->getOpcode() == ISD::SMULFIXSAT); 7117 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7118 unsigned VTSize = VT.getScalarSizeInBits(); 7119 7120 if (!Scale) { 7121 // [us]mul.fix(a, b, 0) -> mul(a, b) 7122 if (!Saturating) { 7123 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7124 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7125 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7126 SDValue Result = 7127 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7128 SDValue Product = Result.getValue(0); 7129 SDValue Overflow = Result.getValue(1); 7130 SDValue Zero = DAG.getConstant(0, dl, VT); 7131 7132 APInt MinVal = APInt::getSignedMinValue(VTSize); 7133 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7134 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7135 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7136 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7137 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7138 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7139 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7140 SDValue Result = 7141 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7142 SDValue Product = Result.getValue(0); 7143 SDValue Overflow = Result.getValue(1); 7144 7145 APInt MaxVal = APInt::getMaxValue(VTSize); 7146 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7147 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7148 } 7149 } 7150 7151 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7152 "Expected scale to be less than the number of bits if signed or at " 7153 "most the number of bits if unsigned."); 7154 assert(LHS.getValueType() == RHS.getValueType() && 7155 "Expected both operands to be the same type"); 7156 7157 // Get the upper and lower bits of the result. 7158 SDValue Lo, Hi; 7159 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7160 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7161 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7162 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7163 Lo = Result.getValue(0); 7164 Hi = Result.getValue(1); 7165 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7166 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7167 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7168 } else if (VT.isVector()) { 7169 return SDValue(); 7170 } else { 7171 report_fatal_error("Unable to expand fixed point multiplication."); 7172 } 7173 7174 if (Scale == VTSize) 7175 // Result is just the top half since we'd be shifting by the width of the 7176 // operand. Overflow impossible so this works for both UMULFIX and 7177 // UMULFIXSAT. 7178 return Hi; 7179 7180 // The result will need to be shifted right by the scale since both operands 7181 // are scaled. The result is given to us in 2 halves, so we only want part of 7182 // both in the result. 7183 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7184 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7185 DAG.getConstant(Scale, dl, ShiftTy)); 7186 if (!Saturating) 7187 return Result; 7188 7189 if (!Signed) { 7190 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7191 // widened multiplication) aren't all zeroes. 7192 7193 // Saturate to max if ((Hi >> Scale) != 0), 7194 // which is the same as if (Hi > ((1 << Scale) - 1)) 7195 APInt MaxVal = APInt::getMaxValue(VTSize); 7196 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7197 dl, VT); 7198 Result = DAG.getSelectCC(dl, Hi, LowMask, 7199 DAG.getConstant(MaxVal, dl, VT), Result, 7200 ISD::SETUGT); 7201 7202 return Result; 7203 } 7204 7205 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7206 // widened multiplication) aren't all ones or all zeroes. 7207 7208 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7209 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7210 7211 if (Scale == 0) { 7212 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7213 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7214 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7215 // Saturated to SatMin if wide product is negative, and SatMax if wide 7216 // product is positive ... 7217 SDValue Zero = DAG.getConstant(0, dl, VT); 7218 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7219 ISD::SETLT); 7220 // ... but only if we overflowed. 7221 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7222 } 7223 7224 // We handled Scale==0 above so all the bits to examine is in Hi. 7225 7226 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7227 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7228 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7229 dl, VT); 7230 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7231 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7232 // which is the same as if (HI < (-1 << (Scale - 1)) 7233 SDValue HighMask = 7234 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7235 dl, VT); 7236 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7237 return Result; 7238 } 7239 7240 void TargetLowering::expandUADDSUBO( 7241 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7242 SDLoc dl(Node); 7243 SDValue LHS = Node->getOperand(0); 7244 SDValue RHS = Node->getOperand(1); 7245 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7246 7247 // If ADD/SUBCARRY is legal, use that instead. 7248 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7249 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7250 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7251 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7252 { LHS, RHS, CarryIn }); 7253 Result = SDValue(NodeCarry.getNode(), 0); 7254 Overflow = SDValue(NodeCarry.getNode(), 1); 7255 return; 7256 } 7257 7258 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7259 LHS.getValueType(), LHS, RHS); 7260 7261 EVT ResultType = Node->getValueType(1); 7262 EVT SetCCType = getSetCCResultType( 7263 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7264 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7265 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7266 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7267 } 7268 7269 void TargetLowering::expandSADDSUBO( 7270 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7271 SDLoc dl(Node); 7272 SDValue LHS = Node->getOperand(0); 7273 SDValue RHS = Node->getOperand(1); 7274 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7275 7276 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7277 LHS.getValueType(), LHS, RHS); 7278 7279 EVT ResultType = Node->getValueType(1); 7280 EVT OType = getSetCCResultType( 7281 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7282 7283 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7284 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7285 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7286 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7287 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7288 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7289 return; 7290 } 7291 7292 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7293 7294 // For an addition, the result should be less than one of the operands (LHS) 7295 // if and only if the other operand (RHS) is negative, otherwise there will 7296 // be overflow. 7297 // For a subtraction, the result should be less than one of the operands 7298 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7299 // otherwise there will be overflow. 7300 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7301 SDValue ConditionRHS = 7302 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7303 7304 Overflow = DAG.getBoolExtOrTrunc( 7305 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7306 ResultType, ResultType); 7307 } 7308 7309 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7310 SDValue &Overflow, SelectionDAG &DAG) const { 7311 SDLoc dl(Node); 7312 EVT VT = Node->getValueType(0); 7313 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7314 SDValue LHS = Node->getOperand(0); 7315 SDValue RHS = Node->getOperand(1); 7316 bool isSigned = Node->getOpcode() == ISD::SMULO; 7317 7318 // For power-of-two multiplications we can use a simpler shift expansion. 7319 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7320 const APInt &C = RHSC->getAPIntValue(); 7321 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7322 if (C.isPowerOf2()) { 7323 // smulo(x, signed_min) is same as umulo(x, signed_min). 7324 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7325 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7326 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7327 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7328 Overflow = DAG.getSetCC(dl, SetCCVT, 7329 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7330 dl, VT, Result, ShiftAmt), 7331 LHS, ISD::SETNE); 7332 return true; 7333 } 7334 } 7335 7336 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7337 if (VT.isVector()) 7338 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7339 VT.getVectorNumElements()); 7340 7341 SDValue BottomHalf; 7342 SDValue TopHalf; 7343 static const unsigned Ops[2][3] = 7344 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7345 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7346 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7347 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7348 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7349 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7350 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7351 RHS); 7352 TopHalf = BottomHalf.getValue(1); 7353 } else if (isTypeLegal(WideVT)) { 7354 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7355 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7356 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7357 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7358 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7359 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7360 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7361 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7362 } else { 7363 if (VT.isVector()) 7364 return false; 7365 7366 // We can fall back to a libcall with an illegal type for the MUL if we 7367 // have a libcall big enough. 7368 // Also, we can fall back to a division in some cases, but that's a big 7369 // performance hit in the general case. 7370 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7371 if (WideVT == MVT::i16) 7372 LC = RTLIB::MUL_I16; 7373 else if (WideVT == MVT::i32) 7374 LC = RTLIB::MUL_I32; 7375 else if (WideVT == MVT::i64) 7376 LC = RTLIB::MUL_I64; 7377 else if (WideVT == MVT::i128) 7378 LC = RTLIB::MUL_I128; 7379 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7380 7381 SDValue HiLHS; 7382 SDValue HiRHS; 7383 if (isSigned) { 7384 // The high part is obtained by SRA'ing all but one of the bits of low 7385 // part. 7386 unsigned LoSize = VT.getSizeInBits(); 7387 HiLHS = 7388 DAG.getNode(ISD::SRA, dl, VT, LHS, 7389 DAG.getConstant(LoSize - 1, dl, 7390 getPointerTy(DAG.getDataLayout()))); 7391 HiRHS = 7392 DAG.getNode(ISD::SRA, dl, VT, RHS, 7393 DAG.getConstant(LoSize - 1, dl, 7394 getPointerTy(DAG.getDataLayout()))); 7395 } else { 7396 HiLHS = DAG.getConstant(0, dl, VT); 7397 HiRHS = DAG.getConstant(0, dl, VT); 7398 } 7399 7400 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7401 // pre-lowered to the correct types. This all depends upon WideVT not 7402 // being a legal type for the architecture and thus has to be split to 7403 // two arguments. 7404 SDValue Ret; 7405 TargetLowering::MakeLibCallOptions CallOptions; 7406 CallOptions.setSExt(isSigned); 7407 CallOptions.setIsPostTypeLegalization(true); 7408 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7409 // Halves of WideVT are packed into registers in different order 7410 // depending on platform endianness. This is usually handled by 7411 // the C calling convention, but we can't defer to it in 7412 // the legalizer. 7413 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7414 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7415 } else { 7416 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7417 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7418 } 7419 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7420 "Ret value is a collection of constituent nodes holding result."); 7421 if (DAG.getDataLayout().isLittleEndian()) { 7422 // Same as above. 7423 BottomHalf = Ret.getOperand(0); 7424 TopHalf = Ret.getOperand(1); 7425 } else { 7426 BottomHalf = Ret.getOperand(1); 7427 TopHalf = Ret.getOperand(0); 7428 } 7429 } 7430 7431 Result = BottomHalf; 7432 if (isSigned) { 7433 SDValue ShiftAmt = DAG.getConstant( 7434 VT.getScalarSizeInBits() - 1, dl, 7435 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7436 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7437 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7438 } else { 7439 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7440 DAG.getConstant(0, dl, VT), ISD::SETNE); 7441 } 7442 7443 // Truncate the result if SetCC returns a larger type than needed. 7444 EVT RType = Node->getValueType(1); 7445 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7446 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7447 7448 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7449 "Unexpected result type for S/UMULO legalization"); 7450 return true; 7451 } 7452 7453 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7454 SDLoc dl(Node); 7455 bool NoNaN = Node->getFlags().hasNoNaNs(); 7456 unsigned BaseOpcode = 0; 7457 switch (Node->getOpcode()) { 7458 default: llvm_unreachable("Expected VECREDUCE opcode"); 7459 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7460 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7461 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7462 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7463 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7464 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7465 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7466 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7467 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7468 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7469 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7470 case ISD::VECREDUCE_FMAX: 7471 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7472 break; 7473 case ISD::VECREDUCE_FMIN: 7474 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7475 break; 7476 } 7477 7478 SDValue Op = Node->getOperand(0); 7479 EVT VT = Op.getValueType(); 7480 7481 // Try to use a shuffle reduction for power of two vectors. 7482 if (VT.isPow2VectorType()) { 7483 while (VT.getVectorNumElements() > 1) { 7484 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7485 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7486 break; 7487 7488 SDValue Lo, Hi; 7489 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7490 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7491 VT = HalfVT; 7492 } 7493 } 7494 7495 EVT EltVT = VT.getVectorElementType(); 7496 unsigned NumElts = VT.getVectorNumElements(); 7497 7498 SmallVector<SDValue, 8> Ops; 7499 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7500 7501 SDValue Res = Ops[0]; 7502 for (unsigned i = 1; i < NumElts; i++) 7503 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7504 7505 // Result type may be wider than element type. 7506 if (EltVT != Node->getValueType(0)) 7507 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7508 return Res; 7509 } 7510