1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function *F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore noalias because it doesn't affect the call sequence.
58   AttributeSet CallerAttrs = F->getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
60       .removeAttribute(Attribute::NoAlias).hasAttributes())
61     return false;
62 
63   // It's not safe to eliminate the sign / zero extension of the return value.
64   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
65       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
66     return false;
67 
68   // Check if the only use is a function return node.
69   return isUsedByReturnOnly(Node, Chain);
70 }
71 
72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
73     const uint32_t *CallerPreservedMask,
74     const SmallVectorImpl<CCValAssign> &ArgLocs,
75     const SmallVectorImpl<SDValue> &OutVals) const {
76   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
77     const CCValAssign &ArgLoc = ArgLocs[I];
78     if (!ArgLoc.isRegLoc())
79       continue;
80     unsigned Reg = ArgLoc.getLocReg();
81     // Only look at callee saved registers.
82     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
83       continue;
84     // Check that we pass the value used for the caller.
85     // (We look for a CopyFromReg reading a virtual register that is used
86     //  for the function live-in value of register Reg)
87     SDValue Value = OutVals[I];
88     if (Value->getOpcode() != ISD::CopyFromReg)
89       return false;
90     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
91     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
92       return false;
93   }
94   return true;
95 }
96 
97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
98 /// and called function attributes.
99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
100                                                  unsigned AttrIdx) {
101   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
102   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
103   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
104   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
105   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
106   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
107   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
108   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
109   isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
110   isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
111   Alignment  = CS->getParamAlignment(AttrIdx);
112 }
113 
114 /// Generate a libcall taking the given operands as arguments and returning a
115 /// result of type RetVT.
116 std::pair<SDValue, SDValue>
117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
118                             ArrayRef<SDValue> Ops, bool isSigned,
119                             const SDLoc &dl, bool doesNotReturn,
120                             bool isReturnValueUsed) const {
121   TargetLowering::ArgListTy Args;
122   Args.reserve(Ops.size());
123 
124   TargetLowering::ArgListEntry Entry;
125   for (SDValue Op : Ops) {
126     Entry.Node = Op;
127     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
128     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
129     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
130     Args.push_back(Entry);
131   }
132 
133   if (LC == RTLIB::UNKNOWN_LIBCALL)
134     report_fatal_error("Unsupported library call operation!");
135   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
136                                          getPointerTy(DAG.getDataLayout()));
137 
138   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
139   TargetLowering::CallLoweringInfo CLI(DAG);
140   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
141   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
142     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
143     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
144     .setSExtResult(signExtend).setZExtResult(!signExtend);
145   return LowerCallTo(CLI);
146 }
147 
148 /// Soften the operands of a comparison. This code is shared among BR_CC,
149 /// SELECT_CC, and SETCC handlers.
150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
151                                          SDValue &NewLHS, SDValue &NewRHS,
152                                          ISD::CondCode &CCCode,
153                                          const SDLoc &dl) const {
154   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
155          && "Unsupported setcc type!");
156 
157   // Expand into one or more soft-fp libcall(s).
158   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
159   bool ShouldInvertCC = false;
160   switch (CCCode) {
161   case ISD::SETEQ:
162   case ISD::SETOEQ:
163     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
164           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
165           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
166     break;
167   case ISD::SETNE:
168   case ISD::SETUNE:
169     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
170           (VT == MVT::f64) ? RTLIB::UNE_F64 :
171           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
172     break;
173   case ISD::SETGE:
174   case ISD::SETOGE:
175     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
176           (VT == MVT::f64) ? RTLIB::OGE_F64 :
177           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
178     break;
179   case ISD::SETLT:
180   case ISD::SETOLT:
181     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
182           (VT == MVT::f64) ? RTLIB::OLT_F64 :
183           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
184     break;
185   case ISD::SETLE:
186   case ISD::SETOLE:
187     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
188           (VT == MVT::f64) ? RTLIB::OLE_F64 :
189           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
190     break;
191   case ISD::SETGT:
192   case ISD::SETOGT:
193     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
194           (VT == MVT::f64) ? RTLIB::OGT_F64 :
195           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
196     break;
197   case ISD::SETUO:
198     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
199           (VT == MVT::f64) ? RTLIB::UO_F64 :
200           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
201     break;
202   case ISD::SETO:
203     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
204           (VT == MVT::f64) ? RTLIB::O_F64 :
205           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
206     break;
207   case ISD::SETONE:
208     // SETONE = SETOLT | SETOGT
209     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
210           (VT == MVT::f64) ? RTLIB::OLT_F64 :
211           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
212     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
213           (VT == MVT::f64) ? RTLIB::OGT_F64 :
214           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
215     break;
216   case ISD::SETUEQ:
217     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
218           (VT == MVT::f64) ? RTLIB::UO_F64 :
219           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
220     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
221           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
222           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
223     break;
224   default:
225     // Invert CC for unordered comparisons
226     ShouldInvertCC = true;
227     switch (CCCode) {
228     case ISD::SETULT:
229       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
230             (VT == MVT::f64) ? RTLIB::OGE_F64 :
231             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
232       break;
233     case ISD::SETULE:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
235             (VT == MVT::f64) ? RTLIB::OGT_F64 :
236             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
237       break;
238     case ISD::SETUGT:
239       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
240             (VT == MVT::f64) ? RTLIB::OLE_F64 :
241             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
242       break;
243     case ISD::SETUGE:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
245             (VT == MVT::f64) ? RTLIB::OLT_F64 :
246             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
247       break;
248     default: llvm_unreachable("Do not know how to soften this setcc!");
249     }
250   }
251 
252   // Use the target specific return value for comparions lib calls.
253   EVT RetVT = getCmpLibcallReturnType();
254   SDValue Ops[2] = {NewLHS, NewRHS};
255   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
256                        dl).first;
257   NewRHS = DAG.getConstant(0, dl, RetVT);
258 
259   CCCode = getCmpLibcallCC(LC1);
260   if (ShouldInvertCC)
261     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
262 
263   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
264     SDValue Tmp = DAG.getNode(
265         ISD::SETCC, dl,
266         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
267         NewLHS, NewRHS, DAG.getCondCode(CCCode));
268     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
269                          dl).first;
270     NewLHS = DAG.getNode(
271         ISD::SETCC, dl,
272         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
273         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
274     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
275     NewRHS = SDValue();
276   }
277 }
278 
279 /// Return the entry encoding for a jump table in the current function. The
280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
281 unsigned TargetLowering::getJumpTableEncoding() const {
282   // In non-pic modes, just use the address of a block.
283   if (!isPositionIndependent())
284     return MachineJumpTableInfo::EK_BlockAddress;
285 
286   // In PIC mode, if the target supports a GPRel32 directive, use it.
287   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
288     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
289 
290   // Otherwise, use a label difference.
291   return MachineJumpTableInfo::EK_LabelDifference32;
292 }
293 
294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
295                                                  SelectionDAG &DAG) const {
296   // If our PIC model is GP relative, use the global offset table as the base.
297   unsigned JTEncoding = getJumpTableEncoding();
298 
299   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
300       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
301     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
302 
303   return Table;
304 }
305 
306 /// This returns the relocation base for the given PIC jumptable, the same as
307 /// getPICJumpTableRelocBase, but as an MCExpr.
308 const MCExpr *
309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
310                                              unsigned JTI,MCContext &Ctx) const{
311   // The normal PIC reloc base is the label at the start of the jump table.
312   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
313 }
314 
315 bool
316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
317   const TargetMachine &TM = getTargetMachine();
318   const GlobalValue *GV = GA->getGlobal();
319 
320   // If the address is not even local to this DSO we will have to load it from
321   // a got and then add the offset.
322   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
323     return false;
324 
325   // If the code is position independent we will have to add a base register.
326   if (isPositionIndependent())
327     return false;
328 
329   // Otherwise we can do it.
330   return true;
331 }
332 
333 //===----------------------------------------------------------------------===//
334 //  Optimization Methods
335 //===----------------------------------------------------------------------===//
336 
337 /// Check to see if the specified operand of the specified instruction is a
338 /// constant integer. If so, check to see if there are any bits set in the
339 /// constant that are not demanded. If so, shrink the constant and return true.
340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
341                                                         const APInt &Demanded) {
342   SDLoc dl(Op);
343 
344   // FIXME: ISD::SELECT, ISD::SELECT_CC
345   switch (Op.getOpcode()) {
346   default: break;
347   case ISD::XOR:
348   case ISD::AND:
349   case ISD::OR: {
350     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
351     if (!C) return false;
352 
353     if (Op.getOpcode() == ISD::XOR &&
354         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
355       return false;
356 
357     // if we can expand it to have all bits set, do it
358     if (C->getAPIntValue().intersects(~Demanded)) {
359       EVT VT = Op.getValueType();
360       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
361                                 DAG.getConstant(Demanded &
362                                                 C->getAPIntValue(),
363                                                 dl, VT));
364       return CombineTo(Op, New);
365     }
366 
367     break;
368   }
369   }
370 
371   return false;
372 }
373 
374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
376 /// generalized for targets with other types of implicit widening casts.
377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
378                                                          unsigned BitWidth,
379                                                          const APInt &Demanded,
380                                                          const SDLoc &dl) {
381   assert(Op.getNumOperands() == 2 &&
382          "ShrinkDemandedOp only supports binary operators!");
383   assert(Op.getNode()->getNumValues() == 1 &&
384          "ShrinkDemandedOp only supports nodes with one result!");
385 
386   // Early return, as this function cannot handle vector types.
387   if (Op.getValueType().isVector())
388     return false;
389 
390   // Don't do this if the node has another user, which may require the
391   // full value.
392   if (!Op.getNode()->hasOneUse())
393     return false;
394 
395   // Search for the smallest integer type with free casts to and from
396   // Op's type. For expedience, just check power-of-2 integer types.
397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
398   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
399   unsigned SmallVTBits = DemandedSize;
400   if (!isPowerOf2_32(SmallVTBits))
401     SmallVTBits = NextPowerOf2(SmallVTBits);
402   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
403     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
404     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
405         TLI.isZExtFree(SmallVT, Op.getValueType())) {
406       // We found a type with free casts.
407       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
408                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
409                                           Op.getNode()->getOperand(0)),
410                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
411                                           Op.getNode()->getOperand(1)));
412       bool NeedZext = DemandedSize > SmallVTBits;
413       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
414                               dl, Op.getValueType(), X);
415       return CombineTo(Op, Z);
416     }
417   }
418   return false;
419 }
420 
421 /// Look at Op. At this point, we know that only the DemandedMask bits of the
422 /// result of Op are ever used downstream. If we can use this information to
423 /// simplify Op, create a new simplified DAG node and return true, returning the
424 /// original and new nodes in Old and New. Otherwise, analyze the expression and
425 /// return a mask of KnownOne and KnownZero bits for the expression (used to
426 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
427 /// bits in the DemandedMask.
428 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
429                                           const APInt &DemandedMask,
430                                           APInt &KnownZero,
431                                           APInt &KnownOne,
432                                           TargetLoweringOpt &TLO,
433                                           unsigned Depth) const {
434   unsigned BitWidth = DemandedMask.getBitWidth();
435   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
436          "Mask size mismatches value type size!");
437   APInt NewMask = DemandedMask;
438   SDLoc dl(Op);
439   auto &DL = TLO.DAG.getDataLayout();
440 
441   // Don't know anything.
442   KnownZero = KnownOne = APInt(BitWidth, 0);
443 
444   // Other users may use these bits.
445   if (!Op.getNode()->hasOneUse()) {
446     if (Depth != 0) {
447       // If not at the root, Just compute the KnownZero/KnownOne bits to
448       // simplify things downstream.
449       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
450       return false;
451     }
452     // If this is the root being simplified, allow it to have multiple uses,
453     // just set the NewMask to all bits.
454     NewMask = APInt::getAllOnesValue(BitWidth);
455   } else if (DemandedMask == 0) {
456     // Not demanding any bits from Op.
457     if (!Op.isUndef())
458       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
459     return false;
460   } else if (Depth == 6) {        // Limit search depth.
461     return false;
462   }
463 
464   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
465   switch (Op.getOpcode()) {
466   case ISD::Constant:
467     // We know all of the bits for a constant!
468     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
469     KnownZero = ~KnownOne;
470     return false;   // Don't fall through, will infinitely loop.
471   case ISD::AND:
472     // If the RHS is a constant, check to see if the LHS would be zero without
473     // using the bits from the RHS.  Below, we use knowledge about the RHS to
474     // simplify the LHS, here we're using information from the LHS to simplify
475     // the RHS.
476     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
477       APInt LHSZero, LHSOne;
478       // Do not increment Depth here; that can cause an infinite loop.
479       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
480       // If the LHS already has zeros where RHSC does, this and is dead.
481       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
482         return TLO.CombineTo(Op, Op.getOperand(0));
483       // If any of the set bits in the RHS are known zero on the LHS, shrink
484       // the constant.
485       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
486         return true;
487     }
488 
489     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
490                              KnownOne, TLO, Depth+1))
491       return true;
492     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
493     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
494                              KnownZero2, KnownOne2, TLO, Depth+1))
495       return true;
496     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
497 
498     // If all of the demanded bits are known one on one side, return the other.
499     // These bits cannot contribute to the result of the 'and'.
500     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
501       return TLO.CombineTo(Op, Op.getOperand(0));
502     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
503       return TLO.CombineTo(Op, Op.getOperand(1));
504     // If all of the demanded bits in the inputs are known zeros, return zero.
505     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
506       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
507     // If the RHS is a constant, see if we can simplify it.
508     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
509       return true;
510     // If the operation can be done in a smaller type, do so.
511     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
512       return true;
513 
514     // Output known-1 bits are only known if set in both the LHS & RHS.
515     KnownOne &= KnownOne2;
516     // Output known-0 are known to be clear if zero in either the LHS | RHS.
517     KnownZero |= KnownZero2;
518     break;
519   case ISD::OR:
520     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
521                              KnownOne, TLO, Depth+1))
522       return true;
523     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
525                              KnownZero2, KnownOne2, TLO, Depth+1))
526       return true;
527     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
528 
529     // If all of the demanded bits are known zero on one side, return the other.
530     // These bits cannot contribute to the result of the 'or'.
531     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
532       return TLO.CombineTo(Op, Op.getOperand(0));
533     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
534       return TLO.CombineTo(Op, Op.getOperand(1));
535     // If all of the potentially set bits on one side are known to be set on
536     // the other side, just use the 'other' side.
537     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
538       return TLO.CombineTo(Op, Op.getOperand(0));
539     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
540       return TLO.CombineTo(Op, Op.getOperand(1));
541     // If the RHS is a constant, see if we can simplify it.
542     if (TLO.ShrinkDemandedConstant(Op, NewMask))
543       return true;
544     // If the operation can be done in a smaller type, do so.
545     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
546       return true;
547 
548     // Output known-0 bits are only known if clear in both the LHS & RHS.
549     KnownZero &= KnownZero2;
550     // Output known-1 are known to be set if set in either the LHS | RHS.
551     KnownOne |= KnownOne2;
552     break;
553   case ISD::XOR:
554     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
555                              KnownOne, TLO, Depth+1))
556       return true;
557     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
558     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
559                              KnownOne2, TLO, Depth+1))
560       return true;
561     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
562 
563     // If all of the demanded bits are known zero on one side, return the other.
564     // These bits cannot contribute to the result of the 'xor'.
565     if ((KnownZero & NewMask) == NewMask)
566       return TLO.CombineTo(Op, Op.getOperand(0));
567     if ((KnownZero2 & NewMask) == NewMask)
568       return TLO.CombineTo(Op, Op.getOperand(1));
569     // If the operation can be done in a smaller type, do so.
570     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
571       return true;
572 
573     // If all of the unknown bits are known to be zero on one side or the other
574     // (but not both) turn this into an *inclusive* or.
575     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
576     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
577       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
578                                                Op.getOperand(0),
579                                                Op.getOperand(1)));
580 
581     // Output known-0 bits are known if clear or set in both the LHS & RHS.
582     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
583     // Output known-1 are known to be set if set in only one of the LHS, RHS.
584     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
585 
586     // If all of the demanded bits on one side are known, and all of the set
587     // bits on that side are also known to be set on the other side, turn this
588     // into an AND, as we know the bits will be cleared.
589     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
590     // NB: it is okay if more bits are known than are requested
591     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
592       if (KnownOne == KnownOne2) { // set bits are the same on both sides
593         EVT VT = Op.getValueType();
594         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
595         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
596                                                  Op.getOperand(0), ANDC));
597       }
598     }
599 
600     // If the RHS is a constant, see if we can simplify it.
601     // for XOR, we prefer to force bits to 1 if they will make a -1.
602     // if we can't force bits, try to shrink constant
603     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
604       APInt Expanded = C->getAPIntValue() | (~NewMask);
605       // if we can expand it to have all bits set, do it
606       if (Expanded.isAllOnesValue()) {
607         if (Expanded != C->getAPIntValue()) {
608           EVT VT = Op.getValueType();
609           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
610                                         TLO.DAG.getConstant(Expanded, dl, VT));
611           return TLO.CombineTo(Op, New);
612         }
613         // if it already has all the bits set, nothing to change
614         // but don't shrink either!
615       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
616         return true;
617       }
618     }
619 
620     KnownZero = KnownZeroOut;
621     KnownOne  = KnownOneOut;
622     break;
623   case ISD::SELECT:
624     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
625                              KnownOne, TLO, Depth+1))
626       return true;
627     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
628                              KnownOne2, TLO, Depth+1))
629       return true;
630     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
631     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
632 
633     // If the operands are constants, see if we can simplify them.
634     if (TLO.ShrinkDemandedConstant(Op, NewMask))
635       return true;
636 
637     // Only known if known in both the LHS and RHS.
638     KnownOne &= KnownOne2;
639     KnownZero &= KnownZero2;
640     break;
641   case ISD::SELECT_CC:
642     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
643                              KnownOne, TLO, Depth+1))
644       return true;
645     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
646                              KnownOne2, TLO, Depth+1))
647       return true;
648     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
649     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
650 
651     // If the operands are constants, see if we can simplify them.
652     if (TLO.ShrinkDemandedConstant(Op, NewMask))
653       return true;
654 
655     // Only known if known in both the LHS and RHS.
656     KnownOne &= KnownOne2;
657     KnownZero &= KnownZero2;
658     break;
659   case ISD::SHL:
660     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
661       unsigned ShAmt = SA->getZExtValue();
662       SDValue InOp = Op.getOperand(0);
663 
664       // If the shift count is an invalid immediate, don't do anything.
665       if (ShAmt >= BitWidth)
666         break;
667 
668       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
669       // single shift.  We can do this if the bottom bits (which are shifted
670       // out) are never demanded.
671       if (InOp.getOpcode() == ISD::SRL &&
672           isa<ConstantSDNode>(InOp.getOperand(1))) {
673         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
674           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
675           unsigned Opc = ISD::SHL;
676           int Diff = ShAmt-C1;
677           if (Diff < 0) {
678             Diff = -Diff;
679             Opc = ISD::SRL;
680           }
681 
682           SDValue NewSA =
683             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
684           EVT VT = Op.getValueType();
685           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
686                                                    InOp.getOperand(0), NewSA));
687         }
688       }
689 
690       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
691                                KnownZero, KnownOne, TLO, Depth+1))
692         return true;
693 
694       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
695       // are not demanded. This will likely allow the anyext to be folded away.
696       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
697         SDValue InnerOp = InOp.getNode()->getOperand(0);
698         EVT InnerVT = InnerOp.getValueType();
699         unsigned InnerBits = InnerVT.getSizeInBits();
700         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
701             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
702           EVT ShTy = getShiftAmountTy(InnerVT, DL);
703           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
704             ShTy = InnerVT;
705           SDValue NarrowShl =
706             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
707                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
708           return
709             TLO.CombineTo(Op,
710                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
711                                           NarrowShl));
712         }
713         // Repeat the SHL optimization above in cases where an extension
714         // intervenes: (shl (anyext (shr x, c1)), c2) to
715         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
716         // aren't demanded (as above) and that the shifted upper c1 bits of
717         // x aren't demanded.
718         if (InOp.hasOneUse() &&
719             InnerOp.getOpcode() == ISD::SRL &&
720             InnerOp.hasOneUse() &&
721             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
722           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
723             ->getZExtValue();
724           if (InnerShAmt < ShAmt &&
725               InnerShAmt < InnerBits &&
726               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
727               NewMask.trunc(ShAmt) == 0) {
728             SDValue NewSA =
729               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
730                                   Op.getOperand(1).getValueType());
731             EVT VT = Op.getValueType();
732             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
733                                              InnerOp.getOperand(0));
734             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
735                                                      NewExt, NewSA));
736           }
737         }
738       }
739 
740       KnownZero <<= SA->getZExtValue();
741       KnownOne  <<= SA->getZExtValue();
742       // low bits known zero.
743       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
744     }
745     break;
746   case ISD::SRL:
747     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
748       EVT VT = Op.getValueType();
749       unsigned ShAmt = SA->getZExtValue();
750       unsigned VTSize = VT.getSizeInBits();
751       SDValue InOp = Op.getOperand(0);
752 
753       // If the shift count is an invalid immediate, don't do anything.
754       if (ShAmt >= BitWidth)
755         break;
756 
757       APInt InDemandedMask = (NewMask << ShAmt);
758 
759       // If the shift is exact, then it does demand the low bits (and knows that
760       // they are zero).
761       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
762         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
763 
764       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
765       // single shift.  We can do this if the top bits (which are shifted out)
766       // are never demanded.
767       if (InOp.getOpcode() == ISD::SHL &&
768           isa<ConstantSDNode>(InOp.getOperand(1))) {
769         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
770           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
771           unsigned Opc = ISD::SRL;
772           int Diff = ShAmt-C1;
773           if (Diff < 0) {
774             Diff = -Diff;
775             Opc = ISD::SHL;
776           }
777 
778           SDValue NewSA =
779             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
780           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
781                                                    InOp.getOperand(0), NewSA));
782         }
783       }
784 
785       // Compute the new bits that are at the top now.
786       if (SimplifyDemandedBits(InOp, InDemandedMask,
787                                KnownZero, KnownOne, TLO, Depth+1))
788         return true;
789       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
790       KnownZero = KnownZero.lshr(ShAmt);
791       KnownOne  = KnownOne.lshr(ShAmt);
792 
793       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
794       KnownZero |= HighBits;  // High bits known zero.
795     }
796     break;
797   case ISD::SRA:
798     // If this is an arithmetic shift right and only the low-bit is set, we can
799     // always convert this into a logical shr, even if the shift amount is
800     // variable.  The low bit of the shift cannot be an input sign bit unless
801     // the shift amount is >= the size of the datatype, which is undefined.
802     if (NewMask == 1)
803       return TLO.CombineTo(Op,
804                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
805                                            Op.getOperand(0), Op.getOperand(1)));
806 
807     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
808       EVT VT = Op.getValueType();
809       unsigned ShAmt = SA->getZExtValue();
810 
811       // If the shift count is an invalid immediate, don't do anything.
812       if (ShAmt >= BitWidth)
813         break;
814 
815       APInt InDemandedMask = (NewMask << ShAmt);
816 
817       // If the shift is exact, then it does demand the low bits (and knows that
818       // they are zero).
819       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
820         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
821 
822       // If any of the demanded bits are produced by the sign extension, we also
823       // demand the input sign bit.
824       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
825       if (HighBits.intersects(NewMask))
826         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
827 
828       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
829                                KnownZero, KnownOne, TLO, Depth+1))
830         return true;
831       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
832       KnownZero = KnownZero.lshr(ShAmt);
833       KnownOne  = KnownOne.lshr(ShAmt);
834 
835       // Handle the sign bit, adjusted to where it is now in the mask.
836       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
837 
838       // If the input sign bit is known to be zero, or if none of the top bits
839       // are demanded, turn this into an unsigned shift right.
840       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
841         SDNodeFlags Flags;
842         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
843         return TLO.CombineTo(Op,
844                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
845                                              Op.getOperand(1), &Flags));
846       }
847 
848       int Log2 = NewMask.exactLogBase2();
849       if (Log2 >= 0) {
850         // The bit must come from the sign.
851         SDValue NewSA =
852           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
853                               Op.getOperand(1).getValueType());
854         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
855                                                  Op.getOperand(0), NewSA));
856       }
857 
858       if (KnownOne.intersects(SignBit))
859         // New bits are known one.
860         KnownOne |= HighBits;
861     }
862     break;
863   case ISD::SIGN_EXTEND_INREG: {
864     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
865 
866     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
867     // If we only care about the highest bit, don't bother shifting right.
868     if (MsbMask == NewMask) {
869       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
870       SDValue InOp = Op.getOperand(0);
871       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
872       bool AlreadySignExtended =
873         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
874       // However if the input is already sign extended we expect the sign
875       // extension to be dropped altogether later and do not simplify.
876       if (!AlreadySignExtended) {
877         // Compute the correct shift amount type, which must be getShiftAmountTy
878         // for scalar types after legalization.
879         EVT ShiftAmtTy = Op.getValueType();
880         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
881           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
882 
883         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
884                                                ShiftAmtTy);
885         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
886                                                  Op.getValueType(), InOp,
887                                                  ShiftAmt));
888       }
889     }
890 
891     // Sign extension.  Compute the demanded bits in the result that are not
892     // present in the input.
893     APInt NewBits =
894       APInt::getHighBitsSet(BitWidth,
895                             BitWidth - ExVT.getScalarType().getSizeInBits());
896 
897     // If none of the extended bits are demanded, eliminate the sextinreg.
898     if ((NewBits & NewMask) == 0)
899       return TLO.CombineTo(Op, Op.getOperand(0));
900 
901     APInt InSignBit =
902       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
903     APInt InputDemandedBits =
904       APInt::getLowBitsSet(BitWidth,
905                            ExVT.getScalarType().getSizeInBits()) &
906       NewMask;
907 
908     // Since the sign extended bits are demanded, we know that the sign
909     // bit is demanded.
910     InputDemandedBits |= InSignBit;
911 
912     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
913                              KnownZero, KnownOne, TLO, Depth+1))
914       return true;
915     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
916 
917     // If the sign bit of the input is known set or clear, then we know the
918     // top bits of the result.
919 
920     // If the input sign bit is known zero, convert this into a zero extension.
921     if (KnownZero.intersects(InSignBit))
922       return TLO.CombineTo(Op,
923                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
924 
925     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
926       KnownOne |= NewBits;
927       KnownZero &= ~NewBits;
928     } else {                       // Input sign bit unknown
929       KnownZero &= ~NewBits;
930       KnownOne &= ~NewBits;
931     }
932     break;
933   }
934   case ISD::BUILD_PAIR: {
935     EVT HalfVT = Op.getOperand(0).getValueType();
936     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
937 
938     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
939     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
940 
941     APInt KnownZeroLo, KnownOneLo;
942     APInt KnownZeroHi, KnownOneHi;
943 
944     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
945                              KnownOneLo, TLO, Depth + 1))
946       return true;
947 
948     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
949                              KnownOneHi, TLO, Depth + 1))
950       return true;
951 
952     KnownZero = KnownZeroLo.zext(BitWidth) |
953                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
954 
955     KnownOne = KnownOneLo.zext(BitWidth) |
956                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
957     break;
958   }
959   case ISD::ZERO_EXTEND: {
960     unsigned OperandBitWidth =
961       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
962     APInt InMask = NewMask.trunc(OperandBitWidth);
963 
964     // If none of the top bits are demanded, convert this into an any_extend.
965     APInt NewBits =
966       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
967     if (!NewBits.intersects(NewMask))
968       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
969                                                Op.getValueType(),
970                                                Op.getOperand(0)));
971 
972     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
973                              KnownZero, KnownOne, TLO, Depth+1))
974       return true;
975     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
976     KnownZero = KnownZero.zext(BitWidth);
977     KnownOne = KnownOne.zext(BitWidth);
978     KnownZero |= NewBits;
979     break;
980   }
981   case ISD::SIGN_EXTEND: {
982     EVT InVT = Op.getOperand(0).getValueType();
983     unsigned InBits = InVT.getScalarType().getSizeInBits();
984     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
985     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
986     APInt NewBits   = ~InMask & NewMask;
987 
988     // If none of the top bits are demanded, convert this into an any_extend.
989     if (NewBits == 0)
990       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
991                                               Op.getValueType(),
992                                               Op.getOperand(0)));
993 
994     // Since some of the sign extended bits are demanded, we know that the sign
995     // bit is demanded.
996     APInt InDemandedBits = InMask & NewMask;
997     InDemandedBits |= InSignBit;
998     InDemandedBits = InDemandedBits.trunc(InBits);
999 
1000     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1001                              KnownOne, TLO, Depth+1))
1002       return true;
1003     KnownZero = KnownZero.zext(BitWidth);
1004     KnownOne = KnownOne.zext(BitWidth);
1005 
1006     // If the sign bit is known zero, convert this to a zero extend.
1007     if (KnownZero.intersects(InSignBit))
1008       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1009                                                Op.getValueType(),
1010                                                Op.getOperand(0)));
1011 
1012     // If the sign bit is known one, the top bits match.
1013     if (KnownOne.intersects(InSignBit)) {
1014       KnownOne |= NewBits;
1015       assert((KnownZero & NewBits) == 0);
1016     } else {   // Otherwise, top bits aren't known.
1017       assert((KnownOne & NewBits) == 0);
1018       assert((KnownZero & NewBits) == 0);
1019     }
1020     break;
1021   }
1022   case ISD::ANY_EXTEND: {
1023     unsigned OperandBitWidth =
1024       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1025     APInt InMask = NewMask.trunc(OperandBitWidth);
1026     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1027                              KnownZero, KnownOne, TLO, Depth+1))
1028       return true;
1029     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1030     KnownZero = KnownZero.zext(BitWidth);
1031     KnownOne = KnownOne.zext(BitWidth);
1032     break;
1033   }
1034   case ISD::TRUNCATE: {
1035     // Simplify the input, using demanded bit information, and compute the known
1036     // zero/one bits live out.
1037     unsigned OperandBitWidth =
1038       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1039     APInt TruncMask = NewMask.zext(OperandBitWidth);
1040     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1041                              KnownZero, KnownOne, TLO, Depth+1))
1042       return true;
1043     KnownZero = KnownZero.trunc(BitWidth);
1044     KnownOne = KnownOne.trunc(BitWidth);
1045 
1046     // If the input is only used by this truncate, see if we can shrink it based
1047     // on the known demanded bits.
1048     if (Op.getOperand(0).getNode()->hasOneUse()) {
1049       SDValue In = Op.getOperand(0);
1050       switch (In.getOpcode()) {
1051       default: break;
1052       case ISD::SRL:
1053         // Shrink SRL by a constant if none of the high bits shifted in are
1054         // demanded.
1055         if (TLO.LegalTypes() &&
1056             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1057           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1058           // undesirable.
1059           break;
1060         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1061         if (!ShAmt)
1062           break;
1063         SDValue Shift = In.getOperand(1);
1064         if (TLO.LegalTypes()) {
1065           uint64_t ShVal = ShAmt->getZExtValue();
1066           Shift = TLO.DAG.getConstant(ShVal, dl,
1067                                       getShiftAmountTy(Op.getValueType(), DL));
1068         }
1069 
1070         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1071                                                OperandBitWidth - BitWidth);
1072         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1073 
1074         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1075           // None of the shifted in bits are needed.  Add a truncate of the
1076           // shift input, then shift it.
1077           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1078                                              Op.getValueType(),
1079                                              In.getOperand(0));
1080           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1081                                                    Op.getValueType(),
1082                                                    NewTrunc,
1083                                                    Shift));
1084         }
1085         break;
1086       }
1087     }
1088 
1089     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1090     break;
1091   }
1092   case ISD::AssertZext: {
1093     // AssertZext demands all of the high bits, plus any of the low bits
1094     // demanded by its users.
1095     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1096     APInt InMask = APInt::getLowBitsSet(BitWidth,
1097                                         VT.getSizeInBits());
1098     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1099                              KnownZero, KnownOne, TLO, Depth+1))
1100       return true;
1101     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1102 
1103     KnownZero |= ~InMask & NewMask;
1104     break;
1105   }
1106   case ISD::BITCAST:
1107     // If this is an FP->Int bitcast and if the sign bit is the only
1108     // thing demanded, turn this into a FGETSIGN.
1109     if (!TLO.LegalOperations() &&
1110         !Op.getValueType().isVector() &&
1111         !Op.getOperand(0).getValueType().isVector() &&
1112         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1113         Op.getOperand(0).getValueType().isFloatingPoint()) {
1114       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1115       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1116       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1117            Op.getOperand(0).getValueType() != MVT::f128) {
1118         // Cannot eliminate/lower SHL for f128 yet.
1119         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1120         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1121         // place.  We expect the SHL to be eliminated by other optimizations.
1122         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1123         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1124         if (!OpVTLegal && OpVTSizeInBits > 32)
1125           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1126         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1127         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1128         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1129                                                  Op.getValueType(),
1130                                                  Sign, ShAmt));
1131       }
1132     }
1133     break;
1134   case ISD::ADD:
1135   case ISD::MUL:
1136   case ISD::SUB: {
1137     // Add, Sub, and Mul don't demand any bits in positions beyond that
1138     // of the highest bit demanded of them.
1139     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1140                                         BitWidth - NewMask.countLeadingZeros());
1141     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1142                              KnownOne2, TLO, Depth+1))
1143       return true;
1144     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1145                              KnownOne2, TLO, Depth+1))
1146       return true;
1147     // See if the operation should be performed at a smaller bit width.
1148     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1149       return true;
1150     LLVM_FALLTHROUGH;
1151   }
1152   default:
1153     // Just use computeKnownBits to compute output bits.
1154     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1155     break;
1156   }
1157 
1158   // If we know the value of all of the demanded bits, return this as a
1159   // constant.
1160   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1161     // Avoid folding to a constant if any OpaqueConstant is involved.
1162     const SDNode *N = Op.getNode();
1163     for (SDNodeIterator I = SDNodeIterator::begin(N),
1164          E = SDNodeIterator::end(N); I != E; ++I) {
1165       SDNode *Op = *I;
1166       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1167         if (C->isOpaque())
1168           return false;
1169     }
1170     return TLO.CombineTo(Op,
1171                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1172   }
1173 
1174   return false;
1175 }
1176 
1177 /// Determine which of the bits specified in Mask are known to be either zero or
1178 /// one and return them in the KnownZero/KnownOne bitsets.
1179 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1180                                                    APInt &KnownZero,
1181                                                    APInt &KnownOne,
1182                                                    const SelectionDAG &DAG,
1183                                                    unsigned Depth) const {
1184   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1185           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1186           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1187           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1188          "Should use MaskedValueIsZero if you don't know whether Op"
1189          " is a target node!");
1190   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1191 }
1192 
1193 /// This method can be implemented by targets that want to expose additional
1194 /// information about sign bits to the DAG Combiner.
1195 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1196                                                          const SelectionDAG &,
1197                                                          unsigned Depth) const {
1198   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1199           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1200           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1201           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1202          "Should use ComputeNumSignBits if you don't know whether Op"
1203          " is a target node!");
1204   return 1;
1205 }
1206 
1207 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1208   if (!N)
1209     return false;
1210 
1211   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1212   if (!CN) {
1213     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1214     if (!BV)
1215       return false;
1216 
1217     BitVector UndefElements;
1218     CN = BV->getConstantSplatNode(&UndefElements);
1219     // Only interested in constant splats, and we don't try to handle undef
1220     // elements in identifying boolean constants.
1221     if (!CN || UndefElements.none())
1222       return false;
1223   }
1224 
1225   switch (getBooleanContents(N->getValueType(0))) {
1226   case UndefinedBooleanContent:
1227     return CN->getAPIntValue()[0];
1228   case ZeroOrOneBooleanContent:
1229     return CN->isOne();
1230   case ZeroOrNegativeOneBooleanContent:
1231     return CN->isAllOnesValue();
1232   }
1233 
1234   llvm_unreachable("Invalid boolean contents");
1235 }
1236 
1237 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1238                                         const SDLoc &DL) const {
1239   unsigned ElementWidth = VT.getScalarSizeInBits();
1240   APInt TrueInt =
1241       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1242           ? APInt(ElementWidth, 1)
1243           : APInt::getAllOnesValue(ElementWidth);
1244   return DAG.getConstant(TrueInt, DL, VT);
1245 }
1246 
1247 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1248   if (!N)
1249     return false;
1250 
1251   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1252   if (!CN) {
1253     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1254     if (!BV)
1255       return false;
1256 
1257     BitVector UndefElements;
1258     CN = BV->getConstantSplatNode(&UndefElements);
1259     // Only interested in constant splats, and we don't try to handle undef
1260     // elements in identifying boolean constants.
1261     if (!CN || UndefElements.none())
1262       return false;
1263   }
1264 
1265   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1266     return !CN->getAPIntValue()[0];
1267 
1268   return CN->isNullValue();
1269 }
1270 
1271 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1272                                        bool SExt) const {
1273   if (VT == MVT::i1)
1274     return N->isOne();
1275 
1276   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1277   switch (Cnt) {
1278   case TargetLowering::ZeroOrOneBooleanContent:
1279     // An extended value of 1 is always true, unless its original type is i1,
1280     // in which case it will be sign extended to -1.
1281     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1282   case TargetLowering::UndefinedBooleanContent:
1283   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1284     return N->isAllOnesValue() && SExt;
1285   }
1286   llvm_unreachable("Unexpected enumeration.");
1287 }
1288 
1289 /// This helper function of SimplifySetCC tries to optimize the comparison when
1290 /// either operand of the SetCC node is a bitwise-and instruction.
1291 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1292                                              ISD::CondCode Cond,
1293                                              DAGCombinerInfo &DCI,
1294                                              const SDLoc &DL) const {
1295   // Match these patterns in any of their permutations:
1296   // (X & Y) == Y
1297   // (X & Y) != Y
1298   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1299     std::swap(N0, N1);
1300 
1301   EVT OpVT = N0.getValueType();
1302   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1303       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1304     return SDValue();
1305 
1306   SDValue X, Y;
1307   if (N0.getOperand(0) == N1) {
1308     X = N0.getOperand(1);
1309     Y = N0.getOperand(0);
1310   } else if (N0.getOperand(1) == N1) {
1311     X = N0.getOperand(0);
1312     Y = N0.getOperand(1);
1313   } else {
1314     return SDValue();
1315   }
1316 
1317   SelectionDAG &DAG = DCI.DAG;
1318   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1319   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1320     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1321     // Note that where Y is variable and is known to have at most one bit set
1322     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1323     // equivalent when Y == 0.
1324     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1325     if (DCI.isBeforeLegalizeOps() ||
1326         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1327       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1328   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1329     // If the target supports an 'and-not' or 'and-complement' logic operation,
1330     // try to use that to make a comparison operation more efficient.
1331     // But don't do this transform if the mask is a single bit because there are
1332     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1333     // 'rlwinm' on PPC).
1334 
1335     // Bail out if the compare operand that we want to turn into a zero is
1336     // already a zero (otherwise, infinite loop).
1337     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1338     if (YConst && YConst->isNullValue())
1339       return SDValue();
1340 
1341     // Transform this into: ~X & Y == 0.
1342     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1343     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1344     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1345   }
1346 
1347   return SDValue();
1348 }
1349 
1350 /// Try to simplify a setcc built with the specified operands and cc. If it is
1351 /// unable to simplify it, return a null SDValue.
1352 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1353                                       ISD::CondCode Cond, bool foldBooleans,
1354                                       DAGCombinerInfo &DCI,
1355                                       const SDLoc &dl) const {
1356   SelectionDAG &DAG = DCI.DAG;
1357 
1358   // These setcc operations always fold.
1359   switch (Cond) {
1360   default: break;
1361   case ISD::SETFALSE:
1362   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1363   case ISD::SETTRUE:
1364   case ISD::SETTRUE2: {
1365     TargetLowering::BooleanContent Cnt =
1366         getBooleanContents(N0->getValueType(0));
1367     return DAG.getConstant(
1368         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1369         VT);
1370   }
1371   }
1372 
1373   // Ensure that the constant occurs on the RHS, and fold constant
1374   // comparisons.
1375   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1376   if (isa<ConstantSDNode>(N0.getNode()) &&
1377       (DCI.isBeforeLegalizeOps() ||
1378        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1379     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1380 
1381   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1382     const APInt &C1 = N1C->getAPIntValue();
1383 
1384     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1385     // equality comparison, then we're just comparing whether X itself is
1386     // zero.
1387     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1388         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1389         N0.getOperand(1).getOpcode() == ISD::Constant) {
1390       const APInt &ShAmt
1391         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1392       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1393           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1394         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1395           // (srl (ctlz x), 5) == 0  -> X != 0
1396           // (srl (ctlz x), 5) != 1  -> X != 0
1397           Cond = ISD::SETNE;
1398         } else {
1399           // (srl (ctlz x), 5) != 0  -> X == 0
1400           // (srl (ctlz x), 5) == 1  -> X == 0
1401           Cond = ISD::SETEQ;
1402         }
1403         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1404         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1405                             Zero, Cond);
1406       }
1407     }
1408 
1409     SDValue CTPOP = N0;
1410     // Look through truncs that don't change the value of a ctpop.
1411     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1412       CTPOP = N0.getOperand(0);
1413 
1414     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1415         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1416                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1417       EVT CTVT = CTPOP.getValueType();
1418       SDValue CTOp = CTPOP.getOperand(0);
1419 
1420       // (ctpop x) u< 2 -> (x & x-1) == 0
1421       // (ctpop x) u> 1 -> (x & x-1) != 0
1422       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1423         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1424                                   DAG.getConstant(1, dl, CTVT));
1425         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1426         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1427         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1428       }
1429 
1430       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1431     }
1432 
1433     // (zext x) == C --> x == (trunc C)
1434     // (sext x) == C --> x == (trunc C)
1435     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1436         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1437       unsigned MinBits = N0.getValueSizeInBits();
1438       SDValue PreExt;
1439       bool Signed = false;
1440       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1441         // ZExt
1442         MinBits = N0->getOperand(0).getValueSizeInBits();
1443         PreExt = N0->getOperand(0);
1444       } else if (N0->getOpcode() == ISD::AND) {
1445         // DAGCombine turns costly ZExts into ANDs
1446         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1447           if ((C->getAPIntValue()+1).isPowerOf2()) {
1448             MinBits = C->getAPIntValue().countTrailingOnes();
1449             PreExt = N0->getOperand(0);
1450           }
1451       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1452         // SExt
1453         MinBits = N0->getOperand(0).getValueSizeInBits();
1454         PreExt = N0->getOperand(0);
1455         Signed = true;
1456       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1457         // ZEXTLOAD / SEXTLOAD
1458         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1459           MinBits = LN0->getMemoryVT().getSizeInBits();
1460           PreExt = N0;
1461         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1462           Signed = true;
1463           MinBits = LN0->getMemoryVT().getSizeInBits();
1464           PreExt = N0;
1465         }
1466       }
1467 
1468       // Figure out how many bits we need to preserve this constant.
1469       unsigned ReqdBits = Signed ?
1470         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1471         C1.getActiveBits();
1472 
1473       // Make sure we're not losing bits from the constant.
1474       if (MinBits > 0 &&
1475           MinBits < C1.getBitWidth() &&
1476           MinBits >= ReqdBits) {
1477         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1478         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1479           // Will get folded away.
1480           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1481           if (MinBits == 1 && C1 == 1)
1482             // Invert the condition.
1483             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1484                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1485           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1486           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1487         }
1488 
1489         // If truncating the setcc operands is not desirable, we can still
1490         // simplify the expression in some cases:
1491         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1492         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1493         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1494         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1495         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1496         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1497         SDValue TopSetCC = N0->getOperand(0);
1498         unsigned N0Opc = N0->getOpcode();
1499         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1500         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1501             TopSetCC.getOpcode() == ISD::SETCC &&
1502             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1503             (isConstFalseVal(N1C) ||
1504              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1505 
1506           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1507                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1508 
1509           if (!Inverse)
1510             return TopSetCC;
1511 
1512           ISD::CondCode InvCond = ISD::getSetCCInverse(
1513               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1514               TopSetCC.getOperand(0).getValueType().isInteger());
1515           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1516                                       TopSetCC.getOperand(1),
1517                                       InvCond);
1518 
1519         }
1520       }
1521     }
1522 
1523     // If the LHS is '(and load, const)', the RHS is 0,
1524     // the test is for equality or unsigned, and all 1 bits of the const are
1525     // in the same partial word, see if we can shorten the load.
1526     if (DCI.isBeforeLegalize() &&
1527         !ISD::isSignedIntSetCC(Cond) &&
1528         N0.getOpcode() == ISD::AND && C1 == 0 &&
1529         N0.getNode()->hasOneUse() &&
1530         isa<LoadSDNode>(N0.getOperand(0)) &&
1531         N0.getOperand(0).getNode()->hasOneUse() &&
1532         isa<ConstantSDNode>(N0.getOperand(1))) {
1533       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1534       APInt bestMask;
1535       unsigned bestWidth = 0, bestOffset = 0;
1536       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1537         unsigned origWidth = N0.getValueType().getSizeInBits();
1538         unsigned maskWidth = origWidth;
1539         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1540         // 8 bits, but have to be careful...
1541         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1542           origWidth = Lod->getMemoryVT().getSizeInBits();
1543         const APInt &Mask =
1544           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1545         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1546           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1547           for (unsigned offset=0; offset<origWidth/width; offset++) {
1548             if ((newMask & Mask) == Mask) {
1549               if (!DAG.getDataLayout().isLittleEndian())
1550                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1551               else
1552                 bestOffset = (uint64_t)offset * (width/8);
1553               bestMask = Mask.lshr(offset * (width/8) * 8);
1554               bestWidth = width;
1555               break;
1556             }
1557             newMask = newMask << width;
1558           }
1559         }
1560       }
1561       if (bestWidth) {
1562         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1563         if (newVT.isRound()) {
1564           EVT PtrType = Lod->getOperand(1).getValueType();
1565           SDValue Ptr = Lod->getBasePtr();
1566           if (bestOffset != 0)
1567             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1568                               DAG.getConstant(bestOffset, dl, PtrType));
1569           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1570           SDValue NewLoad = DAG.getLoad(
1571               newVT, dl, Lod->getChain(), Ptr,
1572               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1573           return DAG.getSetCC(dl, VT,
1574                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1575                                       DAG.getConstant(bestMask.trunc(bestWidth),
1576                                                       dl, newVT)),
1577                               DAG.getConstant(0LL, dl, newVT), Cond);
1578         }
1579       }
1580     }
1581 
1582     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1583     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1584       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1585 
1586       // If the comparison constant has bits in the upper part, the
1587       // zero-extended value could never match.
1588       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1589                                               C1.getBitWidth() - InSize))) {
1590         switch (Cond) {
1591         case ISD::SETUGT:
1592         case ISD::SETUGE:
1593         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1594         case ISD::SETULT:
1595         case ISD::SETULE:
1596         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1597         case ISD::SETGT:
1598         case ISD::SETGE:
1599           // True if the sign bit of C1 is set.
1600           return DAG.getConstant(C1.isNegative(), dl, VT);
1601         case ISD::SETLT:
1602         case ISD::SETLE:
1603           // True if the sign bit of C1 isn't set.
1604           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1605         default:
1606           break;
1607         }
1608       }
1609 
1610       // Otherwise, we can perform the comparison with the low bits.
1611       switch (Cond) {
1612       case ISD::SETEQ:
1613       case ISD::SETNE:
1614       case ISD::SETUGT:
1615       case ISD::SETUGE:
1616       case ISD::SETULT:
1617       case ISD::SETULE: {
1618         EVT newVT = N0.getOperand(0).getValueType();
1619         if (DCI.isBeforeLegalizeOps() ||
1620             (isOperationLegal(ISD::SETCC, newVT) &&
1621              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1622           EVT NewSetCCVT =
1623               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1624           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1625 
1626           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1627                                           NewConst, Cond);
1628           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1629         }
1630         break;
1631       }
1632       default:
1633         break;   // todo, be more careful with signed comparisons
1634       }
1635     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1636                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1637       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1638       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1639       EVT ExtDstTy = N0.getValueType();
1640       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1641 
1642       // If the constant doesn't fit into the number of bits for the source of
1643       // the sign extension, it is impossible for both sides to be equal.
1644       if (C1.getMinSignedBits() > ExtSrcTyBits)
1645         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1646 
1647       SDValue ZextOp;
1648       EVT Op0Ty = N0.getOperand(0).getValueType();
1649       if (Op0Ty == ExtSrcTy) {
1650         ZextOp = N0.getOperand(0);
1651       } else {
1652         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1653         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1654                               DAG.getConstant(Imm, dl, Op0Ty));
1655       }
1656       if (!DCI.isCalledByLegalizer())
1657         DCI.AddToWorklist(ZextOp.getNode());
1658       // Otherwise, make this a use of a zext.
1659       return DAG.getSetCC(dl, VT, ZextOp,
1660                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1661                                                               ExtDstTyBits,
1662                                                               ExtSrcTyBits),
1663                                           dl, ExtDstTy),
1664                           Cond);
1665     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1666                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1667       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1668       if (N0.getOpcode() == ISD::SETCC &&
1669           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1670         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1671         if (TrueWhenTrue)
1672           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1673         // Invert the condition.
1674         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1675         CC = ISD::getSetCCInverse(CC,
1676                                   N0.getOperand(0).getValueType().isInteger());
1677         if (DCI.isBeforeLegalizeOps() ||
1678             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1679           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1680       }
1681 
1682       if ((N0.getOpcode() == ISD::XOR ||
1683            (N0.getOpcode() == ISD::AND &&
1684             N0.getOperand(0).getOpcode() == ISD::XOR &&
1685             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1686           isa<ConstantSDNode>(N0.getOperand(1)) &&
1687           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1688         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1689         // can only do this if the top bits are known zero.
1690         unsigned BitWidth = N0.getValueSizeInBits();
1691         if (DAG.MaskedValueIsZero(N0,
1692                                   APInt::getHighBitsSet(BitWidth,
1693                                                         BitWidth-1))) {
1694           // Okay, get the un-inverted input value.
1695           SDValue Val;
1696           if (N0.getOpcode() == ISD::XOR)
1697             Val = N0.getOperand(0);
1698           else {
1699             assert(N0.getOpcode() == ISD::AND &&
1700                     N0.getOperand(0).getOpcode() == ISD::XOR);
1701             // ((X^1)&1)^1 -> X & 1
1702             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1703                               N0.getOperand(0).getOperand(0),
1704                               N0.getOperand(1));
1705           }
1706 
1707           return DAG.getSetCC(dl, VT, Val, N1,
1708                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1709         }
1710       } else if (N1C->getAPIntValue() == 1 &&
1711                  (VT == MVT::i1 ||
1712                   getBooleanContents(N0->getValueType(0)) ==
1713                       ZeroOrOneBooleanContent)) {
1714         SDValue Op0 = N0;
1715         if (Op0.getOpcode() == ISD::TRUNCATE)
1716           Op0 = Op0.getOperand(0);
1717 
1718         if ((Op0.getOpcode() == ISD::XOR) &&
1719             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1720             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1721           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1722           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1723           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1724                               Cond);
1725         }
1726         if (Op0.getOpcode() == ISD::AND &&
1727             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1728             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1729           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1730           if (Op0.getValueType().bitsGT(VT))
1731             Op0 = DAG.getNode(ISD::AND, dl, VT,
1732                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1733                           DAG.getConstant(1, dl, VT));
1734           else if (Op0.getValueType().bitsLT(VT))
1735             Op0 = DAG.getNode(ISD::AND, dl, VT,
1736                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1737                         DAG.getConstant(1, dl, VT));
1738 
1739           return DAG.getSetCC(dl, VT, Op0,
1740                               DAG.getConstant(0, dl, Op0.getValueType()),
1741                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1742         }
1743         if (Op0.getOpcode() == ISD::AssertZext &&
1744             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1745           return DAG.getSetCC(dl, VT, Op0,
1746                               DAG.getConstant(0, dl, Op0.getValueType()),
1747                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1748       }
1749     }
1750 
1751     APInt MinVal, MaxVal;
1752     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1753     if (ISD::isSignedIntSetCC(Cond)) {
1754       MinVal = APInt::getSignedMinValue(OperandBitSize);
1755       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1756     } else {
1757       MinVal = APInt::getMinValue(OperandBitSize);
1758       MaxVal = APInt::getMaxValue(OperandBitSize);
1759     }
1760 
1761     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1762     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1763       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1764       // X >= C0 --> X > (C0 - 1)
1765       APInt C = C1 - 1;
1766       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1767       if ((DCI.isBeforeLegalizeOps() ||
1768            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1769           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1770                                 isLegalICmpImmediate(C.getSExtValue())))) {
1771         return DAG.getSetCC(dl, VT, N0,
1772                             DAG.getConstant(C, dl, N1.getValueType()),
1773                             NewCC);
1774       }
1775     }
1776 
1777     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1778       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1779       // X <= C0 --> X < (C0 + 1)
1780       APInt C = C1 + 1;
1781       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1782       if ((DCI.isBeforeLegalizeOps() ||
1783            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1784           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1785                                 isLegalICmpImmediate(C.getSExtValue())))) {
1786         return DAG.getSetCC(dl, VT, N0,
1787                             DAG.getConstant(C, dl, N1.getValueType()),
1788                             NewCC);
1789       }
1790     }
1791 
1792     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1793       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1794     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1795       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1796     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1797       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1798     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1799       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1800 
1801     // Canonicalize setgt X, Min --> setne X, Min
1802     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1803       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1804     // Canonicalize setlt X, Max --> setne X, Max
1805     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1806       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1807 
1808     // If we have setult X, 1, turn it into seteq X, 0
1809     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1810       return DAG.getSetCC(dl, VT, N0,
1811                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1812                           ISD::SETEQ);
1813     // If we have setugt X, Max-1, turn it into seteq X, Max
1814     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1815       return DAG.getSetCC(dl, VT, N0,
1816                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1817                           ISD::SETEQ);
1818 
1819     // If we have "setcc X, C0", check to see if we can shrink the immediate
1820     // by changing cc.
1821 
1822     // SETUGT X, SINTMAX  -> SETLT X, 0
1823     if (Cond == ISD::SETUGT &&
1824         C1 == APInt::getSignedMaxValue(OperandBitSize))
1825       return DAG.getSetCC(dl, VT, N0,
1826                           DAG.getConstant(0, dl, N1.getValueType()),
1827                           ISD::SETLT);
1828 
1829     // SETULT X, SINTMIN  -> SETGT X, -1
1830     if (Cond == ISD::SETULT &&
1831         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1832       SDValue ConstMinusOne =
1833           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1834                           N1.getValueType());
1835       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1836     }
1837 
1838     // Fold bit comparisons when we can.
1839     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1840         (VT == N0.getValueType() ||
1841          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1842         N0.getOpcode() == ISD::AND) {
1843       auto &DL = DAG.getDataLayout();
1844       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1845         EVT ShiftTy = DCI.isBeforeLegalize()
1846                           ? getPointerTy(DL)
1847                           : getShiftAmountTy(N0.getValueType(), DL);
1848         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1849           // Perform the xform if the AND RHS is a single bit.
1850           if (AndRHS->getAPIntValue().isPowerOf2()) {
1851             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1852                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1853                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1854                                    ShiftTy)));
1855           }
1856         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1857           // (X & 8) == 8  -->  (X & 8) >> 3
1858           // Perform the xform if C1 is a single bit.
1859           if (C1.isPowerOf2()) {
1860             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1861                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1862                                       DAG.getConstant(C1.logBase2(), dl,
1863                                                       ShiftTy)));
1864           }
1865         }
1866       }
1867     }
1868 
1869     if (C1.getMinSignedBits() <= 64 &&
1870         !isLegalICmpImmediate(C1.getSExtValue())) {
1871       // (X & -256) == 256 -> (X >> 8) == 1
1872       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1873           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1874         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1875           const APInt &AndRHSC = AndRHS->getAPIntValue();
1876           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1877             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1878             auto &DL = DAG.getDataLayout();
1879             EVT ShiftTy = DCI.isBeforeLegalize()
1880                               ? getPointerTy(DL)
1881                               : getShiftAmountTy(N0.getValueType(), DL);
1882             EVT CmpTy = N0.getValueType();
1883             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1884                                         DAG.getConstant(ShiftBits, dl,
1885                                                         ShiftTy));
1886             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
1887             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1888           }
1889         }
1890       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1891                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1892         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1893         // X <  0x100000000 -> (X >> 32) <  1
1894         // X >= 0x100000000 -> (X >> 32) >= 1
1895         // X <= 0x0ffffffff -> (X >> 32) <  1
1896         // X >  0x0ffffffff -> (X >> 32) >= 1
1897         unsigned ShiftBits;
1898         APInt NewC = C1;
1899         ISD::CondCode NewCond = Cond;
1900         if (AdjOne) {
1901           ShiftBits = C1.countTrailingOnes();
1902           NewC = NewC + 1;
1903           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1904         } else {
1905           ShiftBits = C1.countTrailingZeros();
1906         }
1907         NewC = NewC.lshr(ShiftBits);
1908         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
1909           isLegalICmpImmediate(NewC.getSExtValue())) {
1910           auto &DL = DAG.getDataLayout();
1911           EVT ShiftTy = DCI.isBeforeLegalize()
1912                             ? getPointerTy(DL)
1913                             : getShiftAmountTy(N0.getValueType(), DL);
1914           EVT CmpTy = N0.getValueType();
1915           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1916                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
1917           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
1918           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1919         }
1920       }
1921     }
1922   }
1923 
1924   if (isa<ConstantFPSDNode>(N0.getNode())) {
1925     // Constant fold or commute setcc.
1926     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1927     if (O.getNode()) return O;
1928   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1929     // If the RHS of an FP comparison is a constant, simplify it away in
1930     // some cases.
1931     if (CFP->getValueAPF().isNaN()) {
1932       // If an operand is known to be a nan, we can fold it.
1933       switch (ISD::getUnorderedFlavor(Cond)) {
1934       default: llvm_unreachable("Unknown flavor!");
1935       case 0:  // Known false.
1936         return DAG.getConstant(0, dl, VT);
1937       case 1:  // Known true.
1938         return DAG.getConstant(1, dl, VT);
1939       case 2:  // Undefined.
1940         return DAG.getUNDEF(VT);
1941       }
1942     }
1943 
1944     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1945     // constant if knowing that the operand is non-nan is enough.  We prefer to
1946     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1947     // materialize 0.0.
1948     if (Cond == ISD::SETO || Cond == ISD::SETUO)
1949       return DAG.getSetCC(dl, VT, N0, N0, Cond);
1950 
1951     // If the condition is not legal, see if we can find an equivalent one
1952     // which is legal.
1953     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1954       // If the comparison was an awkward floating-point == or != and one of
1955       // the comparison operands is infinity or negative infinity, convert the
1956       // condition to a less-awkward <= or >=.
1957       if (CFP->getValueAPF().isInfinity()) {
1958         if (CFP->getValueAPF().isNegative()) {
1959           if (Cond == ISD::SETOEQ &&
1960               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1961             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1962           if (Cond == ISD::SETUEQ &&
1963               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1964             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1965           if (Cond == ISD::SETUNE &&
1966               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1967             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1968           if (Cond == ISD::SETONE &&
1969               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1970             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1971         } else {
1972           if (Cond == ISD::SETOEQ &&
1973               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1974             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1975           if (Cond == ISD::SETUEQ &&
1976               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1977             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1978           if (Cond == ISD::SETUNE &&
1979               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1980             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1981           if (Cond == ISD::SETONE &&
1982               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1983             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1984         }
1985       }
1986     }
1987   }
1988 
1989   if (N0 == N1) {
1990     // The sext(setcc()) => setcc() optimization relies on the appropriate
1991     // constant being emitted.
1992     uint64_t EqVal = 0;
1993     switch (getBooleanContents(N0.getValueType())) {
1994     case UndefinedBooleanContent:
1995     case ZeroOrOneBooleanContent:
1996       EqVal = ISD::isTrueWhenEqual(Cond);
1997       break;
1998     case ZeroOrNegativeOneBooleanContent:
1999       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2000       break;
2001     }
2002 
2003     // We can always fold X == X for integer setcc's.
2004     if (N0.getValueType().isInteger()) {
2005       return DAG.getConstant(EqVal, dl, VT);
2006     }
2007     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2008     if (UOF == 2)   // FP operators that are undefined on NaNs.
2009       return DAG.getConstant(EqVal, dl, VT);
2010     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2011       return DAG.getConstant(EqVal, dl, VT);
2012     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2013     // if it is not already.
2014     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2015     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2016           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2017       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2018   }
2019 
2020   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2021       N0.getValueType().isInteger()) {
2022     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2023         N0.getOpcode() == ISD::XOR) {
2024       // Simplify (X+Y) == (X+Z) -->  Y == Z
2025       if (N0.getOpcode() == N1.getOpcode()) {
2026         if (N0.getOperand(0) == N1.getOperand(0))
2027           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2028         if (N0.getOperand(1) == N1.getOperand(1))
2029           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2030         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2031           // If X op Y == Y op X, try other combinations.
2032           if (N0.getOperand(0) == N1.getOperand(1))
2033             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2034                                 Cond);
2035           if (N0.getOperand(1) == N1.getOperand(0))
2036             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2037                                 Cond);
2038         }
2039       }
2040 
2041       // If RHS is a legal immediate value for a compare instruction, we need
2042       // to be careful about increasing register pressure needlessly.
2043       bool LegalRHSImm = false;
2044 
2045       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2046         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2047           // Turn (X+C1) == C2 --> X == C2-C1
2048           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2049             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2050                                 DAG.getConstant(RHSC->getAPIntValue()-
2051                                                 LHSR->getAPIntValue(),
2052                                 dl, N0.getValueType()), Cond);
2053           }
2054 
2055           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2056           if (N0.getOpcode() == ISD::XOR)
2057             // If we know that all of the inverted bits are zero, don't bother
2058             // performing the inversion.
2059             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2060               return
2061                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2062                              DAG.getConstant(LHSR->getAPIntValue() ^
2063                                                RHSC->getAPIntValue(),
2064                                              dl, N0.getValueType()),
2065                              Cond);
2066         }
2067 
2068         // Turn (C1-X) == C2 --> X == C1-C2
2069         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2070           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2071             return
2072               DAG.getSetCC(dl, VT, N0.getOperand(1),
2073                            DAG.getConstant(SUBC->getAPIntValue() -
2074                                              RHSC->getAPIntValue(),
2075                                            dl, N0.getValueType()),
2076                            Cond);
2077           }
2078         }
2079 
2080         // Could RHSC fold directly into a compare?
2081         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2082           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2083       }
2084 
2085       // Simplify (X+Z) == X -->  Z == 0
2086       // Don't do this if X is an immediate that can fold into a cmp
2087       // instruction and X+Z has other uses. It could be an induction variable
2088       // chain, and the transform would increase register pressure.
2089       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2090         if (N0.getOperand(0) == N1)
2091           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2092                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2093         if (N0.getOperand(1) == N1) {
2094           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2095             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2096                                 DAG.getConstant(0, dl, N0.getValueType()),
2097                                 Cond);
2098           if (N0.getNode()->hasOneUse()) {
2099             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2100             auto &DL = DAG.getDataLayout();
2101             // (Z-X) == X  --> Z == X<<1
2102             SDValue SH = DAG.getNode(
2103                 ISD::SHL, dl, N1.getValueType(), N1,
2104                 DAG.getConstant(1, dl,
2105                                 getShiftAmountTy(N1.getValueType(), DL)));
2106             if (!DCI.isCalledByLegalizer())
2107               DCI.AddToWorklist(SH.getNode());
2108             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2109           }
2110         }
2111       }
2112     }
2113 
2114     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2115         N1.getOpcode() == ISD::XOR) {
2116       // Simplify  X == (X+Z) -->  Z == 0
2117       if (N1.getOperand(0) == N0)
2118         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2119                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2120       if (N1.getOperand(1) == N0) {
2121         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2122           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2123                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2124         if (N1.getNode()->hasOneUse()) {
2125           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2126           auto &DL = DAG.getDataLayout();
2127           // X == (Z-X)  --> X<<1 == Z
2128           SDValue SH = DAG.getNode(
2129               ISD::SHL, dl, N1.getValueType(), N0,
2130               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2131           if (!DCI.isCalledByLegalizer())
2132             DCI.AddToWorklist(SH.getNode());
2133           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2134         }
2135       }
2136     }
2137 
2138     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2139       return V;
2140   }
2141 
2142   // Fold away ALL boolean setcc's.
2143   SDValue Temp;
2144   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2145     switch (Cond) {
2146     default: llvm_unreachable("Unknown integer setcc!");
2147     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2148       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2149       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2150       if (!DCI.isCalledByLegalizer())
2151         DCI.AddToWorklist(Temp.getNode());
2152       break;
2153     case ISD::SETNE:  // X != Y   -->  (X^Y)
2154       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2155       break;
2156     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2157     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2158       Temp = DAG.getNOT(dl, N0, MVT::i1);
2159       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2160       if (!DCI.isCalledByLegalizer())
2161         DCI.AddToWorklist(Temp.getNode());
2162       break;
2163     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2164     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2165       Temp = DAG.getNOT(dl, N1, MVT::i1);
2166       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2167       if (!DCI.isCalledByLegalizer())
2168         DCI.AddToWorklist(Temp.getNode());
2169       break;
2170     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2171     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2172       Temp = DAG.getNOT(dl, N0, MVT::i1);
2173       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2174       if (!DCI.isCalledByLegalizer())
2175         DCI.AddToWorklist(Temp.getNode());
2176       break;
2177     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2178     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2179       Temp = DAG.getNOT(dl, N1, MVT::i1);
2180       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2181       break;
2182     }
2183     if (VT != MVT::i1) {
2184       if (!DCI.isCalledByLegalizer())
2185         DCI.AddToWorklist(N0.getNode());
2186       // FIXME: If running after legalize, we probably can't do this.
2187       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2188     }
2189     return N0;
2190   }
2191 
2192   // Could not fold it.
2193   return SDValue();
2194 }
2195 
2196 /// Returns true (and the GlobalValue and the offset) if the node is a
2197 /// GlobalAddress + offset.
2198 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2199                                     int64_t &Offset) const {
2200   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2201     GA = GASD->getGlobal();
2202     Offset += GASD->getOffset();
2203     return true;
2204   }
2205 
2206   if (N->getOpcode() == ISD::ADD) {
2207     SDValue N1 = N->getOperand(0);
2208     SDValue N2 = N->getOperand(1);
2209     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2210       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2211         Offset += V->getSExtValue();
2212         return true;
2213       }
2214     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2215       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2216         Offset += V->getSExtValue();
2217         return true;
2218       }
2219     }
2220   }
2221 
2222   return false;
2223 }
2224 
2225 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2226                                           DAGCombinerInfo &DCI) const {
2227   // Default implementation: no optimization.
2228   return SDValue();
2229 }
2230 
2231 //===----------------------------------------------------------------------===//
2232 //  Inline Assembler Implementation Methods
2233 //===----------------------------------------------------------------------===//
2234 
2235 TargetLowering::ConstraintType
2236 TargetLowering::getConstraintType(StringRef Constraint) const {
2237   unsigned S = Constraint.size();
2238 
2239   if (S == 1) {
2240     switch (Constraint[0]) {
2241     default: break;
2242     case 'r': return C_RegisterClass;
2243     case 'm':    // memory
2244     case 'o':    // offsetable
2245     case 'V':    // not offsetable
2246       return C_Memory;
2247     case 'i':    // Simple Integer or Relocatable Constant
2248     case 'n':    // Simple Integer
2249     case 'E':    // Floating Point Constant
2250     case 'F':    // Floating Point Constant
2251     case 's':    // Relocatable Constant
2252     case 'p':    // Address.
2253     case 'X':    // Allow ANY value.
2254     case 'I':    // Target registers.
2255     case 'J':
2256     case 'K':
2257     case 'L':
2258     case 'M':
2259     case 'N':
2260     case 'O':
2261     case 'P':
2262     case '<':
2263     case '>':
2264       return C_Other;
2265     }
2266   }
2267 
2268   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2269     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2270       return C_Memory;
2271     return C_Register;
2272   }
2273   return C_Unknown;
2274 }
2275 
2276 /// Try to replace an X constraint, which matches anything, with another that
2277 /// has more specific requirements based on the type of the corresponding
2278 /// operand.
2279 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2280   if (ConstraintVT.isInteger())
2281     return "r";
2282   if (ConstraintVT.isFloatingPoint())
2283     return "f";      // works for many targets
2284   return nullptr;
2285 }
2286 
2287 /// Lower the specified operand into the Ops vector.
2288 /// If it is invalid, don't add anything to Ops.
2289 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2290                                                   std::string &Constraint,
2291                                                   std::vector<SDValue> &Ops,
2292                                                   SelectionDAG &DAG) const {
2293 
2294   if (Constraint.length() > 1) return;
2295 
2296   char ConstraintLetter = Constraint[0];
2297   switch (ConstraintLetter) {
2298   default: break;
2299   case 'X':     // Allows any operand; labels (basic block) use this.
2300     if (Op.getOpcode() == ISD::BasicBlock) {
2301       Ops.push_back(Op);
2302       return;
2303     }
2304     LLVM_FALLTHROUGH;
2305   case 'i':    // Simple Integer or Relocatable Constant
2306   case 'n':    // Simple Integer
2307   case 's': {  // Relocatable Constant
2308     // These operands are interested in values of the form (GV+C), where C may
2309     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2310     // is possible and fine if either GV or C are missing.
2311     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2312     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2313 
2314     // If we have "(add GV, C)", pull out GV/C
2315     if (Op.getOpcode() == ISD::ADD) {
2316       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2317       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2318       if (!C || !GA) {
2319         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2320         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2321       }
2322       if (!C || !GA) {
2323         C = nullptr;
2324         GA = nullptr;
2325       }
2326     }
2327 
2328     // If we find a valid operand, map to the TargetXXX version so that the
2329     // value itself doesn't get selected.
2330     if (GA) {   // Either &GV   or   &GV+C
2331       if (ConstraintLetter != 'n') {
2332         int64_t Offs = GA->getOffset();
2333         if (C) Offs += C->getZExtValue();
2334         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2335                                                  C ? SDLoc(C) : SDLoc(),
2336                                                  Op.getValueType(), Offs));
2337       }
2338       return;
2339     }
2340     if (C) {   // just C, no GV.
2341       // Simple constants are not allowed for 's'.
2342       if (ConstraintLetter != 's') {
2343         // gcc prints these as sign extended.  Sign extend value to 64 bits
2344         // now; without this it would get ZExt'd later in
2345         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2346         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2347                                             SDLoc(C), MVT::i64));
2348       }
2349       return;
2350     }
2351     break;
2352   }
2353   }
2354 }
2355 
2356 std::pair<unsigned, const TargetRegisterClass *>
2357 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2358                                              StringRef Constraint,
2359                                              MVT VT) const {
2360   if (Constraint.empty() || Constraint[0] != '{')
2361     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2362   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2363 
2364   // Remove the braces from around the name.
2365   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2366 
2367   std::pair<unsigned, const TargetRegisterClass*> R =
2368     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2369 
2370   // Figure out which register class contains this reg.
2371   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2372        E = RI->regclass_end(); RCI != E; ++RCI) {
2373     const TargetRegisterClass *RC = *RCI;
2374 
2375     // If none of the value types for this register class are valid, we
2376     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2377     if (!isLegalRC(RC))
2378       continue;
2379 
2380     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2381          I != E; ++I) {
2382       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2383         std::pair<unsigned, const TargetRegisterClass*> S =
2384           std::make_pair(*I, RC);
2385 
2386         // If this register class has the requested value type, return it,
2387         // otherwise keep searching and return the first class found
2388         // if no other is found which explicitly has the requested type.
2389         if (RC->hasType(VT))
2390           return S;
2391         else if (!R.second)
2392           R = S;
2393       }
2394     }
2395   }
2396 
2397   return R;
2398 }
2399 
2400 //===----------------------------------------------------------------------===//
2401 // Constraint Selection.
2402 
2403 /// Return true of this is an input operand that is a matching constraint like
2404 /// "4".
2405 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2406   assert(!ConstraintCode.empty() && "No known constraint!");
2407   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2408 }
2409 
2410 /// If this is an input matching constraint, this method returns the output
2411 /// operand it matches.
2412 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2413   assert(!ConstraintCode.empty() && "No known constraint!");
2414   return atoi(ConstraintCode.c_str());
2415 }
2416 
2417 /// Split up the constraint string from the inline assembly value into the
2418 /// specific constraints and their prefixes, and also tie in the associated
2419 /// operand values.
2420 /// If this returns an empty vector, and if the constraint string itself
2421 /// isn't empty, there was an error parsing.
2422 TargetLowering::AsmOperandInfoVector
2423 TargetLowering::ParseConstraints(const DataLayout &DL,
2424                                  const TargetRegisterInfo *TRI,
2425                                  ImmutableCallSite CS) const {
2426   /// Information about all of the constraints.
2427   AsmOperandInfoVector ConstraintOperands;
2428   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2429   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2430 
2431   // Do a prepass over the constraints, canonicalizing them, and building up the
2432   // ConstraintOperands list.
2433   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2434   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2435 
2436   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2437     ConstraintOperands.emplace_back(std::move(CI));
2438     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2439 
2440     // Update multiple alternative constraint count.
2441     if (OpInfo.multipleAlternatives.size() > maCount)
2442       maCount = OpInfo.multipleAlternatives.size();
2443 
2444     OpInfo.ConstraintVT = MVT::Other;
2445 
2446     // Compute the value type for each operand.
2447     switch (OpInfo.Type) {
2448     case InlineAsm::isOutput:
2449       // Indirect outputs just consume an argument.
2450       if (OpInfo.isIndirect) {
2451         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2452         break;
2453       }
2454 
2455       // The return value of the call is this value.  As such, there is no
2456       // corresponding argument.
2457       assert(!CS.getType()->isVoidTy() &&
2458              "Bad inline asm!");
2459       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2460         OpInfo.ConstraintVT =
2461             getSimpleValueType(DL, STy->getElementType(ResNo));
2462       } else {
2463         assert(ResNo == 0 && "Asm only has one result!");
2464         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2465       }
2466       ++ResNo;
2467       break;
2468     case InlineAsm::isInput:
2469       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2470       break;
2471     case InlineAsm::isClobber:
2472       // Nothing to do.
2473       break;
2474     }
2475 
2476     if (OpInfo.CallOperandVal) {
2477       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2478       if (OpInfo.isIndirect) {
2479         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2480         if (!PtrTy)
2481           report_fatal_error("Indirect operand for inline asm not a pointer!");
2482         OpTy = PtrTy->getElementType();
2483       }
2484 
2485       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2486       if (StructType *STy = dyn_cast<StructType>(OpTy))
2487         if (STy->getNumElements() == 1)
2488           OpTy = STy->getElementType(0);
2489 
2490       // If OpTy is not a single value, it may be a struct/union that we
2491       // can tile with integers.
2492       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2493         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2494         switch (BitSize) {
2495         default: break;
2496         case 1:
2497         case 8:
2498         case 16:
2499         case 32:
2500         case 64:
2501         case 128:
2502           OpInfo.ConstraintVT =
2503             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2504           break;
2505         }
2506       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2507         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2508         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2509       } else {
2510         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2511       }
2512     }
2513   }
2514 
2515   // If we have multiple alternative constraints, select the best alternative.
2516   if (!ConstraintOperands.empty()) {
2517     if (maCount) {
2518       unsigned bestMAIndex = 0;
2519       int bestWeight = -1;
2520       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2521       int weight = -1;
2522       unsigned maIndex;
2523       // Compute the sums of the weights for each alternative, keeping track
2524       // of the best (highest weight) one so far.
2525       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2526         int weightSum = 0;
2527         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2528             cIndex != eIndex; ++cIndex) {
2529           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2530           if (OpInfo.Type == InlineAsm::isClobber)
2531             continue;
2532 
2533           // If this is an output operand with a matching input operand,
2534           // look up the matching input. If their types mismatch, e.g. one
2535           // is an integer, the other is floating point, or their sizes are
2536           // different, flag it as an maCantMatch.
2537           if (OpInfo.hasMatchingInput()) {
2538             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2539             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2540               if ((OpInfo.ConstraintVT.isInteger() !=
2541                    Input.ConstraintVT.isInteger()) ||
2542                   (OpInfo.ConstraintVT.getSizeInBits() !=
2543                    Input.ConstraintVT.getSizeInBits())) {
2544                 weightSum = -1;  // Can't match.
2545                 break;
2546               }
2547             }
2548           }
2549           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2550           if (weight == -1) {
2551             weightSum = -1;
2552             break;
2553           }
2554           weightSum += weight;
2555         }
2556         // Update best.
2557         if (weightSum > bestWeight) {
2558           bestWeight = weightSum;
2559           bestMAIndex = maIndex;
2560         }
2561       }
2562 
2563       // Now select chosen alternative in each constraint.
2564       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2565           cIndex != eIndex; ++cIndex) {
2566         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2567         if (cInfo.Type == InlineAsm::isClobber)
2568           continue;
2569         cInfo.selectAlternative(bestMAIndex);
2570       }
2571     }
2572   }
2573 
2574   // Check and hook up tied operands, choose constraint code to use.
2575   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2576       cIndex != eIndex; ++cIndex) {
2577     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2578 
2579     // If this is an output operand with a matching input operand, look up the
2580     // matching input. If their types mismatch, e.g. one is an integer, the
2581     // other is floating point, or their sizes are different, flag it as an
2582     // error.
2583     if (OpInfo.hasMatchingInput()) {
2584       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2585 
2586       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2587         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2588             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2589                                          OpInfo.ConstraintVT);
2590         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2591             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2592                                          Input.ConstraintVT);
2593         if ((OpInfo.ConstraintVT.isInteger() !=
2594              Input.ConstraintVT.isInteger()) ||
2595             (MatchRC.second != InputRC.second)) {
2596           report_fatal_error("Unsupported asm: input constraint"
2597                              " with a matching output constraint of"
2598                              " incompatible type!");
2599         }
2600       }
2601     }
2602   }
2603 
2604   return ConstraintOperands;
2605 }
2606 
2607 /// Return an integer indicating how general CT is.
2608 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2609   switch (CT) {
2610   case TargetLowering::C_Other:
2611   case TargetLowering::C_Unknown:
2612     return 0;
2613   case TargetLowering::C_Register:
2614     return 1;
2615   case TargetLowering::C_RegisterClass:
2616     return 2;
2617   case TargetLowering::C_Memory:
2618     return 3;
2619   }
2620   llvm_unreachable("Invalid constraint type");
2621 }
2622 
2623 /// Examine constraint type and operand type and determine a weight value.
2624 /// This object must already have been set up with the operand type
2625 /// and the current alternative constraint selected.
2626 TargetLowering::ConstraintWeight
2627   TargetLowering::getMultipleConstraintMatchWeight(
2628     AsmOperandInfo &info, int maIndex) const {
2629   InlineAsm::ConstraintCodeVector *rCodes;
2630   if (maIndex >= (int)info.multipleAlternatives.size())
2631     rCodes = &info.Codes;
2632   else
2633     rCodes = &info.multipleAlternatives[maIndex].Codes;
2634   ConstraintWeight BestWeight = CW_Invalid;
2635 
2636   // Loop over the options, keeping track of the most general one.
2637   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2638     ConstraintWeight weight =
2639       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2640     if (weight > BestWeight)
2641       BestWeight = weight;
2642   }
2643 
2644   return BestWeight;
2645 }
2646 
2647 /// Examine constraint type and operand type and determine a weight value.
2648 /// This object must already have been set up with the operand type
2649 /// and the current alternative constraint selected.
2650 TargetLowering::ConstraintWeight
2651   TargetLowering::getSingleConstraintMatchWeight(
2652     AsmOperandInfo &info, const char *constraint) const {
2653   ConstraintWeight weight = CW_Invalid;
2654   Value *CallOperandVal = info.CallOperandVal;
2655     // If we don't have a value, we can't do a match,
2656     // but allow it at the lowest weight.
2657   if (!CallOperandVal)
2658     return CW_Default;
2659   // Look at the constraint type.
2660   switch (*constraint) {
2661     case 'i': // immediate integer.
2662     case 'n': // immediate integer with a known value.
2663       if (isa<ConstantInt>(CallOperandVal))
2664         weight = CW_Constant;
2665       break;
2666     case 's': // non-explicit intregal immediate.
2667       if (isa<GlobalValue>(CallOperandVal))
2668         weight = CW_Constant;
2669       break;
2670     case 'E': // immediate float if host format.
2671     case 'F': // immediate float.
2672       if (isa<ConstantFP>(CallOperandVal))
2673         weight = CW_Constant;
2674       break;
2675     case '<': // memory operand with autodecrement.
2676     case '>': // memory operand with autoincrement.
2677     case 'm': // memory operand.
2678     case 'o': // offsettable memory operand
2679     case 'V': // non-offsettable memory operand
2680       weight = CW_Memory;
2681       break;
2682     case 'r': // general register.
2683     case 'g': // general register, memory operand or immediate integer.
2684               // note: Clang converts "g" to "imr".
2685       if (CallOperandVal->getType()->isIntegerTy())
2686         weight = CW_Register;
2687       break;
2688     case 'X': // any operand.
2689     default:
2690       weight = CW_Default;
2691       break;
2692   }
2693   return weight;
2694 }
2695 
2696 /// If there are multiple different constraints that we could pick for this
2697 /// operand (e.g. "imr") try to pick the 'best' one.
2698 /// This is somewhat tricky: constraints fall into four classes:
2699 ///    Other         -> immediates and magic values
2700 ///    Register      -> one specific register
2701 ///    RegisterClass -> a group of regs
2702 ///    Memory        -> memory
2703 /// Ideally, we would pick the most specific constraint possible: if we have
2704 /// something that fits into a register, we would pick it.  The problem here
2705 /// is that if we have something that could either be in a register or in
2706 /// memory that use of the register could cause selection of *other*
2707 /// operands to fail: they might only succeed if we pick memory.  Because of
2708 /// this the heuristic we use is:
2709 ///
2710 ///  1) If there is an 'other' constraint, and if the operand is valid for
2711 ///     that constraint, use it.  This makes us take advantage of 'i'
2712 ///     constraints when available.
2713 ///  2) Otherwise, pick the most general constraint present.  This prefers
2714 ///     'm' over 'r', for example.
2715 ///
2716 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2717                              const TargetLowering &TLI,
2718                              SDValue Op, SelectionDAG *DAG) {
2719   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2720   unsigned BestIdx = 0;
2721   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2722   int BestGenerality = -1;
2723 
2724   // Loop over the options, keeping track of the most general one.
2725   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2726     TargetLowering::ConstraintType CType =
2727       TLI.getConstraintType(OpInfo.Codes[i]);
2728 
2729     // If this is an 'other' constraint, see if the operand is valid for it.
2730     // For example, on X86 we might have an 'rI' constraint.  If the operand
2731     // is an integer in the range [0..31] we want to use I (saving a load
2732     // of a register), otherwise we must use 'r'.
2733     if (CType == TargetLowering::C_Other && Op.getNode()) {
2734       assert(OpInfo.Codes[i].size() == 1 &&
2735              "Unhandled multi-letter 'other' constraint");
2736       std::vector<SDValue> ResultOps;
2737       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2738                                        ResultOps, *DAG);
2739       if (!ResultOps.empty()) {
2740         BestType = CType;
2741         BestIdx = i;
2742         break;
2743       }
2744     }
2745 
2746     // Things with matching constraints can only be registers, per gcc
2747     // documentation.  This mainly affects "g" constraints.
2748     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2749       continue;
2750 
2751     // This constraint letter is more general than the previous one, use it.
2752     int Generality = getConstraintGenerality(CType);
2753     if (Generality > BestGenerality) {
2754       BestType = CType;
2755       BestIdx = i;
2756       BestGenerality = Generality;
2757     }
2758   }
2759 
2760   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2761   OpInfo.ConstraintType = BestType;
2762 }
2763 
2764 /// Determines the constraint code and constraint type to use for the specific
2765 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2766 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2767                                             SDValue Op,
2768                                             SelectionDAG *DAG) const {
2769   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2770 
2771   // Single-letter constraints ('r') are very common.
2772   if (OpInfo.Codes.size() == 1) {
2773     OpInfo.ConstraintCode = OpInfo.Codes[0];
2774     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2775   } else {
2776     ChooseConstraint(OpInfo, *this, Op, DAG);
2777   }
2778 
2779   // 'X' matches anything.
2780   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2781     // Labels and constants are handled elsewhere ('X' is the only thing
2782     // that matches labels).  For Functions, the type here is the type of
2783     // the result, which is not what we want to look at; leave them alone.
2784     Value *v = OpInfo.CallOperandVal;
2785     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2786       OpInfo.CallOperandVal = v;
2787       return;
2788     }
2789 
2790     // Otherwise, try to resolve it to something we know about by looking at
2791     // the actual operand type.
2792     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2793       OpInfo.ConstraintCode = Repl;
2794       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2795     }
2796   }
2797 }
2798 
2799 /// \brief Given an exact SDIV by a constant, create a multiplication
2800 /// with the multiplicative inverse of the constant.
2801 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2802                               const SDLoc &dl, SelectionDAG &DAG,
2803                               std::vector<SDNode *> &Created) {
2804   assert(d != 0 && "Division by zero!");
2805 
2806   // Shift the value upfront if it is even, so the LSB is one.
2807   unsigned ShAmt = d.countTrailingZeros();
2808   if (ShAmt) {
2809     // TODO: For UDIV use SRL instead of SRA.
2810     SDValue Amt =
2811         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2812                                                         DAG.getDataLayout()));
2813     SDNodeFlags Flags;
2814     Flags.setExact(true);
2815     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2816     Created.push_back(Op1.getNode());
2817     d = d.ashr(ShAmt);
2818   }
2819 
2820   // Calculate the multiplicative inverse, using Newton's method.
2821   APInt t, xn = d;
2822   while ((t = d*xn) != 1)
2823     xn *= APInt(d.getBitWidth(), 2) - t;
2824 
2825   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2826   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2827   Created.push_back(Mul.getNode());
2828   return Mul;
2829 }
2830 
2831 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2832                                       SelectionDAG &DAG,
2833                                       std::vector<SDNode *> *Created) const {
2834   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2835   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2836   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2837     return SDValue(N,0); // Lower SDIV as SDIV
2838   return SDValue();
2839 }
2840 
2841 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2842 /// return a DAG expression to select that will generate the same value by
2843 /// multiplying by a magic number.
2844 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2845 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2846                                   SelectionDAG &DAG, bool IsAfterLegalization,
2847                                   std::vector<SDNode *> *Created) const {
2848   assert(Created && "No vector to hold sdiv ops.");
2849 
2850   EVT VT = N->getValueType(0);
2851   SDLoc dl(N);
2852 
2853   // Check to see if we can do this.
2854   // FIXME: We should be more aggressive here.
2855   if (!isTypeLegal(VT))
2856     return SDValue();
2857 
2858   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2859   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
2860     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2861 
2862   APInt::ms magics = Divisor.magic();
2863 
2864   // Multiply the numerator (operand 0) by the magic value
2865   // FIXME: We should support doing a MUL in a wider type
2866   SDValue Q;
2867   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2868                             isOperationLegalOrCustom(ISD::MULHS, VT))
2869     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2870                     DAG.getConstant(magics.m, dl, VT));
2871   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2872                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2873     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2874                               N->getOperand(0),
2875                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2876   else
2877     return SDValue();       // No mulhs or equvialent
2878   // If d > 0 and m < 0, add the numerator
2879   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2880     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2881     Created->push_back(Q.getNode());
2882   }
2883   // If d < 0 and m > 0, subtract the numerator.
2884   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2885     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2886     Created->push_back(Q.getNode());
2887   }
2888   auto &DL = DAG.getDataLayout();
2889   // Shift right algebraic if shift value is nonzero
2890   if (magics.s > 0) {
2891     Q = DAG.getNode(
2892         ISD::SRA, dl, VT, Q,
2893         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2894     Created->push_back(Q.getNode());
2895   }
2896   // Extract the sign bit and add it to the quotient
2897   SDValue T =
2898       DAG.getNode(ISD::SRL, dl, VT, Q,
2899                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
2900                                   getShiftAmountTy(Q.getValueType(), DL)));
2901   Created->push_back(T.getNode());
2902   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2903 }
2904 
2905 /// \brief Given an ISD::UDIV node expressing a divide by constant,
2906 /// return a DAG expression to select that will generate the same value by
2907 /// multiplying by a magic number.
2908 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2909 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2910                                   SelectionDAG &DAG, bool IsAfterLegalization,
2911                                   std::vector<SDNode *> *Created) const {
2912   assert(Created && "No vector to hold udiv ops.");
2913 
2914   EVT VT = N->getValueType(0);
2915   SDLoc dl(N);
2916   auto &DL = DAG.getDataLayout();
2917 
2918   // Check to see if we can do this.
2919   // FIXME: We should be more aggressive here.
2920   if (!isTypeLegal(VT))
2921     return SDValue();
2922 
2923   // FIXME: We should use a narrower constant when the upper
2924   // bits are known to be zero.
2925   APInt::mu magics = Divisor.magicu();
2926 
2927   SDValue Q = N->getOperand(0);
2928 
2929   // If the divisor is even, we can avoid using the expensive fixup by shifting
2930   // the divided value upfront.
2931   if (magics.a != 0 && !Divisor[0]) {
2932     unsigned Shift = Divisor.countTrailingZeros();
2933     Q = DAG.getNode(
2934         ISD::SRL, dl, VT, Q,
2935         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
2936     Created->push_back(Q.getNode());
2937 
2938     // Get magic number for the shifted divisor.
2939     magics = Divisor.lshr(Shift).magicu(Shift);
2940     assert(magics.a == 0 && "Should use cheap fixup now");
2941   }
2942 
2943   // Multiply the numerator (operand 0) by the magic value
2944   // FIXME: We should support doing a MUL in a wider type
2945   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2946                             isOperationLegalOrCustom(ISD::MULHU, VT))
2947     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
2948   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2949                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2950     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2951                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2952   else
2953     return SDValue();       // No mulhu or equvialent
2954 
2955   Created->push_back(Q.getNode());
2956 
2957   if (magics.a == 0) {
2958     assert(magics.s < Divisor.getBitWidth() &&
2959            "We shouldn't generate an undefined shift!");
2960     return DAG.getNode(
2961         ISD::SRL, dl, VT, Q,
2962         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2963   } else {
2964     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2965     Created->push_back(NPQ.getNode());
2966     NPQ = DAG.getNode(
2967         ISD::SRL, dl, VT, NPQ,
2968         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
2969     Created->push_back(NPQ.getNode());
2970     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2971     Created->push_back(NPQ.getNode());
2972     return DAG.getNode(
2973         ISD::SRL, dl, VT, NPQ,
2974         DAG.getConstant(magics.s - 1, dl,
2975                         getShiftAmountTy(NPQ.getValueType(), DL)));
2976   }
2977 }
2978 
2979 bool TargetLowering::
2980 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2981   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2982     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2983                                 "be a constant integer");
2984     return true;
2985   }
2986 
2987   return false;
2988 }
2989 
2990 //===----------------------------------------------------------------------===//
2991 // Legalization Utilities
2992 //===----------------------------------------------------------------------===//
2993 
2994 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2995                                SelectionDAG &DAG, SDValue LL, SDValue LH,
2996                                SDValue RL, SDValue RH) const {
2997   EVT VT = N->getValueType(0);
2998   SDLoc dl(N);
2999 
3000   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3001   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3002   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3003   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3004   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
3005     unsigned OuterBitSize = VT.getSizeInBits();
3006     unsigned InnerBitSize = HiLoVT.getSizeInBits();
3007     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
3008     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
3009 
3010     // LL, LH, RL, and RH must be either all NULL or all set to a value.
3011     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3012            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3013 
3014     if (!LL.getNode() && !RL.getNode() &&
3015         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3016       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
3017       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
3018     }
3019 
3020     if (!LL.getNode())
3021       return false;
3022 
3023     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3024     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
3025         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
3026       // The inputs are both zero-extended.
3027       if (HasUMUL_LOHI) {
3028         // We can emit a umul_lohi.
3029         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3030                          RL);
3031         Hi = SDValue(Lo.getNode(), 1);
3032         return true;
3033       }
3034       if (HasMULHU) {
3035         // We can emit a mulhu+mul.
3036         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3037         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3038         return true;
3039       }
3040     }
3041     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
3042       // The input values are both sign-extended.
3043       if (HasSMUL_LOHI) {
3044         // We can emit a smul_lohi.
3045         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3046                          RL);
3047         Hi = SDValue(Lo.getNode(), 1);
3048         return true;
3049       }
3050       if (HasMULHS) {
3051         // We can emit a mulhs+mul.
3052         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3053         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
3054         return true;
3055       }
3056     }
3057 
3058     if (!LH.getNode() && !RH.getNode() &&
3059         isOperationLegalOrCustom(ISD::SRL, VT) &&
3060         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3061       auto &DL = DAG.getDataLayout();
3062       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
3063       SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
3064       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
3065       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3066       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
3067       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3068     }
3069 
3070     if (!LH.getNode())
3071       return false;
3072 
3073     if (HasUMUL_LOHI) {
3074       // Lo,Hi = umul LHS, RHS.
3075       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
3076                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
3077       Lo = UMulLOHI;
3078       Hi = UMulLOHI.getValue(1);
3079       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3080       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3081       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3082       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3083       return true;
3084     }
3085     if (HasMULHU) {
3086       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3087       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3088       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3089       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3090       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3091       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3092       return true;
3093     }
3094   }
3095   return false;
3096 }
3097 
3098 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3099                                SelectionDAG &DAG) const {
3100   EVT VT = Node->getOperand(0).getValueType();
3101   EVT NVT = Node->getValueType(0);
3102   SDLoc dl(SDValue(Node, 0));
3103 
3104   // FIXME: Only f32 to i64 conversions are supported.
3105   if (VT != MVT::f32 || NVT != MVT::i64)
3106     return false;
3107 
3108   // Expand f32 -> i64 conversion
3109   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3110   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3111   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3112                                 VT.getSizeInBits());
3113   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3114   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3115   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3116   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3117                                      IntVT);
3118   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3119   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3120 
3121   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3122 
3123   auto &DL = DAG.getDataLayout();
3124   SDValue ExponentBits = DAG.getNode(
3125       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3126       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3127   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3128 
3129   SDValue Sign = DAG.getNode(
3130       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3131       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3132   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3133 
3134   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3135       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3136       DAG.getConstant(0x00800000, dl, IntVT));
3137 
3138   R = DAG.getZExtOrTrunc(R, dl, NVT);
3139 
3140   R = DAG.getSelectCC(
3141       dl, Exponent, ExponentLoBit,
3142       DAG.getNode(ISD::SHL, dl, NVT, R,
3143                   DAG.getZExtOrTrunc(
3144                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3145                       dl, getShiftAmountTy(IntVT, DL))),
3146       DAG.getNode(ISD::SRL, dl, NVT, R,
3147                   DAG.getZExtOrTrunc(
3148                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3149                       dl, getShiftAmountTy(IntVT, DL))),
3150       ISD::SETGT);
3151 
3152   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3153       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3154       Sign);
3155 
3156   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3157       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3158   return true;
3159 }
3160 
3161 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3162                                             SelectionDAG &DAG) const {
3163   SDLoc SL(LD);
3164   SDValue Chain = LD->getChain();
3165   SDValue BasePTR = LD->getBasePtr();
3166   EVT SrcVT = LD->getMemoryVT();
3167   ISD::LoadExtType ExtType = LD->getExtensionType();
3168 
3169   unsigned NumElem = SrcVT.getVectorNumElements();
3170 
3171   EVT SrcEltVT = SrcVT.getScalarType();
3172   EVT DstEltVT = LD->getValueType(0).getScalarType();
3173 
3174   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3175   assert(SrcEltVT.isByteSized());
3176 
3177   EVT PtrVT = BasePTR.getValueType();
3178 
3179   SmallVector<SDValue, 8> Vals;
3180   SmallVector<SDValue, 8> LoadChains;
3181 
3182   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3183     SDValue ScalarLoad =
3184         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3185                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3186                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3187                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3188 
3189     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3190                           DAG.getConstant(Stride, SL, PtrVT));
3191 
3192     Vals.push_back(ScalarLoad.getValue(0));
3193     LoadChains.push_back(ScalarLoad.getValue(1));
3194   }
3195 
3196   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3197   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals);
3198 
3199   return DAG.getMergeValues({ Value, NewChain }, SL);
3200 }
3201 
3202 // FIXME: This relies on each element having a byte size, otherwise the stride
3203 // is 0 and just overwrites the same location. ExpandStore currently expects
3204 // this broken behavior.
3205 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3206                                              SelectionDAG &DAG) const {
3207   SDLoc SL(ST);
3208 
3209   SDValue Chain = ST->getChain();
3210   SDValue BasePtr = ST->getBasePtr();
3211   SDValue Value = ST->getValue();
3212   EVT StVT = ST->getMemoryVT();
3213 
3214   // The type of the data we want to save
3215   EVT RegVT = Value.getValueType();
3216   EVT RegSclVT = RegVT.getScalarType();
3217 
3218   // The type of data as saved in memory.
3219   EVT MemSclVT = StVT.getScalarType();
3220 
3221   EVT PtrVT = BasePtr.getValueType();
3222 
3223   // Store Stride in bytes
3224   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3225   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3226   unsigned NumElem = StVT.getVectorNumElements();
3227 
3228   // Extract each of the elements from the original vector and save them into
3229   // memory individually.
3230   SmallVector<SDValue, 8> Stores;
3231   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3232     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3233                               DAG.getConstant(Idx, SL, IdxVT));
3234 
3235     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3236                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3237 
3238     // This scalar TruncStore may be illegal, but we legalize it later.
3239     SDValue Store = DAG.getTruncStore(
3240         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3241         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3242         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3243 
3244     Stores.push_back(Store);
3245   }
3246 
3247   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3248 }
3249 
3250 std::pair<SDValue, SDValue>
3251 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3252   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3253          "unaligned indexed loads not implemented!");
3254   SDValue Chain = LD->getChain();
3255   SDValue Ptr = LD->getBasePtr();
3256   EVT VT = LD->getValueType(0);
3257   EVT LoadedVT = LD->getMemoryVT();
3258   SDLoc dl(LD);
3259   if (VT.isFloatingPoint() || VT.isVector()) {
3260     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3261     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3262       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3263         // Scalarize the load and let the individual components be handled.
3264         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3265         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3266       }
3267 
3268       // Expand to a (misaligned) integer load of the same size,
3269       // then bitconvert to floating point or vector.
3270       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3271                                     LD->getMemOperand());
3272       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3273       if (LoadedVT != VT)
3274         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3275                              ISD::ANY_EXTEND, dl, VT, Result);
3276 
3277       return std::make_pair(Result, newLoad.getValue(1));
3278     }
3279 
3280     // Copy the value to a (aligned) stack slot using (unaligned) integer
3281     // loads and stores, then do a (aligned) load from the stack slot.
3282     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3283     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3284     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3285     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3286 
3287     // Make sure the stack slot is also aligned for the register type.
3288     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3289 
3290     SmallVector<SDValue, 8> Stores;
3291     SDValue StackPtr = StackBase;
3292     unsigned Offset = 0;
3293 
3294     EVT PtrVT = Ptr.getValueType();
3295     EVT StackPtrVT = StackPtr.getValueType();
3296 
3297     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3298     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3299 
3300     // Do all but one copies using the full register width.
3301     for (unsigned i = 1; i < NumRegs; i++) {
3302       // Load one integer register's worth from the original location.
3303       SDValue Load = DAG.getLoad(
3304           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3305           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3306           LD->getAAInfo());
3307       // Follow the load with a store to the stack slot.  Remember the store.
3308       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3309                                     MachinePointerInfo()));
3310       // Increment the pointers.
3311       Offset += RegBytes;
3312       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3313       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3314                              StackPtrIncrement);
3315     }
3316 
3317     // The last copy may be partial.  Do an extending load.
3318     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3319                                   8 * (LoadedBytes - Offset));
3320     SDValue Load =
3321         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3322                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3323                        MinAlign(LD->getAlignment(), Offset),
3324                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3325     // Follow the load with a store to the stack slot.  Remember the store.
3326     // On big-endian machines this requires a truncating store to ensure
3327     // that the bits end up in the right place.
3328     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3329                                        MachinePointerInfo(), MemVT));
3330 
3331     // The order of the stores doesn't matter - say it with a TokenFactor.
3332     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3333 
3334     // Finally, perform the original load only redirected to the stack slot.
3335     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3336                           MachinePointerInfo(), LoadedVT);
3337 
3338     // Callers expect a MERGE_VALUES node.
3339     return std::make_pair(Load, TF);
3340   }
3341 
3342   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3343          "Unaligned load of unsupported type.");
3344 
3345   // Compute the new VT that is half the size of the old one.  This is an
3346   // integer MVT.
3347   unsigned NumBits = LoadedVT.getSizeInBits();
3348   EVT NewLoadedVT;
3349   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3350   NumBits >>= 1;
3351 
3352   unsigned Alignment = LD->getAlignment();
3353   unsigned IncrementSize = NumBits / 8;
3354   ISD::LoadExtType HiExtType = LD->getExtensionType();
3355 
3356   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3357   if (HiExtType == ISD::NON_EXTLOAD)
3358     HiExtType = ISD::ZEXTLOAD;
3359 
3360   // Load the value in two parts
3361   SDValue Lo, Hi;
3362   if (DAG.getDataLayout().isLittleEndian()) {
3363     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3364                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3365                         LD->getAAInfo());
3366     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3367                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3368     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3369                         LD->getPointerInfo().getWithOffset(IncrementSize),
3370                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3371                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3372   } else {
3373     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3374                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3375                         LD->getAAInfo());
3376     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3377                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3378     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3379                         LD->getPointerInfo().getWithOffset(IncrementSize),
3380                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3381                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3382   }
3383 
3384   // aggregate the two parts
3385   SDValue ShiftAmount =
3386       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3387                                                     DAG.getDataLayout()));
3388   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3389   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3390 
3391   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3392                              Hi.getValue(1));
3393 
3394   return std::make_pair(Result, TF);
3395 }
3396 
3397 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3398                                              SelectionDAG &DAG) const {
3399   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3400          "unaligned indexed stores not implemented!");
3401   SDValue Chain = ST->getChain();
3402   SDValue Ptr = ST->getBasePtr();
3403   SDValue Val = ST->getValue();
3404   EVT VT = Val.getValueType();
3405   int Alignment = ST->getAlignment();
3406 
3407   SDLoc dl(ST);
3408   if (ST->getMemoryVT().isFloatingPoint() ||
3409       ST->getMemoryVT().isVector()) {
3410     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3411     if (isTypeLegal(intVT)) {
3412       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3413         // Scalarize the store and let the individual components be handled.
3414         SDValue Result = scalarizeVectorStore(ST, DAG);
3415 
3416         return Result;
3417       }
3418       // Expand to a bitconvert of the value to the integer type of the
3419       // same size, then a (misaligned) int store.
3420       // FIXME: Does not handle truncating floating point stores!
3421       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3422       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3423                             Alignment, ST->getMemOperand()->getFlags());
3424       return Result;
3425     }
3426     // Do a (aligned) store to a stack slot, then copy from the stack slot
3427     // to the final destination using (unaligned) integer loads and stores.
3428     EVT StoredVT = ST->getMemoryVT();
3429     MVT RegVT =
3430       getRegisterType(*DAG.getContext(),
3431                       EVT::getIntegerVT(*DAG.getContext(),
3432                                         StoredVT.getSizeInBits()));
3433     EVT PtrVT = Ptr.getValueType();
3434     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3435     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3436     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3437 
3438     // Make sure the stack slot is also aligned for the register type.
3439     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3440 
3441     // Perform the original store, only redirected to the stack slot.
3442     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
3443                                       MachinePointerInfo(), StoredVT);
3444 
3445     EVT StackPtrVT = StackPtr.getValueType();
3446 
3447     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3448     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3449     SmallVector<SDValue, 8> Stores;
3450     unsigned Offset = 0;
3451 
3452     // Do all but one copies using the full register width.
3453     for (unsigned i = 1; i < NumRegs; i++) {
3454       // Load one integer register's worth from the stack slot.
3455       SDValue Load =
3456           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
3457       // Store it to the final location.  Remember the store.
3458       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3459                                     ST->getPointerInfo().getWithOffset(Offset),
3460                                     MinAlign(ST->getAlignment(), Offset),
3461                                     ST->getMemOperand()->getFlags()));
3462       // Increment the pointers.
3463       Offset += RegBytes;
3464       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3465                              StackPtr, StackPtrIncrement);
3466       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3467     }
3468 
3469     // The last store may be partial.  Do a truncating store.  On big-endian
3470     // machines this requires an extending load from the stack slot to ensure
3471     // that the bits are in the right place.
3472     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3473                                   8 * (StoredBytes - Offset));
3474 
3475     // Load from the stack slot.
3476     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3477                                   MachinePointerInfo(), MemVT);
3478 
3479     Stores.push_back(
3480         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3481                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3482                           MinAlign(ST->getAlignment(), Offset),
3483                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3484     // The order of the stores doesn't matter - say it with a TokenFactor.
3485     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3486     return Result;
3487   }
3488 
3489   assert(ST->getMemoryVT().isInteger() &&
3490          !ST->getMemoryVT().isVector() &&
3491          "Unaligned store of unknown type.");
3492   // Get the half-size VT
3493   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3494   int NumBits = NewStoredVT.getSizeInBits();
3495   int IncrementSize = NumBits / 8;
3496 
3497   // Divide the stored value in two parts.
3498   SDValue ShiftAmount =
3499       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3500                                                     DAG.getDataLayout()));
3501   SDValue Lo = Val;
3502   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3503 
3504   // Store the two parts
3505   SDValue Store1, Store2;
3506   Store1 = DAG.getTruncStore(Chain, dl,
3507                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3508                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3509                              ST->getMemOperand()->getFlags());
3510 
3511   EVT PtrVT = Ptr.getValueType();
3512   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3513                     DAG.getConstant(IncrementSize, dl, PtrVT));
3514   Alignment = MinAlign(Alignment, IncrementSize);
3515   Store2 = DAG.getTruncStore(
3516       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3517       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3518       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3519 
3520   SDValue Result =
3521     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3522   return Result;
3523 }
3524 
3525 //===----------------------------------------------------------------------===//
3526 // Implementation of Emulated TLS Model
3527 //===----------------------------------------------------------------------===//
3528 
3529 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3530                                                 SelectionDAG &DAG) const {
3531   // Access to address of TLS varialbe xyz is lowered to a function call:
3532   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3533   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3534   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3535   SDLoc dl(GA);
3536 
3537   ArgListTy Args;
3538   ArgListEntry Entry;
3539   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3540   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3541   StringRef EmuTlsVarName(NameString);
3542   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3543   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3544   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3545   Entry.Ty = VoidPtrType;
3546   Args.push_back(Entry);
3547 
3548   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3549 
3550   TargetLowering::CallLoweringInfo CLI(DAG);
3551   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3552   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3553   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3554 
3555   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3556   // At last for X86 targets, maybe good for other targets too?
3557   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3558   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3559   MFI.setHasCalls(true);
3560 
3561   assert((GA->getOffset() == 0) &&
3562          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3563   return CallResult.first;
3564 }
3565 
3566 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3567                                                 SelectionDAG &DAG) const {
3568   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3569   if (!isCtlzFast())
3570     return SDValue();
3571   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3572   SDLoc dl(Op);
3573   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3574     if (C->isNullValue() && CC == ISD::SETEQ) {
3575       EVT VT = Op.getOperand(0).getValueType();
3576       SDValue Zext = Op.getOperand(0);
3577       if (VT.bitsLT(MVT::i32)) {
3578         VT = MVT::i32;
3579         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3580       }
3581       unsigned Log2b = Log2_32(VT.getSizeInBits());
3582       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3583       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3584                                 DAG.getConstant(Log2b, dl, MVT::i32));
3585       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3586     }
3587   }
3588   return SDValue();
3589 }
3590