1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115 }
116 
117 /// Generate a libcall taking the given operands as arguments and returning a
118 /// result of type RetVT.
119 std::pair<SDValue, SDValue>
120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
121                             ArrayRef<SDValue> Ops, bool isSigned,
122                             const SDLoc &dl, bool doesNotReturn,
123                             bool isReturnValueUsed,
124                             bool isPostTypeLegalization) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setIsPostTypeLegalization(isPostTypeLegalization)
151       .setSExtResult(signExtend)
152       .setZExtResult(!signExtend);
153   return LowerCallTo(CLI);
154 }
155 
156 bool
157 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
158                                          unsigned Limit, uint64_t Size,
159                                          unsigned DstAlign, unsigned SrcAlign,
160                                          bool IsMemset,
161                                          bool ZeroMemset,
162                                          bool MemcpyStrSrc,
163                                          bool AllowOverlap,
164                                          unsigned DstAS, unsigned SrcAS,
165                                          const AttributeList &FuncAttributes) const {
166   // If 'SrcAlign' is zero, that means the memory operation does not need to
167   // load the value, i.e. memset or memcpy from constant string. Otherwise,
168   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
169   // is the specified alignment of the memory operation. If it is zero, that
170   // means it's possible to change the alignment of the destination.
171   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
172   // not need to be loaded.
173   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
174     return false;
175 
176   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
177                                IsMemset, ZeroMemset, MemcpyStrSrc,
178                                FuncAttributes);
179 
180   if (VT == MVT::Other) {
181     // Use the largest integer type whose alignment constraints are satisfied.
182     // We only need to check DstAlign here as SrcAlign is always greater or
183     // equal to DstAlign (or zero).
184     VT = MVT::i64;
185     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
186            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
187       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
188     assert(VT.isInteger());
189 
190     // Find the largest legal integer type.
191     MVT LVT = MVT::i64;
192     while (!isTypeLegal(LVT))
193       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
194     assert(LVT.isInteger());
195 
196     // If the type we've chosen is larger than the largest legal integer type
197     // then use that instead.
198     if (VT.bitsGT(LVT))
199       VT = LVT;
200   }
201 
202   unsigned NumMemOps = 0;
203   while (Size != 0) {
204     unsigned VTSize = VT.getSizeInBits() / 8;
205     while (VTSize > Size) {
206       // For now, only use non-vector load / store's for the left-over pieces.
207       EVT NewVT = VT;
208       unsigned NewVTSize;
209 
210       bool Found = false;
211       if (VT.isVector() || VT.isFloatingPoint()) {
212         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
213         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
214             isSafeMemOpType(NewVT.getSimpleVT()))
215           Found = true;
216         else if (NewVT == MVT::i64 &&
217                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
218                  isSafeMemOpType(MVT::f64)) {
219           // i64 is usually not legal on 32-bit targets, but f64 may be.
220           NewVT = MVT::f64;
221           Found = true;
222         }
223       }
224 
225       if (!Found) {
226         do {
227           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
228           if (NewVT == MVT::i8)
229             break;
230         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
231       }
232       NewVTSize = NewVT.getSizeInBits() / 8;
233 
234       // If the new VT cannot cover all of the remaining bits, then consider
235       // issuing a (or a pair of) unaligned and overlapping load / store.
236       bool Fast;
237       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
238           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) &&
239           Fast)
240         VTSize = Size;
241       else {
242         VT = NewVT;
243         VTSize = NewVTSize;
244       }
245     }
246 
247     if (++NumMemOps > Limit)
248       return false;
249 
250     MemOps.push_back(VT);
251     Size -= VTSize;
252   }
253 
254   return true;
255 }
256 
257 /// Soften the operands of a comparison. This code is shared among BR_CC,
258 /// SELECT_CC, and SETCC handlers.
259 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
260                                          SDValue &NewLHS, SDValue &NewRHS,
261                                          ISD::CondCode &CCCode,
262                                          const SDLoc &dl) const {
263   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
264          && "Unsupported setcc type!");
265 
266   // Expand into one or more soft-fp libcall(s).
267   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
268   bool ShouldInvertCC = false;
269   switch (CCCode) {
270   case ISD::SETEQ:
271   case ISD::SETOEQ:
272     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
273           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
274           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
275     break;
276   case ISD::SETNE:
277   case ISD::SETUNE:
278     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
279           (VT == MVT::f64) ? RTLIB::UNE_F64 :
280           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
281     break;
282   case ISD::SETGE:
283   case ISD::SETOGE:
284     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
285           (VT == MVT::f64) ? RTLIB::OGE_F64 :
286           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
287     break;
288   case ISD::SETLT:
289   case ISD::SETOLT:
290     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
291           (VT == MVT::f64) ? RTLIB::OLT_F64 :
292           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
293     break;
294   case ISD::SETLE:
295   case ISD::SETOLE:
296     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
297           (VT == MVT::f64) ? RTLIB::OLE_F64 :
298           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
299     break;
300   case ISD::SETGT:
301   case ISD::SETOGT:
302     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
303           (VT == MVT::f64) ? RTLIB::OGT_F64 :
304           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
305     break;
306   case ISD::SETUO:
307     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
308           (VT == MVT::f64) ? RTLIB::UO_F64 :
309           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
310     break;
311   case ISD::SETO:
312     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
313           (VT == MVT::f64) ? RTLIB::O_F64 :
314           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
315     break;
316   case ISD::SETONE:
317     // SETONE = SETOLT | SETOGT
318     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
319           (VT == MVT::f64) ? RTLIB::OLT_F64 :
320           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
321     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
322           (VT == MVT::f64) ? RTLIB::OGT_F64 :
323           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
324     break;
325   case ISD::SETUEQ:
326     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
327           (VT == MVT::f64) ? RTLIB::UO_F64 :
328           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
329     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
330           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
331           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
332     break;
333   default:
334     // Invert CC for unordered comparisons
335     ShouldInvertCC = true;
336     switch (CCCode) {
337     case ISD::SETULT:
338       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
339             (VT == MVT::f64) ? RTLIB::OGE_F64 :
340             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
341       break;
342     case ISD::SETULE:
343       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344             (VT == MVT::f64) ? RTLIB::OGT_F64 :
345             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346       break;
347     case ISD::SETUGT:
348       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
349             (VT == MVT::f64) ? RTLIB::OLE_F64 :
350             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
351       break;
352     case ISD::SETUGE:
353       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
354             (VT == MVT::f64) ? RTLIB::OLT_F64 :
355             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
356       break;
357     default: llvm_unreachable("Do not know how to soften this setcc!");
358     }
359   }
360 
361   // Use the target specific return value for comparions lib calls.
362   EVT RetVT = getCmpLibcallReturnType();
363   SDValue Ops[2] = {NewLHS, NewRHS};
364   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
365                        dl).first;
366   NewRHS = DAG.getConstant(0, dl, RetVT);
367 
368   CCCode = getCmpLibcallCC(LC1);
369   if (ShouldInvertCC)
370     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
371 
372   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
373     SDValue Tmp = DAG.getNode(
374         ISD::SETCC, dl,
375         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
376         NewLHS, NewRHS, DAG.getCondCode(CCCode));
377     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
378                          dl).first;
379     NewLHS = DAG.getNode(
380         ISD::SETCC, dl,
381         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
382         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
383     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
384     NewRHS = SDValue();
385   }
386 }
387 
388 /// Return the entry encoding for a jump table in the current function. The
389 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
390 unsigned TargetLowering::getJumpTableEncoding() const {
391   // In non-pic modes, just use the address of a block.
392   if (!isPositionIndependent())
393     return MachineJumpTableInfo::EK_BlockAddress;
394 
395   // In PIC mode, if the target supports a GPRel32 directive, use it.
396   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
397     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
398 
399   // Otherwise, use a label difference.
400   return MachineJumpTableInfo::EK_LabelDifference32;
401 }
402 
403 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
404                                                  SelectionDAG &DAG) const {
405   // If our PIC model is GP relative, use the global offset table as the base.
406   unsigned JTEncoding = getJumpTableEncoding();
407 
408   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
409       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
410     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
411 
412   return Table;
413 }
414 
415 /// This returns the relocation base for the given PIC jumptable, the same as
416 /// getPICJumpTableRelocBase, but as an MCExpr.
417 const MCExpr *
418 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
419                                              unsigned JTI,MCContext &Ctx) const{
420   // The normal PIC reloc base is the label at the start of the jump table.
421   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
422 }
423 
424 bool
425 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
426   const TargetMachine &TM = getTargetMachine();
427   const GlobalValue *GV = GA->getGlobal();
428 
429   // If the address is not even local to this DSO we will have to load it from
430   // a got and then add the offset.
431   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
432     return false;
433 
434   // If the code is position independent we will have to add a base register.
435   if (isPositionIndependent())
436     return false;
437 
438   // Otherwise we can do it.
439   return true;
440 }
441 
442 //===----------------------------------------------------------------------===//
443 //  Optimization Methods
444 //===----------------------------------------------------------------------===//
445 
446 /// If the specified instruction has a constant integer operand and there are
447 /// bits set in that constant that are not demanded, then clear those bits and
448 /// return true.
449 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
450                                             TargetLoweringOpt &TLO) const {
451   SDLoc DL(Op);
452   unsigned Opcode = Op.getOpcode();
453 
454   // Do target-specific constant optimization.
455   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
456     return TLO.New.getNode();
457 
458   // FIXME: ISD::SELECT, ISD::SELECT_CC
459   switch (Opcode) {
460   default:
461     break;
462   case ISD::XOR:
463   case ISD::AND:
464   case ISD::OR: {
465     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
466     if (!Op1C)
467       return false;
468 
469     // If this is a 'not' op, don't touch it because that's a canonical form.
470     const APInt &C = Op1C->getAPIntValue();
471     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
472       return false;
473 
474     if (!C.isSubsetOf(Demanded)) {
475       EVT VT = Op.getValueType();
476       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
477       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
478       return TLO.CombineTo(Op, NewOp);
479     }
480 
481     break;
482   }
483   }
484 
485   return false;
486 }
487 
488 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
489 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
490 /// generalized for targets with other types of implicit widening casts.
491 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
492                                       const APInt &Demanded,
493                                       TargetLoweringOpt &TLO) const {
494   assert(Op.getNumOperands() == 2 &&
495          "ShrinkDemandedOp only supports binary operators!");
496   assert(Op.getNode()->getNumValues() == 1 &&
497          "ShrinkDemandedOp only supports nodes with one result!");
498 
499   SelectionDAG &DAG = TLO.DAG;
500   SDLoc dl(Op);
501 
502   // Early return, as this function cannot handle vector types.
503   if (Op.getValueType().isVector())
504     return false;
505 
506   // Don't do this if the node has another user, which may require the
507   // full value.
508   if (!Op.getNode()->hasOneUse())
509     return false;
510 
511   // Search for the smallest integer type with free casts to and from
512   // Op's type. For expedience, just check power-of-2 integer types.
513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
514   unsigned DemandedSize = Demanded.getActiveBits();
515   unsigned SmallVTBits = DemandedSize;
516   if (!isPowerOf2_32(SmallVTBits))
517     SmallVTBits = NextPowerOf2(SmallVTBits);
518   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
519     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
520     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
521         TLI.isZExtFree(SmallVT, Op.getValueType())) {
522       // We found a type with free casts.
523       SDValue X = DAG.getNode(
524           Op.getOpcode(), dl, SmallVT,
525           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
526           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
527       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
528       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
529       return TLO.CombineTo(Op, Z);
530     }
531   }
532   return false;
533 }
534 
535 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
536                                           DAGCombinerInfo &DCI) const {
537   SelectionDAG &DAG = DCI.DAG;
538   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
539                         !DCI.isBeforeLegalizeOps());
540   KnownBits Known;
541 
542   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
543   if (Simplified) {
544     DCI.AddToWorklist(Op.getNode());
545     DCI.CommitTargetLoweringOpt(TLO);
546   }
547   return Simplified;
548 }
549 
550 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
551                                           KnownBits &Known,
552                                           TargetLoweringOpt &TLO,
553                                           unsigned Depth,
554                                           bool AssumeSingleUse) const {
555   EVT VT = Op.getValueType();
556   APInt DemandedElts = VT.isVector()
557                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
558                            : APInt(1, 1);
559   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
560                               AssumeSingleUse);
561 }
562 
563 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
564 /// result of Op are ever used downstream. If we can use this information to
565 /// simplify Op, create a new simplified DAG node and return true, returning the
566 /// original and new nodes in Old and New. Otherwise, analyze the expression and
567 /// return a mask of Known bits for the expression (used to simplify the
568 /// caller).  The Known bits may only be accurate for those bits in the
569 /// OriginalDemandedBits and OriginalDemandedElts.
570 bool TargetLowering::SimplifyDemandedBits(
571     SDValue Op, const APInt &OriginalDemandedBits,
572     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
573     unsigned Depth, bool AssumeSingleUse) const {
574   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
575   assert(Op.getScalarValueSizeInBits() == BitWidth &&
576          "Mask size mismatches value type size!");
577 
578   unsigned NumElts = OriginalDemandedElts.getBitWidth();
579   assert((!Op.getValueType().isVector() ||
580           NumElts == Op.getValueType().getVectorNumElements()) &&
581          "Unexpected vector size");
582 
583   APInt DemandedBits = OriginalDemandedBits;
584   APInt DemandedElts = OriginalDemandedElts;
585   SDLoc dl(Op);
586   auto &DL = TLO.DAG.getDataLayout();
587 
588   // Don't know anything.
589   Known = KnownBits(BitWidth);
590 
591   if (Op.getOpcode() == ISD::Constant) {
592     // We know all of the bits for a constant!
593     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
594     Known.Zero = ~Known.One;
595     return false;
596   }
597 
598   // Other users may use these bits.
599   EVT VT = Op.getValueType();
600   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
601     if (Depth != 0) {
602       // If not at the root, Just compute the Known bits to
603       // simplify things downstream.
604       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
605       return false;
606     }
607     // If this is the root being simplified, allow it to have multiple uses,
608     // just set the DemandedBits/Elts to all bits.
609     DemandedBits = APInt::getAllOnesValue(BitWidth);
610     DemandedElts = APInt::getAllOnesValue(NumElts);
611   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
612     // Not demanding any bits/elts from Op.
613     if (!Op.isUndef())
614       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
615     return false;
616   } else if (Depth == 6) { // Limit search depth.
617     return false;
618   }
619 
620   KnownBits Known2, KnownOut;
621   switch (Op.getOpcode()) {
622   case ISD::SCALAR_TO_VECTOR: {
623     if (!DemandedElts[0])
624       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
625 
626     KnownBits SrcKnown;
627     SDValue Src = Op.getOperand(0);
628     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
629     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
630     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
631       return true;
632     Known = SrcKnown.zextOrTrunc(BitWidth, false);
633     break;
634   }
635   case ISD::BUILD_VECTOR:
636     // Collect the known bits that are shared by every constant vector element.
637     Known.Zero.setAllBits(); Known.One.setAllBits();
638     for (SDValue SrcOp : Op->ops()) {
639       if (!isa<ConstantSDNode>(SrcOp)) {
640         // We can only handle all constant values - bail out with no known bits.
641         Known = KnownBits(BitWidth);
642         return false;
643       }
644       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
645       Known2.Zero = ~Known2.One;
646 
647       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
648       if (Known2.One.getBitWidth() != BitWidth) {
649         assert(Known2.getBitWidth() > BitWidth &&
650                "Expected BUILD_VECTOR implicit truncation");
651         Known2 = Known2.trunc(BitWidth);
652       }
653 
654       // Known bits are the values that are shared by every element.
655       // TODO: support per-element known bits.
656       Known.One &= Known2.One;
657       Known.Zero &= Known2.Zero;
658     }
659     return false; // Don't fall through, will infinitely loop.
660   case ISD::INSERT_VECTOR_ELT: {
661     SDValue Vec = Op.getOperand(0);
662     SDValue Scl = Op.getOperand(1);
663     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
664     EVT VecVT = Vec.getValueType();
665 
666     // If index isn't constant, assume we need all vector elements AND the
667     // inserted element.
668     APInt DemandedVecElts(OriginalDemandedElts);
669     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
670       unsigned Idx = CIdx->getZExtValue();
671       DemandedVecElts.clearBit(Idx);
672 
673       // Inserted element is not required.
674       if (!OriginalDemandedElts[Idx])
675         return TLO.CombineTo(Op, Vec);
676     }
677 
678     KnownBits KnownScl;
679     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
680     APInt DemandedSclBits = OriginalDemandedBits.zextOrTrunc(NumSclBits);
681     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
682       return true;
683 
684     Known = KnownScl.zextOrTrunc(BitWidth, false);
685 
686     KnownBits KnownVec;
687     if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts,
688                              KnownVec, TLO, Depth + 1))
689       return true;
690 
691     if (!!DemandedVecElts) {
692       Known.One &= KnownVec.One;
693       Known.Zero &= KnownVec.Zero;
694     }
695 
696     return false;
697   }
698   case ISD::INSERT_SUBVECTOR: {
699     SDValue Base = Op.getOperand(0);
700     SDValue Sub = Op.getOperand(1);
701     EVT SubVT = Sub.getValueType();
702     unsigned NumSubElts = SubVT.getVectorNumElements();
703 
704     // If index isn't constant, assume we need the original demanded base
705     // elements and ALL the inserted subvector elements.
706     APInt BaseElts = DemandedElts;
707     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
708     if (isa<ConstantSDNode>(Op.getOperand(2))) {
709       const APInt &Idx = Op.getConstantOperandAPInt(2);
710       if (Idx.ule(NumElts - NumSubElts)) {
711         unsigned SubIdx = Idx.getZExtValue();
712         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
713         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
714       }
715     }
716 
717     KnownBits KnownSub, KnownBase;
718     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
719                              Depth + 1))
720       return true;
721     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
722                              Depth + 1))
723       return true;
724 
725     Known.Zero.setAllBits();
726     Known.One.setAllBits();
727     if (!!SubElts) {
728         Known.One &= KnownSub.One;
729         Known.Zero &= KnownSub.Zero;
730     }
731     if (!!BaseElts) {
732         Known.One &= KnownBase.One;
733         Known.Zero &= KnownBase.Zero;
734     }
735     break;
736   }
737   case ISD::CONCAT_VECTORS: {
738     Known.Zero.setAllBits();
739     Known.One.setAllBits();
740     EVT SubVT = Op.getOperand(0).getValueType();
741     unsigned NumSubVecs = Op.getNumOperands();
742     unsigned NumSubElts = SubVT.getVectorNumElements();
743     for (unsigned i = 0; i != NumSubVecs; ++i) {
744       APInt DemandedSubElts =
745           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
746       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
747                                Known2, TLO, Depth + 1))
748         return true;
749       // Known bits are shared by every demanded subvector element.
750       if (!!DemandedSubElts) {
751         Known.One &= Known2.One;
752         Known.Zero &= Known2.Zero;
753       }
754     }
755     break;
756   }
757   case ISD::VECTOR_SHUFFLE: {
758     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
759 
760     // Collect demanded elements from shuffle operands..
761     APInt DemandedLHS(NumElts, 0);
762     APInt DemandedRHS(NumElts, 0);
763     for (unsigned i = 0; i != NumElts; ++i) {
764       if (!DemandedElts[i])
765         continue;
766       int M = ShuffleMask[i];
767       if (M < 0) {
768         // For UNDEF elements, we don't know anything about the common state of
769         // the shuffle result.
770         DemandedLHS.clearAllBits();
771         DemandedRHS.clearAllBits();
772         break;
773       }
774       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
775       if (M < (int)NumElts)
776         DemandedLHS.setBit(M);
777       else
778         DemandedRHS.setBit(M - NumElts);
779     }
780 
781     if (!!DemandedLHS || !!DemandedRHS) {
782       Known.Zero.setAllBits();
783       Known.One.setAllBits();
784       if (!!DemandedLHS) {
785         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
786                                  Known2, TLO, Depth + 1))
787           return true;
788         Known.One &= Known2.One;
789         Known.Zero &= Known2.Zero;
790       }
791       if (!!DemandedRHS) {
792         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
793                                  Known2, TLO, Depth + 1))
794           return true;
795         Known.One &= Known2.One;
796         Known.Zero &= Known2.Zero;
797       }
798     }
799     break;
800   }
801   case ISD::AND: {
802     SDValue Op0 = Op.getOperand(0);
803     SDValue Op1 = Op.getOperand(1);
804 
805     // If the RHS is a constant, check to see if the LHS would be zero without
806     // using the bits from the RHS.  Below, we use knowledge about the RHS to
807     // simplify the LHS, here we're using information from the LHS to simplify
808     // the RHS.
809     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
810       // Do not increment Depth here; that can cause an infinite loop.
811       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
812       // If the LHS already has zeros where RHSC does, this 'and' is dead.
813       if ((LHSKnown.Zero & DemandedBits) ==
814           (~RHSC->getAPIntValue() & DemandedBits))
815         return TLO.CombineTo(Op, Op0);
816 
817       // If any of the set bits in the RHS are known zero on the LHS, shrink
818       // the constant.
819       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
820         return true;
821 
822       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
823       // constant, but if this 'and' is only clearing bits that were just set by
824       // the xor, then this 'and' can be eliminated by shrinking the mask of
825       // the xor. For example, for a 32-bit X:
826       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
827       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
828           LHSKnown.One == ~RHSC->getAPIntValue()) {
829         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
830         return TLO.CombineTo(Op, Xor);
831       }
832     }
833 
834     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
835                              Depth + 1))
836       return true;
837     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
838     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
839                              Known2, TLO, Depth + 1))
840       return true;
841     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
842 
843     // If all of the demanded bits are known one on one side, return the other.
844     // These bits cannot contribute to the result of the 'and'.
845     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
846       return TLO.CombineTo(Op, Op0);
847     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
848       return TLO.CombineTo(Op, Op1);
849     // If all of the demanded bits in the inputs are known zeros, return zero.
850     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
851       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
852     // If the RHS is a constant, see if we can simplify it.
853     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
854       return true;
855     // If the operation can be done in a smaller type, do so.
856     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
857       return true;
858 
859     // Output known-1 bits are only known if set in both the LHS & RHS.
860     Known.One &= Known2.One;
861     // Output known-0 are known to be clear if zero in either the LHS | RHS.
862     Known.Zero |= Known2.Zero;
863     break;
864   }
865   case ISD::OR: {
866     SDValue Op0 = Op.getOperand(0);
867     SDValue Op1 = Op.getOperand(1);
868 
869     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
870                              Depth + 1))
871       return true;
872     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
873     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
874                              Known2, TLO, Depth + 1))
875       return true;
876     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
877 
878     // If all of the demanded bits are known zero on one side, return the other.
879     // These bits cannot contribute to the result of the 'or'.
880     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
881       return TLO.CombineTo(Op, Op0);
882     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
883       return TLO.CombineTo(Op, Op1);
884     // If the RHS is a constant, see if we can simplify it.
885     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
886       return true;
887     // If the operation can be done in a smaller type, do so.
888     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
889       return true;
890 
891     // Output known-0 bits are only known if clear in both the LHS & RHS.
892     Known.Zero &= Known2.Zero;
893     // Output known-1 are known to be set if set in either the LHS | RHS.
894     Known.One |= Known2.One;
895     break;
896   }
897   case ISD::XOR: {
898     SDValue Op0 = Op.getOperand(0);
899     SDValue Op1 = Op.getOperand(1);
900 
901     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
902                              Depth + 1))
903       return true;
904     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
905     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
906                              Depth + 1))
907       return true;
908     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
909 
910     // If all of the demanded bits are known zero on one side, return the other.
911     // These bits cannot contribute to the result of the 'xor'.
912     if (DemandedBits.isSubsetOf(Known.Zero))
913       return TLO.CombineTo(Op, Op0);
914     if (DemandedBits.isSubsetOf(Known2.Zero))
915       return TLO.CombineTo(Op, Op1);
916     // If the operation can be done in a smaller type, do so.
917     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
918       return true;
919 
920     // If all of the unknown bits are known to be zero on one side or the other
921     // (but not both) turn this into an *inclusive* or.
922     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
923     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
924       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
925 
926     // Output known-0 bits are known if clear or set in both the LHS & RHS.
927     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
928     // Output known-1 are known to be set if set in only one of the LHS, RHS.
929     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
930 
931     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
932       // If one side is a constant, and all of the known set bits on the other
933       // side are also set in the constant, turn this into an AND, as we know
934       // the bits will be cleared.
935       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
936       // NB: it is okay if more bits are known than are requested
937       if (C->getAPIntValue() == Known2.One) {
938         SDValue ANDC =
939             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
940         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
941       }
942 
943       // If the RHS is a constant, see if we can change it. Don't alter a -1
944       // constant because that's a 'not' op, and that is better for combining
945       // and codegen.
946       if (!C->isAllOnesValue()) {
947         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
948           // We're flipping all demanded bits. Flip the undemanded bits too.
949           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
950           return TLO.CombineTo(Op, New);
951         }
952         // If we can't turn this into a 'not', try to shrink the constant.
953         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
954           return true;
955       }
956     }
957 
958     Known = std::move(KnownOut);
959     break;
960   }
961   case ISD::SELECT:
962     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
963                              Depth + 1))
964       return true;
965     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
966                              Depth + 1))
967       return true;
968     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
969     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
970 
971     // If the operands are constants, see if we can simplify them.
972     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
973       return true;
974 
975     // Only known if known in both the LHS and RHS.
976     Known.One &= Known2.One;
977     Known.Zero &= Known2.Zero;
978     break;
979   case ISD::SELECT_CC:
980     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
981                              Depth + 1))
982       return true;
983     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
984                              Depth + 1))
985       return true;
986     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
987     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
988 
989     // If the operands are constants, see if we can simplify them.
990     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
991       return true;
992 
993     // Only known if known in both the LHS and RHS.
994     Known.One &= Known2.One;
995     Known.Zero &= Known2.Zero;
996     break;
997   case ISD::SETCC: {
998     SDValue Op0 = Op.getOperand(0);
999     SDValue Op1 = Op.getOperand(1);
1000     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1001     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1002     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1003     // -1, we may be able to bypass the setcc.
1004     if (DemandedBits.isSignMask() &&
1005         Op0.getScalarValueSizeInBits() == BitWidth &&
1006         getBooleanContents(VT) ==
1007             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1008       // If we're testing X < 0, then this compare isn't needed - just use X!
1009       // FIXME: We're limiting to integer types here, but this should also work
1010       // if we don't care about FP signed-zero. The use of SETLT with FP means
1011       // that we don't care about NaNs.
1012       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1013           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1014         return TLO.CombineTo(Op, Op0);
1015 
1016       // TODO: Should we check for other forms of sign-bit comparisons?
1017       // Examples: X <= -1, X >= 0
1018     }
1019     if (getBooleanContents(Op0.getValueType()) ==
1020             TargetLowering::ZeroOrOneBooleanContent &&
1021         BitWidth > 1)
1022       Known.Zero.setBitsFrom(1);
1023     break;
1024   }
1025   case ISD::SHL: {
1026     SDValue Op0 = Op.getOperand(0);
1027     SDValue Op1 = Op.getOperand(1);
1028 
1029     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1030       // If the shift count is an invalid immediate, don't do anything.
1031       if (SA->getAPIntValue().uge(BitWidth))
1032         break;
1033 
1034       unsigned ShAmt = SA->getZExtValue();
1035 
1036       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1037       // single shift.  We can do this if the bottom bits (which are shifted
1038       // out) are never demanded.
1039       if (Op0.getOpcode() == ISD::SRL) {
1040         if (ShAmt &&
1041             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1042           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
1043             if (SA2->getAPIntValue().ult(BitWidth)) {
1044               unsigned C1 = SA2->getZExtValue();
1045               unsigned Opc = ISD::SHL;
1046               int Diff = ShAmt - C1;
1047               if (Diff < 0) {
1048                 Diff = -Diff;
1049                 Opc = ISD::SRL;
1050               }
1051 
1052               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1053               return TLO.CombineTo(
1054                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1055             }
1056           }
1057         }
1058       }
1059 
1060       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1061                                Known, TLO, Depth + 1))
1062         return true;
1063 
1064       // Try shrinking the operation as long as the shift amount will still be
1065       // in range.
1066       if ((ShAmt < DemandedBits.getActiveBits()) &&
1067           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1068         return true;
1069 
1070       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1071       // are not demanded. This will likely allow the anyext to be folded away.
1072       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1073         SDValue InnerOp = Op0.getOperand(0);
1074         EVT InnerVT = InnerOp.getValueType();
1075         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1076         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1077             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1078           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1079           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1080             ShTy = InnerVT;
1081           SDValue NarrowShl =
1082               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1083                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1084           return TLO.CombineTo(
1085               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1086         }
1087         // Repeat the SHL optimization above in cases where an extension
1088         // intervenes: (shl (anyext (shr x, c1)), c2) to
1089         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1090         // aren't demanded (as above) and that the shifted upper c1 bits of
1091         // x aren't demanded.
1092         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1093             InnerOp.hasOneUse()) {
1094           if (ConstantSDNode *SA2 =
1095                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1096             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1097             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1098                 DemandedBits.getActiveBits() <=
1099                     (InnerBits - InnerShAmt + ShAmt) &&
1100                 DemandedBits.countTrailingZeros() >= ShAmt) {
1101               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1102                                                   Op1.getValueType());
1103               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1104                                                InnerOp.getOperand(0));
1105               return TLO.CombineTo(
1106                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1107             }
1108           }
1109         }
1110       }
1111 
1112       Known.Zero <<= ShAmt;
1113       Known.One <<= ShAmt;
1114       // low bits known zero.
1115       Known.Zero.setLowBits(ShAmt);
1116     }
1117     break;
1118   }
1119   case ISD::SRL: {
1120     SDValue Op0 = Op.getOperand(0);
1121     SDValue Op1 = Op.getOperand(1);
1122 
1123     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1124       // If the shift count is an invalid immediate, don't do anything.
1125       if (SA->getAPIntValue().uge(BitWidth))
1126         break;
1127 
1128       unsigned ShAmt = SA->getZExtValue();
1129       APInt InDemandedMask = (DemandedBits << ShAmt);
1130 
1131       // If the shift is exact, then it does demand the low bits (and knows that
1132       // they are zero).
1133       if (Op->getFlags().hasExact())
1134         InDemandedMask.setLowBits(ShAmt);
1135 
1136       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1137       // single shift.  We can do this if the top bits (which are shifted out)
1138       // are never demanded.
1139       if (Op0.getOpcode() == ISD::SHL) {
1140         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
1141           if (ShAmt &&
1142               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1143             if (SA2->getAPIntValue().ult(BitWidth)) {
1144               unsigned C1 = SA2->getZExtValue();
1145               unsigned Opc = ISD::SRL;
1146               int Diff = ShAmt - C1;
1147               if (Diff < 0) {
1148                 Diff = -Diff;
1149                 Opc = ISD::SHL;
1150               }
1151 
1152               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1153               return TLO.CombineTo(
1154                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1155             }
1156           }
1157         }
1158       }
1159 
1160       // Compute the new bits that are at the top now.
1161       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1162                                Depth + 1))
1163         return true;
1164       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1165       Known.Zero.lshrInPlace(ShAmt);
1166       Known.One.lshrInPlace(ShAmt);
1167 
1168       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1169     }
1170     break;
1171   }
1172   case ISD::SRA: {
1173     SDValue Op0 = Op.getOperand(0);
1174     SDValue Op1 = Op.getOperand(1);
1175 
1176     // If this is an arithmetic shift right and only the low-bit is set, we can
1177     // always convert this into a logical shr, even if the shift amount is
1178     // variable.  The low bit of the shift cannot be an input sign bit unless
1179     // the shift amount is >= the size of the datatype, which is undefined.
1180     if (DemandedBits.isOneValue())
1181       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1182 
1183     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1184       // If the shift count is an invalid immediate, don't do anything.
1185       if (SA->getAPIntValue().uge(BitWidth))
1186         break;
1187 
1188       unsigned ShAmt = SA->getZExtValue();
1189       APInt InDemandedMask = (DemandedBits << ShAmt);
1190 
1191       // If the shift is exact, then it does demand the low bits (and knows that
1192       // they are zero).
1193       if (Op->getFlags().hasExact())
1194         InDemandedMask.setLowBits(ShAmt);
1195 
1196       // If any of the demanded bits are produced by the sign extension, we also
1197       // demand the input sign bit.
1198       if (DemandedBits.countLeadingZeros() < ShAmt)
1199         InDemandedMask.setSignBit();
1200 
1201       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1202                                Depth + 1))
1203         return true;
1204       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1205       Known.Zero.lshrInPlace(ShAmt);
1206       Known.One.lshrInPlace(ShAmt);
1207 
1208       // If the input sign bit is known to be zero, or if none of the top bits
1209       // are demanded, turn this into an unsigned shift right.
1210       if (Known.Zero[BitWidth - ShAmt - 1] ||
1211           DemandedBits.countLeadingZeros() >= ShAmt) {
1212         SDNodeFlags Flags;
1213         Flags.setExact(Op->getFlags().hasExact());
1214         return TLO.CombineTo(
1215             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1216       }
1217 
1218       int Log2 = DemandedBits.exactLogBase2();
1219       if (Log2 >= 0) {
1220         // The bit must come from the sign.
1221         SDValue NewSA =
1222             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1223         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1224       }
1225 
1226       if (Known.One[BitWidth - ShAmt - 1])
1227         // New bits are known one.
1228         Known.One.setHighBits(ShAmt);
1229     }
1230     break;
1231   }
1232   case ISD::FSHL:
1233   case ISD::FSHR: {
1234     SDValue Op0 = Op.getOperand(0);
1235     SDValue Op1 = Op.getOperand(1);
1236     SDValue Op2 = Op.getOperand(2);
1237     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1238 
1239     if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) {
1240       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1241 
1242       // For fshl, 0-shift returns the 1st arg.
1243       // For fshr, 0-shift returns the 2nd arg.
1244       if (Amt == 0) {
1245         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1246                                  Known, TLO, Depth + 1))
1247           return true;
1248         break;
1249       }
1250 
1251       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1252       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1253       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1254       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1255       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1256                                Depth + 1))
1257         return true;
1258       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1259                                Depth + 1))
1260         return true;
1261 
1262       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1263       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1264       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1265       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1266       Known.One |= Known2.One;
1267       Known.Zero |= Known2.Zero;
1268     }
1269     break;
1270   }
1271   case ISD::SIGN_EXTEND_INREG: {
1272     SDValue Op0 = Op.getOperand(0);
1273     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1274     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1275 
1276     // If we only care about the highest bit, don't bother shifting right.
1277     if (DemandedBits.isSignMask()) {
1278       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1279       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1280       // However if the input is already sign extended we expect the sign
1281       // extension to be dropped altogether later and do not simplify.
1282       if (!AlreadySignExtended) {
1283         // Compute the correct shift amount type, which must be getShiftAmountTy
1284         // for scalar types after legalization.
1285         EVT ShiftAmtTy = VT;
1286         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1287           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1288 
1289         SDValue ShiftAmt =
1290             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1291         return TLO.CombineTo(Op,
1292                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1293       }
1294     }
1295 
1296     // If none of the extended bits are demanded, eliminate the sextinreg.
1297     if (DemandedBits.getActiveBits() <= ExVTBits)
1298       return TLO.CombineTo(Op, Op0);
1299 
1300     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1301 
1302     // Since the sign extended bits are demanded, we know that the sign
1303     // bit is demanded.
1304     InputDemandedBits.setBit(ExVTBits - 1);
1305 
1306     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1307       return true;
1308     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1309 
1310     // If the sign bit of the input is known set or clear, then we know the
1311     // top bits of the result.
1312 
1313     // If the input sign bit is known zero, convert this into a zero extension.
1314     if (Known.Zero[ExVTBits - 1])
1315       return TLO.CombineTo(
1316           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1317 
1318     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1319     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1320       Known.One.setBitsFrom(ExVTBits);
1321       Known.Zero &= Mask;
1322     } else { // Input sign bit unknown
1323       Known.Zero &= Mask;
1324       Known.One &= Mask;
1325     }
1326     break;
1327   }
1328   case ISD::BUILD_PAIR: {
1329     EVT HalfVT = Op.getOperand(0).getValueType();
1330     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1331 
1332     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1333     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1334 
1335     KnownBits KnownLo, KnownHi;
1336 
1337     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1338       return true;
1339 
1340     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1341       return true;
1342 
1343     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1344                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1345 
1346     Known.One = KnownLo.One.zext(BitWidth) |
1347                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1348     break;
1349   }
1350   case ISD::ZERO_EXTEND: {
1351     SDValue Src = Op.getOperand(0);
1352     unsigned InBits = Src.getScalarValueSizeInBits();
1353 
1354     // If none of the top bits are demanded, convert this into an any_extend.
1355     if (DemandedBits.getActiveBits() <= InBits)
1356       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1357 
1358     APInt InDemandedBits = DemandedBits.trunc(InBits);
1359     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1360       return true;
1361     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1362     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1363     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1364     break;
1365   }
1366   case ISD::SIGN_EXTEND: {
1367     SDValue Src = Op.getOperand(0);
1368     unsigned InBits = Src.getScalarValueSizeInBits();
1369 
1370     // If none of the top bits are demanded, convert this into an any_extend.
1371     if (DemandedBits.getActiveBits() <= InBits)
1372       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1373 
1374     // Since some of the sign extended bits are demanded, we know that the sign
1375     // bit is demanded.
1376     APInt InDemandedBits = DemandedBits.trunc(InBits);
1377     InDemandedBits.setBit(InBits - 1);
1378 
1379     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1380       return true;
1381     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1382     // If the sign bit is known one, the top bits match.
1383     Known = Known.sext(BitWidth);
1384 
1385     // If the sign bit is known zero, convert this to a zero extend.
1386     if (Known.isNonNegative())
1387       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1388     break;
1389   }
1390   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1391     // TODO - merge this with SIGN_EXTEND above?
1392     SDValue Src = Op.getOperand(0);
1393     unsigned InBits = Src.getScalarValueSizeInBits();
1394 
1395     APInt InDemandedBits = DemandedBits.trunc(InBits);
1396 
1397     // If some of the sign extended bits are demanded, we know that the sign
1398     // bit is demanded.
1399     if (InBits < DemandedBits.getActiveBits())
1400       InDemandedBits.setBit(InBits - 1);
1401 
1402     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1403       return true;
1404     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1405     // If the sign bit is known one, the top bits match.
1406     Known = Known.sext(BitWidth);
1407     break;
1408   }
1409   case ISD::ANY_EXTEND: {
1410     SDValue Src = Op.getOperand(0);
1411     unsigned InBits = Src.getScalarValueSizeInBits();
1412     APInt InDemandedBits = DemandedBits.trunc(InBits);
1413     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1414       return true;
1415     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1416     Known = Known.zext(BitWidth, false /* => any extend */);
1417     break;
1418   }
1419   case ISD::TRUNCATE: {
1420     SDValue Src = Op.getOperand(0);
1421 
1422     // Simplify the input, using demanded bit information, and compute the known
1423     // zero/one bits live out.
1424     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1425     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1426     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1427       return true;
1428     Known = Known.trunc(BitWidth);
1429 
1430     // If the input is only used by this truncate, see if we can shrink it based
1431     // on the known demanded bits.
1432     if (Src.getNode()->hasOneUse()) {
1433       switch (Src.getOpcode()) {
1434       default:
1435         break;
1436       case ISD::SRL:
1437         // Shrink SRL by a constant if none of the high bits shifted in are
1438         // demanded.
1439         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1440           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1441           // undesirable.
1442           break;
1443 
1444         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1445         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1446           break;
1447 
1448         SDValue Shift = Src.getOperand(1);
1449         uint64_t ShVal = ShAmt->getZExtValue();
1450 
1451         if (TLO.LegalTypes())
1452           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1453 
1454         APInt HighBits =
1455             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1456         HighBits.lshrInPlace(ShVal);
1457         HighBits = HighBits.trunc(BitWidth);
1458 
1459         if (!(HighBits & DemandedBits)) {
1460           // None of the shifted in bits are needed.  Add a truncate of the
1461           // shift input, then shift it.
1462           SDValue NewTrunc =
1463               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1464           return TLO.CombineTo(
1465               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1466         }
1467         break;
1468       }
1469     }
1470 
1471     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1472     break;
1473   }
1474   case ISD::AssertZext: {
1475     // AssertZext demands all of the high bits, plus any of the low bits
1476     // demanded by its users.
1477     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1478     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1479     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1480                              TLO, Depth + 1))
1481       return true;
1482     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1483 
1484     Known.Zero |= ~InMask;
1485     break;
1486   }
1487   case ISD::EXTRACT_VECTOR_ELT: {
1488     SDValue Src = Op.getOperand(0);
1489     SDValue Idx = Op.getOperand(1);
1490     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1491     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1492 
1493     // Demand the bits from every vector element without a constant index.
1494     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1495     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1496       if (CIdx->getAPIntValue().ult(NumSrcElts))
1497         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1498 
1499     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1500     // anything about the extended bits.
1501     APInt DemandedSrcBits = DemandedBits;
1502     if (BitWidth > EltBitWidth)
1503       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1504 
1505     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1506                              Depth + 1))
1507       return true;
1508 
1509     Known = Known2;
1510     if (BitWidth > EltBitWidth)
1511       Known = Known.zext(BitWidth, false /* => any extend */);
1512     break;
1513   }
1514   case ISD::BITCAST: {
1515     SDValue Src = Op.getOperand(0);
1516     EVT SrcVT = Src.getValueType();
1517     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1518 
1519     // If this is an FP->Int bitcast and if the sign bit is the only
1520     // thing demanded, turn this into a FGETSIGN.
1521     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1522         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1523         SrcVT.isFloatingPoint()) {
1524       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1525       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1526       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1527           SrcVT != MVT::f128) {
1528         // Cannot eliminate/lower SHL for f128 yet.
1529         EVT Ty = OpVTLegal ? VT : MVT::i32;
1530         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1531         // place.  We expect the SHL to be eliminated by other optimizations.
1532         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1533         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1534         if (!OpVTLegal && OpVTSizeInBits > 32)
1535           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1536         unsigned ShVal = Op.getValueSizeInBits() - 1;
1537         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1538         return TLO.CombineTo(Op,
1539                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1540       }
1541     }
1542 
1543     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1544     // Demand the elt/bit if any of the original elts/bits are demanded.
1545     // TODO - bigendian once we have test coverage.
1546     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1547     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1548         (BitWidth % NumSrcEltBits) == 0 &&
1549         TLO.DAG.getDataLayout().isLittleEndian()) {
1550       unsigned Scale = BitWidth / NumSrcEltBits;
1551       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1552       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1553       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1554       for (unsigned i = 0; i != Scale; ++i) {
1555         unsigned Offset = i * NumSrcEltBits;
1556         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1557         if (!Sub.isNullValue()) {
1558           DemandedSrcBits |= Sub;
1559           for (unsigned j = 0; j != NumElts; ++j)
1560             if (DemandedElts[j])
1561               DemandedSrcElts.setBit((j * Scale) + i);
1562         }
1563       }
1564 
1565       APInt KnownSrcUndef, KnownSrcZero;
1566       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1567                                      KnownSrcZero, TLO, Depth + 1))
1568         return true;
1569 
1570       KnownBits KnownSrcBits;
1571       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1572                                KnownSrcBits, TLO, Depth + 1))
1573         return true;
1574     }
1575 
1576     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1577     // recursive call where Known may be useful to the caller.
1578     if (Depth > 0) {
1579       Known = TLO.DAG.computeKnownBits(Op, Depth);
1580       return false;
1581     }
1582     break;
1583   }
1584   case ISD::ADD:
1585   case ISD::MUL:
1586   case ISD::SUB: {
1587     // Add, Sub, and Mul don't demand any bits in positions beyond that
1588     // of the highest bit demanded of them.
1589     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1590     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1591     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1592     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1593                              Depth + 1) ||
1594         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1595                              Depth + 1) ||
1596         // See if the operation should be performed at a smaller bit width.
1597         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1598       SDNodeFlags Flags = Op.getNode()->getFlags();
1599       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1600         // Disable the nsw and nuw flags. We can no longer guarantee that we
1601         // won't wrap after simplification.
1602         Flags.setNoSignedWrap(false);
1603         Flags.setNoUnsignedWrap(false);
1604         SDValue NewOp =
1605             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1606         return TLO.CombineTo(Op, NewOp);
1607       }
1608       return true;
1609     }
1610 
1611     // If we have a constant operand, we may be able to turn it into -1 if we
1612     // do not demand the high bits. This can make the constant smaller to
1613     // encode, allow more general folding, or match specialized instruction
1614     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1615     // is probably not useful (and could be detrimental).
1616     ConstantSDNode *C = isConstOrConstSplat(Op1);
1617     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1618     if (C && !C->isAllOnesValue() && !C->isOne() &&
1619         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1620       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1621       // We can't guarantee that the new math op doesn't wrap, so explicitly
1622       // clear those flags to prevent folding with a potential existing node
1623       // that has those flags set.
1624       SDNodeFlags Flags;
1625       Flags.setNoSignedWrap(false);
1626       Flags.setNoUnsignedWrap(false);
1627       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1628       return TLO.CombineTo(Op, NewOp);
1629     }
1630 
1631     LLVM_FALLTHROUGH;
1632   }
1633   default:
1634     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1635       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1636                                             Known, TLO, Depth))
1637         return true;
1638       break;
1639     }
1640 
1641     // Just use computeKnownBits to compute output bits.
1642     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1643     break;
1644   }
1645 
1646   // If we know the value of all of the demanded bits, return this as a
1647   // constant.
1648   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1649     // Avoid folding to a constant if any OpaqueConstant is involved.
1650     const SDNode *N = Op.getNode();
1651     for (SDNodeIterator I = SDNodeIterator::begin(N),
1652                         E = SDNodeIterator::end(N);
1653          I != E; ++I) {
1654       SDNode *Op = *I;
1655       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1656         if (C->isOpaque())
1657           return false;
1658     }
1659     // TODO: Handle float bits as well.
1660     if (VT.isInteger())
1661       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1662   }
1663 
1664   return false;
1665 }
1666 
1667 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1668                                                 const APInt &DemandedElts,
1669                                                 APInt &KnownUndef,
1670                                                 APInt &KnownZero,
1671                                                 DAGCombinerInfo &DCI) const {
1672   SelectionDAG &DAG = DCI.DAG;
1673   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1674                         !DCI.isBeforeLegalizeOps());
1675 
1676   bool Simplified =
1677       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1678   if (Simplified) {
1679     DCI.AddToWorklist(Op.getNode());
1680     DCI.CommitTargetLoweringOpt(TLO);
1681   }
1682   return Simplified;
1683 }
1684 
1685 /// Given a vector binary operation and known undefined elements for each input
1686 /// operand, compute whether each element of the output is undefined.
1687 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1688                                          const APInt &UndefOp0,
1689                                          const APInt &UndefOp1) {
1690   EVT VT = BO.getValueType();
1691   assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only");
1692 
1693   EVT EltVT = VT.getVectorElementType();
1694   unsigned NumElts = VT.getVectorNumElements();
1695   assert(UndefOp0.getBitWidth() == NumElts &&
1696          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1697 
1698   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1699                                    const APInt &UndefVals) {
1700     if (UndefVals[Index])
1701       return DAG.getUNDEF(EltVT);
1702 
1703     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1704       // Try hard to make sure that the getNode() call is not creating temporary
1705       // nodes. Ignore opaque integers because they do not constant fold.
1706       SDValue Elt = BV->getOperand(Index);
1707       auto *C = dyn_cast<ConstantSDNode>(Elt);
1708       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
1709         return Elt;
1710     }
1711 
1712     return SDValue();
1713   };
1714 
1715   APInt KnownUndef = APInt::getNullValue(NumElts);
1716   for (unsigned i = 0; i != NumElts; ++i) {
1717     // If both inputs for this element are either constant or undef and match
1718     // the element type, compute the constant/undef result for this element of
1719     // the vector.
1720     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
1721     // not handle FP constants. The code within getNode() should be refactored
1722     // to avoid the danger of creating a bogus temporary node here.
1723     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
1724     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
1725     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
1726       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
1727         KnownUndef.setBit(i);
1728   }
1729   return KnownUndef;
1730 }
1731 
1732 bool TargetLowering::SimplifyDemandedVectorElts(
1733     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1734     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1735     bool AssumeSingleUse) const {
1736   EVT VT = Op.getValueType();
1737   APInt DemandedElts = DemandedEltMask;
1738   unsigned NumElts = DemandedElts.getBitWidth();
1739   assert(VT.isVector() && "Expected vector op");
1740   assert(VT.getVectorNumElements() == NumElts &&
1741          "Mask size mismatches value type element count!");
1742 
1743   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1744 
1745   // Undef operand.
1746   if (Op.isUndef()) {
1747     KnownUndef.setAllBits();
1748     return false;
1749   }
1750 
1751   // If Op has other users, assume that all elements are needed.
1752   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1753     DemandedElts.setAllBits();
1754 
1755   // Not demanding any elements from Op.
1756   if (DemandedElts == 0) {
1757     KnownUndef.setAllBits();
1758     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1759   }
1760 
1761   // Limit search depth.
1762   if (Depth >= 6)
1763     return false;
1764 
1765   SDLoc DL(Op);
1766   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1767 
1768   switch (Op.getOpcode()) {
1769   case ISD::SCALAR_TO_VECTOR: {
1770     if (!DemandedElts[0]) {
1771       KnownUndef.setAllBits();
1772       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1773     }
1774     KnownUndef.setHighBits(NumElts - 1);
1775     break;
1776   }
1777   case ISD::BITCAST: {
1778     SDValue Src = Op.getOperand(0);
1779     EVT SrcVT = Src.getValueType();
1780 
1781     // We only handle vectors here.
1782     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1783     if (!SrcVT.isVector())
1784       break;
1785 
1786     // Fast handling of 'identity' bitcasts.
1787     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1788     if (NumSrcElts == NumElts)
1789       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1790                                         KnownZero, TLO, Depth + 1);
1791 
1792     APInt SrcZero, SrcUndef;
1793     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1794 
1795     // Bitcast from 'large element' src vector to 'small element' vector, we
1796     // must demand a source element if any DemandedElt maps to it.
1797     if ((NumElts % NumSrcElts) == 0) {
1798       unsigned Scale = NumElts / NumSrcElts;
1799       for (unsigned i = 0; i != NumElts; ++i)
1800         if (DemandedElts[i])
1801           SrcDemandedElts.setBit(i / Scale);
1802 
1803       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1804                                      TLO, Depth + 1))
1805         return true;
1806 
1807       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1808       // of the large element.
1809       // TODO - bigendian once we have test coverage.
1810       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1811         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1812         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1813         for (unsigned i = 0; i != NumElts; ++i)
1814           if (DemandedElts[i]) {
1815             unsigned Ofs = (i % Scale) * EltSizeInBits;
1816             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1817           }
1818 
1819         KnownBits Known;
1820         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1821           return true;
1822       }
1823 
1824       // If the src element is zero/undef then all the output elements will be -
1825       // only demanded elements are guaranteed to be correct.
1826       for (unsigned i = 0; i != NumSrcElts; ++i) {
1827         if (SrcDemandedElts[i]) {
1828           if (SrcZero[i])
1829             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1830           if (SrcUndef[i])
1831             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1832         }
1833       }
1834     }
1835 
1836     // Bitcast from 'small element' src vector to 'large element' vector, we
1837     // demand all smaller source elements covered by the larger demanded element
1838     // of this vector.
1839     if ((NumSrcElts % NumElts) == 0) {
1840       unsigned Scale = NumSrcElts / NumElts;
1841       for (unsigned i = 0; i != NumElts; ++i)
1842         if (DemandedElts[i])
1843           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1844 
1845       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1846                                      TLO, Depth + 1))
1847         return true;
1848 
1849       // If all the src elements covering an output element are zero/undef, then
1850       // the output element will be as well, assuming it was demanded.
1851       for (unsigned i = 0; i != NumElts; ++i) {
1852         if (DemandedElts[i]) {
1853           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1854             KnownZero.setBit(i);
1855           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1856             KnownUndef.setBit(i);
1857         }
1858       }
1859     }
1860     break;
1861   }
1862   case ISD::BUILD_VECTOR: {
1863     // Check all elements and simplify any unused elements with UNDEF.
1864     if (!DemandedElts.isAllOnesValue()) {
1865       // Don't simplify BROADCASTS.
1866       if (llvm::any_of(Op->op_values(),
1867                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1868         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1869         bool Updated = false;
1870         for (unsigned i = 0; i != NumElts; ++i) {
1871           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1872             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1873             KnownUndef.setBit(i);
1874             Updated = true;
1875           }
1876         }
1877         if (Updated)
1878           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1879       }
1880     }
1881     for (unsigned i = 0; i != NumElts; ++i) {
1882       SDValue SrcOp = Op.getOperand(i);
1883       if (SrcOp.isUndef()) {
1884         KnownUndef.setBit(i);
1885       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1886                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1887         KnownZero.setBit(i);
1888       }
1889     }
1890     break;
1891   }
1892   case ISD::CONCAT_VECTORS: {
1893     EVT SubVT = Op.getOperand(0).getValueType();
1894     unsigned NumSubVecs = Op.getNumOperands();
1895     unsigned NumSubElts = SubVT.getVectorNumElements();
1896     for (unsigned i = 0; i != NumSubVecs; ++i) {
1897       SDValue SubOp = Op.getOperand(i);
1898       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1899       APInt SubUndef, SubZero;
1900       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1901                                      Depth + 1))
1902         return true;
1903       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1904       KnownZero.insertBits(SubZero, i * NumSubElts);
1905     }
1906     break;
1907   }
1908   case ISD::INSERT_SUBVECTOR: {
1909     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1910       break;
1911     SDValue Base = Op.getOperand(0);
1912     SDValue Sub = Op.getOperand(1);
1913     EVT SubVT = Sub.getValueType();
1914     unsigned NumSubElts = SubVT.getVectorNumElements();
1915     const APInt &Idx = Op.getConstantOperandAPInt(2);
1916     if (Idx.ugt(NumElts - NumSubElts))
1917       break;
1918     unsigned SubIdx = Idx.getZExtValue();
1919     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1920     APInt SubUndef, SubZero;
1921     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1922                                    Depth + 1))
1923       return true;
1924     APInt BaseElts = DemandedElts;
1925     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1926     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1927                                    Depth + 1))
1928       return true;
1929     KnownUndef.insertBits(SubUndef, SubIdx);
1930     KnownZero.insertBits(SubZero, SubIdx);
1931     break;
1932   }
1933   case ISD::EXTRACT_SUBVECTOR: {
1934     SDValue Src = Op.getOperand(0);
1935     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1936     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1937     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1938       // Offset the demanded elts by the subvector index.
1939       uint64_t Idx = SubIdx->getZExtValue();
1940       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1941       APInt SrcUndef, SrcZero;
1942       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1943                                      Depth + 1))
1944         return true;
1945       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1946       KnownZero = SrcZero.extractBits(NumElts, Idx);
1947     }
1948     break;
1949   }
1950   case ISD::INSERT_VECTOR_ELT: {
1951     SDValue Vec = Op.getOperand(0);
1952     SDValue Scl = Op.getOperand(1);
1953     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1954 
1955     // For a legal, constant insertion index, if we don't need this insertion
1956     // then strip it, else remove it from the demanded elts.
1957     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1958       unsigned Idx = CIdx->getZExtValue();
1959       if (!DemandedElts[Idx])
1960         return TLO.CombineTo(Op, Vec);
1961 
1962       APInt DemandedVecElts(DemandedElts);
1963       DemandedVecElts.clearBit(Idx);
1964       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1965                                      KnownZero, TLO, Depth + 1))
1966         return true;
1967 
1968       KnownUndef.clearBit(Idx);
1969       if (Scl.isUndef())
1970         KnownUndef.setBit(Idx);
1971 
1972       KnownZero.clearBit(Idx);
1973       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1974         KnownZero.setBit(Idx);
1975       break;
1976     }
1977 
1978     APInt VecUndef, VecZero;
1979     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1980                                    Depth + 1))
1981       return true;
1982     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1983     break;
1984   }
1985   case ISD::VSELECT: {
1986     // Try to transform the select condition based on the current demanded
1987     // elements.
1988     // TODO: If a condition element is undef, we can choose from one arm of the
1989     //       select (and if one arm is undef, then we can propagate that to the
1990     //       result).
1991     // TODO - add support for constant vselect masks (see IR version of this).
1992     APInt UnusedUndef, UnusedZero;
1993     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1994                                    UnusedZero, TLO, Depth + 1))
1995       return true;
1996 
1997     // See if we can simplify either vselect operand.
1998     APInt DemandedLHS(DemandedElts);
1999     APInt DemandedRHS(DemandedElts);
2000     APInt UndefLHS, ZeroLHS;
2001     APInt UndefRHS, ZeroRHS;
2002     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2003                                    ZeroLHS, TLO, Depth + 1))
2004       return true;
2005     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2006                                    ZeroRHS, TLO, Depth + 1))
2007       return true;
2008 
2009     KnownUndef = UndefLHS & UndefRHS;
2010     KnownZero = ZeroLHS & ZeroRHS;
2011     break;
2012   }
2013   case ISD::VECTOR_SHUFFLE: {
2014     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2015 
2016     // Collect demanded elements from shuffle operands..
2017     APInt DemandedLHS(NumElts, 0);
2018     APInt DemandedRHS(NumElts, 0);
2019     for (unsigned i = 0; i != NumElts; ++i) {
2020       int M = ShuffleMask[i];
2021       if (M < 0 || !DemandedElts[i])
2022         continue;
2023       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2024       if (M < (int)NumElts)
2025         DemandedLHS.setBit(M);
2026       else
2027         DemandedRHS.setBit(M - NumElts);
2028     }
2029 
2030     // See if we can simplify either shuffle operand.
2031     APInt UndefLHS, ZeroLHS;
2032     APInt UndefRHS, ZeroRHS;
2033     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2034                                    ZeroLHS, TLO, Depth + 1))
2035       return true;
2036     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2037                                    ZeroRHS, TLO, Depth + 1))
2038       return true;
2039 
2040     // Simplify mask using undef elements from LHS/RHS.
2041     bool Updated = false;
2042     bool IdentityLHS = true, IdentityRHS = true;
2043     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2044     for (unsigned i = 0; i != NumElts; ++i) {
2045       int &M = NewMask[i];
2046       if (M < 0)
2047         continue;
2048       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2049           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2050         Updated = true;
2051         M = -1;
2052       }
2053       IdentityLHS &= (M < 0) || (M == (int)i);
2054       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2055     }
2056 
2057     // Update legal shuffle masks based on demanded elements if it won't reduce
2058     // to Identity which can cause premature removal of the shuffle mask.
2059     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2060         isShuffleMaskLegal(NewMask, VT))
2061       return TLO.CombineTo(Op,
2062                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2063                                                     Op.getOperand(1), NewMask));
2064 
2065     // Propagate undef/zero elements from LHS/RHS.
2066     for (unsigned i = 0; i != NumElts; ++i) {
2067       int M = ShuffleMask[i];
2068       if (M < 0) {
2069         KnownUndef.setBit(i);
2070       } else if (M < (int)NumElts) {
2071         if (UndefLHS[M])
2072           KnownUndef.setBit(i);
2073         if (ZeroLHS[M])
2074           KnownZero.setBit(i);
2075       } else {
2076         if (UndefRHS[M - NumElts])
2077           KnownUndef.setBit(i);
2078         if (ZeroRHS[M - NumElts])
2079           KnownZero.setBit(i);
2080       }
2081     }
2082     break;
2083   }
2084   case ISD::SIGN_EXTEND_VECTOR_INREG:
2085   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2086     APInt SrcUndef, SrcZero;
2087     SDValue Src = Op.getOperand(0);
2088     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2089     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2090     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2091                                    Depth + 1))
2092       return true;
2093     KnownZero = SrcZero.zextOrTrunc(NumElts);
2094     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2095 
2096     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2097       // zext(undef) upper bits are guaranteed to be zero.
2098       if (DemandedElts.isSubsetOf(KnownUndef))
2099         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2100       KnownUndef.clearAllBits();
2101     }
2102     break;
2103   }
2104 
2105   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2106   // MAX, saturated math, etc.
2107   case ISD::OR:
2108   case ISD::XOR:
2109   case ISD::ADD:
2110   case ISD::SUB:
2111   case ISD::FADD:
2112   case ISD::FSUB:
2113   case ISD::FMUL:
2114   case ISD::FDIV:
2115   case ISD::FREM: {
2116     APInt UndefRHS, ZeroRHS;
2117     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2118                                    ZeroRHS, TLO, Depth + 1))
2119       return true;
2120     APInt UndefLHS, ZeroLHS;
2121     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2122                                    ZeroLHS, TLO, Depth + 1))
2123       return true;
2124 
2125     KnownZero = ZeroLHS & ZeroRHS;
2126     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2127     break;
2128   }
2129   case ISD::AND: {
2130     APInt SrcUndef, SrcZero;
2131     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2132                                    SrcZero, TLO, Depth + 1))
2133       return true;
2134     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2135                                    KnownZero, TLO, Depth + 1))
2136       return true;
2137 
2138     // If either side has a zero element, then the result element is zero, even
2139     // if the other is an UNDEF.
2140     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2141     // and then handle 'and' nodes with the rest of the binop opcodes.
2142     KnownZero |= SrcZero;
2143     KnownUndef &= SrcUndef;
2144     KnownUndef &= ~KnownZero;
2145     break;
2146   }
2147   case ISD::TRUNCATE:
2148   case ISD::SIGN_EXTEND:
2149   case ISD::ZERO_EXTEND:
2150     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2151                                    KnownZero, TLO, Depth + 1))
2152       return true;
2153 
2154     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2155       // zext(undef) upper bits are guaranteed to be zero.
2156       if (DemandedElts.isSubsetOf(KnownUndef))
2157         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2158       KnownUndef.clearAllBits();
2159     }
2160     break;
2161   default: {
2162     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2163       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2164                                                   KnownZero, TLO, Depth))
2165         return true;
2166     } else {
2167       KnownBits Known;
2168       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2169       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
2170                                Depth, AssumeSingleUse))
2171         return true;
2172     }
2173     break;
2174   }
2175   }
2176   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2177 
2178   // Constant fold all undef cases.
2179   // TODO: Handle zero cases as well.
2180   if (DemandedElts.isSubsetOf(KnownUndef))
2181     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2182 
2183   return false;
2184 }
2185 
2186 /// Determine which of the bits specified in Mask are known to be either zero or
2187 /// one and return them in the Known.
2188 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2189                                                    KnownBits &Known,
2190                                                    const APInt &DemandedElts,
2191                                                    const SelectionDAG &DAG,
2192                                                    unsigned Depth) const {
2193   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2194           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2195           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2196           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2197          "Should use MaskedValueIsZero if you don't know whether Op"
2198          " is a target node!");
2199   Known.resetAll();
2200 }
2201 
2202 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2203                                                    KnownBits &Known,
2204                                                    const APInt &DemandedElts,
2205                                                    const SelectionDAG &DAG,
2206                                                    unsigned Depth) const {
2207   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2208 
2209   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2210     // The low bits are known zero if the pointer is aligned.
2211     Known.Zero.setLowBits(Log2_32(Align));
2212   }
2213 }
2214 
2215 /// This method can be implemented by targets that want to expose additional
2216 /// information about sign bits to the DAG Combiner.
2217 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2218                                                          const APInt &,
2219                                                          const SelectionDAG &,
2220                                                          unsigned Depth) const {
2221   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2222           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2223           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2224           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2225          "Should use ComputeNumSignBits if you don't know whether Op"
2226          " is a target node!");
2227   return 1;
2228 }
2229 
2230 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2231     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2232     TargetLoweringOpt &TLO, unsigned Depth) const {
2233   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2234           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2235           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2236           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2237          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2238          " is a target node!");
2239   return false;
2240 }
2241 
2242 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2243     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2244     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2245   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2246           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2247           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2248           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2249          "Should use SimplifyDemandedBits if you don't know whether Op"
2250          " is a target node!");
2251   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2252   return false;
2253 }
2254 
2255 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2256                                                   const SelectionDAG &DAG,
2257                                                   bool SNaN,
2258                                                   unsigned Depth) const {
2259   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2260           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2261           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2262           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2263          "Should use isKnownNeverNaN if you don't know whether Op"
2264          " is a target node!");
2265   return false;
2266 }
2267 
2268 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2269 // work with truncating build vectors and vectors with elements of less than
2270 // 8 bits.
2271 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2272   if (!N)
2273     return false;
2274 
2275   APInt CVal;
2276   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2277     CVal = CN->getAPIntValue();
2278   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2279     auto *CN = BV->getConstantSplatNode();
2280     if (!CN)
2281       return false;
2282 
2283     // If this is a truncating build vector, truncate the splat value.
2284     // Otherwise, we may fail to match the expected values below.
2285     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2286     CVal = CN->getAPIntValue();
2287     if (BVEltWidth < CVal.getBitWidth())
2288       CVal = CVal.trunc(BVEltWidth);
2289   } else {
2290     return false;
2291   }
2292 
2293   switch (getBooleanContents(N->getValueType(0))) {
2294   case UndefinedBooleanContent:
2295     return CVal[0];
2296   case ZeroOrOneBooleanContent:
2297     return CVal.isOneValue();
2298   case ZeroOrNegativeOneBooleanContent:
2299     return CVal.isAllOnesValue();
2300   }
2301 
2302   llvm_unreachable("Invalid boolean contents");
2303 }
2304 
2305 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2306   if (!N)
2307     return false;
2308 
2309   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2310   if (!CN) {
2311     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2312     if (!BV)
2313       return false;
2314 
2315     // Only interested in constant splats, we don't care about undef
2316     // elements in identifying boolean constants and getConstantSplatNode
2317     // returns NULL if all ops are undef;
2318     CN = BV->getConstantSplatNode();
2319     if (!CN)
2320       return false;
2321   }
2322 
2323   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2324     return !CN->getAPIntValue()[0];
2325 
2326   return CN->isNullValue();
2327 }
2328 
2329 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2330                                        bool SExt) const {
2331   if (VT == MVT::i1)
2332     return N->isOne();
2333 
2334   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2335   switch (Cnt) {
2336   case TargetLowering::ZeroOrOneBooleanContent:
2337     // An extended value of 1 is always true, unless its original type is i1,
2338     // in which case it will be sign extended to -1.
2339     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2340   case TargetLowering::UndefinedBooleanContent:
2341   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2342     return N->isAllOnesValue() && SExt;
2343   }
2344   llvm_unreachable("Unexpected enumeration.");
2345 }
2346 
2347 /// This helper function of SimplifySetCC tries to optimize the comparison when
2348 /// either operand of the SetCC node is a bitwise-and instruction.
2349 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2350                                          ISD::CondCode Cond, const SDLoc &DL,
2351                                          DAGCombinerInfo &DCI) const {
2352   // Match these patterns in any of their permutations:
2353   // (X & Y) == Y
2354   // (X & Y) != Y
2355   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2356     std::swap(N0, N1);
2357 
2358   EVT OpVT = N0.getValueType();
2359   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2360       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2361     return SDValue();
2362 
2363   SDValue X, Y;
2364   if (N0.getOperand(0) == N1) {
2365     X = N0.getOperand(1);
2366     Y = N0.getOperand(0);
2367   } else if (N0.getOperand(1) == N1) {
2368     X = N0.getOperand(0);
2369     Y = N0.getOperand(1);
2370   } else {
2371     return SDValue();
2372   }
2373 
2374   SelectionDAG &DAG = DCI.DAG;
2375   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2376   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2377     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2378     // Note that where Y is variable and is known to have at most one bit set
2379     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2380     // equivalent when Y == 0.
2381     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2382     if (DCI.isBeforeLegalizeOps() ||
2383         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2384       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2385   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2386     // If the target supports an 'and-not' or 'and-complement' logic operation,
2387     // try to use that to make a comparison operation more efficient.
2388     // But don't do this transform if the mask is a single bit because there are
2389     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2390     // 'rlwinm' on PPC).
2391 
2392     // Bail out if the compare operand that we want to turn into a zero is
2393     // already a zero (otherwise, infinite loop).
2394     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2395     if (YConst && YConst->isNullValue())
2396       return SDValue();
2397 
2398     // Transform this into: ~X & Y == 0.
2399     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2400     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2401     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2402   }
2403 
2404   return SDValue();
2405 }
2406 
2407 /// There are multiple IR patterns that could be checking whether certain
2408 /// truncation of a signed number would be lossy or not. The pattern which is
2409 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2410 /// We are looking for the following pattern: (KeptBits is a constant)
2411 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2412 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2413 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2414 /// We will unfold it into the natural trunc+sext pattern:
2415 ///   ((%x << C) a>> C) dstcond %x
2416 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2417 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2418     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2419     const SDLoc &DL) const {
2420   // We must be comparing with a constant.
2421   ConstantSDNode *C1;
2422   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2423     return SDValue();
2424 
2425   // N0 should be:  add %x, (1 << (KeptBits-1))
2426   if (N0->getOpcode() != ISD::ADD)
2427     return SDValue();
2428 
2429   // And we must be 'add'ing a constant.
2430   ConstantSDNode *C01;
2431   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2432     return SDValue();
2433 
2434   SDValue X = N0->getOperand(0);
2435   EVT XVT = X.getValueType();
2436 
2437   // Validate constants ...
2438 
2439   APInt I1 = C1->getAPIntValue();
2440 
2441   ISD::CondCode NewCond;
2442   if (Cond == ISD::CondCode::SETULT) {
2443     NewCond = ISD::CondCode::SETEQ;
2444   } else if (Cond == ISD::CondCode::SETULE) {
2445     NewCond = ISD::CondCode::SETEQ;
2446     // But need to 'canonicalize' the constant.
2447     I1 += 1;
2448   } else if (Cond == ISD::CondCode::SETUGT) {
2449     NewCond = ISD::CondCode::SETNE;
2450     // But need to 'canonicalize' the constant.
2451     I1 += 1;
2452   } else if (Cond == ISD::CondCode::SETUGE) {
2453     NewCond = ISD::CondCode::SETNE;
2454   } else
2455     return SDValue();
2456 
2457   APInt I01 = C01->getAPIntValue();
2458 
2459   auto checkConstants = [&I1, &I01]() -> bool {
2460     // Both of them must be power-of-two, and the constant from setcc is bigger.
2461     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2462   };
2463 
2464   if (checkConstants()) {
2465     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2466   } else {
2467     // What if we invert constants? (and the target predicate)
2468     I1.negate();
2469     I01.negate();
2470     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2471     if (!checkConstants())
2472       return SDValue();
2473     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2474   }
2475 
2476   // They are power-of-two, so which bit is set?
2477   const unsigned KeptBits = I1.logBase2();
2478   const unsigned KeptBitsMinusOne = I01.logBase2();
2479 
2480   // Magic!
2481   if (KeptBits != (KeptBitsMinusOne + 1))
2482     return SDValue();
2483   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2484 
2485   // We don't want to do this in every single case.
2486   SelectionDAG &DAG = DCI.DAG;
2487   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2488           XVT, KeptBits))
2489     return SDValue();
2490 
2491   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2492   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2493 
2494   // Unfold into:  ((%x << C) a>> C) cond %x
2495   // Where 'cond' will be either 'eq' or 'ne'.
2496   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2497   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2498   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2499   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2500 
2501   return T2;
2502 }
2503 
2504 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2505 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2506 /// handle the commuted versions of these patterns.
2507 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2508                                            ISD::CondCode Cond, const SDLoc &DL,
2509                                            DAGCombinerInfo &DCI) const {
2510   unsigned BOpcode = N0.getOpcode();
2511   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2512          "Unexpected binop");
2513   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2514 
2515   // (X + Y) == X --> Y == 0
2516   // (X - Y) == X --> Y == 0
2517   // (X ^ Y) == X --> Y == 0
2518   SelectionDAG &DAG = DCI.DAG;
2519   EVT OpVT = N0.getValueType();
2520   SDValue X = N0.getOperand(0);
2521   SDValue Y = N0.getOperand(1);
2522   if (X == N1)
2523     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2524 
2525   if (Y != N1)
2526     return SDValue();
2527 
2528   // (X + Y) == Y --> X == 0
2529   // (X ^ Y) == Y --> X == 0
2530   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2531     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2532 
2533   // The shift would not be valid if the operands are boolean (i1).
2534   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2535     return SDValue();
2536 
2537   // (X - Y) == Y --> X == Y << 1
2538   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2539                                  !DCI.isBeforeLegalize());
2540   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2541   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2542   if (!DCI.isCalledByLegalizer())
2543     DCI.AddToWorklist(YShl1.getNode());
2544   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2545 }
2546 
2547 /// Try to simplify a setcc built with the specified operands and cc. If it is
2548 /// unable to simplify it, return a null SDValue.
2549 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2550                                       ISD::CondCode Cond, bool foldBooleans,
2551                                       DAGCombinerInfo &DCI,
2552                                       const SDLoc &dl) const {
2553   SelectionDAG &DAG = DCI.DAG;
2554   EVT OpVT = N0.getValueType();
2555 
2556   // Constant fold or commute setcc.
2557   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
2558     return Fold;
2559 
2560   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2561   // TODO: Handle non-splat vector constants. All undef causes trouble.
2562   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2563   if (isConstOrConstSplat(N0) &&
2564       (DCI.isBeforeLegalizeOps() ||
2565        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2566     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2567 
2568   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2569     const APInt &C1 = N1C->getAPIntValue();
2570 
2571     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2572     // equality comparison, then we're just comparing whether X itself is
2573     // zero.
2574     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2575         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2576         N0.getOperand(1).getOpcode() == ISD::Constant) {
2577       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
2578       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2579           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2580         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2581           // (srl (ctlz x), 5) == 0  -> X != 0
2582           // (srl (ctlz x), 5) != 1  -> X != 0
2583           Cond = ISD::SETNE;
2584         } else {
2585           // (srl (ctlz x), 5) != 0  -> X == 0
2586           // (srl (ctlz x), 5) == 1  -> X == 0
2587           Cond = ISD::SETEQ;
2588         }
2589         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2590         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2591                             Zero, Cond);
2592       }
2593     }
2594 
2595     SDValue CTPOP = N0;
2596     // Look through truncs that don't change the value of a ctpop.
2597     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2598       CTPOP = N0.getOperand(0);
2599 
2600     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2601         (N0 == CTPOP ||
2602          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2603       EVT CTVT = CTPOP.getValueType();
2604       SDValue CTOp = CTPOP.getOperand(0);
2605 
2606       // (ctpop x) u< 2 -> (x & x-1) == 0
2607       // (ctpop x) u> 1 -> (x & x-1) != 0
2608       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2609         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2610                                   DAG.getConstant(1, dl, CTVT));
2611         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2612         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2613         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2614       }
2615 
2616       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2617     }
2618 
2619     // (zext x) == C --> x == (trunc C)
2620     // (sext x) == C --> x == (trunc C)
2621     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2622         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2623       unsigned MinBits = N0.getValueSizeInBits();
2624       SDValue PreExt;
2625       bool Signed = false;
2626       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2627         // ZExt
2628         MinBits = N0->getOperand(0).getValueSizeInBits();
2629         PreExt = N0->getOperand(0);
2630       } else if (N0->getOpcode() == ISD::AND) {
2631         // DAGCombine turns costly ZExts into ANDs
2632         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2633           if ((C->getAPIntValue()+1).isPowerOf2()) {
2634             MinBits = C->getAPIntValue().countTrailingOnes();
2635             PreExt = N0->getOperand(0);
2636           }
2637       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2638         // SExt
2639         MinBits = N0->getOperand(0).getValueSizeInBits();
2640         PreExt = N0->getOperand(0);
2641         Signed = true;
2642       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2643         // ZEXTLOAD / SEXTLOAD
2644         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2645           MinBits = LN0->getMemoryVT().getSizeInBits();
2646           PreExt = N0;
2647         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2648           Signed = true;
2649           MinBits = LN0->getMemoryVT().getSizeInBits();
2650           PreExt = N0;
2651         }
2652       }
2653 
2654       // Figure out how many bits we need to preserve this constant.
2655       unsigned ReqdBits = Signed ?
2656         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2657         C1.getActiveBits();
2658 
2659       // Make sure we're not losing bits from the constant.
2660       if (MinBits > 0 &&
2661           MinBits < C1.getBitWidth() &&
2662           MinBits >= ReqdBits) {
2663         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2664         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2665           // Will get folded away.
2666           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2667           if (MinBits == 1 && C1 == 1)
2668             // Invert the condition.
2669             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2670                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2671           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2672           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2673         }
2674 
2675         // If truncating the setcc operands is not desirable, we can still
2676         // simplify the expression in some cases:
2677         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2678         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2679         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2680         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2681         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2682         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2683         SDValue TopSetCC = N0->getOperand(0);
2684         unsigned N0Opc = N0->getOpcode();
2685         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2686         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2687             TopSetCC.getOpcode() == ISD::SETCC &&
2688             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2689             (isConstFalseVal(N1C) ||
2690              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2691 
2692           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2693                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2694 
2695           if (!Inverse)
2696             return TopSetCC;
2697 
2698           ISD::CondCode InvCond = ISD::getSetCCInverse(
2699               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2700               TopSetCC.getOperand(0).getValueType().isInteger());
2701           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2702                                       TopSetCC.getOperand(1),
2703                                       InvCond);
2704         }
2705       }
2706     }
2707 
2708     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2709     // equality or unsigned, and all 1 bits of the const are in the same
2710     // partial word, see if we can shorten the load.
2711     if (DCI.isBeforeLegalize() &&
2712         !ISD::isSignedIntSetCC(Cond) &&
2713         N0.getOpcode() == ISD::AND && C1 == 0 &&
2714         N0.getNode()->hasOneUse() &&
2715         isa<LoadSDNode>(N0.getOperand(0)) &&
2716         N0.getOperand(0).getNode()->hasOneUse() &&
2717         isa<ConstantSDNode>(N0.getOperand(1))) {
2718       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2719       APInt bestMask;
2720       unsigned bestWidth = 0, bestOffset = 0;
2721       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2722         unsigned origWidth = N0.getValueSizeInBits();
2723         unsigned maskWidth = origWidth;
2724         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2725         // 8 bits, but have to be careful...
2726         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2727           origWidth = Lod->getMemoryVT().getSizeInBits();
2728         const APInt &Mask = N0.getConstantOperandAPInt(1);
2729         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2730           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2731           for (unsigned offset=0; offset<origWidth/width; offset++) {
2732             if (Mask.isSubsetOf(newMask)) {
2733               if (DAG.getDataLayout().isLittleEndian())
2734                 bestOffset = (uint64_t)offset * (width/8);
2735               else
2736                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2737               bestMask = Mask.lshr(offset * (width/8) * 8);
2738               bestWidth = width;
2739               break;
2740             }
2741             newMask <<= width;
2742           }
2743         }
2744       }
2745       if (bestWidth) {
2746         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2747         if (newVT.isRound() &&
2748             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2749           EVT PtrType = Lod->getOperand(1).getValueType();
2750           SDValue Ptr = Lod->getBasePtr();
2751           if (bestOffset != 0)
2752             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2753                               DAG.getConstant(bestOffset, dl, PtrType));
2754           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2755           SDValue NewLoad = DAG.getLoad(
2756               newVT, dl, Lod->getChain(), Ptr,
2757               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2758           return DAG.getSetCC(dl, VT,
2759                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2760                                       DAG.getConstant(bestMask.trunc(bestWidth),
2761                                                       dl, newVT)),
2762                               DAG.getConstant(0LL, dl, newVT), Cond);
2763         }
2764       }
2765     }
2766 
2767     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2768     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2769       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2770 
2771       // If the comparison constant has bits in the upper part, the
2772       // zero-extended value could never match.
2773       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2774                                               C1.getBitWidth() - InSize))) {
2775         switch (Cond) {
2776         case ISD::SETUGT:
2777         case ISD::SETUGE:
2778         case ISD::SETEQ:
2779           return DAG.getConstant(0, dl, VT);
2780         case ISD::SETULT:
2781         case ISD::SETULE:
2782         case ISD::SETNE:
2783           return DAG.getConstant(1, dl, VT);
2784         case ISD::SETGT:
2785         case ISD::SETGE:
2786           // True if the sign bit of C1 is set.
2787           return DAG.getConstant(C1.isNegative(), dl, VT);
2788         case ISD::SETLT:
2789         case ISD::SETLE:
2790           // True if the sign bit of C1 isn't set.
2791           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2792         default:
2793           break;
2794         }
2795       }
2796 
2797       // Otherwise, we can perform the comparison with the low bits.
2798       switch (Cond) {
2799       case ISD::SETEQ:
2800       case ISD::SETNE:
2801       case ISD::SETUGT:
2802       case ISD::SETUGE:
2803       case ISD::SETULT:
2804       case ISD::SETULE: {
2805         EVT newVT = N0.getOperand(0).getValueType();
2806         if (DCI.isBeforeLegalizeOps() ||
2807             (isOperationLegal(ISD::SETCC, newVT) &&
2808              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2809           EVT NewSetCCVT =
2810               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2811           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2812 
2813           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2814                                           NewConst, Cond);
2815           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2816         }
2817         break;
2818       }
2819       default:
2820         break; // todo, be more careful with signed comparisons
2821       }
2822     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2823                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2824       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2825       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2826       EVT ExtDstTy = N0.getValueType();
2827       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2828 
2829       // If the constant doesn't fit into the number of bits for the source of
2830       // the sign extension, it is impossible for both sides to be equal.
2831       if (C1.getMinSignedBits() > ExtSrcTyBits)
2832         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2833 
2834       SDValue ZextOp;
2835       EVT Op0Ty = N0.getOperand(0).getValueType();
2836       if (Op0Ty == ExtSrcTy) {
2837         ZextOp = N0.getOperand(0);
2838       } else {
2839         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2840         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2841                              DAG.getConstant(Imm, dl, Op0Ty));
2842       }
2843       if (!DCI.isCalledByLegalizer())
2844         DCI.AddToWorklist(ZextOp.getNode());
2845       // Otherwise, make this a use of a zext.
2846       return DAG.getSetCC(dl, VT, ZextOp,
2847                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2848                                                               ExtDstTyBits,
2849                                                               ExtSrcTyBits),
2850                                           dl, ExtDstTy),
2851                           Cond);
2852     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2853                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2854       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2855       if (N0.getOpcode() == ISD::SETCC &&
2856           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2857         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2858         if (TrueWhenTrue)
2859           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2860         // Invert the condition.
2861         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2862         CC = ISD::getSetCCInverse(CC,
2863                                   N0.getOperand(0).getValueType().isInteger());
2864         if (DCI.isBeforeLegalizeOps() ||
2865             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2866           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2867       }
2868 
2869       if ((N0.getOpcode() == ISD::XOR ||
2870            (N0.getOpcode() == ISD::AND &&
2871             N0.getOperand(0).getOpcode() == ISD::XOR &&
2872             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2873           isa<ConstantSDNode>(N0.getOperand(1)) &&
2874           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2875         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2876         // can only do this if the top bits are known zero.
2877         unsigned BitWidth = N0.getValueSizeInBits();
2878         if (DAG.MaskedValueIsZero(N0,
2879                                   APInt::getHighBitsSet(BitWidth,
2880                                                         BitWidth-1))) {
2881           // Okay, get the un-inverted input value.
2882           SDValue Val;
2883           if (N0.getOpcode() == ISD::XOR) {
2884             Val = N0.getOperand(0);
2885           } else {
2886             assert(N0.getOpcode() == ISD::AND &&
2887                     N0.getOperand(0).getOpcode() == ISD::XOR);
2888             // ((X^1)&1)^1 -> X & 1
2889             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2890                               N0.getOperand(0).getOperand(0),
2891                               N0.getOperand(1));
2892           }
2893 
2894           return DAG.getSetCC(dl, VT, Val, N1,
2895                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2896         }
2897       } else if (N1C->isOne() &&
2898                  (VT == MVT::i1 ||
2899                   getBooleanContents(N0->getValueType(0)) ==
2900                       ZeroOrOneBooleanContent)) {
2901         SDValue Op0 = N0;
2902         if (Op0.getOpcode() == ISD::TRUNCATE)
2903           Op0 = Op0.getOperand(0);
2904 
2905         if ((Op0.getOpcode() == ISD::XOR) &&
2906             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2907             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2908           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2909           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2910           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2911                               Cond);
2912         }
2913         if (Op0.getOpcode() == ISD::AND &&
2914             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2915             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2916           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2917           if (Op0.getValueType().bitsGT(VT))
2918             Op0 = DAG.getNode(ISD::AND, dl, VT,
2919                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2920                           DAG.getConstant(1, dl, VT));
2921           else if (Op0.getValueType().bitsLT(VT))
2922             Op0 = DAG.getNode(ISD::AND, dl, VT,
2923                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2924                         DAG.getConstant(1, dl, VT));
2925 
2926           return DAG.getSetCC(dl, VT, Op0,
2927                               DAG.getConstant(0, dl, Op0.getValueType()),
2928                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2929         }
2930         if (Op0.getOpcode() == ISD::AssertZext &&
2931             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2932           return DAG.getSetCC(dl, VT, Op0,
2933                               DAG.getConstant(0, dl, Op0.getValueType()),
2934                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2935       }
2936     }
2937 
2938     if (SDValue V =
2939             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2940       return V;
2941   }
2942 
2943   // These simplifications apply to splat vectors as well.
2944   // TODO: Handle more splat vector cases.
2945   if (auto *N1C = isConstOrConstSplat(N1)) {
2946     const APInt &C1 = N1C->getAPIntValue();
2947 
2948     APInt MinVal, MaxVal;
2949     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2950     if (ISD::isSignedIntSetCC(Cond)) {
2951       MinVal = APInt::getSignedMinValue(OperandBitSize);
2952       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2953     } else {
2954       MinVal = APInt::getMinValue(OperandBitSize);
2955       MaxVal = APInt::getMaxValue(OperandBitSize);
2956     }
2957 
2958     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2959     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2960       // X >= MIN --> true
2961       if (C1 == MinVal)
2962         return DAG.getBoolConstant(true, dl, VT, OpVT);
2963 
2964       if (!VT.isVector()) { // TODO: Support this for vectors.
2965         // X >= C0 --> X > (C0 - 1)
2966         APInt C = C1 - 1;
2967         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2968         if ((DCI.isBeforeLegalizeOps() ||
2969              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2970             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2971                                   isLegalICmpImmediate(C.getSExtValue())))) {
2972           return DAG.getSetCC(dl, VT, N0,
2973                               DAG.getConstant(C, dl, N1.getValueType()),
2974                               NewCC);
2975         }
2976       }
2977     }
2978 
2979     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2980       // X <= MAX --> true
2981       if (C1 == MaxVal)
2982         return DAG.getBoolConstant(true, dl, VT, OpVT);
2983 
2984       // X <= C0 --> X < (C0 + 1)
2985       if (!VT.isVector()) { // TODO: Support this for vectors.
2986         APInt C = C1 + 1;
2987         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2988         if ((DCI.isBeforeLegalizeOps() ||
2989              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2990             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2991                                   isLegalICmpImmediate(C.getSExtValue())))) {
2992           return DAG.getSetCC(dl, VT, N0,
2993                               DAG.getConstant(C, dl, N1.getValueType()),
2994                               NewCC);
2995         }
2996       }
2997     }
2998 
2999     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3000       if (C1 == MinVal)
3001         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3002 
3003       // TODO: Support this for vectors after legalize ops.
3004       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3005         // Canonicalize setlt X, Max --> setne X, Max
3006         if (C1 == MaxVal)
3007           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3008 
3009         // If we have setult X, 1, turn it into seteq X, 0
3010         if (C1 == MinVal+1)
3011           return DAG.getSetCC(dl, VT, N0,
3012                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3013                               ISD::SETEQ);
3014       }
3015     }
3016 
3017     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3018       if (C1 == MaxVal)
3019         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3020 
3021       // TODO: Support this for vectors after legalize ops.
3022       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3023         // Canonicalize setgt X, Min --> setne X, Min
3024         if (C1 == MinVal)
3025           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3026 
3027         // If we have setugt X, Max-1, turn it into seteq X, Max
3028         if (C1 == MaxVal-1)
3029           return DAG.getSetCC(dl, VT, N0,
3030                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3031                               ISD::SETEQ);
3032       }
3033     }
3034 
3035     // If we have "setcc X, C0", check to see if we can shrink the immediate
3036     // by changing cc.
3037     // TODO: Support this for vectors after legalize ops.
3038     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3039       // SETUGT X, SINTMAX  -> SETLT X, 0
3040       if (Cond == ISD::SETUGT &&
3041           C1 == APInt::getSignedMaxValue(OperandBitSize))
3042         return DAG.getSetCC(dl, VT, N0,
3043                             DAG.getConstant(0, dl, N1.getValueType()),
3044                             ISD::SETLT);
3045 
3046       // SETULT X, SINTMIN  -> SETGT X, -1
3047       if (Cond == ISD::SETULT &&
3048           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3049         SDValue ConstMinusOne =
3050             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3051                             N1.getValueType());
3052         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3053       }
3054     }
3055   }
3056 
3057   // Back to non-vector simplifications.
3058   // TODO: Can we do these for vector splats?
3059   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3060     const APInt &C1 = N1C->getAPIntValue();
3061 
3062     // Fold bit comparisons when we can.
3063     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3064         (VT == N0.getValueType() ||
3065          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3066         N0.getOpcode() == ISD::AND) {
3067       auto &DL = DAG.getDataLayout();
3068       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3069         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3070                                        !DCI.isBeforeLegalize());
3071         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3072           // Perform the xform if the AND RHS is a single bit.
3073           if (AndRHS->getAPIntValue().isPowerOf2()) {
3074             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3075                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3076                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3077                                    ShiftTy)));
3078           }
3079         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3080           // (X & 8) == 8  -->  (X & 8) >> 3
3081           // Perform the xform if C1 is a single bit.
3082           if (C1.isPowerOf2()) {
3083             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3084                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3085                                       DAG.getConstant(C1.logBase2(), dl,
3086                                                       ShiftTy)));
3087           }
3088         }
3089       }
3090     }
3091 
3092     if (C1.getMinSignedBits() <= 64 &&
3093         !isLegalICmpImmediate(C1.getSExtValue())) {
3094       // (X & -256) == 256 -> (X >> 8) == 1
3095       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3096           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3097         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3098           const APInt &AndRHSC = AndRHS->getAPIntValue();
3099           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3100             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3101             auto &DL = DAG.getDataLayout();
3102             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3103                                            !DCI.isBeforeLegalize());
3104             EVT CmpTy = N0.getValueType();
3105             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3106                                         DAG.getConstant(ShiftBits, dl,
3107                                                         ShiftTy));
3108             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3109             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3110           }
3111         }
3112       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3113                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3114         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3115         // X <  0x100000000 -> (X >> 32) <  1
3116         // X >= 0x100000000 -> (X >> 32) >= 1
3117         // X <= 0x0ffffffff -> (X >> 32) <  1
3118         // X >  0x0ffffffff -> (X >> 32) >= 1
3119         unsigned ShiftBits;
3120         APInt NewC = C1;
3121         ISD::CondCode NewCond = Cond;
3122         if (AdjOne) {
3123           ShiftBits = C1.countTrailingOnes();
3124           NewC = NewC + 1;
3125           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3126         } else {
3127           ShiftBits = C1.countTrailingZeros();
3128         }
3129         NewC.lshrInPlace(ShiftBits);
3130         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3131           isLegalICmpImmediate(NewC.getSExtValue())) {
3132           auto &DL = DAG.getDataLayout();
3133           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3134                                          !DCI.isBeforeLegalize());
3135           EVT CmpTy = N0.getValueType();
3136           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3137                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3138           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3139           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3140         }
3141       }
3142     }
3143   }
3144 
3145   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3146     auto *CFP = cast<ConstantFPSDNode>(N1);
3147     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3148 
3149     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3150     // constant if knowing that the operand is non-nan is enough.  We prefer to
3151     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3152     // materialize 0.0.
3153     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3154       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3155 
3156     // setcc (fneg x), C -> setcc swap(pred) x, -C
3157     if (N0.getOpcode() == ISD::FNEG) {
3158       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3159       if (DCI.isBeforeLegalizeOps() ||
3160           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3161         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3162         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3163       }
3164     }
3165 
3166     // If the condition is not legal, see if we can find an equivalent one
3167     // which is legal.
3168     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3169       // If the comparison was an awkward floating-point == or != and one of
3170       // the comparison operands is infinity or negative infinity, convert the
3171       // condition to a less-awkward <= or >=.
3172       if (CFP->getValueAPF().isInfinity()) {
3173         if (CFP->getValueAPF().isNegative()) {
3174           if (Cond == ISD::SETOEQ &&
3175               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3176             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3177           if (Cond == ISD::SETUEQ &&
3178               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3179             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3180           if (Cond == ISD::SETUNE &&
3181               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3182             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3183           if (Cond == ISD::SETONE &&
3184               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3185             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3186         } else {
3187           if (Cond == ISD::SETOEQ &&
3188               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3189             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3190           if (Cond == ISD::SETUEQ &&
3191               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3192             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3193           if (Cond == ISD::SETUNE &&
3194               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3195             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3196           if (Cond == ISD::SETONE &&
3197               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3198             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3199         }
3200       }
3201     }
3202   }
3203 
3204   if (N0 == N1) {
3205     // The sext(setcc()) => setcc() optimization relies on the appropriate
3206     // constant being emitted.
3207     assert(!N0.getValueType().isInteger() &&
3208            "Integer types should be handled by FoldSetCC");
3209 
3210     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3211     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3212     if (UOF == 2) // FP operators that are undefined on NaNs.
3213       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3214     if (UOF == unsigned(EqTrue))
3215       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3216     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3217     // if it is not already.
3218     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3219     if (NewCond != Cond &&
3220         (DCI.isBeforeLegalizeOps() ||
3221                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3222       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3223   }
3224 
3225   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3226       N0.getValueType().isInteger()) {
3227     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3228         N0.getOpcode() == ISD::XOR) {
3229       // Simplify (X+Y) == (X+Z) -->  Y == Z
3230       if (N0.getOpcode() == N1.getOpcode()) {
3231         if (N0.getOperand(0) == N1.getOperand(0))
3232           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3233         if (N0.getOperand(1) == N1.getOperand(1))
3234           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3235         if (isCommutativeBinOp(N0.getOpcode())) {
3236           // If X op Y == Y op X, try other combinations.
3237           if (N0.getOperand(0) == N1.getOperand(1))
3238             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3239                                 Cond);
3240           if (N0.getOperand(1) == N1.getOperand(0))
3241             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3242                                 Cond);
3243         }
3244       }
3245 
3246       // If RHS is a legal immediate value for a compare instruction, we need
3247       // to be careful about increasing register pressure needlessly.
3248       bool LegalRHSImm = false;
3249 
3250       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3251         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3252           // Turn (X+C1) == C2 --> X == C2-C1
3253           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3254             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3255                                 DAG.getConstant(RHSC->getAPIntValue()-
3256                                                 LHSR->getAPIntValue(),
3257                                 dl, N0.getValueType()), Cond);
3258           }
3259 
3260           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3261           if (N0.getOpcode() == ISD::XOR)
3262             // If we know that all of the inverted bits are zero, don't bother
3263             // performing the inversion.
3264             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3265               return
3266                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3267                              DAG.getConstant(LHSR->getAPIntValue() ^
3268                                                RHSC->getAPIntValue(),
3269                                              dl, N0.getValueType()),
3270                              Cond);
3271         }
3272 
3273         // Turn (C1-X) == C2 --> X == C1-C2
3274         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3275           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3276             return
3277               DAG.getSetCC(dl, VT, N0.getOperand(1),
3278                            DAG.getConstant(SUBC->getAPIntValue() -
3279                                              RHSC->getAPIntValue(),
3280                                            dl, N0.getValueType()),
3281                            Cond);
3282           }
3283         }
3284 
3285         // Could RHSC fold directly into a compare?
3286         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3287           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3288       }
3289 
3290       // (X+Y) == X --> Y == 0 and similar folds.
3291       // Don't do this if X is an immediate that can fold into a cmp
3292       // instruction and X+Y has other uses. It could be an induction variable
3293       // chain, and the transform would increase register pressure.
3294       if (!LegalRHSImm || N0.hasOneUse())
3295         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3296           return V;
3297     }
3298 
3299     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3300         N1.getOpcode() == ISD::XOR)
3301       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3302         return V;
3303 
3304     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3305       return V;
3306   }
3307 
3308   // Fold away ALL boolean setcc's.
3309   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3310     SDValue Temp;
3311     switch (Cond) {
3312     default: llvm_unreachable("Unknown integer setcc!");
3313     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3314       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3315       N0 = DAG.getNOT(dl, Temp, OpVT);
3316       if (!DCI.isCalledByLegalizer())
3317         DCI.AddToWorklist(Temp.getNode());
3318       break;
3319     case ISD::SETNE:  // X != Y   -->  (X^Y)
3320       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3321       break;
3322     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3323     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3324       Temp = DAG.getNOT(dl, N0, OpVT);
3325       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3326       if (!DCI.isCalledByLegalizer())
3327         DCI.AddToWorklist(Temp.getNode());
3328       break;
3329     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3330     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3331       Temp = DAG.getNOT(dl, N1, OpVT);
3332       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3333       if (!DCI.isCalledByLegalizer())
3334         DCI.AddToWorklist(Temp.getNode());
3335       break;
3336     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3337     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3338       Temp = DAG.getNOT(dl, N0, OpVT);
3339       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3340       if (!DCI.isCalledByLegalizer())
3341         DCI.AddToWorklist(Temp.getNode());
3342       break;
3343     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3344     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3345       Temp = DAG.getNOT(dl, N1, OpVT);
3346       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3347       break;
3348     }
3349     if (VT.getScalarType() != MVT::i1) {
3350       if (!DCI.isCalledByLegalizer())
3351         DCI.AddToWorklist(N0.getNode());
3352       // FIXME: If running after legalize, we probably can't do this.
3353       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3354       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3355     }
3356     return N0;
3357   }
3358 
3359   // Could not fold it.
3360   return SDValue();
3361 }
3362 
3363 /// Returns true (and the GlobalValue and the offset) if the node is a
3364 /// GlobalAddress + offset.
3365 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3366                                     int64_t &Offset) const {
3367 
3368   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3369 
3370   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3371     GA = GASD->getGlobal();
3372     Offset += GASD->getOffset();
3373     return true;
3374   }
3375 
3376   if (N->getOpcode() == ISD::ADD) {
3377     SDValue N1 = N->getOperand(0);
3378     SDValue N2 = N->getOperand(1);
3379     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3380       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3381         Offset += V->getSExtValue();
3382         return true;
3383       }
3384     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3385       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3386         Offset += V->getSExtValue();
3387         return true;
3388       }
3389     }
3390   }
3391 
3392   return false;
3393 }
3394 
3395 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3396                                           DAGCombinerInfo &DCI) const {
3397   // Default implementation: no optimization.
3398   return SDValue();
3399 }
3400 
3401 //===----------------------------------------------------------------------===//
3402 //  Inline Assembler Implementation Methods
3403 //===----------------------------------------------------------------------===//
3404 
3405 TargetLowering::ConstraintType
3406 TargetLowering::getConstraintType(StringRef Constraint) const {
3407   unsigned S = Constraint.size();
3408 
3409   if (S == 1) {
3410     switch (Constraint[0]) {
3411     default: break;
3412     case 'r': return C_RegisterClass;
3413     case 'm': // memory
3414     case 'o': // offsetable
3415     case 'V': // not offsetable
3416       return C_Memory;
3417     case 'i': // Simple Integer or Relocatable Constant
3418     case 'n': // Simple Integer
3419     case 'E': // Floating Point Constant
3420     case 'F': // Floating Point Constant
3421     case 's': // Relocatable Constant
3422     case 'p': // Address.
3423     case 'X': // Allow ANY value.
3424     case 'I': // Target registers.
3425     case 'J':
3426     case 'K':
3427     case 'L':
3428     case 'M':
3429     case 'N':
3430     case 'O':
3431     case 'P':
3432     case '<':
3433     case '>':
3434       return C_Other;
3435     }
3436   }
3437 
3438   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3439     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3440       return C_Memory;
3441     return C_Register;
3442   }
3443   return C_Unknown;
3444 }
3445 
3446 /// Try to replace an X constraint, which matches anything, with another that
3447 /// has more specific requirements based on the type of the corresponding
3448 /// operand.
3449 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3450   if (ConstraintVT.isInteger())
3451     return "r";
3452   if (ConstraintVT.isFloatingPoint())
3453     return "f"; // works for many targets
3454   return nullptr;
3455 }
3456 
3457 SDValue TargetLowering::LowerAsmOutputForConstraint(
3458     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3459     SelectionDAG &DAG) const {
3460   return SDValue();
3461 }
3462 
3463 /// Lower the specified operand into the Ops vector.
3464 /// If it is invalid, don't add anything to Ops.
3465 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3466                                                   std::string &Constraint,
3467                                                   std::vector<SDValue> &Ops,
3468                                                   SelectionDAG &DAG) const {
3469 
3470   if (Constraint.length() > 1) return;
3471 
3472   char ConstraintLetter = Constraint[0];
3473   switch (ConstraintLetter) {
3474   default: break;
3475   case 'X':     // Allows any operand; labels (basic block) use this.
3476     if (Op.getOpcode() == ISD::BasicBlock ||
3477         Op.getOpcode() == ISD::TargetBlockAddress) {
3478       Ops.push_back(Op);
3479       return;
3480     }
3481     LLVM_FALLTHROUGH;
3482   case 'i':    // Simple Integer or Relocatable Constant
3483   case 'n':    // Simple Integer
3484   case 's': {  // Relocatable Constant
3485     // These operands are interested in values of the form (GV+C), where C may
3486     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3487     // is possible and fine if either GV or C are missing.
3488     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3489     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3490 
3491     // If we have "(add GV, C)", pull out GV/C
3492     if (Op.getOpcode() == ISD::ADD) {
3493       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3494       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3495       if (!C || !GA) {
3496         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3497         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3498       }
3499       if (!C || !GA) {
3500         C = nullptr;
3501         GA = nullptr;
3502       }
3503     }
3504 
3505     // If we find a valid operand, map to the TargetXXX version so that the
3506     // value itself doesn't get selected.
3507     if (GA) {   // Either &GV   or   &GV+C
3508       if (ConstraintLetter != 'n') {
3509         int64_t Offs = GA->getOffset();
3510         if (C) Offs += C->getZExtValue();
3511         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3512                                                  C ? SDLoc(C) : SDLoc(),
3513                                                  Op.getValueType(), Offs));
3514       }
3515       return;
3516     }
3517     if (C) {   // just C, no GV.
3518       // Simple constants are not allowed for 's'.
3519       if (ConstraintLetter != 's') {
3520         // gcc prints these as sign extended.  Sign extend value to 64 bits
3521         // now; without this it would get ZExt'd later in
3522         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3523         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3524                                             SDLoc(C), MVT::i64));
3525       }
3526       return;
3527     }
3528     break;
3529   }
3530   }
3531 }
3532 
3533 std::pair<unsigned, const TargetRegisterClass *>
3534 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3535                                              StringRef Constraint,
3536                                              MVT VT) const {
3537   if (Constraint.empty() || Constraint[0] != '{')
3538     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
3539   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
3540 
3541   // Remove the braces from around the name.
3542   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
3543 
3544   std::pair<unsigned, const TargetRegisterClass *> R =
3545       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
3546 
3547   // Figure out which register class contains this reg.
3548   for (const TargetRegisterClass *RC : RI->regclasses()) {
3549     // If none of the value types for this register class are valid, we
3550     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3551     if (!isLegalRC(*RI, *RC))
3552       continue;
3553 
3554     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3555          I != E; ++I) {
3556       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3557         std::pair<unsigned, const TargetRegisterClass *> S =
3558             std::make_pair(*I, RC);
3559 
3560         // If this register class has the requested value type, return it,
3561         // otherwise keep searching and return the first class found
3562         // if no other is found which explicitly has the requested type.
3563         if (RI->isTypeLegalForClass(*RC, VT))
3564           return S;
3565         if (!R.second)
3566           R = S;
3567       }
3568     }
3569   }
3570 
3571   return R;
3572 }
3573 
3574 //===----------------------------------------------------------------------===//
3575 // Constraint Selection.
3576 
3577 /// Return true of this is an input operand that is a matching constraint like
3578 /// "4".
3579 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3580   assert(!ConstraintCode.empty() && "No known constraint!");
3581   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3582 }
3583 
3584 /// If this is an input matching constraint, this method returns the output
3585 /// operand it matches.
3586 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3587   assert(!ConstraintCode.empty() && "No known constraint!");
3588   return atoi(ConstraintCode.c_str());
3589 }
3590 
3591 /// Split up the constraint string from the inline assembly value into the
3592 /// specific constraints and their prefixes, and also tie in the associated
3593 /// operand values.
3594 /// If this returns an empty vector, and if the constraint string itself
3595 /// isn't empty, there was an error parsing.
3596 TargetLowering::AsmOperandInfoVector
3597 TargetLowering::ParseConstraints(const DataLayout &DL,
3598                                  const TargetRegisterInfo *TRI,
3599                                  ImmutableCallSite CS) const {
3600   /// Information about all of the constraints.
3601   AsmOperandInfoVector ConstraintOperands;
3602   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3603   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3604 
3605   // Do a prepass over the constraints, canonicalizing them, and building up the
3606   // ConstraintOperands list.
3607   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
3608   unsigned ResNo = 0; // ResNo - The result number of the next output.
3609 
3610   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3611     ConstraintOperands.emplace_back(std::move(CI));
3612     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3613 
3614     // Update multiple alternative constraint count.
3615     if (OpInfo.multipleAlternatives.size() > maCount)
3616       maCount = OpInfo.multipleAlternatives.size();
3617 
3618     OpInfo.ConstraintVT = MVT::Other;
3619 
3620     // Compute the value type for each operand.
3621     switch (OpInfo.Type) {
3622     case InlineAsm::isOutput:
3623       // Indirect outputs just consume an argument.
3624       if (OpInfo.isIndirect) {
3625         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3626         break;
3627       }
3628 
3629       // The return value of the call is this value.  As such, there is no
3630       // corresponding argument.
3631       assert(!CS.getType()->isVoidTy() &&
3632              "Bad inline asm!");
3633       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3634         OpInfo.ConstraintVT =
3635             getSimpleValueType(DL, STy->getElementType(ResNo));
3636       } else {
3637         assert(ResNo == 0 && "Asm only has one result!");
3638         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3639       }
3640       ++ResNo;
3641       break;
3642     case InlineAsm::isInput:
3643       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3644       break;
3645     case InlineAsm::isClobber:
3646       // Nothing to do.
3647       break;
3648     }
3649 
3650     if (OpInfo.CallOperandVal) {
3651       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3652       if (OpInfo.isIndirect) {
3653         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3654         if (!PtrTy)
3655           report_fatal_error("Indirect operand for inline asm not a pointer!");
3656         OpTy = PtrTy->getElementType();
3657       }
3658 
3659       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3660       if (StructType *STy = dyn_cast<StructType>(OpTy))
3661         if (STy->getNumElements() == 1)
3662           OpTy = STy->getElementType(0);
3663 
3664       // If OpTy is not a single value, it may be a struct/union that we
3665       // can tile with integers.
3666       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3667         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3668         switch (BitSize) {
3669         default: break;
3670         case 1:
3671         case 8:
3672         case 16:
3673         case 32:
3674         case 64:
3675         case 128:
3676           OpInfo.ConstraintVT =
3677               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3678           break;
3679         }
3680       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3681         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3682         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3683       } else {
3684         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3685       }
3686     }
3687   }
3688 
3689   // If we have multiple alternative constraints, select the best alternative.
3690   if (!ConstraintOperands.empty()) {
3691     if (maCount) {
3692       unsigned bestMAIndex = 0;
3693       int bestWeight = -1;
3694       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3695       int weight = -1;
3696       unsigned maIndex;
3697       // Compute the sums of the weights for each alternative, keeping track
3698       // of the best (highest weight) one so far.
3699       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3700         int weightSum = 0;
3701         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3702              cIndex != eIndex; ++cIndex) {
3703           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3704           if (OpInfo.Type == InlineAsm::isClobber)
3705             continue;
3706 
3707           // If this is an output operand with a matching input operand,
3708           // look up the matching input. If their types mismatch, e.g. one
3709           // is an integer, the other is floating point, or their sizes are
3710           // different, flag it as an maCantMatch.
3711           if (OpInfo.hasMatchingInput()) {
3712             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3713             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3714               if ((OpInfo.ConstraintVT.isInteger() !=
3715                    Input.ConstraintVT.isInteger()) ||
3716                   (OpInfo.ConstraintVT.getSizeInBits() !=
3717                    Input.ConstraintVT.getSizeInBits())) {
3718                 weightSum = -1; // Can't match.
3719                 break;
3720               }
3721             }
3722           }
3723           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3724           if (weight == -1) {
3725             weightSum = -1;
3726             break;
3727           }
3728           weightSum += weight;
3729         }
3730         // Update best.
3731         if (weightSum > bestWeight) {
3732           bestWeight = weightSum;
3733           bestMAIndex = maIndex;
3734         }
3735       }
3736 
3737       // Now select chosen alternative in each constraint.
3738       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3739            cIndex != eIndex; ++cIndex) {
3740         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
3741         if (cInfo.Type == InlineAsm::isClobber)
3742           continue;
3743         cInfo.selectAlternative(bestMAIndex);
3744       }
3745     }
3746   }
3747 
3748   // Check and hook up tied operands, choose constraint code to use.
3749   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3750        cIndex != eIndex; ++cIndex) {
3751     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3752 
3753     // If this is an output operand with a matching input operand, look up the
3754     // matching input. If their types mismatch, e.g. one is an integer, the
3755     // other is floating point, or their sizes are different, flag it as an
3756     // error.
3757     if (OpInfo.hasMatchingInput()) {
3758       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3759 
3760       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3761         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3762             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3763                                          OpInfo.ConstraintVT);
3764         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3765             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3766                                          Input.ConstraintVT);
3767         if ((OpInfo.ConstraintVT.isInteger() !=
3768              Input.ConstraintVT.isInteger()) ||
3769             (MatchRC.second != InputRC.second)) {
3770           report_fatal_error("Unsupported asm: input constraint"
3771                              " with a matching output constraint of"
3772                              " incompatible type!");
3773         }
3774       }
3775     }
3776   }
3777 
3778   return ConstraintOperands;
3779 }
3780 
3781 /// Return an integer indicating how general CT is.
3782 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3783   switch (CT) {
3784   case TargetLowering::C_Other:
3785   case TargetLowering::C_Unknown:
3786     return 0;
3787   case TargetLowering::C_Register:
3788     return 1;
3789   case TargetLowering::C_RegisterClass:
3790     return 2;
3791   case TargetLowering::C_Memory:
3792     return 3;
3793   }
3794   llvm_unreachable("Invalid constraint type");
3795 }
3796 
3797 /// Examine constraint type and operand type and determine a weight value.
3798 /// This object must already have been set up with the operand type
3799 /// and the current alternative constraint selected.
3800 TargetLowering::ConstraintWeight
3801   TargetLowering::getMultipleConstraintMatchWeight(
3802     AsmOperandInfo &info, int maIndex) const {
3803   InlineAsm::ConstraintCodeVector *rCodes;
3804   if (maIndex >= (int)info.multipleAlternatives.size())
3805     rCodes = &info.Codes;
3806   else
3807     rCodes = &info.multipleAlternatives[maIndex].Codes;
3808   ConstraintWeight BestWeight = CW_Invalid;
3809 
3810   // Loop over the options, keeping track of the most general one.
3811   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3812     ConstraintWeight weight =
3813       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3814     if (weight > BestWeight)
3815       BestWeight = weight;
3816   }
3817 
3818   return BestWeight;
3819 }
3820 
3821 /// Examine constraint type and operand type and determine a weight value.
3822 /// This object must already have been set up with the operand type
3823 /// and the current alternative constraint selected.
3824 TargetLowering::ConstraintWeight
3825   TargetLowering::getSingleConstraintMatchWeight(
3826     AsmOperandInfo &info, const char *constraint) const {
3827   ConstraintWeight weight = CW_Invalid;
3828   Value *CallOperandVal = info.CallOperandVal;
3829     // If we don't have a value, we can't do a match,
3830     // but allow it at the lowest weight.
3831   if (!CallOperandVal)
3832     return CW_Default;
3833   // Look at the constraint type.
3834   switch (*constraint) {
3835     case 'i': // immediate integer.
3836     case 'n': // immediate integer with a known value.
3837       if (isa<ConstantInt>(CallOperandVal))
3838         weight = CW_Constant;
3839       break;
3840     case 's': // non-explicit intregal immediate.
3841       if (isa<GlobalValue>(CallOperandVal))
3842         weight = CW_Constant;
3843       break;
3844     case 'E': // immediate float if host format.
3845     case 'F': // immediate float.
3846       if (isa<ConstantFP>(CallOperandVal))
3847         weight = CW_Constant;
3848       break;
3849     case '<': // memory operand with autodecrement.
3850     case '>': // memory operand with autoincrement.
3851     case 'm': // memory operand.
3852     case 'o': // offsettable memory operand
3853     case 'V': // non-offsettable memory operand
3854       weight = CW_Memory;
3855       break;
3856     case 'r': // general register.
3857     case 'g': // general register, memory operand or immediate integer.
3858               // note: Clang converts "g" to "imr".
3859       if (CallOperandVal->getType()->isIntegerTy())
3860         weight = CW_Register;
3861       break;
3862     case 'X': // any operand.
3863   default:
3864     weight = CW_Default;
3865     break;
3866   }
3867   return weight;
3868 }
3869 
3870 /// If there are multiple different constraints that we could pick for this
3871 /// operand (e.g. "imr") try to pick the 'best' one.
3872 /// This is somewhat tricky: constraints fall into four classes:
3873 ///    Other         -> immediates and magic values
3874 ///    Register      -> one specific register
3875 ///    RegisterClass -> a group of regs
3876 ///    Memory        -> memory
3877 /// Ideally, we would pick the most specific constraint possible: if we have
3878 /// something that fits into a register, we would pick it.  The problem here
3879 /// is that if we have something that could either be in a register or in
3880 /// memory that use of the register could cause selection of *other*
3881 /// operands to fail: they might only succeed if we pick memory.  Because of
3882 /// this the heuristic we use is:
3883 ///
3884 ///  1) If there is an 'other' constraint, and if the operand is valid for
3885 ///     that constraint, use it.  This makes us take advantage of 'i'
3886 ///     constraints when available.
3887 ///  2) Otherwise, pick the most general constraint present.  This prefers
3888 ///     'm' over 'r', for example.
3889 ///
3890 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3891                              const TargetLowering &TLI,
3892                              SDValue Op, SelectionDAG *DAG) {
3893   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3894   unsigned BestIdx = 0;
3895   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3896   int BestGenerality = -1;
3897 
3898   // Loop over the options, keeping track of the most general one.
3899   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3900     TargetLowering::ConstraintType CType =
3901       TLI.getConstraintType(OpInfo.Codes[i]);
3902 
3903     // If this is an 'other' constraint, see if the operand is valid for it.
3904     // For example, on X86 we might have an 'rI' constraint.  If the operand
3905     // is an integer in the range [0..31] we want to use I (saving a load
3906     // of a register), otherwise we must use 'r'.
3907     if (CType == TargetLowering::C_Other && Op.getNode()) {
3908       assert(OpInfo.Codes[i].size() == 1 &&
3909              "Unhandled multi-letter 'other' constraint");
3910       std::vector<SDValue> ResultOps;
3911       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3912                                        ResultOps, *DAG);
3913       if (!ResultOps.empty()) {
3914         BestType = CType;
3915         BestIdx = i;
3916         break;
3917       }
3918     }
3919 
3920     // Things with matching constraints can only be registers, per gcc
3921     // documentation.  This mainly affects "g" constraints.
3922     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3923       continue;
3924 
3925     // This constraint letter is more general than the previous one, use it.
3926     int Generality = getConstraintGenerality(CType);
3927     if (Generality > BestGenerality) {
3928       BestType = CType;
3929       BestIdx = i;
3930       BestGenerality = Generality;
3931     }
3932   }
3933 
3934   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3935   OpInfo.ConstraintType = BestType;
3936 }
3937 
3938 /// Determines the constraint code and constraint type to use for the specific
3939 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3940 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3941                                             SDValue Op,
3942                                             SelectionDAG *DAG) const {
3943   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3944 
3945   // Single-letter constraints ('r') are very common.
3946   if (OpInfo.Codes.size() == 1) {
3947     OpInfo.ConstraintCode = OpInfo.Codes[0];
3948     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3949   } else {
3950     ChooseConstraint(OpInfo, *this, Op, DAG);
3951   }
3952 
3953   // 'X' matches anything.
3954   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3955     // Labels and constants are handled elsewhere ('X' is the only thing
3956     // that matches labels).  For Functions, the type here is the type of
3957     // the result, which is not what we want to look at; leave them alone.
3958     Value *v = OpInfo.CallOperandVal;
3959     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3960       OpInfo.CallOperandVal = v;
3961       return;
3962     }
3963 
3964     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
3965       return;
3966 
3967     // Otherwise, try to resolve it to something we know about by looking at
3968     // the actual operand type.
3969     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3970       OpInfo.ConstraintCode = Repl;
3971       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3972     }
3973   }
3974 }
3975 
3976 /// Given an exact SDIV by a constant, create a multiplication
3977 /// with the multiplicative inverse of the constant.
3978 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3979                               const SDLoc &dl, SelectionDAG &DAG,
3980                               SmallVectorImpl<SDNode *> &Created) {
3981   SDValue Op0 = N->getOperand(0);
3982   SDValue Op1 = N->getOperand(1);
3983   EVT VT = N->getValueType(0);
3984   EVT SVT = VT.getScalarType();
3985   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3986   EVT ShSVT = ShVT.getScalarType();
3987 
3988   bool UseSRA = false;
3989   SmallVector<SDValue, 16> Shifts, Factors;
3990 
3991   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3992     if (C->isNullValue())
3993       return false;
3994     APInt Divisor = C->getAPIntValue();
3995     unsigned Shift = Divisor.countTrailingZeros();
3996     if (Shift) {
3997       Divisor.ashrInPlace(Shift);
3998       UseSRA = true;
3999     }
4000     // Calculate the multiplicative inverse, using Newton's method.
4001     APInt t;
4002     APInt Factor = Divisor;
4003     while ((t = Divisor * Factor) != 1)
4004       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4005     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4006     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4007     return true;
4008   };
4009 
4010   // Collect all magic values from the build vector.
4011   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4012     return SDValue();
4013 
4014   SDValue Shift, Factor;
4015   if (VT.isVector()) {
4016     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4017     Factor = DAG.getBuildVector(VT, dl, Factors);
4018   } else {
4019     Shift = Shifts[0];
4020     Factor = Factors[0];
4021   }
4022 
4023   SDValue Res = Op0;
4024 
4025   // Shift the value upfront if it is even, so the LSB is one.
4026   if (UseSRA) {
4027     // TODO: For UDIV use SRL instead of SRA.
4028     SDNodeFlags Flags;
4029     Flags.setExact(true);
4030     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4031     Created.push_back(Res.getNode());
4032   }
4033 
4034   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4035 }
4036 
4037 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4038                               SelectionDAG &DAG,
4039                               SmallVectorImpl<SDNode *> &Created) const {
4040   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4042   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4043     return SDValue(N, 0); // Lower SDIV as SDIV
4044   return SDValue();
4045 }
4046 
4047 /// Given an ISD::SDIV node expressing a divide by constant,
4048 /// return a DAG expression to select that will generate the same value by
4049 /// multiplying by a magic number.
4050 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4051 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4052                                   bool IsAfterLegalization,
4053                                   SmallVectorImpl<SDNode *> &Created) const {
4054   SDLoc dl(N);
4055   EVT VT = N->getValueType(0);
4056   EVT SVT = VT.getScalarType();
4057   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4058   EVT ShSVT = ShVT.getScalarType();
4059   unsigned EltBits = VT.getScalarSizeInBits();
4060 
4061   // Check to see if we can do this.
4062   // FIXME: We should be more aggressive here.
4063   if (!isTypeLegal(VT))
4064     return SDValue();
4065 
4066   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4067   if (N->getFlags().hasExact())
4068     return BuildExactSDIV(*this, N, dl, DAG, Created);
4069 
4070   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4071 
4072   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4073     if (C->isNullValue())
4074       return false;
4075 
4076     const APInt &Divisor = C->getAPIntValue();
4077     APInt::ms magics = Divisor.magic();
4078     int NumeratorFactor = 0;
4079     int ShiftMask = -1;
4080 
4081     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4082       // If d is +1/-1, we just multiply the numerator by +1/-1.
4083       NumeratorFactor = Divisor.getSExtValue();
4084       magics.m = 0;
4085       magics.s = 0;
4086       ShiftMask = 0;
4087     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4088       // If d > 0 and m < 0, add the numerator.
4089       NumeratorFactor = 1;
4090     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4091       // If d < 0 and m > 0, subtract the numerator.
4092       NumeratorFactor = -1;
4093     }
4094 
4095     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4096     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4097     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4098     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4099     return true;
4100   };
4101 
4102   SDValue N0 = N->getOperand(0);
4103   SDValue N1 = N->getOperand(1);
4104 
4105   // Collect the shifts / magic values from each element.
4106   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4107     return SDValue();
4108 
4109   SDValue MagicFactor, Factor, Shift, ShiftMask;
4110   if (VT.isVector()) {
4111     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4112     Factor = DAG.getBuildVector(VT, dl, Factors);
4113     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4114     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4115   } else {
4116     MagicFactor = MagicFactors[0];
4117     Factor = Factors[0];
4118     Shift = Shifts[0];
4119     ShiftMask = ShiftMasks[0];
4120   }
4121 
4122   // Multiply the numerator (operand 0) by the magic value.
4123   // FIXME: We should support doing a MUL in a wider type.
4124   SDValue Q;
4125   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4126                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4127     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4128   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4129                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4130     SDValue LoHi =
4131         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4132     Q = SDValue(LoHi.getNode(), 1);
4133   } else
4134     return SDValue(); // No mulhs or equivalent.
4135   Created.push_back(Q.getNode());
4136 
4137   // (Optionally) Add/subtract the numerator using Factor.
4138   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4139   Created.push_back(Factor.getNode());
4140   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4141   Created.push_back(Q.getNode());
4142 
4143   // Shift right algebraic by shift value.
4144   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4145   Created.push_back(Q.getNode());
4146 
4147   // Extract the sign bit, mask it and add it to the quotient.
4148   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4149   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4150   Created.push_back(T.getNode());
4151   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4152   Created.push_back(T.getNode());
4153   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4154 }
4155 
4156 /// Given an ISD::UDIV node expressing a divide by constant,
4157 /// return a DAG expression to select that will generate the same value by
4158 /// multiplying by a magic number.
4159 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4160 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4161                                   bool IsAfterLegalization,
4162                                   SmallVectorImpl<SDNode *> &Created) const {
4163   SDLoc dl(N);
4164   EVT VT = N->getValueType(0);
4165   EVT SVT = VT.getScalarType();
4166   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4167   EVT ShSVT = ShVT.getScalarType();
4168   unsigned EltBits = VT.getScalarSizeInBits();
4169 
4170   // Check to see if we can do this.
4171   // FIXME: We should be more aggressive here.
4172   if (!isTypeLegal(VT))
4173     return SDValue();
4174 
4175   bool UseNPQ = false;
4176   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4177 
4178   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4179     if (C->isNullValue())
4180       return false;
4181     // FIXME: We should use a narrower constant when the upper
4182     // bits are known to be zero.
4183     APInt Divisor = C->getAPIntValue();
4184     APInt::mu magics = Divisor.magicu();
4185     unsigned PreShift = 0, PostShift = 0;
4186 
4187     // If the divisor is even, we can avoid using the expensive fixup by
4188     // shifting the divided value upfront.
4189     if (magics.a != 0 && !Divisor[0]) {
4190       PreShift = Divisor.countTrailingZeros();
4191       // Get magic number for the shifted divisor.
4192       magics = Divisor.lshr(PreShift).magicu(PreShift);
4193       assert(magics.a == 0 && "Should use cheap fixup now");
4194     }
4195 
4196     APInt Magic = magics.m;
4197 
4198     unsigned SelNPQ;
4199     if (magics.a == 0 || Divisor.isOneValue()) {
4200       assert(magics.s < Divisor.getBitWidth() &&
4201              "We shouldn't generate an undefined shift!");
4202       PostShift = magics.s;
4203       SelNPQ = false;
4204     } else {
4205       PostShift = magics.s - 1;
4206       SelNPQ = true;
4207     }
4208 
4209     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4210     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4211     NPQFactors.push_back(
4212         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4213                                : APInt::getNullValue(EltBits),
4214                         dl, SVT));
4215     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4216     UseNPQ |= SelNPQ;
4217     return true;
4218   };
4219 
4220   SDValue N0 = N->getOperand(0);
4221   SDValue N1 = N->getOperand(1);
4222 
4223   // Collect the shifts/magic values from each element.
4224   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4225     return SDValue();
4226 
4227   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4228   if (VT.isVector()) {
4229     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4230     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4231     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4232     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4233   } else {
4234     PreShift = PreShifts[0];
4235     MagicFactor = MagicFactors[0];
4236     PostShift = PostShifts[0];
4237   }
4238 
4239   SDValue Q = N0;
4240   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4241   Created.push_back(Q.getNode());
4242 
4243   // FIXME: We should support doing a MUL in a wider type.
4244   auto GetMULHU = [&](SDValue X, SDValue Y) {
4245     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4246                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4247       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4248     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4249                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4250       SDValue LoHi =
4251           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4252       return SDValue(LoHi.getNode(), 1);
4253     }
4254     return SDValue(); // No mulhu or equivalent
4255   };
4256 
4257   // Multiply the numerator (operand 0) by the magic value.
4258   Q = GetMULHU(Q, MagicFactor);
4259   if (!Q)
4260     return SDValue();
4261 
4262   Created.push_back(Q.getNode());
4263 
4264   if (UseNPQ) {
4265     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4266     Created.push_back(NPQ.getNode());
4267 
4268     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4269     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4270     if (VT.isVector())
4271       NPQ = GetMULHU(NPQ, NPQFactor);
4272     else
4273       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4274 
4275     Created.push_back(NPQ.getNode());
4276 
4277     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4278     Created.push_back(Q.getNode());
4279   }
4280 
4281   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4282   Created.push_back(Q.getNode());
4283 
4284   SDValue One = DAG.getConstant(1, dl, VT);
4285   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4286   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4287 }
4288 
4289 bool TargetLowering::
4290 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4291   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4292     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4293                                 "be a constant integer");
4294     return true;
4295   }
4296 
4297   return false;
4298 }
4299 
4300 //===----------------------------------------------------------------------===//
4301 // Legalization Utilities
4302 //===----------------------------------------------------------------------===//
4303 
4304 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4305                                     SDValue LHS, SDValue RHS,
4306                                     SmallVectorImpl<SDValue> &Result,
4307                                     EVT HiLoVT, SelectionDAG &DAG,
4308                                     MulExpansionKind Kind, SDValue LL,
4309                                     SDValue LH, SDValue RL, SDValue RH) const {
4310   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4311          Opcode == ISD::SMUL_LOHI);
4312 
4313   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4314                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4315   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4316                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4317   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4318                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4319   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4320                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4321 
4322   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4323     return false;
4324 
4325   unsigned OuterBitSize = VT.getScalarSizeInBits();
4326   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4327   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4328   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4329 
4330   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4331   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4332          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4333 
4334   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4335   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4336                           bool Signed) -> bool {
4337     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4338       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4339       Hi = SDValue(Lo.getNode(), 1);
4340       return true;
4341     }
4342     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4343       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4344       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4345       return true;
4346     }
4347     return false;
4348   };
4349 
4350   SDValue Lo, Hi;
4351 
4352   if (!LL.getNode() && !RL.getNode() &&
4353       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4354     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4355     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4356   }
4357 
4358   if (!LL.getNode())
4359     return false;
4360 
4361   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4362   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4363       DAG.MaskedValueIsZero(RHS, HighMask)) {
4364     // The inputs are both zero-extended.
4365     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4366       Result.push_back(Lo);
4367       Result.push_back(Hi);
4368       if (Opcode != ISD::MUL) {
4369         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4370         Result.push_back(Zero);
4371         Result.push_back(Zero);
4372       }
4373       return true;
4374     }
4375   }
4376 
4377   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4378       RHSSB > InnerBitSize) {
4379     // The input values are both sign-extended.
4380     // TODO non-MUL case?
4381     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4382       Result.push_back(Lo);
4383       Result.push_back(Hi);
4384       return true;
4385     }
4386   }
4387 
4388   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4389   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4390   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4391     // FIXME getShiftAmountTy does not always return a sensible result when VT
4392     // is an illegal type, and so the type may be too small to fit the shift
4393     // amount. Override it with i32. The shift will have to be legalized.
4394     ShiftAmountTy = MVT::i32;
4395   }
4396   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4397 
4398   if (!LH.getNode() && !RH.getNode() &&
4399       isOperationLegalOrCustom(ISD::SRL, VT) &&
4400       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4401     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4402     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4403     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4404     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4405   }
4406 
4407   if (!LH.getNode())
4408     return false;
4409 
4410   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4411     return false;
4412 
4413   Result.push_back(Lo);
4414 
4415   if (Opcode == ISD::MUL) {
4416     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4417     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4418     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4419     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4420     Result.push_back(Hi);
4421     return true;
4422   }
4423 
4424   // Compute the full width result.
4425   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4426     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4427     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4428     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4429     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4430   };
4431 
4432   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4433   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4434     return false;
4435 
4436   // This is effectively the add part of a multiply-add of half-sized operands,
4437   // so it cannot overflow.
4438   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4439 
4440   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4441     return false;
4442 
4443   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4444   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4445 
4446   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4447                   isOperationLegalOrCustom(ISD::ADDE, VT));
4448   if (UseGlue)
4449     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4450                        Merge(Lo, Hi));
4451   else
4452     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4453                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4454 
4455   SDValue Carry = Next.getValue(1);
4456   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4457   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4458 
4459   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4460     return false;
4461 
4462   if (UseGlue)
4463     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4464                      Carry);
4465   else
4466     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4467                      Zero, Carry);
4468 
4469   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4470 
4471   if (Opcode == ISD::SMUL_LOHI) {
4472     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4473                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4474     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4475 
4476     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4477                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4478     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4479   }
4480 
4481   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4482   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4483   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4484   return true;
4485 }
4486 
4487 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4488                                SelectionDAG &DAG, MulExpansionKind Kind,
4489                                SDValue LL, SDValue LH, SDValue RL,
4490                                SDValue RH) const {
4491   SmallVector<SDValue, 2> Result;
4492   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4493                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4494                            DAG, Kind, LL, LH, RL, RH);
4495   if (Ok) {
4496     assert(Result.size() == 2);
4497     Lo = Result[0];
4498     Hi = Result[1];
4499   }
4500   return Ok;
4501 }
4502 
4503 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4504                                        SelectionDAG &DAG) const {
4505   EVT VT = Node->getValueType(0);
4506 
4507   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4508                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4509                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4510                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4511     return false;
4512 
4513   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4514   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4515   SDValue X = Node->getOperand(0);
4516   SDValue Y = Node->getOperand(1);
4517   SDValue Z = Node->getOperand(2);
4518 
4519   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4520   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4521   SDLoc DL(SDValue(Node, 0));
4522 
4523   EVT ShVT = Z.getValueType();
4524   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4525   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4526 
4527   SDValue ShAmt;
4528   if (isPowerOf2_32(EltSizeInBits)) {
4529     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4530     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4531   } else {
4532     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4533   }
4534 
4535   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4536   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4537   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4538   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4539 
4540   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4541   // and that is undefined. We must compare and select to avoid UB.
4542   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4543 
4544   // For fshl, 0-shift returns the 1st arg (X).
4545   // For fshr, 0-shift returns the 2nd arg (Y).
4546   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4547   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4548   return true;
4549 }
4550 
4551 // TODO: Merge with expandFunnelShift.
4552 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4553                                SelectionDAG &DAG) const {
4554   EVT VT = Node->getValueType(0);
4555   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4556   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4557   SDValue Op0 = Node->getOperand(0);
4558   SDValue Op1 = Node->getOperand(1);
4559   SDLoc DL(SDValue(Node, 0));
4560 
4561   EVT ShVT = Op1.getValueType();
4562   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4563 
4564   // If a rotate in the other direction is legal, use it.
4565   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4566   if (isOperationLegal(RevRot, VT)) {
4567     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4568     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4569     return true;
4570   }
4571 
4572   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4573                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4574                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4575                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4576                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4577     return false;
4578 
4579   // Otherwise,
4580   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4581   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4582   //
4583   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4584          "Expecting the type bitwidth to be a power of 2");
4585   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4586   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4587   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4588   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4589   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4590   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4591   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4592                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4593   return true;
4594 }
4595 
4596 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4597                                       SelectionDAG &DAG) const {
4598   SDValue Src = Node->getOperand(0);
4599   EVT SrcVT = Src.getValueType();
4600   EVT DstVT = Node->getValueType(0);
4601   SDLoc dl(SDValue(Node, 0));
4602 
4603   // FIXME: Only f32 to i64 conversions are supported.
4604   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4605     return false;
4606 
4607   // Expand f32 -> i64 conversion
4608   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4609   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4610   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4611   EVT IntVT = SrcVT.changeTypeToInteger();
4612   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4613 
4614   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4615   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4616   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4617   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4618   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4619   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4620 
4621   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4622 
4623   SDValue ExponentBits = DAG.getNode(
4624       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4625       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4626   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4627 
4628   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4629                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4630                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4631   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4632 
4633   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4634                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4635                           DAG.getConstant(0x00800000, dl, IntVT));
4636 
4637   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4638 
4639   R = DAG.getSelectCC(
4640       dl, Exponent, ExponentLoBit,
4641       DAG.getNode(ISD::SHL, dl, DstVT, R,
4642                   DAG.getZExtOrTrunc(
4643                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4644                       dl, IntShVT)),
4645       DAG.getNode(ISD::SRL, dl, DstVT, R,
4646                   DAG.getZExtOrTrunc(
4647                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4648                       dl, IntShVT)),
4649       ISD::SETGT);
4650 
4651   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4652                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4653 
4654   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4655                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4656   return true;
4657 }
4658 
4659 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4660                                       SelectionDAG &DAG) const {
4661   SDLoc dl(SDValue(Node, 0));
4662   SDValue Src = Node->getOperand(0);
4663 
4664   EVT SrcVT = Src.getValueType();
4665   EVT DstVT = Node->getValueType(0);
4666   EVT SetCCVT =
4667       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4668 
4669   // Only expand vector types if we have the appropriate vector bit operations.
4670   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4671                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4672     return false;
4673 
4674   // If the maximum float value is smaller then the signed integer range,
4675   // the destination signmask can't be represented by the float, so we can
4676   // just use FP_TO_SINT directly.
4677   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4678   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4679   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4680   if (APFloat::opOverflow &
4681       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4682     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4683     return true;
4684   }
4685 
4686   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4687   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4688 
4689   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4690   if (Strict) {
4691     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4692     // signmask then offset (the result of which should be fully representable).
4693     // Sel = Src < 0x8000000000000000
4694     // Val = select Sel, Src, Src - 0x8000000000000000
4695     // Ofs = select Sel, 0, 0x8000000000000000
4696     // Result = fp_to_sint(Val) ^ Ofs
4697 
4698     // TODO: Should any fast-math-flags be set for the FSUB?
4699     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4700                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4701     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4702                                 DAG.getConstant(SignMask, dl, DstVT));
4703     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4704                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4705   } else {
4706     // Expand based on maximum range of FP_TO_SINT:
4707     // True = fp_to_sint(Src)
4708     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4709     // Result = select (Src < 0x8000000000000000), True, False
4710 
4711     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4712     // TODO: Should any fast-math-flags be set for the FSUB?
4713     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4714                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4715     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4716                         DAG.getConstant(SignMask, dl, DstVT));
4717     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4718   }
4719   return true;
4720 }
4721 
4722 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4723                                       SelectionDAG &DAG) const {
4724   SDValue Src = Node->getOperand(0);
4725   EVT SrcVT = Src.getValueType();
4726   EVT DstVT = Node->getValueType(0);
4727 
4728   if (SrcVT.getScalarType() != MVT::i64)
4729     return false;
4730 
4731   SDLoc dl(SDValue(Node, 0));
4732   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4733 
4734   if (DstVT.getScalarType() == MVT::f32) {
4735     // Only expand vector types if we have the appropriate vector bit
4736     // operations.
4737     if (SrcVT.isVector() &&
4738         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4739          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4740          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4741          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4742          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4743       return false;
4744 
4745     // For unsigned conversions, convert them to signed conversions using the
4746     // algorithm from the x86_64 __floatundidf in compiler_rt.
4747     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4748 
4749     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4750     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4751     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4752     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4753     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4754 
4755     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4756     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4757 
4758     // TODO: This really should be implemented using a branch rather than a
4759     // select.  We happen to get lucky and machinesink does the right
4760     // thing most of the time.  This would be a good candidate for a
4761     // pseudo-op, or, even better, for whole-function isel.
4762     EVT SetCCVT =
4763         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4764 
4765     SDValue SignBitTest = DAG.getSetCC(
4766         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4767     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4768     return true;
4769   }
4770 
4771   if (DstVT.getScalarType() == MVT::f64) {
4772     // Only expand vector types if we have the appropriate vector bit
4773     // operations.
4774     if (SrcVT.isVector() &&
4775         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4776          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4777          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4778          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4779          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4780       return false;
4781 
4782     // Implementation of unsigned i64 to f64 following the algorithm in
4783     // __floatundidf in compiler_rt. This implementation has the advantage
4784     // of performing rounding correctly, both in the default rounding mode
4785     // and in all alternate rounding modes.
4786     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4787     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4788         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4789     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4790     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4791     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4792 
4793     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4794     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4795     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4796     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4797     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4798     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4799     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4800     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4801     return true;
4802   }
4803 
4804   return false;
4805 }
4806 
4807 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4808                                               SelectionDAG &DAG) const {
4809   SDLoc dl(Node);
4810   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4811     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4812   EVT VT = Node->getValueType(0);
4813   if (isOperationLegalOrCustom(NewOp, VT)) {
4814     SDValue Quiet0 = Node->getOperand(0);
4815     SDValue Quiet1 = Node->getOperand(1);
4816 
4817     if (!Node->getFlags().hasNoNaNs()) {
4818       // Insert canonicalizes if it's possible we need to quiet to get correct
4819       // sNaN behavior.
4820       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4821         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4822                              Node->getFlags());
4823       }
4824       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4825         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4826                              Node->getFlags());
4827       }
4828     }
4829 
4830     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4831   }
4832 
4833   return SDValue();
4834 }
4835 
4836 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4837                                  SelectionDAG &DAG) const {
4838   SDLoc dl(Node);
4839   EVT VT = Node->getValueType(0);
4840   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4841   SDValue Op = Node->getOperand(0);
4842   unsigned Len = VT.getScalarSizeInBits();
4843   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4844 
4845   // TODO: Add support for irregular type lengths.
4846   if (!(Len <= 128 && Len % 8 == 0))
4847     return false;
4848 
4849   // Only expand vector types if we have the appropriate vector bit operations.
4850   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4851                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4852                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4853                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4854                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4855     return false;
4856 
4857   // This is the "best" algorithm from
4858   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4859   SDValue Mask55 =
4860       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4861   SDValue Mask33 =
4862       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4863   SDValue Mask0F =
4864       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4865   SDValue Mask01 =
4866       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4867 
4868   // v = v - ((v >> 1) & 0x55555555...)
4869   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4870                    DAG.getNode(ISD::AND, dl, VT,
4871                                DAG.getNode(ISD::SRL, dl, VT, Op,
4872                                            DAG.getConstant(1, dl, ShVT)),
4873                                Mask55));
4874   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4875   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4876                    DAG.getNode(ISD::AND, dl, VT,
4877                                DAG.getNode(ISD::SRL, dl, VT, Op,
4878                                            DAG.getConstant(2, dl, ShVT)),
4879                                Mask33));
4880   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4881   Op = DAG.getNode(ISD::AND, dl, VT,
4882                    DAG.getNode(ISD::ADD, dl, VT, Op,
4883                                DAG.getNode(ISD::SRL, dl, VT, Op,
4884                                            DAG.getConstant(4, dl, ShVT))),
4885                    Mask0F);
4886   // v = (v * 0x01010101...) >> (Len - 8)
4887   if (Len > 8)
4888     Op =
4889         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4890                     DAG.getConstant(Len - 8, dl, ShVT));
4891 
4892   Result = Op;
4893   return true;
4894 }
4895 
4896 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4897                                 SelectionDAG &DAG) const {
4898   SDLoc dl(Node);
4899   EVT VT = Node->getValueType(0);
4900   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4901   SDValue Op = Node->getOperand(0);
4902   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4903 
4904   // If the non-ZERO_UNDEF version is supported we can use that instead.
4905   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4906       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4907     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4908     return true;
4909   }
4910 
4911   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4912   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4913     EVT SetCCVT =
4914         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4915     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4916     SDValue Zero = DAG.getConstant(0, dl, VT);
4917     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4918     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4919                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4920     return true;
4921   }
4922 
4923   // Only expand vector types if we have the appropriate vector bit operations.
4924   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4925                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4926                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4927                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4928     return false;
4929 
4930   // for now, we do this:
4931   // x = x | (x >> 1);
4932   // x = x | (x >> 2);
4933   // ...
4934   // x = x | (x >>16);
4935   // x = x | (x >>32); // for 64-bit input
4936   // return popcount(~x);
4937   //
4938   // Ref: "Hacker's Delight" by Henry Warren
4939   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4940     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4941     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4942                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4943   }
4944   Op = DAG.getNOT(dl, Op, VT);
4945   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4946   return true;
4947 }
4948 
4949 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4950                                 SelectionDAG &DAG) const {
4951   SDLoc dl(Node);
4952   EVT VT = Node->getValueType(0);
4953   SDValue Op = Node->getOperand(0);
4954   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4955 
4956   // If the non-ZERO_UNDEF version is supported we can use that instead.
4957   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4958       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4959     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4960     return true;
4961   }
4962 
4963   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4964   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4965     EVT SetCCVT =
4966         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4967     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4968     SDValue Zero = DAG.getConstant(0, dl, VT);
4969     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4970     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4971                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4972     return true;
4973   }
4974 
4975   // Only expand vector types if we have the appropriate vector bit operations.
4976   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4977                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4978                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4979                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4980                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4981                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4982     return false;
4983 
4984   // for now, we use: { return popcount(~x & (x - 1)); }
4985   // unless the target has ctlz but not ctpop, in which case we use:
4986   // { return 32 - nlz(~x & (x-1)); }
4987   // Ref: "Hacker's Delight" by Henry Warren
4988   SDValue Tmp = DAG.getNode(
4989       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4990       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4991 
4992   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4993   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4994     Result =
4995         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4996                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4997     return true;
4998   }
4999 
5000   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5001   return true;
5002 }
5003 
5004 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5005                                SelectionDAG &DAG) const {
5006   SDLoc dl(N);
5007   EVT VT = N->getValueType(0);
5008   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5009   SDValue Op = N->getOperand(0);
5010 
5011   // Only expand vector types if we have the appropriate vector operations.
5012   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
5013                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
5014                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5015     return false;
5016 
5017   SDValue Shift =
5018       DAG.getNode(ISD::SRA, dl, VT, Op,
5019                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
5020   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
5021   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
5022   return true;
5023 }
5024 
5025 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
5026                                             SelectionDAG &DAG) const {
5027   SDLoc SL(LD);
5028   SDValue Chain = LD->getChain();
5029   SDValue BasePTR = LD->getBasePtr();
5030   EVT SrcVT = LD->getMemoryVT();
5031   ISD::LoadExtType ExtType = LD->getExtensionType();
5032 
5033   unsigned NumElem = SrcVT.getVectorNumElements();
5034 
5035   EVT SrcEltVT = SrcVT.getScalarType();
5036   EVT DstEltVT = LD->getValueType(0).getScalarType();
5037 
5038   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
5039   assert(SrcEltVT.isByteSized());
5040 
5041   SmallVector<SDValue, 8> Vals;
5042   SmallVector<SDValue, 8> LoadChains;
5043 
5044   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5045     SDValue ScalarLoad =
5046         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
5047                        LD->getPointerInfo().getWithOffset(Idx * Stride),
5048                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
5049                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5050 
5051     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
5052 
5053     Vals.push_back(ScalarLoad.getValue(0));
5054     LoadChains.push_back(ScalarLoad.getValue(1));
5055   }
5056 
5057   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
5058   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
5059 
5060   return DAG.getMergeValues({Value, NewChain}, SL);
5061 }
5062 
5063 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
5064                                              SelectionDAG &DAG) const {
5065   SDLoc SL(ST);
5066 
5067   SDValue Chain = ST->getChain();
5068   SDValue BasePtr = ST->getBasePtr();
5069   SDValue Value = ST->getValue();
5070   EVT StVT = ST->getMemoryVT();
5071 
5072   // The type of the data we want to save
5073   EVT RegVT = Value.getValueType();
5074   EVT RegSclVT = RegVT.getScalarType();
5075 
5076   // The type of data as saved in memory.
5077   EVT MemSclVT = StVT.getScalarType();
5078 
5079   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
5080   unsigned NumElem = StVT.getVectorNumElements();
5081 
5082   // A vector must always be stored in memory as-is, i.e. without any padding
5083   // between the elements, since various code depend on it, e.g. in the
5084   // handling of a bitcast of a vector type to int, which may be done with a
5085   // vector store followed by an integer load. A vector that does not have
5086   // elements that are byte-sized must therefore be stored as an integer
5087   // built out of the extracted vector elements.
5088   if (!MemSclVT.isByteSized()) {
5089     unsigned NumBits = StVT.getSizeInBits();
5090     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
5091 
5092     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
5093 
5094     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5095       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5096                                 DAG.getConstant(Idx, SL, IdxVT));
5097       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
5098       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
5099       unsigned ShiftIntoIdx =
5100           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
5101       SDValue ShiftAmount =
5102           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
5103       SDValue ShiftedElt =
5104           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
5105       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
5106     }
5107 
5108     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
5109                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
5110                         ST->getAAInfo());
5111   }
5112 
5113   // Store Stride in bytes
5114   unsigned Stride = MemSclVT.getSizeInBits() / 8;
5115   assert(Stride && "Zero stride!");
5116   // Extract each of the elements from the original vector and save them into
5117   // memory individually.
5118   SmallVector<SDValue, 8> Stores;
5119   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5120     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5121                               DAG.getConstant(Idx, SL, IdxVT));
5122 
5123     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
5124 
5125     // This scalar TruncStore may be illegal, but we legalize it later.
5126     SDValue Store = DAG.getTruncStore(
5127         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
5128         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
5129         ST->getMemOperand()->getFlags(), ST->getAAInfo());
5130 
5131     Stores.push_back(Store);
5132   }
5133 
5134   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
5135 }
5136 
5137 std::pair<SDValue, SDValue>
5138 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
5139   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
5140          "unaligned indexed loads not implemented!");
5141   SDValue Chain = LD->getChain();
5142   SDValue Ptr = LD->getBasePtr();
5143   EVT VT = LD->getValueType(0);
5144   EVT LoadedVT = LD->getMemoryVT();
5145   SDLoc dl(LD);
5146   auto &MF = DAG.getMachineFunction();
5147 
5148   if (VT.isFloatingPoint() || VT.isVector()) {
5149     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
5150     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
5151       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
5152           LoadedVT.isVector()) {
5153         // Scalarize the load and let the individual components be handled.
5154         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
5155         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
5156           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
5157         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
5158       }
5159 
5160       // Expand to a (misaligned) integer load of the same size,
5161       // then bitconvert to floating point or vector.
5162       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
5163                                     LD->getMemOperand());
5164       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
5165       if (LoadedVT != VT)
5166         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
5167                              ISD::ANY_EXTEND, dl, VT, Result);
5168 
5169       return std::make_pair(Result, newLoad.getValue(1));
5170     }
5171 
5172     // Copy the value to a (aligned) stack slot using (unaligned) integer
5173     // loads and stores, then do a (aligned) load from the stack slot.
5174     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
5175     unsigned LoadedBytes = LoadedVT.getStoreSize();
5176     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5177     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
5178 
5179     // Make sure the stack slot is also aligned for the register type.
5180     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
5181     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
5182     SmallVector<SDValue, 8> Stores;
5183     SDValue StackPtr = StackBase;
5184     unsigned Offset = 0;
5185 
5186     EVT PtrVT = Ptr.getValueType();
5187     EVT StackPtrVT = StackPtr.getValueType();
5188 
5189     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5190     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5191 
5192     // Do all but one copies using the full register width.
5193     for (unsigned i = 1; i < NumRegs; i++) {
5194       // Load one integer register's worth from the original location.
5195       SDValue Load = DAG.getLoad(
5196           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5197           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5198           LD->getAAInfo());
5199       // Follow the load with a store to the stack slot.  Remember the store.
5200       Stores.push_back(DAG.getStore(
5201           Load.getValue(1), dl, Load, StackPtr,
5202           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5203       // Increment the pointers.
5204       Offset += RegBytes;
5205 
5206       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5207       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5208     }
5209 
5210     // The last copy may be partial.  Do an extending load.
5211     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5212                                   8 * (LoadedBytes - Offset));
5213     SDValue Load =
5214         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5215                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
5216                        MinAlign(LD->getAlignment(), Offset),
5217                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5218     // Follow the load with a store to the stack slot.  Remember the store.
5219     // On big-endian machines this requires a truncating store to ensure
5220     // that the bits end up in the right place.
5221     Stores.push_back(DAG.getTruncStore(
5222         Load.getValue(1), dl, Load, StackPtr,
5223         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5224 
5225     // The order of the stores doesn't matter - say it with a TokenFactor.
5226     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5227 
5228     // Finally, perform the original load only redirected to the stack slot.
5229     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5230                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5231                           LoadedVT);
5232 
5233     // Callers expect a MERGE_VALUES node.
5234     return std::make_pair(Load, TF);
5235   }
5236 
5237   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5238          "Unaligned load of unsupported type.");
5239 
5240   // Compute the new VT that is half the size of the old one.  This is an
5241   // integer MVT.
5242   unsigned NumBits = LoadedVT.getSizeInBits();
5243   EVT NewLoadedVT;
5244   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5245   NumBits >>= 1;
5246 
5247   unsigned Alignment = LD->getAlignment();
5248   unsigned IncrementSize = NumBits / 8;
5249   ISD::LoadExtType HiExtType = LD->getExtensionType();
5250 
5251   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5252   if (HiExtType == ISD::NON_EXTLOAD)
5253     HiExtType = ISD::ZEXTLOAD;
5254 
5255   // Load the value in two parts
5256   SDValue Lo, Hi;
5257   if (DAG.getDataLayout().isLittleEndian()) {
5258     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5259                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5260                         LD->getAAInfo());
5261 
5262     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5263     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5264                         LD->getPointerInfo().getWithOffset(IncrementSize),
5265                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5266                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5267   } else {
5268     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5269                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5270                         LD->getAAInfo());
5271 
5272     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5273     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5274                         LD->getPointerInfo().getWithOffset(IncrementSize),
5275                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5276                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5277   }
5278 
5279   // aggregate the two parts
5280   SDValue ShiftAmount =
5281       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5282                                                     DAG.getDataLayout()));
5283   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5284   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5285 
5286   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5287                              Hi.getValue(1));
5288 
5289   return std::make_pair(Result, TF);
5290 }
5291 
5292 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5293                                              SelectionDAG &DAG) const {
5294   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5295          "unaligned indexed stores not implemented!");
5296   SDValue Chain = ST->getChain();
5297   SDValue Ptr = ST->getBasePtr();
5298   SDValue Val = ST->getValue();
5299   EVT VT = Val.getValueType();
5300   int Alignment = ST->getAlignment();
5301   auto &MF = DAG.getMachineFunction();
5302   EVT StoreMemVT = ST->getMemoryVT();
5303 
5304   SDLoc dl(ST);
5305   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
5306     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5307     if (isTypeLegal(intVT)) {
5308       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5309           StoreMemVT.isVector()) {
5310         // Scalarize the store and let the individual components be handled.
5311         SDValue Result = scalarizeVectorStore(ST, DAG);
5312         return Result;
5313       }
5314       // Expand to a bitconvert of the value to the integer type of the
5315       // same size, then a (misaligned) int store.
5316       // FIXME: Does not handle truncating floating point stores!
5317       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5318       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5319                             Alignment, ST->getMemOperand()->getFlags());
5320       return Result;
5321     }
5322     // Do a (aligned) store to a stack slot, then copy from the stack slot
5323     // to the final destination using (unaligned) integer loads and stores.
5324     MVT RegVT = getRegisterType(
5325         *DAG.getContext(),
5326         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
5327     EVT PtrVT = Ptr.getValueType();
5328     unsigned StoredBytes = StoreMemVT.getStoreSize();
5329     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5330     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5331 
5332     // Make sure the stack slot is also aligned for the register type.
5333     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
5334     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5335 
5336     // Perform the original store, only redirected to the stack slot.
5337     SDValue Store = DAG.getTruncStore(
5338         Chain, dl, Val, StackPtr,
5339         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
5340 
5341     EVT StackPtrVT = StackPtr.getValueType();
5342 
5343     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5344     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5345     SmallVector<SDValue, 8> Stores;
5346     unsigned Offset = 0;
5347 
5348     // Do all but one copies using the full register width.
5349     for (unsigned i = 1; i < NumRegs; i++) {
5350       // Load one integer register's worth from the stack slot.
5351       SDValue Load = DAG.getLoad(
5352           RegVT, dl, Store, StackPtr,
5353           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5354       // Store it to the final location.  Remember the store.
5355       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5356                                     ST->getPointerInfo().getWithOffset(Offset),
5357                                     MinAlign(ST->getAlignment(), Offset),
5358                                     ST->getMemOperand()->getFlags()));
5359       // Increment the pointers.
5360       Offset += RegBytes;
5361       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5362       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5363     }
5364 
5365     // The last store may be partial.  Do a truncating store.  On big-endian
5366     // machines this requires an extending load from the stack slot to ensure
5367     // that the bits are in the right place.
5368     EVT LoadMemVT =
5369         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
5370 
5371     // Load from the stack slot.
5372     SDValue Load = DAG.getExtLoad(
5373         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5374         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
5375 
5376     Stores.push_back(
5377         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5378                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
5379                           MinAlign(ST->getAlignment(), Offset),
5380                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5381     // The order of the stores doesn't matter - say it with a TokenFactor.
5382     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5383     return Result;
5384   }
5385 
5386   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
5387          "Unaligned store of unknown type.");
5388   // Get the half-size VT
5389   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
5390   int NumBits = NewStoredVT.getSizeInBits();
5391   int IncrementSize = NumBits / 8;
5392 
5393   // Divide the stored value in two parts.
5394   SDValue ShiftAmount = DAG.getConstant(
5395       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
5396   SDValue Lo = Val;
5397   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5398 
5399   // Store the two parts
5400   SDValue Store1, Store2;
5401   Store1 = DAG.getTruncStore(Chain, dl,
5402                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5403                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5404                              ST->getMemOperand()->getFlags());
5405 
5406   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5407   Alignment = MinAlign(Alignment, IncrementSize);
5408   Store2 = DAG.getTruncStore(
5409       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5410       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5411       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5412 
5413   SDValue Result =
5414       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5415   return Result;
5416 }
5417 
5418 SDValue
5419 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5420                                        const SDLoc &DL, EVT DataVT,
5421                                        SelectionDAG &DAG,
5422                                        bool IsCompressedMemory) const {
5423   SDValue Increment;
5424   EVT AddrVT = Addr.getValueType();
5425   EVT MaskVT = Mask.getValueType();
5426   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5427          "Incompatible types of Data and Mask");
5428   if (IsCompressedMemory) {
5429     // Incrementing the pointer according to number of '1's in the mask.
5430     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5431     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5432     if (MaskIntVT.getSizeInBits() < 32) {
5433       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5434       MaskIntVT = MVT::i32;
5435     }
5436 
5437     // Count '1's with POPCNT.
5438     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5439     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5440     // Scale is an element size in bytes.
5441     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5442                                     AddrVT);
5443     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5444   } else
5445     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5446 
5447   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5448 }
5449 
5450 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5451                                        SDValue Idx,
5452                                        EVT VecVT,
5453                                        const SDLoc &dl) {
5454   if (isa<ConstantSDNode>(Idx))
5455     return Idx;
5456 
5457   EVT IdxVT = Idx.getValueType();
5458   unsigned NElts = VecVT.getVectorNumElements();
5459   if (isPowerOf2_32(NElts)) {
5460     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5461                                      Log2_32(NElts));
5462     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5463                        DAG.getConstant(Imm, dl, IdxVT));
5464   }
5465 
5466   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5467                      DAG.getConstant(NElts - 1, dl, IdxVT));
5468 }
5469 
5470 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5471                                                 SDValue VecPtr, EVT VecVT,
5472                                                 SDValue Index) const {
5473   SDLoc dl(Index);
5474   // Make sure the index type is big enough to compute in.
5475   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5476 
5477   EVT EltVT = VecVT.getVectorElementType();
5478 
5479   // Calculate the element offset and add it to the pointer.
5480   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5481   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5482          "Converting bits to bytes lost precision");
5483 
5484   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5485 
5486   EVT IdxVT = Index.getValueType();
5487 
5488   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5489                       DAG.getConstant(EltSize, dl, IdxVT));
5490   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5491 }
5492 
5493 //===----------------------------------------------------------------------===//
5494 // Implementation of Emulated TLS Model
5495 //===----------------------------------------------------------------------===//
5496 
5497 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5498                                                 SelectionDAG &DAG) const {
5499   // Access to address of TLS varialbe xyz is lowered to a function call:
5500   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5501   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5502   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5503   SDLoc dl(GA);
5504 
5505   ArgListTy Args;
5506   ArgListEntry Entry;
5507   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5508   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5509   StringRef EmuTlsVarName(NameString);
5510   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5511   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5512   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5513   Entry.Ty = VoidPtrType;
5514   Args.push_back(Entry);
5515 
5516   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5517 
5518   TargetLowering::CallLoweringInfo CLI(DAG);
5519   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5520   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5521   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5522 
5523   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5524   // At last for X86 targets, maybe good for other targets too?
5525   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5526   MFI.setAdjustsStack(true); // Is this only for X86 target?
5527   MFI.setHasCalls(true);
5528 
5529   assert((GA->getOffset() == 0) &&
5530          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5531   return CallResult.first;
5532 }
5533 
5534 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5535                                                 SelectionDAG &DAG) const {
5536   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5537   if (!isCtlzFast())
5538     return SDValue();
5539   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5540   SDLoc dl(Op);
5541   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5542     if (C->isNullValue() && CC == ISD::SETEQ) {
5543       EVT VT = Op.getOperand(0).getValueType();
5544       SDValue Zext = Op.getOperand(0);
5545       if (VT.bitsLT(MVT::i32)) {
5546         VT = MVT::i32;
5547         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5548       }
5549       unsigned Log2b = Log2_32(VT.getSizeInBits());
5550       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5551       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5552                                 DAG.getConstant(Log2b, dl, MVT::i32));
5553       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5554     }
5555   }
5556   return SDValue();
5557 }
5558 
5559 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
5560   unsigned Opcode = Node->getOpcode();
5561   SDValue LHS = Node->getOperand(0);
5562   SDValue RHS = Node->getOperand(1);
5563   EVT VT = LHS.getValueType();
5564   SDLoc dl(Node);
5565 
5566   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
5567   assert(VT.isInteger() && "Expected operands to be integers");
5568 
5569   // usub.sat(a, b) -> umax(a, b) - b
5570   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
5571     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
5572     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
5573   }
5574 
5575   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
5576     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
5577     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
5578     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
5579   }
5580 
5581   unsigned OverflowOp;
5582   switch (Opcode) {
5583   case ISD::SADDSAT:
5584     OverflowOp = ISD::SADDO;
5585     break;
5586   case ISD::UADDSAT:
5587     OverflowOp = ISD::UADDO;
5588     break;
5589   case ISD::SSUBSAT:
5590     OverflowOp = ISD::SSUBO;
5591     break;
5592   case ISD::USUBSAT:
5593     OverflowOp = ISD::USUBO;
5594     break;
5595   default:
5596     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5597                      "addition or subtraction node.");
5598   }
5599 
5600   unsigned BitWidth = LHS.getScalarValueSizeInBits();
5601   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5602   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
5603                                LHS, RHS);
5604   SDValue SumDiff = Result.getValue(0);
5605   SDValue Overflow = Result.getValue(1);
5606   SDValue Zero = DAG.getConstant(0, dl, VT);
5607   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
5608 
5609   if (Opcode == ISD::UADDSAT) {
5610     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5611       // (LHS + RHS) | OverflowMask
5612       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5613       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
5614     }
5615     // Overflow ? 0xffff.... : (LHS + RHS)
5616     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
5617   } else if (Opcode == ISD::USUBSAT) {
5618     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5619       // (LHS - RHS) & ~OverflowMask
5620       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5621       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
5622       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
5623     }
5624     // Overflow ? 0 : (LHS - RHS)
5625     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
5626   } else {
5627     // SatMax -> Overflow && SumDiff < 0
5628     // SatMin -> Overflow && SumDiff >= 0
5629     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5630     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5631     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
5632     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
5633     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5634     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
5635     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
5636   }
5637 }
5638 
5639 SDValue
5640 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
5641   assert((Node->getOpcode() == ISD::SMULFIX ||
5642           Node->getOpcode() == ISD::UMULFIX) &&
5643          "Expected opcode to be SMULFIX or UMULFIX.");
5644 
5645   SDLoc dl(Node);
5646   SDValue LHS = Node->getOperand(0);
5647   SDValue RHS = Node->getOperand(1);
5648   EVT VT = LHS.getValueType();
5649   unsigned Scale = Node->getConstantOperandVal(2);
5650 
5651   // [us]mul.fix(a, b, 0) -> mul(a, b)
5652   if (!Scale) {
5653     if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT))
5654       return SDValue();
5655     return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5656   }
5657 
5658   unsigned VTSize = VT.getScalarSizeInBits();
5659   bool Signed = Node->getOpcode() == ISD::SMULFIX;
5660 
5661   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
5662          "Expected scale to be less than the number of bits if signed or at "
5663          "most the number of bits if unsigned.");
5664   assert(LHS.getValueType() == RHS.getValueType() &&
5665          "Expected both operands to be the same type");
5666 
5667   // Get the upper and lower bits of the result.
5668   SDValue Lo, Hi;
5669   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
5670   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
5671   if (isOperationLegalOrCustom(LoHiOp, VT)) {
5672     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
5673     Lo = Result.getValue(0);
5674     Hi = Result.getValue(1);
5675   } else if (isOperationLegalOrCustom(HiOp, VT)) {
5676     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5677     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
5678   } else if (VT.isVector()) {
5679     return SDValue();
5680   } else {
5681     report_fatal_error("Unable to expand fixed point multiplication.");
5682   }
5683 
5684   if (Scale == VTSize)
5685     // Result is just the top half since we'd be shifting by the width of the
5686     // operand.
5687     return Hi;
5688 
5689   // The result will need to be shifted right by the scale since both operands
5690   // are scaled. The result is given to us in 2 halves, so we only want part of
5691   // both in the result.
5692   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5693   return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
5694                      DAG.getConstant(Scale, dl, ShiftTy));
5695 }
5696 
5697 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
5698                                 SDValue &Overflow, SelectionDAG &DAG) const {
5699   SDLoc dl(Node);
5700   EVT VT = Node->getValueType(0);
5701   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5702   SDValue LHS = Node->getOperand(0);
5703   SDValue RHS = Node->getOperand(1);
5704   bool isSigned = Node->getOpcode() == ISD::SMULO;
5705 
5706   // For power-of-two multiplications we can use a simpler shift expansion.
5707   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5708     const APInt &C = RHSC->getAPIntValue();
5709     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5710     if (C.isPowerOf2()) {
5711       // smulo(x, signed_min) is same as umulo(x, signed_min).
5712       bool UseArithShift = isSigned && !C.isMinSignedValue();
5713       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
5714       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
5715       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
5716       Overflow = DAG.getSetCC(dl, SetCCVT,
5717           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5718                       dl, VT, Result, ShiftAmt),
5719           LHS, ISD::SETNE);
5720       return true;
5721     }
5722   }
5723 
5724   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
5725   if (VT.isVector())
5726     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
5727                               VT.getVectorNumElements());
5728 
5729   SDValue BottomHalf;
5730   SDValue TopHalf;
5731   static const unsigned Ops[2][3] =
5732       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
5733         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
5734   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
5735     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5736     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
5737   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
5738     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
5739                              RHS);
5740     TopHalf = BottomHalf.getValue(1);
5741   } else if (isTypeLegal(WideVT)) {
5742     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
5743     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
5744     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
5745     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
5746     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
5747         getShiftAmountTy(WideVT, DAG.getDataLayout()));
5748     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
5749                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
5750   } else {
5751     if (VT.isVector())
5752       return false;
5753 
5754     // We can fall back to a libcall with an illegal type for the MUL if we
5755     // have a libcall big enough.
5756     // Also, we can fall back to a division in some cases, but that's a big
5757     // performance hit in the general case.
5758     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5759     if (WideVT == MVT::i16)
5760       LC = RTLIB::MUL_I16;
5761     else if (WideVT == MVT::i32)
5762       LC = RTLIB::MUL_I32;
5763     else if (WideVT == MVT::i64)
5764       LC = RTLIB::MUL_I64;
5765     else if (WideVT == MVT::i128)
5766       LC = RTLIB::MUL_I128;
5767     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
5768 
5769     SDValue HiLHS;
5770     SDValue HiRHS;
5771     if (isSigned) {
5772       // The high part is obtained by SRA'ing all but one of the bits of low
5773       // part.
5774       unsigned LoSize = VT.getSizeInBits();
5775       HiLHS =
5776           DAG.getNode(ISD::SRA, dl, VT, LHS,
5777                       DAG.getConstant(LoSize - 1, dl,
5778                                       getPointerTy(DAG.getDataLayout())));
5779       HiRHS =
5780           DAG.getNode(ISD::SRA, dl, VT, RHS,
5781                       DAG.getConstant(LoSize - 1, dl,
5782                                       getPointerTy(DAG.getDataLayout())));
5783     } else {
5784         HiLHS = DAG.getConstant(0, dl, VT);
5785         HiRHS = DAG.getConstant(0, dl, VT);
5786     }
5787 
5788     // Here we're passing the 2 arguments explicitly as 4 arguments that are
5789     // pre-lowered to the correct types. This all depends upon WideVT not
5790     // being a legal type for the architecture and thus has to be split to
5791     // two arguments.
5792     SDValue Ret;
5793     if (DAG.getDataLayout().isLittleEndian()) {
5794       // Halves of WideVT are packed into registers in different order
5795       // depending on platform endianness. This is usually handled by
5796       // the C calling convention, but we can't defer to it in
5797       // the legalizer.
5798       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
5799       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
5800           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
5801           /* isPostTypeLegalization */ true).first;
5802     } else {
5803       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
5804       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
5805           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
5806           /* isPostTypeLegalization */ true).first;
5807     }
5808     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
5809            "Ret value is a collection of constituent nodes holding result.");
5810     if (DAG.getDataLayout().isLittleEndian()) {
5811       // Same as above.
5812       BottomHalf = Ret.getOperand(0);
5813       TopHalf = Ret.getOperand(1);
5814     } else {
5815       BottomHalf = Ret.getOperand(1);
5816       TopHalf = Ret.getOperand(0);
5817     }
5818   }
5819 
5820   Result = BottomHalf;
5821   if (isSigned) {
5822     SDValue ShiftAmt = DAG.getConstant(
5823         VT.getScalarSizeInBits() - 1, dl,
5824         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
5825     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
5826     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
5827   } else {
5828     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
5829                             DAG.getConstant(0, dl, VT), ISD::SETNE);
5830   }
5831 
5832   // Truncate the result if SetCC returns a larger type than needed.
5833   EVT RType = Node->getValueType(1);
5834   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
5835     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
5836 
5837   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
5838          "Unexpected result type for S/UMULO legalization");
5839   return true;
5840 }
5841 
5842 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
5843   SDLoc dl(Node);
5844   bool NoNaN = Node->getFlags().hasNoNaNs();
5845   unsigned BaseOpcode = 0;
5846   switch (Node->getOpcode()) {
5847   default: llvm_unreachable("Expected VECREDUCE opcode");
5848   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
5849   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
5850   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
5851   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
5852   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
5853   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
5854   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
5855   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
5856   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
5857   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
5858   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
5859   case ISD::VECREDUCE_FMAX:
5860     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
5861     break;
5862   case ISD::VECREDUCE_FMIN:
5863     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
5864     break;
5865   }
5866 
5867   SDValue Op = Node->getOperand(0);
5868   EVT VT = Op.getValueType();
5869 
5870   // Try to use a shuffle reduction for power of two vectors.
5871   if (VT.isPow2VectorType()) {
5872     while (VT.getVectorNumElements() > 1) {
5873       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
5874       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
5875         break;
5876 
5877       SDValue Lo, Hi;
5878       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
5879       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
5880       VT = HalfVT;
5881     }
5882   }
5883 
5884   EVT EltVT = VT.getVectorElementType();
5885   unsigned NumElts = VT.getVectorNumElements();
5886 
5887   SmallVector<SDValue, 8> Ops;
5888   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
5889 
5890   SDValue Res = Ops[0];
5891   for (unsigned i = 1; i < NumElts; i++)
5892     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
5893 
5894   // Result type may be wider than element type.
5895   if (EltVT != Node->getValueType(0))
5896     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
5897   return Res;
5898 }
5899