1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 ByValType = nullptr; 116 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 117 ByValType = Call->getParamByValType(ArgIdx); 118 } 119 120 /// Generate a libcall taking the given operands as arguments and returning a 121 /// result of type RetVT. 122 std::pair<SDValue, SDValue> 123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 124 ArrayRef<SDValue> Ops, bool isSigned, 125 const SDLoc &dl, bool doesNotReturn, 126 bool isReturnValueUsed, 127 bool isPostTypeLegalization) const { 128 TargetLowering::ArgListTy Args; 129 Args.reserve(Ops.size()); 130 131 TargetLowering::ArgListEntry Entry; 132 for (SDValue Op : Ops) { 133 Entry.Node = Op; 134 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 135 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 136 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 137 Args.push_back(Entry); 138 } 139 140 if (LC == RTLIB::UNKNOWN_LIBCALL) 141 report_fatal_error("Unsupported library call operation!"); 142 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 143 getPointerTy(DAG.getDataLayout())); 144 145 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 146 TargetLowering::CallLoweringInfo CLI(DAG); 147 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 148 CLI.setDebugLoc(dl) 149 .setChain(DAG.getEntryNode()) 150 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 151 .setNoReturn(doesNotReturn) 152 .setDiscardResult(!isReturnValueUsed) 153 .setIsPostTypeLegalization(isPostTypeLegalization) 154 .setSExtResult(signExtend) 155 .setZExtResult(!signExtend); 156 return LowerCallTo(CLI); 157 } 158 159 bool 160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 161 unsigned Limit, uint64_t Size, 162 unsigned DstAlign, unsigned SrcAlign, 163 bool IsMemset, 164 bool ZeroMemset, 165 bool MemcpyStrSrc, 166 bool AllowOverlap, 167 unsigned DstAS, unsigned SrcAS, 168 const AttributeList &FuncAttributes) const { 169 // If 'SrcAlign' is zero, that means the memory operation does not need to 170 // load the value, i.e. memset or memcpy from constant string. Otherwise, 171 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 172 // is the specified alignment of the memory operation. If it is zero, that 173 // means it's possible to change the alignment of the destination. 174 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 175 // not need to be loaded. 176 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 177 return false; 178 179 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 180 IsMemset, ZeroMemset, MemcpyStrSrc, 181 FuncAttributes); 182 183 if (VT == MVT::Other) { 184 // Use the largest integer type whose alignment constraints are satisfied. 185 // We only need to check DstAlign here as SrcAlign is always greater or 186 // equal to DstAlign (or zero). 187 VT = MVT::i64; 188 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 189 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 190 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 191 assert(VT.isInteger()); 192 193 // Find the largest legal integer type. 194 MVT LVT = MVT::i64; 195 while (!isTypeLegal(LVT)) 196 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 197 assert(LVT.isInteger()); 198 199 // If the type we've chosen is larger than the largest legal integer type 200 // then use that instead. 201 if (VT.bitsGT(LVT)) 202 VT = LVT; 203 } 204 205 unsigned NumMemOps = 0; 206 while (Size != 0) { 207 unsigned VTSize = VT.getSizeInBits() / 8; 208 while (VTSize > Size) { 209 // For now, only use non-vector load / store's for the left-over pieces. 210 EVT NewVT = VT; 211 unsigned NewVTSize; 212 213 bool Found = false; 214 if (VT.isVector() || VT.isFloatingPoint()) { 215 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 216 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 217 isSafeMemOpType(NewVT.getSimpleVT())) 218 Found = true; 219 else if (NewVT == MVT::i64 && 220 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 221 isSafeMemOpType(MVT::f64)) { 222 // i64 is usually not legal on 32-bit targets, but f64 may be. 223 NewVT = MVT::f64; 224 Found = true; 225 } 226 } 227 228 if (!Found) { 229 do { 230 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 231 if (NewVT == MVT::i8) 232 break; 233 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 234 } 235 NewVTSize = NewVT.getSizeInBits() / 8; 236 237 // If the new VT cannot cover all of the remaining bits, then consider 238 // issuing a (or a pair of) unaligned and overlapping load / store. 239 bool Fast; 240 if (NumMemOps && AllowOverlap && NewVTSize < Size && 241 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 242 MachineMemOperand::MONone, &Fast) && 243 Fast) 244 VTSize = Size; 245 else { 246 VT = NewVT; 247 VTSize = NewVTSize; 248 } 249 } 250 251 if (++NumMemOps > Limit) 252 return false; 253 254 MemOps.push_back(VT); 255 Size -= VTSize; 256 } 257 258 return true; 259 } 260 261 /// Soften the operands of a comparison. This code is shared among BR_CC, 262 /// SELECT_CC, and SETCC handlers. 263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 264 SDValue &NewLHS, SDValue &NewRHS, 265 ISD::CondCode &CCCode, 266 const SDLoc &dl) const { 267 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 268 && "Unsupported setcc type!"); 269 270 // Expand into one or more soft-fp libcall(s). 271 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 272 bool ShouldInvertCC = false; 273 switch (CCCode) { 274 case ISD::SETEQ: 275 case ISD::SETOEQ: 276 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 277 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 278 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 279 break; 280 case ISD::SETNE: 281 case ISD::SETUNE: 282 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 283 (VT == MVT::f64) ? RTLIB::UNE_F64 : 284 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 285 break; 286 case ISD::SETGE: 287 case ISD::SETOGE: 288 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 289 (VT == MVT::f64) ? RTLIB::OGE_F64 : 290 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 291 break; 292 case ISD::SETLT: 293 case ISD::SETOLT: 294 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 295 (VT == MVT::f64) ? RTLIB::OLT_F64 : 296 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 297 break; 298 case ISD::SETLE: 299 case ISD::SETOLE: 300 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 301 (VT == MVT::f64) ? RTLIB::OLE_F64 : 302 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 303 break; 304 case ISD::SETGT: 305 case ISD::SETOGT: 306 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 307 (VT == MVT::f64) ? RTLIB::OGT_F64 : 308 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 309 break; 310 case ISD::SETUO: 311 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 312 (VT == MVT::f64) ? RTLIB::UO_F64 : 313 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 314 break; 315 case ISD::SETO: 316 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 317 (VT == MVT::f64) ? RTLIB::O_F64 : 318 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 319 break; 320 case ISD::SETONE: 321 // SETONE = SETOLT | SETOGT 322 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 323 (VT == MVT::f64) ? RTLIB::OLT_F64 : 324 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 325 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 326 (VT == MVT::f64) ? RTLIB::OGT_F64 : 327 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 328 break; 329 case ISD::SETUEQ: 330 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 331 (VT == MVT::f64) ? RTLIB::UO_F64 : 332 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 333 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 334 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 335 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 336 break; 337 default: 338 // Invert CC for unordered comparisons 339 ShouldInvertCC = true; 340 switch (CCCode) { 341 case ISD::SETULT: 342 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 343 (VT == MVT::f64) ? RTLIB::OGE_F64 : 344 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 345 break; 346 case ISD::SETULE: 347 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 348 (VT == MVT::f64) ? RTLIB::OGT_F64 : 349 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 350 break; 351 case ISD::SETUGT: 352 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 353 (VT == MVT::f64) ? RTLIB::OLE_F64 : 354 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 355 break; 356 case ISD::SETUGE: 357 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 358 (VT == MVT::f64) ? RTLIB::OLT_F64 : 359 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 360 break; 361 default: llvm_unreachable("Do not know how to soften this setcc!"); 362 } 363 } 364 365 // Use the target specific return value for comparions lib calls. 366 EVT RetVT = getCmpLibcallReturnType(); 367 SDValue Ops[2] = {NewLHS, NewRHS}; 368 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 369 dl).first; 370 NewRHS = DAG.getConstant(0, dl, RetVT); 371 372 CCCode = getCmpLibcallCC(LC1); 373 if (ShouldInvertCC) 374 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 375 376 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 377 SDValue Tmp = DAG.getNode( 378 ISD::SETCC, dl, 379 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 380 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 381 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 382 dl).first; 383 NewLHS = DAG.getNode( 384 ISD::SETCC, dl, 385 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 386 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 387 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 388 NewRHS = SDValue(); 389 } 390 } 391 392 /// Return the entry encoding for a jump table in the current function. The 393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 394 unsigned TargetLowering::getJumpTableEncoding() const { 395 // In non-pic modes, just use the address of a block. 396 if (!isPositionIndependent()) 397 return MachineJumpTableInfo::EK_BlockAddress; 398 399 // In PIC mode, if the target supports a GPRel32 directive, use it. 400 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 401 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 402 403 // Otherwise, use a label difference. 404 return MachineJumpTableInfo::EK_LabelDifference32; 405 } 406 407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 408 SelectionDAG &DAG) const { 409 // If our PIC model is GP relative, use the global offset table as the base. 410 unsigned JTEncoding = getJumpTableEncoding(); 411 412 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 413 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 414 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 415 416 return Table; 417 } 418 419 /// This returns the relocation base for the given PIC jumptable, the same as 420 /// getPICJumpTableRelocBase, but as an MCExpr. 421 const MCExpr * 422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 423 unsigned JTI,MCContext &Ctx) const{ 424 // The normal PIC reloc base is the label at the start of the jump table. 425 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 426 } 427 428 bool 429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 430 const TargetMachine &TM = getTargetMachine(); 431 const GlobalValue *GV = GA->getGlobal(); 432 433 // If the address is not even local to this DSO we will have to load it from 434 // a got and then add the offset. 435 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 436 return false; 437 438 // If the code is position independent we will have to add a base register. 439 if (isPositionIndependent()) 440 return false; 441 442 // Otherwise we can do it. 443 return true; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // Optimization Methods 448 //===----------------------------------------------------------------------===// 449 450 /// If the specified instruction has a constant integer operand and there are 451 /// bits set in that constant that are not demanded, then clear those bits and 452 /// return true. 453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 454 TargetLoweringOpt &TLO) const { 455 SDLoc DL(Op); 456 unsigned Opcode = Op.getOpcode(); 457 458 // Do target-specific constant optimization. 459 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 460 return TLO.New.getNode(); 461 462 // FIXME: ISD::SELECT, ISD::SELECT_CC 463 switch (Opcode) { 464 default: 465 break; 466 case ISD::XOR: 467 case ISD::AND: 468 case ISD::OR: { 469 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 470 if (!Op1C) 471 return false; 472 473 // If this is a 'not' op, don't touch it because that's a canonical form. 474 const APInt &C = Op1C->getAPIntValue(); 475 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 476 return false; 477 478 if (!C.isSubsetOf(Demanded)) { 479 EVT VT = Op.getValueType(); 480 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 481 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 482 return TLO.CombineTo(Op, NewOp); 483 } 484 485 break; 486 } 487 } 488 489 return false; 490 } 491 492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 494 /// generalized for targets with other types of implicit widening casts. 495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 496 const APInt &Demanded, 497 TargetLoweringOpt &TLO) const { 498 assert(Op.getNumOperands() == 2 && 499 "ShrinkDemandedOp only supports binary operators!"); 500 assert(Op.getNode()->getNumValues() == 1 && 501 "ShrinkDemandedOp only supports nodes with one result!"); 502 503 SelectionDAG &DAG = TLO.DAG; 504 SDLoc dl(Op); 505 506 // Early return, as this function cannot handle vector types. 507 if (Op.getValueType().isVector()) 508 return false; 509 510 // Don't do this if the node has another user, which may require the 511 // full value. 512 if (!Op.getNode()->hasOneUse()) 513 return false; 514 515 // Search for the smallest integer type with free casts to and from 516 // Op's type. For expedience, just check power-of-2 integer types. 517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 518 unsigned DemandedSize = Demanded.getActiveBits(); 519 unsigned SmallVTBits = DemandedSize; 520 if (!isPowerOf2_32(SmallVTBits)) 521 SmallVTBits = NextPowerOf2(SmallVTBits); 522 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 523 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 524 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 525 TLI.isZExtFree(SmallVT, Op.getValueType())) { 526 // We found a type with free casts. 527 SDValue X = DAG.getNode( 528 Op.getOpcode(), dl, SmallVT, 529 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 530 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 531 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 532 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 533 return TLO.CombineTo(Op, Z); 534 } 535 } 536 return false; 537 } 538 539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 540 DAGCombinerInfo &DCI) const { 541 SelectionDAG &DAG = DCI.DAG; 542 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 543 !DCI.isBeforeLegalizeOps()); 544 KnownBits Known; 545 546 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 547 if (Simplified) { 548 DCI.AddToWorklist(Op.getNode()); 549 DCI.CommitTargetLoweringOpt(TLO); 550 } 551 return Simplified; 552 } 553 554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 555 KnownBits &Known, 556 TargetLoweringOpt &TLO, 557 unsigned Depth, 558 bool AssumeSingleUse) const { 559 EVT VT = Op.getValueType(); 560 APInt DemandedElts = VT.isVector() 561 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 562 : APInt(1, 1); 563 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 564 AssumeSingleUse); 565 } 566 567 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 568 /// result of Op are ever used downstream. If we can use this information to 569 /// simplify Op, create a new simplified DAG node and return true, returning the 570 /// original and new nodes in Old and New. Otherwise, analyze the expression and 571 /// return a mask of Known bits for the expression (used to simplify the 572 /// caller). The Known bits may only be accurate for those bits in the 573 /// OriginalDemandedBits and OriginalDemandedElts. 574 bool TargetLowering::SimplifyDemandedBits( 575 SDValue Op, const APInt &OriginalDemandedBits, 576 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 577 unsigned Depth, bool AssumeSingleUse) const { 578 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 579 assert(Op.getScalarValueSizeInBits() == BitWidth && 580 "Mask size mismatches value type size!"); 581 582 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 583 assert((!Op.getValueType().isVector() || 584 NumElts == Op.getValueType().getVectorNumElements()) && 585 "Unexpected vector size"); 586 587 APInt DemandedBits = OriginalDemandedBits; 588 APInt DemandedElts = OriginalDemandedElts; 589 SDLoc dl(Op); 590 auto &DL = TLO.DAG.getDataLayout(); 591 592 // Don't know anything. 593 Known = KnownBits(BitWidth); 594 595 // Undef operand. 596 if (Op.isUndef()) 597 return false; 598 599 if (Op.getOpcode() == ISD::Constant) { 600 // We know all of the bits for a constant! 601 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 602 Known.Zero = ~Known.One; 603 return false; 604 } 605 606 // Other users may use these bits. 607 EVT VT = Op.getValueType(); 608 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 609 if (Depth != 0) { 610 // If not at the root, Just compute the Known bits to 611 // simplify things downstream. 612 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 613 return false; 614 } 615 // If this is the root being simplified, allow it to have multiple uses, 616 // just set the DemandedBits/Elts to all bits. 617 DemandedBits = APInt::getAllOnesValue(BitWidth); 618 DemandedElts = APInt::getAllOnesValue(NumElts); 619 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 620 // Not demanding any bits/elts from Op. 621 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 622 } else if (Depth == 6) { // Limit search depth. 623 return false; 624 } 625 626 KnownBits Known2, KnownOut; 627 switch (Op.getOpcode()) { 628 case ISD::SCALAR_TO_VECTOR: { 629 if (!DemandedElts[0]) 630 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 631 632 KnownBits SrcKnown; 633 SDValue Src = Op.getOperand(0); 634 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 635 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 636 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 637 return true; 638 Known = SrcKnown.zextOrTrunc(BitWidth, false); 639 break; 640 } 641 case ISD::BUILD_VECTOR: 642 // Collect the known bits that are shared by every constant vector element. 643 Known.Zero.setAllBits(); Known.One.setAllBits(); 644 for (SDValue SrcOp : Op->ops()) { 645 if (!isa<ConstantSDNode>(SrcOp)) { 646 // We can only handle all constant values - bail out with no known bits. 647 Known = KnownBits(BitWidth); 648 return false; 649 } 650 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 651 Known2.Zero = ~Known2.One; 652 653 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 654 if (Known2.One.getBitWidth() != BitWidth) { 655 assert(Known2.getBitWidth() > BitWidth && 656 "Expected BUILD_VECTOR implicit truncation"); 657 Known2 = Known2.trunc(BitWidth); 658 } 659 660 // Known bits are the values that are shared by every element. 661 // TODO: support per-element known bits. 662 Known.One &= Known2.One; 663 Known.Zero &= Known2.Zero; 664 } 665 return false; // Don't fall through, will infinitely loop. 666 case ISD::LOAD: { 667 LoadSDNode *LD = cast<LoadSDNode>(Op); 668 if (getTargetConstantFromLoad(LD)) { 669 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 670 return false; // Don't fall through, will infinitely loop. 671 } 672 break; 673 } 674 case ISD::INSERT_VECTOR_ELT: { 675 SDValue Vec = Op.getOperand(0); 676 SDValue Scl = Op.getOperand(1); 677 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 678 EVT VecVT = Vec.getValueType(); 679 680 // If index isn't constant, assume we need all vector elements AND the 681 // inserted element. 682 APInt DemandedVecElts(DemandedElts); 683 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 684 unsigned Idx = CIdx->getZExtValue(); 685 DemandedVecElts.clearBit(Idx); 686 687 // Inserted element is not required. 688 if (!DemandedElts[Idx]) 689 return TLO.CombineTo(Op, Vec); 690 } 691 692 KnownBits KnownScl; 693 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 694 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 695 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 696 return true; 697 698 Known = KnownScl.zextOrTrunc(BitWidth, false); 699 700 KnownBits KnownVec; 701 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 702 Depth + 1)) 703 return true; 704 705 if (!!DemandedVecElts) { 706 Known.One &= KnownVec.One; 707 Known.Zero &= KnownVec.Zero; 708 } 709 710 return false; 711 } 712 case ISD::INSERT_SUBVECTOR: { 713 SDValue Base = Op.getOperand(0); 714 SDValue Sub = Op.getOperand(1); 715 EVT SubVT = Sub.getValueType(); 716 unsigned NumSubElts = SubVT.getVectorNumElements(); 717 718 // If index isn't constant, assume we need the original demanded base 719 // elements and ALL the inserted subvector elements. 720 APInt BaseElts = DemandedElts; 721 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 722 if (isa<ConstantSDNode>(Op.getOperand(2))) { 723 const APInt &Idx = Op.getConstantOperandAPInt(2); 724 if (Idx.ule(NumElts - NumSubElts)) { 725 unsigned SubIdx = Idx.getZExtValue(); 726 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 727 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 728 } 729 } 730 731 KnownBits KnownSub, KnownBase; 732 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 733 Depth + 1)) 734 return true; 735 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 736 Depth + 1)) 737 return true; 738 739 Known.Zero.setAllBits(); 740 Known.One.setAllBits(); 741 if (!!SubElts) { 742 Known.One &= KnownSub.One; 743 Known.Zero &= KnownSub.Zero; 744 } 745 if (!!BaseElts) { 746 Known.One &= KnownBase.One; 747 Known.Zero &= KnownBase.Zero; 748 } 749 break; 750 } 751 case ISD::CONCAT_VECTORS: { 752 Known.Zero.setAllBits(); 753 Known.One.setAllBits(); 754 EVT SubVT = Op.getOperand(0).getValueType(); 755 unsigned NumSubVecs = Op.getNumOperands(); 756 unsigned NumSubElts = SubVT.getVectorNumElements(); 757 for (unsigned i = 0; i != NumSubVecs; ++i) { 758 APInt DemandedSubElts = 759 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 760 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 761 Known2, TLO, Depth + 1)) 762 return true; 763 // Known bits are shared by every demanded subvector element. 764 if (!!DemandedSubElts) { 765 Known.One &= Known2.One; 766 Known.Zero &= Known2.Zero; 767 } 768 } 769 break; 770 } 771 case ISD::VECTOR_SHUFFLE: { 772 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 773 774 // Collect demanded elements from shuffle operands.. 775 APInt DemandedLHS(NumElts, 0); 776 APInt DemandedRHS(NumElts, 0); 777 for (unsigned i = 0; i != NumElts; ++i) { 778 if (!DemandedElts[i]) 779 continue; 780 int M = ShuffleMask[i]; 781 if (M < 0) { 782 // For UNDEF elements, we don't know anything about the common state of 783 // the shuffle result. 784 DemandedLHS.clearAllBits(); 785 DemandedRHS.clearAllBits(); 786 break; 787 } 788 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 789 if (M < (int)NumElts) 790 DemandedLHS.setBit(M); 791 else 792 DemandedRHS.setBit(M - NumElts); 793 } 794 795 if (!!DemandedLHS || !!DemandedRHS) { 796 Known.Zero.setAllBits(); 797 Known.One.setAllBits(); 798 if (!!DemandedLHS) { 799 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 800 Known2, TLO, Depth + 1)) 801 return true; 802 Known.One &= Known2.One; 803 Known.Zero &= Known2.Zero; 804 } 805 if (!!DemandedRHS) { 806 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 807 Known2, TLO, Depth + 1)) 808 return true; 809 Known.One &= Known2.One; 810 Known.Zero &= Known2.Zero; 811 } 812 } 813 break; 814 } 815 case ISD::AND: { 816 SDValue Op0 = Op.getOperand(0); 817 SDValue Op1 = Op.getOperand(1); 818 819 // If the RHS is a constant, check to see if the LHS would be zero without 820 // using the bits from the RHS. Below, we use knowledge about the RHS to 821 // simplify the LHS, here we're using information from the LHS to simplify 822 // the RHS. 823 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 824 // Do not increment Depth here; that can cause an infinite loop. 825 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 826 // If the LHS already has zeros where RHSC does, this 'and' is dead. 827 if ((LHSKnown.Zero & DemandedBits) == 828 (~RHSC->getAPIntValue() & DemandedBits)) 829 return TLO.CombineTo(Op, Op0); 830 831 // If any of the set bits in the RHS are known zero on the LHS, shrink 832 // the constant. 833 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 834 return true; 835 836 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 837 // constant, but if this 'and' is only clearing bits that were just set by 838 // the xor, then this 'and' can be eliminated by shrinking the mask of 839 // the xor. For example, for a 32-bit X: 840 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 841 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 842 LHSKnown.One == ~RHSC->getAPIntValue()) { 843 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 844 return TLO.CombineTo(Op, Xor); 845 } 846 } 847 848 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 849 Depth + 1)) 850 return true; 851 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 852 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 853 Known2, TLO, Depth + 1)) 854 return true; 855 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 856 857 // If all of the demanded bits are known one on one side, return the other. 858 // These bits cannot contribute to the result of the 'and'. 859 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 860 return TLO.CombineTo(Op, Op0); 861 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 862 return TLO.CombineTo(Op, Op1); 863 // If all of the demanded bits in the inputs are known zeros, return zero. 864 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 865 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 866 // If the RHS is a constant, see if we can simplify it. 867 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 868 return true; 869 // If the operation can be done in a smaller type, do so. 870 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 871 return true; 872 873 // Output known-1 bits are only known if set in both the LHS & RHS. 874 Known.One &= Known2.One; 875 // Output known-0 are known to be clear if zero in either the LHS | RHS. 876 Known.Zero |= Known2.Zero; 877 break; 878 } 879 case ISD::OR: { 880 SDValue Op0 = Op.getOperand(0); 881 SDValue Op1 = Op.getOperand(1); 882 883 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 884 Depth + 1)) 885 return true; 886 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 887 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 888 Known2, TLO, Depth + 1)) 889 return true; 890 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 891 892 // If all of the demanded bits are known zero on one side, return the other. 893 // These bits cannot contribute to the result of the 'or'. 894 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 895 return TLO.CombineTo(Op, Op0); 896 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 897 return TLO.CombineTo(Op, Op1); 898 // If the RHS is a constant, see if we can simplify it. 899 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 900 return true; 901 // If the operation can be done in a smaller type, do so. 902 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 903 return true; 904 905 // Output known-0 bits are only known if clear in both the LHS & RHS. 906 Known.Zero &= Known2.Zero; 907 // Output known-1 are known to be set if set in either the LHS | RHS. 908 Known.One |= Known2.One; 909 break; 910 } 911 case ISD::XOR: { 912 SDValue Op0 = Op.getOperand(0); 913 SDValue Op1 = Op.getOperand(1); 914 915 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 916 Depth + 1)) 917 return true; 918 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 919 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 920 Depth + 1)) 921 return true; 922 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 923 924 // If all of the demanded bits are known zero on one side, return the other. 925 // These bits cannot contribute to the result of the 'xor'. 926 if (DemandedBits.isSubsetOf(Known.Zero)) 927 return TLO.CombineTo(Op, Op0); 928 if (DemandedBits.isSubsetOf(Known2.Zero)) 929 return TLO.CombineTo(Op, Op1); 930 // If the operation can be done in a smaller type, do so. 931 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 932 return true; 933 934 // If all of the unknown bits are known to be zero on one side or the other 935 // (but not both) turn this into an *inclusive* or. 936 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 937 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 938 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 939 940 // Output known-0 bits are known if clear or set in both the LHS & RHS. 941 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 942 // Output known-1 are known to be set if set in only one of the LHS, RHS. 943 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 944 945 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 946 // If one side is a constant, and all of the known set bits on the other 947 // side are also set in the constant, turn this into an AND, as we know 948 // the bits will be cleared. 949 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 950 // NB: it is okay if more bits are known than are requested 951 if (C->getAPIntValue() == Known2.One) { 952 SDValue ANDC = 953 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 954 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 955 } 956 957 // If the RHS is a constant, see if we can change it. Don't alter a -1 958 // constant because that's a 'not' op, and that is better for combining 959 // and codegen. 960 if (!C->isAllOnesValue()) { 961 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 962 // We're flipping all demanded bits. Flip the undemanded bits too. 963 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 964 return TLO.CombineTo(Op, New); 965 } 966 // If we can't turn this into a 'not', try to shrink the constant. 967 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 968 return true; 969 } 970 } 971 972 Known = std::move(KnownOut); 973 break; 974 } 975 case ISD::SELECT: 976 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 977 Depth + 1)) 978 return true; 979 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 980 Depth + 1)) 981 return true; 982 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 983 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 984 985 // If the operands are constants, see if we can simplify them. 986 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 987 return true; 988 989 // Only known if known in both the LHS and RHS. 990 Known.One &= Known2.One; 991 Known.Zero &= Known2.Zero; 992 break; 993 case ISD::SELECT_CC: 994 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 995 Depth + 1)) 996 return true; 997 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 998 Depth + 1)) 999 return true; 1000 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1001 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1002 1003 // If the operands are constants, see if we can simplify them. 1004 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1005 return true; 1006 1007 // Only known if known in both the LHS and RHS. 1008 Known.One &= Known2.One; 1009 Known.Zero &= Known2.Zero; 1010 break; 1011 case ISD::SETCC: { 1012 SDValue Op0 = Op.getOperand(0); 1013 SDValue Op1 = Op.getOperand(1); 1014 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1015 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1016 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1017 // -1, we may be able to bypass the setcc. 1018 if (DemandedBits.isSignMask() && 1019 Op0.getScalarValueSizeInBits() == BitWidth && 1020 getBooleanContents(VT) == 1021 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1022 // If we're testing X < 0, then this compare isn't needed - just use X! 1023 // FIXME: We're limiting to integer types here, but this should also work 1024 // if we don't care about FP signed-zero. The use of SETLT with FP means 1025 // that we don't care about NaNs. 1026 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1027 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1028 return TLO.CombineTo(Op, Op0); 1029 1030 // TODO: Should we check for other forms of sign-bit comparisons? 1031 // Examples: X <= -1, X >= 0 1032 } 1033 if (getBooleanContents(Op0.getValueType()) == 1034 TargetLowering::ZeroOrOneBooleanContent && 1035 BitWidth > 1) 1036 Known.Zero.setBitsFrom(1); 1037 break; 1038 } 1039 case ISD::SHL: { 1040 SDValue Op0 = Op.getOperand(0); 1041 SDValue Op1 = Op.getOperand(1); 1042 1043 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1044 // If the shift count is an invalid immediate, don't do anything. 1045 if (SA->getAPIntValue().uge(BitWidth)) 1046 break; 1047 1048 unsigned ShAmt = SA->getZExtValue(); 1049 1050 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1051 // single shift. We can do this if the bottom bits (which are shifted 1052 // out) are never demanded. 1053 if (Op0.getOpcode() == ISD::SRL) { 1054 if (ShAmt && 1055 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1056 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1057 if (SA2->getAPIntValue().ult(BitWidth)) { 1058 unsigned C1 = SA2->getZExtValue(); 1059 unsigned Opc = ISD::SHL; 1060 int Diff = ShAmt - C1; 1061 if (Diff < 0) { 1062 Diff = -Diff; 1063 Opc = ISD::SRL; 1064 } 1065 1066 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1067 return TLO.CombineTo( 1068 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1069 } 1070 } 1071 } 1072 } 1073 1074 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1075 Known, TLO, Depth + 1)) 1076 return true; 1077 1078 // Try shrinking the operation as long as the shift amount will still be 1079 // in range. 1080 if ((ShAmt < DemandedBits.getActiveBits()) && 1081 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1082 return true; 1083 1084 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1085 // are not demanded. This will likely allow the anyext to be folded away. 1086 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1087 SDValue InnerOp = Op0.getOperand(0); 1088 EVT InnerVT = InnerOp.getValueType(); 1089 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1090 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1091 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1092 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1093 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1094 ShTy = InnerVT; 1095 SDValue NarrowShl = 1096 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1097 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1098 return TLO.CombineTo( 1099 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1100 } 1101 // Repeat the SHL optimization above in cases where an extension 1102 // intervenes: (shl (anyext (shr x, c1)), c2) to 1103 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1104 // aren't demanded (as above) and that the shifted upper c1 bits of 1105 // x aren't demanded. 1106 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1107 InnerOp.hasOneUse()) { 1108 if (ConstantSDNode *SA2 = 1109 isConstOrConstSplat(InnerOp.getOperand(1))) { 1110 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1111 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1112 DemandedBits.getActiveBits() <= 1113 (InnerBits - InnerShAmt + ShAmt) && 1114 DemandedBits.countTrailingZeros() >= ShAmt) { 1115 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1116 Op1.getValueType()); 1117 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1118 InnerOp.getOperand(0)); 1119 return TLO.CombineTo( 1120 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1121 } 1122 } 1123 } 1124 } 1125 1126 Known.Zero <<= ShAmt; 1127 Known.One <<= ShAmt; 1128 // low bits known zero. 1129 Known.Zero.setLowBits(ShAmt); 1130 } 1131 break; 1132 } 1133 case ISD::SRL: { 1134 SDValue Op0 = Op.getOperand(0); 1135 SDValue Op1 = Op.getOperand(1); 1136 1137 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1138 // If the shift count is an invalid immediate, don't do anything. 1139 if (SA->getAPIntValue().uge(BitWidth)) 1140 break; 1141 1142 EVT ShiftVT = Op1.getValueType(); 1143 unsigned ShAmt = SA->getZExtValue(); 1144 APInt InDemandedMask = (DemandedBits << ShAmt); 1145 1146 // If the shift is exact, then it does demand the low bits (and knows that 1147 // they are zero). 1148 if (Op->getFlags().hasExact()) 1149 InDemandedMask.setLowBits(ShAmt); 1150 1151 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1152 // single shift. We can do this if the top bits (which are shifted out) 1153 // are never demanded. 1154 if (Op0.getOpcode() == ISD::SHL) { 1155 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1156 if (ShAmt && 1157 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1158 if (SA2->getAPIntValue().ult(BitWidth)) { 1159 unsigned C1 = SA2->getZExtValue(); 1160 unsigned Opc = ISD::SRL; 1161 int Diff = ShAmt - C1; 1162 if (Diff < 0) { 1163 Diff = -Diff; 1164 Opc = ISD::SHL; 1165 } 1166 1167 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1168 return TLO.CombineTo( 1169 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1170 } 1171 } 1172 } 1173 } 1174 1175 // Compute the new bits that are at the top now. 1176 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1177 Depth + 1)) 1178 return true; 1179 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1180 Known.Zero.lshrInPlace(ShAmt); 1181 Known.One.lshrInPlace(ShAmt); 1182 1183 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1184 } 1185 break; 1186 } 1187 case ISD::SRA: { 1188 SDValue Op0 = Op.getOperand(0); 1189 SDValue Op1 = Op.getOperand(1); 1190 1191 // If this is an arithmetic shift right and only the low-bit is set, we can 1192 // always convert this into a logical shr, even if the shift amount is 1193 // variable. The low bit of the shift cannot be an input sign bit unless 1194 // the shift amount is >= the size of the datatype, which is undefined. 1195 if (DemandedBits.isOneValue()) 1196 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1197 1198 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1199 // If the shift count is an invalid immediate, don't do anything. 1200 if (SA->getAPIntValue().uge(BitWidth)) 1201 break; 1202 1203 unsigned ShAmt = SA->getZExtValue(); 1204 APInt InDemandedMask = (DemandedBits << ShAmt); 1205 1206 // If the shift is exact, then it does demand the low bits (and knows that 1207 // they are zero). 1208 if (Op->getFlags().hasExact()) 1209 InDemandedMask.setLowBits(ShAmt); 1210 1211 // If any of the demanded bits are produced by the sign extension, we also 1212 // demand the input sign bit. 1213 if (DemandedBits.countLeadingZeros() < ShAmt) 1214 InDemandedMask.setSignBit(); 1215 1216 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1217 Depth + 1)) 1218 return true; 1219 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1220 Known.Zero.lshrInPlace(ShAmt); 1221 Known.One.lshrInPlace(ShAmt); 1222 1223 // If the input sign bit is known to be zero, or if none of the top bits 1224 // are demanded, turn this into an unsigned shift right. 1225 if (Known.Zero[BitWidth - ShAmt - 1] || 1226 DemandedBits.countLeadingZeros() >= ShAmt) { 1227 SDNodeFlags Flags; 1228 Flags.setExact(Op->getFlags().hasExact()); 1229 return TLO.CombineTo( 1230 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1231 } 1232 1233 int Log2 = DemandedBits.exactLogBase2(); 1234 if (Log2 >= 0) { 1235 // The bit must come from the sign. 1236 SDValue NewSA = 1237 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1238 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1239 } 1240 1241 if (Known.One[BitWidth - ShAmt - 1]) 1242 // New bits are known one. 1243 Known.One.setHighBits(ShAmt); 1244 } 1245 break; 1246 } 1247 case ISD::FSHL: 1248 case ISD::FSHR: { 1249 SDValue Op0 = Op.getOperand(0); 1250 SDValue Op1 = Op.getOperand(1); 1251 SDValue Op2 = Op.getOperand(2); 1252 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1253 1254 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1255 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1256 1257 // For fshl, 0-shift returns the 1st arg. 1258 // For fshr, 0-shift returns the 2nd arg. 1259 if (Amt == 0) { 1260 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1261 Known, TLO, Depth + 1)) 1262 return true; 1263 break; 1264 } 1265 1266 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1267 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1268 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1269 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1270 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1271 Depth + 1)) 1272 return true; 1273 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1274 Depth + 1)) 1275 return true; 1276 1277 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1278 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1279 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1280 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1281 Known.One |= Known2.One; 1282 Known.Zero |= Known2.Zero; 1283 } 1284 break; 1285 } 1286 case ISD::BITREVERSE: { 1287 SDValue Src = Op.getOperand(0); 1288 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1289 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1290 Depth + 1)) 1291 return true; 1292 Known.One = Known2.One.reverseBits(); 1293 Known.Zero = Known2.Zero.reverseBits(); 1294 break; 1295 } 1296 case ISD::SIGN_EXTEND_INREG: { 1297 SDValue Op0 = Op.getOperand(0); 1298 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1299 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1300 1301 // If we only care about the highest bit, don't bother shifting right. 1302 if (DemandedBits.isSignMask()) { 1303 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1304 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1305 // However if the input is already sign extended we expect the sign 1306 // extension to be dropped altogether later and do not simplify. 1307 if (!AlreadySignExtended) { 1308 // Compute the correct shift amount type, which must be getShiftAmountTy 1309 // for scalar types after legalization. 1310 EVT ShiftAmtTy = VT; 1311 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1312 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1313 1314 SDValue ShiftAmt = 1315 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1316 return TLO.CombineTo(Op, 1317 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1318 } 1319 } 1320 1321 // If none of the extended bits are demanded, eliminate the sextinreg. 1322 if (DemandedBits.getActiveBits() <= ExVTBits) 1323 return TLO.CombineTo(Op, Op0); 1324 1325 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1326 1327 // Since the sign extended bits are demanded, we know that the sign 1328 // bit is demanded. 1329 InputDemandedBits.setBit(ExVTBits - 1); 1330 1331 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1332 return true; 1333 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1334 1335 // If the sign bit of the input is known set or clear, then we know the 1336 // top bits of the result. 1337 1338 // If the input sign bit is known zero, convert this into a zero extension. 1339 if (Known.Zero[ExVTBits - 1]) 1340 return TLO.CombineTo( 1341 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1342 1343 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1344 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1345 Known.One.setBitsFrom(ExVTBits); 1346 Known.Zero &= Mask; 1347 } else { // Input sign bit unknown 1348 Known.Zero &= Mask; 1349 Known.One &= Mask; 1350 } 1351 break; 1352 } 1353 case ISD::BUILD_PAIR: { 1354 EVT HalfVT = Op.getOperand(0).getValueType(); 1355 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1356 1357 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1358 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1359 1360 KnownBits KnownLo, KnownHi; 1361 1362 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1363 return true; 1364 1365 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1366 return true; 1367 1368 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1369 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1370 1371 Known.One = KnownLo.One.zext(BitWidth) | 1372 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1373 break; 1374 } 1375 case ISD::ZERO_EXTEND: 1376 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1377 SDValue Src = Op.getOperand(0); 1378 EVT SrcVT = Src.getValueType(); 1379 unsigned InBits = SrcVT.getScalarSizeInBits(); 1380 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1381 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1382 1383 // If none of the top bits are demanded, convert this into an any_extend. 1384 // TODO: Add ZERO_EXTEND_VECTOR_INREG - ANY_EXTEND_VECTOR_INREG fold. 1385 if (DemandedBits.getActiveBits() <= InBits) { 1386 // If we only need the non-extended bits of the bottom element 1387 // then we can just bitcast to the result. 1388 if (IsVecInReg && DemandedElts == 1 && 1389 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1390 TLO.DAG.getDataLayout().isLittleEndian()) 1391 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1392 1393 if (!IsVecInReg) 1394 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1395 } 1396 1397 APInt InDemandedBits = DemandedBits.trunc(InBits); 1398 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1399 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1404 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1405 break; 1406 } 1407 case ISD::SIGN_EXTEND: 1408 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1409 SDValue Src = Op.getOperand(0); 1410 EVT SrcVT = Src.getValueType(); 1411 unsigned InBits = SrcVT.getScalarSizeInBits(); 1412 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1413 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1414 1415 // If none of the top bits are demanded, convert this into an any_extend. 1416 // TODO: Add SIGN_EXTEND_VECTOR_INREG - ANY_EXTEND_VECTOR_INREG fold. 1417 if (DemandedBits.getActiveBits() <= InBits && !IsVecInReg) 1418 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1419 1420 APInt InDemandedBits = DemandedBits.trunc(InBits); 1421 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1422 1423 // Since some of the sign extended bits are demanded, we know that the sign 1424 // bit is demanded. 1425 InDemandedBits.setBit(InBits - 1); 1426 1427 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1428 Depth + 1)) 1429 return true; 1430 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1431 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1432 1433 // If the sign bit is known one, the top bits match. 1434 Known = Known.sext(BitWidth); 1435 1436 // If the sign bit is known zero, convert this to a zero extend. 1437 // TODO: Add SIGN_EXTEND_VECTOR_INREG - ZERO_EXTEND_VECTOR_INREG fold. 1438 if (Known.isNonNegative() && !IsVecInReg) 1439 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1440 break; 1441 } 1442 case ISD::ANY_EXTEND: { 1443 // TODO: Add ISD::ANY_EXTEND_VECTOR_INREG support. 1444 SDValue Src = Op.getOperand(0); 1445 EVT SrcVT = Src.getValueType(); 1446 unsigned InBits = SrcVT.getScalarSizeInBits(); 1447 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1448 APInt InDemandedBits = DemandedBits.trunc(InBits); 1449 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1450 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1451 Depth + 1)) 1452 return true; 1453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1454 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1455 Known = Known.zext(BitWidth, false /* => any extend */); 1456 break; 1457 } 1458 case ISD::TRUNCATE: { 1459 SDValue Src = Op.getOperand(0); 1460 1461 // Simplify the input, using demanded bit information, and compute the known 1462 // zero/one bits live out. 1463 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1464 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1465 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1466 return true; 1467 Known = Known.trunc(BitWidth); 1468 1469 // If the input is only used by this truncate, see if we can shrink it based 1470 // on the known demanded bits. 1471 if (Src.getNode()->hasOneUse()) { 1472 switch (Src.getOpcode()) { 1473 default: 1474 break; 1475 case ISD::SRL: 1476 // Shrink SRL by a constant if none of the high bits shifted in are 1477 // demanded. 1478 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1479 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1480 // undesirable. 1481 break; 1482 1483 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1484 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1485 break; 1486 1487 SDValue Shift = Src.getOperand(1); 1488 uint64_t ShVal = ShAmt->getZExtValue(); 1489 1490 if (TLO.LegalTypes()) 1491 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1492 1493 APInt HighBits = 1494 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1495 HighBits.lshrInPlace(ShVal); 1496 HighBits = HighBits.trunc(BitWidth); 1497 1498 if (!(HighBits & DemandedBits)) { 1499 // None of the shifted in bits are needed. Add a truncate of the 1500 // shift input, then shift it. 1501 SDValue NewTrunc = 1502 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1503 return TLO.CombineTo( 1504 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1505 } 1506 break; 1507 } 1508 } 1509 1510 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1511 break; 1512 } 1513 case ISD::AssertZext: { 1514 // AssertZext demands all of the high bits, plus any of the low bits 1515 // demanded by its users. 1516 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1517 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1518 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1519 TLO, Depth + 1)) 1520 return true; 1521 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1522 1523 Known.Zero |= ~InMask; 1524 break; 1525 } 1526 case ISD::EXTRACT_VECTOR_ELT: { 1527 SDValue Src = Op.getOperand(0); 1528 SDValue Idx = Op.getOperand(1); 1529 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1530 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1531 1532 // Demand the bits from every vector element without a constant index. 1533 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1534 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1535 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1536 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1537 1538 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1539 // anything about the extended bits. 1540 APInt DemandedSrcBits = DemandedBits; 1541 if (BitWidth > EltBitWidth) 1542 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1543 1544 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1545 Depth + 1)) 1546 return true; 1547 1548 Known = Known2; 1549 if (BitWidth > EltBitWidth) 1550 Known = Known.zext(BitWidth, false /* => any extend */); 1551 break; 1552 } 1553 case ISD::BITCAST: { 1554 SDValue Src = Op.getOperand(0); 1555 EVT SrcVT = Src.getValueType(); 1556 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1557 1558 // If this is an FP->Int bitcast and if the sign bit is the only 1559 // thing demanded, turn this into a FGETSIGN. 1560 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1561 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1562 SrcVT.isFloatingPoint()) { 1563 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1564 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1565 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1566 SrcVT != MVT::f128) { 1567 // Cannot eliminate/lower SHL for f128 yet. 1568 EVT Ty = OpVTLegal ? VT : MVT::i32; 1569 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1570 // place. We expect the SHL to be eliminated by other optimizations. 1571 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1572 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1573 if (!OpVTLegal && OpVTSizeInBits > 32) 1574 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1575 unsigned ShVal = Op.getValueSizeInBits() - 1; 1576 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1577 return TLO.CombineTo(Op, 1578 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1579 } 1580 } 1581 1582 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1583 // Demand the elt/bit if any of the original elts/bits are demanded. 1584 // TODO - bigendian once we have test coverage. 1585 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1586 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1587 (BitWidth % NumSrcEltBits) == 0 && 1588 TLO.DAG.getDataLayout().isLittleEndian()) { 1589 unsigned Scale = BitWidth / NumSrcEltBits; 1590 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1591 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1592 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1593 for (unsigned i = 0; i != Scale; ++i) { 1594 unsigned Offset = i * NumSrcEltBits; 1595 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1596 if (!Sub.isNullValue()) { 1597 DemandedSrcBits |= Sub; 1598 for (unsigned j = 0; j != NumElts; ++j) 1599 if (DemandedElts[j]) 1600 DemandedSrcElts.setBit((j * Scale) + i); 1601 } 1602 } 1603 1604 APInt KnownSrcUndef, KnownSrcZero; 1605 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1606 KnownSrcZero, TLO, Depth + 1)) 1607 return true; 1608 1609 KnownBits KnownSrcBits; 1610 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1611 KnownSrcBits, TLO, Depth + 1)) 1612 return true; 1613 } else if ((NumSrcEltBits % BitWidth) == 0 && 1614 TLO.DAG.getDataLayout().isLittleEndian()) { 1615 unsigned Scale = NumSrcEltBits / BitWidth; 1616 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1617 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1618 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1619 for (unsigned i = 0; i != NumElts; ++i) 1620 if (DemandedElts[i]) { 1621 unsigned Offset = (i % Scale) * BitWidth; 1622 DemandedSrcBits.insertBits(DemandedBits, Offset); 1623 DemandedSrcElts.setBit(i / Scale); 1624 } 1625 1626 if (SrcVT.isVector()) { 1627 APInt KnownSrcUndef, KnownSrcZero; 1628 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1629 KnownSrcZero, TLO, Depth + 1)) 1630 return true; 1631 } 1632 1633 KnownBits KnownSrcBits; 1634 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1635 KnownSrcBits, TLO, Depth + 1)) 1636 return true; 1637 } 1638 1639 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1640 // recursive call where Known may be useful to the caller. 1641 if (Depth > 0) { 1642 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1643 return false; 1644 } 1645 break; 1646 } 1647 case ISD::ADD: 1648 case ISD::MUL: 1649 case ISD::SUB: { 1650 // Add, Sub, and Mul don't demand any bits in positions beyond that 1651 // of the highest bit demanded of them. 1652 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1653 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1654 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1655 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1656 Depth + 1) || 1657 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1658 Depth + 1) || 1659 // See if the operation should be performed at a smaller bit width. 1660 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1661 SDNodeFlags Flags = Op.getNode()->getFlags(); 1662 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1663 // Disable the nsw and nuw flags. We can no longer guarantee that we 1664 // won't wrap after simplification. 1665 Flags.setNoSignedWrap(false); 1666 Flags.setNoUnsignedWrap(false); 1667 SDValue NewOp = 1668 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1669 return TLO.CombineTo(Op, NewOp); 1670 } 1671 return true; 1672 } 1673 1674 // If we have a constant operand, we may be able to turn it into -1 if we 1675 // do not demand the high bits. This can make the constant smaller to 1676 // encode, allow more general folding, or match specialized instruction 1677 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1678 // is probably not useful (and could be detrimental). 1679 ConstantSDNode *C = isConstOrConstSplat(Op1); 1680 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1681 if (C && !C->isAllOnesValue() && !C->isOne() && 1682 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1683 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1684 // We can't guarantee that the new math op doesn't wrap, so explicitly 1685 // clear those flags to prevent folding with a potential existing node 1686 // that has those flags set. 1687 SDNodeFlags Flags; 1688 Flags.setNoSignedWrap(false); 1689 Flags.setNoUnsignedWrap(false); 1690 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1691 return TLO.CombineTo(Op, NewOp); 1692 } 1693 1694 LLVM_FALLTHROUGH; 1695 } 1696 default: 1697 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1698 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1699 Known, TLO, Depth)) 1700 return true; 1701 break; 1702 } 1703 1704 // Just use computeKnownBits to compute output bits. 1705 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1706 break; 1707 } 1708 1709 // If we know the value of all of the demanded bits, return this as a 1710 // constant. 1711 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1712 // Avoid folding to a constant if any OpaqueConstant is involved. 1713 const SDNode *N = Op.getNode(); 1714 for (SDNodeIterator I = SDNodeIterator::begin(N), 1715 E = SDNodeIterator::end(N); 1716 I != E; ++I) { 1717 SDNode *Op = *I; 1718 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1719 if (C->isOpaque()) 1720 return false; 1721 } 1722 // TODO: Handle float bits as well. 1723 if (VT.isInteger()) 1724 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1725 } 1726 1727 return false; 1728 } 1729 1730 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1731 const APInt &DemandedElts, 1732 APInt &KnownUndef, 1733 APInt &KnownZero, 1734 DAGCombinerInfo &DCI) const { 1735 SelectionDAG &DAG = DCI.DAG; 1736 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1737 !DCI.isBeforeLegalizeOps()); 1738 1739 bool Simplified = 1740 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1741 if (Simplified) { 1742 DCI.AddToWorklist(Op.getNode()); 1743 DCI.CommitTargetLoweringOpt(TLO); 1744 } 1745 1746 return Simplified; 1747 } 1748 1749 /// Given a vector binary operation and known undefined elements for each input 1750 /// operand, compute whether each element of the output is undefined. 1751 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1752 const APInt &UndefOp0, 1753 const APInt &UndefOp1) { 1754 EVT VT = BO.getValueType(); 1755 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 1756 "Vector binop only"); 1757 1758 EVT EltVT = VT.getVectorElementType(); 1759 unsigned NumElts = VT.getVectorNumElements(); 1760 assert(UndefOp0.getBitWidth() == NumElts && 1761 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1762 1763 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1764 const APInt &UndefVals) { 1765 if (UndefVals[Index]) 1766 return DAG.getUNDEF(EltVT); 1767 1768 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1769 // Try hard to make sure that the getNode() call is not creating temporary 1770 // nodes. Ignore opaque integers because they do not constant fold. 1771 SDValue Elt = BV->getOperand(Index); 1772 auto *C = dyn_cast<ConstantSDNode>(Elt); 1773 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1774 return Elt; 1775 } 1776 1777 return SDValue(); 1778 }; 1779 1780 APInt KnownUndef = APInt::getNullValue(NumElts); 1781 for (unsigned i = 0; i != NumElts; ++i) { 1782 // If both inputs for this element are either constant or undef and match 1783 // the element type, compute the constant/undef result for this element of 1784 // the vector. 1785 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1786 // not handle FP constants. The code within getNode() should be refactored 1787 // to avoid the danger of creating a bogus temporary node here. 1788 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1789 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1790 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1791 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1792 KnownUndef.setBit(i); 1793 } 1794 return KnownUndef; 1795 } 1796 1797 bool TargetLowering::SimplifyDemandedVectorElts( 1798 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 1799 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1800 bool AssumeSingleUse) const { 1801 EVT VT = Op.getValueType(); 1802 APInt DemandedElts = OriginalDemandedElts; 1803 unsigned NumElts = DemandedElts.getBitWidth(); 1804 assert(VT.isVector() && "Expected vector op"); 1805 assert(VT.getVectorNumElements() == NumElts && 1806 "Mask size mismatches value type element count!"); 1807 1808 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1809 1810 // Undef operand. 1811 if (Op.isUndef()) { 1812 KnownUndef.setAllBits(); 1813 return false; 1814 } 1815 1816 // If Op has other users, assume that all elements are needed. 1817 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1818 DemandedElts.setAllBits(); 1819 1820 // Not demanding any elements from Op. 1821 if (DemandedElts == 0) { 1822 KnownUndef.setAllBits(); 1823 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1824 } 1825 1826 // Limit search depth. 1827 if (Depth >= 6) 1828 return false; 1829 1830 SDLoc DL(Op); 1831 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1832 1833 switch (Op.getOpcode()) { 1834 case ISD::SCALAR_TO_VECTOR: { 1835 if (!DemandedElts[0]) { 1836 KnownUndef.setAllBits(); 1837 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1838 } 1839 KnownUndef.setHighBits(NumElts - 1); 1840 break; 1841 } 1842 case ISD::BITCAST: { 1843 SDValue Src = Op.getOperand(0); 1844 EVT SrcVT = Src.getValueType(); 1845 1846 // We only handle vectors here. 1847 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1848 if (!SrcVT.isVector()) 1849 break; 1850 1851 // Fast handling of 'identity' bitcasts. 1852 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1853 if (NumSrcElts == NumElts) 1854 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1855 KnownZero, TLO, Depth + 1); 1856 1857 APInt SrcZero, SrcUndef; 1858 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1859 1860 // Bitcast from 'large element' src vector to 'small element' vector, we 1861 // must demand a source element if any DemandedElt maps to it. 1862 if ((NumElts % NumSrcElts) == 0) { 1863 unsigned Scale = NumElts / NumSrcElts; 1864 for (unsigned i = 0; i != NumElts; ++i) 1865 if (DemandedElts[i]) 1866 SrcDemandedElts.setBit(i / Scale); 1867 1868 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1869 TLO, Depth + 1)) 1870 return true; 1871 1872 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1873 // of the large element. 1874 // TODO - bigendian once we have test coverage. 1875 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1876 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1877 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1878 for (unsigned i = 0; i != NumElts; ++i) 1879 if (DemandedElts[i]) { 1880 unsigned Ofs = (i % Scale) * EltSizeInBits; 1881 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1882 } 1883 1884 KnownBits Known; 1885 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1886 return true; 1887 } 1888 1889 // If the src element is zero/undef then all the output elements will be - 1890 // only demanded elements are guaranteed to be correct. 1891 for (unsigned i = 0; i != NumSrcElts; ++i) { 1892 if (SrcDemandedElts[i]) { 1893 if (SrcZero[i]) 1894 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1895 if (SrcUndef[i]) 1896 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1897 } 1898 } 1899 } 1900 1901 // Bitcast from 'small element' src vector to 'large element' vector, we 1902 // demand all smaller source elements covered by the larger demanded element 1903 // of this vector. 1904 if ((NumSrcElts % NumElts) == 0) { 1905 unsigned Scale = NumSrcElts / NumElts; 1906 for (unsigned i = 0; i != NumElts; ++i) 1907 if (DemandedElts[i]) 1908 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1909 1910 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1911 TLO, Depth + 1)) 1912 return true; 1913 1914 // If all the src elements covering an output element are zero/undef, then 1915 // the output element will be as well, assuming it was demanded. 1916 for (unsigned i = 0; i != NumElts; ++i) { 1917 if (DemandedElts[i]) { 1918 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1919 KnownZero.setBit(i); 1920 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1921 KnownUndef.setBit(i); 1922 } 1923 } 1924 } 1925 break; 1926 } 1927 case ISD::BUILD_VECTOR: { 1928 // Check all elements and simplify any unused elements with UNDEF. 1929 if (!DemandedElts.isAllOnesValue()) { 1930 // Don't simplify BROADCASTS. 1931 if (llvm::any_of(Op->op_values(), 1932 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1933 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1934 bool Updated = false; 1935 for (unsigned i = 0; i != NumElts; ++i) { 1936 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1937 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1938 KnownUndef.setBit(i); 1939 Updated = true; 1940 } 1941 } 1942 if (Updated) 1943 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1944 } 1945 } 1946 for (unsigned i = 0; i != NumElts; ++i) { 1947 SDValue SrcOp = Op.getOperand(i); 1948 if (SrcOp.isUndef()) { 1949 KnownUndef.setBit(i); 1950 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1951 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1952 KnownZero.setBit(i); 1953 } 1954 } 1955 break; 1956 } 1957 case ISD::CONCAT_VECTORS: { 1958 EVT SubVT = Op.getOperand(0).getValueType(); 1959 unsigned NumSubVecs = Op.getNumOperands(); 1960 unsigned NumSubElts = SubVT.getVectorNumElements(); 1961 for (unsigned i = 0; i != NumSubVecs; ++i) { 1962 SDValue SubOp = Op.getOperand(i); 1963 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1964 APInt SubUndef, SubZero; 1965 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1966 Depth + 1)) 1967 return true; 1968 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1969 KnownZero.insertBits(SubZero, i * NumSubElts); 1970 } 1971 break; 1972 } 1973 case ISD::INSERT_SUBVECTOR: { 1974 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1975 break; 1976 SDValue Base = Op.getOperand(0); 1977 SDValue Sub = Op.getOperand(1); 1978 EVT SubVT = Sub.getValueType(); 1979 unsigned NumSubElts = SubVT.getVectorNumElements(); 1980 const APInt &Idx = Op.getConstantOperandAPInt(2); 1981 if (Idx.ugt(NumElts - NumSubElts)) 1982 break; 1983 unsigned SubIdx = Idx.getZExtValue(); 1984 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1985 APInt SubUndef, SubZero; 1986 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1987 Depth + 1)) 1988 return true; 1989 APInt BaseElts = DemandedElts; 1990 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1991 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1992 Depth + 1)) 1993 return true; 1994 KnownUndef.insertBits(SubUndef, SubIdx); 1995 KnownZero.insertBits(SubZero, SubIdx); 1996 break; 1997 } 1998 case ISD::EXTRACT_SUBVECTOR: { 1999 SDValue Src = Op.getOperand(0); 2000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2002 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2003 // Offset the demanded elts by the subvector index. 2004 uint64_t Idx = SubIdx->getZExtValue(); 2005 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2006 APInt SrcUndef, SrcZero; 2007 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2008 Depth + 1)) 2009 return true; 2010 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2011 KnownZero = SrcZero.extractBits(NumElts, Idx); 2012 } 2013 break; 2014 } 2015 case ISD::INSERT_VECTOR_ELT: { 2016 SDValue Vec = Op.getOperand(0); 2017 SDValue Scl = Op.getOperand(1); 2018 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2019 2020 // For a legal, constant insertion index, if we don't need this insertion 2021 // then strip it, else remove it from the demanded elts. 2022 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2023 unsigned Idx = CIdx->getZExtValue(); 2024 if (!DemandedElts[Idx]) 2025 return TLO.CombineTo(Op, Vec); 2026 2027 APInt DemandedVecElts(DemandedElts); 2028 DemandedVecElts.clearBit(Idx); 2029 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2030 KnownZero, TLO, Depth + 1)) 2031 return true; 2032 2033 KnownUndef.clearBit(Idx); 2034 if (Scl.isUndef()) 2035 KnownUndef.setBit(Idx); 2036 2037 KnownZero.clearBit(Idx); 2038 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2039 KnownZero.setBit(Idx); 2040 break; 2041 } 2042 2043 APInt VecUndef, VecZero; 2044 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2045 Depth + 1)) 2046 return true; 2047 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2048 break; 2049 } 2050 case ISD::VSELECT: { 2051 // Try to transform the select condition based on the current demanded 2052 // elements. 2053 // TODO: If a condition element is undef, we can choose from one arm of the 2054 // select (and if one arm is undef, then we can propagate that to the 2055 // result). 2056 // TODO - add support for constant vselect masks (see IR version of this). 2057 APInt UnusedUndef, UnusedZero; 2058 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2059 UnusedZero, TLO, Depth + 1)) 2060 return true; 2061 2062 // See if we can simplify either vselect operand. 2063 APInt DemandedLHS(DemandedElts); 2064 APInt DemandedRHS(DemandedElts); 2065 APInt UndefLHS, ZeroLHS; 2066 APInt UndefRHS, ZeroRHS; 2067 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2068 ZeroLHS, TLO, Depth + 1)) 2069 return true; 2070 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2071 ZeroRHS, TLO, Depth + 1)) 2072 return true; 2073 2074 KnownUndef = UndefLHS & UndefRHS; 2075 KnownZero = ZeroLHS & ZeroRHS; 2076 break; 2077 } 2078 case ISD::VECTOR_SHUFFLE: { 2079 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2080 2081 // Collect demanded elements from shuffle operands.. 2082 APInt DemandedLHS(NumElts, 0); 2083 APInt DemandedRHS(NumElts, 0); 2084 for (unsigned i = 0; i != NumElts; ++i) { 2085 int M = ShuffleMask[i]; 2086 if (M < 0 || !DemandedElts[i]) 2087 continue; 2088 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2089 if (M < (int)NumElts) 2090 DemandedLHS.setBit(M); 2091 else 2092 DemandedRHS.setBit(M - NumElts); 2093 } 2094 2095 // See if we can simplify either shuffle operand. 2096 APInt UndefLHS, ZeroLHS; 2097 APInt UndefRHS, ZeroRHS; 2098 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2099 ZeroLHS, TLO, Depth + 1)) 2100 return true; 2101 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2102 ZeroRHS, TLO, Depth + 1)) 2103 return true; 2104 2105 // Simplify mask using undef elements from LHS/RHS. 2106 bool Updated = false; 2107 bool IdentityLHS = true, IdentityRHS = true; 2108 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2109 for (unsigned i = 0; i != NumElts; ++i) { 2110 int &M = NewMask[i]; 2111 if (M < 0) 2112 continue; 2113 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2114 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2115 Updated = true; 2116 M = -1; 2117 } 2118 IdentityLHS &= (M < 0) || (M == (int)i); 2119 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2120 } 2121 2122 // Update legal shuffle masks based on demanded elements if it won't reduce 2123 // to Identity which can cause premature removal of the shuffle mask. 2124 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 2125 isShuffleMaskLegal(NewMask, VT)) 2126 return TLO.CombineTo(Op, 2127 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 2128 Op.getOperand(1), NewMask)); 2129 2130 // Propagate undef/zero elements from LHS/RHS. 2131 for (unsigned i = 0; i != NumElts; ++i) { 2132 int M = ShuffleMask[i]; 2133 if (M < 0) { 2134 KnownUndef.setBit(i); 2135 } else if (M < (int)NumElts) { 2136 if (UndefLHS[M]) 2137 KnownUndef.setBit(i); 2138 if (ZeroLHS[M]) 2139 KnownZero.setBit(i); 2140 } else { 2141 if (UndefRHS[M - NumElts]) 2142 KnownUndef.setBit(i); 2143 if (ZeroRHS[M - NumElts]) 2144 KnownZero.setBit(i); 2145 } 2146 } 2147 break; 2148 } 2149 case ISD::ANY_EXTEND_VECTOR_INREG: 2150 case ISD::SIGN_EXTEND_VECTOR_INREG: 2151 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2152 APInt SrcUndef, SrcZero; 2153 SDValue Src = Op.getOperand(0); 2154 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2155 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2156 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2157 Depth + 1)) 2158 return true; 2159 KnownZero = SrcZero.zextOrTrunc(NumElts); 2160 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2161 2162 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2163 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2164 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2165 // aext - if we just need the bottom element then we can bitcast. 2166 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2167 } 2168 2169 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2170 // zext(undef) upper bits are guaranteed to be zero. 2171 if (DemandedElts.isSubsetOf(KnownUndef)) 2172 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2173 KnownUndef.clearAllBits(); 2174 } 2175 break; 2176 } 2177 2178 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2179 // MAX, saturated math, etc. 2180 case ISD::OR: 2181 case ISD::XOR: 2182 case ISD::ADD: 2183 case ISD::SUB: 2184 case ISD::FADD: 2185 case ISD::FSUB: 2186 case ISD::FMUL: 2187 case ISD::FDIV: 2188 case ISD::FREM: { 2189 APInt UndefRHS, ZeroRHS; 2190 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2191 ZeroRHS, TLO, Depth + 1)) 2192 return true; 2193 APInt UndefLHS, ZeroLHS; 2194 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2195 ZeroLHS, TLO, Depth + 1)) 2196 return true; 2197 2198 KnownZero = ZeroLHS & ZeroRHS; 2199 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2200 break; 2201 } 2202 case ISD::MUL: 2203 case ISD::AND: { 2204 APInt SrcUndef, SrcZero; 2205 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2206 SrcZero, TLO, Depth + 1)) 2207 return true; 2208 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2209 KnownZero, TLO, Depth + 1)) 2210 return true; 2211 2212 // If either side has a zero element, then the result element is zero, even 2213 // if the other is an UNDEF. 2214 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2215 // and then handle 'and' nodes with the rest of the binop opcodes. 2216 KnownZero |= SrcZero; 2217 KnownUndef &= SrcUndef; 2218 KnownUndef &= ~KnownZero; 2219 break; 2220 } 2221 case ISD::TRUNCATE: 2222 case ISD::SIGN_EXTEND: 2223 case ISD::ZERO_EXTEND: 2224 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2225 KnownZero, TLO, Depth + 1)) 2226 return true; 2227 2228 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2229 // zext(undef) upper bits are guaranteed to be zero. 2230 if (DemandedElts.isSubsetOf(KnownUndef)) 2231 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2232 KnownUndef.clearAllBits(); 2233 } 2234 break; 2235 default: { 2236 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2237 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2238 KnownZero, TLO, Depth)) 2239 return true; 2240 } else { 2241 KnownBits Known; 2242 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2243 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2244 TLO, Depth, AssumeSingleUse)) 2245 return true; 2246 } 2247 break; 2248 } 2249 } 2250 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2251 2252 // Constant fold all undef cases. 2253 // TODO: Handle zero cases as well. 2254 if (DemandedElts.isSubsetOf(KnownUndef)) 2255 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2256 2257 return false; 2258 } 2259 2260 /// Determine which of the bits specified in Mask are known to be either zero or 2261 /// one and return them in the Known. 2262 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2263 KnownBits &Known, 2264 const APInt &DemandedElts, 2265 const SelectionDAG &DAG, 2266 unsigned Depth) const { 2267 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2268 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2269 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2270 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2271 "Should use MaskedValueIsZero if you don't know whether Op" 2272 " is a target node!"); 2273 Known.resetAll(); 2274 } 2275 2276 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2277 KnownBits &Known, 2278 const APInt &DemandedElts, 2279 const SelectionDAG &DAG, 2280 unsigned Depth) const { 2281 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2282 2283 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2284 // The low bits are known zero if the pointer is aligned. 2285 Known.Zero.setLowBits(Log2_32(Align)); 2286 } 2287 } 2288 2289 /// This method can be implemented by targets that want to expose additional 2290 /// information about sign bits to the DAG Combiner. 2291 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2292 const APInt &, 2293 const SelectionDAG &, 2294 unsigned Depth) const { 2295 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2296 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2297 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2298 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2299 "Should use ComputeNumSignBits if you don't know whether Op" 2300 " is a target node!"); 2301 return 1; 2302 } 2303 2304 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2305 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2306 TargetLoweringOpt &TLO, unsigned Depth) const { 2307 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2308 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2309 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2310 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2311 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2312 " is a target node!"); 2313 return false; 2314 } 2315 2316 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2317 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2318 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2319 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2320 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2321 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2322 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2323 "Should use SimplifyDemandedBits if you don't know whether Op" 2324 " is a target node!"); 2325 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2326 return false; 2327 } 2328 2329 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2330 return nullptr; 2331 } 2332 2333 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2334 const SelectionDAG &DAG, 2335 bool SNaN, 2336 unsigned Depth) const { 2337 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2338 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2339 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2340 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2341 "Should use isKnownNeverNaN if you don't know whether Op" 2342 " is a target node!"); 2343 return false; 2344 } 2345 2346 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2347 // work with truncating build vectors and vectors with elements of less than 2348 // 8 bits. 2349 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2350 if (!N) 2351 return false; 2352 2353 APInt CVal; 2354 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2355 CVal = CN->getAPIntValue(); 2356 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2357 auto *CN = BV->getConstantSplatNode(); 2358 if (!CN) 2359 return false; 2360 2361 // If this is a truncating build vector, truncate the splat value. 2362 // Otherwise, we may fail to match the expected values below. 2363 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2364 CVal = CN->getAPIntValue(); 2365 if (BVEltWidth < CVal.getBitWidth()) 2366 CVal = CVal.trunc(BVEltWidth); 2367 } else { 2368 return false; 2369 } 2370 2371 switch (getBooleanContents(N->getValueType(0))) { 2372 case UndefinedBooleanContent: 2373 return CVal[0]; 2374 case ZeroOrOneBooleanContent: 2375 return CVal.isOneValue(); 2376 case ZeroOrNegativeOneBooleanContent: 2377 return CVal.isAllOnesValue(); 2378 } 2379 2380 llvm_unreachable("Invalid boolean contents"); 2381 } 2382 2383 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2384 if (!N) 2385 return false; 2386 2387 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2388 if (!CN) { 2389 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2390 if (!BV) 2391 return false; 2392 2393 // Only interested in constant splats, we don't care about undef 2394 // elements in identifying boolean constants and getConstantSplatNode 2395 // returns NULL if all ops are undef; 2396 CN = BV->getConstantSplatNode(); 2397 if (!CN) 2398 return false; 2399 } 2400 2401 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2402 return !CN->getAPIntValue()[0]; 2403 2404 return CN->isNullValue(); 2405 } 2406 2407 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2408 bool SExt) const { 2409 if (VT == MVT::i1) 2410 return N->isOne(); 2411 2412 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2413 switch (Cnt) { 2414 case TargetLowering::ZeroOrOneBooleanContent: 2415 // An extended value of 1 is always true, unless its original type is i1, 2416 // in which case it will be sign extended to -1. 2417 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2418 case TargetLowering::UndefinedBooleanContent: 2419 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2420 return N->isAllOnesValue() && SExt; 2421 } 2422 llvm_unreachable("Unexpected enumeration."); 2423 } 2424 2425 /// This helper function of SimplifySetCC tries to optimize the comparison when 2426 /// either operand of the SetCC node is a bitwise-and instruction. 2427 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2428 ISD::CondCode Cond, const SDLoc &DL, 2429 DAGCombinerInfo &DCI) const { 2430 // Match these patterns in any of their permutations: 2431 // (X & Y) == Y 2432 // (X & Y) != Y 2433 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2434 std::swap(N0, N1); 2435 2436 EVT OpVT = N0.getValueType(); 2437 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2438 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2439 return SDValue(); 2440 2441 SDValue X, Y; 2442 if (N0.getOperand(0) == N1) { 2443 X = N0.getOperand(1); 2444 Y = N0.getOperand(0); 2445 } else if (N0.getOperand(1) == N1) { 2446 X = N0.getOperand(0); 2447 Y = N0.getOperand(1); 2448 } else { 2449 return SDValue(); 2450 } 2451 2452 SelectionDAG &DAG = DCI.DAG; 2453 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2454 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2455 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2456 // Note that where Y is variable and is known to have at most one bit set 2457 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2458 // equivalent when Y == 0. 2459 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2460 if (DCI.isBeforeLegalizeOps() || 2461 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2462 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2463 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2464 // If the target supports an 'and-not' or 'and-complement' logic operation, 2465 // try to use that to make a comparison operation more efficient. 2466 // But don't do this transform if the mask is a single bit because there are 2467 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2468 // 'rlwinm' on PPC). 2469 2470 // Bail out if the compare operand that we want to turn into a zero is 2471 // already a zero (otherwise, infinite loop). 2472 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2473 if (YConst && YConst->isNullValue()) 2474 return SDValue(); 2475 2476 // Transform this into: ~X & Y == 0. 2477 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2478 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2479 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2480 } 2481 2482 return SDValue(); 2483 } 2484 2485 /// There are multiple IR patterns that could be checking whether certain 2486 /// truncation of a signed number would be lossy or not. The pattern which is 2487 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2488 /// We are looking for the following pattern: (KeptBits is a constant) 2489 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2490 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2491 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2492 /// We will unfold it into the natural trunc+sext pattern: 2493 /// ((%x << C) a>> C) dstcond %x 2494 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2495 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2496 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2497 const SDLoc &DL) const { 2498 // We must be comparing with a constant. 2499 ConstantSDNode *C1; 2500 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2501 return SDValue(); 2502 2503 // N0 should be: add %x, (1 << (KeptBits-1)) 2504 if (N0->getOpcode() != ISD::ADD) 2505 return SDValue(); 2506 2507 // And we must be 'add'ing a constant. 2508 ConstantSDNode *C01; 2509 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2510 return SDValue(); 2511 2512 SDValue X = N0->getOperand(0); 2513 EVT XVT = X.getValueType(); 2514 2515 // Validate constants ... 2516 2517 APInt I1 = C1->getAPIntValue(); 2518 2519 ISD::CondCode NewCond; 2520 if (Cond == ISD::CondCode::SETULT) { 2521 NewCond = ISD::CondCode::SETEQ; 2522 } else if (Cond == ISD::CondCode::SETULE) { 2523 NewCond = ISD::CondCode::SETEQ; 2524 // But need to 'canonicalize' the constant. 2525 I1 += 1; 2526 } else if (Cond == ISD::CondCode::SETUGT) { 2527 NewCond = ISD::CondCode::SETNE; 2528 // But need to 'canonicalize' the constant. 2529 I1 += 1; 2530 } else if (Cond == ISD::CondCode::SETUGE) { 2531 NewCond = ISD::CondCode::SETNE; 2532 } else 2533 return SDValue(); 2534 2535 APInt I01 = C01->getAPIntValue(); 2536 2537 auto checkConstants = [&I1, &I01]() -> bool { 2538 // Both of them must be power-of-two, and the constant from setcc is bigger. 2539 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2540 }; 2541 2542 if (checkConstants()) { 2543 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2544 } else { 2545 // What if we invert constants? (and the target predicate) 2546 I1.negate(); 2547 I01.negate(); 2548 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2549 if (!checkConstants()) 2550 return SDValue(); 2551 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2552 } 2553 2554 // They are power-of-two, so which bit is set? 2555 const unsigned KeptBits = I1.logBase2(); 2556 const unsigned KeptBitsMinusOne = I01.logBase2(); 2557 2558 // Magic! 2559 if (KeptBits != (KeptBitsMinusOne + 1)) 2560 return SDValue(); 2561 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2562 2563 // We don't want to do this in every single case. 2564 SelectionDAG &DAG = DCI.DAG; 2565 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2566 XVT, KeptBits)) 2567 return SDValue(); 2568 2569 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2570 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2571 2572 // Unfold into: ((%x << C) a>> C) cond %x 2573 // Where 'cond' will be either 'eq' or 'ne'. 2574 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2575 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2576 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2577 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2578 2579 return T2; 2580 } 2581 2582 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2583 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2584 /// handle the commuted versions of these patterns. 2585 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2586 ISD::CondCode Cond, const SDLoc &DL, 2587 DAGCombinerInfo &DCI) const { 2588 unsigned BOpcode = N0.getOpcode(); 2589 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2590 "Unexpected binop"); 2591 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2592 2593 // (X + Y) == X --> Y == 0 2594 // (X - Y) == X --> Y == 0 2595 // (X ^ Y) == X --> Y == 0 2596 SelectionDAG &DAG = DCI.DAG; 2597 EVT OpVT = N0.getValueType(); 2598 SDValue X = N0.getOperand(0); 2599 SDValue Y = N0.getOperand(1); 2600 if (X == N1) 2601 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2602 2603 if (Y != N1) 2604 return SDValue(); 2605 2606 // (X + Y) == Y --> X == 0 2607 // (X ^ Y) == Y --> X == 0 2608 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2609 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2610 2611 // The shift would not be valid if the operands are boolean (i1). 2612 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2613 return SDValue(); 2614 2615 // (X - Y) == Y --> X == Y << 1 2616 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2617 !DCI.isBeforeLegalize()); 2618 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2619 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2620 if (!DCI.isCalledByLegalizer()) 2621 DCI.AddToWorklist(YShl1.getNode()); 2622 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2623 } 2624 2625 /// Try to simplify a setcc built with the specified operands and cc. If it is 2626 /// unable to simplify it, return a null SDValue. 2627 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2628 ISD::CondCode Cond, bool foldBooleans, 2629 DAGCombinerInfo &DCI, 2630 const SDLoc &dl) const { 2631 SelectionDAG &DAG = DCI.DAG; 2632 EVT OpVT = N0.getValueType(); 2633 2634 // Constant fold or commute setcc. 2635 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2636 return Fold; 2637 2638 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2639 // TODO: Handle non-splat vector constants. All undef causes trouble. 2640 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2641 if (isConstOrConstSplat(N0) && 2642 (DCI.isBeforeLegalizeOps() || 2643 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2644 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2645 2646 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2647 const APInt &C1 = N1C->getAPIntValue(); 2648 2649 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2650 // equality comparison, then we're just comparing whether X itself is 2651 // zero. 2652 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2653 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2654 N0.getOperand(1).getOpcode() == ISD::Constant) { 2655 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2656 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2657 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2658 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2659 // (srl (ctlz x), 5) == 0 -> X != 0 2660 // (srl (ctlz x), 5) != 1 -> X != 0 2661 Cond = ISD::SETNE; 2662 } else { 2663 // (srl (ctlz x), 5) != 0 -> X == 0 2664 // (srl (ctlz x), 5) == 1 -> X == 0 2665 Cond = ISD::SETEQ; 2666 } 2667 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2668 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2669 Zero, Cond); 2670 } 2671 } 2672 2673 SDValue CTPOP = N0; 2674 // Look through truncs that don't change the value of a ctpop. 2675 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2676 CTPOP = N0.getOperand(0); 2677 2678 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2679 (N0 == CTPOP || 2680 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2681 EVT CTVT = CTPOP.getValueType(); 2682 SDValue CTOp = CTPOP.getOperand(0); 2683 2684 // (ctpop x) u< 2 -> (x & x-1) == 0 2685 // (ctpop x) u> 1 -> (x & x-1) != 0 2686 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2687 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2688 DAG.getConstant(1, dl, CTVT)); 2689 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2690 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2691 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2692 } 2693 2694 // (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2695 if (Cond == ISD::SETEQ && C1 == 1 && 2696 !isOperationLegalOrCustom(ISD::CTPOP, CTVT)) { 2697 SDValue Sub = 2698 DAG.getNode(ISD::SUB, dl, CTVT, CTOp, DAG.getConstant(1, dl, CTVT)); 2699 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2700 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, DAG.getConstant(0, dl, CTVT), 2701 ISD::SETUGT); 2702 SDValue RHS = 2703 DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), ISD::SETEQ); 2704 return DAG.getNode(ISD::AND, dl, VT, LHS, RHS); 2705 } 2706 } 2707 2708 // (zext x) == C --> x == (trunc C) 2709 // (sext x) == C --> x == (trunc C) 2710 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2711 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2712 unsigned MinBits = N0.getValueSizeInBits(); 2713 SDValue PreExt; 2714 bool Signed = false; 2715 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2716 // ZExt 2717 MinBits = N0->getOperand(0).getValueSizeInBits(); 2718 PreExt = N0->getOperand(0); 2719 } else if (N0->getOpcode() == ISD::AND) { 2720 // DAGCombine turns costly ZExts into ANDs 2721 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2722 if ((C->getAPIntValue()+1).isPowerOf2()) { 2723 MinBits = C->getAPIntValue().countTrailingOnes(); 2724 PreExt = N0->getOperand(0); 2725 } 2726 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2727 // SExt 2728 MinBits = N0->getOperand(0).getValueSizeInBits(); 2729 PreExt = N0->getOperand(0); 2730 Signed = true; 2731 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2732 // ZEXTLOAD / SEXTLOAD 2733 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2734 MinBits = LN0->getMemoryVT().getSizeInBits(); 2735 PreExt = N0; 2736 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2737 Signed = true; 2738 MinBits = LN0->getMemoryVT().getSizeInBits(); 2739 PreExt = N0; 2740 } 2741 } 2742 2743 // Figure out how many bits we need to preserve this constant. 2744 unsigned ReqdBits = Signed ? 2745 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2746 C1.getActiveBits(); 2747 2748 // Make sure we're not losing bits from the constant. 2749 if (MinBits > 0 && 2750 MinBits < C1.getBitWidth() && 2751 MinBits >= ReqdBits) { 2752 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2753 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2754 // Will get folded away. 2755 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2756 if (MinBits == 1 && C1 == 1) 2757 // Invert the condition. 2758 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2759 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2760 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2761 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2762 } 2763 2764 // If truncating the setcc operands is not desirable, we can still 2765 // simplify the expression in some cases: 2766 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2767 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2768 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2769 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2770 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2771 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2772 SDValue TopSetCC = N0->getOperand(0); 2773 unsigned N0Opc = N0->getOpcode(); 2774 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2775 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2776 TopSetCC.getOpcode() == ISD::SETCC && 2777 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2778 (isConstFalseVal(N1C) || 2779 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2780 2781 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2782 (!N1C->isNullValue() && Cond == ISD::SETNE); 2783 2784 if (!Inverse) 2785 return TopSetCC; 2786 2787 ISD::CondCode InvCond = ISD::getSetCCInverse( 2788 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2789 TopSetCC.getOperand(0).getValueType().isInteger()); 2790 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2791 TopSetCC.getOperand(1), 2792 InvCond); 2793 } 2794 } 2795 } 2796 2797 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2798 // equality or unsigned, and all 1 bits of the const are in the same 2799 // partial word, see if we can shorten the load. 2800 if (DCI.isBeforeLegalize() && 2801 !ISD::isSignedIntSetCC(Cond) && 2802 N0.getOpcode() == ISD::AND && C1 == 0 && 2803 N0.getNode()->hasOneUse() && 2804 isa<LoadSDNode>(N0.getOperand(0)) && 2805 N0.getOperand(0).getNode()->hasOneUse() && 2806 isa<ConstantSDNode>(N0.getOperand(1))) { 2807 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2808 APInt bestMask; 2809 unsigned bestWidth = 0, bestOffset = 0; 2810 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2811 unsigned origWidth = N0.getValueSizeInBits(); 2812 unsigned maskWidth = origWidth; 2813 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2814 // 8 bits, but have to be careful... 2815 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2816 origWidth = Lod->getMemoryVT().getSizeInBits(); 2817 const APInt &Mask = N0.getConstantOperandAPInt(1); 2818 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2819 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2820 for (unsigned offset=0; offset<origWidth/width; offset++) { 2821 if (Mask.isSubsetOf(newMask)) { 2822 if (DAG.getDataLayout().isLittleEndian()) 2823 bestOffset = (uint64_t)offset * (width/8); 2824 else 2825 bestOffset = (origWidth/width - offset - 1) * (width/8); 2826 bestMask = Mask.lshr(offset * (width/8) * 8); 2827 bestWidth = width; 2828 break; 2829 } 2830 newMask <<= width; 2831 } 2832 } 2833 } 2834 if (bestWidth) { 2835 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2836 if (newVT.isRound() && 2837 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2838 EVT PtrType = Lod->getOperand(1).getValueType(); 2839 SDValue Ptr = Lod->getBasePtr(); 2840 if (bestOffset != 0) 2841 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2842 DAG.getConstant(bestOffset, dl, PtrType)); 2843 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2844 SDValue NewLoad = DAG.getLoad( 2845 newVT, dl, Lod->getChain(), Ptr, 2846 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2847 return DAG.getSetCC(dl, VT, 2848 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2849 DAG.getConstant(bestMask.trunc(bestWidth), 2850 dl, newVT)), 2851 DAG.getConstant(0LL, dl, newVT), Cond); 2852 } 2853 } 2854 } 2855 2856 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2857 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2858 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2859 2860 // If the comparison constant has bits in the upper part, the 2861 // zero-extended value could never match. 2862 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2863 C1.getBitWidth() - InSize))) { 2864 switch (Cond) { 2865 case ISD::SETUGT: 2866 case ISD::SETUGE: 2867 case ISD::SETEQ: 2868 return DAG.getConstant(0, dl, VT); 2869 case ISD::SETULT: 2870 case ISD::SETULE: 2871 case ISD::SETNE: 2872 return DAG.getConstant(1, dl, VT); 2873 case ISD::SETGT: 2874 case ISD::SETGE: 2875 // True if the sign bit of C1 is set. 2876 return DAG.getConstant(C1.isNegative(), dl, VT); 2877 case ISD::SETLT: 2878 case ISD::SETLE: 2879 // True if the sign bit of C1 isn't set. 2880 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2881 default: 2882 break; 2883 } 2884 } 2885 2886 // Otherwise, we can perform the comparison with the low bits. 2887 switch (Cond) { 2888 case ISD::SETEQ: 2889 case ISD::SETNE: 2890 case ISD::SETUGT: 2891 case ISD::SETUGE: 2892 case ISD::SETULT: 2893 case ISD::SETULE: { 2894 EVT newVT = N0.getOperand(0).getValueType(); 2895 if (DCI.isBeforeLegalizeOps() || 2896 (isOperationLegal(ISD::SETCC, newVT) && 2897 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2898 EVT NewSetCCVT = 2899 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2900 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2901 2902 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2903 NewConst, Cond); 2904 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2905 } 2906 break; 2907 } 2908 default: 2909 break; // todo, be more careful with signed comparisons 2910 } 2911 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2912 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2913 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2914 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2915 EVT ExtDstTy = N0.getValueType(); 2916 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2917 2918 // If the constant doesn't fit into the number of bits for the source of 2919 // the sign extension, it is impossible for both sides to be equal. 2920 if (C1.getMinSignedBits() > ExtSrcTyBits) 2921 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2922 2923 SDValue ZextOp; 2924 EVT Op0Ty = N0.getOperand(0).getValueType(); 2925 if (Op0Ty == ExtSrcTy) { 2926 ZextOp = N0.getOperand(0); 2927 } else { 2928 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2929 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2930 DAG.getConstant(Imm, dl, Op0Ty)); 2931 } 2932 if (!DCI.isCalledByLegalizer()) 2933 DCI.AddToWorklist(ZextOp.getNode()); 2934 // Otherwise, make this a use of a zext. 2935 return DAG.getSetCC(dl, VT, ZextOp, 2936 DAG.getConstant(C1 & APInt::getLowBitsSet( 2937 ExtDstTyBits, 2938 ExtSrcTyBits), 2939 dl, ExtDstTy), 2940 Cond); 2941 } else if ((N1C->isNullValue() || N1C->isOne()) && 2942 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2943 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2944 if (N0.getOpcode() == ISD::SETCC && 2945 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2946 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2947 if (TrueWhenTrue) 2948 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2949 // Invert the condition. 2950 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2951 CC = ISD::getSetCCInverse(CC, 2952 N0.getOperand(0).getValueType().isInteger()); 2953 if (DCI.isBeforeLegalizeOps() || 2954 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2955 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2956 } 2957 2958 if ((N0.getOpcode() == ISD::XOR || 2959 (N0.getOpcode() == ISD::AND && 2960 N0.getOperand(0).getOpcode() == ISD::XOR && 2961 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2962 isa<ConstantSDNode>(N0.getOperand(1)) && 2963 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2964 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2965 // can only do this if the top bits are known zero. 2966 unsigned BitWidth = N0.getValueSizeInBits(); 2967 if (DAG.MaskedValueIsZero(N0, 2968 APInt::getHighBitsSet(BitWidth, 2969 BitWidth-1))) { 2970 // Okay, get the un-inverted input value. 2971 SDValue Val; 2972 if (N0.getOpcode() == ISD::XOR) { 2973 Val = N0.getOperand(0); 2974 } else { 2975 assert(N0.getOpcode() == ISD::AND && 2976 N0.getOperand(0).getOpcode() == ISD::XOR); 2977 // ((X^1)&1)^1 -> X & 1 2978 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2979 N0.getOperand(0).getOperand(0), 2980 N0.getOperand(1)); 2981 } 2982 2983 return DAG.getSetCC(dl, VT, Val, N1, 2984 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2985 } 2986 } else if (N1C->isOne() && 2987 (VT == MVT::i1 || 2988 getBooleanContents(N0->getValueType(0)) == 2989 ZeroOrOneBooleanContent)) { 2990 SDValue Op0 = N0; 2991 if (Op0.getOpcode() == ISD::TRUNCATE) 2992 Op0 = Op0.getOperand(0); 2993 2994 if ((Op0.getOpcode() == ISD::XOR) && 2995 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2996 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2997 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2998 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2999 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 3000 Cond); 3001 } 3002 if (Op0.getOpcode() == ISD::AND && 3003 isa<ConstantSDNode>(Op0.getOperand(1)) && 3004 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3005 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3006 if (Op0.getValueType().bitsGT(VT)) 3007 Op0 = DAG.getNode(ISD::AND, dl, VT, 3008 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3009 DAG.getConstant(1, dl, VT)); 3010 else if (Op0.getValueType().bitsLT(VT)) 3011 Op0 = DAG.getNode(ISD::AND, dl, VT, 3012 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3013 DAG.getConstant(1, dl, VT)); 3014 3015 return DAG.getSetCC(dl, VT, Op0, 3016 DAG.getConstant(0, dl, Op0.getValueType()), 3017 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3018 } 3019 if (Op0.getOpcode() == ISD::AssertZext && 3020 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3021 return DAG.getSetCC(dl, VT, Op0, 3022 DAG.getConstant(0, dl, Op0.getValueType()), 3023 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3024 } 3025 } 3026 3027 if (SDValue V = 3028 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3029 return V; 3030 } 3031 3032 // These simplifications apply to splat vectors as well. 3033 // TODO: Handle more splat vector cases. 3034 if (auto *N1C = isConstOrConstSplat(N1)) { 3035 const APInt &C1 = N1C->getAPIntValue(); 3036 3037 APInt MinVal, MaxVal; 3038 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3039 if (ISD::isSignedIntSetCC(Cond)) { 3040 MinVal = APInt::getSignedMinValue(OperandBitSize); 3041 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3042 } else { 3043 MinVal = APInt::getMinValue(OperandBitSize); 3044 MaxVal = APInt::getMaxValue(OperandBitSize); 3045 } 3046 3047 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3048 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3049 // X >= MIN --> true 3050 if (C1 == MinVal) 3051 return DAG.getBoolConstant(true, dl, VT, OpVT); 3052 3053 if (!VT.isVector()) { // TODO: Support this for vectors. 3054 // X >= C0 --> X > (C0 - 1) 3055 APInt C = C1 - 1; 3056 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3057 if ((DCI.isBeforeLegalizeOps() || 3058 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3059 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3060 isLegalICmpImmediate(C.getSExtValue())))) { 3061 return DAG.getSetCC(dl, VT, N0, 3062 DAG.getConstant(C, dl, N1.getValueType()), 3063 NewCC); 3064 } 3065 } 3066 } 3067 3068 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3069 // X <= MAX --> true 3070 if (C1 == MaxVal) 3071 return DAG.getBoolConstant(true, dl, VT, OpVT); 3072 3073 // X <= C0 --> X < (C0 + 1) 3074 if (!VT.isVector()) { // TODO: Support this for vectors. 3075 APInt C = C1 + 1; 3076 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3077 if ((DCI.isBeforeLegalizeOps() || 3078 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3079 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3080 isLegalICmpImmediate(C.getSExtValue())))) { 3081 return DAG.getSetCC(dl, VT, N0, 3082 DAG.getConstant(C, dl, N1.getValueType()), 3083 NewCC); 3084 } 3085 } 3086 } 3087 3088 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3089 if (C1 == MinVal) 3090 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3091 3092 // TODO: Support this for vectors after legalize ops. 3093 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3094 // Canonicalize setlt X, Max --> setne X, Max 3095 if (C1 == MaxVal) 3096 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3097 3098 // If we have setult X, 1, turn it into seteq X, 0 3099 if (C1 == MinVal+1) 3100 return DAG.getSetCC(dl, VT, N0, 3101 DAG.getConstant(MinVal, dl, N0.getValueType()), 3102 ISD::SETEQ); 3103 } 3104 } 3105 3106 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3107 if (C1 == MaxVal) 3108 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3109 3110 // TODO: Support this for vectors after legalize ops. 3111 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3112 // Canonicalize setgt X, Min --> setne X, Min 3113 if (C1 == MinVal) 3114 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3115 3116 // If we have setugt X, Max-1, turn it into seteq X, Max 3117 if (C1 == MaxVal-1) 3118 return DAG.getSetCC(dl, VT, N0, 3119 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3120 ISD::SETEQ); 3121 } 3122 } 3123 3124 // If we have "setcc X, C0", check to see if we can shrink the immediate 3125 // by changing cc. 3126 // TODO: Support this for vectors after legalize ops. 3127 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3128 // SETUGT X, SINTMAX -> SETLT X, 0 3129 if (Cond == ISD::SETUGT && 3130 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3131 return DAG.getSetCC(dl, VT, N0, 3132 DAG.getConstant(0, dl, N1.getValueType()), 3133 ISD::SETLT); 3134 3135 // SETULT X, SINTMIN -> SETGT X, -1 3136 if (Cond == ISD::SETULT && 3137 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3138 SDValue ConstMinusOne = 3139 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3140 N1.getValueType()); 3141 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3142 } 3143 } 3144 } 3145 3146 // Back to non-vector simplifications. 3147 // TODO: Can we do these for vector splats? 3148 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3149 const APInt &C1 = N1C->getAPIntValue(); 3150 3151 // Fold bit comparisons when we can. 3152 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3153 (VT == N0.getValueType() || 3154 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 3155 N0.getOpcode() == ISD::AND) { 3156 auto &DL = DAG.getDataLayout(); 3157 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3158 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3159 !DCI.isBeforeLegalize()); 3160 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3161 // Perform the xform if the AND RHS is a single bit. 3162 if (AndRHS->getAPIntValue().isPowerOf2()) { 3163 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3164 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3165 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3166 ShiftTy))); 3167 } 3168 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3169 // (X & 8) == 8 --> (X & 8) >> 3 3170 // Perform the xform if C1 is a single bit. 3171 if (C1.isPowerOf2()) { 3172 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3173 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3174 DAG.getConstant(C1.logBase2(), dl, 3175 ShiftTy))); 3176 } 3177 } 3178 } 3179 } 3180 3181 if (C1.getMinSignedBits() <= 64 && 3182 !isLegalICmpImmediate(C1.getSExtValue())) { 3183 // (X & -256) == 256 -> (X >> 8) == 1 3184 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3185 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3186 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3187 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3188 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3189 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3190 auto &DL = DAG.getDataLayout(); 3191 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3192 !DCI.isBeforeLegalize()); 3193 EVT CmpTy = N0.getValueType(); 3194 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3195 DAG.getConstant(ShiftBits, dl, 3196 ShiftTy)); 3197 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3198 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3199 } 3200 } 3201 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3202 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3203 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3204 // X < 0x100000000 -> (X >> 32) < 1 3205 // X >= 0x100000000 -> (X >> 32) >= 1 3206 // X <= 0x0ffffffff -> (X >> 32) < 1 3207 // X > 0x0ffffffff -> (X >> 32) >= 1 3208 unsigned ShiftBits; 3209 APInt NewC = C1; 3210 ISD::CondCode NewCond = Cond; 3211 if (AdjOne) { 3212 ShiftBits = C1.countTrailingOnes(); 3213 NewC = NewC + 1; 3214 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3215 } else { 3216 ShiftBits = C1.countTrailingZeros(); 3217 } 3218 NewC.lshrInPlace(ShiftBits); 3219 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3220 isLegalICmpImmediate(NewC.getSExtValue())) { 3221 auto &DL = DAG.getDataLayout(); 3222 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3223 !DCI.isBeforeLegalize()); 3224 EVT CmpTy = N0.getValueType(); 3225 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3226 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3227 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3228 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3229 } 3230 } 3231 } 3232 } 3233 3234 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3235 auto *CFP = cast<ConstantFPSDNode>(N1); 3236 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3237 3238 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3239 // constant if knowing that the operand is non-nan is enough. We prefer to 3240 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3241 // materialize 0.0. 3242 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3243 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3244 3245 // setcc (fneg x), C -> setcc swap(pred) x, -C 3246 if (N0.getOpcode() == ISD::FNEG) { 3247 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3248 if (DCI.isBeforeLegalizeOps() || 3249 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3250 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3251 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3252 } 3253 } 3254 3255 // If the condition is not legal, see if we can find an equivalent one 3256 // which is legal. 3257 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3258 // If the comparison was an awkward floating-point == or != and one of 3259 // the comparison operands is infinity or negative infinity, convert the 3260 // condition to a less-awkward <= or >=. 3261 if (CFP->getValueAPF().isInfinity()) { 3262 if (CFP->getValueAPF().isNegative()) { 3263 if (Cond == ISD::SETOEQ && 3264 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3265 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3266 if (Cond == ISD::SETUEQ && 3267 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3268 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3269 if (Cond == ISD::SETUNE && 3270 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3271 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3272 if (Cond == ISD::SETONE && 3273 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3274 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3275 } else { 3276 if (Cond == ISD::SETOEQ && 3277 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3278 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3279 if (Cond == ISD::SETUEQ && 3280 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3281 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3282 if (Cond == ISD::SETUNE && 3283 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3284 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3285 if (Cond == ISD::SETONE && 3286 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3287 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3288 } 3289 } 3290 } 3291 } 3292 3293 if (N0 == N1) { 3294 // The sext(setcc()) => setcc() optimization relies on the appropriate 3295 // constant being emitted. 3296 assert(!N0.getValueType().isInteger() && 3297 "Integer types should be handled by FoldSetCC"); 3298 3299 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3300 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3301 if (UOF == 2) // FP operators that are undefined on NaNs. 3302 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3303 if (UOF == unsigned(EqTrue)) 3304 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3305 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3306 // if it is not already. 3307 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3308 if (NewCond != Cond && 3309 (DCI.isBeforeLegalizeOps() || 3310 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3311 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3312 } 3313 3314 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3315 N0.getValueType().isInteger()) { 3316 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3317 N0.getOpcode() == ISD::XOR) { 3318 // Simplify (X+Y) == (X+Z) --> Y == Z 3319 if (N0.getOpcode() == N1.getOpcode()) { 3320 if (N0.getOperand(0) == N1.getOperand(0)) 3321 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3322 if (N0.getOperand(1) == N1.getOperand(1)) 3323 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3324 if (isCommutativeBinOp(N0.getOpcode())) { 3325 // If X op Y == Y op X, try other combinations. 3326 if (N0.getOperand(0) == N1.getOperand(1)) 3327 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3328 Cond); 3329 if (N0.getOperand(1) == N1.getOperand(0)) 3330 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3331 Cond); 3332 } 3333 } 3334 3335 // If RHS is a legal immediate value for a compare instruction, we need 3336 // to be careful about increasing register pressure needlessly. 3337 bool LegalRHSImm = false; 3338 3339 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3340 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3341 // Turn (X+C1) == C2 --> X == C2-C1 3342 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3343 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3344 DAG.getConstant(RHSC->getAPIntValue()- 3345 LHSR->getAPIntValue(), 3346 dl, N0.getValueType()), Cond); 3347 } 3348 3349 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3350 if (N0.getOpcode() == ISD::XOR) 3351 // If we know that all of the inverted bits are zero, don't bother 3352 // performing the inversion. 3353 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3354 return 3355 DAG.getSetCC(dl, VT, N0.getOperand(0), 3356 DAG.getConstant(LHSR->getAPIntValue() ^ 3357 RHSC->getAPIntValue(), 3358 dl, N0.getValueType()), 3359 Cond); 3360 } 3361 3362 // Turn (C1-X) == C2 --> X == C1-C2 3363 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3364 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3365 return 3366 DAG.getSetCC(dl, VT, N0.getOperand(1), 3367 DAG.getConstant(SUBC->getAPIntValue() - 3368 RHSC->getAPIntValue(), 3369 dl, N0.getValueType()), 3370 Cond); 3371 } 3372 } 3373 3374 // Could RHSC fold directly into a compare? 3375 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3376 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3377 } 3378 3379 // (X+Y) == X --> Y == 0 and similar folds. 3380 // Don't do this if X is an immediate that can fold into a cmp 3381 // instruction and X+Y has other uses. It could be an induction variable 3382 // chain, and the transform would increase register pressure. 3383 if (!LegalRHSImm || N0.hasOneUse()) 3384 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3385 return V; 3386 } 3387 3388 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3389 N1.getOpcode() == ISD::XOR) 3390 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3391 return V; 3392 3393 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3394 return V; 3395 } 3396 3397 // Fold away ALL boolean setcc's. 3398 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3399 SDValue Temp; 3400 switch (Cond) { 3401 default: llvm_unreachable("Unknown integer setcc!"); 3402 case ISD::SETEQ: // X == Y -> ~(X^Y) 3403 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3404 N0 = DAG.getNOT(dl, Temp, OpVT); 3405 if (!DCI.isCalledByLegalizer()) 3406 DCI.AddToWorklist(Temp.getNode()); 3407 break; 3408 case ISD::SETNE: // X != Y --> (X^Y) 3409 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3410 break; 3411 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3412 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3413 Temp = DAG.getNOT(dl, N0, OpVT); 3414 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3415 if (!DCI.isCalledByLegalizer()) 3416 DCI.AddToWorklist(Temp.getNode()); 3417 break; 3418 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3419 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3420 Temp = DAG.getNOT(dl, N1, OpVT); 3421 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3422 if (!DCI.isCalledByLegalizer()) 3423 DCI.AddToWorklist(Temp.getNode()); 3424 break; 3425 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3426 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3427 Temp = DAG.getNOT(dl, N0, OpVT); 3428 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3429 if (!DCI.isCalledByLegalizer()) 3430 DCI.AddToWorklist(Temp.getNode()); 3431 break; 3432 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3433 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3434 Temp = DAG.getNOT(dl, N1, OpVT); 3435 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3436 break; 3437 } 3438 if (VT.getScalarType() != MVT::i1) { 3439 if (!DCI.isCalledByLegalizer()) 3440 DCI.AddToWorklist(N0.getNode()); 3441 // FIXME: If running after legalize, we probably can't do this. 3442 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3443 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3444 } 3445 return N0; 3446 } 3447 3448 // Could not fold it. 3449 return SDValue(); 3450 } 3451 3452 /// Returns true (and the GlobalValue and the offset) if the node is a 3453 /// GlobalAddress + offset. 3454 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3455 int64_t &Offset) const { 3456 3457 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3458 3459 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3460 GA = GASD->getGlobal(); 3461 Offset += GASD->getOffset(); 3462 return true; 3463 } 3464 3465 if (N->getOpcode() == ISD::ADD) { 3466 SDValue N1 = N->getOperand(0); 3467 SDValue N2 = N->getOperand(1); 3468 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3469 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3470 Offset += V->getSExtValue(); 3471 return true; 3472 } 3473 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3474 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3475 Offset += V->getSExtValue(); 3476 return true; 3477 } 3478 } 3479 } 3480 3481 return false; 3482 } 3483 3484 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3485 DAGCombinerInfo &DCI) const { 3486 // Default implementation: no optimization. 3487 return SDValue(); 3488 } 3489 3490 //===----------------------------------------------------------------------===// 3491 // Inline Assembler Implementation Methods 3492 //===----------------------------------------------------------------------===// 3493 3494 TargetLowering::ConstraintType 3495 TargetLowering::getConstraintType(StringRef Constraint) const { 3496 unsigned S = Constraint.size(); 3497 3498 if (S == 1) { 3499 switch (Constraint[0]) { 3500 default: break; 3501 case 'r': return C_RegisterClass; 3502 case 'm': // memory 3503 case 'o': // offsetable 3504 case 'V': // not offsetable 3505 return C_Memory; 3506 case 'i': // Simple Integer or Relocatable Constant 3507 case 'n': // Simple Integer 3508 case 'E': // Floating Point Constant 3509 case 'F': // Floating Point Constant 3510 case 's': // Relocatable Constant 3511 case 'p': // Address. 3512 case 'X': // Allow ANY value. 3513 case 'I': // Target registers. 3514 case 'J': 3515 case 'K': 3516 case 'L': 3517 case 'M': 3518 case 'N': 3519 case 'O': 3520 case 'P': 3521 case '<': 3522 case '>': 3523 return C_Other; 3524 } 3525 } 3526 3527 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3528 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3529 return C_Memory; 3530 return C_Register; 3531 } 3532 return C_Unknown; 3533 } 3534 3535 /// Try to replace an X constraint, which matches anything, with another that 3536 /// has more specific requirements based on the type of the corresponding 3537 /// operand. 3538 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3539 if (ConstraintVT.isInteger()) 3540 return "r"; 3541 if (ConstraintVT.isFloatingPoint()) 3542 return "f"; // works for many targets 3543 return nullptr; 3544 } 3545 3546 SDValue TargetLowering::LowerAsmOutputForConstraint( 3547 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3548 SelectionDAG &DAG) const { 3549 return SDValue(); 3550 } 3551 3552 /// Lower the specified operand into the Ops vector. 3553 /// If it is invalid, don't add anything to Ops. 3554 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3555 std::string &Constraint, 3556 std::vector<SDValue> &Ops, 3557 SelectionDAG &DAG) const { 3558 3559 if (Constraint.length() > 1) return; 3560 3561 char ConstraintLetter = Constraint[0]; 3562 switch (ConstraintLetter) { 3563 default: break; 3564 case 'X': // Allows any operand; labels (basic block) use this. 3565 if (Op.getOpcode() == ISD::BasicBlock || 3566 Op.getOpcode() == ISD::TargetBlockAddress) { 3567 Ops.push_back(Op); 3568 return; 3569 } 3570 LLVM_FALLTHROUGH; 3571 case 'i': // Simple Integer or Relocatable Constant 3572 case 'n': // Simple Integer 3573 case 's': { // Relocatable Constant 3574 3575 GlobalAddressSDNode *GA; 3576 ConstantSDNode *C; 3577 uint64_t Offset = 0; 3578 3579 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 3580 // etc., since getelementpointer is variadic. We can't use 3581 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 3582 // while in this case the GA may be furthest from the root node which is 3583 // likely an ISD::ADD. 3584 while (1) { 3585 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 3586 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 3587 GA->getValueType(0), 3588 Offset + GA->getOffset())); 3589 return; 3590 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 3591 ConstraintLetter != 's') { 3592 // gcc prints these as sign extended. Sign extend value to 64 bits 3593 // now; without this it would get ZExt'd later in 3594 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3595 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 3596 BooleanContent BCont = getBooleanContents(MVT::i64); 3597 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 3598 : ISD::SIGN_EXTEND; 3599 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 3600 : C->getSExtValue(); 3601 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 3602 SDLoc(C), MVT::i64)); 3603 return; 3604 } else { 3605 const unsigned OpCode = Op.getOpcode(); 3606 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 3607 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 3608 Op = Op.getOperand(1); 3609 // Subtraction is not commutative. 3610 else if (OpCode == ISD::ADD && 3611 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 3612 Op = Op.getOperand(0); 3613 else 3614 return; 3615 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 3616 continue; 3617 } 3618 } 3619 return; 3620 } 3621 break; 3622 } 3623 } 3624 } 3625 3626 std::pair<unsigned, const TargetRegisterClass *> 3627 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3628 StringRef Constraint, 3629 MVT VT) const { 3630 if (Constraint.empty() || Constraint[0] != '{') 3631 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3632 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3633 3634 // Remove the braces from around the name. 3635 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3636 3637 std::pair<unsigned, const TargetRegisterClass *> R = 3638 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3639 3640 // Figure out which register class contains this reg. 3641 for (const TargetRegisterClass *RC : RI->regclasses()) { 3642 // If none of the value types for this register class are valid, we 3643 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3644 if (!isLegalRC(*RI, *RC)) 3645 continue; 3646 3647 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3648 I != E; ++I) { 3649 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3650 std::pair<unsigned, const TargetRegisterClass *> S = 3651 std::make_pair(*I, RC); 3652 3653 // If this register class has the requested value type, return it, 3654 // otherwise keep searching and return the first class found 3655 // if no other is found which explicitly has the requested type. 3656 if (RI->isTypeLegalForClass(*RC, VT)) 3657 return S; 3658 if (!R.second) 3659 R = S; 3660 } 3661 } 3662 } 3663 3664 return R; 3665 } 3666 3667 //===----------------------------------------------------------------------===// 3668 // Constraint Selection. 3669 3670 /// Return true of this is an input operand that is a matching constraint like 3671 /// "4". 3672 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3673 assert(!ConstraintCode.empty() && "No known constraint!"); 3674 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3675 } 3676 3677 /// If this is an input matching constraint, this method returns the output 3678 /// operand it matches. 3679 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3680 assert(!ConstraintCode.empty() && "No known constraint!"); 3681 return atoi(ConstraintCode.c_str()); 3682 } 3683 3684 /// Split up the constraint string from the inline assembly value into the 3685 /// specific constraints and their prefixes, and also tie in the associated 3686 /// operand values. 3687 /// If this returns an empty vector, and if the constraint string itself 3688 /// isn't empty, there was an error parsing. 3689 TargetLowering::AsmOperandInfoVector 3690 TargetLowering::ParseConstraints(const DataLayout &DL, 3691 const TargetRegisterInfo *TRI, 3692 ImmutableCallSite CS) const { 3693 /// Information about all of the constraints. 3694 AsmOperandInfoVector ConstraintOperands; 3695 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3696 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3697 3698 // Do a prepass over the constraints, canonicalizing them, and building up the 3699 // ConstraintOperands list. 3700 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3701 unsigned ResNo = 0; // ResNo - The result number of the next output. 3702 3703 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3704 ConstraintOperands.emplace_back(std::move(CI)); 3705 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3706 3707 // Update multiple alternative constraint count. 3708 if (OpInfo.multipleAlternatives.size() > maCount) 3709 maCount = OpInfo.multipleAlternatives.size(); 3710 3711 OpInfo.ConstraintVT = MVT::Other; 3712 3713 // Compute the value type for each operand. 3714 switch (OpInfo.Type) { 3715 case InlineAsm::isOutput: 3716 // Indirect outputs just consume an argument. 3717 if (OpInfo.isIndirect) { 3718 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3719 break; 3720 } 3721 3722 // The return value of the call is this value. As such, there is no 3723 // corresponding argument. 3724 assert(!CS.getType()->isVoidTy() && 3725 "Bad inline asm!"); 3726 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3727 OpInfo.ConstraintVT = 3728 getSimpleValueType(DL, STy->getElementType(ResNo)); 3729 } else { 3730 assert(ResNo == 0 && "Asm only has one result!"); 3731 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3732 } 3733 ++ResNo; 3734 break; 3735 case InlineAsm::isInput: 3736 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3737 break; 3738 case InlineAsm::isClobber: 3739 // Nothing to do. 3740 break; 3741 } 3742 3743 if (OpInfo.CallOperandVal) { 3744 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3745 if (OpInfo.isIndirect) { 3746 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3747 if (!PtrTy) 3748 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3749 OpTy = PtrTy->getElementType(); 3750 } 3751 3752 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3753 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3754 if (STy->getNumElements() == 1) 3755 OpTy = STy->getElementType(0); 3756 3757 // If OpTy is not a single value, it may be a struct/union that we 3758 // can tile with integers. 3759 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3760 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3761 switch (BitSize) { 3762 default: break; 3763 case 1: 3764 case 8: 3765 case 16: 3766 case 32: 3767 case 64: 3768 case 128: 3769 OpInfo.ConstraintVT = 3770 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3771 break; 3772 } 3773 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3774 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3775 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3776 } else { 3777 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3778 } 3779 } 3780 } 3781 3782 // If we have multiple alternative constraints, select the best alternative. 3783 if (!ConstraintOperands.empty()) { 3784 if (maCount) { 3785 unsigned bestMAIndex = 0; 3786 int bestWeight = -1; 3787 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3788 int weight = -1; 3789 unsigned maIndex; 3790 // Compute the sums of the weights for each alternative, keeping track 3791 // of the best (highest weight) one so far. 3792 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3793 int weightSum = 0; 3794 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3795 cIndex != eIndex; ++cIndex) { 3796 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3797 if (OpInfo.Type == InlineAsm::isClobber) 3798 continue; 3799 3800 // If this is an output operand with a matching input operand, 3801 // look up the matching input. If their types mismatch, e.g. one 3802 // is an integer, the other is floating point, or their sizes are 3803 // different, flag it as an maCantMatch. 3804 if (OpInfo.hasMatchingInput()) { 3805 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3806 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3807 if ((OpInfo.ConstraintVT.isInteger() != 3808 Input.ConstraintVT.isInteger()) || 3809 (OpInfo.ConstraintVT.getSizeInBits() != 3810 Input.ConstraintVT.getSizeInBits())) { 3811 weightSum = -1; // Can't match. 3812 break; 3813 } 3814 } 3815 } 3816 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3817 if (weight == -1) { 3818 weightSum = -1; 3819 break; 3820 } 3821 weightSum += weight; 3822 } 3823 // Update best. 3824 if (weightSum > bestWeight) { 3825 bestWeight = weightSum; 3826 bestMAIndex = maIndex; 3827 } 3828 } 3829 3830 // Now select chosen alternative in each constraint. 3831 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3832 cIndex != eIndex; ++cIndex) { 3833 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3834 if (cInfo.Type == InlineAsm::isClobber) 3835 continue; 3836 cInfo.selectAlternative(bestMAIndex); 3837 } 3838 } 3839 } 3840 3841 // Check and hook up tied operands, choose constraint code to use. 3842 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3843 cIndex != eIndex; ++cIndex) { 3844 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3845 3846 // If this is an output operand with a matching input operand, look up the 3847 // matching input. If their types mismatch, e.g. one is an integer, the 3848 // other is floating point, or their sizes are different, flag it as an 3849 // error. 3850 if (OpInfo.hasMatchingInput()) { 3851 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3852 3853 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3854 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3855 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3856 OpInfo.ConstraintVT); 3857 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3858 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3859 Input.ConstraintVT); 3860 if ((OpInfo.ConstraintVT.isInteger() != 3861 Input.ConstraintVT.isInteger()) || 3862 (MatchRC.second != InputRC.second)) { 3863 report_fatal_error("Unsupported asm: input constraint" 3864 " with a matching output constraint of" 3865 " incompatible type!"); 3866 } 3867 } 3868 } 3869 } 3870 3871 return ConstraintOperands; 3872 } 3873 3874 /// Return an integer indicating how general CT is. 3875 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3876 switch (CT) { 3877 case TargetLowering::C_Other: 3878 case TargetLowering::C_Unknown: 3879 return 0; 3880 case TargetLowering::C_Register: 3881 return 1; 3882 case TargetLowering::C_RegisterClass: 3883 return 2; 3884 case TargetLowering::C_Memory: 3885 return 3; 3886 } 3887 llvm_unreachable("Invalid constraint type"); 3888 } 3889 3890 /// Examine constraint type and operand type and determine a weight value. 3891 /// This object must already have been set up with the operand type 3892 /// and the current alternative constraint selected. 3893 TargetLowering::ConstraintWeight 3894 TargetLowering::getMultipleConstraintMatchWeight( 3895 AsmOperandInfo &info, int maIndex) const { 3896 InlineAsm::ConstraintCodeVector *rCodes; 3897 if (maIndex >= (int)info.multipleAlternatives.size()) 3898 rCodes = &info.Codes; 3899 else 3900 rCodes = &info.multipleAlternatives[maIndex].Codes; 3901 ConstraintWeight BestWeight = CW_Invalid; 3902 3903 // Loop over the options, keeping track of the most general one. 3904 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3905 ConstraintWeight weight = 3906 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3907 if (weight > BestWeight) 3908 BestWeight = weight; 3909 } 3910 3911 return BestWeight; 3912 } 3913 3914 /// Examine constraint type and operand type and determine a weight value. 3915 /// This object must already have been set up with the operand type 3916 /// and the current alternative constraint selected. 3917 TargetLowering::ConstraintWeight 3918 TargetLowering::getSingleConstraintMatchWeight( 3919 AsmOperandInfo &info, const char *constraint) const { 3920 ConstraintWeight weight = CW_Invalid; 3921 Value *CallOperandVal = info.CallOperandVal; 3922 // If we don't have a value, we can't do a match, 3923 // but allow it at the lowest weight. 3924 if (!CallOperandVal) 3925 return CW_Default; 3926 // Look at the constraint type. 3927 switch (*constraint) { 3928 case 'i': // immediate integer. 3929 case 'n': // immediate integer with a known value. 3930 if (isa<ConstantInt>(CallOperandVal)) 3931 weight = CW_Constant; 3932 break; 3933 case 's': // non-explicit intregal immediate. 3934 if (isa<GlobalValue>(CallOperandVal)) 3935 weight = CW_Constant; 3936 break; 3937 case 'E': // immediate float if host format. 3938 case 'F': // immediate float. 3939 if (isa<ConstantFP>(CallOperandVal)) 3940 weight = CW_Constant; 3941 break; 3942 case '<': // memory operand with autodecrement. 3943 case '>': // memory operand with autoincrement. 3944 case 'm': // memory operand. 3945 case 'o': // offsettable memory operand 3946 case 'V': // non-offsettable memory operand 3947 weight = CW_Memory; 3948 break; 3949 case 'r': // general register. 3950 case 'g': // general register, memory operand or immediate integer. 3951 // note: Clang converts "g" to "imr". 3952 if (CallOperandVal->getType()->isIntegerTy()) 3953 weight = CW_Register; 3954 break; 3955 case 'X': // any operand. 3956 default: 3957 weight = CW_Default; 3958 break; 3959 } 3960 return weight; 3961 } 3962 3963 /// If there are multiple different constraints that we could pick for this 3964 /// operand (e.g. "imr") try to pick the 'best' one. 3965 /// This is somewhat tricky: constraints fall into four classes: 3966 /// Other -> immediates and magic values 3967 /// Register -> one specific register 3968 /// RegisterClass -> a group of regs 3969 /// Memory -> memory 3970 /// Ideally, we would pick the most specific constraint possible: if we have 3971 /// something that fits into a register, we would pick it. The problem here 3972 /// is that if we have something that could either be in a register or in 3973 /// memory that use of the register could cause selection of *other* 3974 /// operands to fail: they might only succeed if we pick memory. Because of 3975 /// this the heuristic we use is: 3976 /// 3977 /// 1) If there is an 'other' constraint, and if the operand is valid for 3978 /// that constraint, use it. This makes us take advantage of 'i' 3979 /// constraints when available. 3980 /// 2) Otherwise, pick the most general constraint present. This prefers 3981 /// 'm' over 'r', for example. 3982 /// 3983 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3984 const TargetLowering &TLI, 3985 SDValue Op, SelectionDAG *DAG) { 3986 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3987 unsigned BestIdx = 0; 3988 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3989 int BestGenerality = -1; 3990 3991 // Loop over the options, keeping track of the most general one. 3992 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3993 TargetLowering::ConstraintType CType = 3994 TLI.getConstraintType(OpInfo.Codes[i]); 3995 3996 // If this is an 'other' constraint, see if the operand is valid for it. 3997 // For example, on X86 we might have an 'rI' constraint. If the operand 3998 // is an integer in the range [0..31] we want to use I (saving a load 3999 // of a register), otherwise we must use 'r'. 4000 if (CType == TargetLowering::C_Other && Op.getNode()) { 4001 assert(OpInfo.Codes[i].size() == 1 && 4002 "Unhandled multi-letter 'other' constraint"); 4003 std::vector<SDValue> ResultOps; 4004 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4005 ResultOps, *DAG); 4006 if (!ResultOps.empty()) { 4007 BestType = CType; 4008 BestIdx = i; 4009 break; 4010 } 4011 } 4012 4013 // Things with matching constraints can only be registers, per gcc 4014 // documentation. This mainly affects "g" constraints. 4015 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4016 continue; 4017 4018 // This constraint letter is more general than the previous one, use it. 4019 int Generality = getConstraintGenerality(CType); 4020 if (Generality > BestGenerality) { 4021 BestType = CType; 4022 BestIdx = i; 4023 BestGenerality = Generality; 4024 } 4025 } 4026 4027 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4028 OpInfo.ConstraintType = BestType; 4029 } 4030 4031 /// Determines the constraint code and constraint type to use for the specific 4032 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4033 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4034 SDValue Op, 4035 SelectionDAG *DAG) const { 4036 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4037 4038 // Single-letter constraints ('r') are very common. 4039 if (OpInfo.Codes.size() == 1) { 4040 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4041 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4042 } else { 4043 ChooseConstraint(OpInfo, *this, Op, DAG); 4044 } 4045 4046 // 'X' matches anything. 4047 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4048 // Labels and constants are handled elsewhere ('X' is the only thing 4049 // that matches labels). For Functions, the type here is the type of 4050 // the result, which is not what we want to look at; leave them alone. 4051 Value *v = OpInfo.CallOperandVal; 4052 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4053 OpInfo.CallOperandVal = v; 4054 return; 4055 } 4056 4057 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4058 return; 4059 4060 // Otherwise, try to resolve it to something we know about by looking at 4061 // the actual operand type. 4062 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4063 OpInfo.ConstraintCode = Repl; 4064 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4065 } 4066 } 4067 } 4068 4069 /// Given an exact SDIV by a constant, create a multiplication 4070 /// with the multiplicative inverse of the constant. 4071 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4072 const SDLoc &dl, SelectionDAG &DAG, 4073 SmallVectorImpl<SDNode *> &Created) { 4074 SDValue Op0 = N->getOperand(0); 4075 SDValue Op1 = N->getOperand(1); 4076 EVT VT = N->getValueType(0); 4077 EVT SVT = VT.getScalarType(); 4078 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4079 EVT ShSVT = ShVT.getScalarType(); 4080 4081 bool UseSRA = false; 4082 SmallVector<SDValue, 16> Shifts, Factors; 4083 4084 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4085 if (C->isNullValue()) 4086 return false; 4087 APInt Divisor = C->getAPIntValue(); 4088 unsigned Shift = Divisor.countTrailingZeros(); 4089 if (Shift) { 4090 Divisor.ashrInPlace(Shift); 4091 UseSRA = true; 4092 } 4093 // Calculate the multiplicative inverse, using Newton's method. 4094 APInt t; 4095 APInt Factor = Divisor; 4096 while ((t = Divisor * Factor) != 1) 4097 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4098 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4099 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4100 return true; 4101 }; 4102 4103 // Collect all magic values from the build vector. 4104 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4105 return SDValue(); 4106 4107 SDValue Shift, Factor; 4108 if (VT.isVector()) { 4109 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4110 Factor = DAG.getBuildVector(VT, dl, Factors); 4111 } else { 4112 Shift = Shifts[0]; 4113 Factor = Factors[0]; 4114 } 4115 4116 SDValue Res = Op0; 4117 4118 // Shift the value upfront if it is even, so the LSB is one. 4119 if (UseSRA) { 4120 // TODO: For UDIV use SRL instead of SRA. 4121 SDNodeFlags Flags; 4122 Flags.setExact(true); 4123 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4124 Created.push_back(Res.getNode()); 4125 } 4126 4127 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4128 } 4129 4130 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4131 SelectionDAG &DAG, 4132 SmallVectorImpl<SDNode *> &Created) const { 4133 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4135 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4136 return SDValue(N, 0); // Lower SDIV as SDIV 4137 return SDValue(); 4138 } 4139 4140 /// Given an ISD::SDIV node expressing a divide by constant, 4141 /// return a DAG expression to select that will generate the same value by 4142 /// multiplying by a magic number. 4143 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4144 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4145 bool IsAfterLegalization, 4146 SmallVectorImpl<SDNode *> &Created) const { 4147 SDLoc dl(N); 4148 EVT VT = N->getValueType(0); 4149 EVT SVT = VT.getScalarType(); 4150 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4151 EVT ShSVT = ShVT.getScalarType(); 4152 unsigned EltBits = VT.getScalarSizeInBits(); 4153 4154 // Check to see if we can do this. 4155 // FIXME: We should be more aggressive here. 4156 if (!isTypeLegal(VT)) 4157 return SDValue(); 4158 4159 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4160 if (N->getFlags().hasExact()) 4161 return BuildExactSDIV(*this, N, dl, DAG, Created); 4162 4163 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4164 4165 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4166 if (C->isNullValue()) 4167 return false; 4168 4169 const APInt &Divisor = C->getAPIntValue(); 4170 APInt::ms magics = Divisor.magic(); 4171 int NumeratorFactor = 0; 4172 int ShiftMask = -1; 4173 4174 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4175 // If d is +1/-1, we just multiply the numerator by +1/-1. 4176 NumeratorFactor = Divisor.getSExtValue(); 4177 magics.m = 0; 4178 magics.s = 0; 4179 ShiftMask = 0; 4180 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4181 // If d > 0 and m < 0, add the numerator. 4182 NumeratorFactor = 1; 4183 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4184 // If d < 0 and m > 0, subtract the numerator. 4185 NumeratorFactor = -1; 4186 } 4187 4188 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4189 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4190 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4191 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4192 return true; 4193 }; 4194 4195 SDValue N0 = N->getOperand(0); 4196 SDValue N1 = N->getOperand(1); 4197 4198 // Collect the shifts / magic values from each element. 4199 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4200 return SDValue(); 4201 4202 SDValue MagicFactor, Factor, Shift, ShiftMask; 4203 if (VT.isVector()) { 4204 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4205 Factor = DAG.getBuildVector(VT, dl, Factors); 4206 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4207 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4208 } else { 4209 MagicFactor = MagicFactors[0]; 4210 Factor = Factors[0]; 4211 Shift = Shifts[0]; 4212 ShiftMask = ShiftMasks[0]; 4213 } 4214 4215 // Multiply the numerator (operand 0) by the magic value. 4216 // FIXME: We should support doing a MUL in a wider type. 4217 SDValue Q; 4218 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4219 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4220 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4221 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4222 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4223 SDValue LoHi = 4224 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4225 Q = SDValue(LoHi.getNode(), 1); 4226 } else 4227 return SDValue(); // No mulhs or equivalent. 4228 Created.push_back(Q.getNode()); 4229 4230 // (Optionally) Add/subtract the numerator using Factor. 4231 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4232 Created.push_back(Factor.getNode()); 4233 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4234 Created.push_back(Q.getNode()); 4235 4236 // Shift right algebraic by shift value. 4237 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4238 Created.push_back(Q.getNode()); 4239 4240 // Extract the sign bit, mask it and add it to the quotient. 4241 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4242 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4243 Created.push_back(T.getNode()); 4244 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4245 Created.push_back(T.getNode()); 4246 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4247 } 4248 4249 /// Given an ISD::UDIV node expressing a divide by constant, 4250 /// return a DAG expression to select that will generate the same value by 4251 /// multiplying by a magic number. 4252 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4253 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4254 bool IsAfterLegalization, 4255 SmallVectorImpl<SDNode *> &Created) const { 4256 SDLoc dl(N); 4257 EVT VT = N->getValueType(0); 4258 EVT SVT = VT.getScalarType(); 4259 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4260 EVT ShSVT = ShVT.getScalarType(); 4261 unsigned EltBits = VT.getScalarSizeInBits(); 4262 4263 // Check to see if we can do this. 4264 // FIXME: We should be more aggressive here. 4265 if (!isTypeLegal(VT)) 4266 return SDValue(); 4267 4268 bool UseNPQ = false; 4269 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4270 4271 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4272 if (C->isNullValue()) 4273 return false; 4274 // FIXME: We should use a narrower constant when the upper 4275 // bits are known to be zero. 4276 APInt Divisor = C->getAPIntValue(); 4277 APInt::mu magics = Divisor.magicu(); 4278 unsigned PreShift = 0, PostShift = 0; 4279 4280 // If the divisor is even, we can avoid using the expensive fixup by 4281 // shifting the divided value upfront. 4282 if (magics.a != 0 && !Divisor[0]) { 4283 PreShift = Divisor.countTrailingZeros(); 4284 // Get magic number for the shifted divisor. 4285 magics = Divisor.lshr(PreShift).magicu(PreShift); 4286 assert(magics.a == 0 && "Should use cheap fixup now"); 4287 } 4288 4289 APInt Magic = magics.m; 4290 4291 unsigned SelNPQ; 4292 if (magics.a == 0 || Divisor.isOneValue()) { 4293 assert(magics.s < Divisor.getBitWidth() && 4294 "We shouldn't generate an undefined shift!"); 4295 PostShift = magics.s; 4296 SelNPQ = false; 4297 } else { 4298 PostShift = magics.s - 1; 4299 SelNPQ = true; 4300 } 4301 4302 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4303 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4304 NPQFactors.push_back( 4305 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4306 : APInt::getNullValue(EltBits), 4307 dl, SVT)); 4308 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4309 UseNPQ |= SelNPQ; 4310 return true; 4311 }; 4312 4313 SDValue N0 = N->getOperand(0); 4314 SDValue N1 = N->getOperand(1); 4315 4316 // Collect the shifts/magic values from each element. 4317 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4318 return SDValue(); 4319 4320 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4321 if (VT.isVector()) { 4322 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4323 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4324 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4325 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4326 } else { 4327 PreShift = PreShifts[0]; 4328 MagicFactor = MagicFactors[0]; 4329 PostShift = PostShifts[0]; 4330 } 4331 4332 SDValue Q = N0; 4333 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4334 Created.push_back(Q.getNode()); 4335 4336 // FIXME: We should support doing a MUL in a wider type. 4337 auto GetMULHU = [&](SDValue X, SDValue Y) { 4338 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4339 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4340 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4341 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4342 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4343 SDValue LoHi = 4344 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4345 return SDValue(LoHi.getNode(), 1); 4346 } 4347 return SDValue(); // No mulhu or equivalent 4348 }; 4349 4350 // Multiply the numerator (operand 0) by the magic value. 4351 Q = GetMULHU(Q, MagicFactor); 4352 if (!Q) 4353 return SDValue(); 4354 4355 Created.push_back(Q.getNode()); 4356 4357 if (UseNPQ) { 4358 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4359 Created.push_back(NPQ.getNode()); 4360 4361 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4362 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4363 if (VT.isVector()) 4364 NPQ = GetMULHU(NPQ, NPQFactor); 4365 else 4366 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4367 4368 Created.push_back(NPQ.getNode()); 4369 4370 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4371 Created.push_back(Q.getNode()); 4372 } 4373 4374 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4375 Created.push_back(Q.getNode()); 4376 4377 SDValue One = DAG.getConstant(1, dl, VT); 4378 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4379 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4380 } 4381 4382 bool TargetLowering:: 4383 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4384 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4385 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4386 "be a constant integer"); 4387 return true; 4388 } 4389 4390 return false; 4391 } 4392 4393 //===----------------------------------------------------------------------===// 4394 // Legalization Utilities 4395 //===----------------------------------------------------------------------===// 4396 4397 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4398 SDValue LHS, SDValue RHS, 4399 SmallVectorImpl<SDValue> &Result, 4400 EVT HiLoVT, SelectionDAG &DAG, 4401 MulExpansionKind Kind, SDValue LL, 4402 SDValue LH, SDValue RL, SDValue RH) const { 4403 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4404 Opcode == ISD::SMUL_LOHI); 4405 4406 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4407 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4408 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4409 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4410 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4411 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4412 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4413 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4414 4415 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4416 return false; 4417 4418 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4419 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4420 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4421 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4422 4423 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4424 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4425 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4426 4427 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4428 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4429 bool Signed) -> bool { 4430 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4431 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4432 Hi = SDValue(Lo.getNode(), 1); 4433 return true; 4434 } 4435 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4436 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4437 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4438 return true; 4439 } 4440 return false; 4441 }; 4442 4443 SDValue Lo, Hi; 4444 4445 if (!LL.getNode() && !RL.getNode() && 4446 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4447 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4448 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4449 } 4450 4451 if (!LL.getNode()) 4452 return false; 4453 4454 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4455 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4456 DAG.MaskedValueIsZero(RHS, HighMask)) { 4457 // The inputs are both zero-extended. 4458 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4459 Result.push_back(Lo); 4460 Result.push_back(Hi); 4461 if (Opcode != ISD::MUL) { 4462 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4463 Result.push_back(Zero); 4464 Result.push_back(Zero); 4465 } 4466 return true; 4467 } 4468 } 4469 4470 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4471 RHSSB > InnerBitSize) { 4472 // The input values are both sign-extended. 4473 // TODO non-MUL case? 4474 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4475 Result.push_back(Lo); 4476 Result.push_back(Hi); 4477 return true; 4478 } 4479 } 4480 4481 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4482 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4483 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4484 // FIXME getShiftAmountTy does not always return a sensible result when VT 4485 // is an illegal type, and so the type may be too small to fit the shift 4486 // amount. Override it with i32. The shift will have to be legalized. 4487 ShiftAmountTy = MVT::i32; 4488 } 4489 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4490 4491 if (!LH.getNode() && !RH.getNode() && 4492 isOperationLegalOrCustom(ISD::SRL, VT) && 4493 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4494 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4495 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4496 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4497 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4498 } 4499 4500 if (!LH.getNode()) 4501 return false; 4502 4503 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4504 return false; 4505 4506 Result.push_back(Lo); 4507 4508 if (Opcode == ISD::MUL) { 4509 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4510 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4511 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4512 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4513 Result.push_back(Hi); 4514 return true; 4515 } 4516 4517 // Compute the full width result. 4518 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4519 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4520 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4521 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4522 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4523 }; 4524 4525 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4526 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4527 return false; 4528 4529 // This is effectively the add part of a multiply-add of half-sized operands, 4530 // so it cannot overflow. 4531 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4532 4533 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4534 return false; 4535 4536 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4537 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4538 4539 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4540 isOperationLegalOrCustom(ISD::ADDE, VT)); 4541 if (UseGlue) 4542 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4543 Merge(Lo, Hi)); 4544 else 4545 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4546 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4547 4548 SDValue Carry = Next.getValue(1); 4549 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4550 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4551 4552 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4553 return false; 4554 4555 if (UseGlue) 4556 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4557 Carry); 4558 else 4559 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4560 Zero, Carry); 4561 4562 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4563 4564 if (Opcode == ISD::SMUL_LOHI) { 4565 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4566 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4567 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4568 4569 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4570 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4571 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4572 } 4573 4574 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4575 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4576 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4577 return true; 4578 } 4579 4580 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4581 SelectionDAG &DAG, MulExpansionKind Kind, 4582 SDValue LL, SDValue LH, SDValue RL, 4583 SDValue RH) const { 4584 SmallVector<SDValue, 2> Result; 4585 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4586 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4587 DAG, Kind, LL, LH, RL, RH); 4588 if (Ok) { 4589 assert(Result.size() == 2); 4590 Lo = Result[0]; 4591 Hi = Result[1]; 4592 } 4593 return Ok; 4594 } 4595 4596 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4597 SelectionDAG &DAG) const { 4598 EVT VT = Node->getValueType(0); 4599 4600 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4601 !isOperationLegalOrCustom(ISD::SRL, VT) || 4602 !isOperationLegalOrCustom(ISD::SUB, VT) || 4603 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4604 return false; 4605 4606 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4607 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4608 SDValue X = Node->getOperand(0); 4609 SDValue Y = Node->getOperand(1); 4610 SDValue Z = Node->getOperand(2); 4611 4612 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4613 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4614 SDLoc DL(SDValue(Node, 0)); 4615 4616 EVT ShVT = Z.getValueType(); 4617 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4618 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4619 4620 SDValue ShAmt; 4621 if (isPowerOf2_32(EltSizeInBits)) { 4622 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4623 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4624 } else { 4625 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4626 } 4627 4628 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4629 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4630 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4631 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4632 4633 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4634 // and that is undefined. We must compare and select to avoid UB. 4635 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4636 4637 // For fshl, 0-shift returns the 1st arg (X). 4638 // For fshr, 0-shift returns the 2nd arg (Y). 4639 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4640 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4641 return true; 4642 } 4643 4644 // TODO: Merge with expandFunnelShift. 4645 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4646 SelectionDAG &DAG) const { 4647 EVT VT = Node->getValueType(0); 4648 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4649 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4650 SDValue Op0 = Node->getOperand(0); 4651 SDValue Op1 = Node->getOperand(1); 4652 SDLoc DL(SDValue(Node, 0)); 4653 4654 EVT ShVT = Op1.getValueType(); 4655 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4656 4657 // If a rotate in the other direction is legal, use it. 4658 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4659 if (isOperationLegal(RevRot, VT)) { 4660 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4661 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4662 return true; 4663 } 4664 4665 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4666 !isOperationLegalOrCustom(ISD::SRL, VT) || 4667 !isOperationLegalOrCustom(ISD::SUB, VT) || 4668 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4669 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4670 return false; 4671 4672 // Otherwise, 4673 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4674 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4675 // 4676 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4677 "Expecting the type bitwidth to be a power of 2"); 4678 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4679 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4680 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4681 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4682 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4683 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4684 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4685 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4686 return true; 4687 } 4688 4689 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4690 SelectionDAG &DAG) const { 4691 SDValue Src = Node->getOperand(0); 4692 EVT SrcVT = Src.getValueType(); 4693 EVT DstVT = Node->getValueType(0); 4694 SDLoc dl(SDValue(Node, 0)); 4695 4696 // FIXME: Only f32 to i64 conversions are supported. 4697 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4698 return false; 4699 4700 // Expand f32 -> i64 conversion 4701 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4702 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4703 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4704 EVT IntVT = SrcVT.changeTypeToInteger(); 4705 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4706 4707 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4708 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4709 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4710 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4711 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4712 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4713 4714 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4715 4716 SDValue ExponentBits = DAG.getNode( 4717 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4718 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4719 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4720 4721 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4722 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4723 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4724 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4725 4726 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4727 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4728 DAG.getConstant(0x00800000, dl, IntVT)); 4729 4730 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4731 4732 R = DAG.getSelectCC( 4733 dl, Exponent, ExponentLoBit, 4734 DAG.getNode(ISD::SHL, dl, DstVT, R, 4735 DAG.getZExtOrTrunc( 4736 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4737 dl, IntShVT)), 4738 DAG.getNode(ISD::SRL, dl, DstVT, R, 4739 DAG.getZExtOrTrunc( 4740 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4741 dl, IntShVT)), 4742 ISD::SETGT); 4743 4744 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4745 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4746 4747 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4748 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4749 return true; 4750 } 4751 4752 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4753 SelectionDAG &DAG) const { 4754 SDLoc dl(SDValue(Node, 0)); 4755 SDValue Src = Node->getOperand(0); 4756 4757 EVT SrcVT = Src.getValueType(); 4758 EVT DstVT = Node->getValueType(0); 4759 EVT SetCCVT = 4760 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4761 4762 // Only expand vector types if we have the appropriate vector bit operations. 4763 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4764 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4765 return false; 4766 4767 // If the maximum float value is smaller then the signed integer range, 4768 // the destination signmask can't be represented by the float, so we can 4769 // just use FP_TO_SINT directly. 4770 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4771 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4772 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4773 if (APFloat::opOverflow & 4774 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4775 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4776 return true; 4777 } 4778 4779 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4780 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4781 4782 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4783 if (Strict) { 4784 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4785 // signmask then offset (the result of which should be fully representable). 4786 // Sel = Src < 0x8000000000000000 4787 // Val = select Sel, Src, Src - 0x8000000000000000 4788 // Ofs = select Sel, 0, 0x8000000000000000 4789 // Result = fp_to_sint(Val) ^ Ofs 4790 4791 // TODO: Should any fast-math-flags be set for the FSUB? 4792 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4793 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4794 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4795 DAG.getConstant(SignMask, dl, DstVT)); 4796 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4797 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4798 } else { 4799 // Expand based on maximum range of FP_TO_SINT: 4800 // True = fp_to_sint(Src) 4801 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4802 // Result = select (Src < 0x8000000000000000), True, False 4803 4804 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4805 // TODO: Should any fast-math-flags be set for the FSUB? 4806 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4807 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4808 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4809 DAG.getConstant(SignMask, dl, DstVT)); 4810 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4811 } 4812 return true; 4813 } 4814 4815 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4816 SelectionDAG &DAG) const { 4817 SDValue Src = Node->getOperand(0); 4818 EVT SrcVT = Src.getValueType(); 4819 EVT DstVT = Node->getValueType(0); 4820 4821 if (SrcVT.getScalarType() != MVT::i64) 4822 return false; 4823 4824 SDLoc dl(SDValue(Node, 0)); 4825 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4826 4827 if (DstVT.getScalarType() == MVT::f32) { 4828 // Only expand vector types if we have the appropriate vector bit 4829 // operations. 4830 if (SrcVT.isVector() && 4831 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4832 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4833 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4834 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4835 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4836 return false; 4837 4838 // For unsigned conversions, convert them to signed conversions using the 4839 // algorithm from the x86_64 __floatundidf in compiler_rt. 4840 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4841 4842 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4843 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4844 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4845 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4846 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4847 4848 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4849 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4850 4851 // TODO: This really should be implemented using a branch rather than a 4852 // select. We happen to get lucky and machinesink does the right 4853 // thing most of the time. This would be a good candidate for a 4854 // pseudo-op, or, even better, for whole-function isel. 4855 EVT SetCCVT = 4856 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4857 4858 SDValue SignBitTest = DAG.getSetCC( 4859 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4860 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4861 return true; 4862 } 4863 4864 if (DstVT.getScalarType() == MVT::f64) { 4865 // Only expand vector types if we have the appropriate vector bit 4866 // operations. 4867 if (SrcVT.isVector() && 4868 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4869 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4870 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4871 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4872 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4873 return false; 4874 4875 // Implementation of unsigned i64 to f64 following the algorithm in 4876 // __floatundidf in compiler_rt. This implementation has the advantage 4877 // of performing rounding correctly, both in the default rounding mode 4878 // and in all alternate rounding modes. 4879 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4880 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4881 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4882 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4883 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4884 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4885 4886 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4887 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4888 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4889 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4890 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4891 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4892 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4893 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4894 return true; 4895 } 4896 4897 return false; 4898 } 4899 4900 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4901 SelectionDAG &DAG) const { 4902 SDLoc dl(Node); 4903 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4904 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4905 EVT VT = Node->getValueType(0); 4906 if (isOperationLegalOrCustom(NewOp, VT)) { 4907 SDValue Quiet0 = Node->getOperand(0); 4908 SDValue Quiet1 = Node->getOperand(1); 4909 4910 if (!Node->getFlags().hasNoNaNs()) { 4911 // Insert canonicalizes if it's possible we need to quiet to get correct 4912 // sNaN behavior. 4913 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4914 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4915 Node->getFlags()); 4916 } 4917 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4918 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4919 Node->getFlags()); 4920 } 4921 } 4922 4923 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4924 } 4925 4926 return SDValue(); 4927 } 4928 4929 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4930 SelectionDAG &DAG) const { 4931 SDLoc dl(Node); 4932 EVT VT = Node->getValueType(0); 4933 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4934 SDValue Op = Node->getOperand(0); 4935 unsigned Len = VT.getScalarSizeInBits(); 4936 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4937 4938 // TODO: Add support for irregular type lengths. 4939 if (!(Len <= 128 && Len % 8 == 0)) 4940 return false; 4941 4942 // Only expand vector types if we have the appropriate vector bit operations. 4943 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4944 !isOperationLegalOrCustom(ISD::SUB, VT) || 4945 !isOperationLegalOrCustom(ISD::SRL, VT) || 4946 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4947 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4948 return false; 4949 4950 // This is the "best" algorithm from 4951 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4952 SDValue Mask55 = 4953 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4954 SDValue Mask33 = 4955 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4956 SDValue Mask0F = 4957 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4958 SDValue Mask01 = 4959 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4960 4961 // v = v - ((v >> 1) & 0x55555555...) 4962 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4963 DAG.getNode(ISD::AND, dl, VT, 4964 DAG.getNode(ISD::SRL, dl, VT, Op, 4965 DAG.getConstant(1, dl, ShVT)), 4966 Mask55)); 4967 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4968 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4969 DAG.getNode(ISD::AND, dl, VT, 4970 DAG.getNode(ISD::SRL, dl, VT, Op, 4971 DAG.getConstant(2, dl, ShVT)), 4972 Mask33)); 4973 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4974 Op = DAG.getNode(ISD::AND, dl, VT, 4975 DAG.getNode(ISD::ADD, dl, VT, Op, 4976 DAG.getNode(ISD::SRL, dl, VT, Op, 4977 DAG.getConstant(4, dl, ShVT))), 4978 Mask0F); 4979 // v = (v * 0x01010101...) >> (Len - 8) 4980 if (Len > 8) 4981 Op = 4982 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4983 DAG.getConstant(Len - 8, dl, ShVT)); 4984 4985 Result = Op; 4986 return true; 4987 } 4988 4989 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4990 SelectionDAG &DAG) const { 4991 SDLoc dl(Node); 4992 EVT VT = Node->getValueType(0); 4993 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4994 SDValue Op = Node->getOperand(0); 4995 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4996 4997 // If the non-ZERO_UNDEF version is supported we can use that instead. 4998 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4999 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 5000 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 5001 return true; 5002 } 5003 5004 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5005 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 5006 EVT SetCCVT = 5007 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5008 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 5009 SDValue Zero = DAG.getConstant(0, dl, VT); 5010 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5011 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5012 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 5013 return true; 5014 } 5015 5016 // Only expand vector types if we have the appropriate vector bit operations. 5017 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5018 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 5019 !isOperationLegalOrCustom(ISD::SRL, VT) || 5020 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5021 return false; 5022 5023 // for now, we do this: 5024 // x = x | (x >> 1); 5025 // x = x | (x >> 2); 5026 // ... 5027 // x = x | (x >>16); 5028 // x = x | (x >>32); // for 64-bit input 5029 // return popcount(~x); 5030 // 5031 // Ref: "Hacker's Delight" by Henry Warren 5032 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 5033 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 5034 Op = DAG.getNode(ISD::OR, dl, VT, Op, 5035 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 5036 } 5037 Op = DAG.getNOT(dl, Op, VT); 5038 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 5039 return true; 5040 } 5041 5042 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 5043 SelectionDAG &DAG) const { 5044 SDLoc dl(Node); 5045 EVT VT = Node->getValueType(0); 5046 SDValue Op = Node->getOperand(0); 5047 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5048 5049 // If the non-ZERO_UNDEF version is supported we can use that instead. 5050 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 5051 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 5052 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 5053 return true; 5054 } 5055 5056 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5057 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 5058 EVT SetCCVT = 5059 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5060 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 5061 SDValue Zero = DAG.getConstant(0, dl, VT); 5062 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5063 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5064 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 5065 return true; 5066 } 5067 5068 // Only expand vector types if we have the appropriate vector bit operations. 5069 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5070 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 5071 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 5072 !isOperationLegalOrCustom(ISD::SUB, VT) || 5073 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 5074 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5075 return false; 5076 5077 // for now, we use: { return popcount(~x & (x - 1)); } 5078 // unless the target has ctlz but not ctpop, in which case we use: 5079 // { return 32 - nlz(~x & (x-1)); } 5080 // Ref: "Hacker's Delight" by Henry Warren 5081 SDValue Tmp = DAG.getNode( 5082 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 5083 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 5084 5085 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5086 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 5087 Result = 5088 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 5089 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 5090 return true; 5091 } 5092 5093 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 5094 return true; 5095 } 5096 5097 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 5098 SelectionDAG &DAG) const { 5099 SDLoc dl(N); 5100 EVT VT = N->getValueType(0); 5101 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5102 SDValue Op = N->getOperand(0); 5103 5104 // Only expand vector types if we have the appropriate vector operations. 5105 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 5106 !isOperationLegalOrCustom(ISD::ADD, VT) || 5107 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5108 return false; 5109 5110 SDValue Shift = 5111 DAG.getNode(ISD::SRA, dl, VT, Op, 5112 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 5113 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 5114 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 5115 return true; 5116 } 5117 5118 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 5119 SelectionDAG &DAG) const { 5120 SDLoc SL(LD); 5121 SDValue Chain = LD->getChain(); 5122 SDValue BasePTR = LD->getBasePtr(); 5123 EVT SrcVT = LD->getMemoryVT(); 5124 ISD::LoadExtType ExtType = LD->getExtensionType(); 5125 5126 unsigned NumElem = SrcVT.getVectorNumElements(); 5127 5128 EVT SrcEltVT = SrcVT.getScalarType(); 5129 EVT DstEltVT = LD->getValueType(0).getScalarType(); 5130 5131 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 5132 assert(SrcEltVT.isByteSized()); 5133 5134 SmallVector<SDValue, 8> Vals; 5135 SmallVector<SDValue, 8> LoadChains; 5136 5137 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5138 SDValue ScalarLoad = 5139 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 5140 LD->getPointerInfo().getWithOffset(Idx * Stride), 5141 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 5142 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5143 5144 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 5145 5146 Vals.push_back(ScalarLoad.getValue(0)); 5147 LoadChains.push_back(ScalarLoad.getValue(1)); 5148 } 5149 5150 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 5151 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 5152 5153 return DAG.getMergeValues({Value, NewChain}, SL); 5154 } 5155 5156 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 5157 SelectionDAG &DAG) const { 5158 SDLoc SL(ST); 5159 5160 SDValue Chain = ST->getChain(); 5161 SDValue BasePtr = ST->getBasePtr(); 5162 SDValue Value = ST->getValue(); 5163 EVT StVT = ST->getMemoryVT(); 5164 5165 // The type of the data we want to save 5166 EVT RegVT = Value.getValueType(); 5167 EVT RegSclVT = RegVT.getScalarType(); 5168 5169 // The type of data as saved in memory. 5170 EVT MemSclVT = StVT.getScalarType(); 5171 5172 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 5173 unsigned NumElem = StVT.getVectorNumElements(); 5174 5175 // A vector must always be stored in memory as-is, i.e. without any padding 5176 // between the elements, since various code depend on it, e.g. in the 5177 // handling of a bitcast of a vector type to int, which may be done with a 5178 // vector store followed by an integer load. A vector that does not have 5179 // elements that are byte-sized must therefore be stored as an integer 5180 // built out of the extracted vector elements. 5181 if (!MemSclVT.isByteSized()) { 5182 unsigned NumBits = StVT.getSizeInBits(); 5183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 5184 5185 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 5186 5187 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5188 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5189 DAG.getConstant(Idx, SL, IdxVT)); 5190 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 5191 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 5192 unsigned ShiftIntoIdx = 5193 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 5194 SDValue ShiftAmount = 5195 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 5196 SDValue ShiftedElt = 5197 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 5198 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 5199 } 5200 5201 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 5202 ST->getAlignment(), ST->getMemOperand()->getFlags(), 5203 ST->getAAInfo()); 5204 } 5205 5206 // Store Stride in bytes 5207 unsigned Stride = MemSclVT.getSizeInBits() / 8; 5208 assert(Stride && "Zero stride!"); 5209 // Extract each of the elements from the original vector and save them into 5210 // memory individually. 5211 SmallVector<SDValue, 8> Stores; 5212 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5213 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5214 DAG.getConstant(Idx, SL, IdxVT)); 5215 5216 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 5217 5218 // This scalar TruncStore may be illegal, but we legalize it later. 5219 SDValue Store = DAG.getTruncStore( 5220 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 5221 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 5222 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5223 5224 Stores.push_back(Store); 5225 } 5226 5227 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 5228 } 5229 5230 std::pair<SDValue, SDValue> 5231 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 5232 assert(LD->getAddressingMode() == ISD::UNINDEXED && 5233 "unaligned indexed loads not implemented!"); 5234 SDValue Chain = LD->getChain(); 5235 SDValue Ptr = LD->getBasePtr(); 5236 EVT VT = LD->getValueType(0); 5237 EVT LoadedVT = LD->getMemoryVT(); 5238 SDLoc dl(LD); 5239 auto &MF = DAG.getMachineFunction(); 5240 5241 if (VT.isFloatingPoint() || VT.isVector()) { 5242 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 5243 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 5244 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 5245 LoadedVT.isVector()) { 5246 // Scalarize the load and let the individual components be handled. 5247 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 5248 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 5249 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 5250 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 5251 } 5252 5253 // Expand to a (misaligned) integer load of the same size, 5254 // then bitconvert to floating point or vector. 5255 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 5256 LD->getMemOperand()); 5257 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 5258 if (LoadedVT != VT) 5259 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 5260 ISD::ANY_EXTEND, dl, VT, Result); 5261 5262 return std::make_pair(Result, newLoad.getValue(1)); 5263 } 5264 5265 // Copy the value to a (aligned) stack slot using (unaligned) integer 5266 // loads and stores, then do a (aligned) load from the stack slot. 5267 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5268 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5269 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5270 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5271 5272 // Make sure the stack slot is also aligned for the register type. 5273 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5274 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5275 SmallVector<SDValue, 8> Stores; 5276 SDValue StackPtr = StackBase; 5277 unsigned Offset = 0; 5278 5279 EVT PtrVT = Ptr.getValueType(); 5280 EVT StackPtrVT = StackPtr.getValueType(); 5281 5282 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5283 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5284 5285 // Do all but one copies using the full register width. 5286 for (unsigned i = 1; i < NumRegs; i++) { 5287 // Load one integer register's worth from the original location. 5288 SDValue Load = DAG.getLoad( 5289 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5290 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5291 LD->getAAInfo()); 5292 // Follow the load with a store to the stack slot. Remember the store. 5293 Stores.push_back(DAG.getStore( 5294 Load.getValue(1), dl, Load, StackPtr, 5295 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5296 // Increment the pointers. 5297 Offset += RegBytes; 5298 5299 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5300 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5301 } 5302 5303 // The last copy may be partial. Do an extending load. 5304 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5305 8 * (LoadedBytes - Offset)); 5306 SDValue Load = 5307 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5308 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5309 MinAlign(LD->getAlignment(), Offset), 5310 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5311 // Follow the load with a store to the stack slot. Remember the store. 5312 // On big-endian machines this requires a truncating store to ensure 5313 // that the bits end up in the right place. 5314 Stores.push_back(DAG.getTruncStore( 5315 Load.getValue(1), dl, Load, StackPtr, 5316 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5317 5318 // The order of the stores doesn't matter - say it with a TokenFactor. 5319 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5320 5321 // Finally, perform the original load only redirected to the stack slot. 5322 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5323 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5324 LoadedVT); 5325 5326 // Callers expect a MERGE_VALUES node. 5327 return std::make_pair(Load, TF); 5328 } 5329 5330 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5331 "Unaligned load of unsupported type."); 5332 5333 // Compute the new VT that is half the size of the old one. This is an 5334 // integer MVT. 5335 unsigned NumBits = LoadedVT.getSizeInBits(); 5336 EVT NewLoadedVT; 5337 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5338 NumBits >>= 1; 5339 5340 unsigned Alignment = LD->getAlignment(); 5341 unsigned IncrementSize = NumBits / 8; 5342 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5343 5344 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5345 if (HiExtType == ISD::NON_EXTLOAD) 5346 HiExtType = ISD::ZEXTLOAD; 5347 5348 // Load the value in two parts 5349 SDValue Lo, Hi; 5350 if (DAG.getDataLayout().isLittleEndian()) { 5351 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5352 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5353 LD->getAAInfo()); 5354 5355 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5356 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5357 LD->getPointerInfo().getWithOffset(IncrementSize), 5358 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5359 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5360 } else { 5361 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5362 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5363 LD->getAAInfo()); 5364 5365 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5366 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5367 LD->getPointerInfo().getWithOffset(IncrementSize), 5368 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5369 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5370 } 5371 5372 // aggregate the two parts 5373 SDValue ShiftAmount = 5374 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5375 DAG.getDataLayout())); 5376 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5377 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5378 5379 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5380 Hi.getValue(1)); 5381 5382 return std::make_pair(Result, TF); 5383 } 5384 5385 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5386 SelectionDAG &DAG) const { 5387 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5388 "unaligned indexed stores not implemented!"); 5389 SDValue Chain = ST->getChain(); 5390 SDValue Ptr = ST->getBasePtr(); 5391 SDValue Val = ST->getValue(); 5392 EVT VT = Val.getValueType(); 5393 int Alignment = ST->getAlignment(); 5394 auto &MF = DAG.getMachineFunction(); 5395 EVT StoreMemVT = ST->getMemoryVT(); 5396 5397 SDLoc dl(ST); 5398 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 5399 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5400 if (isTypeLegal(intVT)) { 5401 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5402 StoreMemVT.isVector()) { 5403 // Scalarize the store and let the individual components be handled. 5404 SDValue Result = scalarizeVectorStore(ST, DAG); 5405 return Result; 5406 } 5407 // Expand to a bitconvert of the value to the integer type of the 5408 // same size, then a (misaligned) int store. 5409 // FIXME: Does not handle truncating floating point stores! 5410 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5411 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5412 Alignment, ST->getMemOperand()->getFlags()); 5413 return Result; 5414 } 5415 // Do a (aligned) store to a stack slot, then copy from the stack slot 5416 // to the final destination using (unaligned) integer loads and stores. 5417 MVT RegVT = getRegisterType( 5418 *DAG.getContext(), 5419 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 5420 EVT PtrVT = Ptr.getValueType(); 5421 unsigned StoredBytes = StoreMemVT.getStoreSize(); 5422 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5423 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5424 5425 // Make sure the stack slot is also aligned for the register type. 5426 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 5427 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5428 5429 // Perform the original store, only redirected to the stack slot. 5430 SDValue Store = DAG.getTruncStore( 5431 Chain, dl, Val, StackPtr, 5432 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 5433 5434 EVT StackPtrVT = StackPtr.getValueType(); 5435 5436 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5437 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5438 SmallVector<SDValue, 8> Stores; 5439 unsigned Offset = 0; 5440 5441 // Do all but one copies using the full register width. 5442 for (unsigned i = 1; i < NumRegs; i++) { 5443 // Load one integer register's worth from the stack slot. 5444 SDValue Load = DAG.getLoad( 5445 RegVT, dl, Store, StackPtr, 5446 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5447 // Store it to the final location. Remember the store. 5448 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5449 ST->getPointerInfo().getWithOffset(Offset), 5450 MinAlign(ST->getAlignment(), Offset), 5451 ST->getMemOperand()->getFlags())); 5452 // Increment the pointers. 5453 Offset += RegBytes; 5454 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5455 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5456 } 5457 5458 // The last store may be partial. Do a truncating store. On big-endian 5459 // machines this requires an extending load from the stack slot to ensure 5460 // that the bits are in the right place. 5461 EVT LoadMemVT = 5462 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 5463 5464 // Load from the stack slot. 5465 SDValue Load = DAG.getExtLoad( 5466 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5467 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 5468 5469 Stores.push_back( 5470 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5471 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 5472 MinAlign(ST->getAlignment(), Offset), 5473 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5474 // The order of the stores doesn't matter - say it with a TokenFactor. 5475 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5476 return Result; 5477 } 5478 5479 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 5480 "Unaligned store of unknown type."); 5481 // Get the half-size VT 5482 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 5483 int NumBits = NewStoredVT.getSizeInBits(); 5484 int IncrementSize = NumBits / 8; 5485 5486 // Divide the stored value in two parts. 5487 SDValue ShiftAmount = DAG.getConstant( 5488 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 5489 SDValue Lo = Val; 5490 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5491 5492 // Store the two parts 5493 SDValue Store1, Store2; 5494 Store1 = DAG.getTruncStore(Chain, dl, 5495 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5496 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5497 ST->getMemOperand()->getFlags()); 5498 5499 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5500 Alignment = MinAlign(Alignment, IncrementSize); 5501 Store2 = DAG.getTruncStore( 5502 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5503 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5504 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5505 5506 SDValue Result = 5507 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5508 return Result; 5509 } 5510 5511 SDValue 5512 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5513 const SDLoc &DL, EVT DataVT, 5514 SelectionDAG &DAG, 5515 bool IsCompressedMemory) const { 5516 SDValue Increment; 5517 EVT AddrVT = Addr.getValueType(); 5518 EVT MaskVT = Mask.getValueType(); 5519 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5520 "Incompatible types of Data and Mask"); 5521 if (IsCompressedMemory) { 5522 // Incrementing the pointer according to number of '1's in the mask. 5523 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5524 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5525 if (MaskIntVT.getSizeInBits() < 32) { 5526 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5527 MaskIntVT = MVT::i32; 5528 } 5529 5530 // Count '1's with POPCNT. 5531 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5532 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5533 // Scale is an element size in bytes. 5534 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5535 AddrVT); 5536 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5537 } else 5538 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5539 5540 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5541 } 5542 5543 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5544 SDValue Idx, 5545 EVT VecVT, 5546 const SDLoc &dl) { 5547 if (isa<ConstantSDNode>(Idx)) 5548 return Idx; 5549 5550 EVT IdxVT = Idx.getValueType(); 5551 unsigned NElts = VecVT.getVectorNumElements(); 5552 if (isPowerOf2_32(NElts)) { 5553 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5554 Log2_32(NElts)); 5555 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5556 DAG.getConstant(Imm, dl, IdxVT)); 5557 } 5558 5559 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5560 DAG.getConstant(NElts - 1, dl, IdxVT)); 5561 } 5562 5563 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5564 SDValue VecPtr, EVT VecVT, 5565 SDValue Index) const { 5566 SDLoc dl(Index); 5567 // Make sure the index type is big enough to compute in. 5568 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5569 5570 EVT EltVT = VecVT.getVectorElementType(); 5571 5572 // Calculate the element offset and add it to the pointer. 5573 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5574 assert(EltSize * 8 == EltVT.getSizeInBits() && 5575 "Converting bits to bytes lost precision"); 5576 5577 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5578 5579 EVT IdxVT = Index.getValueType(); 5580 5581 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5582 DAG.getConstant(EltSize, dl, IdxVT)); 5583 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5584 } 5585 5586 //===----------------------------------------------------------------------===// 5587 // Implementation of Emulated TLS Model 5588 //===----------------------------------------------------------------------===// 5589 5590 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5591 SelectionDAG &DAG) const { 5592 // Access to address of TLS varialbe xyz is lowered to a function call: 5593 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5594 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5595 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5596 SDLoc dl(GA); 5597 5598 ArgListTy Args; 5599 ArgListEntry Entry; 5600 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5601 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5602 StringRef EmuTlsVarName(NameString); 5603 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5604 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5605 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5606 Entry.Ty = VoidPtrType; 5607 Args.push_back(Entry); 5608 5609 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5610 5611 TargetLowering::CallLoweringInfo CLI(DAG); 5612 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5613 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5614 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5615 5616 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5617 // At last for X86 targets, maybe good for other targets too? 5618 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5619 MFI.setAdjustsStack(true); // Is this only for X86 target? 5620 MFI.setHasCalls(true); 5621 5622 assert((GA->getOffset() == 0) && 5623 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5624 return CallResult.first; 5625 } 5626 5627 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5628 SelectionDAG &DAG) const { 5629 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5630 if (!isCtlzFast()) 5631 return SDValue(); 5632 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5633 SDLoc dl(Op); 5634 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5635 if (C->isNullValue() && CC == ISD::SETEQ) { 5636 EVT VT = Op.getOperand(0).getValueType(); 5637 SDValue Zext = Op.getOperand(0); 5638 if (VT.bitsLT(MVT::i32)) { 5639 VT = MVT::i32; 5640 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5641 } 5642 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5643 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5644 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5645 DAG.getConstant(Log2b, dl, MVT::i32)); 5646 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5647 } 5648 } 5649 return SDValue(); 5650 } 5651 5652 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5653 unsigned Opcode = Node->getOpcode(); 5654 SDValue LHS = Node->getOperand(0); 5655 SDValue RHS = Node->getOperand(1); 5656 EVT VT = LHS.getValueType(); 5657 SDLoc dl(Node); 5658 5659 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5660 assert(VT.isInteger() && "Expected operands to be integers"); 5661 5662 // usub.sat(a, b) -> umax(a, b) - b 5663 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5664 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5665 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5666 } 5667 5668 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5669 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5670 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5671 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5672 } 5673 5674 unsigned OverflowOp; 5675 switch (Opcode) { 5676 case ISD::SADDSAT: 5677 OverflowOp = ISD::SADDO; 5678 break; 5679 case ISD::UADDSAT: 5680 OverflowOp = ISD::UADDO; 5681 break; 5682 case ISD::SSUBSAT: 5683 OverflowOp = ISD::SSUBO; 5684 break; 5685 case ISD::USUBSAT: 5686 OverflowOp = ISD::USUBO; 5687 break; 5688 default: 5689 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5690 "addition or subtraction node."); 5691 } 5692 5693 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5694 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5695 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5696 LHS, RHS); 5697 SDValue SumDiff = Result.getValue(0); 5698 SDValue Overflow = Result.getValue(1); 5699 SDValue Zero = DAG.getConstant(0, dl, VT); 5700 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5701 5702 if (Opcode == ISD::UADDSAT) { 5703 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5704 // (LHS + RHS) | OverflowMask 5705 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5706 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5707 } 5708 // Overflow ? 0xffff.... : (LHS + RHS) 5709 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5710 } else if (Opcode == ISD::USUBSAT) { 5711 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5712 // (LHS - RHS) & ~OverflowMask 5713 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5714 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5715 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5716 } 5717 // Overflow ? 0 : (LHS - RHS) 5718 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5719 } else { 5720 // SatMax -> Overflow && SumDiff < 0 5721 // SatMin -> Overflow && SumDiff >= 0 5722 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5723 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5724 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5725 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5726 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5727 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5728 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5729 } 5730 } 5731 5732 SDValue 5733 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5734 assert((Node->getOpcode() == ISD::SMULFIX || 5735 Node->getOpcode() == ISD::UMULFIX || 5736 Node->getOpcode() == ISD::SMULFIXSAT) && 5737 "Expected a fixed point multiplication opcode"); 5738 5739 SDLoc dl(Node); 5740 SDValue LHS = Node->getOperand(0); 5741 SDValue RHS = Node->getOperand(1); 5742 EVT VT = LHS.getValueType(); 5743 unsigned Scale = Node->getConstantOperandVal(2); 5744 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT; 5745 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5746 unsigned VTSize = VT.getScalarSizeInBits(); 5747 5748 if (!Scale) { 5749 // [us]mul.fix(a, b, 0) -> mul(a, b) 5750 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) { 5751 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5752 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) { 5753 SDValue Result = 5754 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 5755 SDValue Product = Result.getValue(0); 5756 SDValue Overflow = Result.getValue(1); 5757 SDValue Zero = DAG.getConstant(0, dl, VT); 5758 5759 APInt MinVal = APInt::getSignedMinValue(VTSize); 5760 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 5761 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5762 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5763 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 5764 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 5765 return DAG.getSelect(dl, VT, Overflow, Result, Product); 5766 } 5767 } 5768 5769 bool Signed = 5770 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT; 5771 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5772 "Expected scale to be less than the number of bits if signed or at " 5773 "most the number of bits if unsigned."); 5774 assert(LHS.getValueType() == RHS.getValueType() && 5775 "Expected both operands to be the same type"); 5776 5777 // Get the upper and lower bits of the result. 5778 SDValue Lo, Hi; 5779 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5780 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5781 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5782 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5783 Lo = Result.getValue(0); 5784 Hi = Result.getValue(1); 5785 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5786 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5787 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5788 } else if (VT.isVector()) { 5789 return SDValue(); 5790 } else { 5791 report_fatal_error("Unable to expand fixed point multiplication."); 5792 } 5793 5794 if (Scale == VTSize) 5795 // Result is just the top half since we'd be shifting by the width of the 5796 // operand. 5797 return Hi; 5798 5799 // The result will need to be shifted right by the scale since both operands 5800 // are scaled. The result is given to us in 2 halves, so we only want part of 5801 // both in the result. 5802 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5803 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5804 DAG.getConstant(Scale, dl, ShiftTy)); 5805 if (!Saturating) 5806 return Result; 5807 5808 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign 5809 SDValue HiMask = 5810 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT); 5811 SDValue LoMask = DAG.getConstant( 5812 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT); 5813 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 5814 APInt MinVal = APInt::getSignedMinValue(VTSize); 5815 5816 Result = DAG.getSelectCC(dl, Hi, LoMask, 5817 DAG.getConstant(MaxVal, dl, VT), Result, 5818 ISD::SETGT); 5819 return DAG.getSelectCC(dl, Hi, HiMask, 5820 DAG.getConstant(MinVal, dl, VT), Result, 5821 ISD::SETLT); 5822 } 5823 5824 void TargetLowering::expandUADDSUBO( 5825 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 5826 SDLoc dl(Node); 5827 SDValue LHS = Node->getOperand(0); 5828 SDValue RHS = Node->getOperand(1); 5829 bool IsAdd = Node->getOpcode() == ISD::UADDO; 5830 5831 // If ADD/SUBCARRY is legal, use that instead. 5832 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 5833 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 5834 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 5835 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 5836 { LHS, RHS, CarryIn }); 5837 Result = SDValue(NodeCarry.getNode(), 0); 5838 Overflow = SDValue(NodeCarry.getNode(), 1); 5839 return; 5840 } 5841 5842 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 5843 LHS.getValueType(), LHS, RHS); 5844 5845 EVT ResultType = Node->getValueType(1); 5846 EVT SetCCType = getSetCCResultType( 5847 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 5848 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 5849 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 5850 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 5851 } 5852 5853 void TargetLowering::expandSADDSUBO( 5854 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 5855 SDLoc dl(Node); 5856 SDValue LHS = Node->getOperand(0); 5857 SDValue RHS = Node->getOperand(1); 5858 bool IsAdd = Node->getOpcode() == ISD::SADDO; 5859 5860 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 5861 LHS.getValueType(), LHS, RHS); 5862 5863 EVT ResultType = Node->getValueType(1); 5864 EVT OType = getSetCCResultType( 5865 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 5866 5867 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5868 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 5869 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 5870 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 5871 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 5872 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 5873 return; 5874 } 5875 5876 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 5877 5878 // LHSSign -> LHS >= 0 5879 // RHSSign -> RHS >= 0 5880 // SumSign -> Result >= 0 5881 // 5882 // Add: 5883 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 5884 // Sub: 5885 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 5886 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 5887 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 5888 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 5889 IsAdd ? ISD::SETEQ : ISD::SETNE); 5890 5891 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); 5892 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 5893 5894 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 5895 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); 5896 } 5897 5898 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5899 SDValue &Overflow, SelectionDAG &DAG) const { 5900 SDLoc dl(Node); 5901 EVT VT = Node->getValueType(0); 5902 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5903 SDValue LHS = Node->getOperand(0); 5904 SDValue RHS = Node->getOperand(1); 5905 bool isSigned = Node->getOpcode() == ISD::SMULO; 5906 5907 // For power-of-two multiplications we can use a simpler shift expansion. 5908 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5909 const APInt &C = RHSC->getAPIntValue(); 5910 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5911 if (C.isPowerOf2()) { 5912 // smulo(x, signed_min) is same as umulo(x, signed_min). 5913 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5914 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5915 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 5916 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 5917 Overflow = DAG.getSetCC(dl, SetCCVT, 5918 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5919 dl, VT, Result, ShiftAmt), 5920 LHS, ISD::SETNE); 5921 return true; 5922 } 5923 } 5924 5925 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5926 if (VT.isVector()) 5927 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5928 VT.getVectorNumElements()); 5929 5930 SDValue BottomHalf; 5931 SDValue TopHalf; 5932 static const unsigned Ops[2][3] = 5933 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5934 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5935 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5936 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5937 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5938 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5939 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5940 RHS); 5941 TopHalf = BottomHalf.getValue(1); 5942 } else if (isTypeLegal(WideVT)) { 5943 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5944 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5945 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5946 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5947 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5948 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5949 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5950 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5951 } else { 5952 if (VT.isVector()) 5953 return false; 5954 5955 // We can fall back to a libcall with an illegal type for the MUL if we 5956 // have a libcall big enough. 5957 // Also, we can fall back to a division in some cases, but that's a big 5958 // performance hit in the general case. 5959 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5960 if (WideVT == MVT::i16) 5961 LC = RTLIB::MUL_I16; 5962 else if (WideVT == MVT::i32) 5963 LC = RTLIB::MUL_I32; 5964 else if (WideVT == MVT::i64) 5965 LC = RTLIB::MUL_I64; 5966 else if (WideVT == MVT::i128) 5967 LC = RTLIB::MUL_I128; 5968 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5969 5970 SDValue HiLHS; 5971 SDValue HiRHS; 5972 if (isSigned) { 5973 // The high part is obtained by SRA'ing all but one of the bits of low 5974 // part. 5975 unsigned LoSize = VT.getSizeInBits(); 5976 HiLHS = 5977 DAG.getNode(ISD::SRA, dl, VT, LHS, 5978 DAG.getConstant(LoSize - 1, dl, 5979 getPointerTy(DAG.getDataLayout()))); 5980 HiRHS = 5981 DAG.getNode(ISD::SRA, dl, VT, RHS, 5982 DAG.getConstant(LoSize - 1, dl, 5983 getPointerTy(DAG.getDataLayout()))); 5984 } else { 5985 HiLHS = DAG.getConstant(0, dl, VT); 5986 HiRHS = DAG.getConstant(0, dl, VT); 5987 } 5988 5989 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5990 // pre-lowered to the correct types. This all depends upon WideVT not 5991 // being a legal type for the architecture and thus has to be split to 5992 // two arguments. 5993 SDValue Ret; 5994 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 5995 // Halves of WideVT are packed into registers in different order 5996 // depending on platform endianness. This is usually handled by 5997 // the C calling convention, but we can't defer to it in 5998 // the legalizer. 5999 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 6000 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6001 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6002 /* isPostTypeLegalization */ true).first; 6003 } else { 6004 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 6005 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6006 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6007 /* isPostTypeLegalization */ true).first; 6008 } 6009 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 6010 "Ret value is a collection of constituent nodes holding result."); 6011 if (DAG.getDataLayout().isLittleEndian()) { 6012 // Same as above. 6013 BottomHalf = Ret.getOperand(0); 6014 TopHalf = Ret.getOperand(1); 6015 } else { 6016 BottomHalf = Ret.getOperand(1); 6017 TopHalf = Ret.getOperand(0); 6018 } 6019 } 6020 6021 Result = BottomHalf; 6022 if (isSigned) { 6023 SDValue ShiftAmt = DAG.getConstant( 6024 VT.getScalarSizeInBits() - 1, dl, 6025 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 6026 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 6027 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 6028 } else { 6029 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 6030 DAG.getConstant(0, dl, VT), ISD::SETNE); 6031 } 6032 6033 // Truncate the result if SetCC returns a larger type than needed. 6034 EVT RType = Node->getValueType(1); 6035 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 6036 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 6037 6038 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 6039 "Unexpected result type for S/UMULO legalization"); 6040 return true; 6041 } 6042 6043 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 6044 SDLoc dl(Node); 6045 bool NoNaN = Node->getFlags().hasNoNaNs(); 6046 unsigned BaseOpcode = 0; 6047 switch (Node->getOpcode()) { 6048 default: llvm_unreachable("Expected VECREDUCE opcode"); 6049 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 6050 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 6051 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 6052 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 6053 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 6054 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 6055 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 6056 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 6057 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 6058 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 6059 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 6060 case ISD::VECREDUCE_FMAX: 6061 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 6062 break; 6063 case ISD::VECREDUCE_FMIN: 6064 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 6065 break; 6066 } 6067 6068 SDValue Op = Node->getOperand(0); 6069 EVT VT = Op.getValueType(); 6070 6071 // Try to use a shuffle reduction for power of two vectors. 6072 if (VT.isPow2VectorType()) { 6073 while (VT.getVectorNumElements() > 1) { 6074 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 6075 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 6076 break; 6077 6078 SDValue Lo, Hi; 6079 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 6080 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 6081 VT = HalfVT; 6082 } 6083 } 6084 6085 EVT EltVT = VT.getVectorElementType(); 6086 unsigned NumElts = VT.getVectorNumElements(); 6087 6088 SmallVector<SDValue, 8> Ops; 6089 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 6090 6091 SDValue Res = Ops[0]; 6092 for (unsigned i = 1; i < NumElts; i++) 6093 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 6094 6095 // Result type may be wider than element type. 6096 if (EltVT != Node->getValueType(0)) 6097 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 6098 return Res; 6099 } 6100