1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineJumpTableInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <cctype> 38 using namespace llvm; 39 40 /// NOTE: The TargetMachine owns TLOF. 41 TargetLowering::TargetLowering(const TargetMachine &tm) 42 : TargetLoweringBase(tm) {} 43 44 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 45 return nullptr; 46 } 47 48 /// Check whether a given call node is in tail position within its function. If 49 /// so, it sets Chain to the input chain of the tail call. 50 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 51 SDValue &Chain) const { 52 const Function *F = DAG.getMachineFunction().getFunction(); 53 54 // Conservatively require the attributes of the call to match those of 55 // the return. Ignore noalias because it doesn't affect the call sequence. 56 AttributeSet CallerAttrs = F->getAttributes(); 57 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 58 .removeAttribute(Attribute::NoAlias).hasAttributes()) 59 return false; 60 61 // It's not safe to eliminate the sign / zero extension of the return value. 62 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 63 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 64 return false; 65 66 // Check if the only use is a function return node. 67 return isUsedByReturnOnly(Node, Chain); 68 } 69 70 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 71 const uint32_t *CallerPreservedMask, 72 const SmallVectorImpl<CCValAssign> &ArgLocs, 73 const SmallVectorImpl<SDValue> &OutVals) const { 74 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 75 const CCValAssign &ArgLoc = ArgLocs[I]; 76 if (!ArgLoc.isRegLoc()) 77 continue; 78 unsigned Reg = ArgLoc.getLocReg(); 79 // Only look at callee saved registers. 80 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 81 continue; 82 // Check that we pass the value used for the caller. 83 // (We look for a CopyFromReg reading a virtual register that is used 84 // for the function live-in value of register Reg) 85 SDValue Value = OutVals[I]; 86 if (Value->getOpcode() != ISD::CopyFromReg) 87 return false; 88 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 89 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 90 return false; 91 } 92 return true; 93 } 94 95 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 96 /// and called function attributes. 97 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 98 unsigned AttrIdx) { 99 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 100 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 101 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 102 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 103 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 104 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 105 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 106 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 107 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 108 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 109 Alignment = CS->getParamAlignment(AttrIdx); 110 } 111 112 /// Generate a libcall taking the given operands as arguments and returning a 113 /// result of type RetVT. 114 std::pair<SDValue, SDValue> 115 TargetLowering::makeLibCall(SelectionDAG &DAG, 116 RTLIB::Libcall LC, EVT RetVT, 117 ArrayRef<SDValue> Ops, 118 bool isSigned, SDLoc dl, 119 bool doesNotReturn, 120 bool isReturnValueUsed) const { 121 TargetLowering::ArgListTy Args; 122 Args.reserve(Ops.size()); 123 124 TargetLowering::ArgListEntry Entry; 125 for (SDValue Op : Ops) { 126 Entry.Node = Op; 127 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 128 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Args.push_back(Entry); 131 } 132 133 if (LC == RTLIB::UNKNOWN_LIBCALL) 134 report_fatal_error("Unsupported library call operation!"); 135 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 136 getPointerTy(DAG.getDataLayout())); 137 138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 139 TargetLowering::CallLoweringInfo CLI(DAG); 140 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 142 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 143 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 144 .setSExtResult(signExtend).setZExtResult(!signExtend); 145 return LowerCallTo(CLI); 146 } 147 148 /// Soften the operands of a comparison. This code is shared among BR_CC, 149 /// SELECT_CC, and SETCC handlers. 150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 151 SDValue &NewLHS, SDValue &NewRHS, 152 ISD::CondCode &CCCode, 153 SDLoc dl) const { 154 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 155 && "Unsupported setcc type!"); 156 157 // Expand into one or more soft-fp libcall(s). 158 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 159 bool ShouldInvertCC = false; 160 switch (CCCode) { 161 case ISD::SETEQ: 162 case ISD::SETOEQ: 163 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 164 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 165 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 166 break; 167 case ISD::SETNE: 168 case ISD::SETUNE: 169 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 170 (VT == MVT::f64) ? RTLIB::UNE_F64 : 171 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 172 break; 173 case ISD::SETGE: 174 case ISD::SETOGE: 175 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 176 (VT == MVT::f64) ? RTLIB::OGE_F64 : 177 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 178 break; 179 case ISD::SETLT: 180 case ISD::SETOLT: 181 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 182 (VT == MVT::f64) ? RTLIB::OLT_F64 : 183 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 184 break; 185 case ISD::SETLE: 186 case ISD::SETOLE: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : 189 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 190 break; 191 case ISD::SETGT: 192 case ISD::SETOGT: 193 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 194 (VT == MVT::f64) ? RTLIB::OGT_F64 : 195 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 196 break; 197 case ISD::SETUO: 198 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 199 (VT == MVT::f64) ? RTLIB::UO_F64 : 200 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 201 break; 202 case ISD::SETO: 203 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 204 (VT == MVT::f64) ? RTLIB::O_F64 : 205 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 206 break; 207 case ISD::SETONE: 208 // SETONE = SETOLT | SETOGT 209 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 210 (VT == MVT::f64) ? RTLIB::OLT_F64 : 211 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 212 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 213 (VT == MVT::f64) ? RTLIB::OGT_F64 : 214 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 215 break; 216 case ISD::SETUEQ: 217 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 218 (VT == MVT::f64) ? RTLIB::UO_F64 : 219 (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 221 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 222 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 223 break; 224 default: 225 // Invert CC for unordered comparisons 226 ShouldInvertCC = true; 227 switch (CCCode) { 228 case ISD::SETULT: 229 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 230 (VT == MVT::f64) ? RTLIB::OGE_F64 : 231 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 232 break; 233 case ISD::SETULE: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 235 (VT == MVT::f64) ? RTLIB::OGT_F64 : 236 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 237 break; 238 case ISD::SETUGT: 239 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 240 (VT == MVT::f64) ? RTLIB::OLE_F64 : 241 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 242 break; 243 case ISD::SETUGE: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 245 (VT == MVT::f64) ? RTLIB::OLT_F64 : 246 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 247 break; 248 default: llvm_unreachable("Do not know how to soften this setcc!"); 249 } 250 } 251 252 // Use the target specific return value for comparions lib calls. 253 EVT RetVT = getCmpLibcallReturnType(); 254 SDValue Ops[2] = {NewLHS, NewRHS}; 255 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 256 dl).first; 257 NewRHS = DAG.getConstant(0, dl, RetVT); 258 259 CCCode = getCmpLibcallCC(LC1); 260 if (ShouldInvertCC) 261 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 262 263 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 264 SDValue Tmp = DAG.getNode( 265 ISD::SETCC, dl, 266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 267 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 268 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 269 dl).first; 270 NewLHS = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 274 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 275 NewRHS = SDValue(); 276 } 277 } 278 279 /// Return the entry encoding for a jump table in the current function. The 280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 281 unsigned TargetLowering::getJumpTableEncoding() const { 282 // In non-pic modes, just use the address of a block. 283 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 284 return MachineJumpTableInfo::EK_BlockAddress; 285 286 // In PIC mode, if the target supports a GPRel32 directive, use it. 287 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 288 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 289 290 // Otherwise, use a label difference. 291 return MachineJumpTableInfo::EK_LabelDifference32; 292 } 293 294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 295 SelectionDAG &DAG) const { 296 // If our PIC model is GP relative, use the global offset table as the base. 297 unsigned JTEncoding = getJumpTableEncoding(); 298 299 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 300 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 301 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 302 303 return Table; 304 } 305 306 /// This returns the relocation base for the given PIC jumptable, the same as 307 /// getPICJumpTableRelocBase, but as an MCExpr. 308 const MCExpr * 309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 310 unsigned JTI,MCContext &Ctx) const{ 311 // The normal PIC reloc base is the label at the start of the jump table. 312 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 313 } 314 315 bool 316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 317 // Assume that everything is safe in static mode. 318 if (getTargetMachine().getRelocationModel() == Reloc::Static) 319 return true; 320 321 // In dynamic-no-pic mode, assume that known defined values are safe. 322 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 323 GA && GA->getGlobal()->isStrongDefinitionForLinker()) 324 return true; 325 326 // Otherwise assume nothing is safe. 327 return false; 328 } 329 330 //===----------------------------------------------------------------------===// 331 // Optimization Methods 332 //===----------------------------------------------------------------------===// 333 334 /// Check to see if the specified operand of the specified instruction is a 335 /// constant integer. If so, check to see if there are any bits set in the 336 /// constant that are not demanded. If so, shrink the constant and return true. 337 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 338 const APInt &Demanded) { 339 SDLoc dl(Op); 340 341 // FIXME: ISD::SELECT, ISD::SELECT_CC 342 switch (Op.getOpcode()) { 343 default: break; 344 case ISD::XOR: 345 case ISD::AND: 346 case ISD::OR: { 347 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 348 if (!C) return false; 349 350 if (Op.getOpcode() == ISD::XOR && 351 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 352 return false; 353 354 // if we can expand it to have all bits set, do it 355 if (C->getAPIntValue().intersects(~Demanded)) { 356 EVT VT = Op.getValueType(); 357 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 358 DAG.getConstant(Demanded & 359 C->getAPIntValue(), 360 dl, VT)); 361 return CombineTo(Op, New); 362 } 363 364 break; 365 } 366 } 367 368 return false; 369 } 370 371 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 372 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 373 /// generalized for targets with other types of implicit widening casts. 374 bool 375 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 376 unsigned BitWidth, 377 const APInt &Demanded, 378 SDLoc dl) { 379 assert(Op.getNumOperands() == 2 && 380 "ShrinkDemandedOp only supports binary operators!"); 381 assert(Op.getNode()->getNumValues() == 1 && 382 "ShrinkDemandedOp only supports nodes with one result!"); 383 384 // Early return, as this function cannot handle vector types. 385 if (Op.getValueType().isVector()) 386 return false; 387 388 // Don't do this if the node has another user, which may require the 389 // full value. 390 if (!Op.getNode()->hasOneUse()) 391 return false; 392 393 // Search for the smallest integer type with free casts to and from 394 // Op's type. For expedience, just check power-of-2 integer types. 395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 396 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 397 unsigned SmallVTBits = DemandedSize; 398 if (!isPowerOf2_32(SmallVTBits)) 399 SmallVTBits = NextPowerOf2(SmallVTBits); 400 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 401 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 402 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 403 TLI.isZExtFree(SmallVT, Op.getValueType())) { 404 // We found a type with free casts. 405 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 406 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 407 Op.getNode()->getOperand(0)), 408 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 409 Op.getNode()->getOperand(1))); 410 bool NeedZext = DemandedSize > SmallVTBits; 411 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 412 dl, Op.getValueType(), X); 413 return CombineTo(Op, Z); 414 } 415 } 416 return false; 417 } 418 419 /// Look at Op. At this point, we know that only the DemandedMask bits of the 420 /// result of Op are ever used downstream. If we can use this information to 421 /// simplify Op, create a new simplified DAG node and return true, returning the 422 /// original and new nodes in Old and New. Otherwise, analyze the expression and 423 /// return a mask of KnownOne and KnownZero bits for the expression (used to 424 /// simplify the caller). The KnownZero/One bits may only be accurate for those 425 /// bits in the DemandedMask. 426 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 427 const APInt &DemandedMask, 428 APInt &KnownZero, 429 APInt &KnownOne, 430 TargetLoweringOpt &TLO, 431 unsigned Depth) const { 432 unsigned BitWidth = DemandedMask.getBitWidth(); 433 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 434 "Mask size mismatches value type size!"); 435 APInt NewMask = DemandedMask; 436 SDLoc dl(Op); 437 auto &DL = TLO.DAG.getDataLayout(); 438 439 // Don't know anything. 440 KnownZero = KnownOne = APInt(BitWidth, 0); 441 442 // Other users may use these bits. 443 if (!Op.getNode()->hasOneUse()) { 444 if (Depth != 0) { 445 // If not at the root, Just compute the KnownZero/KnownOne bits to 446 // simplify things downstream. 447 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 448 return false; 449 } 450 // If this is the root being simplified, allow it to have multiple uses, 451 // just set the NewMask to all bits. 452 NewMask = APInt::getAllOnesValue(BitWidth); 453 } else if (DemandedMask == 0) { 454 // Not demanding any bits from Op. 455 if (!Op.isUndef()) 456 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 457 return false; 458 } else if (Depth == 6) { // Limit search depth. 459 return false; 460 } 461 462 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 463 switch (Op.getOpcode()) { 464 case ISD::Constant: 465 // We know all of the bits for a constant! 466 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 467 KnownZero = ~KnownOne; 468 return false; // Don't fall through, will infinitely loop. 469 case ISD::AND: 470 // If the RHS is a constant, check to see if the LHS would be zero without 471 // using the bits from the RHS. Below, we use knowledge about the RHS to 472 // simplify the LHS, here we're using information from the LHS to simplify 473 // the RHS. 474 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 475 APInt LHSZero, LHSOne; 476 // Do not increment Depth here; that can cause an infinite loop. 477 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 478 // If the LHS already has zeros where RHSC does, this and is dead. 479 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 480 return TLO.CombineTo(Op, Op.getOperand(0)); 481 // If any of the set bits in the RHS are known zero on the LHS, shrink 482 // the constant. 483 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 484 return true; 485 } 486 487 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 488 KnownOne, TLO, Depth+1)) 489 return true; 490 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 491 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 492 KnownZero2, KnownOne2, TLO, Depth+1)) 493 return true; 494 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 495 496 // If all of the demanded bits are known one on one side, return the other. 497 // These bits cannot contribute to the result of the 'and'. 498 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 499 return TLO.CombineTo(Op, Op.getOperand(0)); 500 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 501 return TLO.CombineTo(Op, Op.getOperand(1)); 502 // If all of the demanded bits in the inputs are known zeros, return zero. 503 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 504 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 505 // If the RHS is a constant, see if we can simplify it. 506 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 507 return true; 508 // If the operation can be done in a smaller type, do so. 509 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 510 return true; 511 512 // Output known-1 bits are only known if set in both the LHS & RHS. 513 KnownOne &= KnownOne2; 514 // Output known-0 are known to be clear if zero in either the LHS | RHS. 515 KnownZero |= KnownZero2; 516 break; 517 case ISD::OR: 518 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 519 KnownOne, TLO, Depth+1)) 520 return true; 521 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 522 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 523 KnownZero2, KnownOne2, TLO, Depth+1)) 524 return true; 525 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 526 527 // If all of the demanded bits are known zero on one side, return the other. 528 // These bits cannot contribute to the result of the 'or'. 529 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 530 return TLO.CombineTo(Op, Op.getOperand(0)); 531 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 532 return TLO.CombineTo(Op, Op.getOperand(1)); 533 // If all of the potentially set bits on one side are known to be set on 534 // the other side, just use the 'other' side. 535 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 536 return TLO.CombineTo(Op, Op.getOperand(0)); 537 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 538 return TLO.CombineTo(Op, Op.getOperand(1)); 539 // If the RHS is a constant, see if we can simplify it. 540 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 541 return true; 542 // If the operation can be done in a smaller type, do so. 543 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 544 return true; 545 546 // Output known-0 bits are only known if clear in both the LHS & RHS. 547 KnownZero &= KnownZero2; 548 // Output known-1 are known to be set if set in either the LHS | RHS. 549 KnownOne |= KnownOne2; 550 break; 551 case ISD::XOR: 552 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 553 KnownOne, TLO, Depth+1)) 554 return true; 555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 556 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 557 KnownOne2, TLO, Depth+1)) 558 return true; 559 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 560 561 // If all of the demanded bits are known zero on one side, return the other. 562 // These bits cannot contribute to the result of the 'xor'. 563 if ((KnownZero & NewMask) == NewMask) 564 return TLO.CombineTo(Op, Op.getOperand(0)); 565 if ((KnownZero2 & NewMask) == NewMask) 566 return TLO.CombineTo(Op, Op.getOperand(1)); 567 // If the operation can be done in a smaller type, do so. 568 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 569 return true; 570 571 // If all of the unknown bits are known to be zero on one side or the other 572 // (but not both) turn this into an *inclusive* or. 573 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 574 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 575 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 576 Op.getOperand(0), 577 Op.getOperand(1))); 578 579 // Output known-0 bits are known if clear or set in both the LHS & RHS. 580 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 581 // Output known-1 are known to be set if set in only one of the LHS, RHS. 582 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 583 584 // If all of the demanded bits on one side are known, and all of the set 585 // bits on that side are also known to be set on the other side, turn this 586 // into an AND, as we know the bits will be cleared. 587 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 588 // NB: it is okay if more bits are known than are requested 589 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 590 if (KnownOne == KnownOne2) { // set bits are the same on both sides 591 EVT VT = Op.getValueType(); 592 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 593 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 594 Op.getOperand(0), ANDC)); 595 } 596 } 597 598 // If the RHS is a constant, see if we can simplify it. 599 // for XOR, we prefer to force bits to 1 if they will make a -1. 600 // if we can't force bits, try to shrink constant 601 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 602 APInt Expanded = C->getAPIntValue() | (~NewMask); 603 // if we can expand it to have all bits set, do it 604 if (Expanded.isAllOnesValue()) { 605 if (Expanded != C->getAPIntValue()) { 606 EVT VT = Op.getValueType(); 607 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 608 TLO.DAG.getConstant(Expanded, dl, VT)); 609 return TLO.CombineTo(Op, New); 610 } 611 // if it already has all the bits set, nothing to change 612 // but don't shrink either! 613 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 614 return true; 615 } 616 } 617 618 KnownZero = KnownZeroOut; 619 KnownOne = KnownOneOut; 620 break; 621 case ISD::SELECT: 622 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 623 KnownOne, TLO, Depth+1)) 624 return true; 625 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 626 KnownOne2, TLO, Depth+1)) 627 return true; 628 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 629 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 630 631 // If the operands are constants, see if we can simplify them. 632 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 633 return true; 634 635 // Only known if known in both the LHS and RHS. 636 KnownOne &= KnownOne2; 637 KnownZero &= KnownZero2; 638 break; 639 case ISD::SELECT_CC: 640 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 641 KnownOne, TLO, Depth+1)) 642 return true; 643 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 644 KnownOne2, TLO, Depth+1)) 645 return true; 646 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 647 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 648 649 // If the operands are constants, see if we can simplify them. 650 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 651 return true; 652 653 // Only known if known in both the LHS and RHS. 654 KnownOne &= KnownOne2; 655 KnownZero &= KnownZero2; 656 break; 657 case ISD::SHL: 658 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 659 unsigned ShAmt = SA->getZExtValue(); 660 SDValue InOp = Op.getOperand(0); 661 662 // If the shift count is an invalid immediate, don't do anything. 663 if (ShAmt >= BitWidth) 664 break; 665 666 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 667 // single shift. We can do this if the bottom bits (which are shifted 668 // out) are never demanded. 669 if (InOp.getOpcode() == ISD::SRL && 670 isa<ConstantSDNode>(InOp.getOperand(1))) { 671 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 672 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 673 unsigned Opc = ISD::SHL; 674 int Diff = ShAmt-C1; 675 if (Diff < 0) { 676 Diff = -Diff; 677 Opc = ISD::SRL; 678 } 679 680 SDValue NewSA = 681 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 682 EVT VT = Op.getValueType(); 683 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 684 InOp.getOperand(0), NewSA)); 685 } 686 } 687 688 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 689 KnownZero, KnownOne, TLO, Depth+1)) 690 return true; 691 692 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 693 // are not demanded. This will likely allow the anyext to be folded away. 694 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 695 SDValue InnerOp = InOp.getNode()->getOperand(0); 696 EVT InnerVT = InnerOp.getValueType(); 697 unsigned InnerBits = InnerVT.getSizeInBits(); 698 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 699 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 700 EVT ShTy = getShiftAmountTy(InnerVT, DL); 701 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 702 ShTy = InnerVT; 703 SDValue NarrowShl = 704 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 705 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 706 return 707 TLO.CombineTo(Op, 708 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 709 NarrowShl)); 710 } 711 // Repeat the SHL optimization above in cases where an extension 712 // intervenes: (shl (anyext (shr x, c1)), c2) to 713 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 714 // aren't demanded (as above) and that the shifted upper c1 bits of 715 // x aren't demanded. 716 if (InOp.hasOneUse() && 717 InnerOp.getOpcode() == ISD::SRL && 718 InnerOp.hasOneUse() && 719 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 720 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 721 ->getZExtValue(); 722 if (InnerShAmt < ShAmt && 723 InnerShAmt < InnerBits && 724 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 725 NewMask.trunc(ShAmt) == 0) { 726 SDValue NewSA = 727 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 728 Op.getOperand(1).getValueType()); 729 EVT VT = Op.getValueType(); 730 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 731 InnerOp.getOperand(0)); 732 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 733 NewExt, NewSA)); 734 } 735 } 736 } 737 738 KnownZero <<= SA->getZExtValue(); 739 KnownOne <<= SA->getZExtValue(); 740 // low bits known zero. 741 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 742 } 743 break; 744 case ISD::SRL: 745 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 746 EVT VT = Op.getValueType(); 747 unsigned ShAmt = SA->getZExtValue(); 748 unsigned VTSize = VT.getSizeInBits(); 749 SDValue InOp = Op.getOperand(0); 750 751 // If the shift count is an invalid immediate, don't do anything. 752 if (ShAmt >= BitWidth) 753 break; 754 755 APInt InDemandedMask = (NewMask << ShAmt); 756 757 // If the shift is exact, then it does demand the low bits (and knows that 758 // they are zero). 759 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 760 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 761 762 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 763 // single shift. We can do this if the top bits (which are shifted out) 764 // are never demanded. 765 if (InOp.getOpcode() == ISD::SHL && 766 isa<ConstantSDNode>(InOp.getOperand(1))) { 767 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 768 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 769 unsigned Opc = ISD::SRL; 770 int Diff = ShAmt-C1; 771 if (Diff < 0) { 772 Diff = -Diff; 773 Opc = ISD::SHL; 774 } 775 776 SDValue NewSA = 777 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 778 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 779 InOp.getOperand(0), NewSA)); 780 } 781 } 782 783 // Compute the new bits that are at the top now. 784 if (SimplifyDemandedBits(InOp, InDemandedMask, 785 KnownZero, KnownOne, TLO, Depth+1)) 786 return true; 787 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 788 KnownZero = KnownZero.lshr(ShAmt); 789 KnownOne = KnownOne.lshr(ShAmt); 790 791 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 792 KnownZero |= HighBits; // High bits known zero. 793 } 794 break; 795 case ISD::SRA: 796 // If this is an arithmetic shift right and only the low-bit is set, we can 797 // always convert this into a logical shr, even if the shift amount is 798 // variable. The low bit of the shift cannot be an input sign bit unless 799 // the shift amount is >= the size of the datatype, which is undefined. 800 if (NewMask == 1) 801 return TLO.CombineTo(Op, 802 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 803 Op.getOperand(0), Op.getOperand(1))); 804 805 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 806 EVT VT = Op.getValueType(); 807 unsigned ShAmt = SA->getZExtValue(); 808 809 // If the shift count is an invalid immediate, don't do anything. 810 if (ShAmt >= BitWidth) 811 break; 812 813 APInt InDemandedMask = (NewMask << ShAmt); 814 815 // If the shift is exact, then it does demand the low bits (and knows that 816 // they are zero). 817 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 818 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 819 820 // If any of the demanded bits are produced by the sign extension, we also 821 // demand the input sign bit. 822 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 823 if (HighBits.intersects(NewMask)) 824 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 825 826 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 827 KnownZero, KnownOne, TLO, Depth+1)) 828 return true; 829 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 830 KnownZero = KnownZero.lshr(ShAmt); 831 KnownOne = KnownOne.lshr(ShAmt); 832 833 // Handle the sign bit, adjusted to where it is now in the mask. 834 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 835 836 // If the input sign bit is known to be zero, or if none of the top bits 837 // are demanded, turn this into an unsigned shift right. 838 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 839 SDNodeFlags Flags; 840 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 841 return TLO.CombineTo(Op, 842 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 843 Op.getOperand(1), &Flags)); 844 } 845 846 int Log2 = NewMask.exactLogBase2(); 847 if (Log2 >= 0) { 848 // The bit must come from the sign. 849 SDValue NewSA = 850 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 851 Op.getOperand(1).getValueType()); 852 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 853 Op.getOperand(0), NewSA)); 854 } 855 856 if (KnownOne.intersects(SignBit)) 857 // New bits are known one. 858 KnownOne |= HighBits; 859 } 860 break; 861 case ISD::SIGN_EXTEND_INREG: { 862 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 863 864 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 865 // If we only care about the highest bit, don't bother shifting right. 866 if (MsbMask == NewMask) { 867 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 868 SDValue InOp = Op.getOperand(0); 869 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 870 bool AlreadySignExtended = 871 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 872 // However if the input is already sign extended we expect the sign 873 // extension to be dropped altogether later and do not simplify. 874 if (!AlreadySignExtended) { 875 // Compute the correct shift amount type, which must be getShiftAmountTy 876 // for scalar types after legalization. 877 EVT ShiftAmtTy = Op.getValueType(); 878 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 879 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 880 881 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 882 ShiftAmtTy); 883 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 884 Op.getValueType(), InOp, 885 ShiftAmt)); 886 } 887 } 888 889 // Sign extension. Compute the demanded bits in the result that are not 890 // present in the input. 891 APInt NewBits = 892 APInt::getHighBitsSet(BitWidth, 893 BitWidth - ExVT.getScalarType().getSizeInBits()); 894 895 // If none of the extended bits are demanded, eliminate the sextinreg. 896 if ((NewBits & NewMask) == 0) 897 return TLO.CombineTo(Op, Op.getOperand(0)); 898 899 APInt InSignBit = 900 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 901 APInt InputDemandedBits = 902 APInt::getLowBitsSet(BitWidth, 903 ExVT.getScalarType().getSizeInBits()) & 904 NewMask; 905 906 // Since the sign extended bits are demanded, we know that the sign 907 // bit is demanded. 908 InputDemandedBits |= InSignBit; 909 910 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 911 KnownZero, KnownOne, TLO, Depth+1)) 912 return true; 913 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 914 915 // If the sign bit of the input is known set or clear, then we know the 916 // top bits of the result. 917 918 // If the input sign bit is known zero, convert this into a zero extension. 919 if (KnownZero.intersects(InSignBit)) 920 return TLO.CombineTo(Op, 921 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 922 923 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 924 KnownOne |= NewBits; 925 KnownZero &= ~NewBits; 926 } else { // Input sign bit unknown 927 KnownZero &= ~NewBits; 928 KnownOne &= ~NewBits; 929 } 930 break; 931 } 932 case ISD::BUILD_PAIR: { 933 EVT HalfVT = Op.getOperand(0).getValueType(); 934 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 935 936 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 937 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 938 939 APInt KnownZeroLo, KnownOneLo; 940 APInt KnownZeroHi, KnownOneHi; 941 942 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 943 KnownOneLo, TLO, Depth + 1)) 944 return true; 945 946 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 947 KnownOneHi, TLO, Depth + 1)) 948 return true; 949 950 KnownZero = KnownZeroLo.zext(BitWidth) | 951 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 952 953 KnownOne = KnownOneLo.zext(BitWidth) | 954 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 955 break; 956 } 957 case ISD::ZERO_EXTEND: { 958 unsigned OperandBitWidth = 959 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 960 APInt InMask = NewMask.trunc(OperandBitWidth); 961 962 // If none of the top bits are demanded, convert this into an any_extend. 963 APInt NewBits = 964 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 965 if (!NewBits.intersects(NewMask)) 966 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 967 Op.getValueType(), 968 Op.getOperand(0))); 969 970 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 971 KnownZero, KnownOne, TLO, Depth+1)) 972 return true; 973 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 974 KnownZero = KnownZero.zext(BitWidth); 975 KnownOne = KnownOne.zext(BitWidth); 976 KnownZero |= NewBits; 977 break; 978 } 979 case ISD::SIGN_EXTEND: { 980 EVT InVT = Op.getOperand(0).getValueType(); 981 unsigned InBits = InVT.getScalarType().getSizeInBits(); 982 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 983 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 984 APInt NewBits = ~InMask & NewMask; 985 986 // If none of the top bits are demanded, convert this into an any_extend. 987 if (NewBits == 0) 988 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 989 Op.getValueType(), 990 Op.getOperand(0))); 991 992 // Since some of the sign extended bits are demanded, we know that the sign 993 // bit is demanded. 994 APInt InDemandedBits = InMask & NewMask; 995 InDemandedBits |= InSignBit; 996 InDemandedBits = InDemandedBits.trunc(InBits); 997 998 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 999 KnownOne, TLO, Depth+1)) 1000 return true; 1001 KnownZero = KnownZero.zext(BitWidth); 1002 KnownOne = KnownOne.zext(BitWidth); 1003 1004 // If the sign bit is known zero, convert this to a zero extend. 1005 if (KnownZero.intersects(InSignBit)) 1006 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1007 Op.getValueType(), 1008 Op.getOperand(0))); 1009 1010 // If the sign bit is known one, the top bits match. 1011 if (KnownOne.intersects(InSignBit)) { 1012 KnownOne |= NewBits; 1013 assert((KnownZero & NewBits) == 0); 1014 } else { // Otherwise, top bits aren't known. 1015 assert((KnownOne & NewBits) == 0); 1016 assert((KnownZero & NewBits) == 0); 1017 } 1018 break; 1019 } 1020 case ISD::ANY_EXTEND: { 1021 unsigned OperandBitWidth = 1022 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1023 APInt InMask = NewMask.trunc(OperandBitWidth); 1024 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1025 KnownZero, KnownOne, TLO, Depth+1)) 1026 return true; 1027 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1028 KnownZero = KnownZero.zext(BitWidth); 1029 KnownOne = KnownOne.zext(BitWidth); 1030 break; 1031 } 1032 case ISD::TRUNCATE: { 1033 // Simplify the input, using demanded bit information, and compute the known 1034 // zero/one bits live out. 1035 unsigned OperandBitWidth = 1036 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1037 APInt TruncMask = NewMask.zext(OperandBitWidth); 1038 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1039 KnownZero, KnownOne, TLO, Depth+1)) 1040 return true; 1041 KnownZero = KnownZero.trunc(BitWidth); 1042 KnownOne = KnownOne.trunc(BitWidth); 1043 1044 // If the input is only used by this truncate, see if we can shrink it based 1045 // on the known demanded bits. 1046 if (Op.getOperand(0).getNode()->hasOneUse()) { 1047 SDValue In = Op.getOperand(0); 1048 switch (In.getOpcode()) { 1049 default: break; 1050 case ISD::SRL: 1051 // Shrink SRL by a constant if none of the high bits shifted in are 1052 // demanded. 1053 if (TLO.LegalTypes() && 1054 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1055 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1056 // undesirable. 1057 break; 1058 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1059 if (!ShAmt) 1060 break; 1061 SDValue Shift = In.getOperand(1); 1062 if (TLO.LegalTypes()) { 1063 uint64_t ShVal = ShAmt->getZExtValue(); 1064 Shift = TLO.DAG.getConstant(ShVal, dl, 1065 getShiftAmountTy(Op.getValueType(), DL)); 1066 } 1067 1068 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1069 OperandBitWidth - BitWidth); 1070 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1071 1072 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1073 // None of the shifted in bits are needed. Add a truncate of the 1074 // shift input, then shift it. 1075 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1076 Op.getValueType(), 1077 In.getOperand(0)); 1078 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1079 Op.getValueType(), 1080 NewTrunc, 1081 Shift)); 1082 } 1083 break; 1084 } 1085 } 1086 1087 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1088 break; 1089 } 1090 case ISD::AssertZext: { 1091 // AssertZext demands all of the high bits, plus any of the low bits 1092 // demanded by its users. 1093 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1094 APInt InMask = APInt::getLowBitsSet(BitWidth, 1095 VT.getSizeInBits()); 1096 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1097 KnownZero, KnownOne, TLO, Depth+1)) 1098 return true; 1099 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1100 1101 KnownZero |= ~InMask & NewMask; 1102 break; 1103 } 1104 case ISD::BITCAST: 1105 // If this is an FP->Int bitcast and if the sign bit is the only 1106 // thing demanded, turn this into a FGETSIGN. 1107 if (!TLO.LegalOperations() && 1108 !Op.getValueType().isVector() && 1109 !Op.getOperand(0).getValueType().isVector() && 1110 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1111 Op.getOperand(0).getValueType().isFloatingPoint()) { 1112 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1113 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1114 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1115 Op.getOperand(0).getValueType() != MVT::f128) { 1116 // Cannot eliminate/lower SHL for f128 yet. 1117 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1118 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1119 // place. We expect the SHL to be eliminated by other optimizations. 1120 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1121 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1122 if (!OpVTLegal && OpVTSizeInBits > 32) 1123 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1124 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1125 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1126 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1127 Op.getValueType(), 1128 Sign, ShAmt)); 1129 } 1130 } 1131 break; 1132 case ISD::ADD: 1133 case ISD::MUL: 1134 case ISD::SUB: { 1135 // Add, Sub, and Mul don't demand any bits in positions beyond that 1136 // of the highest bit demanded of them. 1137 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1138 BitWidth - NewMask.countLeadingZeros()); 1139 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1140 KnownOne2, TLO, Depth+1)) 1141 return true; 1142 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1143 KnownOne2, TLO, Depth+1)) 1144 return true; 1145 // See if the operation should be performed at a smaller bit width. 1146 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1147 return true; 1148 } 1149 // FALL THROUGH 1150 default: 1151 // Just use computeKnownBits to compute output bits. 1152 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1153 break; 1154 } 1155 1156 // If we know the value of all of the demanded bits, return this as a 1157 // constant. 1158 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1159 // Avoid folding to a constant if any OpaqueConstant is involved. 1160 const SDNode *N = Op.getNode(); 1161 for (SDNodeIterator I = SDNodeIterator::begin(N), 1162 E = SDNodeIterator::end(N); I != E; ++I) { 1163 SDNode *Op = *I; 1164 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1165 if (C->isOpaque()) 1166 return false; 1167 } 1168 return TLO.CombineTo(Op, 1169 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1170 } 1171 1172 return false; 1173 } 1174 1175 /// Determine which of the bits specified in Mask are known to be either zero or 1176 /// one and return them in the KnownZero/KnownOne bitsets. 1177 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1178 APInt &KnownZero, 1179 APInt &KnownOne, 1180 const SelectionDAG &DAG, 1181 unsigned Depth) const { 1182 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1183 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1184 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1185 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1186 "Should use MaskedValueIsZero if you don't know whether Op" 1187 " is a target node!"); 1188 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1189 } 1190 1191 /// This method can be implemented by targets that want to expose additional 1192 /// information about sign bits to the DAG Combiner. 1193 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1194 const SelectionDAG &, 1195 unsigned Depth) const { 1196 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1197 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1198 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1199 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1200 "Should use ComputeNumSignBits if you don't know whether Op" 1201 " is a target node!"); 1202 return 1; 1203 } 1204 1205 /// Test if the given value is known to have exactly one bit set. This differs 1206 /// from computeKnownBits in that it doesn't need to determine which bit is set. 1207 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1208 // A left-shift of a constant one will have exactly one bit set, because 1209 // shifting the bit off the end is undefined. 1210 if (Val.getOpcode() == ISD::SHL) 1211 if (ConstantSDNode *C = 1212 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1213 if (C->getAPIntValue() == 1) 1214 return true; 1215 1216 // Similarly, a right-shift of a constant sign-bit will have exactly 1217 // one bit set. 1218 if (Val.getOpcode() == ISD::SRL) 1219 if (ConstantSDNode *C = 1220 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1221 if (C->getAPIntValue().isSignBit()) 1222 return true; 1223 1224 // More could be done here, though the above checks are enough 1225 // to handle some common cases. 1226 1227 // Fall back to computeKnownBits to catch other known cases. 1228 EVT OpVT = Val.getValueType(); 1229 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1230 APInt KnownZero, KnownOne; 1231 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1232 return (KnownZero.countPopulation() == BitWidth - 1) && 1233 (KnownOne.countPopulation() == 1); 1234 } 1235 1236 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1237 if (!N) 1238 return false; 1239 1240 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1241 if (!CN) { 1242 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1243 if (!BV) 1244 return false; 1245 1246 BitVector UndefElements; 1247 CN = BV->getConstantSplatNode(&UndefElements); 1248 // Only interested in constant splats, and we don't try to handle undef 1249 // elements in identifying boolean constants. 1250 if (!CN || UndefElements.none()) 1251 return false; 1252 } 1253 1254 switch (getBooleanContents(N->getValueType(0))) { 1255 case UndefinedBooleanContent: 1256 return CN->getAPIntValue()[0]; 1257 case ZeroOrOneBooleanContent: 1258 return CN->isOne(); 1259 case ZeroOrNegativeOneBooleanContent: 1260 return CN->isAllOnesValue(); 1261 } 1262 1263 llvm_unreachable("Invalid boolean contents"); 1264 } 1265 1266 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1267 if (!N) 1268 return false; 1269 1270 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1271 if (!CN) { 1272 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1273 if (!BV) 1274 return false; 1275 1276 BitVector UndefElements; 1277 CN = BV->getConstantSplatNode(&UndefElements); 1278 // Only interested in constant splats, and we don't try to handle undef 1279 // elements in identifying boolean constants. 1280 if (!CN || UndefElements.none()) 1281 return false; 1282 } 1283 1284 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1285 return !CN->getAPIntValue()[0]; 1286 1287 return CN->isNullValue(); 1288 } 1289 1290 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1291 bool SExt) const { 1292 if (VT == MVT::i1) 1293 return N->isOne(); 1294 1295 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1296 switch (Cnt) { 1297 case TargetLowering::ZeroOrOneBooleanContent: 1298 // An extended value of 1 is always true, unless its original type is i1, 1299 // in which case it will be sign extended to -1. 1300 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1301 case TargetLowering::UndefinedBooleanContent: 1302 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1303 return N->isAllOnesValue() && SExt; 1304 } 1305 llvm_unreachable("Unexpected enumeration."); 1306 } 1307 1308 /// Try to simplify a setcc built with the specified operands and cc. If it is 1309 /// unable to simplify it, return a null SDValue. 1310 SDValue 1311 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1312 ISD::CondCode Cond, bool foldBooleans, 1313 DAGCombinerInfo &DCI, SDLoc dl) const { 1314 SelectionDAG &DAG = DCI.DAG; 1315 1316 // These setcc operations always fold. 1317 switch (Cond) { 1318 default: break; 1319 case ISD::SETFALSE: 1320 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1321 case ISD::SETTRUE: 1322 case ISD::SETTRUE2: { 1323 TargetLowering::BooleanContent Cnt = 1324 getBooleanContents(N0->getValueType(0)); 1325 return DAG.getConstant( 1326 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1327 VT); 1328 } 1329 } 1330 1331 // Ensure that the constant occurs on the RHS, and fold constant 1332 // comparisons. 1333 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1334 if (isa<ConstantSDNode>(N0.getNode()) && 1335 (DCI.isBeforeLegalizeOps() || 1336 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1337 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1338 1339 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1340 const APInt &C1 = N1C->getAPIntValue(); 1341 1342 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1343 // equality comparison, then we're just comparing whether X itself is 1344 // zero. 1345 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1346 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1347 N0.getOperand(1).getOpcode() == ISD::Constant) { 1348 const APInt &ShAmt 1349 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1350 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1351 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1352 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1353 // (srl (ctlz x), 5) == 0 -> X != 0 1354 // (srl (ctlz x), 5) != 1 -> X != 0 1355 Cond = ISD::SETNE; 1356 } else { 1357 // (srl (ctlz x), 5) != 0 -> X == 0 1358 // (srl (ctlz x), 5) == 1 -> X == 0 1359 Cond = ISD::SETEQ; 1360 } 1361 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1362 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1363 Zero, Cond); 1364 } 1365 } 1366 1367 SDValue CTPOP = N0; 1368 // Look through truncs that don't change the value of a ctpop. 1369 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1370 CTPOP = N0.getOperand(0); 1371 1372 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1373 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1374 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1375 EVT CTVT = CTPOP.getValueType(); 1376 SDValue CTOp = CTPOP.getOperand(0); 1377 1378 // (ctpop x) u< 2 -> (x & x-1) == 0 1379 // (ctpop x) u> 1 -> (x & x-1) != 0 1380 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1381 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1382 DAG.getConstant(1, dl, CTVT)); 1383 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1384 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1385 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1386 } 1387 1388 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1389 } 1390 1391 // (zext x) == C --> x == (trunc C) 1392 // (sext x) == C --> x == (trunc C) 1393 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1394 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1395 unsigned MinBits = N0.getValueSizeInBits(); 1396 SDValue PreExt; 1397 bool Signed = false; 1398 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1399 // ZExt 1400 MinBits = N0->getOperand(0).getValueSizeInBits(); 1401 PreExt = N0->getOperand(0); 1402 } else if (N0->getOpcode() == ISD::AND) { 1403 // DAGCombine turns costly ZExts into ANDs 1404 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1405 if ((C->getAPIntValue()+1).isPowerOf2()) { 1406 MinBits = C->getAPIntValue().countTrailingOnes(); 1407 PreExt = N0->getOperand(0); 1408 } 1409 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1410 // SExt 1411 MinBits = N0->getOperand(0).getValueSizeInBits(); 1412 PreExt = N0->getOperand(0); 1413 Signed = true; 1414 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1415 // ZEXTLOAD / SEXTLOAD 1416 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1417 MinBits = LN0->getMemoryVT().getSizeInBits(); 1418 PreExt = N0; 1419 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1420 Signed = true; 1421 MinBits = LN0->getMemoryVT().getSizeInBits(); 1422 PreExt = N0; 1423 } 1424 } 1425 1426 // Figure out how many bits we need to preserve this constant. 1427 unsigned ReqdBits = Signed ? 1428 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1429 C1.getActiveBits(); 1430 1431 // Make sure we're not losing bits from the constant. 1432 if (MinBits > 0 && 1433 MinBits < C1.getBitWidth() && 1434 MinBits >= ReqdBits) { 1435 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1436 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1437 // Will get folded away. 1438 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1439 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1440 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1441 } 1442 1443 // If truncating the setcc operands is not desirable, we can still 1444 // simplify the expression in some cases: 1445 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1446 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1447 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1448 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1449 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1450 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1451 SDValue TopSetCC = N0->getOperand(0); 1452 unsigned N0Opc = N0->getOpcode(); 1453 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1454 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1455 TopSetCC.getOpcode() == ISD::SETCC && 1456 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1457 (isConstFalseVal(N1C) || 1458 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1459 1460 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1461 (!N1C->isNullValue() && Cond == ISD::SETNE); 1462 1463 if (!Inverse) 1464 return TopSetCC; 1465 1466 ISD::CondCode InvCond = ISD::getSetCCInverse( 1467 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1468 TopSetCC.getOperand(0).getValueType().isInteger()); 1469 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1470 TopSetCC.getOperand(1), 1471 InvCond); 1472 1473 } 1474 } 1475 } 1476 1477 // If the LHS is '(and load, const)', the RHS is 0, 1478 // the test is for equality or unsigned, and all 1 bits of the const are 1479 // in the same partial word, see if we can shorten the load. 1480 if (DCI.isBeforeLegalize() && 1481 !ISD::isSignedIntSetCC(Cond) && 1482 N0.getOpcode() == ISD::AND && C1 == 0 && 1483 N0.getNode()->hasOneUse() && 1484 isa<LoadSDNode>(N0.getOperand(0)) && 1485 N0.getOperand(0).getNode()->hasOneUse() && 1486 isa<ConstantSDNode>(N0.getOperand(1))) { 1487 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1488 APInt bestMask; 1489 unsigned bestWidth = 0, bestOffset = 0; 1490 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1491 unsigned origWidth = N0.getValueType().getSizeInBits(); 1492 unsigned maskWidth = origWidth; 1493 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1494 // 8 bits, but have to be careful... 1495 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1496 origWidth = Lod->getMemoryVT().getSizeInBits(); 1497 const APInt &Mask = 1498 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1499 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1500 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1501 for (unsigned offset=0; offset<origWidth/width; offset++) { 1502 if ((newMask & Mask) == Mask) { 1503 if (!DAG.getDataLayout().isLittleEndian()) 1504 bestOffset = (origWidth/width - offset - 1) * (width/8); 1505 else 1506 bestOffset = (uint64_t)offset * (width/8); 1507 bestMask = Mask.lshr(offset * (width/8) * 8); 1508 bestWidth = width; 1509 break; 1510 } 1511 newMask = newMask << width; 1512 } 1513 } 1514 } 1515 if (bestWidth) { 1516 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1517 if (newVT.isRound()) { 1518 EVT PtrType = Lod->getOperand(1).getValueType(); 1519 SDValue Ptr = Lod->getBasePtr(); 1520 if (bestOffset != 0) 1521 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1522 DAG.getConstant(bestOffset, dl, PtrType)); 1523 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1524 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1525 Lod->getPointerInfo().getWithOffset(bestOffset), 1526 false, false, false, NewAlign); 1527 return DAG.getSetCC(dl, VT, 1528 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1529 DAG.getConstant(bestMask.trunc(bestWidth), 1530 dl, newVT)), 1531 DAG.getConstant(0LL, dl, newVT), Cond); 1532 } 1533 } 1534 } 1535 1536 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1537 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1538 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1539 1540 // If the comparison constant has bits in the upper part, the 1541 // zero-extended value could never match. 1542 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1543 C1.getBitWidth() - InSize))) { 1544 switch (Cond) { 1545 case ISD::SETUGT: 1546 case ISD::SETUGE: 1547 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1548 case ISD::SETULT: 1549 case ISD::SETULE: 1550 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1551 case ISD::SETGT: 1552 case ISD::SETGE: 1553 // True if the sign bit of C1 is set. 1554 return DAG.getConstant(C1.isNegative(), dl, VT); 1555 case ISD::SETLT: 1556 case ISD::SETLE: 1557 // True if the sign bit of C1 isn't set. 1558 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1559 default: 1560 break; 1561 } 1562 } 1563 1564 // Otherwise, we can perform the comparison with the low bits. 1565 switch (Cond) { 1566 case ISD::SETEQ: 1567 case ISD::SETNE: 1568 case ISD::SETUGT: 1569 case ISD::SETUGE: 1570 case ISD::SETULT: 1571 case ISD::SETULE: { 1572 EVT newVT = N0.getOperand(0).getValueType(); 1573 if (DCI.isBeforeLegalizeOps() || 1574 (isOperationLegal(ISD::SETCC, newVT) && 1575 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1576 EVT NewSetCCVT = 1577 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1578 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1579 1580 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1581 NewConst, Cond); 1582 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1583 } 1584 break; 1585 } 1586 default: 1587 break; // todo, be more careful with signed comparisons 1588 } 1589 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1590 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1591 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1592 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1593 EVT ExtDstTy = N0.getValueType(); 1594 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1595 1596 // If the constant doesn't fit into the number of bits for the source of 1597 // the sign extension, it is impossible for both sides to be equal. 1598 if (C1.getMinSignedBits() > ExtSrcTyBits) 1599 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1600 1601 SDValue ZextOp; 1602 EVT Op0Ty = N0.getOperand(0).getValueType(); 1603 if (Op0Ty == ExtSrcTy) { 1604 ZextOp = N0.getOperand(0); 1605 } else { 1606 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1607 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1608 DAG.getConstant(Imm, dl, Op0Ty)); 1609 } 1610 if (!DCI.isCalledByLegalizer()) 1611 DCI.AddToWorklist(ZextOp.getNode()); 1612 // Otherwise, make this a use of a zext. 1613 return DAG.getSetCC(dl, VT, ZextOp, 1614 DAG.getConstant(C1 & APInt::getLowBitsSet( 1615 ExtDstTyBits, 1616 ExtSrcTyBits), 1617 dl, ExtDstTy), 1618 Cond); 1619 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1620 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1621 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1622 if (N0.getOpcode() == ISD::SETCC && 1623 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1624 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1625 if (TrueWhenTrue) 1626 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1627 // Invert the condition. 1628 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1629 CC = ISD::getSetCCInverse(CC, 1630 N0.getOperand(0).getValueType().isInteger()); 1631 if (DCI.isBeforeLegalizeOps() || 1632 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1633 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1634 } 1635 1636 if ((N0.getOpcode() == ISD::XOR || 1637 (N0.getOpcode() == ISD::AND && 1638 N0.getOperand(0).getOpcode() == ISD::XOR && 1639 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1640 isa<ConstantSDNode>(N0.getOperand(1)) && 1641 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1642 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1643 // can only do this if the top bits are known zero. 1644 unsigned BitWidth = N0.getValueSizeInBits(); 1645 if (DAG.MaskedValueIsZero(N0, 1646 APInt::getHighBitsSet(BitWidth, 1647 BitWidth-1))) { 1648 // Okay, get the un-inverted input value. 1649 SDValue Val; 1650 if (N0.getOpcode() == ISD::XOR) 1651 Val = N0.getOperand(0); 1652 else { 1653 assert(N0.getOpcode() == ISD::AND && 1654 N0.getOperand(0).getOpcode() == ISD::XOR); 1655 // ((X^1)&1)^1 -> X & 1 1656 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1657 N0.getOperand(0).getOperand(0), 1658 N0.getOperand(1)); 1659 } 1660 1661 return DAG.getSetCC(dl, VT, Val, N1, 1662 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1663 } 1664 } else if (N1C->getAPIntValue() == 1 && 1665 (VT == MVT::i1 || 1666 getBooleanContents(N0->getValueType(0)) == 1667 ZeroOrOneBooleanContent)) { 1668 SDValue Op0 = N0; 1669 if (Op0.getOpcode() == ISD::TRUNCATE) 1670 Op0 = Op0.getOperand(0); 1671 1672 if ((Op0.getOpcode() == ISD::XOR) && 1673 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1674 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1675 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1676 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1677 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1678 Cond); 1679 } 1680 if (Op0.getOpcode() == ISD::AND && 1681 isa<ConstantSDNode>(Op0.getOperand(1)) && 1682 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1683 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1684 if (Op0.getValueType().bitsGT(VT)) 1685 Op0 = DAG.getNode(ISD::AND, dl, VT, 1686 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1687 DAG.getConstant(1, dl, VT)); 1688 else if (Op0.getValueType().bitsLT(VT)) 1689 Op0 = DAG.getNode(ISD::AND, dl, VT, 1690 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1691 DAG.getConstant(1, dl, VT)); 1692 1693 return DAG.getSetCC(dl, VT, Op0, 1694 DAG.getConstant(0, dl, Op0.getValueType()), 1695 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1696 } 1697 if (Op0.getOpcode() == ISD::AssertZext && 1698 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1699 return DAG.getSetCC(dl, VT, Op0, 1700 DAG.getConstant(0, dl, Op0.getValueType()), 1701 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1702 } 1703 } 1704 1705 APInt MinVal, MaxVal; 1706 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1707 if (ISD::isSignedIntSetCC(Cond)) { 1708 MinVal = APInt::getSignedMinValue(OperandBitSize); 1709 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1710 } else { 1711 MinVal = APInt::getMinValue(OperandBitSize); 1712 MaxVal = APInt::getMaxValue(OperandBitSize); 1713 } 1714 1715 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1716 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1717 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1718 // X >= C0 --> X > (C0 - 1) 1719 APInt C = C1 - 1; 1720 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1721 if ((DCI.isBeforeLegalizeOps() || 1722 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1723 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1724 isLegalICmpImmediate(C.getSExtValue())))) { 1725 return DAG.getSetCC(dl, VT, N0, 1726 DAG.getConstant(C, dl, N1.getValueType()), 1727 NewCC); 1728 } 1729 } 1730 1731 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1732 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1733 // X <= C0 --> X < (C0 + 1) 1734 APInt C = C1 + 1; 1735 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1736 if ((DCI.isBeforeLegalizeOps() || 1737 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1738 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1739 isLegalICmpImmediate(C.getSExtValue())))) { 1740 return DAG.getSetCC(dl, VT, N0, 1741 DAG.getConstant(C, dl, N1.getValueType()), 1742 NewCC); 1743 } 1744 } 1745 1746 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1747 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1748 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1749 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1750 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1751 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1752 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1753 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1754 1755 // Canonicalize setgt X, Min --> setne X, Min 1756 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1757 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1758 // Canonicalize setlt X, Max --> setne X, Max 1759 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1760 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1761 1762 // If we have setult X, 1, turn it into seteq X, 0 1763 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1764 return DAG.getSetCC(dl, VT, N0, 1765 DAG.getConstant(MinVal, dl, N0.getValueType()), 1766 ISD::SETEQ); 1767 // If we have setugt X, Max-1, turn it into seteq X, Max 1768 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1769 return DAG.getSetCC(dl, VT, N0, 1770 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1771 ISD::SETEQ); 1772 1773 // If we have "setcc X, C0", check to see if we can shrink the immediate 1774 // by changing cc. 1775 1776 // SETUGT X, SINTMAX -> SETLT X, 0 1777 if (Cond == ISD::SETUGT && 1778 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1779 return DAG.getSetCC(dl, VT, N0, 1780 DAG.getConstant(0, dl, N1.getValueType()), 1781 ISD::SETLT); 1782 1783 // SETULT X, SINTMIN -> SETGT X, -1 1784 if (Cond == ISD::SETULT && 1785 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1786 SDValue ConstMinusOne = 1787 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1788 N1.getValueType()); 1789 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1790 } 1791 1792 // Fold bit comparisons when we can. 1793 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1794 (VT == N0.getValueType() || 1795 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1796 N0.getOpcode() == ISD::AND) { 1797 auto &DL = DAG.getDataLayout(); 1798 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1799 EVT ShiftTy = DCI.isBeforeLegalize() 1800 ? getPointerTy(DL) 1801 : getShiftAmountTy(N0.getValueType(), DL); 1802 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1803 // Perform the xform if the AND RHS is a single bit. 1804 if (AndRHS->getAPIntValue().isPowerOf2()) { 1805 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1806 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1807 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1808 ShiftTy))); 1809 } 1810 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1811 // (X & 8) == 8 --> (X & 8) >> 3 1812 // Perform the xform if C1 is a single bit. 1813 if (C1.isPowerOf2()) { 1814 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1815 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1816 DAG.getConstant(C1.logBase2(), dl, 1817 ShiftTy))); 1818 } 1819 } 1820 } 1821 } 1822 1823 if (C1.getMinSignedBits() <= 64 && 1824 !isLegalICmpImmediate(C1.getSExtValue())) { 1825 // (X & -256) == 256 -> (X >> 8) == 1 1826 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1827 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1828 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1829 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1830 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1831 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1832 auto &DL = DAG.getDataLayout(); 1833 EVT ShiftTy = DCI.isBeforeLegalize() 1834 ? getPointerTy(DL) 1835 : getShiftAmountTy(N0.getValueType(), DL); 1836 EVT CmpTy = N0.getValueType(); 1837 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1838 DAG.getConstant(ShiftBits, dl, 1839 ShiftTy)); 1840 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1841 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1842 } 1843 } 1844 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1845 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1846 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1847 // X < 0x100000000 -> (X >> 32) < 1 1848 // X >= 0x100000000 -> (X >> 32) >= 1 1849 // X <= 0x0ffffffff -> (X >> 32) < 1 1850 // X > 0x0ffffffff -> (X >> 32) >= 1 1851 unsigned ShiftBits; 1852 APInt NewC = C1; 1853 ISD::CondCode NewCond = Cond; 1854 if (AdjOne) { 1855 ShiftBits = C1.countTrailingOnes(); 1856 NewC = NewC + 1; 1857 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1858 } else { 1859 ShiftBits = C1.countTrailingZeros(); 1860 } 1861 NewC = NewC.lshr(ShiftBits); 1862 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1863 isLegalICmpImmediate(NewC.getSExtValue())) { 1864 auto &DL = DAG.getDataLayout(); 1865 EVT ShiftTy = DCI.isBeforeLegalize() 1866 ? getPointerTy(DL) 1867 : getShiftAmountTy(N0.getValueType(), DL); 1868 EVT CmpTy = N0.getValueType(); 1869 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1870 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1871 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1872 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1873 } 1874 } 1875 } 1876 } 1877 1878 if (isa<ConstantFPSDNode>(N0.getNode())) { 1879 // Constant fold or commute setcc. 1880 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1881 if (O.getNode()) return O; 1882 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1883 // If the RHS of an FP comparison is a constant, simplify it away in 1884 // some cases. 1885 if (CFP->getValueAPF().isNaN()) { 1886 // If an operand is known to be a nan, we can fold it. 1887 switch (ISD::getUnorderedFlavor(Cond)) { 1888 default: llvm_unreachable("Unknown flavor!"); 1889 case 0: // Known false. 1890 return DAG.getConstant(0, dl, VT); 1891 case 1: // Known true. 1892 return DAG.getConstant(1, dl, VT); 1893 case 2: // Undefined. 1894 return DAG.getUNDEF(VT); 1895 } 1896 } 1897 1898 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1899 // constant if knowing that the operand is non-nan is enough. We prefer to 1900 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1901 // materialize 0.0. 1902 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1903 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1904 1905 // If the condition is not legal, see if we can find an equivalent one 1906 // which is legal. 1907 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1908 // If the comparison was an awkward floating-point == or != and one of 1909 // the comparison operands is infinity or negative infinity, convert the 1910 // condition to a less-awkward <= or >=. 1911 if (CFP->getValueAPF().isInfinity()) { 1912 if (CFP->getValueAPF().isNegative()) { 1913 if (Cond == ISD::SETOEQ && 1914 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1915 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1916 if (Cond == ISD::SETUEQ && 1917 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1918 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1919 if (Cond == ISD::SETUNE && 1920 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1921 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1922 if (Cond == ISD::SETONE && 1923 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1924 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1925 } else { 1926 if (Cond == ISD::SETOEQ && 1927 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1928 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1929 if (Cond == ISD::SETUEQ && 1930 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1931 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1932 if (Cond == ISD::SETUNE && 1933 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1934 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1935 if (Cond == ISD::SETONE && 1936 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1937 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1938 } 1939 } 1940 } 1941 } 1942 1943 if (N0 == N1) { 1944 // The sext(setcc()) => setcc() optimization relies on the appropriate 1945 // constant being emitted. 1946 uint64_t EqVal = 0; 1947 switch (getBooleanContents(N0.getValueType())) { 1948 case UndefinedBooleanContent: 1949 case ZeroOrOneBooleanContent: 1950 EqVal = ISD::isTrueWhenEqual(Cond); 1951 break; 1952 case ZeroOrNegativeOneBooleanContent: 1953 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1954 break; 1955 } 1956 1957 // We can always fold X == X for integer setcc's. 1958 if (N0.getValueType().isInteger()) { 1959 return DAG.getConstant(EqVal, dl, VT); 1960 } 1961 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1962 if (UOF == 2) // FP operators that are undefined on NaNs. 1963 return DAG.getConstant(EqVal, dl, VT); 1964 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1965 return DAG.getConstant(EqVal, dl, VT); 1966 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1967 // if it is not already. 1968 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1969 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1970 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1971 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1972 } 1973 1974 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1975 N0.getValueType().isInteger()) { 1976 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1977 N0.getOpcode() == ISD::XOR) { 1978 // Simplify (X+Y) == (X+Z) --> Y == Z 1979 if (N0.getOpcode() == N1.getOpcode()) { 1980 if (N0.getOperand(0) == N1.getOperand(0)) 1981 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1982 if (N0.getOperand(1) == N1.getOperand(1)) 1983 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1984 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1985 // If X op Y == Y op X, try other combinations. 1986 if (N0.getOperand(0) == N1.getOperand(1)) 1987 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1988 Cond); 1989 if (N0.getOperand(1) == N1.getOperand(0)) 1990 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1991 Cond); 1992 } 1993 } 1994 1995 // If RHS is a legal immediate value for a compare instruction, we need 1996 // to be careful about increasing register pressure needlessly. 1997 bool LegalRHSImm = false; 1998 1999 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2000 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2001 // Turn (X+C1) == C2 --> X == C2-C1 2002 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2003 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2004 DAG.getConstant(RHSC->getAPIntValue()- 2005 LHSR->getAPIntValue(), 2006 dl, N0.getValueType()), Cond); 2007 } 2008 2009 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2010 if (N0.getOpcode() == ISD::XOR) 2011 // If we know that all of the inverted bits are zero, don't bother 2012 // performing the inversion. 2013 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2014 return 2015 DAG.getSetCC(dl, VT, N0.getOperand(0), 2016 DAG.getConstant(LHSR->getAPIntValue() ^ 2017 RHSC->getAPIntValue(), 2018 dl, N0.getValueType()), 2019 Cond); 2020 } 2021 2022 // Turn (C1-X) == C2 --> X == C1-C2 2023 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2024 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2025 return 2026 DAG.getSetCC(dl, VT, N0.getOperand(1), 2027 DAG.getConstant(SUBC->getAPIntValue() - 2028 RHSC->getAPIntValue(), 2029 dl, N0.getValueType()), 2030 Cond); 2031 } 2032 } 2033 2034 // Could RHSC fold directly into a compare? 2035 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2036 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2037 } 2038 2039 // Simplify (X+Z) == X --> Z == 0 2040 // Don't do this if X is an immediate that can fold into a cmp 2041 // instruction and X+Z has other uses. It could be an induction variable 2042 // chain, and the transform would increase register pressure. 2043 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2044 if (N0.getOperand(0) == N1) 2045 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2046 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2047 if (N0.getOperand(1) == N1) { 2048 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2049 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2050 DAG.getConstant(0, dl, N0.getValueType()), 2051 Cond); 2052 if (N0.getNode()->hasOneUse()) { 2053 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2054 auto &DL = DAG.getDataLayout(); 2055 // (Z-X) == X --> Z == X<<1 2056 SDValue SH = DAG.getNode( 2057 ISD::SHL, dl, N1.getValueType(), N1, 2058 DAG.getConstant(1, dl, 2059 getShiftAmountTy(N1.getValueType(), DL))); 2060 if (!DCI.isCalledByLegalizer()) 2061 DCI.AddToWorklist(SH.getNode()); 2062 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2063 } 2064 } 2065 } 2066 } 2067 2068 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2069 N1.getOpcode() == ISD::XOR) { 2070 // Simplify X == (X+Z) --> Z == 0 2071 if (N1.getOperand(0) == N0) 2072 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2073 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2074 if (N1.getOperand(1) == N0) { 2075 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2076 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2077 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2078 if (N1.getNode()->hasOneUse()) { 2079 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2080 auto &DL = DAG.getDataLayout(); 2081 // X == (Z-X) --> X<<1 == Z 2082 SDValue SH = DAG.getNode( 2083 ISD::SHL, dl, N1.getValueType(), N0, 2084 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2085 if (!DCI.isCalledByLegalizer()) 2086 DCI.AddToWorklist(SH.getNode()); 2087 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2088 } 2089 } 2090 } 2091 2092 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 2093 // Note that where y is variable and is known to have at most 2094 // one bit set (for example, if it is z&1) we cannot do this; 2095 // the expressions are not equivalent when y==0. 2096 if (N0.getOpcode() == ISD::AND) 2097 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 2098 if (ValueHasExactlyOneBitSet(N1, DAG)) { 2099 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2100 if (DCI.isBeforeLegalizeOps() || 2101 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2102 SDValue Zero = DAG.getConstant(0, dl, N1.getValueType()); 2103 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 2104 } 2105 } 2106 } 2107 if (N1.getOpcode() == ISD::AND) 2108 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2109 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2110 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2111 if (DCI.isBeforeLegalizeOps() || 2112 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 2113 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2114 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2115 } 2116 } 2117 } 2118 } 2119 2120 // Fold away ALL boolean setcc's. 2121 SDValue Temp; 2122 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2123 switch (Cond) { 2124 default: llvm_unreachable("Unknown integer setcc!"); 2125 case ISD::SETEQ: // X == Y -> ~(X^Y) 2126 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2127 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2128 if (!DCI.isCalledByLegalizer()) 2129 DCI.AddToWorklist(Temp.getNode()); 2130 break; 2131 case ISD::SETNE: // X != Y --> (X^Y) 2132 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2133 break; 2134 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2135 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2136 Temp = DAG.getNOT(dl, N0, MVT::i1); 2137 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2138 if (!DCI.isCalledByLegalizer()) 2139 DCI.AddToWorklist(Temp.getNode()); 2140 break; 2141 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2142 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2143 Temp = DAG.getNOT(dl, N1, MVT::i1); 2144 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2145 if (!DCI.isCalledByLegalizer()) 2146 DCI.AddToWorklist(Temp.getNode()); 2147 break; 2148 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2149 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2150 Temp = DAG.getNOT(dl, N0, MVT::i1); 2151 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2152 if (!DCI.isCalledByLegalizer()) 2153 DCI.AddToWorklist(Temp.getNode()); 2154 break; 2155 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2156 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2157 Temp = DAG.getNOT(dl, N1, MVT::i1); 2158 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2159 break; 2160 } 2161 if (VT != MVT::i1) { 2162 if (!DCI.isCalledByLegalizer()) 2163 DCI.AddToWorklist(N0.getNode()); 2164 // FIXME: If running after legalize, we probably can't do this. 2165 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2166 } 2167 return N0; 2168 } 2169 2170 // Could not fold it. 2171 return SDValue(); 2172 } 2173 2174 /// Returns true (and the GlobalValue and the offset) if the node is a 2175 /// GlobalAddress + offset. 2176 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2177 int64_t &Offset) const { 2178 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2179 GA = GASD->getGlobal(); 2180 Offset += GASD->getOffset(); 2181 return true; 2182 } 2183 2184 if (N->getOpcode() == ISD::ADD) { 2185 SDValue N1 = N->getOperand(0); 2186 SDValue N2 = N->getOperand(1); 2187 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2188 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2189 Offset += V->getSExtValue(); 2190 return true; 2191 } 2192 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2193 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2194 Offset += V->getSExtValue(); 2195 return true; 2196 } 2197 } 2198 } 2199 2200 return false; 2201 } 2202 2203 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2204 DAGCombinerInfo &DCI) const { 2205 // Default implementation: no optimization. 2206 return SDValue(); 2207 } 2208 2209 //===----------------------------------------------------------------------===// 2210 // Inline Assembler Implementation Methods 2211 //===----------------------------------------------------------------------===// 2212 2213 TargetLowering::ConstraintType 2214 TargetLowering::getConstraintType(StringRef Constraint) const { 2215 unsigned S = Constraint.size(); 2216 2217 if (S == 1) { 2218 switch (Constraint[0]) { 2219 default: break; 2220 case 'r': return C_RegisterClass; 2221 case 'm': // memory 2222 case 'o': // offsetable 2223 case 'V': // not offsetable 2224 return C_Memory; 2225 case 'i': // Simple Integer or Relocatable Constant 2226 case 'n': // Simple Integer 2227 case 'E': // Floating Point Constant 2228 case 'F': // Floating Point Constant 2229 case 's': // Relocatable Constant 2230 case 'p': // Address. 2231 case 'X': // Allow ANY value. 2232 case 'I': // Target registers. 2233 case 'J': 2234 case 'K': 2235 case 'L': 2236 case 'M': 2237 case 'N': 2238 case 'O': 2239 case 'P': 2240 case '<': 2241 case '>': 2242 return C_Other; 2243 } 2244 } 2245 2246 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2247 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2248 return C_Memory; 2249 return C_Register; 2250 } 2251 return C_Unknown; 2252 } 2253 2254 /// Try to replace an X constraint, which matches anything, with another that 2255 /// has more specific requirements based on the type of the corresponding 2256 /// operand. 2257 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2258 if (ConstraintVT.isInteger()) 2259 return "r"; 2260 if (ConstraintVT.isFloatingPoint()) 2261 return "f"; // works for many targets 2262 return nullptr; 2263 } 2264 2265 /// Lower the specified operand into the Ops vector. 2266 /// If it is invalid, don't add anything to Ops. 2267 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2268 std::string &Constraint, 2269 std::vector<SDValue> &Ops, 2270 SelectionDAG &DAG) const { 2271 2272 if (Constraint.length() > 1) return; 2273 2274 char ConstraintLetter = Constraint[0]; 2275 switch (ConstraintLetter) { 2276 default: break; 2277 case 'X': // Allows any operand; labels (basic block) use this. 2278 if (Op.getOpcode() == ISD::BasicBlock) { 2279 Ops.push_back(Op); 2280 return; 2281 } 2282 // fall through 2283 case 'i': // Simple Integer or Relocatable Constant 2284 case 'n': // Simple Integer 2285 case 's': { // Relocatable Constant 2286 // These operands are interested in values of the form (GV+C), where C may 2287 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2288 // is possible and fine if either GV or C are missing. 2289 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2290 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2291 2292 // If we have "(add GV, C)", pull out GV/C 2293 if (Op.getOpcode() == ISD::ADD) { 2294 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2295 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2296 if (!C || !GA) { 2297 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2298 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2299 } 2300 if (!C || !GA) { 2301 C = nullptr; 2302 GA = nullptr; 2303 } 2304 } 2305 2306 // If we find a valid operand, map to the TargetXXX version so that the 2307 // value itself doesn't get selected. 2308 if (GA) { // Either &GV or &GV+C 2309 if (ConstraintLetter != 'n') { 2310 int64_t Offs = GA->getOffset(); 2311 if (C) Offs += C->getZExtValue(); 2312 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2313 C ? SDLoc(C) : SDLoc(), 2314 Op.getValueType(), Offs)); 2315 } 2316 return; 2317 } 2318 if (C) { // just C, no GV. 2319 // Simple constants are not allowed for 's'. 2320 if (ConstraintLetter != 's') { 2321 // gcc prints these as sign extended. Sign extend value to 64 bits 2322 // now; without this it would get ZExt'd later in 2323 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2324 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2325 SDLoc(C), MVT::i64)); 2326 } 2327 return; 2328 } 2329 break; 2330 } 2331 } 2332 } 2333 2334 std::pair<unsigned, const TargetRegisterClass *> 2335 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2336 StringRef Constraint, 2337 MVT VT) const { 2338 if (Constraint.empty() || Constraint[0] != '{') 2339 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2340 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2341 2342 // Remove the braces from around the name. 2343 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2344 2345 std::pair<unsigned, const TargetRegisterClass*> R = 2346 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2347 2348 // Figure out which register class contains this reg. 2349 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2350 E = RI->regclass_end(); RCI != E; ++RCI) { 2351 const TargetRegisterClass *RC = *RCI; 2352 2353 // If none of the value types for this register class are valid, we 2354 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2355 if (!isLegalRC(RC)) 2356 continue; 2357 2358 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2359 I != E; ++I) { 2360 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2361 std::pair<unsigned, const TargetRegisterClass*> S = 2362 std::make_pair(*I, RC); 2363 2364 // If this register class has the requested value type, return it, 2365 // otherwise keep searching and return the first class found 2366 // if no other is found which explicitly has the requested type. 2367 if (RC->hasType(VT)) 2368 return S; 2369 else if (!R.second) 2370 R = S; 2371 } 2372 } 2373 } 2374 2375 return R; 2376 } 2377 2378 //===----------------------------------------------------------------------===// 2379 // Constraint Selection. 2380 2381 /// Return true of this is an input operand that is a matching constraint like 2382 /// "4". 2383 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2384 assert(!ConstraintCode.empty() && "No known constraint!"); 2385 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2386 } 2387 2388 /// If this is an input matching constraint, this method returns the output 2389 /// operand it matches. 2390 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2391 assert(!ConstraintCode.empty() && "No known constraint!"); 2392 return atoi(ConstraintCode.c_str()); 2393 } 2394 2395 /// Split up the constraint string from the inline assembly value into the 2396 /// specific constraints and their prefixes, and also tie in the associated 2397 /// operand values. 2398 /// If this returns an empty vector, and if the constraint string itself 2399 /// isn't empty, there was an error parsing. 2400 TargetLowering::AsmOperandInfoVector 2401 TargetLowering::ParseConstraints(const DataLayout &DL, 2402 const TargetRegisterInfo *TRI, 2403 ImmutableCallSite CS) const { 2404 /// Information about all of the constraints. 2405 AsmOperandInfoVector ConstraintOperands; 2406 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2407 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2408 2409 // Do a prepass over the constraints, canonicalizing them, and building up the 2410 // ConstraintOperands list. 2411 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2412 unsigned ResNo = 0; // ResNo - The result number of the next output. 2413 2414 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2415 ConstraintOperands.emplace_back(std::move(CI)); 2416 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2417 2418 // Update multiple alternative constraint count. 2419 if (OpInfo.multipleAlternatives.size() > maCount) 2420 maCount = OpInfo.multipleAlternatives.size(); 2421 2422 OpInfo.ConstraintVT = MVT::Other; 2423 2424 // Compute the value type for each operand. 2425 switch (OpInfo.Type) { 2426 case InlineAsm::isOutput: 2427 // Indirect outputs just consume an argument. 2428 if (OpInfo.isIndirect) { 2429 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2430 break; 2431 } 2432 2433 // The return value of the call is this value. As such, there is no 2434 // corresponding argument. 2435 assert(!CS.getType()->isVoidTy() && 2436 "Bad inline asm!"); 2437 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2438 OpInfo.ConstraintVT = 2439 getSimpleValueType(DL, STy->getElementType(ResNo)); 2440 } else { 2441 assert(ResNo == 0 && "Asm only has one result!"); 2442 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2443 } 2444 ++ResNo; 2445 break; 2446 case InlineAsm::isInput: 2447 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2448 break; 2449 case InlineAsm::isClobber: 2450 // Nothing to do. 2451 break; 2452 } 2453 2454 if (OpInfo.CallOperandVal) { 2455 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2456 if (OpInfo.isIndirect) { 2457 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2458 if (!PtrTy) 2459 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2460 OpTy = PtrTy->getElementType(); 2461 } 2462 2463 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2464 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2465 if (STy->getNumElements() == 1) 2466 OpTy = STy->getElementType(0); 2467 2468 // If OpTy is not a single value, it may be a struct/union that we 2469 // can tile with integers. 2470 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2471 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2472 switch (BitSize) { 2473 default: break; 2474 case 1: 2475 case 8: 2476 case 16: 2477 case 32: 2478 case 64: 2479 case 128: 2480 OpInfo.ConstraintVT = 2481 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2482 break; 2483 } 2484 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2485 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2486 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2487 } else { 2488 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2489 } 2490 } 2491 } 2492 2493 // If we have multiple alternative constraints, select the best alternative. 2494 if (!ConstraintOperands.empty()) { 2495 if (maCount) { 2496 unsigned bestMAIndex = 0; 2497 int bestWeight = -1; 2498 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2499 int weight = -1; 2500 unsigned maIndex; 2501 // Compute the sums of the weights for each alternative, keeping track 2502 // of the best (highest weight) one so far. 2503 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2504 int weightSum = 0; 2505 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2506 cIndex != eIndex; ++cIndex) { 2507 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2508 if (OpInfo.Type == InlineAsm::isClobber) 2509 continue; 2510 2511 // If this is an output operand with a matching input operand, 2512 // look up the matching input. If their types mismatch, e.g. one 2513 // is an integer, the other is floating point, or their sizes are 2514 // different, flag it as an maCantMatch. 2515 if (OpInfo.hasMatchingInput()) { 2516 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2517 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2518 if ((OpInfo.ConstraintVT.isInteger() != 2519 Input.ConstraintVT.isInteger()) || 2520 (OpInfo.ConstraintVT.getSizeInBits() != 2521 Input.ConstraintVT.getSizeInBits())) { 2522 weightSum = -1; // Can't match. 2523 break; 2524 } 2525 } 2526 } 2527 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2528 if (weight == -1) { 2529 weightSum = -1; 2530 break; 2531 } 2532 weightSum += weight; 2533 } 2534 // Update best. 2535 if (weightSum > bestWeight) { 2536 bestWeight = weightSum; 2537 bestMAIndex = maIndex; 2538 } 2539 } 2540 2541 // Now select chosen alternative in each constraint. 2542 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2543 cIndex != eIndex; ++cIndex) { 2544 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2545 if (cInfo.Type == InlineAsm::isClobber) 2546 continue; 2547 cInfo.selectAlternative(bestMAIndex); 2548 } 2549 } 2550 } 2551 2552 // Check and hook up tied operands, choose constraint code to use. 2553 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2554 cIndex != eIndex; ++cIndex) { 2555 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2556 2557 // If this is an output operand with a matching input operand, look up the 2558 // matching input. If their types mismatch, e.g. one is an integer, the 2559 // other is floating point, or their sizes are different, flag it as an 2560 // error. 2561 if (OpInfo.hasMatchingInput()) { 2562 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2563 2564 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2565 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2566 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2567 OpInfo.ConstraintVT); 2568 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2569 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2570 Input.ConstraintVT); 2571 if ((OpInfo.ConstraintVT.isInteger() != 2572 Input.ConstraintVT.isInteger()) || 2573 (MatchRC.second != InputRC.second)) { 2574 report_fatal_error("Unsupported asm: input constraint" 2575 " with a matching output constraint of" 2576 " incompatible type!"); 2577 } 2578 } 2579 } 2580 } 2581 2582 return ConstraintOperands; 2583 } 2584 2585 /// Return an integer indicating how general CT is. 2586 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2587 switch (CT) { 2588 case TargetLowering::C_Other: 2589 case TargetLowering::C_Unknown: 2590 return 0; 2591 case TargetLowering::C_Register: 2592 return 1; 2593 case TargetLowering::C_RegisterClass: 2594 return 2; 2595 case TargetLowering::C_Memory: 2596 return 3; 2597 } 2598 llvm_unreachable("Invalid constraint type"); 2599 } 2600 2601 /// Examine constraint type and operand type and determine a weight value. 2602 /// This object must already have been set up with the operand type 2603 /// and the current alternative constraint selected. 2604 TargetLowering::ConstraintWeight 2605 TargetLowering::getMultipleConstraintMatchWeight( 2606 AsmOperandInfo &info, int maIndex) const { 2607 InlineAsm::ConstraintCodeVector *rCodes; 2608 if (maIndex >= (int)info.multipleAlternatives.size()) 2609 rCodes = &info.Codes; 2610 else 2611 rCodes = &info.multipleAlternatives[maIndex].Codes; 2612 ConstraintWeight BestWeight = CW_Invalid; 2613 2614 // Loop over the options, keeping track of the most general one. 2615 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2616 ConstraintWeight weight = 2617 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2618 if (weight > BestWeight) 2619 BestWeight = weight; 2620 } 2621 2622 return BestWeight; 2623 } 2624 2625 /// Examine constraint type and operand type and determine a weight value. 2626 /// This object must already have been set up with the operand type 2627 /// and the current alternative constraint selected. 2628 TargetLowering::ConstraintWeight 2629 TargetLowering::getSingleConstraintMatchWeight( 2630 AsmOperandInfo &info, const char *constraint) const { 2631 ConstraintWeight weight = CW_Invalid; 2632 Value *CallOperandVal = info.CallOperandVal; 2633 // If we don't have a value, we can't do a match, 2634 // but allow it at the lowest weight. 2635 if (!CallOperandVal) 2636 return CW_Default; 2637 // Look at the constraint type. 2638 switch (*constraint) { 2639 case 'i': // immediate integer. 2640 case 'n': // immediate integer with a known value. 2641 if (isa<ConstantInt>(CallOperandVal)) 2642 weight = CW_Constant; 2643 break; 2644 case 's': // non-explicit intregal immediate. 2645 if (isa<GlobalValue>(CallOperandVal)) 2646 weight = CW_Constant; 2647 break; 2648 case 'E': // immediate float if host format. 2649 case 'F': // immediate float. 2650 if (isa<ConstantFP>(CallOperandVal)) 2651 weight = CW_Constant; 2652 break; 2653 case '<': // memory operand with autodecrement. 2654 case '>': // memory operand with autoincrement. 2655 case 'm': // memory operand. 2656 case 'o': // offsettable memory operand 2657 case 'V': // non-offsettable memory operand 2658 weight = CW_Memory; 2659 break; 2660 case 'r': // general register. 2661 case 'g': // general register, memory operand or immediate integer. 2662 // note: Clang converts "g" to "imr". 2663 if (CallOperandVal->getType()->isIntegerTy()) 2664 weight = CW_Register; 2665 break; 2666 case 'X': // any operand. 2667 default: 2668 weight = CW_Default; 2669 break; 2670 } 2671 return weight; 2672 } 2673 2674 /// If there are multiple different constraints that we could pick for this 2675 /// operand (e.g. "imr") try to pick the 'best' one. 2676 /// This is somewhat tricky: constraints fall into four classes: 2677 /// Other -> immediates and magic values 2678 /// Register -> one specific register 2679 /// RegisterClass -> a group of regs 2680 /// Memory -> memory 2681 /// Ideally, we would pick the most specific constraint possible: if we have 2682 /// something that fits into a register, we would pick it. The problem here 2683 /// is that if we have something that could either be in a register or in 2684 /// memory that use of the register could cause selection of *other* 2685 /// operands to fail: they might only succeed if we pick memory. Because of 2686 /// this the heuristic we use is: 2687 /// 2688 /// 1) If there is an 'other' constraint, and if the operand is valid for 2689 /// that constraint, use it. This makes us take advantage of 'i' 2690 /// constraints when available. 2691 /// 2) Otherwise, pick the most general constraint present. This prefers 2692 /// 'm' over 'r', for example. 2693 /// 2694 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2695 const TargetLowering &TLI, 2696 SDValue Op, SelectionDAG *DAG) { 2697 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2698 unsigned BestIdx = 0; 2699 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2700 int BestGenerality = -1; 2701 2702 // Loop over the options, keeping track of the most general one. 2703 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2704 TargetLowering::ConstraintType CType = 2705 TLI.getConstraintType(OpInfo.Codes[i]); 2706 2707 // If this is an 'other' constraint, see if the operand is valid for it. 2708 // For example, on X86 we might have an 'rI' constraint. If the operand 2709 // is an integer in the range [0..31] we want to use I (saving a load 2710 // of a register), otherwise we must use 'r'. 2711 if (CType == TargetLowering::C_Other && Op.getNode()) { 2712 assert(OpInfo.Codes[i].size() == 1 && 2713 "Unhandled multi-letter 'other' constraint"); 2714 std::vector<SDValue> ResultOps; 2715 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2716 ResultOps, *DAG); 2717 if (!ResultOps.empty()) { 2718 BestType = CType; 2719 BestIdx = i; 2720 break; 2721 } 2722 } 2723 2724 // Things with matching constraints can only be registers, per gcc 2725 // documentation. This mainly affects "g" constraints. 2726 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2727 continue; 2728 2729 // This constraint letter is more general than the previous one, use it. 2730 int Generality = getConstraintGenerality(CType); 2731 if (Generality > BestGenerality) { 2732 BestType = CType; 2733 BestIdx = i; 2734 BestGenerality = Generality; 2735 } 2736 } 2737 2738 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2739 OpInfo.ConstraintType = BestType; 2740 } 2741 2742 /// Determines the constraint code and constraint type to use for the specific 2743 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2744 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2745 SDValue Op, 2746 SelectionDAG *DAG) const { 2747 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2748 2749 // Single-letter constraints ('r') are very common. 2750 if (OpInfo.Codes.size() == 1) { 2751 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2752 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2753 } else { 2754 ChooseConstraint(OpInfo, *this, Op, DAG); 2755 } 2756 2757 // 'X' matches anything. 2758 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2759 // Labels and constants are handled elsewhere ('X' is the only thing 2760 // that matches labels). For Functions, the type here is the type of 2761 // the result, which is not what we want to look at; leave them alone. 2762 Value *v = OpInfo.CallOperandVal; 2763 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2764 OpInfo.CallOperandVal = v; 2765 return; 2766 } 2767 2768 // Otherwise, try to resolve it to something we know about by looking at 2769 // the actual operand type. 2770 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2771 OpInfo.ConstraintCode = Repl; 2772 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2773 } 2774 } 2775 } 2776 2777 /// \brief Given an exact SDIV by a constant, create a multiplication 2778 /// with the multiplicative inverse of the constant. 2779 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2780 SDLoc dl, SelectionDAG &DAG, 2781 std::vector<SDNode *> &Created) { 2782 assert(d != 0 && "Division by zero!"); 2783 2784 // Shift the value upfront if it is even, so the LSB is one. 2785 unsigned ShAmt = d.countTrailingZeros(); 2786 if (ShAmt) { 2787 // TODO: For UDIV use SRL instead of SRA. 2788 SDValue Amt = 2789 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2790 DAG.getDataLayout())); 2791 SDNodeFlags Flags; 2792 Flags.setExact(true); 2793 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2794 Created.push_back(Op1.getNode()); 2795 d = d.ashr(ShAmt); 2796 } 2797 2798 // Calculate the multiplicative inverse, using Newton's method. 2799 APInt t, xn = d; 2800 while ((t = d*xn) != 1) 2801 xn *= APInt(d.getBitWidth(), 2) - t; 2802 2803 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2804 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2805 Created.push_back(Mul.getNode()); 2806 return Mul; 2807 } 2808 2809 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2810 SelectionDAG &DAG, 2811 std::vector<SDNode *> *Created) const { 2812 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2814 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2815 return SDValue(N,0); // Lower SDIV as SDIV 2816 return SDValue(); 2817 } 2818 2819 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2820 /// return a DAG expression to select that will generate the same value by 2821 /// multiplying by a magic number. 2822 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2823 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2824 SelectionDAG &DAG, bool IsAfterLegalization, 2825 std::vector<SDNode *> *Created) const { 2826 assert(Created && "No vector to hold sdiv ops."); 2827 2828 EVT VT = N->getValueType(0); 2829 SDLoc dl(N); 2830 2831 // Check to see if we can do this. 2832 // FIXME: We should be more aggressive here. 2833 if (!isTypeLegal(VT)) 2834 return SDValue(); 2835 2836 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2837 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2838 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2839 2840 APInt::ms magics = Divisor.magic(); 2841 2842 // Multiply the numerator (operand 0) by the magic value 2843 // FIXME: We should support doing a MUL in a wider type 2844 SDValue Q; 2845 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2846 isOperationLegalOrCustom(ISD::MULHS, VT)) 2847 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2848 DAG.getConstant(magics.m, dl, VT)); 2849 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2850 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2851 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2852 N->getOperand(0), 2853 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2854 else 2855 return SDValue(); // No mulhs or equvialent 2856 // If d > 0 and m < 0, add the numerator 2857 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2858 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2859 Created->push_back(Q.getNode()); 2860 } 2861 // If d < 0 and m > 0, subtract the numerator. 2862 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2863 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2864 Created->push_back(Q.getNode()); 2865 } 2866 auto &DL = DAG.getDataLayout(); 2867 // Shift right algebraic if shift value is nonzero 2868 if (magics.s > 0) { 2869 Q = DAG.getNode( 2870 ISD::SRA, dl, VT, Q, 2871 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2872 Created->push_back(Q.getNode()); 2873 } 2874 // Extract the sign bit and add it to the quotient 2875 SDValue T = 2876 DAG.getNode(ISD::SRL, dl, VT, Q, 2877 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2878 getShiftAmountTy(Q.getValueType(), DL))); 2879 Created->push_back(T.getNode()); 2880 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2881 } 2882 2883 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2884 /// return a DAG expression to select that will generate the same value by 2885 /// multiplying by a magic number. 2886 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2887 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2888 SelectionDAG &DAG, bool IsAfterLegalization, 2889 std::vector<SDNode *> *Created) const { 2890 assert(Created && "No vector to hold udiv ops."); 2891 2892 EVT VT = N->getValueType(0); 2893 SDLoc dl(N); 2894 auto &DL = DAG.getDataLayout(); 2895 2896 // Check to see if we can do this. 2897 // FIXME: We should be more aggressive here. 2898 if (!isTypeLegal(VT)) 2899 return SDValue(); 2900 2901 // FIXME: We should use a narrower constant when the upper 2902 // bits are known to be zero. 2903 APInt::mu magics = Divisor.magicu(); 2904 2905 SDValue Q = N->getOperand(0); 2906 2907 // If the divisor is even, we can avoid using the expensive fixup by shifting 2908 // the divided value upfront. 2909 if (magics.a != 0 && !Divisor[0]) { 2910 unsigned Shift = Divisor.countTrailingZeros(); 2911 Q = DAG.getNode( 2912 ISD::SRL, dl, VT, Q, 2913 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2914 Created->push_back(Q.getNode()); 2915 2916 // Get magic number for the shifted divisor. 2917 magics = Divisor.lshr(Shift).magicu(Shift); 2918 assert(magics.a == 0 && "Should use cheap fixup now"); 2919 } 2920 2921 // Multiply the numerator (operand 0) by the magic value 2922 // FIXME: We should support doing a MUL in a wider type 2923 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2924 isOperationLegalOrCustom(ISD::MULHU, VT)) 2925 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2926 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2927 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2928 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2929 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2930 else 2931 return SDValue(); // No mulhu or equvialent 2932 2933 Created->push_back(Q.getNode()); 2934 2935 if (magics.a == 0) { 2936 assert(magics.s < Divisor.getBitWidth() && 2937 "We shouldn't generate an undefined shift!"); 2938 return DAG.getNode( 2939 ISD::SRL, dl, VT, Q, 2940 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2941 } else { 2942 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2943 Created->push_back(NPQ.getNode()); 2944 NPQ = DAG.getNode( 2945 ISD::SRL, dl, VT, NPQ, 2946 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2947 Created->push_back(NPQ.getNode()); 2948 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2949 Created->push_back(NPQ.getNode()); 2950 return DAG.getNode( 2951 ISD::SRL, dl, VT, NPQ, 2952 DAG.getConstant(magics.s - 1, dl, 2953 getShiftAmountTy(NPQ.getValueType(), DL))); 2954 } 2955 } 2956 2957 bool TargetLowering:: 2958 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2959 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2960 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2961 "be a constant integer"); 2962 return true; 2963 } 2964 2965 return false; 2966 } 2967 2968 //===----------------------------------------------------------------------===// 2969 // Legalization Utilities 2970 //===----------------------------------------------------------------------===// 2971 2972 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2973 SelectionDAG &DAG, SDValue LL, SDValue LH, 2974 SDValue RL, SDValue RH) const { 2975 EVT VT = N->getValueType(0); 2976 SDLoc dl(N); 2977 2978 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2979 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2980 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2981 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2982 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2983 unsigned OuterBitSize = VT.getSizeInBits(); 2984 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2985 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2986 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2987 2988 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2989 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2990 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2991 2992 if (!LL.getNode() && !RL.getNode() && 2993 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2994 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2995 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2996 } 2997 2998 if (!LL.getNode()) 2999 return false; 3000 3001 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3002 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3003 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3004 // The inputs are both zero-extended. 3005 if (HasUMUL_LOHI) { 3006 // We can emit a umul_lohi. 3007 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3008 RL); 3009 Hi = SDValue(Lo.getNode(), 1); 3010 return true; 3011 } 3012 if (HasMULHU) { 3013 // We can emit a mulhu+mul. 3014 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3015 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3016 return true; 3017 } 3018 } 3019 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3020 // The input values are both sign-extended. 3021 if (HasSMUL_LOHI) { 3022 // We can emit a smul_lohi. 3023 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3024 RL); 3025 Hi = SDValue(Lo.getNode(), 1); 3026 return true; 3027 } 3028 if (HasMULHS) { 3029 // We can emit a mulhs+mul. 3030 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3031 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3032 return true; 3033 } 3034 } 3035 3036 if (!LH.getNode() && !RH.getNode() && 3037 isOperationLegalOrCustom(ISD::SRL, VT) && 3038 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3039 auto &DL = DAG.getDataLayout(); 3040 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3041 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3042 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3043 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3044 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3045 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3046 } 3047 3048 if (!LH.getNode()) 3049 return false; 3050 3051 if (HasUMUL_LOHI) { 3052 // Lo,Hi = umul LHS, RHS. 3053 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3054 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3055 Lo = UMulLOHI; 3056 Hi = UMulLOHI.getValue(1); 3057 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3058 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3059 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3060 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3061 return true; 3062 } 3063 if (HasMULHU) { 3064 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3065 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3066 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3067 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3068 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3069 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3070 return true; 3071 } 3072 } 3073 return false; 3074 } 3075 3076 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3077 SelectionDAG &DAG) const { 3078 EVT VT = Node->getOperand(0).getValueType(); 3079 EVT NVT = Node->getValueType(0); 3080 SDLoc dl(SDValue(Node, 0)); 3081 3082 // FIXME: Only f32 to i64 conversions are supported. 3083 if (VT != MVT::f32 || NVT != MVT::i64) 3084 return false; 3085 3086 // Expand f32 -> i64 conversion 3087 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3088 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3089 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3090 VT.getSizeInBits()); 3091 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3092 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3093 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3094 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3095 IntVT); 3096 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3097 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3098 3099 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3100 3101 auto &DL = DAG.getDataLayout(); 3102 SDValue ExponentBits = DAG.getNode( 3103 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3104 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3105 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3106 3107 SDValue Sign = DAG.getNode( 3108 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3109 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3110 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3111 3112 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3113 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3114 DAG.getConstant(0x00800000, dl, IntVT)); 3115 3116 R = DAG.getZExtOrTrunc(R, dl, NVT); 3117 3118 R = DAG.getSelectCC( 3119 dl, Exponent, ExponentLoBit, 3120 DAG.getNode(ISD::SHL, dl, NVT, R, 3121 DAG.getZExtOrTrunc( 3122 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3123 dl, getShiftAmountTy(IntVT, DL))), 3124 DAG.getNode(ISD::SRL, dl, NVT, R, 3125 DAG.getZExtOrTrunc( 3126 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3127 dl, getShiftAmountTy(IntVT, DL))), 3128 ISD::SETGT); 3129 3130 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3131 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3132 Sign); 3133 3134 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3135 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3136 return true; 3137 } 3138 3139 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3140 SelectionDAG &DAG) const { 3141 SDLoc SL(LD); 3142 SDValue Chain = LD->getChain(); 3143 SDValue BasePTR = LD->getBasePtr(); 3144 EVT SrcVT = LD->getMemoryVT(); 3145 ISD::LoadExtType ExtType = LD->getExtensionType(); 3146 3147 unsigned NumElem = SrcVT.getVectorNumElements(); 3148 3149 EVT SrcEltVT = SrcVT.getScalarType(); 3150 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3151 3152 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3153 assert(SrcEltVT.isByteSized()); 3154 3155 EVT PtrVT = BasePTR.getValueType(); 3156 3157 SmallVector<SDValue, 8> Vals; 3158 SmallVector<SDValue, 8> LoadChains; 3159 3160 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3161 SDValue ScalarLoad = DAG.getExtLoad( 3162 ExtType, SL, DstEltVT, 3163 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride), 3164 SrcEltVT, 3165 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), 3166 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo()); 3167 3168 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3169 DAG.getConstant(Stride, SL, PtrVT)); 3170 3171 Vals.push_back(ScalarLoad.getValue(0)); 3172 LoadChains.push_back(ScalarLoad.getValue(1)); 3173 } 3174 3175 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3176 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3177 3178 return DAG.getMergeValues({ Value, NewChain }, SL); 3179 } 3180 3181 // FIXME: This relies on each element having a byte size, otherwise the stride 3182 // is 0 and just overwrites the same location. ExpandStore currently expects 3183 // this broken behavior. 3184 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3185 SelectionDAG &DAG) const { 3186 SDLoc SL(ST); 3187 3188 SDValue Chain = ST->getChain(); 3189 SDValue BasePtr = ST->getBasePtr(); 3190 SDValue Value = ST->getValue(); 3191 EVT StVT = ST->getMemoryVT(); 3192 3193 unsigned Alignment = ST->getAlignment(); 3194 bool isVolatile = ST->isVolatile(); 3195 bool isNonTemporal = ST->isNonTemporal(); 3196 AAMDNodes AAInfo = ST->getAAInfo(); 3197 3198 // The type of the data we want to save 3199 EVT RegVT = Value.getValueType(); 3200 EVT RegSclVT = RegVT.getScalarType(); 3201 3202 // The type of data as saved in memory. 3203 EVT MemSclVT = StVT.getScalarType(); 3204 3205 EVT PtrVT = BasePtr.getValueType(); 3206 3207 // Store Stride in bytes 3208 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3209 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3210 unsigned NumElem = StVT.getVectorNumElements(); 3211 3212 // Extract each of the elements from the original vector and save them into 3213 // memory individually. 3214 SmallVector<SDValue, 8> Stores; 3215 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3216 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3217 DAG.getConstant(Idx, SL, IdxVT)); 3218 3219 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3220 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3221 3222 // This scalar TruncStore may be illegal, but we legalize it later. 3223 SDValue Store = DAG.getTruncStore( 3224 Chain, SL, Elt, Ptr, 3225 ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT, 3226 isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride), 3227 AAInfo); 3228 3229 Stores.push_back(Store); 3230 } 3231 3232 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3233 } 3234 3235 //===----------------------------------------------------------------------===// 3236 // Implementation of Emulated TLS Model 3237 //===----------------------------------------------------------------------===// 3238 3239 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3240 SelectionDAG &DAG) const { 3241 // Access to address of TLS varialbe xyz is lowered to a function call: 3242 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3243 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3244 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3245 SDLoc dl(GA); 3246 3247 ArgListTy Args; 3248 ArgListEntry Entry; 3249 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3250 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3251 StringRef EmuTlsVarName(NameString); 3252 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3253 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3254 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3255 Entry.Ty = VoidPtrType; 3256 Args.push_back(Entry); 3257 3258 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3259 3260 TargetLowering::CallLoweringInfo CLI(DAG); 3261 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3262 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args), 0); 3263 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3264 3265 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3266 // At last for X86 targets, maybe good for other targets too? 3267 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 3268 MFI->setAdjustsStack(true); // Is this only for X86 target? 3269 MFI->setHasCalls(true); 3270 3271 assert((GA->getOffset() == 0) && 3272 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3273 return CallResult.first; 3274 } 3275