1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlign(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     if (SrcVT == DstVT)
621       return Src;
622 
623     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
624     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
625     if (NumSrcEltBits == NumDstEltBits)
626       if (SDValue V = SimplifyMultipleUseDemandedBits(
627               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
628         return DAG.getBitcast(DstVT, V);
629 
630     // TODO - bigendian once we have test coverage.
631     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
632         DAG.getDataLayout().isLittleEndian()) {
633       unsigned Scale = NumDstEltBits / NumSrcEltBits;
634       unsigned NumSrcElts = SrcVT.getVectorNumElements();
635       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
636       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
637       for (unsigned i = 0; i != Scale; ++i) {
638         unsigned Offset = i * NumSrcEltBits;
639         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
640         if (!Sub.isNullValue()) {
641           DemandedSrcBits |= Sub;
642           for (unsigned j = 0; j != NumElts; ++j)
643             if (DemandedElts[j])
644               DemandedSrcElts.setBit((j * Scale) + i);
645         }
646       }
647 
648       if (SDValue V = SimplifyMultipleUseDemandedBits(
649               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
650         return DAG.getBitcast(DstVT, V);
651     }
652 
653     // TODO - bigendian once we have test coverage.
654     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
655         DAG.getDataLayout().isLittleEndian()) {
656       unsigned Scale = NumSrcEltBits / NumDstEltBits;
657       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
658       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
659       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
660       for (unsigned i = 0; i != NumElts; ++i)
661         if (DemandedElts[i]) {
662           unsigned Offset = (i % Scale) * NumDstEltBits;
663           DemandedSrcBits.insertBits(DemandedBits, Offset);
664           DemandedSrcElts.setBit(i / Scale);
665         }
666 
667       if (SDValue V = SimplifyMultipleUseDemandedBits(
668               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
669         return DAG.getBitcast(DstVT, V);
670     }
671 
672     break;
673   }
674   case ISD::AND: {
675     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
676     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
677 
678     // If all of the demanded bits are known 1 on one side, return the other.
679     // These bits cannot contribute to the result of the 'and' in this
680     // context.
681     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
682       return Op.getOperand(0);
683     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
684       return Op.getOperand(1);
685     break;
686   }
687   case ISD::OR: {
688     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
689     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
690 
691     // If all of the demanded bits are known zero on one side, return the
692     // other.  These bits cannot contribute to the result of the 'or' in this
693     // context.
694     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
695       return Op.getOperand(0);
696     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
697       return Op.getOperand(1);
698     break;
699   }
700   case ISD::XOR: {
701     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
702     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
703 
704     // If all of the demanded bits are known zero on one side, return the
705     // other.
706     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
707       return Op.getOperand(0);
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
709       return Op.getOperand(1);
710     break;
711   }
712   case ISD::SETCC: {
713     SDValue Op0 = Op.getOperand(0);
714     SDValue Op1 = Op.getOperand(1);
715     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
716     // If (1) we only need the sign-bit, (2) the setcc operands are the same
717     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
718     // -1, we may be able to bypass the setcc.
719     if (DemandedBits.isSignMask() &&
720         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
721         getBooleanContents(Op0.getValueType()) ==
722             BooleanContent::ZeroOrNegativeOneBooleanContent) {
723       // If we're testing X < 0, then this compare isn't needed - just use X!
724       // FIXME: We're limiting to integer types here, but this should also work
725       // if we don't care about FP signed-zero. The use of SETLT with FP means
726       // that we don't care about NaNs.
727       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
728           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
729         return Op0;
730     }
731     break;
732   }
733   case ISD::SIGN_EXTEND_INREG: {
734     // If none of the extended bits are demanded, eliminate the sextinreg.
735     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
736     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
737       return Op.getOperand(0);
738     break;
739   }
740   case ISD::INSERT_VECTOR_ELT: {
741     // If we don't demand the inserted element, return the base vector.
742     SDValue Vec = Op.getOperand(0);
743     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
744     EVT VecVT = Vec.getValueType();
745     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
746         !DemandedElts[CIdx->getZExtValue()])
747       return Vec;
748     break;
749   }
750   case ISD::INSERT_SUBVECTOR: {
751     // If we don't demand the inserted subvector, return the base vector.
752     SDValue Vec = Op.getOperand(0);
753     SDValue Sub = Op.getOperand(1);
754     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
755     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
756     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
757     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
758       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
759         return Vec;
760     break;
761   }
762   case ISD::VECTOR_SHUFFLE: {
763     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
764 
765     // If all the demanded elts are from one operand and are inline,
766     // then we can use the operand directly.
767     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
768     for (unsigned i = 0; i != NumElts; ++i) {
769       int M = ShuffleMask[i];
770       if (M < 0 || !DemandedElts[i])
771         continue;
772       AllUndef = false;
773       IdentityLHS &= (M == (int)i);
774       IdentityRHS &= ((M - NumElts) == i);
775     }
776 
777     if (AllUndef)
778       return DAG.getUNDEF(Op.getValueType());
779     if (IdentityLHS)
780       return Op.getOperand(0);
781     if (IdentityRHS)
782       return Op.getOperand(1);
783     break;
784   }
785   default:
786     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
787       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
788               Op, DemandedBits, DemandedElts, DAG, Depth))
789         return V;
790     break;
791   }
792   return SDValue();
793 }
794 
795 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
796     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
797     unsigned Depth) const {
798   EVT VT = Op.getValueType();
799   APInt DemandedElts = VT.isVector()
800                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
801                            : APInt(1, 1);
802   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
803                                          Depth);
804 }
805 
806 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
807 /// result of Op are ever used downstream. If we can use this information to
808 /// simplify Op, create a new simplified DAG node and return true, returning the
809 /// original and new nodes in Old and New. Otherwise, analyze the expression and
810 /// return a mask of Known bits for the expression (used to simplify the
811 /// caller).  The Known bits may only be accurate for those bits in the
812 /// OriginalDemandedBits and OriginalDemandedElts.
813 bool TargetLowering::SimplifyDemandedBits(
814     SDValue Op, const APInt &OriginalDemandedBits,
815     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
816     unsigned Depth, bool AssumeSingleUse) const {
817   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
818   assert(Op.getScalarValueSizeInBits() == BitWidth &&
819          "Mask size mismatches value type size!");
820 
821   unsigned NumElts = OriginalDemandedElts.getBitWidth();
822   assert((!Op.getValueType().isVector() ||
823           NumElts == Op.getValueType().getVectorNumElements()) &&
824          "Unexpected vector size");
825 
826   APInt DemandedBits = OriginalDemandedBits;
827   APInt DemandedElts = OriginalDemandedElts;
828   SDLoc dl(Op);
829   auto &DL = TLO.DAG.getDataLayout();
830 
831   // Don't know anything.
832   Known = KnownBits(BitWidth);
833 
834   // Undef operand.
835   if (Op.isUndef())
836     return false;
837 
838   if (Op.getOpcode() == ISD::Constant) {
839     // We know all of the bits for a constant!
840     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
841     Known.Zero = ~Known.One;
842     return false;
843   }
844 
845   // Other users may use these bits.
846   EVT VT = Op.getValueType();
847   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
848     if (Depth != 0) {
849       // If not at the root, Just compute the Known bits to
850       // simplify things downstream.
851       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
852       return false;
853     }
854     // If this is the root being simplified, allow it to have multiple uses,
855     // just set the DemandedBits/Elts to all bits.
856     DemandedBits = APInt::getAllOnesValue(BitWidth);
857     DemandedElts = APInt::getAllOnesValue(NumElts);
858   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
859     // Not demanding any bits/elts from Op.
860     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
861   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
862     // Limit search depth.
863     return false;
864   }
865 
866   KnownBits Known2;
867   switch (Op.getOpcode()) {
868   case ISD::TargetConstant:
869     llvm_unreachable("Can't simplify this node");
870   case ISD::SCALAR_TO_VECTOR: {
871     if (!DemandedElts[0])
872       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
873 
874     KnownBits SrcKnown;
875     SDValue Src = Op.getOperand(0);
876     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
877     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
878     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
879       return true;
880 
881     // Upper elements are undef, so only get the knownbits if we just demand
882     // the bottom element.
883     if (DemandedElts == 1)
884       Known = SrcKnown.anyextOrTrunc(BitWidth);
885     break;
886   }
887   case ISD::BUILD_VECTOR:
888     // Collect the known bits that are shared by every demanded element.
889     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
890     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
891     return false; // Don't fall through, will infinitely loop.
892   case ISD::LOAD: {
893     LoadSDNode *LD = cast<LoadSDNode>(Op);
894     if (getTargetConstantFromLoad(LD)) {
895       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
896       return false; // Don't fall through, will infinitely loop.
897     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
898       // If this is a ZEXTLoad and we are looking at the loaded value.
899       EVT MemVT = LD->getMemoryVT();
900       unsigned MemBits = MemVT.getScalarSizeInBits();
901       Known.Zero.setBitsFrom(MemBits);
902       return false; // Don't fall through, will infinitely loop.
903     }
904     break;
905   }
906   case ISD::INSERT_VECTOR_ELT: {
907     SDValue Vec = Op.getOperand(0);
908     SDValue Scl = Op.getOperand(1);
909     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
910     EVT VecVT = Vec.getValueType();
911 
912     // If index isn't constant, assume we need all vector elements AND the
913     // inserted element.
914     APInt DemandedVecElts(DemandedElts);
915     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
916       unsigned Idx = CIdx->getZExtValue();
917       DemandedVecElts.clearBit(Idx);
918 
919       // Inserted element is not required.
920       if (!DemandedElts[Idx])
921         return TLO.CombineTo(Op, Vec);
922     }
923 
924     KnownBits KnownScl;
925     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
926     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
927     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
928       return true;
929 
930     Known = KnownScl.anyextOrTrunc(BitWidth);
931 
932     KnownBits KnownVec;
933     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
934                              Depth + 1))
935       return true;
936 
937     if (!!DemandedVecElts) {
938       Known.One &= KnownVec.One;
939       Known.Zero &= KnownVec.Zero;
940     }
941 
942     return false;
943   }
944   case ISD::INSERT_SUBVECTOR: {
945     SDValue Base = Op.getOperand(0);
946     SDValue Sub = Op.getOperand(1);
947     EVT SubVT = Sub.getValueType();
948     unsigned NumSubElts = SubVT.getVectorNumElements();
949 
950     // If index isn't constant, assume we need the original demanded base
951     // elements and ALL the inserted subvector elements.
952     APInt BaseElts = DemandedElts;
953     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
954     if (isa<ConstantSDNode>(Op.getOperand(2))) {
955       const APInt &Idx = Op.getConstantOperandAPInt(2);
956       if (Idx.ule(NumElts - NumSubElts)) {
957         unsigned SubIdx = Idx.getZExtValue();
958         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
959         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
960       }
961     }
962 
963     KnownBits KnownSub, KnownBase;
964     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
965                              Depth + 1))
966       return true;
967     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
968                              Depth + 1))
969       return true;
970 
971     Known.Zero.setAllBits();
972     Known.One.setAllBits();
973     if (!!SubElts) {
974         Known.One &= KnownSub.One;
975         Known.Zero &= KnownSub.Zero;
976     }
977     if (!!BaseElts) {
978         Known.One &= KnownBase.One;
979         Known.Zero &= KnownBase.Zero;
980     }
981 
982     // Attempt to avoid multi-use src if we don't need anything from it.
983     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
984         !BaseElts.isAllOnesValue()) {
985       SDValue NewSub = SimplifyMultipleUseDemandedBits(
986           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
987       SDValue NewBase = SimplifyMultipleUseDemandedBits(
988           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
989       if (NewSub || NewBase) {
990         NewSub = NewSub ? NewSub : Sub;
991         NewBase = NewBase ? NewBase : Base;
992         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
993                                         Op.getOperand(2));
994         return TLO.CombineTo(Op, NewOp);
995       }
996     }
997     break;
998   }
999   case ISD::EXTRACT_SUBVECTOR: {
1000     // If index isn't constant, assume we need all the source vector elements.
1001     SDValue Src = Op.getOperand(0);
1002     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1003     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1004     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
1005     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1006       // Offset the demanded elts by the subvector index.
1007       uint64_t Idx = SubIdx->getZExtValue();
1008       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1009     }
1010     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1011       return true;
1012 
1013     // Attempt to avoid multi-use src if we don't need anything from it.
1014     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1015       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1016           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1017       if (DemandedSrc) {
1018         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1019                                         Op.getOperand(1));
1020         return TLO.CombineTo(Op, NewOp);
1021       }
1022     }
1023     break;
1024   }
1025   case ISD::CONCAT_VECTORS: {
1026     Known.Zero.setAllBits();
1027     Known.One.setAllBits();
1028     EVT SubVT = Op.getOperand(0).getValueType();
1029     unsigned NumSubVecs = Op.getNumOperands();
1030     unsigned NumSubElts = SubVT.getVectorNumElements();
1031     for (unsigned i = 0; i != NumSubVecs; ++i) {
1032       APInt DemandedSubElts =
1033           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1034       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1035                                Known2, TLO, Depth + 1))
1036         return true;
1037       // Known bits are shared by every demanded subvector element.
1038       if (!!DemandedSubElts) {
1039         Known.One &= Known2.One;
1040         Known.Zero &= Known2.Zero;
1041       }
1042     }
1043     break;
1044   }
1045   case ISD::VECTOR_SHUFFLE: {
1046     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1047 
1048     // Collect demanded elements from shuffle operands..
1049     APInt DemandedLHS(NumElts, 0);
1050     APInt DemandedRHS(NumElts, 0);
1051     for (unsigned i = 0; i != NumElts; ++i) {
1052       if (!DemandedElts[i])
1053         continue;
1054       int M = ShuffleMask[i];
1055       if (M < 0) {
1056         // For UNDEF elements, we don't know anything about the common state of
1057         // the shuffle result.
1058         DemandedLHS.clearAllBits();
1059         DemandedRHS.clearAllBits();
1060         break;
1061       }
1062       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1063       if (M < (int)NumElts)
1064         DemandedLHS.setBit(M);
1065       else
1066         DemandedRHS.setBit(M - NumElts);
1067     }
1068 
1069     if (!!DemandedLHS || !!DemandedRHS) {
1070       SDValue Op0 = Op.getOperand(0);
1071       SDValue Op1 = Op.getOperand(1);
1072 
1073       Known.Zero.setAllBits();
1074       Known.One.setAllBits();
1075       if (!!DemandedLHS) {
1076         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1077                                  Depth + 1))
1078           return true;
1079         Known.One &= Known2.One;
1080         Known.Zero &= Known2.Zero;
1081       }
1082       if (!!DemandedRHS) {
1083         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1084                                  Depth + 1))
1085           return true;
1086         Known.One &= Known2.One;
1087         Known.Zero &= Known2.Zero;
1088       }
1089 
1090       // Attempt to avoid multi-use ops if we don't need anything from them.
1091       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1092           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1093       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1094           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1095       if (DemandedOp0 || DemandedOp1) {
1096         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1097         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1098         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1099         return TLO.CombineTo(Op, NewOp);
1100       }
1101     }
1102     break;
1103   }
1104   case ISD::AND: {
1105     SDValue Op0 = Op.getOperand(0);
1106     SDValue Op1 = Op.getOperand(1);
1107 
1108     // If the RHS is a constant, check to see if the LHS would be zero without
1109     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1110     // simplify the LHS, here we're using information from the LHS to simplify
1111     // the RHS.
1112     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1113       // Do not increment Depth here; that can cause an infinite loop.
1114       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1115       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1116       if ((LHSKnown.Zero & DemandedBits) ==
1117           (~RHSC->getAPIntValue() & DemandedBits))
1118         return TLO.CombineTo(Op, Op0);
1119 
1120       // If any of the set bits in the RHS are known zero on the LHS, shrink
1121       // the constant.
1122       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1123         return true;
1124 
1125       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1126       // constant, but if this 'and' is only clearing bits that were just set by
1127       // the xor, then this 'and' can be eliminated by shrinking the mask of
1128       // the xor. For example, for a 32-bit X:
1129       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1130       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1131           LHSKnown.One == ~RHSC->getAPIntValue()) {
1132         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1133         return TLO.CombineTo(Op, Xor);
1134       }
1135     }
1136 
1137     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1138                              Depth + 1))
1139       return true;
1140     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1141     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1142                              Known2, TLO, Depth + 1))
1143       return true;
1144     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1145 
1146     // Attempt to avoid multi-use ops if we don't need anything from them.
1147     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1148       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1149           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1151           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1152       if (DemandedOp0 || DemandedOp1) {
1153         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1154         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1155         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1156         return TLO.CombineTo(Op, NewOp);
1157       }
1158     }
1159 
1160     // If all of the demanded bits are known one on one side, return the other.
1161     // These bits cannot contribute to the result of the 'and'.
1162     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1163       return TLO.CombineTo(Op, Op0);
1164     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1165       return TLO.CombineTo(Op, Op1);
1166     // If all of the demanded bits in the inputs are known zeros, return zero.
1167     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1168       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1169     // If the RHS is a constant, see if we can simplify it.
1170     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1171       return true;
1172     // If the operation can be done in a smaller type, do so.
1173     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1174       return true;
1175 
1176     Known &= Known2;
1177     break;
1178   }
1179   case ISD::OR: {
1180     SDValue Op0 = Op.getOperand(0);
1181     SDValue Op1 = Op.getOperand(1);
1182 
1183     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1184                              Depth + 1))
1185       return true;
1186     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1187     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1188                              Known2, TLO, Depth + 1))
1189       return true;
1190     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1191 
1192     // Attempt to avoid multi-use ops if we don't need anything from them.
1193     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1194       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1195           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1196       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1197           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1198       if (DemandedOp0 || DemandedOp1) {
1199         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1200         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1201         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1202         return TLO.CombineTo(Op, NewOp);
1203       }
1204     }
1205 
1206     // If all of the demanded bits are known zero on one side, return the other.
1207     // These bits cannot contribute to the result of the 'or'.
1208     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1209       return TLO.CombineTo(Op, Op0);
1210     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1211       return TLO.CombineTo(Op, Op1);
1212     // If the RHS is a constant, see if we can simplify it.
1213     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1214       return true;
1215     // If the operation can be done in a smaller type, do so.
1216     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1217       return true;
1218 
1219     Known |= Known2;
1220     break;
1221   }
1222   case ISD::XOR: {
1223     SDValue Op0 = Op.getOperand(0);
1224     SDValue Op1 = Op.getOperand(1);
1225 
1226     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1227                              Depth + 1))
1228       return true;
1229     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1230     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1234 
1235     // Attempt to avoid multi-use ops if we don't need anything from them.
1236     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1237       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1238           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1239       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1240           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1241       if (DemandedOp0 || DemandedOp1) {
1242         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1243         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1244         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1245         return TLO.CombineTo(Op, NewOp);
1246       }
1247     }
1248 
1249     // If all of the demanded bits are known zero on one side, return the other.
1250     // These bits cannot contribute to the result of the 'xor'.
1251     if (DemandedBits.isSubsetOf(Known.Zero))
1252       return TLO.CombineTo(Op, Op0);
1253     if (DemandedBits.isSubsetOf(Known2.Zero))
1254       return TLO.CombineTo(Op, Op1);
1255     // If the operation can be done in a smaller type, do so.
1256     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1257       return true;
1258 
1259     // If all of the unknown bits are known to be zero on one side or the other
1260     // (but not both) turn this into an *inclusive* or.
1261     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1262     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1263       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1264 
1265     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1266       // If one side is a constant, and all of the known set bits on the other
1267       // side are also set in the constant, turn this into an AND, as we know
1268       // the bits will be cleared.
1269       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1270       // NB: it is okay if more bits are known than are requested
1271       if (C->getAPIntValue() == Known2.One) {
1272         SDValue ANDC =
1273             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1274         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1275       }
1276 
1277       // If the RHS is a constant, see if we can change it. Don't alter a -1
1278       // constant because that's a 'not' op, and that is better for combining
1279       // and codegen.
1280       if (!C->isAllOnesValue()) {
1281         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1282           // We're flipping all demanded bits. Flip the undemanded bits too.
1283           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1284           return TLO.CombineTo(Op, New);
1285         }
1286         // If we can't turn this into a 'not', try to shrink the constant.
1287         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1288           return true;
1289       }
1290     }
1291 
1292     Known ^= Known2;
1293     break;
1294   }
1295   case ISD::SELECT:
1296     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1297                              Depth + 1))
1298       return true;
1299     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1300                              Depth + 1))
1301       return true;
1302     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1303     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1304 
1305     // If the operands are constants, see if we can simplify them.
1306     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1307       return true;
1308 
1309     // Only known if known in both the LHS and RHS.
1310     Known.One &= Known2.One;
1311     Known.Zero &= Known2.Zero;
1312     break;
1313   case ISD::SELECT_CC:
1314     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1315                              Depth + 1))
1316       return true;
1317     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1318                              Depth + 1))
1319       return true;
1320     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1321     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1322 
1323     // If the operands are constants, see if we can simplify them.
1324     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1325       return true;
1326 
1327     // Only known if known in both the LHS and RHS.
1328     Known.One &= Known2.One;
1329     Known.Zero &= Known2.Zero;
1330     break;
1331   case ISD::SETCC: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1335     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1336     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1337     // -1, we may be able to bypass the setcc.
1338     if (DemandedBits.isSignMask() &&
1339         Op0.getScalarValueSizeInBits() == BitWidth &&
1340         getBooleanContents(Op0.getValueType()) ==
1341             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1342       // If we're testing X < 0, then this compare isn't needed - just use X!
1343       // FIXME: We're limiting to integer types here, but this should also work
1344       // if we don't care about FP signed-zero. The use of SETLT with FP means
1345       // that we don't care about NaNs.
1346       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1347           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1348         return TLO.CombineTo(Op, Op0);
1349 
1350       // TODO: Should we check for other forms of sign-bit comparisons?
1351       // Examples: X <= -1, X >= 0
1352     }
1353     if (getBooleanContents(Op0.getValueType()) ==
1354             TargetLowering::ZeroOrOneBooleanContent &&
1355         BitWidth > 1)
1356       Known.Zero.setBitsFrom(1);
1357     break;
1358   }
1359   case ISD::SHL: {
1360     SDValue Op0 = Op.getOperand(0);
1361     SDValue Op1 = Op.getOperand(1);
1362     EVT ShiftVT = Op1.getValueType();
1363 
1364     if (const APInt *SA =
1365             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1366       unsigned ShAmt = SA->getZExtValue();
1367       if (ShAmt == 0)
1368         return TLO.CombineTo(Op, Op0);
1369 
1370       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1371       // single shift.  We can do this if the bottom bits (which are shifted
1372       // out) are never demanded.
1373       // TODO - support non-uniform vector amounts.
1374       if (Op0.getOpcode() == ISD::SRL) {
1375         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1376           if (const APInt *SA2 =
1377                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1378             if (SA2->ult(BitWidth)) {
1379               unsigned C1 = SA2->getZExtValue();
1380               unsigned Opc = ISD::SHL;
1381               int Diff = ShAmt - C1;
1382               if (Diff < 0) {
1383                 Diff = -Diff;
1384                 Opc = ISD::SRL;
1385               }
1386 
1387               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1388               return TLO.CombineTo(
1389                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1390             }
1391           }
1392         }
1393       }
1394 
1395       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1396       // are not demanded. This will likely allow the anyext to be folded away.
1397       // TODO - support non-uniform vector amounts.
1398       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1399         SDValue InnerOp = Op0.getOperand(0);
1400         EVT InnerVT = InnerOp.getValueType();
1401         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1402         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1403             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1404           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1405           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1406             ShTy = InnerVT;
1407           SDValue NarrowShl =
1408               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1409                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1410           return TLO.CombineTo(
1411               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1412         }
1413 
1414         // Repeat the SHL optimization above in cases where an extension
1415         // intervenes: (shl (anyext (shr x, c1)), c2) to
1416         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1417         // aren't demanded (as above) and that the shifted upper c1 bits of
1418         // x aren't demanded.
1419         // TODO - support non-uniform vector amounts.
1420         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1421             InnerOp.hasOneUse()) {
1422           if (const APInt *SA2 =
1423                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1424             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1425             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1426                 DemandedBits.getActiveBits() <=
1427                     (InnerBits - InnerShAmt + ShAmt) &&
1428                 DemandedBits.countTrailingZeros() >= ShAmt) {
1429               SDValue NewSA =
1430                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1431               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1432                                                InnerOp.getOperand(0));
1433               return TLO.CombineTo(
1434                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1435             }
1436           }
1437         }
1438       }
1439 
1440       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1441       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1442                                Depth + 1))
1443         return true;
1444       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1445       Known.Zero <<= ShAmt;
1446       Known.One <<= ShAmt;
1447       // low bits known zero.
1448       Known.Zero.setLowBits(ShAmt);
1449 
1450       // Try shrinking the operation as long as the shift amount will still be
1451       // in range.
1452       if ((ShAmt < DemandedBits.getActiveBits()) &&
1453           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1454         return true;
1455     }
1456     break;
1457   }
1458   case ISD::SRL: {
1459     SDValue Op0 = Op.getOperand(0);
1460     SDValue Op1 = Op.getOperand(1);
1461     EVT ShiftVT = Op1.getValueType();
1462 
1463     if (const APInt *SA =
1464             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1465       unsigned ShAmt = SA->getZExtValue();
1466       if (ShAmt == 0)
1467         return TLO.CombineTo(Op, Op0);
1468 
1469       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1470       // single shift.  We can do this if the top bits (which are shifted out)
1471       // are never demanded.
1472       // TODO - support non-uniform vector amounts.
1473       if (Op0.getOpcode() == ISD::SHL) {
1474         if (const APInt *SA2 =
1475                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1476           if (!DemandedBits.intersects(
1477                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1478             if (SA2->ult(BitWidth)) {
1479               unsigned C1 = SA2->getZExtValue();
1480               unsigned Opc = ISD::SRL;
1481               int Diff = ShAmt - C1;
1482               if (Diff < 0) {
1483                 Diff = -Diff;
1484                 Opc = ISD::SHL;
1485               }
1486 
1487               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1488               return TLO.CombineTo(
1489                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1490             }
1491           }
1492         }
1493       }
1494 
1495       APInt InDemandedMask = (DemandedBits << ShAmt);
1496 
1497       // If the shift is exact, then it does demand the low bits (and knows that
1498       // they are zero).
1499       if (Op->getFlags().hasExact())
1500         InDemandedMask.setLowBits(ShAmt);
1501 
1502       // Compute the new bits that are at the top now.
1503       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1504                                Depth + 1))
1505         return true;
1506       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1507       Known.Zero.lshrInPlace(ShAmt);
1508       Known.One.lshrInPlace(ShAmt);
1509       // High bits known zero.
1510       Known.Zero.setHighBits(ShAmt);
1511     }
1512     break;
1513   }
1514   case ISD::SRA: {
1515     SDValue Op0 = Op.getOperand(0);
1516     SDValue Op1 = Op.getOperand(1);
1517     EVT ShiftVT = Op1.getValueType();
1518 
1519     // If we only want bits that already match the signbit then we don't need
1520     // to shift.
1521     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1522     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1523         NumHiDemandedBits)
1524       return TLO.CombineTo(Op, Op0);
1525 
1526     // If this is an arithmetic shift right and only the low-bit is set, we can
1527     // always convert this into a logical shr, even if the shift amount is
1528     // variable.  The low bit of the shift cannot be an input sign bit unless
1529     // the shift amount is >= the size of the datatype, which is undefined.
1530     if (DemandedBits.isOneValue())
1531       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1532 
1533     if (const APInt *SA =
1534             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1535       unsigned ShAmt = SA->getZExtValue();
1536       if (ShAmt == 0)
1537         return TLO.CombineTo(Op, Op0);
1538 
1539       APInt InDemandedMask = (DemandedBits << ShAmt);
1540 
1541       // If the shift is exact, then it does demand the low bits (and knows that
1542       // they are zero).
1543       if (Op->getFlags().hasExact())
1544         InDemandedMask.setLowBits(ShAmt);
1545 
1546       // If any of the demanded bits are produced by the sign extension, we also
1547       // demand the input sign bit.
1548       if (DemandedBits.countLeadingZeros() < ShAmt)
1549         InDemandedMask.setSignBit();
1550 
1551       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1552                                Depth + 1))
1553         return true;
1554       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1555       Known.Zero.lshrInPlace(ShAmt);
1556       Known.One.lshrInPlace(ShAmt);
1557 
1558       // If the input sign bit is known to be zero, or if none of the top bits
1559       // are demanded, turn this into an unsigned shift right.
1560       if (Known.Zero[BitWidth - ShAmt - 1] ||
1561           DemandedBits.countLeadingZeros() >= ShAmt) {
1562         SDNodeFlags Flags;
1563         Flags.setExact(Op->getFlags().hasExact());
1564         return TLO.CombineTo(
1565             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1566       }
1567 
1568       int Log2 = DemandedBits.exactLogBase2();
1569       if (Log2 >= 0) {
1570         // The bit must come from the sign.
1571         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1572         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1573       }
1574 
1575       if (Known.One[BitWidth - ShAmt - 1])
1576         // New bits are known one.
1577         Known.One.setHighBits(ShAmt);
1578 
1579       // Attempt to avoid multi-use ops if we don't need anything from them.
1580       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1581         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1582             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1583         if (DemandedOp0) {
1584           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1585           return TLO.CombineTo(Op, NewOp);
1586         }
1587       }
1588     }
1589     break;
1590   }
1591   case ISD::FSHL:
1592   case ISD::FSHR: {
1593     SDValue Op0 = Op.getOperand(0);
1594     SDValue Op1 = Op.getOperand(1);
1595     SDValue Op2 = Op.getOperand(2);
1596     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1597 
1598     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1599       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1600 
1601       // For fshl, 0-shift returns the 1st arg.
1602       // For fshr, 0-shift returns the 2nd arg.
1603       if (Amt == 0) {
1604         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1605                                  Known, TLO, Depth + 1))
1606           return true;
1607         break;
1608       }
1609 
1610       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1611       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1612       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1613       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1614       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1615                                Depth + 1))
1616         return true;
1617       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1618                                Depth + 1))
1619         return true;
1620 
1621       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1622       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1623       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1624       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1625       Known.One |= Known2.One;
1626       Known.Zero |= Known2.Zero;
1627     }
1628 
1629     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1630     if (isPowerOf2_32(BitWidth)) {
1631       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1632       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1633                                Known2, TLO, Depth + 1))
1634         return true;
1635     }
1636     break;
1637   }
1638   case ISD::ROTL:
1639   case ISD::ROTR: {
1640     SDValue Op0 = Op.getOperand(0);
1641     SDValue Op1 = Op.getOperand(1);
1642 
1643     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1644     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1645       return TLO.CombineTo(Op, Op0);
1646 
1647     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1648     if (isPowerOf2_32(BitWidth)) {
1649       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1650       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1651                                Depth + 1))
1652         return true;
1653     }
1654     break;
1655   }
1656   case ISD::BITREVERSE: {
1657     SDValue Src = Op.getOperand(0);
1658     APInt DemandedSrcBits = DemandedBits.reverseBits();
1659     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1660                              Depth + 1))
1661       return true;
1662     Known.One = Known2.One.reverseBits();
1663     Known.Zero = Known2.Zero.reverseBits();
1664     break;
1665   }
1666   case ISD::BSWAP: {
1667     SDValue Src = Op.getOperand(0);
1668     APInt DemandedSrcBits = DemandedBits.byteSwap();
1669     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1670                              Depth + 1))
1671       return true;
1672     Known.One = Known2.One.byteSwap();
1673     Known.Zero = Known2.Zero.byteSwap();
1674     break;
1675   }
1676   case ISD::SIGN_EXTEND_INREG: {
1677     SDValue Op0 = Op.getOperand(0);
1678     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1679     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1680 
1681     // If we only care about the highest bit, don't bother shifting right.
1682     if (DemandedBits.isSignMask()) {
1683       unsigned NumSignBits =
1684           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1685       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1686       // However if the input is already sign extended we expect the sign
1687       // extension to be dropped altogether later and do not simplify.
1688       if (!AlreadySignExtended) {
1689         // Compute the correct shift amount type, which must be getShiftAmountTy
1690         // for scalar types after legalization.
1691         EVT ShiftAmtTy = VT;
1692         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1693           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1694 
1695         SDValue ShiftAmt =
1696             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1697         return TLO.CombineTo(Op,
1698                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1699       }
1700     }
1701 
1702     // If none of the extended bits are demanded, eliminate the sextinreg.
1703     if (DemandedBits.getActiveBits() <= ExVTBits)
1704       return TLO.CombineTo(Op, Op0);
1705 
1706     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1707 
1708     // Since the sign extended bits are demanded, we know that the sign
1709     // bit is demanded.
1710     InputDemandedBits.setBit(ExVTBits - 1);
1711 
1712     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1713       return true;
1714     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1715 
1716     // If the sign bit of the input is known set or clear, then we know the
1717     // top bits of the result.
1718 
1719     // If the input sign bit is known zero, convert this into a zero extension.
1720     if (Known.Zero[ExVTBits - 1])
1721       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1722 
1723     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1724     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1725       Known.One.setBitsFrom(ExVTBits);
1726       Known.Zero &= Mask;
1727     } else { // Input sign bit unknown
1728       Known.Zero &= Mask;
1729       Known.One &= Mask;
1730     }
1731     break;
1732   }
1733   case ISD::BUILD_PAIR: {
1734     EVT HalfVT = Op.getOperand(0).getValueType();
1735     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1736 
1737     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1738     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1739 
1740     KnownBits KnownLo, KnownHi;
1741 
1742     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1743       return true;
1744 
1745     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1746       return true;
1747 
1748     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1749                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1750 
1751     Known.One = KnownLo.One.zext(BitWidth) |
1752                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1753     break;
1754   }
1755   case ISD::ZERO_EXTEND:
1756   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1757     SDValue Src = Op.getOperand(0);
1758     EVT SrcVT = Src.getValueType();
1759     unsigned InBits = SrcVT.getScalarSizeInBits();
1760     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1761     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1762 
1763     // If none of the top bits are demanded, convert this into an any_extend.
1764     if (DemandedBits.getActiveBits() <= InBits) {
1765       // If we only need the non-extended bits of the bottom element
1766       // then we can just bitcast to the result.
1767       if (IsVecInReg && DemandedElts == 1 &&
1768           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1769           TLO.DAG.getDataLayout().isLittleEndian())
1770         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1771 
1772       unsigned Opc =
1773           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1774       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1775         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1776     }
1777 
1778     APInt InDemandedBits = DemandedBits.trunc(InBits);
1779     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1780     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1781                              Depth + 1))
1782       return true;
1783     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1784     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1785     Known = Known.zext(BitWidth);
1786     break;
1787   }
1788   case ISD::SIGN_EXTEND:
1789   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1790     SDValue Src = Op.getOperand(0);
1791     EVT SrcVT = Src.getValueType();
1792     unsigned InBits = SrcVT.getScalarSizeInBits();
1793     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1794     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1795 
1796     // If none of the top bits are demanded, convert this into an any_extend.
1797     if (DemandedBits.getActiveBits() <= InBits) {
1798       // If we only need the non-extended bits of the bottom element
1799       // then we can just bitcast to the result.
1800       if (IsVecInReg && DemandedElts == 1 &&
1801           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1802           TLO.DAG.getDataLayout().isLittleEndian())
1803         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1804 
1805       unsigned Opc =
1806           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1807       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1808         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1809     }
1810 
1811     APInt InDemandedBits = DemandedBits.trunc(InBits);
1812     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1813 
1814     // Since some of the sign extended bits are demanded, we know that the sign
1815     // bit is demanded.
1816     InDemandedBits.setBit(InBits - 1);
1817 
1818     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1819                              Depth + 1))
1820       return true;
1821     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1822     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1823 
1824     // If the sign bit is known one, the top bits match.
1825     Known = Known.sext(BitWidth);
1826 
1827     // If the sign bit is known zero, convert this to a zero extend.
1828     if (Known.isNonNegative()) {
1829       unsigned Opc =
1830           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1831       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1832         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1833     }
1834     break;
1835   }
1836   case ISD::ANY_EXTEND:
1837   case ISD::ANY_EXTEND_VECTOR_INREG: {
1838     SDValue Src = Op.getOperand(0);
1839     EVT SrcVT = Src.getValueType();
1840     unsigned InBits = SrcVT.getScalarSizeInBits();
1841     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1842     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1843 
1844     // If we only need the bottom element then we can just bitcast.
1845     // TODO: Handle ANY_EXTEND?
1846     if (IsVecInReg && DemandedElts == 1 &&
1847         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1848         TLO.DAG.getDataLayout().isLittleEndian())
1849       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1850 
1851     APInt InDemandedBits = DemandedBits.trunc(InBits);
1852     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1853     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1854                              Depth + 1))
1855       return true;
1856     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1857     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1858     Known = Known.anyext(BitWidth);
1859 
1860     // Attempt to avoid multi-use ops if we don't need anything from them.
1861     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1862             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1863       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1864     break;
1865   }
1866   case ISD::TRUNCATE: {
1867     SDValue Src = Op.getOperand(0);
1868 
1869     // Simplify the input, using demanded bit information, and compute the known
1870     // zero/one bits live out.
1871     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1872     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1873     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1874       return true;
1875     Known = Known.trunc(BitWidth);
1876 
1877     // Attempt to avoid multi-use ops if we don't need anything from them.
1878     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1879             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1880       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1881 
1882     // If the input is only used by this truncate, see if we can shrink it based
1883     // on the known demanded bits.
1884     if (Src.getNode()->hasOneUse()) {
1885       switch (Src.getOpcode()) {
1886       default:
1887         break;
1888       case ISD::SRL:
1889         // Shrink SRL by a constant if none of the high bits shifted in are
1890         // demanded.
1891         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1892           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1893           // undesirable.
1894           break;
1895 
1896         SDValue ShAmt = Src.getOperand(1);
1897         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1898         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1899           break;
1900         uint64_t ShVal = ShAmtC->getZExtValue();
1901 
1902         APInt HighBits =
1903             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1904         HighBits.lshrInPlace(ShVal);
1905         HighBits = HighBits.trunc(BitWidth);
1906 
1907         if (!(HighBits & DemandedBits)) {
1908           // None of the shifted in bits are needed.  Add a truncate of the
1909           // shift input, then shift it.
1910           if (TLO.LegalTypes())
1911             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1912           SDValue NewTrunc =
1913               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1914           return TLO.CombineTo(
1915               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1916         }
1917         break;
1918       }
1919     }
1920 
1921     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1922     break;
1923   }
1924   case ISD::AssertZext: {
1925     // AssertZext demands all of the high bits, plus any of the low bits
1926     // demanded by its users.
1927     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1928     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1929     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1930                              TLO, Depth + 1))
1931       return true;
1932     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1933 
1934     Known.Zero |= ~InMask;
1935     break;
1936   }
1937   case ISD::EXTRACT_VECTOR_ELT: {
1938     SDValue Src = Op.getOperand(0);
1939     SDValue Idx = Op.getOperand(1);
1940     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1941     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1942 
1943     // Demand the bits from every vector element without a constant index.
1944     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1945     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1946       if (CIdx->getAPIntValue().ult(NumSrcElts))
1947         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1948 
1949     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1950     // anything about the extended bits.
1951     APInt DemandedSrcBits = DemandedBits;
1952     if (BitWidth > EltBitWidth)
1953       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1954 
1955     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1956                              Depth + 1))
1957       return true;
1958 
1959     // Attempt to avoid multi-use ops if we don't need anything from them.
1960     if (!DemandedSrcBits.isAllOnesValue() ||
1961         !DemandedSrcElts.isAllOnesValue()) {
1962       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1963               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1964         SDValue NewOp =
1965             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1966         return TLO.CombineTo(Op, NewOp);
1967       }
1968     }
1969 
1970     Known = Known2;
1971     if (BitWidth > EltBitWidth)
1972       Known = Known.anyext(BitWidth);
1973     break;
1974   }
1975   case ISD::BITCAST: {
1976     SDValue Src = Op.getOperand(0);
1977     EVT SrcVT = Src.getValueType();
1978     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1979 
1980     // If this is an FP->Int bitcast and if the sign bit is the only
1981     // thing demanded, turn this into a FGETSIGN.
1982     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1983         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1984         SrcVT.isFloatingPoint()) {
1985       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1986       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1987       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1988           SrcVT != MVT::f128) {
1989         // Cannot eliminate/lower SHL for f128 yet.
1990         EVT Ty = OpVTLegal ? VT : MVT::i32;
1991         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1992         // place.  We expect the SHL to be eliminated by other optimizations.
1993         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1994         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1995         if (!OpVTLegal && OpVTSizeInBits > 32)
1996           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1997         unsigned ShVal = Op.getValueSizeInBits() - 1;
1998         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1999         return TLO.CombineTo(Op,
2000                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2001       }
2002     }
2003 
2004     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2005     // Demand the elt/bit if any of the original elts/bits are demanded.
2006     // TODO - bigendian once we have test coverage.
2007     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2008         TLO.DAG.getDataLayout().isLittleEndian()) {
2009       unsigned Scale = BitWidth / NumSrcEltBits;
2010       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2011       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2012       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2013       for (unsigned i = 0; i != Scale; ++i) {
2014         unsigned Offset = i * NumSrcEltBits;
2015         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2016         if (!Sub.isNullValue()) {
2017           DemandedSrcBits |= Sub;
2018           for (unsigned j = 0; j != NumElts; ++j)
2019             if (DemandedElts[j])
2020               DemandedSrcElts.setBit((j * Scale) + i);
2021         }
2022       }
2023 
2024       APInt KnownSrcUndef, KnownSrcZero;
2025       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2026                                      KnownSrcZero, TLO, Depth + 1))
2027         return true;
2028 
2029       KnownBits KnownSrcBits;
2030       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2031                                KnownSrcBits, TLO, Depth + 1))
2032         return true;
2033     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2034                TLO.DAG.getDataLayout().isLittleEndian()) {
2035       unsigned Scale = NumSrcEltBits / BitWidth;
2036       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2037       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2038       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2039       for (unsigned i = 0; i != NumElts; ++i)
2040         if (DemandedElts[i]) {
2041           unsigned Offset = (i % Scale) * BitWidth;
2042           DemandedSrcBits.insertBits(DemandedBits, Offset);
2043           DemandedSrcElts.setBit(i / Scale);
2044         }
2045 
2046       if (SrcVT.isVector()) {
2047         APInt KnownSrcUndef, KnownSrcZero;
2048         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2049                                        KnownSrcZero, TLO, Depth + 1))
2050           return true;
2051       }
2052 
2053       KnownBits KnownSrcBits;
2054       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2055                                KnownSrcBits, TLO, Depth + 1))
2056         return true;
2057     }
2058 
2059     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2060     // recursive call where Known may be useful to the caller.
2061     if (Depth > 0) {
2062       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2063       return false;
2064     }
2065     break;
2066   }
2067   case ISD::ADD:
2068   case ISD::MUL:
2069   case ISD::SUB: {
2070     // Add, Sub, and Mul don't demand any bits in positions beyond that
2071     // of the highest bit demanded of them.
2072     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2073     SDNodeFlags Flags = Op.getNode()->getFlags();
2074     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2075     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2076     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2077                              Depth + 1) ||
2078         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2079                              Depth + 1) ||
2080         // See if the operation should be performed at a smaller bit width.
2081         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2082       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2083         // Disable the nsw and nuw flags. We can no longer guarantee that we
2084         // won't wrap after simplification.
2085         Flags.setNoSignedWrap(false);
2086         Flags.setNoUnsignedWrap(false);
2087         SDValue NewOp =
2088             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2089         return TLO.CombineTo(Op, NewOp);
2090       }
2091       return true;
2092     }
2093 
2094     // Attempt to avoid multi-use ops if we don't need anything from them.
2095     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2096       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2097           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2098       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2099           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2100       if (DemandedOp0 || DemandedOp1) {
2101         Flags.setNoSignedWrap(false);
2102         Flags.setNoUnsignedWrap(false);
2103         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2104         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2105         SDValue NewOp =
2106             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2107         return TLO.CombineTo(Op, NewOp);
2108       }
2109     }
2110 
2111     // If we have a constant operand, we may be able to turn it into -1 if we
2112     // do not demand the high bits. This can make the constant smaller to
2113     // encode, allow more general folding, or match specialized instruction
2114     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2115     // is probably not useful (and could be detrimental).
2116     ConstantSDNode *C = isConstOrConstSplat(Op1);
2117     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2118     if (C && !C->isAllOnesValue() && !C->isOne() &&
2119         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2120       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2121       // Disable the nsw and nuw flags. We can no longer guarantee that we
2122       // won't wrap after simplification.
2123       Flags.setNoSignedWrap(false);
2124       Flags.setNoUnsignedWrap(false);
2125       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2126       return TLO.CombineTo(Op, NewOp);
2127     }
2128 
2129     LLVM_FALLTHROUGH;
2130   }
2131   default:
2132     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2133       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2134                                             Known, TLO, Depth))
2135         return true;
2136       break;
2137     }
2138 
2139     // Just use computeKnownBits to compute output bits.
2140     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2141     break;
2142   }
2143 
2144   // If we know the value of all of the demanded bits, return this as a
2145   // constant.
2146   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2147     // Avoid folding to a constant if any OpaqueConstant is involved.
2148     const SDNode *N = Op.getNode();
2149     for (SDNodeIterator I = SDNodeIterator::begin(N),
2150                         E = SDNodeIterator::end(N);
2151          I != E; ++I) {
2152       SDNode *Op = *I;
2153       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2154         if (C->isOpaque())
2155           return false;
2156     }
2157     // TODO: Handle float bits as well.
2158     if (VT.isInteger())
2159       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2160   }
2161 
2162   return false;
2163 }
2164 
2165 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2166                                                 const APInt &DemandedElts,
2167                                                 APInt &KnownUndef,
2168                                                 APInt &KnownZero,
2169                                                 DAGCombinerInfo &DCI) const {
2170   SelectionDAG &DAG = DCI.DAG;
2171   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2172                         !DCI.isBeforeLegalizeOps());
2173 
2174   bool Simplified =
2175       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2176   if (Simplified) {
2177     DCI.AddToWorklist(Op.getNode());
2178     DCI.CommitTargetLoweringOpt(TLO);
2179   }
2180 
2181   return Simplified;
2182 }
2183 
2184 /// Given a vector binary operation and known undefined elements for each input
2185 /// operand, compute whether each element of the output is undefined.
2186 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2187                                          const APInt &UndefOp0,
2188                                          const APInt &UndefOp1) {
2189   EVT VT = BO.getValueType();
2190   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2191          "Vector binop only");
2192 
2193   EVT EltVT = VT.getVectorElementType();
2194   unsigned NumElts = VT.getVectorNumElements();
2195   assert(UndefOp0.getBitWidth() == NumElts &&
2196          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2197 
2198   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2199                                    const APInt &UndefVals) {
2200     if (UndefVals[Index])
2201       return DAG.getUNDEF(EltVT);
2202 
2203     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2204       // Try hard to make sure that the getNode() call is not creating temporary
2205       // nodes. Ignore opaque integers because they do not constant fold.
2206       SDValue Elt = BV->getOperand(Index);
2207       auto *C = dyn_cast<ConstantSDNode>(Elt);
2208       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2209         return Elt;
2210     }
2211 
2212     return SDValue();
2213   };
2214 
2215   APInt KnownUndef = APInt::getNullValue(NumElts);
2216   for (unsigned i = 0; i != NumElts; ++i) {
2217     // If both inputs for this element are either constant or undef and match
2218     // the element type, compute the constant/undef result for this element of
2219     // the vector.
2220     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2221     // not handle FP constants. The code within getNode() should be refactored
2222     // to avoid the danger of creating a bogus temporary node here.
2223     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2224     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2225     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2226       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2227         KnownUndef.setBit(i);
2228   }
2229   return KnownUndef;
2230 }
2231 
2232 bool TargetLowering::SimplifyDemandedVectorElts(
2233     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2234     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2235     bool AssumeSingleUse) const {
2236   EVT VT = Op.getValueType();
2237   APInt DemandedElts = OriginalDemandedElts;
2238   unsigned NumElts = DemandedElts.getBitWidth();
2239   assert(VT.isVector() && "Expected vector op");
2240   assert(VT.getVectorNumElements() == NumElts &&
2241          "Mask size mismatches value type element count!");
2242 
2243   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2244 
2245   // Undef operand.
2246   if (Op.isUndef()) {
2247     KnownUndef.setAllBits();
2248     return false;
2249   }
2250 
2251   // If Op has other users, assume that all elements are needed.
2252   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2253     DemandedElts.setAllBits();
2254 
2255   // Not demanding any elements from Op.
2256   if (DemandedElts == 0) {
2257     KnownUndef.setAllBits();
2258     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2259   }
2260 
2261   // Limit search depth.
2262   if (Depth >= SelectionDAG::MaxRecursionDepth)
2263     return false;
2264 
2265   SDLoc DL(Op);
2266   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2267 
2268   switch (Op.getOpcode()) {
2269   case ISD::SCALAR_TO_VECTOR: {
2270     if (!DemandedElts[0]) {
2271       KnownUndef.setAllBits();
2272       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2273     }
2274     KnownUndef.setHighBits(NumElts - 1);
2275     break;
2276   }
2277   case ISD::BITCAST: {
2278     SDValue Src = Op.getOperand(0);
2279     EVT SrcVT = Src.getValueType();
2280 
2281     // We only handle vectors here.
2282     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2283     if (!SrcVT.isVector())
2284       break;
2285 
2286     // Fast handling of 'identity' bitcasts.
2287     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2288     if (NumSrcElts == NumElts)
2289       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2290                                         KnownZero, TLO, Depth + 1);
2291 
2292     APInt SrcZero, SrcUndef;
2293     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2294 
2295     // Bitcast from 'large element' src vector to 'small element' vector, we
2296     // must demand a source element if any DemandedElt maps to it.
2297     if ((NumElts % NumSrcElts) == 0) {
2298       unsigned Scale = NumElts / NumSrcElts;
2299       for (unsigned i = 0; i != NumElts; ++i)
2300         if (DemandedElts[i])
2301           SrcDemandedElts.setBit(i / Scale);
2302 
2303       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2304                                      TLO, Depth + 1))
2305         return true;
2306 
2307       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2308       // of the large element.
2309       // TODO - bigendian once we have test coverage.
2310       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2311         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2312         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2313         for (unsigned i = 0; i != NumElts; ++i)
2314           if (DemandedElts[i]) {
2315             unsigned Ofs = (i % Scale) * EltSizeInBits;
2316             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2317           }
2318 
2319         KnownBits Known;
2320         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2321                                  TLO, Depth + 1))
2322           return true;
2323       }
2324 
2325       // If the src element is zero/undef then all the output elements will be -
2326       // only demanded elements are guaranteed to be correct.
2327       for (unsigned i = 0; i != NumSrcElts; ++i) {
2328         if (SrcDemandedElts[i]) {
2329           if (SrcZero[i])
2330             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2331           if (SrcUndef[i])
2332             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2333         }
2334       }
2335     }
2336 
2337     // Bitcast from 'small element' src vector to 'large element' vector, we
2338     // demand all smaller source elements covered by the larger demanded element
2339     // of this vector.
2340     if ((NumSrcElts % NumElts) == 0) {
2341       unsigned Scale = NumSrcElts / NumElts;
2342       for (unsigned i = 0; i != NumElts; ++i)
2343         if (DemandedElts[i])
2344           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2345 
2346       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2347                                      TLO, Depth + 1))
2348         return true;
2349 
2350       // If all the src elements covering an output element are zero/undef, then
2351       // the output element will be as well, assuming it was demanded.
2352       for (unsigned i = 0; i != NumElts; ++i) {
2353         if (DemandedElts[i]) {
2354           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2355             KnownZero.setBit(i);
2356           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2357             KnownUndef.setBit(i);
2358         }
2359       }
2360     }
2361     break;
2362   }
2363   case ISD::BUILD_VECTOR: {
2364     // Check all elements and simplify any unused elements with UNDEF.
2365     if (!DemandedElts.isAllOnesValue()) {
2366       // Don't simplify BROADCASTS.
2367       if (llvm::any_of(Op->op_values(),
2368                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2369         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2370         bool Updated = false;
2371         for (unsigned i = 0; i != NumElts; ++i) {
2372           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2373             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2374             KnownUndef.setBit(i);
2375             Updated = true;
2376           }
2377         }
2378         if (Updated)
2379           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2380       }
2381     }
2382     for (unsigned i = 0; i != NumElts; ++i) {
2383       SDValue SrcOp = Op.getOperand(i);
2384       if (SrcOp.isUndef()) {
2385         KnownUndef.setBit(i);
2386       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2387                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2388         KnownZero.setBit(i);
2389       }
2390     }
2391     break;
2392   }
2393   case ISD::CONCAT_VECTORS: {
2394     EVT SubVT = Op.getOperand(0).getValueType();
2395     unsigned NumSubVecs = Op.getNumOperands();
2396     unsigned NumSubElts = SubVT.getVectorNumElements();
2397     for (unsigned i = 0; i != NumSubVecs; ++i) {
2398       SDValue SubOp = Op.getOperand(i);
2399       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2400       APInt SubUndef, SubZero;
2401       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2402                                      Depth + 1))
2403         return true;
2404       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2405       KnownZero.insertBits(SubZero, i * NumSubElts);
2406     }
2407     break;
2408   }
2409   case ISD::INSERT_SUBVECTOR: {
2410     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2411       break;
2412     SDValue Base = Op.getOperand(0);
2413     SDValue Sub = Op.getOperand(1);
2414     EVT SubVT = Sub.getValueType();
2415     unsigned NumSubElts = SubVT.getVectorNumElements();
2416     const APInt &Idx = Op.getConstantOperandAPInt(2);
2417     if (Idx.ugt(NumElts - NumSubElts))
2418       break;
2419     unsigned SubIdx = Idx.getZExtValue();
2420     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2421     if (!SubElts)
2422       return TLO.CombineTo(Op, Base);
2423     APInt SubUndef, SubZero;
2424     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2425                                    Depth + 1))
2426       return true;
2427     APInt BaseElts = DemandedElts;
2428     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2429 
2430     // If none of the base operand elements are demanded, replace it with undef.
2431     if (!BaseElts && !Base.isUndef())
2432       return TLO.CombineTo(Op,
2433                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2434                                            TLO.DAG.getUNDEF(VT),
2435                                            Op.getOperand(1),
2436                                            Op.getOperand(2)));
2437 
2438     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2439                                    Depth + 1))
2440       return true;
2441     KnownUndef.insertBits(SubUndef, SubIdx);
2442     KnownZero.insertBits(SubZero, SubIdx);
2443 
2444     // Attempt to avoid multi-use ops if we don't need anything from them.
2445     if (!BaseElts.isAllOnesValue() || !SubElts.isAllOnesValue()) {
2446       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2447       SDValue NewBase = SimplifyMultipleUseDemandedBits(
2448           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
2449       SDValue NewSub = SimplifyMultipleUseDemandedBits(
2450           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
2451       if (NewBase || NewSub) {
2452         NewBase = NewBase ? NewBase : Base;
2453         NewSub = NewSub ? NewSub : Sub;
2454         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewBase,
2455                                         NewSub, Op.getOperand(2));
2456         return TLO.CombineTo(Op, NewOp);
2457       }
2458     }
2459     break;
2460   }
2461   case ISD::EXTRACT_SUBVECTOR: {
2462     SDValue Src = Op.getOperand(0);
2463     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2464     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2465     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2466       // Offset the demanded elts by the subvector index.
2467       uint64_t Idx = SubIdx->getZExtValue();
2468       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2469       APInt SrcUndef, SrcZero;
2470       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2471                                      Depth + 1))
2472         return true;
2473       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2474       KnownZero = SrcZero.extractBits(NumElts, Idx);
2475 
2476       // Attempt to avoid multi-use ops if we don't need anything from them.
2477       if (!DemandedElts.isAllOnesValue()) {
2478         APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2479         SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2480             Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
2481         if (NewSrc) {
2482           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2483                                           Op.getOperand(1));
2484           return TLO.CombineTo(Op, NewOp);
2485         }
2486       }
2487     }
2488     break;
2489   }
2490   case ISD::INSERT_VECTOR_ELT: {
2491     SDValue Vec = Op.getOperand(0);
2492     SDValue Scl = Op.getOperand(1);
2493     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2494 
2495     // For a legal, constant insertion index, if we don't need this insertion
2496     // then strip it, else remove it from the demanded elts.
2497     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2498       unsigned Idx = CIdx->getZExtValue();
2499       if (!DemandedElts[Idx])
2500         return TLO.CombineTo(Op, Vec);
2501 
2502       APInt DemandedVecElts(DemandedElts);
2503       DemandedVecElts.clearBit(Idx);
2504       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2505                                      KnownZero, TLO, Depth + 1))
2506         return true;
2507 
2508       KnownUndef.clearBit(Idx);
2509       if (Scl.isUndef())
2510         KnownUndef.setBit(Idx);
2511 
2512       KnownZero.clearBit(Idx);
2513       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2514         KnownZero.setBit(Idx);
2515       break;
2516     }
2517 
2518     APInt VecUndef, VecZero;
2519     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2520                                    Depth + 1))
2521       return true;
2522     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2523     break;
2524   }
2525   case ISD::VSELECT: {
2526     // Try to transform the select condition based on the current demanded
2527     // elements.
2528     // TODO: If a condition element is undef, we can choose from one arm of the
2529     //       select (and if one arm is undef, then we can propagate that to the
2530     //       result).
2531     // TODO - add support for constant vselect masks (see IR version of this).
2532     APInt UnusedUndef, UnusedZero;
2533     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2534                                    UnusedZero, TLO, Depth + 1))
2535       return true;
2536 
2537     // See if we can simplify either vselect operand.
2538     APInt DemandedLHS(DemandedElts);
2539     APInt DemandedRHS(DemandedElts);
2540     APInt UndefLHS, ZeroLHS;
2541     APInt UndefRHS, ZeroRHS;
2542     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2543                                    ZeroLHS, TLO, Depth + 1))
2544       return true;
2545     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2546                                    ZeroRHS, TLO, Depth + 1))
2547       return true;
2548 
2549     KnownUndef = UndefLHS & UndefRHS;
2550     KnownZero = ZeroLHS & ZeroRHS;
2551     break;
2552   }
2553   case ISD::VECTOR_SHUFFLE: {
2554     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2555 
2556     // Collect demanded elements from shuffle operands..
2557     APInt DemandedLHS(NumElts, 0);
2558     APInt DemandedRHS(NumElts, 0);
2559     for (unsigned i = 0; i != NumElts; ++i) {
2560       int M = ShuffleMask[i];
2561       if (M < 0 || !DemandedElts[i])
2562         continue;
2563       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2564       if (M < (int)NumElts)
2565         DemandedLHS.setBit(M);
2566       else
2567         DemandedRHS.setBit(M - NumElts);
2568     }
2569 
2570     // See if we can simplify either shuffle operand.
2571     APInt UndefLHS, ZeroLHS;
2572     APInt UndefRHS, ZeroRHS;
2573     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2574                                    ZeroLHS, TLO, Depth + 1))
2575       return true;
2576     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2577                                    ZeroRHS, TLO, Depth + 1))
2578       return true;
2579 
2580     // Simplify mask using undef elements from LHS/RHS.
2581     bool Updated = false;
2582     bool IdentityLHS = true, IdentityRHS = true;
2583     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2584     for (unsigned i = 0; i != NumElts; ++i) {
2585       int &M = NewMask[i];
2586       if (M < 0)
2587         continue;
2588       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2589           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2590         Updated = true;
2591         M = -1;
2592       }
2593       IdentityLHS &= (M < 0) || (M == (int)i);
2594       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2595     }
2596 
2597     // Update legal shuffle masks based on demanded elements if it won't reduce
2598     // to Identity which can cause premature removal of the shuffle mask.
2599     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2600       SDValue LegalShuffle =
2601           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2602                                   NewMask, TLO.DAG);
2603       if (LegalShuffle)
2604         return TLO.CombineTo(Op, LegalShuffle);
2605     }
2606 
2607     // Propagate undef/zero elements from LHS/RHS.
2608     for (unsigned i = 0; i != NumElts; ++i) {
2609       int M = ShuffleMask[i];
2610       if (M < 0) {
2611         KnownUndef.setBit(i);
2612       } else if (M < (int)NumElts) {
2613         if (UndefLHS[M])
2614           KnownUndef.setBit(i);
2615         if (ZeroLHS[M])
2616           KnownZero.setBit(i);
2617       } else {
2618         if (UndefRHS[M - NumElts])
2619           KnownUndef.setBit(i);
2620         if (ZeroRHS[M - NumElts])
2621           KnownZero.setBit(i);
2622       }
2623     }
2624     break;
2625   }
2626   case ISD::ANY_EXTEND_VECTOR_INREG:
2627   case ISD::SIGN_EXTEND_VECTOR_INREG:
2628   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2629     APInt SrcUndef, SrcZero;
2630     SDValue Src = Op.getOperand(0);
2631     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2632     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2633     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2634                                    Depth + 1))
2635       return true;
2636     KnownZero = SrcZero.zextOrTrunc(NumElts);
2637     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2638 
2639     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2640         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2641         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2642       // aext - if we just need the bottom element then we can bitcast.
2643       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2644     }
2645 
2646     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2647       // zext(undef) upper bits are guaranteed to be zero.
2648       if (DemandedElts.isSubsetOf(KnownUndef))
2649         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2650       KnownUndef.clearAllBits();
2651     }
2652     break;
2653   }
2654 
2655   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2656   // MAX, saturated math, etc.
2657   case ISD::OR:
2658   case ISD::XOR:
2659   case ISD::ADD:
2660   case ISD::SUB:
2661   case ISD::FADD:
2662   case ISD::FSUB:
2663   case ISD::FMUL:
2664   case ISD::FDIV:
2665   case ISD::FREM: {
2666     APInt UndefRHS, ZeroRHS;
2667     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2668                                    ZeroRHS, TLO, Depth + 1))
2669       return true;
2670     APInt UndefLHS, ZeroLHS;
2671     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2672                                    ZeroLHS, TLO, Depth + 1))
2673       return true;
2674 
2675     KnownZero = ZeroLHS & ZeroRHS;
2676     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2677     break;
2678   }
2679   case ISD::SHL:
2680   case ISD::SRL:
2681   case ISD::SRA:
2682   case ISD::ROTL:
2683   case ISD::ROTR: {
2684     APInt UndefRHS, ZeroRHS;
2685     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2686                                    ZeroRHS, TLO, Depth + 1))
2687       return true;
2688     APInt UndefLHS, ZeroLHS;
2689     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2690                                    ZeroLHS, TLO, Depth + 1))
2691       return true;
2692 
2693     KnownZero = ZeroLHS;
2694     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2695     break;
2696   }
2697   case ISD::MUL:
2698   case ISD::AND: {
2699     APInt SrcUndef, SrcZero;
2700     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2701                                    SrcZero, TLO, Depth + 1))
2702       return true;
2703     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2704                                    KnownZero, TLO, Depth + 1))
2705       return true;
2706 
2707     // If either side has a zero element, then the result element is zero, even
2708     // if the other is an UNDEF.
2709     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2710     // and then handle 'and' nodes with the rest of the binop opcodes.
2711     KnownZero |= SrcZero;
2712     KnownUndef &= SrcUndef;
2713     KnownUndef &= ~KnownZero;
2714     break;
2715   }
2716   case ISD::TRUNCATE:
2717   case ISD::SIGN_EXTEND:
2718   case ISD::ZERO_EXTEND:
2719     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2720                                    KnownZero, TLO, Depth + 1))
2721       return true;
2722 
2723     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2724       // zext(undef) upper bits are guaranteed to be zero.
2725       if (DemandedElts.isSubsetOf(KnownUndef))
2726         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2727       KnownUndef.clearAllBits();
2728     }
2729     break;
2730   default: {
2731     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2732       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2733                                                   KnownZero, TLO, Depth))
2734         return true;
2735     } else {
2736       KnownBits Known;
2737       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2738       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2739                                TLO, Depth, AssumeSingleUse))
2740         return true;
2741     }
2742     break;
2743   }
2744   }
2745   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2746 
2747   // Constant fold all undef cases.
2748   // TODO: Handle zero cases as well.
2749   if (DemandedElts.isSubsetOf(KnownUndef))
2750     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2751 
2752   return false;
2753 }
2754 
2755 /// Determine which of the bits specified in Mask are known to be either zero or
2756 /// one and return them in the Known.
2757 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2758                                                    KnownBits &Known,
2759                                                    const APInt &DemandedElts,
2760                                                    const SelectionDAG &DAG,
2761                                                    unsigned Depth) const {
2762   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2763           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2764           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2765           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2766          "Should use MaskedValueIsZero if you don't know whether Op"
2767          " is a target node!");
2768   Known.resetAll();
2769 }
2770 
2771 void TargetLowering::computeKnownBitsForTargetInstr(
2772     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2773     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2774     unsigned Depth) const {
2775   Known.resetAll();
2776 }
2777 
2778 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2779                                                    KnownBits &Known,
2780                                                    const APInt &DemandedElts,
2781                                                    const SelectionDAG &DAG,
2782                                                    unsigned Depth) const {
2783   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2784 
2785   if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) {
2786     // The low bits are known zero if the pointer is aligned.
2787     Known.Zero.setLowBits(Log2(*Alignment));
2788   }
2789 }
2790 
2791 /// This method can be implemented by targets that want to expose additional
2792 /// information about sign bits to the DAG Combiner.
2793 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2794                                                          const APInt &,
2795                                                          const SelectionDAG &,
2796                                                          unsigned Depth) const {
2797   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2798           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2799           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2800           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2801          "Should use ComputeNumSignBits if you don't know whether Op"
2802          " is a target node!");
2803   return 1;
2804 }
2805 
2806 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2807   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2808   const MachineRegisterInfo &MRI, unsigned Depth) const {
2809   return 1;
2810 }
2811 
2812 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2813     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2814     TargetLoweringOpt &TLO, unsigned Depth) const {
2815   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2816           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2817           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2818           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2819          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2820          " is a target node!");
2821   return false;
2822 }
2823 
2824 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2825     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2826     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2827   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2828           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2829           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2830           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2831          "Should use SimplifyDemandedBits if you don't know whether Op"
2832          " is a target node!");
2833   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2834   return false;
2835 }
2836 
2837 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2838     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2839     SelectionDAG &DAG, unsigned Depth) const {
2840   assert(
2841       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2842        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2843        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2844        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2845       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2846       " is a target node!");
2847   return SDValue();
2848 }
2849 
2850 SDValue
2851 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2852                                         SDValue N1, MutableArrayRef<int> Mask,
2853                                         SelectionDAG &DAG) const {
2854   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2855   if (!LegalMask) {
2856     std::swap(N0, N1);
2857     ShuffleVectorSDNode::commuteMask(Mask);
2858     LegalMask = isShuffleMaskLegal(Mask, VT);
2859   }
2860 
2861   if (!LegalMask)
2862     return SDValue();
2863 
2864   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2865 }
2866 
2867 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2868   return nullptr;
2869 }
2870 
2871 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2872                                                   const SelectionDAG &DAG,
2873                                                   bool SNaN,
2874                                                   unsigned Depth) const {
2875   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2876           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2877           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2878           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2879          "Should use isKnownNeverNaN if you don't know whether Op"
2880          " is a target node!");
2881   return false;
2882 }
2883 
2884 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2885 // work with truncating build vectors and vectors with elements of less than
2886 // 8 bits.
2887 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2888   if (!N)
2889     return false;
2890 
2891   APInt CVal;
2892   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2893     CVal = CN->getAPIntValue();
2894   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2895     auto *CN = BV->getConstantSplatNode();
2896     if (!CN)
2897       return false;
2898 
2899     // If this is a truncating build vector, truncate the splat value.
2900     // Otherwise, we may fail to match the expected values below.
2901     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2902     CVal = CN->getAPIntValue();
2903     if (BVEltWidth < CVal.getBitWidth())
2904       CVal = CVal.trunc(BVEltWidth);
2905   } else {
2906     return false;
2907   }
2908 
2909   switch (getBooleanContents(N->getValueType(0))) {
2910   case UndefinedBooleanContent:
2911     return CVal[0];
2912   case ZeroOrOneBooleanContent:
2913     return CVal.isOneValue();
2914   case ZeroOrNegativeOneBooleanContent:
2915     return CVal.isAllOnesValue();
2916   }
2917 
2918   llvm_unreachable("Invalid boolean contents");
2919 }
2920 
2921 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2922   if (!N)
2923     return false;
2924 
2925   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2926   if (!CN) {
2927     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2928     if (!BV)
2929       return false;
2930 
2931     // Only interested in constant splats, we don't care about undef
2932     // elements in identifying boolean constants and getConstantSplatNode
2933     // returns NULL if all ops are undef;
2934     CN = BV->getConstantSplatNode();
2935     if (!CN)
2936       return false;
2937   }
2938 
2939   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2940     return !CN->getAPIntValue()[0];
2941 
2942   return CN->isNullValue();
2943 }
2944 
2945 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2946                                        bool SExt) const {
2947   if (VT == MVT::i1)
2948     return N->isOne();
2949 
2950   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2951   switch (Cnt) {
2952   case TargetLowering::ZeroOrOneBooleanContent:
2953     // An extended value of 1 is always true, unless its original type is i1,
2954     // in which case it will be sign extended to -1.
2955     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2956   case TargetLowering::UndefinedBooleanContent:
2957   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2958     return N->isAllOnesValue() && SExt;
2959   }
2960   llvm_unreachable("Unexpected enumeration.");
2961 }
2962 
2963 /// This helper function of SimplifySetCC tries to optimize the comparison when
2964 /// either operand of the SetCC node is a bitwise-and instruction.
2965 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2966                                          ISD::CondCode Cond, const SDLoc &DL,
2967                                          DAGCombinerInfo &DCI) const {
2968   // Match these patterns in any of their permutations:
2969   // (X & Y) == Y
2970   // (X & Y) != Y
2971   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2972     std::swap(N0, N1);
2973 
2974   EVT OpVT = N0.getValueType();
2975   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2976       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2977     return SDValue();
2978 
2979   SDValue X, Y;
2980   if (N0.getOperand(0) == N1) {
2981     X = N0.getOperand(1);
2982     Y = N0.getOperand(0);
2983   } else if (N0.getOperand(1) == N1) {
2984     X = N0.getOperand(0);
2985     Y = N0.getOperand(1);
2986   } else {
2987     return SDValue();
2988   }
2989 
2990   SelectionDAG &DAG = DCI.DAG;
2991   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2992   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2993     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2994     // Note that where Y is variable and is known to have at most one bit set
2995     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2996     // equivalent when Y == 0.
2997     assert(OpVT.isInteger());
2998     Cond = ISD::getSetCCInverse(Cond, OpVT);
2999     if (DCI.isBeforeLegalizeOps() ||
3000         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3001       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3002   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3003     // If the target supports an 'and-not' or 'and-complement' logic operation,
3004     // try to use that to make a comparison operation more efficient.
3005     // But don't do this transform if the mask is a single bit because there are
3006     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3007     // 'rlwinm' on PPC).
3008 
3009     // Bail out if the compare operand that we want to turn into a zero is
3010     // already a zero (otherwise, infinite loop).
3011     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3012     if (YConst && YConst->isNullValue())
3013       return SDValue();
3014 
3015     // Transform this into: ~X & Y == 0.
3016     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3017     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3018     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3019   }
3020 
3021   return SDValue();
3022 }
3023 
3024 /// There are multiple IR patterns that could be checking whether certain
3025 /// truncation of a signed number would be lossy or not. The pattern which is
3026 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3027 /// We are looking for the following pattern: (KeptBits is a constant)
3028 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3029 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3030 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3031 /// We will unfold it into the natural trunc+sext pattern:
3032 ///   ((%x << C) a>> C) dstcond %x
3033 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3034 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3035     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3036     const SDLoc &DL) const {
3037   // We must be comparing with a constant.
3038   ConstantSDNode *C1;
3039   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3040     return SDValue();
3041 
3042   // N0 should be:  add %x, (1 << (KeptBits-1))
3043   if (N0->getOpcode() != ISD::ADD)
3044     return SDValue();
3045 
3046   // And we must be 'add'ing a constant.
3047   ConstantSDNode *C01;
3048   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3049     return SDValue();
3050 
3051   SDValue X = N0->getOperand(0);
3052   EVT XVT = X.getValueType();
3053 
3054   // Validate constants ...
3055 
3056   APInt I1 = C1->getAPIntValue();
3057 
3058   ISD::CondCode NewCond;
3059   if (Cond == ISD::CondCode::SETULT) {
3060     NewCond = ISD::CondCode::SETEQ;
3061   } else if (Cond == ISD::CondCode::SETULE) {
3062     NewCond = ISD::CondCode::SETEQ;
3063     // But need to 'canonicalize' the constant.
3064     I1 += 1;
3065   } else if (Cond == ISD::CondCode::SETUGT) {
3066     NewCond = ISD::CondCode::SETNE;
3067     // But need to 'canonicalize' the constant.
3068     I1 += 1;
3069   } else if (Cond == ISD::CondCode::SETUGE) {
3070     NewCond = ISD::CondCode::SETNE;
3071   } else
3072     return SDValue();
3073 
3074   APInt I01 = C01->getAPIntValue();
3075 
3076   auto checkConstants = [&I1, &I01]() -> bool {
3077     // Both of them must be power-of-two, and the constant from setcc is bigger.
3078     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3079   };
3080 
3081   if (checkConstants()) {
3082     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3083   } else {
3084     // What if we invert constants? (and the target predicate)
3085     I1.negate();
3086     I01.negate();
3087     assert(XVT.isInteger());
3088     NewCond = getSetCCInverse(NewCond, XVT);
3089     if (!checkConstants())
3090       return SDValue();
3091     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3092   }
3093 
3094   // They are power-of-two, so which bit is set?
3095   const unsigned KeptBits = I1.logBase2();
3096   const unsigned KeptBitsMinusOne = I01.logBase2();
3097 
3098   // Magic!
3099   if (KeptBits != (KeptBitsMinusOne + 1))
3100     return SDValue();
3101   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3102 
3103   // We don't want to do this in every single case.
3104   SelectionDAG &DAG = DCI.DAG;
3105   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3106           XVT, KeptBits))
3107     return SDValue();
3108 
3109   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3110   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3111 
3112   // Unfold into:  ((%x << C) a>> C) cond %x
3113   // Where 'cond' will be either 'eq' or 'ne'.
3114   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3115   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3116   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3117   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3118 
3119   return T2;
3120 }
3121 
3122 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3123 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3124     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3125     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3126   assert(isConstOrConstSplat(N1C) &&
3127          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3128          "Should be a comparison with 0.");
3129   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3130          "Valid only for [in]equality comparisons.");
3131 
3132   unsigned NewShiftOpcode;
3133   SDValue X, C, Y;
3134 
3135   SelectionDAG &DAG = DCI.DAG;
3136   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3137 
3138   // Look for '(C l>>/<< Y)'.
3139   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3140     // The shift should be one-use.
3141     if (!V.hasOneUse())
3142       return false;
3143     unsigned OldShiftOpcode = V.getOpcode();
3144     switch (OldShiftOpcode) {
3145     case ISD::SHL:
3146       NewShiftOpcode = ISD::SRL;
3147       break;
3148     case ISD::SRL:
3149       NewShiftOpcode = ISD::SHL;
3150       break;
3151     default:
3152       return false; // must be a logical shift.
3153     }
3154     // We should be shifting a constant.
3155     // FIXME: best to use isConstantOrConstantVector().
3156     C = V.getOperand(0);
3157     ConstantSDNode *CC =
3158         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3159     if (!CC)
3160       return false;
3161     Y = V.getOperand(1);
3162 
3163     ConstantSDNode *XC =
3164         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3165     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3166         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3167   };
3168 
3169   // LHS of comparison should be an one-use 'and'.
3170   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3171     return SDValue();
3172 
3173   X = N0.getOperand(0);
3174   SDValue Mask = N0.getOperand(1);
3175 
3176   // 'and' is commutative!
3177   if (!Match(Mask)) {
3178     std::swap(X, Mask);
3179     if (!Match(Mask))
3180       return SDValue();
3181   }
3182 
3183   EVT VT = X.getValueType();
3184 
3185   // Produce:
3186   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3187   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3188   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3189   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3190   return T2;
3191 }
3192 
3193 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3194 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3195 /// handle the commuted versions of these patterns.
3196 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3197                                            ISD::CondCode Cond, const SDLoc &DL,
3198                                            DAGCombinerInfo &DCI) const {
3199   unsigned BOpcode = N0.getOpcode();
3200   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3201          "Unexpected binop");
3202   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3203 
3204   // (X + Y) == X --> Y == 0
3205   // (X - Y) == X --> Y == 0
3206   // (X ^ Y) == X --> Y == 0
3207   SelectionDAG &DAG = DCI.DAG;
3208   EVT OpVT = N0.getValueType();
3209   SDValue X = N0.getOperand(0);
3210   SDValue Y = N0.getOperand(1);
3211   if (X == N1)
3212     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3213 
3214   if (Y != N1)
3215     return SDValue();
3216 
3217   // (X + Y) == Y --> X == 0
3218   // (X ^ Y) == Y --> X == 0
3219   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3220     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3221 
3222   // The shift would not be valid if the operands are boolean (i1).
3223   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3224     return SDValue();
3225 
3226   // (X - Y) == Y --> X == Y << 1
3227   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3228                                  !DCI.isBeforeLegalize());
3229   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3230   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3231   if (!DCI.isCalledByLegalizer())
3232     DCI.AddToWorklist(YShl1.getNode());
3233   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3234 }
3235 
3236 /// Try to simplify a setcc built with the specified operands and cc. If it is
3237 /// unable to simplify it, return a null SDValue.
3238 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3239                                       ISD::CondCode Cond, bool foldBooleans,
3240                                       DAGCombinerInfo &DCI,
3241                                       const SDLoc &dl) const {
3242   SelectionDAG &DAG = DCI.DAG;
3243   const DataLayout &Layout = DAG.getDataLayout();
3244   EVT OpVT = N0.getValueType();
3245 
3246   // Constant fold or commute setcc.
3247   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3248     return Fold;
3249 
3250   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3251   // TODO: Handle non-splat vector constants. All undef causes trouble.
3252   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3253   if (isConstOrConstSplat(N0) &&
3254       (DCI.isBeforeLegalizeOps() ||
3255        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3256     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3257 
3258   // If we have a subtract with the same 2 non-constant operands as this setcc
3259   // -- but in reverse order -- then try to commute the operands of this setcc
3260   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3261   // instruction on some targets.
3262   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3263       (DCI.isBeforeLegalizeOps() ||
3264        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3265       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3266       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3267     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3268 
3269   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3270     const APInt &C1 = N1C->getAPIntValue();
3271 
3272     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3273     // equality comparison, then we're just comparing whether X itself is
3274     // zero.
3275     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3276         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3277         N0.getOperand(1).getOpcode() == ISD::Constant) {
3278       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3279       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3280           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3281         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3282           // (srl (ctlz x), 5) == 0  -> X != 0
3283           // (srl (ctlz x), 5) != 1  -> X != 0
3284           Cond = ISD::SETNE;
3285         } else {
3286           // (srl (ctlz x), 5) != 0  -> X == 0
3287           // (srl (ctlz x), 5) == 1  -> X == 0
3288           Cond = ISD::SETEQ;
3289         }
3290         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3291         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3292                             Zero, Cond);
3293       }
3294     }
3295 
3296     SDValue CTPOP = N0;
3297     // Look through truncs that don't change the value of a ctpop.
3298     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3299       CTPOP = N0.getOperand(0);
3300 
3301     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3302         (N0 == CTPOP ||
3303          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3304       EVT CTVT = CTPOP.getValueType();
3305       SDValue CTOp = CTPOP.getOperand(0);
3306 
3307       // (ctpop x) u< 2 -> (x & x-1) == 0
3308       // (ctpop x) u> 1 -> (x & x-1) != 0
3309       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3310         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3311         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3312         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3313         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3314         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3315       }
3316 
3317       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3318       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3319           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3320         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3321         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3322         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3323         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3324         assert(CTVT.isInteger());
3325         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3326         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3327         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3328         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3329         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3330         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3331         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3332       }
3333     }
3334 
3335     // (zext x) == C --> x == (trunc C)
3336     // (sext x) == C --> x == (trunc C)
3337     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3338         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3339       unsigned MinBits = N0.getValueSizeInBits();
3340       SDValue PreExt;
3341       bool Signed = false;
3342       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3343         // ZExt
3344         MinBits = N0->getOperand(0).getValueSizeInBits();
3345         PreExt = N0->getOperand(0);
3346       } else if (N0->getOpcode() == ISD::AND) {
3347         // DAGCombine turns costly ZExts into ANDs
3348         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3349           if ((C->getAPIntValue()+1).isPowerOf2()) {
3350             MinBits = C->getAPIntValue().countTrailingOnes();
3351             PreExt = N0->getOperand(0);
3352           }
3353       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3354         // SExt
3355         MinBits = N0->getOperand(0).getValueSizeInBits();
3356         PreExt = N0->getOperand(0);
3357         Signed = true;
3358       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3359         // ZEXTLOAD / SEXTLOAD
3360         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3361           MinBits = LN0->getMemoryVT().getSizeInBits();
3362           PreExt = N0;
3363         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3364           Signed = true;
3365           MinBits = LN0->getMemoryVT().getSizeInBits();
3366           PreExt = N0;
3367         }
3368       }
3369 
3370       // Figure out how many bits we need to preserve this constant.
3371       unsigned ReqdBits = Signed ?
3372         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3373         C1.getActiveBits();
3374 
3375       // Make sure we're not losing bits from the constant.
3376       if (MinBits > 0 &&
3377           MinBits < C1.getBitWidth() &&
3378           MinBits >= ReqdBits) {
3379         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3380         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3381           // Will get folded away.
3382           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3383           if (MinBits == 1 && C1 == 1)
3384             // Invert the condition.
3385             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3386                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3387           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3388           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3389         }
3390 
3391         // If truncating the setcc operands is not desirable, we can still
3392         // simplify the expression in some cases:
3393         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3394         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3395         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3396         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3397         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3398         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3399         SDValue TopSetCC = N0->getOperand(0);
3400         unsigned N0Opc = N0->getOpcode();
3401         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3402         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3403             TopSetCC.getOpcode() == ISD::SETCC &&
3404             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3405             (isConstFalseVal(N1C) ||
3406              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3407 
3408           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3409                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3410 
3411           if (!Inverse)
3412             return TopSetCC;
3413 
3414           ISD::CondCode InvCond = ISD::getSetCCInverse(
3415               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3416               TopSetCC.getOperand(0).getValueType());
3417           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3418                                       TopSetCC.getOperand(1),
3419                                       InvCond);
3420         }
3421       }
3422     }
3423 
3424     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3425     // equality or unsigned, and all 1 bits of the const are in the same
3426     // partial word, see if we can shorten the load.
3427     if (DCI.isBeforeLegalize() &&
3428         !ISD::isSignedIntSetCC(Cond) &&
3429         N0.getOpcode() == ISD::AND && C1 == 0 &&
3430         N0.getNode()->hasOneUse() &&
3431         isa<LoadSDNode>(N0.getOperand(0)) &&
3432         N0.getOperand(0).getNode()->hasOneUse() &&
3433         isa<ConstantSDNode>(N0.getOperand(1))) {
3434       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3435       APInt bestMask;
3436       unsigned bestWidth = 0, bestOffset = 0;
3437       if (Lod->isSimple() && Lod->isUnindexed()) {
3438         unsigned origWidth = N0.getValueSizeInBits();
3439         unsigned maskWidth = origWidth;
3440         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3441         // 8 bits, but have to be careful...
3442         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3443           origWidth = Lod->getMemoryVT().getSizeInBits();
3444         const APInt &Mask = N0.getConstantOperandAPInt(1);
3445         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3446           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3447           for (unsigned offset=0; offset<origWidth/width; offset++) {
3448             if (Mask.isSubsetOf(newMask)) {
3449               if (Layout.isLittleEndian())
3450                 bestOffset = (uint64_t)offset * (width/8);
3451               else
3452                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3453               bestMask = Mask.lshr(offset * (width/8) * 8);
3454               bestWidth = width;
3455               break;
3456             }
3457             newMask <<= width;
3458           }
3459         }
3460       }
3461       if (bestWidth) {
3462         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3463         if (newVT.isRound() &&
3464             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3465           SDValue Ptr = Lod->getBasePtr();
3466           if (bestOffset != 0)
3467             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3468           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3469           SDValue NewLoad = DAG.getLoad(
3470               newVT, dl, Lod->getChain(), Ptr,
3471               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3472           return DAG.getSetCC(dl, VT,
3473                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3474                                       DAG.getConstant(bestMask.trunc(bestWidth),
3475                                                       dl, newVT)),
3476                               DAG.getConstant(0LL, dl, newVT), Cond);
3477         }
3478       }
3479     }
3480 
3481     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3482     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3483       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3484 
3485       // If the comparison constant has bits in the upper part, the
3486       // zero-extended value could never match.
3487       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3488                                               C1.getBitWidth() - InSize))) {
3489         switch (Cond) {
3490         case ISD::SETUGT:
3491         case ISD::SETUGE:
3492         case ISD::SETEQ:
3493           return DAG.getConstant(0, dl, VT);
3494         case ISD::SETULT:
3495         case ISD::SETULE:
3496         case ISD::SETNE:
3497           return DAG.getConstant(1, dl, VT);
3498         case ISD::SETGT:
3499         case ISD::SETGE:
3500           // True if the sign bit of C1 is set.
3501           return DAG.getConstant(C1.isNegative(), dl, VT);
3502         case ISD::SETLT:
3503         case ISD::SETLE:
3504           // True if the sign bit of C1 isn't set.
3505           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3506         default:
3507           break;
3508         }
3509       }
3510 
3511       // Otherwise, we can perform the comparison with the low bits.
3512       switch (Cond) {
3513       case ISD::SETEQ:
3514       case ISD::SETNE:
3515       case ISD::SETUGT:
3516       case ISD::SETUGE:
3517       case ISD::SETULT:
3518       case ISD::SETULE: {
3519         EVT newVT = N0.getOperand(0).getValueType();
3520         if (DCI.isBeforeLegalizeOps() ||
3521             (isOperationLegal(ISD::SETCC, newVT) &&
3522              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3523           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3524           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3525 
3526           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3527                                           NewConst, Cond);
3528           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3529         }
3530         break;
3531       }
3532       default:
3533         break; // todo, be more careful with signed comparisons
3534       }
3535     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3536                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3537       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3538       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3539       EVT ExtDstTy = N0.getValueType();
3540       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3541 
3542       // If the constant doesn't fit into the number of bits for the source of
3543       // the sign extension, it is impossible for both sides to be equal.
3544       if (C1.getMinSignedBits() > ExtSrcTyBits)
3545         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3546 
3547       SDValue ZextOp;
3548       EVT Op0Ty = N0.getOperand(0).getValueType();
3549       if (Op0Ty == ExtSrcTy) {
3550         ZextOp = N0.getOperand(0);
3551       } else {
3552         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3553         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3554                              DAG.getConstant(Imm, dl, Op0Ty));
3555       }
3556       if (!DCI.isCalledByLegalizer())
3557         DCI.AddToWorklist(ZextOp.getNode());
3558       // Otherwise, make this a use of a zext.
3559       return DAG.getSetCC(dl, VT, ZextOp,
3560                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3561                                                               ExtDstTyBits,
3562                                                               ExtSrcTyBits),
3563                                           dl, ExtDstTy),
3564                           Cond);
3565     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3566                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3567       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3568       if (N0.getOpcode() == ISD::SETCC &&
3569           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3570           (N0.getValueType() == MVT::i1 ||
3571            getBooleanContents(N0.getOperand(0).getValueType()) ==
3572                        ZeroOrOneBooleanContent)) {
3573         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3574         if (TrueWhenTrue)
3575           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3576         // Invert the condition.
3577         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3578         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3579         if (DCI.isBeforeLegalizeOps() ||
3580             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3581           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3582       }
3583 
3584       if ((N0.getOpcode() == ISD::XOR ||
3585            (N0.getOpcode() == ISD::AND &&
3586             N0.getOperand(0).getOpcode() == ISD::XOR &&
3587             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3588           isa<ConstantSDNode>(N0.getOperand(1)) &&
3589           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3590         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3591         // can only do this if the top bits are known zero.
3592         unsigned BitWidth = N0.getValueSizeInBits();
3593         if (DAG.MaskedValueIsZero(N0,
3594                                   APInt::getHighBitsSet(BitWidth,
3595                                                         BitWidth-1))) {
3596           // Okay, get the un-inverted input value.
3597           SDValue Val;
3598           if (N0.getOpcode() == ISD::XOR) {
3599             Val = N0.getOperand(0);
3600           } else {
3601             assert(N0.getOpcode() == ISD::AND &&
3602                     N0.getOperand(0).getOpcode() == ISD::XOR);
3603             // ((X^1)&1)^1 -> X & 1
3604             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3605                               N0.getOperand(0).getOperand(0),
3606                               N0.getOperand(1));
3607           }
3608 
3609           return DAG.getSetCC(dl, VT, Val, N1,
3610                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3611         }
3612       } else if (N1C->isOne()) {
3613         SDValue Op0 = N0;
3614         if (Op0.getOpcode() == ISD::TRUNCATE)
3615           Op0 = Op0.getOperand(0);
3616 
3617         if ((Op0.getOpcode() == ISD::XOR) &&
3618             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3619             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3620           SDValue XorLHS = Op0.getOperand(0);
3621           SDValue XorRHS = Op0.getOperand(1);
3622           // Ensure that the input setccs return an i1 type or 0/1 value.
3623           if (Op0.getValueType() == MVT::i1 ||
3624               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3625                       ZeroOrOneBooleanContent &&
3626                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3627                         ZeroOrOneBooleanContent)) {
3628             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3629             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3630             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3631           }
3632         }
3633         if (Op0.getOpcode() == ISD::AND &&
3634             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3635             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3636           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3637           if (Op0.getValueType().bitsGT(VT))
3638             Op0 = DAG.getNode(ISD::AND, dl, VT,
3639                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3640                           DAG.getConstant(1, dl, VT));
3641           else if (Op0.getValueType().bitsLT(VT))
3642             Op0 = DAG.getNode(ISD::AND, dl, VT,
3643                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3644                         DAG.getConstant(1, dl, VT));
3645 
3646           return DAG.getSetCC(dl, VT, Op0,
3647                               DAG.getConstant(0, dl, Op0.getValueType()),
3648                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3649         }
3650         if (Op0.getOpcode() == ISD::AssertZext &&
3651             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3652           return DAG.getSetCC(dl, VT, Op0,
3653                               DAG.getConstant(0, dl, Op0.getValueType()),
3654                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3655       }
3656     }
3657 
3658     // Given:
3659     //   icmp eq/ne (urem %x, %y), 0
3660     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3661     //   icmp eq/ne %x, 0
3662     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3663         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3664       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3665       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3666       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3667         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3668     }
3669 
3670     if (SDValue V =
3671             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3672       return V;
3673   }
3674 
3675   // These simplifications apply to splat vectors as well.
3676   // TODO: Handle more splat vector cases.
3677   if (auto *N1C = isConstOrConstSplat(N1)) {
3678     const APInt &C1 = N1C->getAPIntValue();
3679 
3680     APInt MinVal, MaxVal;
3681     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3682     if (ISD::isSignedIntSetCC(Cond)) {
3683       MinVal = APInt::getSignedMinValue(OperandBitSize);
3684       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3685     } else {
3686       MinVal = APInt::getMinValue(OperandBitSize);
3687       MaxVal = APInt::getMaxValue(OperandBitSize);
3688     }
3689 
3690     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3691     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3692       // X >= MIN --> true
3693       if (C1 == MinVal)
3694         return DAG.getBoolConstant(true, dl, VT, OpVT);
3695 
3696       if (!VT.isVector()) { // TODO: Support this for vectors.
3697         // X >= C0 --> X > (C0 - 1)
3698         APInt C = C1 - 1;
3699         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3700         if ((DCI.isBeforeLegalizeOps() ||
3701              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3702             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3703                                   isLegalICmpImmediate(C.getSExtValue())))) {
3704           return DAG.getSetCC(dl, VT, N0,
3705                               DAG.getConstant(C, dl, N1.getValueType()),
3706                               NewCC);
3707         }
3708       }
3709     }
3710 
3711     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3712       // X <= MAX --> true
3713       if (C1 == MaxVal)
3714         return DAG.getBoolConstant(true, dl, VT, OpVT);
3715 
3716       // X <= C0 --> X < (C0 + 1)
3717       if (!VT.isVector()) { // TODO: Support this for vectors.
3718         APInt C = C1 + 1;
3719         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3720         if ((DCI.isBeforeLegalizeOps() ||
3721              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3722             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3723                                   isLegalICmpImmediate(C.getSExtValue())))) {
3724           return DAG.getSetCC(dl, VT, N0,
3725                               DAG.getConstant(C, dl, N1.getValueType()),
3726                               NewCC);
3727         }
3728       }
3729     }
3730 
3731     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3732       if (C1 == MinVal)
3733         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3734 
3735       // TODO: Support this for vectors after legalize ops.
3736       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3737         // Canonicalize setlt X, Max --> setne X, Max
3738         if (C1 == MaxVal)
3739           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3740 
3741         // If we have setult X, 1, turn it into seteq X, 0
3742         if (C1 == MinVal+1)
3743           return DAG.getSetCC(dl, VT, N0,
3744                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3745                               ISD::SETEQ);
3746       }
3747     }
3748 
3749     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3750       if (C1 == MaxVal)
3751         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3752 
3753       // TODO: Support this for vectors after legalize ops.
3754       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3755         // Canonicalize setgt X, Min --> setne X, Min
3756         if (C1 == MinVal)
3757           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3758 
3759         // If we have setugt X, Max-1, turn it into seteq X, Max
3760         if (C1 == MaxVal-1)
3761           return DAG.getSetCC(dl, VT, N0,
3762                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3763                               ISD::SETEQ);
3764       }
3765     }
3766 
3767     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3768       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3769       if (C1.isNullValue())
3770         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3771                 VT, N0, N1, Cond, DCI, dl))
3772           return CC;
3773     }
3774 
3775     // If we have "setcc X, C0", check to see if we can shrink the immediate
3776     // by changing cc.
3777     // TODO: Support this for vectors after legalize ops.
3778     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3779       // SETUGT X, SINTMAX  -> SETLT X, 0
3780       if (Cond == ISD::SETUGT &&
3781           C1 == APInt::getSignedMaxValue(OperandBitSize))
3782         return DAG.getSetCC(dl, VT, N0,
3783                             DAG.getConstant(0, dl, N1.getValueType()),
3784                             ISD::SETLT);
3785 
3786       // SETULT X, SINTMIN  -> SETGT X, -1
3787       if (Cond == ISD::SETULT &&
3788           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3789         SDValue ConstMinusOne =
3790             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3791                             N1.getValueType());
3792         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3793       }
3794     }
3795   }
3796 
3797   // Back to non-vector simplifications.
3798   // TODO: Can we do these for vector splats?
3799   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3800     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3801     const APInt &C1 = N1C->getAPIntValue();
3802     EVT ShValTy = N0.getValueType();
3803 
3804     // Fold bit comparisons when we can.
3805     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3806         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3807         N0.getOpcode() == ISD::AND) {
3808       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3809         EVT ShiftTy =
3810             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3811         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3812           // Perform the xform if the AND RHS is a single bit.
3813           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3814           if (AndRHS->getAPIntValue().isPowerOf2() &&
3815               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3816             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3817                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3818                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3819           }
3820         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3821           // (X & 8) == 8  -->  (X & 8) >> 3
3822           // Perform the xform if C1 is a single bit.
3823           unsigned ShCt = C1.logBase2();
3824           if (C1.isPowerOf2() &&
3825               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3826             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3827                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3828                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3829           }
3830         }
3831       }
3832     }
3833 
3834     if (C1.getMinSignedBits() <= 64 &&
3835         !isLegalICmpImmediate(C1.getSExtValue())) {
3836       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3837       // (X & -256) == 256 -> (X >> 8) == 1
3838       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3839           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3840         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3841           const APInt &AndRHSC = AndRHS->getAPIntValue();
3842           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3843             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3844             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3845               SDValue Shift =
3846                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3847                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3848               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3849               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3850             }
3851           }
3852         }
3853       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3854                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3855         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3856         // X <  0x100000000 -> (X >> 32) <  1
3857         // X >= 0x100000000 -> (X >> 32) >= 1
3858         // X <= 0x0ffffffff -> (X >> 32) <  1
3859         // X >  0x0ffffffff -> (X >> 32) >= 1
3860         unsigned ShiftBits;
3861         APInt NewC = C1;
3862         ISD::CondCode NewCond = Cond;
3863         if (AdjOne) {
3864           ShiftBits = C1.countTrailingOnes();
3865           NewC = NewC + 1;
3866           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3867         } else {
3868           ShiftBits = C1.countTrailingZeros();
3869         }
3870         NewC.lshrInPlace(ShiftBits);
3871         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3872             isLegalICmpImmediate(NewC.getSExtValue()) &&
3873             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3874           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3875                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3876           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3877           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3878         }
3879       }
3880     }
3881   }
3882 
3883   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3884     auto *CFP = cast<ConstantFPSDNode>(N1);
3885     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3886 
3887     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3888     // constant if knowing that the operand is non-nan is enough.  We prefer to
3889     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3890     // materialize 0.0.
3891     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3892       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3893 
3894     // setcc (fneg x), C -> setcc swap(pred) x, -C
3895     if (N0.getOpcode() == ISD::FNEG) {
3896       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3897       if (DCI.isBeforeLegalizeOps() ||
3898           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3899         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3900         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3901       }
3902     }
3903 
3904     // If the condition is not legal, see if we can find an equivalent one
3905     // which is legal.
3906     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3907       // If the comparison was an awkward floating-point == or != and one of
3908       // the comparison operands is infinity or negative infinity, convert the
3909       // condition to a less-awkward <= or >=.
3910       if (CFP->getValueAPF().isInfinity()) {
3911         bool IsNegInf = CFP->getValueAPF().isNegative();
3912         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3913         switch (Cond) {
3914         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3915         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3916         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3917         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3918         default: break;
3919         }
3920         if (NewCond != ISD::SETCC_INVALID &&
3921             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3922           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3923       }
3924     }
3925   }
3926 
3927   if (N0 == N1) {
3928     // The sext(setcc()) => setcc() optimization relies on the appropriate
3929     // constant being emitted.
3930     assert(!N0.getValueType().isInteger() &&
3931            "Integer types should be handled by FoldSetCC");
3932 
3933     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3934     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3935     if (UOF == 2) // FP operators that are undefined on NaNs.
3936       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3937     if (UOF == unsigned(EqTrue))
3938       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3939     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3940     // if it is not already.
3941     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3942     if (NewCond != Cond &&
3943         (DCI.isBeforeLegalizeOps() ||
3944                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3945       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3946   }
3947 
3948   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3949       N0.getValueType().isInteger()) {
3950     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3951         N0.getOpcode() == ISD::XOR) {
3952       // Simplify (X+Y) == (X+Z) -->  Y == Z
3953       if (N0.getOpcode() == N1.getOpcode()) {
3954         if (N0.getOperand(0) == N1.getOperand(0))
3955           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3956         if (N0.getOperand(1) == N1.getOperand(1))
3957           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3958         if (isCommutativeBinOp(N0.getOpcode())) {
3959           // If X op Y == Y op X, try other combinations.
3960           if (N0.getOperand(0) == N1.getOperand(1))
3961             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3962                                 Cond);
3963           if (N0.getOperand(1) == N1.getOperand(0))
3964             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3965                                 Cond);
3966         }
3967       }
3968 
3969       // If RHS is a legal immediate value for a compare instruction, we need
3970       // to be careful about increasing register pressure needlessly.
3971       bool LegalRHSImm = false;
3972 
3973       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3974         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3975           // Turn (X+C1) == C2 --> X == C2-C1
3976           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3977             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3978                                 DAG.getConstant(RHSC->getAPIntValue()-
3979                                                 LHSR->getAPIntValue(),
3980                                 dl, N0.getValueType()), Cond);
3981           }
3982 
3983           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3984           if (N0.getOpcode() == ISD::XOR)
3985             // If we know that all of the inverted bits are zero, don't bother
3986             // performing the inversion.
3987             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3988               return
3989                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3990                              DAG.getConstant(LHSR->getAPIntValue() ^
3991                                                RHSC->getAPIntValue(),
3992                                              dl, N0.getValueType()),
3993                              Cond);
3994         }
3995 
3996         // Turn (C1-X) == C2 --> X == C1-C2
3997         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3998           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3999             return
4000               DAG.getSetCC(dl, VT, N0.getOperand(1),
4001                            DAG.getConstant(SUBC->getAPIntValue() -
4002                                              RHSC->getAPIntValue(),
4003                                            dl, N0.getValueType()),
4004                            Cond);
4005           }
4006         }
4007 
4008         // Could RHSC fold directly into a compare?
4009         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4010           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4011       }
4012 
4013       // (X+Y) == X --> Y == 0 and similar folds.
4014       // Don't do this if X is an immediate that can fold into a cmp
4015       // instruction and X+Y has other uses. It could be an induction variable
4016       // chain, and the transform would increase register pressure.
4017       if (!LegalRHSImm || N0.hasOneUse())
4018         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4019           return V;
4020     }
4021 
4022     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4023         N1.getOpcode() == ISD::XOR)
4024       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4025         return V;
4026 
4027     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4028       return V;
4029   }
4030 
4031   // Fold remainder of division by a constant.
4032   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4033       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4034     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4035 
4036     // When division is cheap or optimizing for minimum size,
4037     // fall through to DIVREM creation by skipping this fold.
4038     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4039       if (N0.getOpcode() == ISD::UREM) {
4040         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4041           return Folded;
4042       } else if (N0.getOpcode() == ISD::SREM) {
4043         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4044           return Folded;
4045       }
4046     }
4047   }
4048 
4049   // Fold away ALL boolean setcc's.
4050   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4051     SDValue Temp;
4052     switch (Cond) {
4053     default: llvm_unreachable("Unknown integer setcc!");
4054     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4055       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4056       N0 = DAG.getNOT(dl, Temp, OpVT);
4057       if (!DCI.isCalledByLegalizer())
4058         DCI.AddToWorklist(Temp.getNode());
4059       break;
4060     case ISD::SETNE:  // X != Y   -->  (X^Y)
4061       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4062       break;
4063     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4064     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4065       Temp = DAG.getNOT(dl, N0, OpVT);
4066       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4067       if (!DCI.isCalledByLegalizer())
4068         DCI.AddToWorklist(Temp.getNode());
4069       break;
4070     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4071     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4072       Temp = DAG.getNOT(dl, N1, OpVT);
4073       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4074       if (!DCI.isCalledByLegalizer())
4075         DCI.AddToWorklist(Temp.getNode());
4076       break;
4077     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4078     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4079       Temp = DAG.getNOT(dl, N0, OpVT);
4080       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4081       if (!DCI.isCalledByLegalizer())
4082         DCI.AddToWorklist(Temp.getNode());
4083       break;
4084     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4085     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4086       Temp = DAG.getNOT(dl, N1, OpVT);
4087       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4088       break;
4089     }
4090     if (VT.getScalarType() != MVT::i1) {
4091       if (!DCI.isCalledByLegalizer())
4092         DCI.AddToWorklist(N0.getNode());
4093       // FIXME: If running after legalize, we probably can't do this.
4094       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4095       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4096     }
4097     return N0;
4098   }
4099 
4100   // Could not fold it.
4101   return SDValue();
4102 }
4103 
4104 /// Returns true (and the GlobalValue and the offset) if the node is a
4105 /// GlobalAddress + offset.
4106 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4107                                     int64_t &Offset) const {
4108 
4109   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4110 
4111   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4112     GA = GASD->getGlobal();
4113     Offset += GASD->getOffset();
4114     return true;
4115   }
4116 
4117   if (N->getOpcode() == ISD::ADD) {
4118     SDValue N1 = N->getOperand(0);
4119     SDValue N2 = N->getOperand(1);
4120     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4121       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4122         Offset += V->getSExtValue();
4123         return true;
4124       }
4125     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4126       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4127         Offset += V->getSExtValue();
4128         return true;
4129       }
4130     }
4131   }
4132 
4133   return false;
4134 }
4135 
4136 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4137                                           DAGCombinerInfo &DCI) const {
4138   // Default implementation: no optimization.
4139   return SDValue();
4140 }
4141 
4142 //===----------------------------------------------------------------------===//
4143 //  Inline Assembler Implementation Methods
4144 //===----------------------------------------------------------------------===//
4145 
4146 TargetLowering::ConstraintType
4147 TargetLowering::getConstraintType(StringRef Constraint) const {
4148   unsigned S = Constraint.size();
4149 
4150   if (S == 1) {
4151     switch (Constraint[0]) {
4152     default: break;
4153     case 'r':
4154       return C_RegisterClass;
4155     case 'm': // memory
4156     case 'o': // offsetable
4157     case 'V': // not offsetable
4158       return C_Memory;
4159     case 'n': // Simple Integer
4160     case 'E': // Floating Point Constant
4161     case 'F': // Floating Point Constant
4162       return C_Immediate;
4163     case 'i': // Simple Integer or Relocatable Constant
4164     case 's': // Relocatable Constant
4165     case 'p': // Address.
4166     case 'X': // Allow ANY value.
4167     case 'I': // Target registers.
4168     case 'J':
4169     case 'K':
4170     case 'L':
4171     case 'M':
4172     case 'N':
4173     case 'O':
4174     case 'P':
4175     case '<':
4176     case '>':
4177       return C_Other;
4178     }
4179   }
4180 
4181   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4182     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4183       return C_Memory;
4184     return C_Register;
4185   }
4186   return C_Unknown;
4187 }
4188 
4189 /// Try to replace an X constraint, which matches anything, with another that
4190 /// has more specific requirements based on the type of the corresponding
4191 /// operand.
4192 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4193   if (ConstraintVT.isInteger())
4194     return "r";
4195   if (ConstraintVT.isFloatingPoint())
4196     return "f"; // works for many targets
4197   return nullptr;
4198 }
4199 
4200 SDValue TargetLowering::LowerAsmOutputForConstraint(
4201     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4202     SelectionDAG &DAG) const {
4203   return SDValue();
4204 }
4205 
4206 /// Lower the specified operand into the Ops vector.
4207 /// If it is invalid, don't add anything to Ops.
4208 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4209                                                   std::string &Constraint,
4210                                                   std::vector<SDValue> &Ops,
4211                                                   SelectionDAG &DAG) const {
4212 
4213   if (Constraint.length() > 1) return;
4214 
4215   char ConstraintLetter = Constraint[0];
4216   switch (ConstraintLetter) {
4217   default: break;
4218   case 'X':     // Allows any operand; labels (basic block) use this.
4219     if (Op.getOpcode() == ISD::BasicBlock ||
4220         Op.getOpcode() == ISD::TargetBlockAddress) {
4221       Ops.push_back(Op);
4222       return;
4223     }
4224     LLVM_FALLTHROUGH;
4225   case 'i':    // Simple Integer or Relocatable Constant
4226   case 'n':    // Simple Integer
4227   case 's': {  // Relocatable Constant
4228 
4229     GlobalAddressSDNode *GA;
4230     ConstantSDNode *C;
4231     BlockAddressSDNode *BA;
4232     uint64_t Offset = 0;
4233 
4234     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4235     // etc., since getelementpointer is variadic. We can't use
4236     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4237     // while in this case the GA may be furthest from the root node which is
4238     // likely an ISD::ADD.
4239     while (1) {
4240       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4241         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4242                                                  GA->getValueType(0),
4243                                                  Offset + GA->getOffset()));
4244         return;
4245       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4246                  ConstraintLetter != 's') {
4247         // gcc prints these as sign extended.  Sign extend value to 64 bits
4248         // now; without this it would get ZExt'd later in
4249         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4250         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4251         BooleanContent BCont = getBooleanContents(MVT::i64);
4252         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4253                                       : ISD::SIGN_EXTEND;
4254         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4255                                                     : C->getSExtValue();
4256         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4257                                             SDLoc(C), MVT::i64));
4258         return;
4259       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4260                  ConstraintLetter != 'n') {
4261         Ops.push_back(DAG.getTargetBlockAddress(
4262             BA->getBlockAddress(), BA->getValueType(0),
4263             Offset + BA->getOffset(), BA->getTargetFlags()));
4264         return;
4265       } else {
4266         const unsigned OpCode = Op.getOpcode();
4267         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4268           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4269             Op = Op.getOperand(1);
4270           // Subtraction is not commutative.
4271           else if (OpCode == ISD::ADD &&
4272                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4273             Op = Op.getOperand(0);
4274           else
4275             return;
4276           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4277           continue;
4278         }
4279       }
4280       return;
4281     }
4282     break;
4283   }
4284   }
4285 }
4286 
4287 std::pair<unsigned, const TargetRegisterClass *>
4288 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4289                                              StringRef Constraint,
4290                                              MVT VT) const {
4291   if (Constraint.empty() || Constraint[0] != '{')
4292     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4293   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4294 
4295   // Remove the braces from around the name.
4296   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4297 
4298   std::pair<unsigned, const TargetRegisterClass *> R =
4299       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4300 
4301   // Figure out which register class contains this reg.
4302   for (const TargetRegisterClass *RC : RI->regclasses()) {
4303     // If none of the value types for this register class are valid, we
4304     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4305     if (!isLegalRC(*RI, *RC))
4306       continue;
4307 
4308     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4309          I != E; ++I) {
4310       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4311         std::pair<unsigned, const TargetRegisterClass *> S =
4312             std::make_pair(*I, RC);
4313 
4314         // If this register class has the requested value type, return it,
4315         // otherwise keep searching and return the first class found
4316         // if no other is found which explicitly has the requested type.
4317         if (RI->isTypeLegalForClass(*RC, VT))
4318           return S;
4319         if (!R.second)
4320           R = S;
4321       }
4322     }
4323   }
4324 
4325   return R;
4326 }
4327 
4328 //===----------------------------------------------------------------------===//
4329 // Constraint Selection.
4330 
4331 /// Return true of this is an input operand that is a matching constraint like
4332 /// "4".
4333 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4334   assert(!ConstraintCode.empty() && "No known constraint!");
4335   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4336 }
4337 
4338 /// If this is an input matching constraint, this method returns the output
4339 /// operand it matches.
4340 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4341   assert(!ConstraintCode.empty() && "No known constraint!");
4342   return atoi(ConstraintCode.c_str());
4343 }
4344 
4345 /// Split up the constraint string from the inline assembly value into the
4346 /// specific constraints and their prefixes, and also tie in the associated
4347 /// operand values.
4348 /// If this returns an empty vector, and if the constraint string itself
4349 /// isn't empty, there was an error parsing.
4350 TargetLowering::AsmOperandInfoVector
4351 TargetLowering::ParseConstraints(const DataLayout &DL,
4352                                  const TargetRegisterInfo *TRI,
4353                                  const CallBase &Call) const {
4354   /// Information about all of the constraints.
4355   AsmOperandInfoVector ConstraintOperands;
4356   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4357   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4358 
4359   // Do a prepass over the constraints, canonicalizing them, and building up the
4360   // ConstraintOperands list.
4361   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4362   unsigned ResNo = 0; // ResNo - The result number of the next output.
4363 
4364   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4365     ConstraintOperands.emplace_back(std::move(CI));
4366     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4367 
4368     // Update multiple alternative constraint count.
4369     if (OpInfo.multipleAlternatives.size() > maCount)
4370       maCount = OpInfo.multipleAlternatives.size();
4371 
4372     OpInfo.ConstraintVT = MVT::Other;
4373 
4374     // Compute the value type for each operand.
4375     switch (OpInfo.Type) {
4376     case InlineAsm::isOutput:
4377       // Indirect outputs just consume an argument.
4378       if (OpInfo.isIndirect) {
4379         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4380         break;
4381       }
4382 
4383       // The return value of the call is this value.  As such, there is no
4384       // corresponding argument.
4385       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4386       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4387         OpInfo.ConstraintVT =
4388             getSimpleValueType(DL, STy->getElementType(ResNo));
4389       } else {
4390         assert(ResNo == 0 && "Asm only has one result!");
4391         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4392       }
4393       ++ResNo;
4394       break;
4395     case InlineAsm::isInput:
4396       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4397       break;
4398     case InlineAsm::isClobber:
4399       // Nothing to do.
4400       break;
4401     }
4402 
4403     if (OpInfo.CallOperandVal) {
4404       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4405       if (OpInfo.isIndirect) {
4406         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4407         if (!PtrTy)
4408           report_fatal_error("Indirect operand for inline asm not a pointer!");
4409         OpTy = PtrTy->getElementType();
4410       }
4411 
4412       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4413       if (StructType *STy = dyn_cast<StructType>(OpTy))
4414         if (STy->getNumElements() == 1)
4415           OpTy = STy->getElementType(0);
4416 
4417       // If OpTy is not a single value, it may be a struct/union that we
4418       // can tile with integers.
4419       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4420         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4421         switch (BitSize) {
4422         default: break;
4423         case 1:
4424         case 8:
4425         case 16:
4426         case 32:
4427         case 64:
4428         case 128:
4429           OpInfo.ConstraintVT =
4430               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4431           break;
4432         }
4433       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4434         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4435         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4436       } else {
4437         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4438       }
4439     }
4440   }
4441 
4442   // If we have multiple alternative constraints, select the best alternative.
4443   if (!ConstraintOperands.empty()) {
4444     if (maCount) {
4445       unsigned bestMAIndex = 0;
4446       int bestWeight = -1;
4447       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4448       int weight = -1;
4449       unsigned maIndex;
4450       // Compute the sums of the weights for each alternative, keeping track
4451       // of the best (highest weight) one so far.
4452       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4453         int weightSum = 0;
4454         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4455              cIndex != eIndex; ++cIndex) {
4456           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4457           if (OpInfo.Type == InlineAsm::isClobber)
4458             continue;
4459 
4460           // If this is an output operand with a matching input operand,
4461           // look up the matching input. If their types mismatch, e.g. one
4462           // is an integer, the other is floating point, or their sizes are
4463           // different, flag it as an maCantMatch.
4464           if (OpInfo.hasMatchingInput()) {
4465             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4466             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4467               if ((OpInfo.ConstraintVT.isInteger() !=
4468                    Input.ConstraintVT.isInteger()) ||
4469                   (OpInfo.ConstraintVT.getSizeInBits() !=
4470                    Input.ConstraintVT.getSizeInBits())) {
4471                 weightSum = -1; // Can't match.
4472                 break;
4473               }
4474             }
4475           }
4476           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4477           if (weight == -1) {
4478             weightSum = -1;
4479             break;
4480           }
4481           weightSum += weight;
4482         }
4483         // Update best.
4484         if (weightSum > bestWeight) {
4485           bestWeight = weightSum;
4486           bestMAIndex = maIndex;
4487         }
4488       }
4489 
4490       // Now select chosen alternative in each constraint.
4491       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4492            cIndex != eIndex; ++cIndex) {
4493         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4494         if (cInfo.Type == InlineAsm::isClobber)
4495           continue;
4496         cInfo.selectAlternative(bestMAIndex);
4497       }
4498     }
4499   }
4500 
4501   // Check and hook up tied operands, choose constraint code to use.
4502   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4503        cIndex != eIndex; ++cIndex) {
4504     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4505 
4506     // If this is an output operand with a matching input operand, look up the
4507     // matching input. If their types mismatch, e.g. one is an integer, the
4508     // other is floating point, or their sizes are different, flag it as an
4509     // error.
4510     if (OpInfo.hasMatchingInput()) {
4511       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4512 
4513       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4514         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4515             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4516                                          OpInfo.ConstraintVT);
4517         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4518             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4519                                          Input.ConstraintVT);
4520         if ((OpInfo.ConstraintVT.isInteger() !=
4521              Input.ConstraintVT.isInteger()) ||
4522             (MatchRC.second != InputRC.second)) {
4523           report_fatal_error("Unsupported asm: input constraint"
4524                              " with a matching output constraint of"
4525                              " incompatible type!");
4526         }
4527       }
4528     }
4529   }
4530 
4531   return ConstraintOperands;
4532 }
4533 
4534 /// Return an integer indicating how general CT is.
4535 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4536   switch (CT) {
4537   case TargetLowering::C_Immediate:
4538   case TargetLowering::C_Other:
4539   case TargetLowering::C_Unknown:
4540     return 0;
4541   case TargetLowering::C_Register:
4542     return 1;
4543   case TargetLowering::C_RegisterClass:
4544     return 2;
4545   case TargetLowering::C_Memory:
4546     return 3;
4547   }
4548   llvm_unreachable("Invalid constraint type");
4549 }
4550 
4551 /// Examine constraint type and operand type and determine a weight value.
4552 /// This object must already have been set up with the operand type
4553 /// and the current alternative constraint selected.
4554 TargetLowering::ConstraintWeight
4555   TargetLowering::getMultipleConstraintMatchWeight(
4556     AsmOperandInfo &info, int maIndex) const {
4557   InlineAsm::ConstraintCodeVector *rCodes;
4558   if (maIndex >= (int)info.multipleAlternatives.size())
4559     rCodes = &info.Codes;
4560   else
4561     rCodes = &info.multipleAlternatives[maIndex].Codes;
4562   ConstraintWeight BestWeight = CW_Invalid;
4563 
4564   // Loop over the options, keeping track of the most general one.
4565   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4566     ConstraintWeight weight =
4567       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4568     if (weight > BestWeight)
4569       BestWeight = weight;
4570   }
4571 
4572   return BestWeight;
4573 }
4574 
4575 /// Examine constraint type and operand type and determine a weight value.
4576 /// This object must already have been set up with the operand type
4577 /// and the current alternative constraint selected.
4578 TargetLowering::ConstraintWeight
4579   TargetLowering::getSingleConstraintMatchWeight(
4580     AsmOperandInfo &info, const char *constraint) const {
4581   ConstraintWeight weight = CW_Invalid;
4582   Value *CallOperandVal = info.CallOperandVal;
4583     // If we don't have a value, we can't do a match,
4584     // but allow it at the lowest weight.
4585   if (!CallOperandVal)
4586     return CW_Default;
4587   // Look at the constraint type.
4588   switch (*constraint) {
4589     case 'i': // immediate integer.
4590     case 'n': // immediate integer with a known value.
4591       if (isa<ConstantInt>(CallOperandVal))
4592         weight = CW_Constant;
4593       break;
4594     case 's': // non-explicit intregal immediate.
4595       if (isa<GlobalValue>(CallOperandVal))
4596         weight = CW_Constant;
4597       break;
4598     case 'E': // immediate float if host format.
4599     case 'F': // immediate float.
4600       if (isa<ConstantFP>(CallOperandVal))
4601         weight = CW_Constant;
4602       break;
4603     case '<': // memory operand with autodecrement.
4604     case '>': // memory operand with autoincrement.
4605     case 'm': // memory operand.
4606     case 'o': // offsettable memory operand
4607     case 'V': // non-offsettable memory operand
4608       weight = CW_Memory;
4609       break;
4610     case 'r': // general register.
4611     case 'g': // general register, memory operand or immediate integer.
4612               // note: Clang converts "g" to "imr".
4613       if (CallOperandVal->getType()->isIntegerTy())
4614         weight = CW_Register;
4615       break;
4616     case 'X': // any operand.
4617   default:
4618     weight = CW_Default;
4619     break;
4620   }
4621   return weight;
4622 }
4623 
4624 /// If there are multiple different constraints that we could pick for this
4625 /// operand (e.g. "imr") try to pick the 'best' one.
4626 /// This is somewhat tricky: constraints fall into four classes:
4627 ///    Other         -> immediates and magic values
4628 ///    Register      -> one specific register
4629 ///    RegisterClass -> a group of regs
4630 ///    Memory        -> memory
4631 /// Ideally, we would pick the most specific constraint possible: if we have
4632 /// something that fits into a register, we would pick it.  The problem here
4633 /// is that if we have something that could either be in a register or in
4634 /// memory that use of the register could cause selection of *other*
4635 /// operands to fail: they might only succeed if we pick memory.  Because of
4636 /// this the heuristic we use is:
4637 ///
4638 ///  1) If there is an 'other' constraint, and if the operand is valid for
4639 ///     that constraint, use it.  This makes us take advantage of 'i'
4640 ///     constraints when available.
4641 ///  2) Otherwise, pick the most general constraint present.  This prefers
4642 ///     'm' over 'r', for example.
4643 ///
4644 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4645                              const TargetLowering &TLI,
4646                              SDValue Op, SelectionDAG *DAG) {
4647   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4648   unsigned BestIdx = 0;
4649   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4650   int BestGenerality = -1;
4651 
4652   // Loop over the options, keeping track of the most general one.
4653   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4654     TargetLowering::ConstraintType CType =
4655       TLI.getConstraintType(OpInfo.Codes[i]);
4656 
4657     // Indirect 'other' or 'immediate' constraints are not allowed.
4658     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4659                                CType == TargetLowering::C_Register ||
4660                                CType == TargetLowering::C_RegisterClass))
4661       continue;
4662 
4663     // If this is an 'other' or 'immediate' constraint, see if the operand is
4664     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4665     // the operand is an integer in the range [0..31] we want to use I (saving a
4666     // load of a register), otherwise we must use 'r'.
4667     if ((CType == TargetLowering::C_Other ||
4668          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4669       assert(OpInfo.Codes[i].size() == 1 &&
4670              "Unhandled multi-letter 'other' constraint");
4671       std::vector<SDValue> ResultOps;
4672       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4673                                        ResultOps, *DAG);
4674       if (!ResultOps.empty()) {
4675         BestType = CType;
4676         BestIdx = i;
4677         break;
4678       }
4679     }
4680 
4681     // Things with matching constraints can only be registers, per gcc
4682     // documentation.  This mainly affects "g" constraints.
4683     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4684       continue;
4685 
4686     // This constraint letter is more general than the previous one, use it.
4687     int Generality = getConstraintGenerality(CType);
4688     if (Generality > BestGenerality) {
4689       BestType = CType;
4690       BestIdx = i;
4691       BestGenerality = Generality;
4692     }
4693   }
4694 
4695   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4696   OpInfo.ConstraintType = BestType;
4697 }
4698 
4699 /// Determines the constraint code and constraint type to use for the specific
4700 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4701 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4702                                             SDValue Op,
4703                                             SelectionDAG *DAG) const {
4704   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4705 
4706   // Single-letter constraints ('r') are very common.
4707   if (OpInfo.Codes.size() == 1) {
4708     OpInfo.ConstraintCode = OpInfo.Codes[0];
4709     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4710   } else {
4711     ChooseConstraint(OpInfo, *this, Op, DAG);
4712   }
4713 
4714   // 'X' matches anything.
4715   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4716     // Labels and constants are handled elsewhere ('X' is the only thing
4717     // that matches labels).  For Functions, the type here is the type of
4718     // the result, which is not what we want to look at; leave them alone.
4719     Value *v = OpInfo.CallOperandVal;
4720     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4721       OpInfo.CallOperandVal = v;
4722       return;
4723     }
4724 
4725     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4726       return;
4727 
4728     // Otherwise, try to resolve it to something we know about by looking at
4729     // the actual operand type.
4730     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4731       OpInfo.ConstraintCode = Repl;
4732       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4733     }
4734   }
4735 }
4736 
4737 /// Given an exact SDIV by a constant, create a multiplication
4738 /// with the multiplicative inverse of the constant.
4739 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4740                               const SDLoc &dl, SelectionDAG &DAG,
4741                               SmallVectorImpl<SDNode *> &Created) {
4742   SDValue Op0 = N->getOperand(0);
4743   SDValue Op1 = N->getOperand(1);
4744   EVT VT = N->getValueType(0);
4745   EVT SVT = VT.getScalarType();
4746   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4747   EVT ShSVT = ShVT.getScalarType();
4748 
4749   bool UseSRA = false;
4750   SmallVector<SDValue, 16> Shifts, Factors;
4751 
4752   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4753     if (C->isNullValue())
4754       return false;
4755     APInt Divisor = C->getAPIntValue();
4756     unsigned Shift = Divisor.countTrailingZeros();
4757     if (Shift) {
4758       Divisor.ashrInPlace(Shift);
4759       UseSRA = true;
4760     }
4761     // Calculate the multiplicative inverse, using Newton's method.
4762     APInt t;
4763     APInt Factor = Divisor;
4764     while ((t = Divisor * Factor) != 1)
4765       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4766     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4767     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4768     return true;
4769   };
4770 
4771   // Collect all magic values from the build vector.
4772   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4773     return SDValue();
4774 
4775   SDValue Shift, Factor;
4776   if (VT.isVector()) {
4777     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4778     Factor = DAG.getBuildVector(VT, dl, Factors);
4779   } else {
4780     Shift = Shifts[0];
4781     Factor = Factors[0];
4782   }
4783 
4784   SDValue Res = Op0;
4785 
4786   // Shift the value upfront if it is even, so the LSB is one.
4787   if (UseSRA) {
4788     // TODO: For UDIV use SRL instead of SRA.
4789     SDNodeFlags Flags;
4790     Flags.setExact(true);
4791     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4792     Created.push_back(Res.getNode());
4793   }
4794 
4795   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4796 }
4797 
4798 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4799                               SelectionDAG &DAG,
4800                               SmallVectorImpl<SDNode *> &Created) const {
4801   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4803   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4804     return SDValue(N, 0); // Lower SDIV as SDIV
4805   return SDValue();
4806 }
4807 
4808 /// Given an ISD::SDIV node expressing a divide by constant,
4809 /// return a DAG expression to select that will generate the same value by
4810 /// multiplying by a magic number.
4811 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4812 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4813                                   bool IsAfterLegalization,
4814                                   SmallVectorImpl<SDNode *> &Created) const {
4815   SDLoc dl(N);
4816   EVT VT = N->getValueType(0);
4817   EVT SVT = VT.getScalarType();
4818   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4819   EVT ShSVT = ShVT.getScalarType();
4820   unsigned EltBits = VT.getScalarSizeInBits();
4821 
4822   // Check to see if we can do this.
4823   // FIXME: We should be more aggressive here.
4824   if (!isTypeLegal(VT))
4825     return SDValue();
4826 
4827   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4828   if (N->getFlags().hasExact())
4829     return BuildExactSDIV(*this, N, dl, DAG, Created);
4830 
4831   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4832 
4833   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4834     if (C->isNullValue())
4835       return false;
4836 
4837     const APInt &Divisor = C->getAPIntValue();
4838     APInt::ms magics = Divisor.magic();
4839     int NumeratorFactor = 0;
4840     int ShiftMask = -1;
4841 
4842     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4843       // If d is +1/-1, we just multiply the numerator by +1/-1.
4844       NumeratorFactor = Divisor.getSExtValue();
4845       magics.m = 0;
4846       magics.s = 0;
4847       ShiftMask = 0;
4848     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4849       // If d > 0 and m < 0, add the numerator.
4850       NumeratorFactor = 1;
4851     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4852       // If d < 0 and m > 0, subtract the numerator.
4853       NumeratorFactor = -1;
4854     }
4855 
4856     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4857     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4858     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4859     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4860     return true;
4861   };
4862 
4863   SDValue N0 = N->getOperand(0);
4864   SDValue N1 = N->getOperand(1);
4865 
4866   // Collect the shifts / magic values from each element.
4867   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4868     return SDValue();
4869 
4870   SDValue MagicFactor, Factor, Shift, ShiftMask;
4871   if (VT.isVector()) {
4872     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4873     Factor = DAG.getBuildVector(VT, dl, Factors);
4874     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4875     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4876   } else {
4877     MagicFactor = MagicFactors[0];
4878     Factor = Factors[0];
4879     Shift = Shifts[0];
4880     ShiftMask = ShiftMasks[0];
4881   }
4882 
4883   // Multiply the numerator (operand 0) by the magic value.
4884   // FIXME: We should support doing a MUL in a wider type.
4885   SDValue Q;
4886   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4887                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4888     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4889   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4890                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4891     SDValue LoHi =
4892         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4893     Q = SDValue(LoHi.getNode(), 1);
4894   } else
4895     return SDValue(); // No mulhs or equivalent.
4896   Created.push_back(Q.getNode());
4897 
4898   // (Optionally) Add/subtract the numerator using Factor.
4899   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4900   Created.push_back(Factor.getNode());
4901   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4902   Created.push_back(Q.getNode());
4903 
4904   // Shift right algebraic by shift value.
4905   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4906   Created.push_back(Q.getNode());
4907 
4908   // Extract the sign bit, mask it and add it to the quotient.
4909   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4910   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4911   Created.push_back(T.getNode());
4912   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4913   Created.push_back(T.getNode());
4914   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4915 }
4916 
4917 /// Given an ISD::UDIV node expressing a divide by constant,
4918 /// return a DAG expression to select that will generate the same value by
4919 /// multiplying by a magic number.
4920 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4921 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4922                                   bool IsAfterLegalization,
4923                                   SmallVectorImpl<SDNode *> &Created) const {
4924   SDLoc dl(N);
4925   EVT VT = N->getValueType(0);
4926   EVT SVT = VT.getScalarType();
4927   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4928   EVT ShSVT = ShVT.getScalarType();
4929   unsigned EltBits = VT.getScalarSizeInBits();
4930 
4931   // Check to see if we can do this.
4932   // FIXME: We should be more aggressive here.
4933   if (!isTypeLegal(VT))
4934     return SDValue();
4935 
4936   bool UseNPQ = false;
4937   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4938 
4939   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4940     if (C->isNullValue())
4941       return false;
4942     // FIXME: We should use a narrower constant when the upper
4943     // bits are known to be zero.
4944     APInt Divisor = C->getAPIntValue();
4945     APInt::mu magics = Divisor.magicu();
4946     unsigned PreShift = 0, PostShift = 0;
4947 
4948     // If the divisor is even, we can avoid using the expensive fixup by
4949     // shifting the divided value upfront.
4950     if (magics.a != 0 && !Divisor[0]) {
4951       PreShift = Divisor.countTrailingZeros();
4952       // Get magic number for the shifted divisor.
4953       magics = Divisor.lshr(PreShift).magicu(PreShift);
4954       assert(magics.a == 0 && "Should use cheap fixup now");
4955     }
4956 
4957     APInt Magic = magics.m;
4958 
4959     unsigned SelNPQ;
4960     if (magics.a == 0 || Divisor.isOneValue()) {
4961       assert(magics.s < Divisor.getBitWidth() &&
4962              "We shouldn't generate an undefined shift!");
4963       PostShift = magics.s;
4964       SelNPQ = false;
4965     } else {
4966       PostShift = magics.s - 1;
4967       SelNPQ = true;
4968     }
4969 
4970     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4971     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4972     NPQFactors.push_back(
4973         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4974                                : APInt::getNullValue(EltBits),
4975                         dl, SVT));
4976     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4977     UseNPQ |= SelNPQ;
4978     return true;
4979   };
4980 
4981   SDValue N0 = N->getOperand(0);
4982   SDValue N1 = N->getOperand(1);
4983 
4984   // Collect the shifts/magic values from each element.
4985   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4986     return SDValue();
4987 
4988   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4989   if (VT.isVector()) {
4990     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4991     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4992     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4993     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4994   } else {
4995     PreShift = PreShifts[0];
4996     MagicFactor = MagicFactors[0];
4997     PostShift = PostShifts[0];
4998   }
4999 
5000   SDValue Q = N0;
5001   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5002   Created.push_back(Q.getNode());
5003 
5004   // FIXME: We should support doing a MUL in a wider type.
5005   auto GetMULHU = [&](SDValue X, SDValue Y) {
5006     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5007                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5008       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5009     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5010                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5011       SDValue LoHi =
5012           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5013       return SDValue(LoHi.getNode(), 1);
5014     }
5015     return SDValue(); // No mulhu or equivalent
5016   };
5017 
5018   // Multiply the numerator (operand 0) by the magic value.
5019   Q = GetMULHU(Q, MagicFactor);
5020   if (!Q)
5021     return SDValue();
5022 
5023   Created.push_back(Q.getNode());
5024 
5025   if (UseNPQ) {
5026     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5027     Created.push_back(NPQ.getNode());
5028 
5029     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5030     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5031     if (VT.isVector())
5032       NPQ = GetMULHU(NPQ, NPQFactor);
5033     else
5034       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5035 
5036     Created.push_back(NPQ.getNode());
5037 
5038     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5039     Created.push_back(Q.getNode());
5040   }
5041 
5042   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5043   Created.push_back(Q.getNode());
5044 
5045   SDValue One = DAG.getConstant(1, dl, VT);
5046   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5047   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5048 }
5049 
5050 /// If all values in Values that *don't* match the predicate are same 'splat'
5051 /// value, then replace all values with that splat value.
5052 /// Else, if AlternativeReplacement was provided, then replace all values that
5053 /// do match predicate with AlternativeReplacement value.
5054 static void
5055 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5056                           std::function<bool(SDValue)> Predicate,
5057                           SDValue AlternativeReplacement = SDValue()) {
5058   SDValue Replacement;
5059   // Is there a value for which the Predicate does *NOT* match? What is it?
5060   auto SplatValue = llvm::find_if_not(Values, Predicate);
5061   if (SplatValue != Values.end()) {
5062     // Does Values consist only of SplatValue's and values matching Predicate?
5063     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5064           return Value == *SplatValue || Predicate(Value);
5065         })) // Then we shall replace values matching predicate with SplatValue.
5066       Replacement = *SplatValue;
5067   }
5068   if (!Replacement) {
5069     // Oops, we did not find the "baseline" splat value.
5070     if (!AlternativeReplacement)
5071       return; // Nothing to do.
5072     // Let's replace with provided value then.
5073     Replacement = AlternativeReplacement;
5074   }
5075   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5076 }
5077 
5078 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5079 /// where the divisor is constant and the comparison target is zero,
5080 /// return a DAG expression that will generate the same comparison result
5081 /// using only multiplications, additions and shifts/rotations.
5082 /// Ref: "Hacker's Delight" 10-17.
5083 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5084                                         SDValue CompTargetNode,
5085                                         ISD::CondCode Cond,
5086                                         DAGCombinerInfo &DCI,
5087                                         const SDLoc &DL) const {
5088   SmallVector<SDNode *, 5> Built;
5089   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5090                                          DCI, DL, Built)) {
5091     for (SDNode *N : Built)
5092       DCI.AddToWorklist(N);
5093     return Folded;
5094   }
5095 
5096   return SDValue();
5097 }
5098 
5099 SDValue
5100 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5101                                   SDValue CompTargetNode, ISD::CondCode Cond,
5102                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5103                                   SmallVectorImpl<SDNode *> &Created) const {
5104   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5105   // - D must be constant, with D = D0 * 2^K where D0 is odd
5106   // - P is the multiplicative inverse of D0 modulo 2^W
5107   // - Q = floor(((2^W) - 1) / D)
5108   // where W is the width of the common type of N and D.
5109   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5110          "Only applicable for (in)equality comparisons.");
5111 
5112   SelectionDAG &DAG = DCI.DAG;
5113 
5114   EVT VT = REMNode.getValueType();
5115   EVT SVT = VT.getScalarType();
5116   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5117   EVT ShSVT = ShVT.getScalarType();
5118 
5119   // If MUL is unavailable, we cannot proceed in any case.
5120   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5121     return SDValue();
5122 
5123   bool ComparingWithAllZeros = true;
5124   bool AllComparisonsWithNonZerosAreTautological = true;
5125   bool HadTautologicalLanes = false;
5126   bool AllLanesAreTautological = true;
5127   bool HadEvenDivisor = false;
5128   bool AllDivisorsArePowerOfTwo = true;
5129   bool HadTautologicalInvertedLanes = false;
5130   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5131 
5132   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5133     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5134     if (CDiv->isNullValue())
5135       return false;
5136 
5137     const APInt &D = CDiv->getAPIntValue();
5138     const APInt &Cmp = CCmp->getAPIntValue();
5139 
5140     ComparingWithAllZeros &= Cmp.isNullValue();
5141 
5142     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5143     // if C2 is not less than C1, the comparison is always false.
5144     // But we will only be able to produce the comparison that will give the
5145     // opposive tautological answer. So this lane would need to be fixed up.
5146     bool TautologicalInvertedLane = D.ule(Cmp);
5147     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5148 
5149     // If all lanes are tautological (either all divisors are ones, or divisor
5150     // is not greater than the constant we are comparing with),
5151     // we will prefer to avoid the fold.
5152     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5153     HadTautologicalLanes |= TautologicalLane;
5154     AllLanesAreTautological &= TautologicalLane;
5155 
5156     // If we are comparing with non-zero, we need'll need  to subtract said
5157     // comparison value from the LHS. But there is no point in doing that if
5158     // every lane where we are comparing with non-zero is tautological..
5159     if (!Cmp.isNullValue())
5160       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5161 
5162     // Decompose D into D0 * 2^K
5163     unsigned K = D.countTrailingZeros();
5164     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5165     APInt D0 = D.lshr(K);
5166 
5167     // D is even if it has trailing zeros.
5168     HadEvenDivisor |= (K != 0);
5169     // D is a power-of-two if D0 is one.
5170     // If all divisors are power-of-two, we will prefer to avoid the fold.
5171     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5172 
5173     // P = inv(D0, 2^W)
5174     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5175     unsigned W = D.getBitWidth();
5176     APInt P = D0.zext(W + 1)
5177                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5178                   .trunc(W);
5179     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5180     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5181 
5182     // Q = floor((2^W - 1) u/ D)
5183     // R = ((2^W - 1) u% D)
5184     APInt Q, R;
5185     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5186 
5187     // If we are comparing with zero, then that comparison constant is okay,
5188     // else it may need to be one less than that.
5189     if (Cmp.ugt(R))
5190       Q -= 1;
5191 
5192     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5193            "We are expecting that K is always less than all-ones for ShSVT");
5194 
5195     // If the lane is tautological the result can be constant-folded.
5196     if (TautologicalLane) {
5197       // Set P and K amount to a bogus values so we can try to splat them.
5198       P = 0;
5199       K = -1;
5200       // And ensure that comparison constant is tautological,
5201       // it will always compare true/false.
5202       Q = -1;
5203     }
5204 
5205     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5206     KAmts.push_back(
5207         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5208     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5209     return true;
5210   };
5211 
5212   SDValue N = REMNode.getOperand(0);
5213   SDValue D = REMNode.getOperand(1);
5214 
5215   // Collect the values from each element.
5216   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5217     return SDValue();
5218 
5219   // If all lanes are tautological, the result can be constant-folded.
5220   if (AllLanesAreTautological)
5221     return SDValue();
5222 
5223   // If this is a urem by a powers-of-two, avoid the fold since it can be
5224   // best implemented as a bit test.
5225   if (AllDivisorsArePowerOfTwo)
5226     return SDValue();
5227 
5228   SDValue PVal, KVal, QVal;
5229   if (VT.isVector()) {
5230     if (HadTautologicalLanes) {
5231       // Try to turn PAmts into a splat, since we don't care about the values
5232       // that are currently '0'. If we can't, just keep '0'`s.
5233       turnVectorIntoSplatVector(PAmts, isNullConstant);
5234       // Try to turn KAmts into a splat, since we don't care about the values
5235       // that are currently '-1'. If we can't, change them to '0'`s.
5236       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5237                                 DAG.getConstant(0, DL, ShSVT));
5238     }
5239 
5240     PVal = DAG.getBuildVector(VT, DL, PAmts);
5241     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5242     QVal = DAG.getBuildVector(VT, DL, QAmts);
5243   } else {
5244     PVal = PAmts[0];
5245     KVal = KAmts[0];
5246     QVal = QAmts[0];
5247   }
5248 
5249   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5250     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5251       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5252     assert(CompTargetNode.getValueType() == N.getValueType() &&
5253            "Expecting that the types on LHS and RHS of comparisons match.");
5254     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5255   }
5256 
5257   // (mul N, P)
5258   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5259   Created.push_back(Op0.getNode());
5260 
5261   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5262   // divisors as a performance improvement, since rotating by 0 is a no-op.
5263   if (HadEvenDivisor) {
5264     // We need ROTR to do this.
5265     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5266       return SDValue();
5267     SDNodeFlags Flags;
5268     Flags.setExact(true);
5269     // UREM: (rotr (mul N, P), K)
5270     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5271     Created.push_back(Op0.getNode());
5272   }
5273 
5274   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5275   SDValue NewCC =
5276       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5277                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5278   if (!HadTautologicalInvertedLanes)
5279     return NewCC;
5280 
5281   // If any lanes previously compared always-false, the NewCC will give
5282   // always-true result for them, so we need to fixup those lanes.
5283   // Or the other way around for inequality predicate.
5284   assert(VT.isVector() && "Can/should only get here for vectors.");
5285   Created.push_back(NewCC.getNode());
5286 
5287   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5288   // if C2 is not less than C1, the comparison is always false.
5289   // But we have produced the comparison that will give the
5290   // opposive tautological answer. So these lanes would need to be fixed up.
5291   SDValue TautologicalInvertedChannels =
5292       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5293   Created.push_back(TautologicalInvertedChannels.getNode());
5294 
5295   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5296     // If we have a vector select, let's replace the comparison results in the
5297     // affected lanes with the correct tautological result.
5298     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5299                                               DL, SETCCVT, SETCCVT);
5300     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5301                        Replacement, NewCC);
5302   }
5303 
5304   // Else, we can just invert the comparison result in the appropriate lanes.
5305   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5306     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5307                        TautologicalInvertedChannels);
5308 
5309   return SDValue(); // Don't know how to lower.
5310 }
5311 
5312 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5313 /// where the divisor is constant and the comparison target is zero,
5314 /// return a DAG expression that will generate the same comparison result
5315 /// using only multiplications, additions and shifts/rotations.
5316 /// Ref: "Hacker's Delight" 10-17.
5317 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5318                                         SDValue CompTargetNode,
5319                                         ISD::CondCode Cond,
5320                                         DAGCombinerInfo &DCI,
5321                                         const SDLoc &DL) const {
5322   SmallVector<SDNode *, 7> Built;
5323   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5324                                          DCI, DL, Built)) {
5325     assert(Built.size() <= 7 && "Max size prediction failed.");
5326     for (SDNode *N : Built)
5327       DCI.AddToWorklist(N);
5328     return Folded;
5329   }
5330 
5331   return SDValue();
5332 }
5333 
5334 SDValue
5335 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5336                                   SDValue CompTargetNode, ISD::CondCode Cond,
5337                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5338                                   SmallVectorImpl<SDNode *> &Created) const {
5339   // Fold:
5340   //   (seteq/ne (srem N, D), 0)
5341   // To:
5342   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5343   //
5344   // - D must be constant, with D = D0 * 2^K where D0 is odd
5345   // - P is the multiplicative inverse of D0 modulo 2^W
5346   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5347   // - Q = floor((2 * A) / (2^K))
5348   // where W is the width of the common type of N and D.
5349   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5350          "Only applicable for (in)equality comparisons.");
5351 
5352   SelectionDAG &DAG = DCI.DAG;
5353 
5354   EVT VT = REMNode.getValueType();
5355   EVT SVT = VT.getScalarType();
5356   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5357   EVT ShSVT = ShVT.getScalarType();
5358 
5359   // If MUL is unavailable, we cannot proceed in any case.
5360   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5361     return SDValue();
5362 
5363   // TODO: Could support comparing with non-zero too.
5364   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5365   if (!CompTarget || !CompTarget->isNullValue())
5366     return SDValue();
5367 
5368   bool HadIntMinDivisor = false;
5369   bool HadOneDivisor = false;
5370   bool AllDivisorsAreOnes = true;
5371   bool HadEvenDivisor = false;
5372   bool NeedToApplyOffset = false;
5373   bool AllDivisorsArePowerOfTwo = true;
5374   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5375 
5376   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5377     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5378     if (C->isNullValue())
5379       return false;
5380 
5381     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5382 
5383     // WARNING: this fold is only valid for positive divisors!
5384     APInt D = C->getAPIntValue();
5385     if (D.isNegative())
5386       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5387 
5388     HadIntMinDivisor |= D.isMinSignedValue();
5389 
5390     // If all divisors are ones, we will prefer to avoid the fold.
5391     HadOneDivisor |= D.isOneValue();
5392     AllDivisorsAreOnes &= D.isOneValue();
5393 
5394     // Decompose D into D0 * 2^K
5395     unsigned K = D.countTrailingZeros();
5396     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5397     APInt D0 = D.lshr(K);
5398 
5399     if (!D.isMinSignedValue()) {
5400       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5401       // we don't care about this lane in this fold, we'll special-handle it.
5402       HadEvenDivisor |= (K != 0);
5403     }
5404 
5405     // D is a power-of-two if D0 is one. This includes INT_MIN.
5406     // If all divisors are power-of-two, we will prefer to avoid the fold.
5407     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5408 
5409     // P = inv(D0, 2^W)
5410     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5411     unsigned W = D.getBitWidth();
5412     APInt P = D0.zext(W + 1)
5413                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5414                   .trunc(W);
5415     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5416     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5417 
5418     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5419     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5420     A.clearLowBits(K);
5421 
5422     if (!D.isMinSignedValue()) {
5423       // If divisor INT_MIN, then we don't care about this lane in this fold,
5424       // we'll special-handle it.
5425       NeedToApplyOffset |= A != 0;
5426     }
5427 
5428     // Q = floor((2 * A) / (2^K))
5429     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5430 
5431     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5432            "We are expecting that A is always less than all-ones for SVT");
5433     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5434            "We are expecting that K is always less than all-ones for ShSVT");
5435 
5436     // If the divisor is 1 the result can be constant-folded. Likewise, we
5437     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5438     if (D.isOneValue()) {
5439       // Set P, A and K to a bogus values so we can try to splat them.
5440       P = 0;
5441       A = -1;
5442       K = -1;
5443 
5444       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5445       Q = -1;
5446     }
5447 
5448     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5449     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5450     KAmts.push_back(
5451         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5452     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5453     return true;
5454   };
5455 
5456   SDValue N = REMNode.getOperand(0);
5457   SDValue D = REMNode.getOperand(1);
5458 
5459   // Collect the values from each element.
5460   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5461     return SDValue();
5462 
5463   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5464   if (AllDivisorsAreOnes)
5465     return SDValue();
5466 
5467   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5468   // since it can be best implemented as a bit test.
5469   if (AllDivisorsArePowerOfTwo)
5470     return SDValue();
5471 
5472   SDValue PVal, AVal, KVal, QVal;
5473   if (VT.isVector()) {
5474     if (HadOneDivisor) {
5475       // Try to turn PAmts into a splat, since we don't care about the values
5476       // that are currently '0'. If we can't, just keep '0'`s.
5477       turnVectorIntoSplatVector(PAmts, isNullConstant);
5478       // Try to turn AAmts into a splat, since we don't care about the
5479       // values that are currently '-1'. If we can't, change them to '0'`s.
5480       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5481                                 DAG.getConstant(0, DL, SVT));
5482       // Try to turn KAmts into a splat, since we don't care about the values
5483       // that are currently '-1'. If we can't, change them to '0'`s.
5484       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5485                                 DAG.getConstant(0, DL, ShSVT));
5486     }
5487 
5488     PVal = DAG.getBuildVector(VT, DL, PAmts);
5489     AVal = DAG.getBuildVector(VT, DL, AAmts);
5490     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5491     QVal = DAG.getBuildVector(VT, DL, QAmts);
5492   } else {
5493     PVal = PAmts[0];
5494     AVal = AAmts[0];
5495     KVal = KAmts[0];
5496     QVal = QAmts[0];
5497   }
5498 
5499   // (mul N, P)
5500   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5501   Created.push_back(Op0.getNode());
5502 
5503   if (NeedToApplyOffset) {
5504     // We need ADD to do this.
5505     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5506       return SDValue();
5507 
5508     // (add (mul N, P), A)
5509     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5510     Created.push_back(Op0.getNode());
5511   }
5512 
5513   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5514   // divisors as a performance improvement, since rotating by 0 is a no-op.
5515   if (HadEvenDivisor) {
5516     // We need ROTR to do this.
5517     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5518       return SDValue();
5519     SDNodeFlags Flags;
5520     Flags.setExact(true);
5521     // SREM: (rotr (add (mul N, P), A), K)
5522     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5523     Created.push_back(Op0.getNode());
5524   }
5525 
5526   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5527   SDValue Fold =
5528       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5529                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5530 
5531   // If we didn't have lanes with INT_MIN divisor, then we're done.
5532   if (!HadIntMinDivisor)
5533     return Fold;
5534 
5535   // That fold is only valid for positive divisors. Which effectively means,
5536   // it is invalid for INT_MIN divisors. So if we have such a lane,
5537   // we must fix-up results for said lanes.
5538   assert(VT.isVector() && "Can/should only get here for vectors.");
5539 
5540   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5541       !isOperationLegalOrCustom(ISD::AND, VT) ||
5542       !isOperationLegalOrCustom(Cond, VT) ||
5543       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5544     return SDValue();
5545 
5546   Created.push_back(Fold.getNode());
5547 
5548   SDValue IntMin = DAG.getConstant(
5549       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5550   SDValue IntMax = DAG.getConstant(
5551       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5552   SDValue Zero =
5553       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5554 
5555   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5556   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5557   Created.push_back(DivisorIsIntMin.getNode());
5558 
5559   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5560   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5561   Created.push_back(Masked.getNode());
5562   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5563   Created.push_back(MaskedIsZero.getNode());
5564 
5565   // To produce final result we need to blend 2 vectors: 'SetCC' and
5566   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5567   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5568   // constant-folded, select can get lowered to a shuffle with constant mask.
5569   SDValue Blended =
5570       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5571 
5572   return Blended;
5573 }
5574 
5575 bool TargetLowering::
5576 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5577   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5578     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5579                                 "be a constant integer");
5580     return true;
5581   }
5582 
5583   return false;
5584 }
5585 
5586 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5587                                              bool LegalOps, bool OptForSize,
5588                                              NegatibleCost &Cost,
5589                                              unsigned Depth) const {
5590   // fneg is removable even if it has multiple uses.
5591   if (Op.getOpcode() == ISD::FNEG) {
5592     Cost = NegatibleCost::Cheaper;
5593     return Op.getOperand(0);
5594   }
5595 
5596   // Don't recurse exponentially.
5597   if (Depth > SelectionDAG::MaxRecursionDepth)
5598     return SDValue();
5599 
5600   // Pre-increment recursion depth for use in recursive calls.
5601   ++Depth;
5602   const SDNodeFlags Flags = Op->getFlags();
5603   const TargetOptions &Options = DAG.getTarget().Options;
5604   EVT VT = Op.getValueType();
5605   unsigned Opcode = Op.getOpcode();
5606 
5607   // Don't allow anything with multiple uses unless we know it is free.
5608   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5609     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5610                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5611     if (!IsFreeExtend)
5612       return SDValue();
5613   }
5614 
5615   SDLoc DL(Op);
5616 
5617   switch (Opcode) {
5618   case ISD::ConstantFP: {
5619     // Don't invert constant FP values after legalization unless the target says
5620     // the negated constant is legal.
5621     bool IsOpLegal =
5622         isOperationLegal(ISD::ConstantFP, VT) ||
5623         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5624                      OptForSize);
5625 
5626     if (LegalOps && !IsOpLegal)
5627       break;
5628 
5629     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5630     V.changeSign();
5631     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5632 
5633     // If we already have the use of the negated floating constant, it is free
5634     // to negate it even it has multiple uses.
5635     if (!Op.hasOneUse() && CFP.use_empty())
5636       break;
5637     Cost = NegatibleCost::Neutral;
5638     return CFP;
5639   }
5640   case ISD::BUILD_VECTOR: {
5641     // Only permit BUILD_VECTOR of constants.
5642     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5643           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5644         }))
5645       break;
5646 
5647     bool IsOpLegal =
5648         (isOperationLegal(ISD::ConstantFP, VT) &&
5649          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5650         llvm::all_of(Op->op_values(), [&](SDValue N) {
5651           return N.isUndef() ||
5652                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5653                               OptForSize);
5654         });
5655 
5656     if (LegalOps && !IsOpLegal)
5657       break;
5658 
5659     SmallVector<SDValue, 4> Ops;
5660     for (SDValue C : Op->op_values()) {
5661       if (C.isUndef()) {
5662         Ops.push_back(C);
5663         continue;
5664       }
5665       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5666       V.changeSign();
5667       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5668     }
5669     Cost = NegatibleCost::Neutral;
5670     return DAG.getBuildVector(VT, DL, Ops);
5671   }
5672   case ISD::FADD: {
5673     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5674       break;
5675 
5676     // After operation legalization, it might not be legal to create new FSUBs.
5677     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5678       break;
5679     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5680 
5681     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5682     NegatibleCost CostX = NegatibleCost::Expensive;
5683     SDValue NegX =
5684         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5685     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5686     NegatibleCost CostY = NegatibleCost::Expensive;
5687     SDValue NegY =
5688         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5689 
5690     // Negate the X if its cost is less or equal than Y.
5691     if (NegX && (CostX <= CostY)) {
5692       Cost = CostX;
5693       return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5694     }
5695 
5696     // Negate the Y if it is not expensive.
5697     if (NegY) {
5698       Cost = CostY;
5699       return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5700     }
5701     break;
5702   }
5703   case ISD::FSUB: {
5704     // We can't turn -(A-B) into B-A when we honor signed zeros.
5705     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5706       break;
5707 
5708     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5709     // fold (fneg (fsub 0, Y)) -> Y
5710     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5711       if (C->isZero()) {
5712         Cost = NegatibleCost::Cheaper;
5713         return Y;
5714       }
5715 
5716     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5717     Cost = NegatibleCost::Neutral;
5718     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5719   }
5720   case ISD::FMUL:
5721   case ISD::FDIV: {
5722     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5723 
5724     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5725     NegatibleCost CostX = NegatibleCost::Expensive;
5726     SDValue NegX =
5727         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5728     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5729     NegatibleCost CostY = NegatibleCost::Expensive;
5730     SDValue NegY =
5731         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5732 
5733     // Negate the X if its cost is less or equal than Y.
5734     if (NegX && (CostX <= CostY)) {
5735       Cost = CostX;
5736       return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5737     }
5738 
5739     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5740     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5741       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5742         break;
5743 
5744     // Negate the Y if it is not expensive.
5745     if (NegY) {
5746       Cost = CostY;
5747       return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5748     }
5749     break;
5750   }
5751   case ISD::FMA:
5752   case ISD::FMAD: {
5753     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5754       break;
5755 
5756     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5757     NegatibleCost CostZ = NegatibleCost::Expensive;
5758     SDValue NegZ =
5759         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5760     // Give up if fail to negate the Z.
5761     if (!NegZ)
5762       break;
5763 
5764     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5765     NegatibleCost CostX = NegatibleCost::Expensive;
5766     SDValue NegX =
5767         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5768     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5769     NegatibleCost CostY = NegatibleCost::Expensive;
5770     SDValue NegY =
5771         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5772 
5773     // Negate the X if its cost is less or equal than Y.
5774     if (NegX && (CostX <= CostY)) {
5775       Cost = std::min(CostX, CostZ);
5776       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5777     }
5778 
5779     // Negate the Y if it is not expensive.
5780     if (NegY) {
5781       Cost = std::min(CostY, CostZ);
5782       return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5783     }
5784     break;
5785   }
5786 
5787   case ISD::FP_EXTEND:
5788   case ISD::FSIN:
5789     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5790                                             OptForSize, Cost, Depth))
5791       return DAG.getNode(Opcode, DL, VT, NegV);
5792     break;
5793   case ISD::FP_ROUND:
5794     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5795                                             OptForSize, Cost, Depth))
5796       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5797     break;
5798   }
5799 
5800   return SDValue();
5801 }
5802 
5803 //===----------------------------------------------------------------------===//
5804 // Legalization Utilities
5805 //===----------------------------------------------------------------------===//
5806 
5807 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5808                                     SDValue LHS, SDValue RHS,
5809                                     SmallVectorImpl<SDValue> &Result,
5810                                     EVT HiLoVT, SelectionDAG &DAG,
5811                                     MulExpansionKind Kind, SDValue LL,
5812                                     SDValue LH, SDValue RL, SDValue RH) const {
5813   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5814          Opcode == ISD::SMUL_LOHI);
5815 
5816   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5817                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5818   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5819                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5820   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5821                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5822   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5823                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5824 
5825   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5826     return false;
5827 
5828   unsigned OuterBitSize = VT.getScalarSizeInBits();
5829   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5830   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5831   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5832 
5833   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5834   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5835          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5836 
5837   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5838   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5839                           bool Signed) -> bool {
5840     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5841       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5842       Hi = SDValue(Lo.getNode(), 1);
5843       return true;
5844     }
5845     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5846       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5847       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5848       return true;
5849     }
5850     return false;
5851   };
5852 
5853   SDValue Lo, Hi;
5854 
5855   if (!LL.getNode() && !RL.getNode() &&
5856       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5857     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5858     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5859   }
5860 
5861   if (!LL.getNode())
5862     return false;
5863 
5864   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5865   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5866       DAG.MaskedValueIsZero(RHS, HighMask)) {
5867     // The inputs are both zero-extended.
5868     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5869       Result.push_back(Lo);
5870       Result.push_back(Hi);
5871       if (Opcode != ISD::MUL) {
5872         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5873         Result.push_back(Zero);
5874         Result.push_back(Zero);
5875       }
5876       return true;
5877     }
5878   }
5879 
5880   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5881       RHSSB > InnerBitSize) {
5882     // The input values are both sign-extended.
5883     // TODO non-MUL case?
5884     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5885       Result.push_back(Lo);
5886       Result.push_back(Hi);
5887       return true;
5888     }
5889   }
5890 
5891   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5892   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5893   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5894     // FIXME getShiftAmountTy does not always return a sensible result when VT
5895     // is an illegal type, and so the type may be too small to fit the shift
5896     // amount. Override it with i32. The shift will have to be legalized.
5897     ShiftAmountTy = MVT::i32;
5898   }
5899   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5900 
5901   if (!LH.getNode() && !RH.getNode() &&
5902       isOperationLegalOrCustom(ISD::SRL, VT) &&
5903       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5904     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5905     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5906     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5907     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5908   }
5909 
5910   if (!LH.getNode())
5911     return false;
5912 
5913   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5914     return false;
5915 
5916   Result.push_back(Lo);
5917 
5918   if (Opcode == ISD::MUL) {
5919     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5920     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5921     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5922     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5923     Result.push_back(Hi);
5924     return true;
5925   }
5926 
5927   // Compute the full width result.
5928   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5929     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5930     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5931     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5932     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5933   };
5934 
5935   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5936   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5937     return false;
5938 
5939   // This is effectively the add part of a multiply-add of half-sized operands,
5940   // so it cannot overflow.
5941   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5942 
5943   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5944     return false;
5945 
5946   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5947   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5948 
5949   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5950                   isOperationLegalOrCustom(ISD::ADDE, VT));
5951   if (UseGlue)
5952     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5953                        Merge(Lo, Hi));
5954   else
5955     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5956                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5957 
5958   SDValue Carry = Next.getValue(1);
5959   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5960   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5961 
5962   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5963     return false;
5964 
5965   if (UseGlue)
5966     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5967                      Carry);
5968   else
5969     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5970                      Zero, Carry);
5971 
5972   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5973 
5974   if (Opcode == ISD::SMUL_LOHI) {
5975     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5976                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5977     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5978 
5979     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5980                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5981     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5982   }
5983 
5984   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5985   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5986   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5987   return true;
5988 }
5989 
5990 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5991                                SelectionDAG &DAG, MulExpansionKind Kind,
5992                                SDValue LL, SDValue LH, SDValue RL,
5993                                SDValue RH) const {
5994   SmallVector<SDValue, 2> Result;
5995   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5996                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5997                            DAG, Kind, LL, LH, RL, RH);
5998   if (Ok) {
5999     assert(Result.size() == 2);
6000     Lo = Result[0];
6001     Hi = Result[1];
6002   }
6003   return Ok;
6004 }
6005 
6006 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6007                                        SelectionDAG &DAG) const {
6008   EVT VT = Node->getValueType(0);
6009 
6010   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6011                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6012                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6013                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6014     return false;
6015 
6016   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6017   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6018   SDValue X = Node->getOperand(0);
6019   SDValue Y = Node->getOperand(1);
6020   SDValue Z = Node->getOperand(2);
6021 
6022   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6023   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6024   SDLoc DL(SDValue(Node, 0));
6025 
6026   EVT ShVT = Z.getValueType();
6027   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6028   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6029 
6030   SDValue ShAmt;
6031   if (isPowerOf2_32(EltSizeInBits)) {
6032     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6033     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6034   } else {
6035     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6036   }
6037 
6038   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6039   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6040   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6041   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6042 
6043   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6044   // and that is undefined. We must compare and select to avoid UB.
6045   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6046 
6047   // For fshl, 0-shift returns the 1st arg (X).
6048   // For fshr, 0-shift returns the 2nd arg (Y).
6049   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6050   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6051   return true;
6052 }
6053 
6054 // TODO: Merge with expandFunnelShift.
6055 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6056                                SelectionDAG &DAG) const {
6057   EVT VT = Node->getValueType(0);
6058   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6059   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6060   SDValue Op0 = Node->getOperand(0);
6061   SDValue Op1 = Node->getOperand(1);
6062   SDLoc DL(SDValue(Node, 0));
6063 
6064   EVT ShVT = Op1.getValueType();
6065   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6066 
6067   // If a rotate in the other direction is legal, use it.
6068   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6069   if (isOperationLegal(RevRot, VT)) {
6070     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6071     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6072     return true;
6073   }
6074 
6075   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6076                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6077                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6078                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6079                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6080     return false;
6081 
6082   // Otherwise,
6083   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6084   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6085   //
6086   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6087          "Expecting the type bitwidth to be a power of 2");
6088   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6089   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6090   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6091   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6092   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6093   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6094   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6095                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6096   return true;
6097 }
6098 
6099 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6100                                       SelectionDAG &DAG) const {
6101   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6102   SDValue Src = Node->getOperand(OpNo);
6103   EVT SrcVT = Src.getValueType();
6104   EVT DstVT = Node->getValueType(0);
6105   SDLoc dl(SDValue(Node, 0));
6106 
6107   // FIXME: Only f32 to i64 conversions are supported.
6108   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6109     return false;
6110 
6111   if (Node->isStrictFPOpcode())
6112     // When a NaN is converted to an integer a trap is allowed. We can't
6113     // use this expansion here because it would eliminate that trap. Other
6114     // traps are also allowed and cannot be eliminated. See
6115     // IEEE 754-2008 sec 5.8.
6116     return false;
6117 
6118   // Expand f32 -> i64 conversion
6119   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6120   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6121   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6122   EVT IntVT = SrcVT.changeTypeToInteger();
6123   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6124 
6125   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6126   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6127   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6128   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6129   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6130   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6131 
6132   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6133 
6134   SDValue ExponentBits = DAG.getNode(
6135       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6136       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6137   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6138 
6139   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6140                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6141                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6142   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6143 
6144   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6145                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6146                           DAG.getConstant(0x00800000, dl, IntVT));
6147 
6148   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6149 
6150   R = DAG.getSelectCC(
6151       dl, Exponent, ExponentLoBit,
6152       DAG.getNode(ISD::SHL, dl, DstVT, R,
6153                   DAG.getZExtOrTrunc(
6154                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6155                       dl, IntShVT)),
6156       DAG.getNode(ISD::SRL, dl, DstVT, R,
6157                   DAG.getZExtOrTrunc(
6158                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6159                       dl, IntShVT)),
6160       ISD::SETGT);
6161 
6162   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6163                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6164 
6165   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6166                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6167   return true;
6168 }
6169 
6170 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6171                                       SDValue &Chain,
6172                                       SelectionDAG &DAG) const {
6173   SDLoc dl(SDValue(Node, 0));
6174   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6175   SDValue Src = Node->getOperand(OpNo);
6176 
6177   EVT SrcVT = Src.getValueType();
6178   EVT DstVT = Node->getValueType(0);
6179   EVT SetCCVT =
6180       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6181   EVT DstSetCCVT =
6182       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6183 
6184   // Only expand vector types if we have the appropriate vector bit operations.
6185   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6186                                                    ISD::FP_TO_SINT;
6187   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6188                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6189     return false;
6190 
6191   // If the maximum float value is smaller then the signed integer range,
6192   // the destination signmask can't be represented by the float, so we can
6193   // just use FP_TO_SINT directly.
6194   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6195   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6196   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6197   if (APFloat::opOverflow &
6198       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6199     if (Node->isStrictFPOpcode()) {
6200       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6201                            { Node->getOperand(0), Src });
6202       Chain = Result.getValue(1);
6203     } else
6204       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6205     return true;
6206   }
6207 
6208   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6209   SDValue Sel;
6210 
6211   if (Node->isStrictFPOpcode()) {
6212     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6213                        Node->getOperand(0), /*IsSignaling*/ true);
6214     Chain = Sel.getValue(1);
6215   } else {
6216     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6217   }
6218 
6219   bool Strict = Node->isStrictFPOpcode() ||
6220                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6221 
6222   if (Strict) {
6223     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6224     // signmask then offset (the result of which should be fully representable).
6225     // Sel = Src < 0x8000000000000000
6226     // FltOfs = select Sel, 0, 0x8000000000000000
6227     // IntOfs = select Sel, 0, 0x8000000000000000
6228     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6229 
6230     // TODO: Should any fast-math-flags be set for the FSUB?
6231     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6232                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6233     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6234     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6235                                    DAG.getConstant(0, dl, DstVT),
6236                                    DAG.getConstant(SignMask, dl, DstVT));
6237     SDValue SInt;
6238     if (Node->isStrictFPOpcode()) {
6239       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6240                                 { Chain, Src, FltOfs });
6241       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6242                          { Val.getValue(1), Val });
6243       Chain = SInt.getValue(1);
6244     } else {
6245       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6246       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6247     }
6248     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6249   } else {
6250     // Expand based on maximum range of FP_TO_SINT:
6251     // True = fp_to_sint(Src)
6252     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6253     // Result = select (Src < 0x8000000000000000), True, False
6254 
6255     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6256     // TODO: Should any fast-math-flags be set for the FSUB?
6257     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6258                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6259     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6260                         DAG.getConstant(SignMask, dl, DstVT));
6261     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6262     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6263   }
6264   return true;
6265 }
6266 
6267 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6268                                       SDValue &Chain,
6269                                       SelectionDAG &DAG) const {
6270   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6271   SDValue Src = Node->getOperand(OpNo);
6272   EVT SrcVT = Src.getValueType();
6273   EVT DstVT = Node->getValueType(0);
6274 
6275   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6276     return false;
6277 
6278   // Only expand vector types if we have the appropriate vector bit operations.
6279   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6280                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6281                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6282                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6283                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6284     return false;
6285 
6286   SDLoc dl(SDValue(Node, 0));
6287   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6288 
6289   // Implementation of unsigned i64 to f64 following the algorithm in
6290   // __floatundidf in compiler_rt. This implementation has the advantage
6291   // of performing rounding correctly, both in the default rounding mode
6292   // and in all alternate rounding modes.
6293   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6294   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6295       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6296   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6297   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6298   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6299 
6300   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6301   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6302   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6303   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6304   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6305   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6306   if (Node->isStrictFPOpcode()) {
6307     SDValue HiSub =
6308         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6309                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6310     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6311                          {HiSub.getValue(1), LoFlt, HiSub});
6312     Chain = Result.getValue(1);
6313   } else {
6314     SDValue HiSub =
6315         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6316     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6317   }
6318   return true;
6319 }
6320 
6321 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6322                                               SelectionDAG &DAG) const {
6323   SDLoc dl(Node);
6324   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6325     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6326   EVT VT = Node->getValueType(0);
6327   if (isOperationLegalOrCustom(NewOp, VT)) {
6328     SDValue Quiet0 = Node->getOperand(0);
6329     SDValue Quiet1 = Node->getOperand(1);
6330 
6331     if (!Node->getFlags().hasNoNaNs()) {
6332       // Insert canonicalizes if it's possible we need to quiet to get correct
6333       // sNaN behavior.
6334       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6335         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6336                              Node->getFlags());
6337       }
6338       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6339         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6340                              Node->getFlags());
6341       }
6342     }
6343 
6344     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6345   }
6346 
6347   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6348   // instead if there are no NaNs.
6349   if (Node->getFlags().hasNoNaNs()) {
6350     unsigned IEEE2018Op =
6351         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6352     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6353       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6354                          Node->getOperand(1), Node->getFlags());
6355     }
6356   }
6357 
6358   // If none of the above worked, but there are no NaNs, then expand to
6359   // a compare/select sequence.  This is required for correctness since
6360   // InstCombine might have canonicalized a fcmp+select sequence to a
6361   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6362   // expansion to libcall, we might introduce a link-time dependency
6363   // on libm into a file that originally did not have one.
6364   if (Node->getFlags().hasNoNaNs()) {
6365     ISD::CondCode Pred =
6366         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6367     SDValue Op1 = Node->getOperand(0);
6368     SDValue Op2 = Node->getOperand(1);
6369     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6370     // Copy FMF flags, but always set the no-signed-zeros flag
6371     // as this is implied by the FMINNUM/FMAXNUM semantics.
6372     SDNodeFlags Flags = Node->getFlags();
6373     Flags.setNoSignedZeros(true);
6374     SelCC->setFlags(Flags);
6375     return SelCC;
6376   }
6377 
6378   return SDValue();
6379 }
6380 
6381 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6382                                  SelectionDAG &DAG) const {
6383   SDLoc dl(Node);
6384   EVT VT = Node->getValueType(0);
6385   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6386   SDValue Op = Node->getOperand(0);
6387   unsigned Len = VT.getScalarSizeInBits();
6388   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6389 
6390   // TODO: Add support for irregular type lengths.
6391   if (!(Len <= 128 && Len % 8 == 0))
6392     return false;
6393 
6394   // Only expand vector types if we have the appropriate vector bit operations.
6395   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6396                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6397                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6398                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6399                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6400     return false;
6401 
6402   // This is the "best" algorithm from
6403   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6404   SDValue Mask55 =
6405       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6406   SDValue Mask33 =
6407       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6408   SDValue Mask0F =
6409       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6410   SDValue Mask01 =
6411       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6412 
6413   // v = v - ((v >> 1) & 0x55555555...)
6414   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6415                    DAG.getNode(ISD::AND, dl, VT,
6416                                DAG.getNode(ISD::SRL, dl, VT, Op,
6417                                            DAG.getConstant(1, dl, ShVT)),
6418                                Mask55));
6419   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6420   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6421                    DAG.getNode(ISD::AND, dl, VT,
6422                                DAG.getNode(ISD::SRL, dl, VT, Op,
6423                                            DAG.getConstant(2, dl, ShVT)),
6424                                Mask33));
6425   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6426   Op = DAG.getNode(ISD::AND, dl, VT,
6427                    DAG.getNode(ISD::ADD, dl, VT, Op,
6428                                DAG.getNode(ISD::SRL, dl, VT, Op,
6429                                            DAG.getConstant(4, dl, ShVT))),
6430                    Mask0F);
6431   // v = (v * 0x01010101...) >> (Len - 8)
6432   if (Len > 8)
6433     Op =
6434         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6435                     DAG.getConstant(Len - 8, dl, ShVT));
6436 
6437   Result = Op;
6438   return true;
6439 }
6440 
6441 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6442                                 SelectionDAG &DAG) const {
6443   SDLoc dl(Node);
6444   EVT VT = Node->getValueType(0);
6445   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6446   SDValue Op = Node->getOperand(0);
6447   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6448 
6449   // If the non-ZERO_UNDEF version is supported we can use that instead.
6450   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6451       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6452     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6453     return true;
6454   }
6455 
6456   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6457   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6458     EVT SetCCVT =
6459         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6460     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6461     SDValue Zero = DAG.getConstant(0, dl, VT);
6462     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6463     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6464                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6465     return true;
6466   }
6467 
6468   // Only expand vector types if we have the appropriate vector bit operations.
6469   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6470                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6471                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6472                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6473     return false;
6474 
6475   // for now, we do this:
6476   // x = x | (x >> 1);
6477   // x = x | (x >> 2);
6478   // ...
6479   // x = x | (x >>16);
6480   // x = x | (x >>32); // for 64-bit input
6481   // return popcount(~x);
6482   //
6483   // Ref: "Hacker's Delight" by Henry Warren
6484   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6485     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6486     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6487                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6488   }
6489   Op = DAG.getNOT(dl, Op, VT);
6490   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6491   return true;
6492 }
6493 
6494 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6495                                 SelectionDAG &DAG) const {
6496   SDLoc dl(Node);
6497   EVT VT = Node->getValueType(0);
6498   SDValue Op = Node->getOperand(0);
6499   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6500 
6501   // If the non-ZERO_UNDEF version is supported we can use that instead.
6502   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6503       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6504     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6505     return true;
6506   }
6507 
6508   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6509   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6510     EVT SetCCVT =
6511         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6512     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6513     SDValue Zero = DAG.getConstant(0, dl, VT);
6514     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6515     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6516                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6517     return true;
6518   }
6519 
6520   // Only expand vector types if we have the appropriate vector bit operations.
6521   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6522                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6523                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6524                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6525                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6526                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6527     return false;
6528 
6529   // for now, we use: { return popcount(~x & (x - 1)); }
6530   // unless the target has ctlz but not ctpop, in which case we use:
6531   // { return 32 - nlz(~x & (x-1)); }
6532   // Ref: "Hacker's Delight" by Henry Warren
6533   SDValue Tmp = DAG.getNode(
6534       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6535       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6536 
6537   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6538   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6539     Result =
6540         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6541                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6542     return true;
6543   }
6544 
6545   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6546   return true;
6547 }
6548 
6549 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6550                                SelectionDAG &DAG) const {
6551   SDLoc dl(N);
6552   EVT VT = N->getValueType(0);
6553   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6554   SDValue Op = N->getOperand(0);
6555 
6556   // Only expand vector types if we have the appropriate vector operations.
6557   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6558                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6559                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6560     return false;
6561 
6562   SDValue Shift =
6563       DAG.getNode(ISD::SRA, dl, VT, Op,
6564                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6565   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6566   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6567   return true;
6568 }
6569 
6570 std::pair<SDValue, SDValue>
6571 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6572                                     SelectionDAG &DAG) const {
6573   SDLoc SL(LD);
6574   SDValue Chain = LD->getChain();
6575   SDValue BasePTR = LD->getBasePtr();
6576   EVT SrcVT = LD->getMemoryVT();
6577   EVT DstVT = LD->getValueType(0);
6578   ISD::LoadExtType ExtType = LD->getExtensionType();
6579 
6580   unsigned NumElem = SrcVT.getVectorNumElements();
6581 
6582   EVT SrcEltVT = SrcVT.getScalarType();
6583   EVT DstEltVT = DstVT.getScalarType();
6584 
6585   // A vector must always be stored in memory as-is, i.e. without any padding
6586   // between the elements, since various code depend on it, e.g. in the
6587   // handling of a bitcast of a vector type to int, which may be done with a
6588   // vector store followed by an integer load. A vector that does not have
6589   // elements that are byte-sized must therefore be stored as an integer
6590   // built out of the extracted vector elements.
6591   if (!SrcEltVT.isByteSized()) {
6592     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6593     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6594 
6595     unsigned NumSrcBits = SrcVT.getSizeInBits();
6596     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6597 
6598     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6599     SDValue SrcEltBitMask = DAG.getConstant(
6600         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6601 
6602     // Load the whole vector and avoid masking off the top bits as it makes
6603     // the codegen worse.
6604     SDValue Load =
6605         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6606                        LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
6607                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6608 
6609     SmallVector<SDValue, 8> Vals;
6610     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6611       unsigned ShiftIntoIdx =
6612           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6613       SDValue ShiftAmount =
6614           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6615                                      LoadVT, SL, /*LegalTypes=*/false);
6616       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6617       SDValue Elt =
6618           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6619       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6620 
6621       if (ExtType != ISD::NON_EXTLOAD) {
6622         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6623         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6624       }
6625 
6626       Vals.push_back(Scalar);
6627     }
6628 
6629     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6630     return std::make_pair(Value, Load.getValue(1));
6631   }
6632 
6633   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6634   assert(SrcEltVT.isByteSized());
6635 
6636   SmallVector<SDValue, 8> Vals;
6637   SmallVector<SDValue, 8> LoadChains;
6638 
6639   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6640     SDValue ScalarLoad =
6641         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6642                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6643                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6644                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6645 
6646     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6647 
6648     Vals.push_back(ScalarLoad.getValue(0));
6649     LoadChains.push_back(ScalarLoad.getValue(1));
6650   }
6651 
6652   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6653   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6654 
6655   return std::make_pair(Value, NewChain);
6656 }
6657 
6658 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6659                                              SelectionDAG &DAG) const {
6660   SDLoc SL(ST);
6661 
6662   SDValue Chain = ST->getChain();
6663   SDValue BasePtr = ST->getBasePtr();
6664   SDValue Value = ST->getValue();
6665   EVT StVT = ST->getMemoryVT();
6666 
6667   // The type of the data we want to save
6668   EVT RegVT = Value.getValueType();
6669   EVT RegSclVT = RegVT.getScalarType();
6670 
6671   // The type of data as saved in memory.
6672   EVT MemSclVT = StVT.getScalarType();
6673 
6674   unsigned NumElem = StVT.getVectorNumElements();
6675 
6676   // A vector must always be stored in memory as-is, i.e. without any padding
6677   // between the elements, since various code depend on it, e.g. in the
6678   // handling of a bitcast of a vector type to int, which may be done with a
6679   // vector store followed by an integer load. A vector that does not have
6680   // elements that are byte-sized must therefore be stored as an integer
6681   // built out of the extracted vector elements.
6682   if (!MemSclVT.isByteSized()) {
6683     unsigned NumBits = StVT.getSizeInBits();
6684     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6685 
6686     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6687 
6688     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6689       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6690                                 DAG.getVectorIdxConstant(Idx, SL));
6691       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6692       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6693       unsigned ShiftIntoIdx =
6694           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6695       SDValue ShiftAmount =
6696           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6697       SDValue ShiftedElt =
6698           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6699       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6700     }
6701 
6702     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6703                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6704                         ST->getAAInfo());
6705   }
6706 
6707   // Store Stride in bytes
6708   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6709   assert(Stride && "Zero stride!");
6710   // Extract each of the elements from the original vector and save them into
6711   // memory individually.
6712   SmallVector<SDValue, 8> Stores;
6713   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6714     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6715                               DAG.getVectorIdxConstant(Idx, SL));
6716 
6717     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6718 
6719     // This scalar TruncStore may be illegal, but we legalize it later.
6720     SDValue Store = DAG.getTruncStore(
6721         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6722         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6723         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6724 
6725     Stores.push_back(Store);
6726   }
6727 
6728   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6729 }
6730 
6731 std::pair<SDValue, SDValue>
6732 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6733   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6734          "unaligned indexed loads not implemented!");
6735   SDValue Chain = LD->getChain();
6736   SDValue Ptr = LD->getBasePtr();
6737   EVT VT = LD->getValueType(0);
6738   EVT LoadedVT = LD->getMemoryVT();
6739   SDLoc dl(LD);
6740   auto &MF = DAG.getMachineFunction();
6741 
6742   if (VT.isFloatingPoint() || VT.isVector()) {
6743     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6744     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6745       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6746           LoadedVT.isVector()) {
6747         // Scalarize the load and let the individual components be handled.
6748         return scalarizeVectorLoad(LD, DAG);
6749       }
6750 
6751       // Expand to a (misaligned) integer load of the same size,
6752       // then bitconvert to floating point or vector.
6753       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6754                                     LD->getMemOperand());
6755       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6756       if (LoadedVT != VT)
6757         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6758                              ISD::ANY_EXTEND, dl, VT, Result);
6759 
6760       return std::make_pair(Result, newLoad.getValue(1));
6761     }
6762 
6763     // Copy the value to a (aligned) stack slot using (unaligned) integer
6764     // loads and stores, then do a (aligned) load from the stack slot.
6765     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6766     unsigned LoadedBytes = LoadedVT.getStoreSize();
6767     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6768     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6769 
6770     // Make sure the stack slot is also aligned for the register type.
6771     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6772     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6773     SmallVector<SDValue, 8> Stores;
6774     SDValue StackPtr = StackBase;
6775     unsigned Offset = 0;
6776 
6777     EVT PtrVT = Ptr.getValueType();
6778     EVT StackPtrVT = StackPtr.getValueType();
6779 
6780     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6781     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6782 
6783     // Do all but one copies using the full register width.
6784     for (unsigned i = 1; i < NumRegs; i++) {
6785       // Load one integer register's worth from the original location.
6786       SDValue Load = DAG.getLoad(
6787           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6788           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6789           LD->getAAInfo());
6790       // Follow the load with a store to the stack slot.  Remember the store.
6791       Stores.push_back(DAG.getStore(
6792           Load.getValue(1), dl, Load, StackPtr,
6793           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6794       // Increment the pointers.
6795       Offset += RegBytes;
6796 
6797       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6798       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6799     }
6800 
6801     // The last copy may be partial.  Do an extending load.
6802     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6803                                   8 * (LoadedBytes - Offset));
6804     SDValue Load =
6805         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6806                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6807                        MinAlign(LD->getAlignment(), Offset),
6808                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6809     // Follow the load with a store to the stack slot.  Remember the store.
6810     // On big-endian machines this requires a truncating store to ensure
6811     // that the bits end up in the right place.
6812     Stores.push_back(DAG.getTruncStore(
6813         Load.getValue(1), dl, Load, StackPtr,
6814         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6815 
6816     // The order of the stores doesn't matter - say it with a TokenFactor.
6817     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6818 
6819     // Finally, perform the original load only redirected to the stack slot.
6820     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6821                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6822                           LoadedVT);
6823 
6824     // Callers expect a MERGE_VALUES node.
6825     return std::make_pair(Load, TF);
6826   }
6827 
6828   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6829          "Unaligned load of unsupported type.");
6830 
6831   // Compute the new VT that is half the size of the old one.  This is an
6832   // integer MVT.
6833   unsigned NumBits = LoadedVT.getSizeInBits();
6834   EVT NewLoadedVT;
6835   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6836   NumBits >>= 1;
6837 
6838   unsigned Alignment = LD->getAlignment();
6839   unsigned IncrementSize = NumBits / 8;
6840   ISD::LoadExtType HiExtType = LD->getExtensionType();
6841 
6842   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6843   if (HiExtType == ISD::NON_EXTLOAD)
6844     HiExtType = ISD::ZEXTLOAD;
6845 
6846   // Load the value in two parts
6847   SDValue Lo, Hi;
6848   if (DAG.getDataLayout().isLittleEndian()) {
6849     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6850                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6851                         LD->getAAInfo());
6852 
6853     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6854     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6855                         LD->getPointerInfo().getWithOffset(IncrementSize),
6856                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6857                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6858   } else {
6859     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6860                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6861                         LD->getAAInfo());
6862 
6863     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6864     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6865                         LD->getPointerInfo().getWithOffset(IncrementSize),
6866                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6867                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6868   }
6869 
6870   // aggregate the two parts
6871   SDValue ShiftAmount =
6872       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6873                                                     DAG.getDataLayout()));
6874   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6875   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6876 
6877   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6878                              Hi.getValue(1));
6879 
6880   return std::make_pair(Result, TF);
6881 }
6882 
6883 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6884                                              SelectionDAG &DAG) const {
6885   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6886          "unaligned indexed stores not implemented!");
6887   SDValue Chain = ST->getChain();
6888   SDValue Ptr = ST->getBasePtr();
6889   SDValue Val = ST->getValue();
6890   EVT VT = Val.getValueType();
6891   int Alignment = ST->getAlignment();
6892   auto &MF = DAG.getMachineFunction();
6893   EVT StoreMemVT = ST->getMemoryVT();
6894 
6895   SDLoc dl(ST);
6896   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6897     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6898     if (isTypeLegal(intVT)) {
6899       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6900           StoreMemVT.isVector()) {
6901         // Scalarize the store and let the individual components be handled.
6902         SDValue Result = scalarizeVectorStore(ST, DAG);
6903         return Result;
6904       }
6905       // Expand to a bitconvert of the value to the integer type of the
6906       // same size, then a (misaligned) int store.
6907       // FIXME: Does not handle truncating floating point stores!
6908       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6909       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6910                             Alignment, ST->getMemOperand()->getFlags());
6911       return Result;
6912     }
6913     // Do a (aligned) store to a stack slot, then copy from the stack slot
6914     // to the final destination using (unaligned) integer loads and stores.
6915     MVT RegVT = getRegisterType(
6916         *DAG.getContext(),
6917         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6918     EVT PtrVT = Ptr.getValueType();
6919     unsigned StoredBytes = StoreMemVT.getStoreSize();
6920     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6921     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6922 
6923     // Make sure the stack slot is also aligned for the register type.
6924     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6925     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6926 
6927     // Perform the original store, only redirected to the stack slot.
6928     SDValue Store = DAG.getTruncStore(
6929         Chain, dl, Val, StackPtr,
6930         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6931 
6932     EVT StackPtrVT = StackPtr.getValueType();
6933 
6934     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6935     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6936     SmallVector<SDValue, 8> Stores;
6937     unsigned Offset = 0;
6938 
6939     // Do all but one copies using the full register width.
6940     for (unsigned i = 1; i < NumRegs; i++) {
6941       // Load one integer register's worth from the stack slot.
6942       SDValue Load = DAG.getLoad(
6943           RegVT, dl, Store, StackPtr,
6944           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6945       // Store it to the final location.  Remember the store.
6946       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6947                                     ST->getPointerInfo().getWithOffset(Offset),
6948                                     MinAlign(ST->getAlignment(), Offset),
6949                                     ST->getMemOperand()->getFlags()));
6950       // Increment the pointers.
6951       Offset += RegBytes;
6952       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6953       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6954     }
6955 
6956     // The last store may be partial.  Do a truncating store.  On big-endian
6957     // machines this requires an extending load from the stack slot to ensure
6958     // that the bits are in the right place.
6959     EVT LoadMemVT =
6960         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6961 
6962     // Load from the stack slot.
6963     SDValue Load = DAG.getExtLoad(
6964         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6965         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6966 
6967     Stores.push_back(
6968         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6969                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6970                           MinAlign(ST->getAlignment(), Offset),
6971                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6972     // The order of the stores doesn't matter - say it with a TokenFactor.
6973     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6974     return Result;
6975   }
6976 
6977   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6978          "Unaligned store of unknown type.");
6979   // Get the half-size VT
6980   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6981   int NumBits = NewStoredVT.getSizeInBits();
6982   int IncrementSize = NumBits / 8;
6983 
6984   // Divide the stored value in two parts.
6985   SDValue ShiftAmount = DAG.getConstant(
6986       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6987   SDValue Lo = Val;
6988   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6989 
6990   // Store the two parts
6991   SDValue Store1, Store2;
6992   Store1 = DAG.getTruncStore(Chain, dl,
6993                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6994                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6995                              ST->getMemOperand()->getFlags());
6996 
6997   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6998   Alignment = MinAlign(Alignment, IncrementSize);
6999   Store2 = DAG.getTruncStore(
7000       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7001       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7002       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7003 
7004   SDValue Result =
7005       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7006   return Result;
7007 }
7008 
7009 SDValue
7010 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7011                                        const SDLoc &DL, EVT DataVT,
7012                                        SelectionDAG &DAG,
7013                                        bool IsCompressedMemory) const {
7014   SDValue Increment;
7015   EVT AddrVT = Addr.getValueType();
7016   EVT MaskVT = Mask.getValueType();
7017   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7018          "Incompatible types of Data and Mask");
7019   if (IsCompressedMemory) {
7020     // Incrementing the pointer according to number of '1's in the mask.
7021     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7022     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7023     if (MaskIntVT.getSizeInBits() < 32) {
7024       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7025       MaskIntVT = MVT::i32;
7026     }
7027 
7028     // Count '1's with POPCNT.
7029     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7030     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7031     // Scale is an element size in bytes.
7032     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7033                                     AddrVT);
7034     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7035   } else
7036     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7037 
7038   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7039 }
7040 
7041 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7042                                        SDValue Idx,
7043                                        EVT VecVT,
7044                                        const SDLoc &dl) {
7045   if (isa<ConstantSDNode>(Idx))
7046     return Idx;
7047 
7048   EVT IdxVT = Idx.getValueType();
7049   unsigned NElts = VecVT.getVectorNumElements();
7050   if (isPowerOf2_32(NElts)) {
7051     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7052                                      Log2_32(NElts));
7053     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7054                        DAG.getConstant(Imm, dl, IdxVT));
7055   }
7056 
7057   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7058                      DAG.getConstant(NElts - 1, dl, IdxVT));
7059 }
7060 
7061 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7062                                                 SDValue VecPtr, EVT VecVT,
7063                                                 SDValue Index) const {
7064   SDLoc dl(Index);
7065   // Make sure the index type is big enough to compute in.
7066   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7067 
7068   EVT EltVT = VecVT.getVectorElementType();
7069 
7070   // Calculate the element offset and add it to the pointer.
7071   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7072   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7073          "Converting bits to bytes lost precision");
7074 
7075   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7076 
7077   EVT IdxVT = Index.getValueType();
7078 
7079   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7080                       DAG.getConstant(EltSize, dl, IdxVT));
7081   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7082 }
7083 
7084 //===----------------------------------------------------------------------===//
7085 // Implementation of Emulated TLS Model
7086 //===----------------------------------------------------------------------===//
7087 
7088 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7089                                                 SelectionDAG &DAG) const {
7090   // Access to address of TLS varialbe xyz is lowered to a function call:
7091   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7092   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7093   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7094   SDLoc dl(GA);
7095 
7096   ArgListTy Args;
7097   ArgListEntry Entry;
7098   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7099   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7100   StringRef EmuTlsVarName(NameString);
7101   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7102   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7103   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7104   Entry.Ty = VoidPtrType;
7105   Args.push_back(Entry);
7106 
7107   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7108 
7109   TargetLowering::CallLoweringInfo CLI(DAG);
7110   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7111   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7112   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7113 
7114   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7115   // At last for X86 targets, maybe good for other targets too?
7116   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7117   MFI.setAdjustsStack(true); // Is this only for X86 target?
7118   MFI.setHasCalls(true);
7119 
7120   assert((GA->getOffset() == 0) &&
7121          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7122   return CallResult.first;
7123 }
7124 
7125 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7126                                                 SelectionDAG &DAG) const {
7127   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7128   if (!isCtlzFast())
7129     return SDValue();
7130   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7131   SDLoc dl(Op);
7132   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7133     if (C->isNullValue() && CC == ISD::SETEQ) {
7134       EVT VT = Op.getOperand(0).getValueType();
7135       SDValue Zext = Op.getOperand(0);
7136       if (VT.bitsLT(MVT::i32)) {
7137         VT = MVT::i32;
7138         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7139       }
7140       unsigned Log2b = Log2_32(VT.getSizeInBits());
7141       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7142       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7143                                 DAG.getConstant(Log2b, dl, MVT::i32));
7144       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7145     }
7146   }
7147   return SDValue();
7148 }
7149 
7150 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7151   unsigned Opcode = Node->getOpcode();
7152   SDValue LHS = Node->getOperand(0);
7153   SDValue RHS = Node->getOperand(1);
7154   EVT VT = LHS.getValueType();
7155   SDLoc dl(Node);
7156 
7157   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7158   assert(VT.isInteger() && "Expected operands to be integers");
7159 
7160   // usub.sat(a, b) -> umax(a, b) - b
7161   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7162     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7163     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7164   }
7165 
7166   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7167     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7168     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7169     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7170   }
7171 
7172   unsigned OverflowOp;
7173   switch (Opcode) {
7174   case ISD::SADDSAT:
7175     OverflowOp = ISD::SADDO;
7176     break;
7177   case ISD::UADDSAT:
7178     OverflowOp = ISD::UADDO;
7179     break;
7180   case ISD::SSUBSAT:
7181     OverflowOp = ISD::SSUBO;
7182     break;
7183   case ISD::USUBSAT:
7184     OverflowOp = ISD::USUBO;
7185     break;
7186   default:
7187     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7188                      "addition or subtraction node.");
7189   }
7190 
7191   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7192   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7193   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7194                                LHS, RHS);
7195   SDValue SumDiff = Result.getValue(0);
7196   SDValue Overflow = Result.getValue(1);
7197   SDValue Zero = DAG.getConstant(0, dl, VT);
7198   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7199 
7200   if (Opcode == ISD::UADDSAT) {
7201     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7202       // (LHS + RHS) | OverflowMask
7203       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7204       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7205     }
7206     // Overflow ? 0xffff.... : (LHS + RHS)
7207     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7208   } else if (Opcode == ISD::USUBSAT) {
7209     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7210       // (LHS - RHS) & ~OverflowMask
7211       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7212       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7213       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7214     }
7215     // Overflow ? 0 : (LHS - RHS)
7216     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7217   } else {
7218     // SatMax -> Overflow && SumDiff < 0
7219     // SatMin -> Overflow && SumDiff >= 0
7220     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7221     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7222     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7223     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7224     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7225     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7226     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7227   }
7228 }
7229 
7230 SDValue
7231 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7232   assert((Node->getOpcode() == ISD::SMULFIX ||
7233           Node->getOpcode() == ISD::UMULFIX ||
7234           Node->getOpcode() == ISD::SMULFIXSAT ||
7235           Node->getOpcode() == ISD::UMULFIXSAT) &&
7236          "Expected a fixed point multiplication opcode");
7237 
7238   SDLoc dl(Node);
7239   SDValue LHS = Node->getOperand(0);
7240   SDValue RHS = Node->getOperand(1);
7241   EVT VT = LHS.getValueType();
7242   unsigned Scale = Node->getConstantOperandVal(2);
7243   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7244                      Node->getOpcode() == ISD::UMULFIXSAT);
7245   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7246                  Node->getOpcode() == ISD::SMULFIXSAT);
7247   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7248   unsigned VTSize = VT.getScalarSizeInBits();
7249 
7250   if (!Scale) {
7251     // [us]mul.fix(a, b, 0) -> mul(a, b)
7252     if (!Saturating) {
7253       if (isOperationLegalOrCustom(ISD::MUL, VT))
7254         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7255     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7256       SDValue Result =
7257           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7258       SDValue Product = Result.getValue(0);
7259       SDValue Overflow = Result.getValue(1);
7260       SDValue Zero = DAG.getConstant(0, dl, VT);
7261 
7262       APInt MinVal = APInt::getSignedMinValue(VTSize);
7263       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7264       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7265       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7266       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7267       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7268       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7269     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7270       SDValue Result =
7271           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7272       SDValue Product = Result.getValue(0);
7273       SDValue Overflow = Result.getValue(1);
7274 
7275       APInt MaxVal = APInt::getMaxValue(VTSize);
7276       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7277       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7278     }
7279   }
7280 
7281   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7282          "Expected scale to be less than the number of bits if signed or at "
7283          "most the number of bits if unsigned.");
7284   assert(LHS.getValueType() == RHS.getValueType() &&
7285          "Expected both operands to be the same type");
7286 
7287   // Get the upper and lower bits of the result.
7288   SDValue Lo, Hi;
7289   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7290   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7291   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7292     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7293     Lo = Result.getValue(0);
7294     Hi = Result.getValue(1);
7295   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7296     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7297     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7298   } else if (VT.isVector()) {
7299     return SDValue();
7300   } else {
7301     report_fatal_error("Unable to expand fixed point multiplication.");
7302   }
7303 
7304   if (Scale == VTSize)
7305     // Result is just the top half since we'd be shifting by the width of the
7306     // operand. Overflow impossible so this works for both UMULFIX and
7307     // UMULFIXSAT.
7308     return Hi;
7309 
7310   // The result will need to be shifted right by the scale since both operands
7311   // are scaled. The result is given to us in 2 halves, so we only want part of
7312   // both in the result.
7313   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7314   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7315                                DAG.getConstant(Scale, dl, ShiftTy));
7316   if (!Saturating)
7317     return Result;
7318 
7319   if (!Signed) {
7320     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7321     // widened multiplication) aren't all zeroes.
7322 
7323     // Saturate to max if ((Hi >> Scale) != 0),
7324     // which is the same as if (Hi > ((1 << Scale) - 1))
7325     APInt MaxVal = APInt::getMaxValue(VTSize);
7326     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7327                                       dl, VT);
7328     Result = DAG.getSelectCC(dl, Hi, LowMask,
7329                              DAG.getConstant(MaxVal, dl, VT), Result,
7330                              ISD::SETUGT);
7331 
7332     return Result;
7333   }
7334 
7335   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7336   // widened multiplication) aren't all ones or all zeroes.
7337 
7338   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7339   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7340 
7341   if (Scale == 0) {
7342     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7343                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7344     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7345     // Saturated to SatMin if wide product is negative, and SatMax if wide
7346     // product is positive ...
7347     SDValue Zero = DAG.getConstant(0, dl, VT);
7348     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7349                                                ISD::SETLT);
7350     // ... but only if we overflowed.
7351     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7352   }
7353 
7354   //  We handled Scale==0 above so all the bits to examine is in Hi.
7355 
7356   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7357   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7358   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7359                                     dl, VT);
7360   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7361   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7362   // which is the same as if (HI < (-1 << (Scale - 1))
7363   SDValue HighMask =
7364       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7365                       dl, VT);
7366   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7367   return Result;
7368 }
7369 
7370 SDValue
7371 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7372                                     SDValue LHS, SDValue RHS,
7373                                     unsigned Scale, SelectionDAG &DAG) const {
7374   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7375           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7376          "Expected a fixed point division opcode");
7377 
7378   EVT VT = LHS.getValueType();
7379   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7380   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7381   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7382 
7383   // If there is enough room in the type to upscale the LHS or downscale the
7384   // RHS before the division, we can perform it in this type without having to
7385   // resize. For signed operations, the LHS headroom is the number of
7386   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7387   // The headroom for the RHS is the number of trailing zeroes.
7388   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7389                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7390   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7391 
7392   // For signed saturating operations, we need to be able to detect true integer
7393   // division overflow; that is, when you have MIN / -EPS. However, this
7394   // is undefined behavior and if we emit divisions that could take such
7395   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7396   // example).
7397   // Avoid this by requiring an extra bit so that we never get this case.
7398   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7399   // signed saturating division, we need to emit a whopping 32-bit division.
7400   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7401     return SDValue();
7402 
7403   unsigned LHSShift = std::min(LHSLead, Scale);
7404   unsigned RHSShift = Scale - LHSShift;
7405 
7406   // At this point, we know that if we shift the LHS up by LHSShift and the
7407   // RHS down by RHSShift, we can emit a regular division with a final scaling
7408   // factor of Scale.
7409 
7410   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7411   if (LHSShift)
7412     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7413                       DAG.getConstant(LHSShift, dl, ShiftTy));
7414   if (RHSShift)
7415     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7416                       DAG.getConstant(RHSShift, dl, ShiftTy));
7417 
7418   SDValue Quot;
7419   if (Signed) {
7420     // For signed operations, if the resulting quotient is negative and the
7421     // remainder is nonzero, subtract 1 from the quotient to round towards
7422     // negative infinity.
7423     SDValue Rem;
7424     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7425     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7426     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7427     if (isTypeLegal(VT) &&
7428         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7429       Quot = DAG.getNode(ISD::SDIVREM, dl,
7430                          DAG.getVTList(VT, VT),
7431                          LHS, RHS);
7432       Rem = Quot.getValue(1);
7433       Quot = Quot.getValue(0);
7434     } else {
7435       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7436                          LHS, RHS);
7437       Rem = DAG.getNode(ISD::SREM, dl, VT,
7438                         LHS, RHS);
7439     }
7440     SDValue Zero = DAG.getConstant(0, dl, VT);
7441     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7442     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7443     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7444     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7445     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7446                                DAG.getConstant(1, dl, VT));
7447     Quot = DAG.getSelect(dl, VT,
7448                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7449                          Sub1, Quot);
7450   } else
7451     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7452                        LHS, RHS);
7453 
7454   return Quot;
7455 }
7456 
7457 void TargetLowering::expandUADDSUBO(
7458     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7459   SDLoc dl(Node);
7460   SDValue LHS = Node->getOperand(0);
7461   SDValue RHS = Node->getOperand(1);
7462   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7463 
7464   // If ADD/SUBCARRY is legal, use that instead.
7465   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7466   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7467     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7468     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7469                                     { LHS, RHS, CarryIn });
7470     Result = SDValue(NodeCarry.getNode(), 0);
7471     Overflow = SDValue(NodeCarry.getNode(), 1);
7472     return;
7473   }
7474 
7475   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7476                             LHS.getValueType(), LHS, RHS);
7477 
7478   EVT ResultType = Node->getValueType(1);
7479   EVT SetCCType = getSetCCResultType(
7480       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7481   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7482   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7483   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7484 }
7485 
7486 void TargetLowering::expandSADDSUBO(
7487     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7488   SDLoc dl(Node);
7489   SDValue LHS = Node->getOperand(0);
7490   SDValue RHS = Node->getOperand(1);
7491   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7492 
7493   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7494                             LHS.getValueType(), LHS, RHS);
7495 
7496   EVT ResultType = Node->getValueType(1);
7497   EVT OType = getSetCCResultType(
7498       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7499 
7500   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7501   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7502   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7503     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7504     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7505     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7506     return;
7507   }
7508 
7509   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7510 
7511   // For an addition, the result should be less than one of the operands (LHS)
7512   // if and only if the other operand (RHS) is negative, otherwise there will
7513   // be overflow.
7514   // For a subtraction, the result should be less than one of the operands
7515   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7516   // otherwise there will be overflow.
7517   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7518   SDValue ConditionRHS =
7519       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7520 
7521   Overflow = DAG.getBoolExtOrTrunc(
7522       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7523       ResultType, ResultType);
7524 }
7525 
7526 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7527                                 SDValue &Overflow, SelectionDAG &DAG) const {
7528   SDLoc dl(Node);
7529   EVT VT = Node->getValueType(0);
7530   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7531   SDValue LHS = Node->getOperand(0);
7532   SDValue RHS = Node->getOperand(1);
7533   bool isSigned = Node->getOpcode() == ISD::SMULO;
7534 
7535   // For power-of-two multiplications we can use a simpler shift expansion.
7536   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7537     const APInt &C = RHSC->getAPIntValue();
7538     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7539     if (C.isPowerOf2()) {
7540       // smulo(x, signed_min) is same as umulo(x, signed_min).
7541       bool UseArithShift = isSigned && !C.isMinSignedValue();
7542       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7543       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7544       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7545       Overflow = DAG.getSetCC(dl, SetCCVT,
7546           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7547                       dl, VT, Result, ShiftAmt),
7548           LHS, ISD::SETNE);
7549       return true;
7550     }
7551   }
7552 
7553   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7554   if (VT.isVector())
7555     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7556                               VT.getVectorNumElements());
7557 
7558   SDValue BottomHalf;
7559   SDValue TopHalf;
7560   static const unsigned Ops[2][3] =
7561       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7562         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7563   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7564     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7565     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7566   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7567     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7568                              RHS);
7569     TopHalf = BottomHalf.getValue(1);
7570   } else if (isTypeLegal(WideVT)) {
7571     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7572     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7573     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7574     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7575     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7576         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7577     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7578                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7579   } else {
7580     if (VT.isVector())
7581       return false;
7582 
7583     // We can fall back to a libcall with an illegal type for the MUL if we
7584     // have a libcall big enough.
7585     // Also, we can fall back to a division in some cases, but that's a big
7586     // performance hit in the general case.
7587     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7588     if (WideVT == MVT::i16)
7589       LC = RTLIB::MUL_I16;
7590     else if (WideVT == MVT::i32)
7591       LC = RTLIB::MUL_I32;
7592     else if (WideVT == MVT::i64)
7593       LC = RTLIB::MUL_I64;
7594     else if (WideVT == MVT::i128)
7595       LC = RTLIB::MUL_I128;
7596     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7597 
7598     SDValue HiLHS;
7599     SDValue HiRHS;
7600     if (isSigned) {
7601       // The high part is obtained by SRA'ing all but one of the bits of low
7602       // part.
7603       unsigned LoSize = VT.getSizeInBits();
7604       HiLHS =
7605           DAG.getNode(ISD::SRA, dl, VT, LHS,
7606                       DAG.getConstant(LoSize - 1, dl,
7607                                       getPointerTy(DAG.getDataLayout())));
7608       HiRHS =
7609           DAG.getNode(ISD::SRA, dl, VT, RHS,
7610                       DAG.getConstant(LoSize - 1, dl,
7611                                       getPointerTy(DAG.getDataLayout())));
7612     } else {
7613         HiLHS = DAG.getConstant(0, dl, VT);
7614         HiRHS = DAG.getConstant(0, dl, VT);
7615     }
7616 
7617     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7618     // pre-lowered to the correct types. This all depends upon WideVT not
7619     // being a legal type for the architecture and thus has to be split to
7620     // two arguments.
7621     SDValue Ret;
7622     TargetLowering::MakeLibCallOptions CallOptions;
7623     CallOptions.setSExt(isSigned);
7624     CallOptions.setIsPostTypeLegalization(true);
7625     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7626       // Halves of WideVT are packed into registers in different order
7627       // depending on platform endianness. This is usually handled by
7628       // the C calling convention, but we can't defer to it in
7629       // the legalizer.
7630       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7631       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7632     } else {
7633       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7634       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7635     }
7636     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7637            "Ret value is a collection of constituent nodes holding result.");
7638     if (DAG.getDataLayout().isLittleEndian()) {
7639       // Same as above.
7640       BottomHalf = Ret.getOperand(0);
7641       TopHalf = Ret.getOperand(1);
7642     } else {
7643       BottomHalf = Ret.getOperand(1);
7644       TopHalf = Ret.getOperand(0);
7645     }
7646   }
7647 
7648   Result = BottomHalf;
7649   if (isSigned) {
7650     SDValue ShiftAmt = DAG.getConstant(
7651         VT.getScalarSizeInBits() - 1, dl,
7652         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7653     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7654     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7655   } else {
7656     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7657                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7658   }
7659 
7660   // Truncate the result if SetCC returns a larger type than needed.
7661   EVT RType = Node->getValueType(1);
7662   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7663     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7664 
7665   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7666          "Unexpected result type for S/UMULO legalization");
7667   return true;
7668 }
7669 
7670 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7671   SDLoc dl(Node);
7672   bool NoNaN = Node->getFlags().hasNoNaNs();
7673   unsigned BaseOpcode = 0;
7674   switch (Node->getOpcode()) {
7675   default: llvm_unreachable("Expected VECREDUCE opcode");
7676   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7677   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7678   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7679   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7680   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7681   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7682   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7683   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7684   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7685   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7686   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7687   case ISD::VECREDUCE_FMAX:
7688     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7689     break;
7690   case ISD::VECREDUCE_FMIN:
7691     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7692     break;
7693   }
7694 
7695   SDValue Op = Node->getOperand(0);
7696   EVT VT = Op.getValueType();
7697 
7698   // Try to use a shuffle reduction for power of two vectors.
7699   if (VT.isPow2VectorType()) {
7700     while (VT.getVectorNumElements() > 1) {
7701       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7702       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7703         break;
7704 
7705       SDValue Lo, Hi;
7706       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7707       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7708       VT = HalfVT;
7709     }
7710   }
7711 
7712   EVT EltVT = VT.getVectorElementType();
7713   unsigned NumElts = VT.getVectorNumElements();
7714 
7715   SmallVector<SDValue, 8> Ops;
7716   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7717 
7718   SDValue Res = Ops[0];
7719   for (unsigned i = 1; i < NumElts; i++)
7720     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7721 
7722   // Result type may be wider than element type.
7723   if (EltVT != Node->getValueType(0))
7724     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7725   return Res;
7726 }
7727