1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function *F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore noalias because it doesn't affect the call sequence.
59   AttributeList CallerAttrs = F->getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     unsigned Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
102                                                      unsigned ArgIdx) {
103   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment  = CS->getParamAlignment(ArgIdx);
114 }
115 
116 /// Generate a libcall taking the given operands as arguments and returning a
117 /// result of type RetVT.
118 std::pair<SDValue, SDValue>
119 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
120                             ArrayRef<SDValue> Ops, bool isSigned,
121                             const SDLoc &dl, bool doesNotReturn,
122                             bool isReturnValueUsed) const {
123   TargetLowering::ArgListTy Args;
124   Args.reserve(Ops.size());
125 
126   TargetLowering::ArgListEntry Entry;
127   for (SDValue Op : Ops) {
128     Entry.Node = Op;
129     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
130     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
131     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Args.push_back(Entry);
133   }
134 
135   if (LC == RTLIB::UNKNOWN_LIBCALL)
136     report_fatal_error("Unsupported library call operation!");
137   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
138                                          getPointerTy(DAG.getDataLayout()));
139 
140   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
141   TargetLowering::CallLoweringInfo CLI(DAG);
142   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
143   CLI.setDebugLoc(dl)
144       .setChain(DAG.getEntryNode())
145       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
146       .setNoReturn(doesNotReturn)
147       .setDiscardResult(!isReturnValueUsed)
148       .setSExtResult(signExtend)
149       .setZExtResult(!signExtend);
150   return LowerCallTo(CLI);
151 }
152 
153 /// Soften the operands of a comparison. This code is shared among BR_CC,
154 /// SELECT_CC, and SETCC handlers.
155 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
156                                          SDValue &NewLHS, SDValue &NewRHS,
157                                          ISD::CondCode &CCCode,
158                                          const SDLoc &dl) const {
159   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
160          && "Unsupported setcc type!");
161 
162   // Expand into one or more soft-fp libcall(s).
163   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
164   bool ShouldInvertCC = false;
165   switch (CCCode) {
166   case ISD::SETEQ:
167   case ISD::SETOEQ:
168     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
169           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
170           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
171     break;
172   case ISD::SETNE:
173   case ISD::SETUNE:
174     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
175           (VT == MVT::f64) ? RTLIB::UNE_F64 :
176           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
177     break;
178   case ISD::SETGE:
179   case ISD::SETOGE:
180     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
181           (VT == MVT::f64) ? RTLIB::OGE_F64 :
182           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
183     break;
184   case ISD::SETLT:
185   case ISD::SETOLT:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
187           (VT == MVT::f64) ? RTLIB::OLT_F64 :
188           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
189     break;
190   case ISD::SETLE:
191   case ISD::SETOLE:
192     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
193           (VT == MVT::f64) ? RTLIB::OLE_F64 :
194           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
195     break;
196   case ISD::SETGT:
197   case ISD::SETOGT:
198     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
199           (VT == MVT::f64) ? RTLIB::OGT_F64 :
200           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
201     break;
202   case ISD::SETUO:
203     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
204           (VT == MVT::f64) ? RTLIB::UO_F64 :
205           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
206     break;
207   case ISD::SETO:
208     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
209           (VT == MVT::f64) ? RTLIB::O_F64 :
210           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
211     break;
212   case ISD::SETONE:
213     // SETONE = SETOLT | SETOGT
214     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
215           (VT == MVT::f64) ? RTLIB::OLT_F64 :
216           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
217     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
218           (VT == MVT::f64) ? RTLIB::OGT_F64 :
219           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
220     break;
221   case ISD::SETUEQ:
222     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
223           (VT == MVT::f64) ? RTLIB::UO_F64 :
224           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
225     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
226           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
227           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
228     break;
229   default:
230     // Invert CC for unordered comparisons
231     ShouldInvertCC = true;
232     switch (CCCode) {
233     case ISD::SETULT:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
235             (VT == MVT::f64) ? RTLIB::OGE_F64 :
236             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
237       break;
238     case ISD::SETULE:
239       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
240             (VT == MVT::f64) ? RTLIB::OGT_F64 :
241             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
242       break;
243     case ISD::SETUGT:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
245             (VT == MVT::f64) ? RTLIB::OLE_F64 :
246             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
247       break;
248     case ISD::SETUGE:
249       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
250             (VT == MVT::f64) ? RTLIB::OLT_F64 :
251             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
252       break;
253     default: llvm_unreachable("Do not know how to soften this setcc!");
254     }
255   }
256 
257   // Use the target specific return value for comparions lib calls.
258   EVT RetVT = getCmpLibcallReturnType();
259   SDValue Ops[2] = {NewLHS, NewRHS};
260   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
261                        dl).first;
262   NewRHS = DAG.getConstant(0, dl, RetVT);
263 
264   CCCode = getCmpLibcallCC(LC1);
265   if (ShouldInvertCC)
266     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
267 
268   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
269     SDValue Tmp = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(CCCode));
273     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
274                          dl).first;
275     NewLHS = DAG.getNode(
276         ISD::SETCC, dl,
277         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
278         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
279     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
280     NewRHS = SDValue();
281   }
282 }
283 
284 /// Return the entry encoding for a jump table in the current function. The
285 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
286 unsigned TargetLowering::getJumpTableEncoding() const {
287   // In non-pic modes, just use the address of a block.
288   if (!isPositionIndependent())
289     return MachineJumpTableInfo::EK_BlockAddress;
290 
291   // In PIC mode, if the target supports a GPRel32 directive, use it.
292   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
293     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
294 
295   // Otherwise, use a label difference.
296   return MachineJumpTableInfo::EK_LabelDifference32;
297 }
298 
299 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
300                                                  SelectionDAG &DAG) const {
301   // If our PIC model is GP relative, use the global offset table as the base.
302   unsigned JTEncoding = getJumpTableEncoding();
303 
304   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
305       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
306     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
307 
308   return Table;
309 }
310 
311 /// This returns the relocation base for the given PIC jumptable, the same as
312 /// getPICJumpTableRelocBase, but as an MCExpr.
313 const MCExpr *
314 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
315                                              unsigned JTI,MCContext &Ctx) const{
316   // The normal PIC reloc base is the label at the start of the jump table.
317   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
318 }
319 
320 bool
321 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
322   const TargetMachine &TM = getTargetMachine();
323   const GlobalValue *GV = GA->getGlobal();
324 
325   // If the address is not even local to this DSO we will have to load it from
326   // a got and then add the offset.
327   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
328     return false;
329 
330   // If the code is position independent we will have to add a base register.
331   if (isPositionIndependent())
332     return false;
333 
334   // Otherwise we can do it.
335   return true;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Optimization Methods
340 //===----------------------------------------------------------------------===//
341 
342 /// If the specified instruction has a constant integer operand and there are
343 /// bits set in that constant that are not demanded, then clear those bits and
344 /// return true.
345 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
346                                             TargetLoweringOpt &TLO) const {
347   SelectionDAG &DAG = TLO.DAG;
348   SDLoc DL(Op);
349   unsigned Opcode = Op.getOpcode();
350 
351   // Do target-specific constant optimization.
352   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
353     return TLO.New.getNode();
354 
355   // FIXME: ISD::SELECT, ISD::SELECT_CC
356   switch (Opcode) {
357   default:
358     break;
359   case ISD::XOR:
360   case ISD::AND:
361   case ISD::OR: {
362     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
363     if (!Op1C)
364       return false;
365 
366     // If this is a 'not' op, don't touch it because that's a canonical form.
367     const APInt &C = Op1C->getAPIntValue();
368     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
369       return false;
370 
371     if (!C.isSubsetOf(Demanded)) {
372       EVT VT = Op.getValueType();
373       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
374       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
375       return TLO.CombineTo(Op, NewOp);
376     }
377 
378     break;
379   }
380   }
381 
382   return false;
383 }
384 
385 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
386 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
387 /// generalized for targets with other types of implicit widening casts.
388 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
389                                       const APInt &Demanded,
390                                       TargetLoweringOpt &TLO) const {
391   assert(Op.getNumOperands() == 2 &&
392          "ShrinkDemandedOp only supports binary operators!");
393   assert(Op.getNode()->getNumValues() == 1 &&
394          "ShrinkDemandedOp only supports nodes with one result!");
395 
396   SelectionDAG &DAG = TLO.DAG;
397   SDLoc dl(Op);
398 
399   // Early return, as this function cannot handle vector types.
400   if (Op.getValueType().isVector())
401     return false;
402 
403   // Don't do this if the node has another user, which may require the
404   // full value.
405   if (!Op.getNode()->hasOneUse())
406     return false;
407 
408   // Search for the smallest integer type with free casts to and from
409   // Op's type. For expedience, just check power-of-2 integer types.
410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
411   unsigned DemandedSize = Demanded.getActiveBits();
412   unsigned SmallVTBits = DemandedSize;
413   if (!isPowerOf2_32(SmallVTBits))
414     SmallVTBits = NextPowerOf2(SmallVTBits);
415   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
416     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
417     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
418         TLI.isZExtFree(SmallVT, Op.getValueType())) {
419       // We found a type with free casts.
420       SDValue X = DAG.getNode(
421           Op.getOpcode(), dl, SmallVT,
422           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
424       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
425       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
426       return TLO.CombineTo(Op, Z);
427     }
428   }
429   return false;
430 }
431 
432 bool
433 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
434                                      const APInt &Demanded,
435                                      DAGCombinerInfo &DCI,
436                                      TargetLoweringOpt &TLO) const {
437   SDValue Op = User->getOperand(OpIdx);
438   KnownBits Known;
439 
440   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
441     return false;
442 
443 
444   // Old will not always be the same as Op.  For example:
445   //
446   // Demanded = 0xffffff
447   // Op = i64 truncate (i32 and x, 0xffffff)
448   // In this case simplify demand bits will want to replace the 'and' node
449   // with the value 'x', which will give us:
450   // Old = i32 and x, 0xffffff
451   // New = x
452   if (TLO.Old.hasOneUse()) {
453     // For the one use case, we just commit the change.
454     DCI.CommitTargetLoweringOpt(TLO);
455     return true;
456   }
457 
458   // If Old has more than one use then it must be Op, because the
459   // AssumeSingleUse flag is not propogated to recursive calls of
460   // SimplifyDemanded bits, so the only node with multiple use that
461   // it will attempt to combine will be opt.
462   assert(TLO.Old == Op);
463 
464   SmallVector <SDValue, 4> NewOps;
465   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
466     if (i == OpIdx) {
467       NewOps.push_back(TLO.New);
468       continue;
469     }
470     NewOps.push_back(User->getOperand(i));
471   }
472   TLO.DAG.UpdateNodeOperands(User, NewOps);
473   // Op has less users now, so we may be able to perform additional combines
474   // with it.
475   DCI.AddToWorklist(Op.getNode());
476   // User's operands have been updated, so we may be able to do new combines
477   // with it.
478   DCI.AddToWorklist(User);
479   return true;
480 }
481 
482 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask,
483                                           DAGCombinerInfo &DCI) const {
484 
485   SelectionDAG &DAG = DCI.DAG;
486   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
487                         !DCI.isBeforeLegalizeOps());
488   KnownBits Known;
489 
490   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
491   if (Simplified)
492     DCI.CommitTargetLoweringOpt(TLO);
493   return Simplified;
494 }
495 
496 /// Look at Op. At this point, we know that only the DemandedMask bits of the
497 /// result of Op are ever used downstream. If we can use this information to
498 /// simplify Op, create a new simplified DAG node and return true, returning the
499 /// original and new nodes in Old and New. Otherwise, analyze the expression and
500 /// return a mask of Known bits for the expression (used to simplify the
501 /// caller).  The Known bits may only be accurate for those bits in the
502 /// DemandedMask.
503 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
504                                           const APInt &DemandedMask,
505                                           KnownBits &Known,
506                                           TargetLoweringOpt &TLO,
507                                           unsigned Depth,
508                                           bool AssumeSingleUse) const {
509   unsigned BitWidth = DemandedMask.getBitWidth();
510   assert(Op.getScalarValueSizeInBits() == BitWidth &&
511          "Mask size mismatches value type size!");
512   APInt NewMask = DemandedMask;
513   SDLoc dl(Op);
514   auto &DL = TLO.DAG.getDataLayout();
515 
516   // Don't know anything.
517   Known = KnownBits(BitWidth);
518 
519   // Other users may use these bits.
520   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
521     if (Depth != 0) {
522       // If not at the root, Just compute the Known bits to
523       // simplify things downstream.
524       TLO.DAG.computeKnownBits(Op, Known, Depth);
525       return false;
526     }
527     // If this is the root being simplified, allow it to have multiple uses,
528     // just set the NewMask to all bits.
529     NewMask = APInt::getAllOnesValue(BitWidth);
530   } else if (DemandedMask == 0) {
531     // Not demanding any bits from Op.
532     if (!Op.isUndef())
533       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
534     return false;
535   } else if (Depth == 6) {        // Limit search depth.
536     return false;
537   }
538 
539   KnownBits Known2, KnownOut;
540   switch (Op.getOpcode()) {
541   case ISD::Constant:
542     // We know all of the bits for a constant!
543     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
544     Known.Zero = ~Known.One;
545     return false;   // Don't fall through, will infinitely loop.
546   case ISD::BUILD_VECTOR:
547     // Collect the known bits that are shared by every constant vector element.
548     Known.Zero.setAllBits(); Known.One.setAllBits();
549     for (SDValue SrcOp : Op->ops()) {
550       if (!isa<ConstantSDNode>(SrcOp)) {
551         // We can only handle all constant values - bail out with no known bits.
552         Known = KnownBits(BitWidth);
553         return false;
554       }
555       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
556       Known2.Zero = ~Known2.One;
557 
558       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
559       if (Known2.One.getBitWidth() != BitWidth) {
560         assert(Known2.getBitWidth() > BitWidth &&
561                "Expected BUILD_VECTOR implicit truncation");
562         Known2 = Known2.trunc(BitWidth);
563       }
564 
565       // Known bits are the values that are shared by every element.
566       // TODO: support per-element known bits.
567       Known.One &= Known2.One;
568       Known.Zero &= Known2.Zero;
569     }
570     return false;   // Don't fall through, will infinitely loop.
571   case ISD::AND:
572     // If the RHS is a constant, check to see if the LHS would be zero without
573     // using the bits from the RHS.  Below, we use knowledge about the RHS to
574     // simplify the LHS, here we're using information from the LHS to simplify
575     // the RHS.
576     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
577       SDValue Op0 = Op.getOperand(0);
578       KnownBits LHSKnown;
579       // Do not increment Depth here; that can cause an infinite loop.
580       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
581       // If the LHS already has zeros where RHSC does, this and is dead.
582       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
583         return TLO.CombineTo(Op, Op0);
584 
585       // If any of the set bits in the RHS are known zero on the LHS, shrink
586       // the constant.
587       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
588         return true;
589 
590       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
591       // constant, but if this 'and' is only clearing bits that were just set by
592       // the xor, then this 'and' can be eliminated by shrinking the mask of
593       // the xor. For example, for a 32-bit X:
594       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
595       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
596           LHSKnown.One == ~RHSC->getAPIntValue()) {
597         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
598                                       Op0.getOperand(0), Op.getOperand(1));
599         return TLO.CombineTo(Op, Xor);
600       }
601     }
602 
603     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
604       return true;
605     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
606     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
607                              Known2, TLO, Depth+1))
608       return true;
609     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
610 
611     // If all of the demanded bits are known one on one side, return the other.
612     // These bits cannot contribute to the result of the 'and'.
613     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
614       return TLO.CombineTo(Op, Op.getOperand(0));
615     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
616       return TLO.CombineTo(Op, Op.getOperand(1));
617     // If all of the demanded bits in the inputs are known zeros, return zero.
618     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
619       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
620     // If the RHS is a constant, see if we can simplify it.
621     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
622       return true;
623     // If the operation can be done in a smaller type, do so.
624     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
625       return true;
626 
627     // Output known-1 bits are only known if set in both the LHS & RHS.
628     Known.One &= Known2.One;
629     // Output known-0 are known to be clear if zero in either the LHS | RHS.
630     Known.Zero |= Known2.Zero;
631     break;
632   case ISD::OR:
633     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
634       return true;
635     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
636     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
637                              Known2, TLO, Depth+1))
638       return true;
639     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
640 
641     // If all of the demanded bits are known zero on one side, return the other.
642     // These bits cannot contribute to the result of the 'or'.
643     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
644       return TLO.CombineTo(Op, Op.getOperand(0));
645     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
646       return TLO.CombineTo(Op, Op.getOperand(1));
647     // If the RHS is a constant, see if we can simplify it.
648     if (ShrinkDemandedConstant(Op, NewMask, TLO))
649       return true;
650     // If the operation can be done in a smaller type, do so.
651     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
652       return true;
653 
654     // Output known-0 bits are only known if clear in both the LHS & RHS.
655     Known.Zero &= Known2.Zero;
656     // Output known-1 are known to be set if set in either the LHS | RHS.
657     Known.One |= Known2.One;
658     break;
659   case ISD::XOR: {
660     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
661       return true;
662     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
663     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
664       return true;
665     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
666 
667     // If all of the demanded bits are known zero on one side, return the other.
668     // These bits cannot contribute to the result of the 'xor'.
669     if (NewMask.isSubsetOf(Known.Zero))
670       return TLO.CombineTo(Op, Op.getOperand(0));
671     if (NewMask.isSubsetOf(Known2.Zero))
672       return TLO.CombineTo(Op, Op.getOperand(1));
673     // If the operation can be done in a smaller type, do so.
674     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
675       return true;
676 
677     // If all of the unknown bits are known to be zero on one side or the other
678     // (but not both) turn this into an *inclusive* or.
679     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
680     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
681       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
682                                                Op.getOperand(0),
683                                                Op.getOperand(1)));
684 
685     // Output known-0 bits are known if clear or set in both the LHS & RHS.
686     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
687     // Output known-1 are known to be set if set in only one of the LHS, RHS.
688     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
689 
690     // If all of the demanded bits on one side are known, and all of the set
691     // bits on that side are also known to be set on the other side, turn this
692     // into an AND, as we know the bits will be cleared.
693     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
694     // NB: it is okay if more bits are known than are requested
695     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
696       if (Known.One == Known2.One) { // set bits are the same on both sides
697         EVT VT = Op.getValueType();
698         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
699         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
700                                                  Op.getOperand(0), ANDC));
701       }
702     }
703 
704     // If the RHS is a constant, see if we can change it. Don't alter a -1
705     // constant because that's a 'not' op, and that is better for combining and
706     // codegen.
707     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
708     if (C && !C->isAllOnesValue()) {
709       if (NewMask.isSubsetOf(C->getAPIntValue())) {
710         // We're flipping all demanded bits. Flip the undemanded bits too.
711         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType());
712         return TLO.CombineTo(Op, New);
713       }
714       // If we can't turn this into a 'not', try to shrink the constant.
715       if (ShrinkDemandedConstant(Op, NewMask, TLO))
716         return true;
717     }
718 
719     Known = std::move(KnownOut);
720     break;
721   }
722   case ISD::SELECT:
723     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
724       return true;
725     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
726       return true;
727     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
728     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
729 
730     // If the operands are constants, see if we can simplify them.
731     if (ShrinkDemandedConstant(Op, NewMask, TLO))
732       return true;
733 
734     // Only known if known in both the LHS and RHS.
735     Known.One &= Known2.One;
736     Known.Zero &= Known2.Zero;
737     break;
738   case ISD::SELECT_CC:
739     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
740       return true;
741     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
742       return true;
743     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
744     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
745 
746     // If the operands are constants, see if we can simplify them.
747     if (ShrinkDemandedConstant(Op, NewMask, TLO))
748       return true;
749 
750     // Only known if known in both the LHS and RHS.
751     Known.One &= Known2.One;
752     Known.Zero &= Known2.Zero;
753     break;
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
762         getBooleanContents(Op.getValueType()) ==
763             BooleanContent::ZeroOrNegativeOneBooleanContent) {
764       // If we're testing X < 0, then this compare isn't needed - just use X!
765       // FIXME: We're limiting to integer types here, but this should also work
766       // if we don't care about FP signed-zero. The use of SETLT with FP means
767       // that we don't care about NaNs.
768       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
769           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
770         return TLO.CombineTo(Op, Op0);
771 
772       // TODO: Should we check for other forms of sign-bit comparisons?
773       // Examples: X <= -1, X >= 0
774     }
775     if (getBooleanContents(Op0.getValueType()) ==
776             TargetLowering::ZeroOrOneBooleanContent &&
777         BitWidth > 1)
778       Known.Zero.setBitsFrom(1);
779     break;
780   }
781   case ISD::SHL:
782     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
783       unsigned ShAmt = SA->getZExtValue();
784       SDValue InOp = Op.getOperand(0);
785 
786       // If the shift count is an invalid immediate, don't do anything.
787       if (ShAmt >= BitWidth)
788         break;
789 
790       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
791       // single shift.  We can do this if the bottom bits (which are shifted
792       // out) are never demanded.
793       if (InOp.getOpcode() == ISD::SRL &&
794           isa<ConstantSDNode>(InOp.getOperand(1))) {
795         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
796           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
797           unsigned Opc = ISD::SHL;
798           int Diff = ShAmt-C1;
799           if (Diff < 0) {
800             Diff = -Diff;
801             Opc = ISD::SRL;
802           }
803 
804           SDValue NewSA =
805             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
806           EVT VT = Op.getValueType();
807           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
808                                                    InOp.getOperand(0), NewSA));
809         }
810       }
811 
812       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
813         return true;
814 
815       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
816       // are not demanded. This will likely allow the anyext to be folded away.
817       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
818         SDValue InnerOp = InOp.getOperand(0);
819         EVT InnerVT = InnerOp.getValueType();
820         unsigned InnerBits = InnerVT.getSizeInBits();
821         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
822             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
823           EVT ShTy = getShiftAmountTy(InnerVT, DL);
824           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
825             ShTy = InnerVT;
826           SDValue NarrowShl =
827             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
828                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
829           return
830             TLO.CombineTo(Op,
831                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
832                                           NarrowShl));
833         }
834         // Repeat the SHL optimization above in cases where an extension
835         // intervenes: (shl (anyext (shr x, c1)), c2) to
836         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
837         // aren't demanded (as above) and that the shifted upper c1 bits of
838         // x aren't demanded.
839         if (InOp.hasOneUse() &&
840             InnerOp.getOpcode() == ISD::SRL &&
841             InnerOp.hasOneUse() &&
842             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
843           unsigned InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
844             ->getZExtValue();
845           if (InnerShAmt < ShAmt &&
846               InnerShAmt < InnerBits &&
847               NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
848               NewMask.countTrailingZeros() >= ShAmt) {
849             SDValue NewSA =
850               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
851                                   Op.getOperand(1).getValueType());
852             EVT VT = Op.getValueType();
853             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
854                                              InnerOp.getOperand(0));
855             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
856                                                      NewExt, NewSA));
857           }
858         }
859       }
860 
861       Known.Zero <<= SA->getZExtValue();
862       Known.One  <<= SA->getZExtValue();
863       // low bits known zero.
864       Known.Zero.setLowBits(SA->getZExtValue());
865     }
866     break;
867   case ISD::SRL:
868     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
869       EVT VT = Op.getValueType();
870       unsigned ShAmt = SA->getZExtValue();
871       unsigned VTSize = VT.getSizeInBits();
872       SDValue InOp = Op.getOperand(0);
873 
874       // If the shift count is an invalid immediate, don't do anything.
875       if (ShAmt >= BitWidth)
876         break;
877 
878       APInt InDemandedMask = (NewMask << ShAmt);
879 
880       // If the shift is exact, then it does demand the low bits (and knows that
881       // they are zero).
882       if (Op->getFlags().hasExact())
883         InDemandedMask.setLowBits(ShAmt);
884 
885       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
886       // single shift.  We can do this if the top bits (which are shifted out)
887       // are never demanded.
888       if (InOp.getOpcode() == ISD::SHL &&
889           isa<ConstantSDNode>(InOp.getOperand(1))) {
890         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
891           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
892           unsigned Opc = ISD::SRL;
893           int Diff = ShAmt-C1;
894           if (Diff < 0) {
895             Diff = -Diff;
896             Opc = ISD::SHL;
897           }
898 
899           SDValue NewSA =
900             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
901           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
902                                                    InOp.getOperand(0), NewSA));
903         }
904       }
905 
906       // Compute the new bits that are at the top now.
907       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
908         return true;
909       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
910       Known.Zero.lshrInPlace(ShAmt);
911       Known.One.lshrInPlace(ShAmt);
912 
913       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
914     }
915     break;
916   case ISD::SRA:
917     // If this is an arithmetic shift right and only the low-bit is set, we can
918     // always convert this into a logical shr, even if the shift amount is
919     // variable.  The low bit of the shift cannot be an input sign bit unless
920     // the shift amount is >= the size of the datatype, which is undefined.
921     if (NewMask.isOneValue())
922       return TLO.CombineTo(Op,
923                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
924                                            Op.getOperand(0), Op.getOperand(1)));
925 
926     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
927       EVT VT = Op.getValueType();
928       unsigned ShAmt = SA->getZExtValue();
929 
930       // If the shift count is an invalid immediate, don't do anything.
931       if (ShAmt >= BitWidth)
932         break;
933 
934       APInt InDemandedMask = (NewMask << ShAmt);
935 
936       // If the shift is exact, then it does demand the low bits (and knows that
937       // they are zero).
938       if (Op->getFlags().hasExact())
939         InDemandedMask.setLowBits(ShAmt);
940 
941       // If any of the demanded bits are produced by the sign extension, we also
942       // demand the input sign bit.
943       if (NewMask.countLeadingZeros() < ShAmt)
944         InDemandedMask.setSignBit();
945 
946       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
947                                Depth+1))
948         return true;
949       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
950       Known.Zero.lshrInPlace(ShAmt);
951       Known.One.lshrInPlace(ShAmt);
952 
953       // If the input sign bit is known to be zero, or if none of the top bits
954       // are demanded, turn this into an unsigned shift right.
955       if (Known.Zero[BitWidth - ShAmt - 1] ||
956           NewMask.countLeadingZeros() >= ShAmt) {
957         SDNodeFlags Flags;
958         Flags.setExact(Op->getFlags().hasExact());
959         return TLO.CombineTo(Op,
960                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
961                                              Op.getOperand(1), Flags));
962       }
963 
964       int Log2 = NewMask.exactLogBase2();
965       if (Log2 >= 0) {
966         // The bit must come from the sign.
967         SDValue NewSA =
968           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
969                               Op.getOperand(1).getValueType());
970         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
971                                                  Op.getOperand(0), NewSA));
972       }
973 
974       if (Known.One[BitWidth - ShAmt - 1])
975         // New bits are known one.
976         Known.One.setHighBits(ShAmt);
977     }
978     break;
979   case ISD::SIGN_EXTEND_INREG: {
980     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
981 
982     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
983     // If we only care about the highest bit, don't bother shifting right.
984     if (MsbMask == NewMask) {
985       unsigned ShAmt = ExVT.getScalarSizeInBits();
986       SDValue InOp = Op.getOperand(0);
987       unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
988       bool AlreadySignExtended =
989         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
990       // However if the input is already sign extended we expect the sign
991       // extension to be dropped altogether later and do not simplify.
992       if (!AlreadySignExtended) {
993         // Compute the correct shift amount type, which must be getShiftAmountTy
994         // for scalar types after legalization.
995         EVT ShiftAmtTy = Op.getValueType();
996         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
997           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
998 
999         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
1000                                                ShiftAmtTy);
1001         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1002                                                  Op.getValueType(), InOp,
1003                                                  ShiftAmt));
1004       }
1005     }
1006 
1007     // Sign extension.  Compute the demanded bits in the result that are not
1008     // present in the input.
1009     APInt NewBits =
1010       APInt::getHighBitsSet(BitWidth,
1011                             BitWidth - ExVT.getScalarSizeInBits());
1012 
1013     // If none of the extended bits are demanded, eliminate the sextinreg.
1014     if ((NewBits & NewMask) == 0)
1015       return TLO.CombineTo(Op, Op.getOperand(0));
1016 
1017     APInt InSignBit =
1018       APInt::getSignMask(ExVT.getScalarSizeInBits()).zext(BitWidth);
1019     APInt InputDemandedBits =
1020       APInt::getLowBitsSet(BitWidth,
1021                            ExVT.getScalarSizeInBits()) &
1022       NewMask;
1023 
1024     // Since the sign extended bits are demanded, we know that the sign
1025     // bit is demanded.
1026     InputDemandedBits |= InSignBit;
1027 
1028     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1029                              Known, TLO, Depth+1))
1030       return true;
1031     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1032 
1033     // If the sign bit of the input is known set or clear, then we know the
1034     // top bits of the result.
1035 
1036     // If the input sign bit is known zero, convert this into a zero extension.
1037     if (Known.Zero.intersects(InSignBit))
1038       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1039                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1040 
1041     if (Known.One.intersects(InSignBit)) {    // Input sign bit known set
1042       Known.One |= NewBits;
1043       Known.Zero &= ~NewBits;
1044     } else {                       // Input sign bit unknown
1045       Known.Zero &= ~NewBits;
1046       Known.One &= ~NewBits;
1047     }
1048     break;
1049   }
1050   case ISD::BUILD_PAIR: {
1051     EVT HalfVT = Op.getOperand(0).getValueType();
1052     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1053 
1054     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1055     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1056 
1057     KnownBits KnownLo, KnownHi;
1058 
1059     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1060       return true;
1061 
1062     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1063       return true;
1064 
1065     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1066                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1067 
1068     Known.One = KnownLo.One.zext(BitWidth) |
1069                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1070     break;
1071   }
1072   case ISD::ZERO_EXTEND: {
1073     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1074     APInt InMask = NewMask.trunc(OperandBitWidth);
1075 
1076     // If none of the top bits are demanded, convert this into an any_extend.
1077     APInt NewBits =
1078       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1079     if (!NewBits.intersects(NewMask))
1080       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1081                                                Op.getValueType(),
1082                                                Op.getOperand(0)));
1083 
1084     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1085       return true;
1086     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1087     Known = Known.zext(BitWidth);
1088     Known.Zero |= NewBits;
1089     break;
1090   }
1091   case ISD::SIGN_EXTEND: {
1092     EVT InVT = Op.getOperand(0).getValueType();
1093     unsigned InBits = InVT.getScalarSizeInBits();
1094     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1095     APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1);
1096     APInt NewBits   = ~InMask & NewMask;
1097 
1098     // If none of the top bits are demanded, convert this into an any_extend.
1099     if (NewBits == 0)
1100       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1101                                               Op.getValueType(),
1102                                               Op.getOperand(0)));
1103 
1104     // Since some of the sign extended bits are demanded, we know that the sign
1105     // bit is demanded.
1106     APInt InDemandedBits = InMask & NewMask;
1107     InDemandedBits |= InSignBit;
1108     InDemandedBits = InDemandedBits.trunc(InBits);
1109 
1110     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
1111                              Depth+1))
1112       return true;
1113     Known = Known.zext(BitWidth);
1114 
1115     // If the sign bit is known zero, convert this to a zero extend.
1116     if (Known.Zero.intersects(InSignBit))
1117       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1118                                                Op.getValueType(),
1119                                                Op.getOperand(0)));
1120 
1121     // If the sign bit is known one, the top bits match.
1122     if (Known.One.intersects(InSignBit)) {
1123       Known.One |= NewBits;
1124       assert((Known.Zero & NewBits) == 0);
1125     } else {   // Otherwise, top bits aren't known.
1126       assert((Known.One & NewBits) == 0);
1127       assert((Known.Zero & NewBits) == 0);
1128     }
1129     break;
1130   }
1131   case ISD::ANY_EXTEND: {
1132     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1133     APInt InMask = NewMask.trunc(OperandBitWidth);
1134     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
1135       return true;
1136     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1137     Known = Known.zext(BitWidth);
1138     break;
1139   }
1140   case ISD::TRUNCATE: {
1141     // Simplify the input, using demanded bit information, and compute the known
1142     // zero/one bits live out.
1143     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1144     APInt TruncMask = NewMask.zext(OperandBitWidth);
1145     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
1146       return true;
1147     Known = Known.trunc(BitWidth);
1148 
1149     // If the input is only used by this truncate, see if we can shrink it based
1150     // on the known demanded bits.
1151     if (Op.getOperand(0).getNode()->hasOneUse()) {
1152       SDValue In = Op.getOperand(0);
1153       switch (In.getOpcode()) {
1154       default: break;
1155       case ISD::SRL:
1156         // Shrink SRL by a constant if none of the high bits shifted in are
1157         // demanded.
1158         if (TLO.LegalTypes() &&
1159             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1160           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1161           // undesirable.
1162           break;
1163         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1164         if (!ShAmt)
1165           break;
1166         SDValue Shift = In.getOperand(1);
1167         if (TLO.LegalTypes()) {
1168           uint64_t ShVal = ShAmt->getZExtValue();
1169           Shift = TLO.DAG.getConstant(ShVal, dl,
1170                                       getShiftAmountTy(Op.getValueType(), DL));
1171         }
1172 
1173         if (ShAmt->getZExtValue() < BitWidth) {
1174           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1175                                                  OperandBitWidth - BitWidth);
1176           HighBits.lshrInPlace(ShAmt->getZExtValue());
1177           HighBits = HighBits.trunc(BitWidth);
1178 
1179           if (!(HighBits & NewMask)) {
1180             // None of the shifted in bits are needed.  Add a truncate of the
1181             // shift input, then shift it.
1182             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1183                                                Op.getValueType(),
1184                                                In.getOperand(0));
1185             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1186                                                      Op.getValueType(),
1187                                                      NewTrunc,
1188                                                      Shift));
1189           }
1190         }
1191         break;
1192       }
1193     }
1194 
1195     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1196     break;
1197   }
1198   case ISD::AssertZext: {
1199     // AssertZext demands all of the high bits, plus any of the low bits
1200     // demanded by its users.
1201     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1202     APInt InMask = APInt::getLowBitsSet(BitWidth,
1203                                         VT.getSizeInBits());
1204     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1205                              Known, TLO, Depth+1))
1206       return true;
1207     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1208 
1209     Known.Zero |= ~InMask;
1210     break;
1211   }
1212   case ISD::BITCAST:
1213     // If this is an FP->Int bitcast and if the sign bit is the only
1214     // thing demanded, turn this into a FGETSIGN.
1215     if (!TLO.LegalOperations() &&
1216         !Op.getValueType().isVector() &&
1217         !Op.getOperand(0).getValueType().isVector() &&
1218         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
1219         Op.getOperand(0).getValueType().isFloatingPoint()) {
1220       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1221       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1222       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1223            Op.getOperand(0).getValueType() != MVT::f128) {
1224         // Cannot eliminate/lower SHL for f128 yet.
1225         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1226         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1227         // place.  We expect the SHL to be eliminated by other optimizations.
1228         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1229         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1230         if (!OpVTLegal && OpVTSizeInBits > 32)
1231           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1232         unsigned ShVal = Op.getValueSizeInBits() - 1;
1233         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1234         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1235                                                  Op.getValueType(),
1236                                                  Sign, ShAmt));
1237       }
1238     }
1239     break;
1240   case ISD::ADD:
1241   case ISD::MUL:
1242   case ISD::SUB: {
1243     // Add, Sub, and Mul don't demand any bits in positions beyond that
1244     // of the highest bit demanded of them.
1245     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1246                                         BitWidth - NewMask.countLeadingZeros());
1247     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) ||
1248         SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) ||
1249         // See if the operation should be performed at a smaller bit width.
1250         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
1251       SDNodeFlags Flags = Op.getNode()->getFlags();
1252       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1253         // Disable the nsw and nuw flags. We can no longer guarantee that we
1254         // won't wrap after simplification.
1255         Flags.setNoSignedWrap(false);
1256         Flags.setNoUnsignedWrap(false);
1257         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1258                                         Op.getOperand(0), Op.getOperand(1),
1259                                         Flags);
1260         return TLO.CombineTo(Op, NewOp);
1261       }
1262       return true;
1263     }
1264     LLVM_FALLTHROUGH;
1265   }
1266   default:
1267     // Just use computeKnownBits to compute output bits.
1268     TLO.DAG.computeKnownBits(Op, Known, Depth);
1269     break;
1270   }
1271 
1272   // If we know the value of all of the demanded bits, return this as a
1273   // constant.
1274   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
1275     // Avoid folding to a constant if any OpaqueConstant is involved.
1276     const SDNode *N = Op.getNode();
1277     for (SDNodeIterator I = SDNodeIterator::begin(N),
1278          E = SDNodeIterator::end(N); I != E; ++I) {
1279       SDNode *Op = *I;
1280       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1281         if (C->isOpaque())
1282           return false;
1283     }
1284     return TLO.CombineTo(Op,
1285                          TLO.DAG.getConstant(Known.One, dl, Op.getValueType()));
1286   }
1287 
1288   return false;
1289 }
1290 
1291 /// Determine which of the bits specified in Mask are known to be either zero or
1292 /// one and return them in the Known.
1293 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1294                                                    KnownBits &Known,
1295                                                    const APInt &DemandedElts,
1296                                                    const SelectionDAG &DAG,
1297                                                    unsigned Depth) const {
1298   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1299           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1300           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1301           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1302          "Should use MaskedValueIsZero if you don't know whether Op"
1303          " is a target node!");
1304   Known.resetAll();
1305 }
1306 
1307 /// This method can be implemented by targets that want to expose additional
1308 /// information about sign bits to the DAG Combiner.
1309 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1310                                                          const APInt &,
1311                                                          const SelectionDAG &,
1312                                                          unsigned Depth) const {
1313   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1314           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1315           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1316           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1317          "Should use ComputeNumSignBits if you don't know whether Op"
1318          " is a target node!");
1319   return 1;
1320 }
1321 
1322 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1323 // work with truncating build vectors and vectors with elements of less than
1324 // 8 bits.
1325 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1326   if (!N)
1327     return false;
1328 
1329   APInt CVal;
1330   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1331     CVal = CN->getAPIntValue();
1332   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1333     auto *CN = BV->getConstantSplatNode();
1334     if (!CN)
1335       return false;
1336 
1337     // If this is a truncating build vector, truncate the splat value.
1338     // Otherwise, we may fail to match the expected values below.
1339     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1340     CVal = CN->getAPIntValue();
1341     if (BVEltWidth < CVal.getBitWidth())
1342       CVal = CVal.trunc(BVEltWidth);
1343   } else {
1344     return false;
1345   }
1346 
1347   switch (getBooleanContents(N->getValueType(0))) {
1348   case UndefinedBooleanContent:
1349     return CVal[0];
1350   case ZeroOrOneBooleanContent:
1351     return CVal.isOneValue();
1352   case ZeroOrNegativeOneBooleanContent:
1353     return CVal.isAllOnesValue();
1354   }
1355 
1356   llvm_unreachable("Invalid boolean contents");
1357 }
1358 
1359 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1360                                         const SDLoc &DL) const {
1361   unsigned ElementWidth = VT.getScalarSizeInBits();
1362   APInt TrueInt =
1363       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1364           ? APInt(ElementWidth, 1)
1365           : APInt::getAllOnesValue(ElementWidth);
1366   return DAG.getConstant(TrueInt, DL, VT);
1367 }
1368 
1369 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1370   if (!N)
1371     return false;
1372 
1373   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1374   if (!CN) {
1375     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1376     if (!BV)
1377       return false;
1378 
1379     // Only interested in constant splats, we don't care about undef
1380     // elements in identifying boolean constants and getConstantSplatNode
1381     // returns NULL if all ops are undef;
1382     CN = BV->getConstantSplatNode();
1383     if (!CN)
1384       return false;
1385   }
1386 
1387   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1388     return !CN->getAPIntValue()[0];
1389 
1390   return CN->isNullValue();
1391 }
1392 
1393 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1394                                        bool SExt) const {
1395   if (VT == MVT::i1)
1396     return N->isOne();
1397 
1398   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1399   switch (Cnt) {
1400   case TargetLowering::ZeroOrOneBooleanContent:
1401     // An extended value of 1 is always true, unless its original type is i1,
1402     // in which case it will be sign extended to -1.
1403     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1404   case TargetLowering::UndefinedBooleanContent:
1405   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1406     return N->isAllOnesValue() && SExt;
1407   }
1408   llvm_unreachable("Unexpected enumeration.");
1409 }
1410 
1411 /// This helper function of SimplifySetCC tries to optimize the comparison when
1412 /// either operand of the SetCC node is a bitwise-and instruction.
1413 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1414                                              ISD::CondCode Cond,
1415                                              DAGCombinerInfo &DCI,
1416                                              const SDLoc &DL) const {
1417   // Match these patterns in any of their permutations:
1418   // (X & Y) == Y
1419   // (X & Y) != Y
1420   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1421     std::swap(N0, N1);
1422 
1423   EVT OpVT = N0.getValueType();
1424   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1425       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1426     return SDValue();
1427 
1428   SDValue X, Y;
1429   if (N0.getOperand(0) == N1) {
1430     X = N0.getOperand(1);
1431     Y = N0.getOperand(0);
1432   } else if (N0.getOperand(1) == N1) {
1433     X = N0.getOperand(0);
1434     Y = N0.getOperand(1);
1435   } else {
1436     return SDValue();
1437   }
1438 
1439   SelectionDAG &DAG = DCI.DAG;
1440   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1441   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1442     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1443     // Note that where Y is variable and is known to have at most one bit set
1444     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1445     // equivalent when Y == 0.
1446     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1447     if (DCI.isBeforeLegalizeOps() ||
1448         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1449       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1450   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1451     // If the target supports an 'and-not' or 'and-complement' logic operation,
1452     // try to use that to make a comparison operation more efficient.
1453     // But don't do this transform if the mask is a single bit because there are
1454     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1455     // 'rlwinm' on PPC).
1456 
1457     // Bail out if the compare operand that we want to turn into a zero is
1458     // already a zero (otherwise, infinite loop).
1459     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1460     if (YConst && YConst->isNullValue())
1461       return SDValue();
1462 
1463     // Transform this into: ~X & Y == 0.
1464     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1465     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1466     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1467   }
1468 
1469   return SDValue();
1470 }
1471 
1472 /// Try to simplify a setcc built with the specified operands and cc. If it is
1473 /// unable to simplify it, return a null SDValue.
1474 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1475                                       ISD::CondCode Cond, bool foldBooleans,
1476                                       DAGCombinerInfo &DCI,
1477                                       const SDLoc &dl) const {
1478   SelectionDAG &DAG = DCI.DAG;
1479 
1480   // These setcc operations always fold.
1481   switch (Cond) {
1482   default: break;
1483   case ISD::SETFALSE:
1484   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1485   case ISD::SETTRUE:
1486   case ISD::SETTRUE2: {
1487     TargetLowering::BooleanContent Cnt =
1488         getBooleanContents(N0->getValueType(0));
1489     return DAG.getConstant(
1490         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1491         VT);
1492   }
1493   }
1494 
1495   // Ensure that the constant occurs on the RHS and fold constant comparisons.
1496   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1497   if (isa<ConstantSDNode>(N0.getNode()) &&
1498       (DCI.isBeforeLegalizeOps() ||
1499        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1500     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1501 
1502   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1503     const APInt &C1 = N1C->getAPIntValue();
1504 
1505     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1506     // equality comparison, then we're just comparing whether X itself is
1507     // zero.
1508     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
1509         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1510         N0.getOperand(1).getOpcode() == ISD::Constant) {
1511       const APInt &ShAmt
1512         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1513       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1514           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1515         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1516           // (srl (ctlz x), 5) == 0  -> X != 0
1517           // (srl (ctlz x), 5) != 1  -> X != 0
1518           Cond = ISD::SETNE;
1519         } else {
1520           // (srl (ctlz x), 5) != 0  -> X == 0
1521           // (srl (ctlz x), 5) == 1  -> X == 0
1522           Cond = ISD::SETEQ;
1523         }
1524         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1525         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1526                             Zero, Cond);
1527       }
1528     }
1529 
1530     SDValue CTPOP = N0;
1531     // Look through truncs that don't change the value of a ctpop.
1532     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1533       CTPOP = N0.getOperand(0);
1534 
1535     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1536         (N0 == CTPOP ||
1537          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1538       EVT CTVT = CTPOP.getValueType();
1539       SDValue CTOp = CTPOP.getOperand(0);
1540 
1541       // (ctpop x) u< 2 -> (x & x-1) == 0
1542       // (ctpop x) u> 1 -> (x & x-1) != 0
1543       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1544         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1545                                   DAG.getConstant(1, dl, CTVT));
1546         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1547         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1548         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1549       }
1550 
1551       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1552     }
1553 
1554     // (zext x) == C --> x == (trunc C)
1555     // (sext x) == C --> x == (trunc C)
1556     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1557         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1558       unsigned MinBits = N0.getValueSizeInBits();
1559       SDValue PreExt;
1560       bool Signed = false;
1561       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1562         // ZExt
1563         MinBits = N0->getOperand(0).getValueSizeInBits();
1564         PreExt = N0->getOperand(0);
1565       } else if (N0->getOpcode() == ISD::AND) {
1566         // DAGCombine turns costly ZExts into ANDs
1567         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1568           if ((C->getAPIntValue()+1).isPowerOf2()) {
1569             MinBits = C->getAPIntValue().countTrailingOnes();
1570             PreExt = N0->getOperand(0);
1571           }
1572       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1573         // SExt
1574         MinBits = N0->getOperand(0).getValueSizeInBits();
1575         PreExt = N0->getOperand(0);
1576         Signed = true;
1577       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1578         // ZEXTLOAD / SEXTLOAD
1579         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1580           MinBits = LN0->getMemoryVT().getSizeInBits();
1581           PreExt = N0;
1582         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1583           Signed = true;
1584           MinBits = LN0->getMemoryVT().getSizeInBits();
1585           PreExt = N0;
1586         }
1587       }
1588 
1589       // Figure out how many bits we need to preserve this constant.
1590       unsigned ReqdBits = Signed ?
1591         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1592         C1.getActiveBits();
1593 
1594       // Make sure we're not losing bits from the constant.
1595       if (MinBits > 0 &&
1596           MinBits < C1.getBitWidth() &&
1597           MinBits >= ReqdBits) {
1598         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1599         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1600           // Will get folded away.
1601           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1602           if (MinBits == 1 && C1 == 1)
1603             // Invert the condition.
1604             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1605                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1606           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1607           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1608         }
1609 
1610         // If truncating the setcc operands is not desirable, we can still
1611         // simplify the expression in some cases:
1612         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1613         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1614         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1615         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1616         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1617         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1618         SDValue TopSetCC = N0->getOperand(0);
1619         unsigned N0Opc = N0->getOpcode();
1620         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1621         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1622             TopSetCC.getOpcode() == ISD::SETCC &&
1623             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1624             (isConstFalseVal(N1C) ||
1625              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1626 
1627           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1628                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1629 
1630           if (!Inverse)
1631             return TopSetCC;
1632 
1633           ISD::CondCode InvCond = ISD::getSetCCInverse(
1634               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1635               TopSetCC.getOperand(0).getValueType().isInteger());
1636           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1637                                       TopSetCC.getOperand(1),
1638                                       InvCond);
1639         }
1640       }
1641     }
1642 
1643     // If the LHS is '(and load, const)', the RHS is 0, the test is for
1644     // equality or unsigned, and all 1 bits of the const are in the same
1645     // partial word, see if we can shorten the load.
1646     if (DCI.isBeforeLegalize() &&
1647         !ISD::isSignedIntSetCC(Cond) &&
1648         N0.getOpcode() == ISD::AND && C1 == 0 &&
1649         N0.getNode()->hasOneUse() &&
1650         isa<LoadSDNode>(N0.getOperand(0)) &&
1651         N0.getOperand(0).getNode()->hasOneUse() &&
1652         isa<ConstantSDNode>(N0.getOperand(1))) {
1653       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1654       APInt bestMask;
1655       unsigned bestWidth = 0, bestOffset = 0;
1656       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1657         unsigned origWidth = N0.getValueSizeInBits();
1658         unsigned maskWidth = origWidth;
1659         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1660         // 8 bits, but have to be careful...
1661         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1662           origWidth = Lod->getMemoryVT().getSizeInBits();
1663         const APInt &Mask =
1664           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1665         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1666           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1667           for (unsigned offset=0; offset<origWidth/width; offset++) {
1668             if (Mask.isSubsetOf(newMask)) {
1669               if (DAG.getDataLayout().isLittleEndian())
1670                 bestOffset = (uint64_t)offset * (width/8);
1671               else
1672                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1673               bestMask = Mask.lshr(offset * (width/8) * 8);
1674               bestWidth = width;
1675               break;
1676             }
1677             newMask <<= width;
1678           }
1679         }
1680       }
1681       if (bestWidth) {
1682         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1683         if (newVT.isRound()) {
1684           EVT PtrType = Lod->getOperand(1).getValueType();
1685           SDValue Ptr = Lod->getBasePtr();
1686           if (bestOffset != 0)
1687             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1688                               DAG.getConstant(bestOffset, dl, PtrType));
1689           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1690           SDValue NewLoad = DAG.getLoad(
1691               newVT, dl, Lod->getChain(), Ptr,
1692               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1693           return DAG.getSetCC(dl, VT,
1694                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1695                                       DAG.getConstant(bestMask.trunc(bestWidth),
1696                                                       dl, newVT)),
1697                               DAG.getConstant(0LL, dl, newVT), Cond);
1698         }
1699       }
1700     }
1701 
1702     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1703     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1704       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1705 
1706       // If the comparison constant has bits in the upper part, the
1707       // zero-extended value could never match.
1708       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1709                                               C1.getBitWidth() - InSize))) {
1710         switch (Cond) {
1711         case ISD::SETUGT:
1712         case ISD::SETUGE:
1713         case ISD::SETEQ:
1714           return DAG.getConstant(0, dl, VT);
1715         case ISD::SETULT:
1716         case ISD::SETULE:
1717         case ISD::SETNE:
1718           return DAG.getConstant(1, dl, VT);
1719         case ISD::SETGT:
1720         case ISD::SETGE:
1721           // True if the sign bit of C1 is set.
1722           return DAG.getConstant(C1.isNegative(), dl, VT);
1723         case ISD::SETLT:
1724         case ISD::SETLE:
1725           // True if the sign bit of C1 isn't set.
1726           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1727         default:
1728           break;
1729         }
1730       }
1731 
1732       // Otherwise, we can perform the comparison with the low bits.
1733       switch (Cond) {
1734       case ISD::SETEQ:
1735       case ISD::SETNE:
1736       case ISD::SETUGT:
1737       case ISD::SETUGE:
1738       case ISD::SETULT:
1739       case ISD::SETULE: {
1740         EVT newVT = N0.getOperand(0).getValueType();
1741         if (DCI.isBeforeLegalizeOps() ||
1742             (isOperationLegal(ISD::SETCC, newVT) &&
1743              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1744           EVT NewSetCCVT =
1745               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1746           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1747 
1748           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1749                                           NewConst, Cond);
1750           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1751         }
1752         break;
1753       }
1754       default:
1755         break;   // todo, be more careful with signed comparisons
1756       }
1757     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1758                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1759       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1760       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1761       EVT ExtDstTy = N0.getValueType();
1762       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1763 
1764       // If the constant doesn't fit into the number of bits for the source of
1765       // the sign extension, it is impossible for both sides to be equal.
1766       if (C1.getMinSignedBits() > ExtSrcTyBits)
1767         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1768 
1769       SDValue ZextOp;
1770       EVT Op0Ty = N0.getOperand(0).getValueType();
1771       if (Op0Ty == ExtSrcTy) {
1772         ZextOp = N0.getOperand(0);
1773       } else {
1774         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1775         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1776                               DAG.getConstant(Imm, dl, Op0Ty));
1777       }
1778       if (!DCI.isCalledByLegalizer())
1779         DCI.AddToWorklist(ZextOp.getNode());
1780       // Otherwise, make this a use of a zext.
1781       return DAG.getSetCC(dl, VT, ZextOp,
1782                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1783                                                               ExtDstTyBits,
1784                                                               ExtSrcTyBits),
1785                                           dl, ExtDstTy),
1786                           Cond);
1787     } else if ((N1C->isNullValue() || N1C->isOne()) &&
1788                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1789       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1790       if (N0.getOpcode() == ISD::SETCC &&
1791           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1792         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
1793         if (TrueWhenTrue)
1794           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1795         // Invert the condition.
1796         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1797         CC = ISD::getSetCCInverse(CC,
1798                                   N0.getOperand(0).getValueType().isInteger());
1799         if (DCI.isBeforeLegalizeOps() ||
1800             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1801           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1802       }
1803 
1804       if ((N0.getOpcode() == ISD::XOR ||
1805            (N0.getOpcode() == ISD::AND &&
1806             N0.getOperand(0).getOpcode() == ISD::XOR &&
1807             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1808           isa<ConstantSDNode>(N0.getOperand(1)) &&
1809           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
1810         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1811         // can only do this if the top bits are known zero.
1812         unsigned BitWidth = N0.getValueSizeInBits();
1813         if (DAG.MaskedValueIsZero(N0,
1814                                   APInt::getHighBitsSet(BitWidth,
1815                                                         BitWidth-1))) {
1816           // Okay, get the un-inverted input value.
1817           SDValue Val;
1818           if (N0.getOpcode() == ISD::XOR) {
1819             Val = N0.getOperand(0);
1820           } else {
1821             assert(N0.getOpcode() == ISD::AND &&
1822                     N0.getOperand(0).getOpcode() == ISD::XOR);
1823             // ((X^1)&1)^1 -> X & 1
1824             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1825                               N0.getOperand(0).getOperand(0),
1826                               N0.getOperand(1));
1827           }
1828 
1829           return DAG.getSetCC(dl, VT, Val, N1,
1830                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1831         }
1832       } else if (N1C->isOne() &&
1833                  (VT == MVT::i1 ||
1834                   getBooleanContents(N0->getValueType(0)) ==
1835                       ZeroOrOneBooleanContent)) {
1836         SDValue Op0 = N0;
1837         if (Op0.getOpcode() == ISD::TRUNCATE)
1838           Op0 = Op0.getOperand(0);
1839 
1840         if ((Op0.getOpcode() == ISD::XOR) &&
1841             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1842             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1843           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1844           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1845           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1846                               Cond);
1847         }
1848         if (Op0.getOpcode() == ISD::AND &&
1849             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1850             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
1851           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1852           if (Op0.getValueType().bitsGT(VT))
1853             Op0 = DAG.getNode(ISD::AND, dl, VT,
1854                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1855                           DAG.getConstant(1, dl, VT));
1856           else if (Op0.getValueType().bitsLT(VT))
1857             Op0 = DAG.getNode(ISD::AND, dl, VT,
1858                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1859                         DAG.getConstant(1, dl, VT));
1860 
1861           return DAG.getSetCC(dl, VT, Op0,
1862                               DAG.getConstant(0, dl, Op0.getValueType()),
1863                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1864         }
1865         if (Op0.getOpcode() == ISD::AssertZext &&
1866             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1867           return DAG.getSetCC(dl, VT, Op0,
1868                               DAG.getConstant(0, dl, Op0.getValueType()),
1869                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1870       }
1871     }
1872 
1873     APInt MinVal, MaxVal;
1874     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1875     if (ISD::isSignedIntSetCC(Cond)) {
1876       MinVal = APInt::getSignedMinValue(OperandBitSize);
1877       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1878     } else {
1879       MinVal = APInt::getMinValue(OperandBitSize);
1880       MaxVal = APInt::getMaxValue(OperandBitSize);
1881     }
1882 
1883     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1884     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1885       // X >= MIN --> true
1886       if (C1 == MinVal)
1887         return DAG.getConstant(1, dl, VT);
1888 
1889       // X >= C0 --> X > (C0 - 1)
1890       APInt C = C1 - 1;
1891       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1892       if ((DCI.isBeforeLegalizeOps() ||
1893            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1894           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1895                                 isLegalICmpImmediate(C.getSExtValue())))) {
1896         return DAG.getSetCC(dl, VT, N0,
1897                             DAG.getConstant(C, dl, N1.getValueType()),
1898                             NewCC);
1899       }
1900     }
1901 
1902     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1903       // X <= MAX --> true
1904       if (C1 == MaxVal)
1905           return DAG.getConstant(1, dl, VT);
1906 
1907       // X <= C0 --> X < (C0 + 1)
1908       APInt C = C1 + 1;
1909       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1910       if ((DCI.isBeforeLegalizeOps() ||
1911            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1912           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1913                                 isLegalICmpImmediate(C.getSExtValue())))) {
1914         return DAG.getSetCC(dl, VT, N0,
1915                             DAG.getConstant(C, dl, N1.getValueType()),
1916                             NewCC);
1917       }
1918     }
1919 
1920     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1921       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1922     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1923       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1924     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1925       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1926     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1927       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1928 
1929     // Canonicalize setgt X, Min --> setne X, Min
1930     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1931       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1932     // Canonicalize setlt X, Max --> setne X, Max
1933     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1934       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1935 
1936     // If we have setult X, 1, turn it into seteq X, 0
1937     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1938       return DAG.getSetCC(dl, VT, N0,
1939                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1940                           ISD::SETEQ);
1941     // If we have setugt X, Max-1, turn it into seteq X, Max
1942     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1943       return DAG.getSetCC(dl, VT, N0,
1944                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1945                           ISD::SETEQ);
1946 
1947     // If we have "setcc X, C0", check to see if we can shrink the immediate
1948     // by changing cc.
1949 
1950     // SETUGT X, SINTMAX  -> SETLT X, 0
1951     if (Cond == ISD::SETUGT &&
1952         C1 == APInt::getSignedMaxValue(OperandBitSize))
1953       return DAG.getSetCC(dl, VT, N0,
1954                           DAG.getConstant(0, dl, N1.getValueType()),
1955                           ISD::SETLT);
1956 
1957     // SETULT X, SINTMIN  -> SETGT X, -1
1958     if (Cond == ISD::SETULT &&
1959         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1960       SDValue ConstMinusOne =
1961           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1962                           N1.getValueType());
1963       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1964     }
1965 
1966     // Fold bit comparisons when we can.
1967     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1968         (VT == N0.getValueType() ||
1969          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1970         N0.getOpcode() == ISD::AND) {
1971       auto &DL = DAG.getDataLayout();
1972       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1973         EVT ShiftTy = DCI.isBeforeLegalize()
1974                           ? getPointerTy(DL)
1975                           : getShiftAmountTy(N0.getValueType(), DL);
1976         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1977           // Perform the xform if the AND RHS is a single bit.
1978           if (AndRHS->getAPIntValue().isPowerOf2()) {
1979             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1980                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1981                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1982                                    ShiftTy)));
1983           }
1984         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1985           // (X & 8) == 8  -->  (X & 8) >> 3
1986           // Perform the xform if C1 is a single bit.
1987           if (C1.isPowerOf2()) {
1988             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1989                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1990                                       DAG.getConstant(C1.logBase2(), dl,
1991                                                       ShiftTy)));
1992           }
1993         }
1994       }
1995     }
1996 
1997     if (C1.getMinSignedBits() <= 64 &&
1998         !isLegalICmpImmediate(C1.getSExtValue())) {
1999       // (X & -256) == 256 -> (X >> 8) == 1
2000       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2001           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2002         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2003           const APInt &AndRHSC = AndRHS->getAPIntValue();
2004           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2005             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2006             auto &DL = DAG.getDataLayout();
2007             EVT ShiftTy = DCI.isBeforeLegalize()
2008                               ? getPointerTy(DL)
2009                               : getShiftAmountTy(N0.getValueType(), DL);
2010             EVT CmpTy = N0.getValueType();
2011             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2012                                         DAG.getConstant(ShiftBits, dl,
2013                                                         ShiftTy));
2014             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2015             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2016           }
2017         }
2018       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2019                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2020         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2021         // X <  0x100000000 -> (X >> 32) <  1
2022         // X >= 0x100000000 -> (X >> 32) >= 1
2023         // X <= 0x0ffffffff -> (X >> 32) <  1
2024         // X >  0x0ffffffff -> (X >> 32) >= 1
2025         unsigned ShiftBits;
2026         APInt NewC = C1;
2027         ISD::CondCode NewCond = Cond;
2028         if (AdjOne) {
2029           ShiftBits = C1.countTrailingOnes();
2030           NewC = NewC + 1;
2031           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2032         } else {
2033           ShiftBits = C1.countTrailingZeros();
2034         }
2035         NewC.lshrInPlace(ShiftBits);
2036         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2037           isLegalICmpImmediate(NewC.getSExtValue())) {
2038           auto &DL = DAG.getDataLayout();
2039           EVT ShiftTy = DCI.isBeforeLegalize()
2040                             ? getPointerTy(DL)
2041                             : getShiftAmountTy(N0.getValueType(), DL);
2042           EVT CmpTy = N0.getValueType();
2043           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2044                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2045           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2046           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2047         }
2048       }
2049     }
2050   }
2051 
2052   if (isa<ConstantFPSDNode>(N0.getNode())) {
2053     // Constant fold or commute setcc.
2054     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2055     if (O.getNode()) return O;
2056   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2057     // If the RHS of an FP comparison is a constant, simplify it away in
2058     // some cases.
2059     if (CFP->getValueAPF().isNaN()) {
2060       // If an operand is known to be a nan, we can fold it.
2061       switch (ISD::getUnorderedFlavor(Cond)) {
2062       default: llvm_unreachable("Unknown flavor!");
2063       case 0:  // Known false.
2064         return DAG.getConstant(0, dl, VT);
2065       case 1:  // Known true.
2066         return DAG.getConstant(1, dl, VT);
2067       case 2:  // Undefined.
2068         return DAG.getUNDEF(VT);
2069       }
2070     }
2071 
2072     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2073     // constant if knowing that the operand is non-nan is enough.  We prefer to
2074     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2075     // materialize 0.0.
2076     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2077       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2078 
2079     // setcc (fneg x), C -> setcc swap(pred) x, -C
2080     if (N0.getOpcode() == ISD::FNEG) {
2081       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2082       if (DCI.isBeforeLegalizeOps() ||
2083           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2084         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2085         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2086       }
2087     }
2088 
2089     // If the condition is not legal, see if we can find an equivalent one
2090     // which is legal.
2091     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2092       // If the comparison was an awkward floating-point == or != and one of
2093       // the comparison operands is infinity or negative infinity, convert the
2094       // condition to a less-awkward <= or >=.
2095       if (CFP->getValueAPF().isInfinity()) {
2096         if (CFP->getValueAPF().isNegative()) {
2097           if (Cond == ISD::SETOEQ &&
2098               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2099             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2100           if (Cond == ISD::SETUEQ &&
2101               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2102             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2103           if (Cond == ISD::SETUNE &&
2104               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2105             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2106           if (Cond == ISD::SETONE &&
2107               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2108             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2109         } else {
2110           if (Cond == ISD::SETOEQ &&
2111               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2112             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2113           if (Cond == ISD::SETUEQ &&
2114               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2115             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2116           if (Cond == ISD::SETUNE &&
2117               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2118             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2119           if (Cond == ISD::SETONE &&
2120               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2121             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2122         }
2123       }
2124     }
2125   }
2126 
2127   if (N0 == N1) {
2128     // The sext(setcc()) => setcc() optimization relies on the appropriate
2129     // constant being emitted.
2130     uint64_t EqVal = 0;
2131     switch (getBooleanContents(N0.getValueType())) {
2132     case UndefinedBooleanContent:
2133     case ZeroOrOneBooleanContent:
2134       EqVal = ISD::isTrueWhenEqual(Cond);
2135       break;
2136     case ZeroOrNegativeOneBooleanContent:
2137       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2138       break;
2139     }
2140 
2141     // We can always fold X == X for integer setcc's.
2142     if (N0.getValueType().isInteger()) {
2143       return DAG.getConstant(EqVal, dl, VT);
2144     }
2145     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2146     if (UOF == 2)   // FP operators that are undefined on NaNs.
2147       return DAG.getConstant(EqVal, dl, VT);
2148     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2149       return DAG.getConstant(EqVal, dl, VT);
2150     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2151     // if it is not already.
2152     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2153     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2154           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2155       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2156   }
2157 
2158   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2159       N0.getValueType().isInteger()) {
2160     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2161         N0.getOpcode() == ISD::XOR) {
2162       // Simplify (X+Y) == (X+Z) -->  Y == Z
2163       if (N0.getOpcode() == N1.getOpcode()) {
2164         if (N0.getOperand(0) == N1.getOperand(0))
2165           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2166         if (N0.getOperand(1) == N1.getOperand(1))
2167           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2168         if (isCommutativeBinOp(N0.getOpcode())) {
2169           // If X op Y == Y op X, try other combinations.
2170           if (N0.getOperand(0) == N1.getOperand(1))
2171             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2172                                 Cond);
2173           if (N0.getOperand(1) == N1.getOperand(0))
2174             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2175                                 Cond);
2176         }
2177       }
2178 
2179       // If RHS is a legal immediate value for a compare instruction, we need
2180       // to be careful about increasing register pressure needlessly.
2181       bool LegalRHSImm = false;
2182 
2183       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2184         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2185           // Turn (X+C1) == C2 --> X == C2-C1
2186           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2187             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2188                                 DAG.getConstant(RHSC->getAPIntValue()-
2189                                                 LHSR->getAPIntValue(),
2190                                 dl, N0.getValueType()), Cond);
2191           }
2192 
2193           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2194           if (N0.getOpcode() == ISD::XOR)
2195             // If we know that all of the inverted bits are zero, don't bother
2196             // performing the inversion.
2197             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2198               return
2199                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2200                              DAG.getConstant(LHSR->getAPIntValue() ^
2201                                                RHSC->getAPIntValue(),
2202                                              dl, N0.getValueType()),
2203                              Cond);
2204         }
2205 
2206         // Turn (C1-X) == C2 --> X == C1-C2
2207         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2208           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2209             return
2210               DAG.getSetCC(dl, VT, N0.getOperand(1),
2211                            DAG.getConstant(SUBC->getAPIntValue() -
2212                                              RHSC->getAPIntValue(),
2213                                            dl, N0.getValueType()),
2214                            Cond);
2215           }
2216         }
2217 
2218         // Could RHSC fold directly into a compare?
2219         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2220           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2221       }
2222 
2223       // Simplify (X+Z) == X -->  Z == 0
2224       // Don't do this if X is an immediate that can fold into a cmp
2225       // instruction and X+Z has other uses. It could be an induction variable
2226       // chain, and the transform would increase register pressure.
2227       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2228         if (N0.getOperand(0) == N1)
2229           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2230                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2231         if (N0.getOperand(1) == N1) {
2232           if (isCommutativeBinOp(N0.getOpcode()))
2233             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2234                                 DAG.getConstant(0, dl, N0.getValueType()),
2235                                 Cond);
2236           if (N0.getNode()->hasOneUse()) {
2237             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2238             auto &DL = DAG.getDataLayout();
2239             // (Z-X) == X  --> Z == X<<1
2240             SDValue SH = DAG.getNode(
2241                 ISD::SHL, dl, N1.getValueType(), N1,
2242                 DAG.getConstant(1, dl,
2243                                 getShiftAmountTy(N1.getValueType(), DL)));
2244             if (!DCI.isCalledByLegalizer())
2245               DCI.AddToWorklist(SH.getNode());
2246             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2247           }
2248         }
2249       }
2250     }
2251 
2252     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2253         N1.getOpcode() == ISD::XOR) {
2254       // Simplify  X == (X+Z) -->  Z == 0
2255       if (N1.getOperand(0) == N0)
2256         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2257                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2258       if (N1.getOperand(1) == N0) {
2259         if (isCommutativeBinOp(N1.getOpcode()))
2260           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2261                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2262         if (N1.getNode()->hasOneUse()) {
2263           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2264           auto &DL = DAG.getDataLayout();
2265           // X == (Z-X)  --> X<<1 == Z
2266           SDValue SH = DAG.getNode(
2267               ISD::SHL, dl, N1.getValueType(), N0,
2268               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2269           if (!DCI.isCalledByLegalizer())
2270             DCI.AddToWorklist(SH.getNode());
2271           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2272         }
2273       }
2274     }
2275 
2276     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2277       return V;
2278   }
2279 
2280   // Fold away ALL boolean setcc's.
2281   SDValue Temp;
2282   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2283     switch (Cond) {
2284     default: llvm_unreachable("Unknown integer setcc!");
2285     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2286       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2287       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2288       if (!DCI.isCalledByLegalizer())
2289         DCI.AddToWorklist(Temp.getNode());
2290       break;
2291     case ISD::SETNE:  // X != Y   -->  (X^Y)
2292       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2293       break;
2294     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2295     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2296       Temp = DAG.getNOT(dl, N0, MVT::i1);
2297       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2298       if (!DCI.isCalledByLegalizer())
2299         DCI.AddToWorklist(Temp.getNode());
2300       break;
2301     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2302     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2303       Temp = DAG.getNOT(dl, N1, MVT::i1);
2304       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2305       if (!DCI.isCalledByLegalizer())
2306         DCI.AddToWorklist(Temp.getNode());
2307       break;
2308     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2309     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2310       Temp = DAG.getNOT(dl, N0, MVT::i1);
2311       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2312       if (!DCI.isCalledByLegalizer())
2313         DCI.AddToWorklist(Temp.getNode());
2314       break;
2315     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2316     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2317       Temp = DAG.getNOT(dl, N1, MVT::i1);
2318       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2319       break;
2320     }
2321     if (VT != MVT::i1) {
2322       if (!DCI.isCalledByLegalizer())
2323         DCI.AddToWorklist(N0.getNode());
2324       // FIXME: If running after legalize, we probably can't do this.
2325       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2326     }
2327     return N0;
2328   }
2329 
2330   // Could not fold it.
2331   return SDValue();
2332 }
2333 
2334 /// Returns true (and the GlobalValue and the offset) if the node is a
2335 /// GlobalAddress + offset.
2336 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2337                                     int64_t &Offset) const {
2338   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2339     GA = GASD->getGlobal();
2340     Offset += GASD->getOffset();
2341     return true;
2342   }
2343 
2344   if (N->getOpcode() == ISD::ADD) {
2345     SDValue N1 = N->getOperand(0);
2346     SDValue N2 = N->getOperand(1);
2347     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2348       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2349         Offset += V->getSExtValue();
2350         return true;
2351       }
2352     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2353       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2354         Offset += V->getSExtValue();
2355         return true;
2356       }
2357     }
2358   }
2359 
2360   return false;
2361 }
2362 
2363 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2364                                           DAGCombinerInfo &DCI) const {
2365   // Default implementation: no optimization.
2366   return SDValue();
2367 }
2368 
2369 //===----------------------------------------------------------------------===//
2370 //  Inline Assembler Implementation Methods
2371 //===----------------------------------------------------------------------===//
2372 
2373 TargetLowering::ConstraintType
2374 TargetLowering::getConstraintType(StringRef Constraint) const {
2375   unsigned S = Constraint.size();
2376 
2377   if (S == 1) {
2378     switch (Constraint[0]) {
2379     default: break;
2380     case 'r': return C_RegisterClass;
2381     case 'm':    // memory
2382     case 'o':    // offsetable
2383     case 'V':    // not offsetable
2384       return C_Memory;
2385     case 'i':    // Simple Integer or Relocatable Constant
2386     case 'n':    // Simple Integer
2387     case 'E':    // Floating Point Constant
2388     case 'F':    // Floating Point Constant
2389     case 's':    // Relocatable Constant
2390     case 'p':    // Address.
2391     case 'X':    // Allow ANY value.
2392     case 'I':    // Target registers.
2393     case 'J':
2394     case 'K':
2395     case 'L':
2396     case 'M':
2397     case 'N':
2398     case 'O':
2399     case 'P':
2400     case '<':
2401     case '>':
2402       return C_Other;
2403     }
2404   }
2405 
2406   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2407     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2408       return C_Memory;
2409     return C_Register;
2410   }
2411   return C_Unknown;
2412 }
2413 
2414 /// Try to replace an X constraint, which matches anything, with another that
2415 /// has more specific requirements based on the type of the corresponding
2416 /// operand.
2417 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2418   if (ConstraintVT.isInteger())
2419     return "r";
2420   if (ConstraintVT.isFloatingPoint())
2421     return "f";      // works for many targets
2422   return nullptr;
2423 }
2424 
2425 /// Lower the specified operand into the Ops vector.
2426 /// If it is invalid, don't add anything to Ops.
2427 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2428                                                   std::string &Constraint,
2429                                                   std::vector<SDValue> &Ops,
2430                                                   SelectionDAG &DAG) const {
2431 
2432   if (Constraint.length() > 1) return;
2433 
2434   char ConstraintLetter = Constraint[0];
2435   switch (ConstraintLetter) {
2436   default: break;
2437   case 'X':     // Allows any operand; labels (basic block) use this.
2438     if (Op.getOpcode() == ISD::BasicBlock) {
2439       Ops.push_back(Op);
2440       return;
2441     }
2442     LLVM_FALLTHROUGH;
2443   case 'i':    // Simple Integer or Relocatable Constant
2444   case 'n':    // Simple Integer
2445   case 's': {  // Relocatable Constant
2446     // These operands are interested in values of the form (GV+C), where C may
2447     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2448     // is possible and fine if either GV or C are missing.
2449     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2450     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2451 
2452     // If we have "(add GV, C)", pull out GV/C
2453     if (Op.getOpcode() == ISD::ADD) {
2454       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2455       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2456       if (!C || !GA) {
2457         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2458         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2459       }
2460       if (!C || !GA) {
2461         C = nullptr;
2462         GA = nullptr;
2463       }
2464     }
2465 
2466     // If we find a valid operand, map to the TargetXXX version so that the
2467     // value itself doesn't get selected.
2468     if (GA) {   // Either &GV   or   &GV+C
2469       if (ConstraintLetter != 'n') {
2470         int64_t Offs = GA->getOffset();
2471         if (C) Offs += C->getZExtValue();
2472         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2473                                                  C ? SDLoc(C) : SDLoc(),
2474                                                  Op.getValueType(), Offs));
2475       }
2476       return;
2477     }
2478     if (C) {   // just C, no GV.
2479       // Simple constants are not allowed for 's'.
2480       if (ConstraintLetter != 's') {
2481         // gcc prints these as sign extended.  Sign extend value to 64 bits
2482         // now; without this it would get ZExt'd later in
2483         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2484         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
2485                                             SDLoc(C), MVT::i64));
2486       }
2487       return;
2488     }
2489     break;
2490   }
2491   }
2492 }
2493 
2494 std::pair<unsigned, const TargetRegisterClass *>
2495 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2496                                              StringRef Constraint,
2497                                              MVT VT) const {
2498   if (Constraint.empty() || Constraint[0] != '{')
2499     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2500   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2501 
2502   // Remove the braces from around the name.
2503   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2504 
2505   std::pair<unsigned, const TargetRegisterClass*> R =
2506     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2507 
2508   // Figure out which register class contains this reg.
2509   for (const TargetRegisterClass *RC : RI->regclasses()) {
2510     // If none of the value types for this register class are valid, we
2511     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2512     if (!isLegalRC(*RI, *RC))
2513       continue;
2514 
2515     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2516          I != E; ++I) {
2517       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2518         std::pair<unsigned, const TargetRegisterClass*> S =
2519           std::make_pair(*I, RC);
2520 
2521         // If this register class has the requested value type, return it,
2522         // otherwise keep searching and return the first class found
2523         // if no other is found which explicitly has the requested type.
2524         if (RI->isTypeLegalForClass(*RC, VT))
2525           return S;
2526         if (!R.second)
2527           R = S;
2528       }
2529     }
2530   }
2531 
2532   return R;
2533 }
2534 
2535 //===----------------------------------------------------------------------===//
2536 // Constraint Selection.
2537 
2538 /// Return true of this is an input operand that is a matching constraint like
2539 /// "4".
2540 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2541   assert(!ConstraintCode.empty() && "No known constraint!");
2542   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2543 }
2544 
2545 /// If this is an input matching constraint, this method returns the output
2546 /// operand it matches.
2547 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2548   assert(!ConstraintCode.empty() && "No known constraint!");
2549   return atoi(ConstraintCode.c_str());
2550 }
2551 
2552 /// Split up the constraint string from the inline assembly value into the
2553 /// specific constraints and their prefixes, and also tie in the associated
2554 /// operand values.
2555 /// If this returns an empty vector, and if the constraint string itself
2556 /// isn't empty, there was an error parsing.
2557 TargetLowering::AsmOperandInfoVector
2558 TargetLowering::ParseConstraints(const DataLayout &DL,
2559                                  const TargetRegisterInfo *TRI,
2560                                  ImmutableCallSite CS) const {
2561   /// Information about all of the constraints.
2562   AsmOperandInfoVector ConstraintOperands;
2563   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2564   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2565 
2566   // Do a prepass over the constraints, canonicalizing them, and building up the
2567   // ConstraintOperands list.
2568   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2569   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2570 
2571   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2572     ConstraintOperands.emplace_back(std::move(CI));
2573     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2574 
2575     // Update multiple alternative constraint count.
2576     if (OpInfo.multipleAlternatives.size() > maCount)
2577       maCount = OpInfo.multipleAlternatives.size();
2578 
2579     OpInfo.ConstraintVT = MVT::Other;
2580 
2581     // Compute the value type for each operand.
2582     switch (OpInfo.Type) {
2583     case InlineAsm::isOutput:
2584       // Indirect outputs just consume an argument.
2585       if (OpInfo.isIndirect) {
2586         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2587         break;
2588       }
2589 
2590       // The return value of the call is this value.  As such, there is no
2591       // corresponding argument.
2592       assert(!CS.getType()->isVoidTy() &&
2593              "Bad inline asm!");
2594       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2595         OpInfo.ConstraintVT =
2596             getSimpleValueType(DL, STy->getElementType(ResNo));
2597       } else {
2598         assert(ResNo == 0 && "Asm only has one result!");
2599         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2600       }
2601       ++ResNo;
2602       break;
2603     case InlineAsm::isInput:
2604       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2605       break;
2606     case InlineAsm::isClobber:
2607       // Nothing to do.
2608       break;
2609     }
2610 
2611     if (OpInfo.CallOperandVal) {
2612       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2613       if (OpInfo.isIndirect) {
2614         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2615         if (!PtrTy)
2616           report_fatal_error("Indirect operand for inline asm not a pointer!");
2617         OpTy = PtrTy->getElementType();
2618       }
2619 
2620       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2621       if (StructType *STy = dyn_cast<StructType>(OpTy))
2622         if (STy->getNumElements() == 1)
2623           OpTy = STy->getElementType(0);
2624 
2625       // If OpTy is not a single value, it may be a struct/union that we
2626       // can tile with integers.
2627       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2628         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2629         switch (BitSize) {
2630         default: break;
2631         case 1:
2632         case 8:
2633         case 16:
2634         case 32:
2635         case 64:
2636         case 128:
2637           OpInfo.ConstraintVT =
2638             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2639           break;
2640         }
2641       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2642         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2643         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2644       } else {
2645         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2646       }
2647     }
2648   }
2649 
2650   // If we have multiple alternative constraints, select the best alternative.
2651   if (!ConstraintOperands.empty()) {
2652     if (maCount) {
2653       unsigned bestMAIndex = 0;
2654       int bestWeight = -1;
2655       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2656       int weight = -1;
2657       unsigned maIndex;
2658       // Compute the sums of the weights for each alternative, keeping track
2659       // of the best (highest weight) one so far.
2660       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2661         int weightSum = 0;
2662         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2663             cIndex != eIndex; ++cIndex) {
2664           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2665           if (OpInfo.Type == InlineAsm::isClobber)
2666             continue;
2667 
2668           // If this is an output operand with a matching input operand,
2669           // look up the matching input. If their types mismatch, e.g. one
2670           // is an integer, the other is floating point, or their sizes are
2671           // different, flag it as an maCantMatch.
2672           if (OpInfo.hasMatchingInput()) {
2673             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2674             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2675               if ((OpInfo.ConstraintVT.isInteger() !=
2676                    Input.ConstraintVT.isInteger()) ||
2677                   (OpInfo.ConstraintVT.getSizeInBits() !=
2678                    Input.ConstraintVT.getSizeInBits())) {
2679                 weightSum = -1;  // Can't match.
2680                 break;
2681               }
2682             }
2683           }
2684           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2685           if (weight == -1) {
2686             weightSum = -1;
2687             break;
2688           }
2689           weightSum += weight;
2690         }
2691         // Update best.
2692         if (weightSum > bestWeight) {
2693           bestWeight = weightSum;
2694           bestMAIndex = maIndex;
2695         }
2696       }
2697 
2698       // Now select chosen alternative in each constraint.
2699       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2700           cIndex != eIndex; ++cIndex) {
2701         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2702         if (cInfo.Type == InlineAsm::isClobber)
2703           continue;
2704         cInfo.selectAlternative(bestMAIndex);
2705       }
2706     }
2707   }
2708 
2709   // Check and hook up tied operands, choose constraint code to use.
2710   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2711       cIndex != eIndex; ++cIndex) {
2712     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2713 
2714     // If this is an output operand with a matching input operand, look up the
2715     // matching input. If their types mismatch, e.g. one is an integer, the
2716     // other is floating point, or their sizes are different, flag it as an
2717     // error.
2718     if (OpInfo.hasMatchingInput()) {
2719       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2720 
2721       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2722         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2723             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2724                                          OpInfo.ConstraintVT);
2725         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2726             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2727                                          Input.ConstraintVT);
2728         if ((OpInfo.ConstraintVT.isInteger() !=
2729              Input.ConstraintVT.isInteger()) ||
2730             (MatchRC.second != InputRC.second)) {
2731           report_fatal_error("Unsupported asm: input constraint"
2732                              " with a matching output constraint of"
2733                              " incompatible type!");
2734         }
2735       }
2736     }
2737   }
2738 
2739   return ConstraintOperands;
2740 }
2741 
2742 /// Return an integer indicating how general CT is.
2743 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2744   switch (CT) {
2745   case TargetLowering::C_Other:
2746   case TargetLowering::C_Unknown:
2747     return 0;
2748   case TargetLowering::C_Register:
2749     return 1;
2750   case TargetLowering::C_RegisterClass:
2751     return 2;
2752   case TargetLowering::C_Memory:
2753     return 3;
2754   }
2755   llvm_unreachable("Invalid constraint type");
2756 }
2757 
2758 /// Examine constraint type and operand type and determine a weight value.
2759 /// This object must already have been set up with the operand type
2760 /// and the current alternative constraint selected.
2761 TargetLowering::ConstraintWeight
2762   TargetLowering::getMultipleConstraintMatchWeight(
2763     AsmOperandInfo &info, int maIndex) const {
2764   InlineAsm::ConstraintCodeVector *rCodes;
2765   if (maIndex >= (int)info.multipleAlternatives.size())
2766     rCodes = &info.Codes;
2767   else
2768     rCodes = &info.multipleAlternatives[maIndex].Codes;
2769   ConstraintWeight BestWeight = CW_Invalid;
2770 
2771   // Loop over the options, keeping track of the most general one.
2772   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2773     ConstraintWeight weight =
2774       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2775     if (weight > BestWeight)
2776       BestWeight = weight;
2777   }
2778 
2779   return BestWeight;
2780 }
2781 
2782 /// Examine constraint type and operand type and determine a weight value.
2783 /// This object must already have been set up with the operand type
2784 /// and the current alternative constraint selected.
2785 TargetLowering::ConstraintWeight
2786   TargetLowering::getSingleConstraintMatchWeight(
2787     AsmOperandInfo &info, const char *constraint) const {
2788   ConstraintWeight weight = CW_Invalid;
2789   Value *CallOperandVal = info.CallOperandVal;
2790     // If we don't have a value, we can't do a match,
2791     // but allow it at the lowest weight.
2792   if (!CallOperandVal)
2793     return CW_Default;
2794   // Look at the constraint type.
2795   switch (*constraint) {
2796     case 'i': // immediate integer.
2797     case 'n': // immediate integer with a known value.
2798       if (isa<ConstantInt>(CallOperandVal))
2799         weight = CW_Constant;
2800       break;
2801     case 's': // non-explicit intregal immediate.
2802       if (isa<GlobalValue>(CallOperandVal))
2803         weight = CW_Constant;
2804       break;
2805     case 'E': // immediate float if host format.
2806     case 'F': // immediate float.
2807       if (isa<ConstantFP>(CallOperandVal))
2808         weight = CW_Constant;
2809       break;
2810     case '<': // memory operand with autodecrement.
2811     case '>': // memory operand with autoincrement.
2812     case 'm': // memory operand.
2813     case 'o': // offsettable memory operand
2814     case 'V': // non-offsettable memory operand
2815       weight = CW_Memory;
2816       break;
2817     case 'r': // general register.
2818     case 'g': // general register, memory operand or immediate integer.
2819               // note: Clang converts "g" to "imr".
2820       if (CallOperandVal->getType()->isIntegerTy())
2821         weight = CW_Register;
2822       break;
2823     case 'X': // any operand.
2824     default:
2825       weight = CW_Default;
2826       break;
2827   }
2828   return weight;
2829 }
2830 
2831 /// If there are multiple different constraints that we could pick for this
2832 /// operand (e.g. "imr") try to pick the 'best' one.
2833 /// This is somewhat tricky: constraints fall into four classes:
2834 ///    Other         -> immediates and magic values
2835 ///    Register      -> one specific register
2836 ///    RegisterClass -> a group of regs
2837 ///    Memory        -> memory
2838 /// Ideally, we would pick the most specific constraint possible: if we have
2839 /// something that fits into a register, we would pick it.  The problem here
2840 /// is that if we have something that could either be in a register or in
2841 /// memory that use of the register could cause selection of *other*
2842 /// operands to fail: they might only succeed if we pick memory.  Because of
2843 /// this the heuristic we use is:
2844 ///
2845 ///  1) If there is an 'other' constraint, and if the operand is valid for
2846 ///     that constraint, use it.  This makes us take advantage of 'i'
2847 ///     constraints when available.
2848 ///  2) Otherwise, pick the most general constraint present.  This prefers
2849 ///     'm' over 'r', for example.
2850 ///
2851 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2852                              const TargetLowering &TLI,
2853                              SDValue Op, SelectionDAG *DAG) {
2854   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2855   unsigned BestIdx = 0;
2856   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2857   int BestGenerality = -1;
2858 
2859   // Loop over the options, keeping track of the most general one.
2860   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2861     TargetLowering::ConstraintType CType =
2862       TLI.getConstraintType(OpInfo.Codes[i]);
2863 
2864     // If this is an 'other' constraint, see if the operand is valid for it.
2865     // For example, on X86 we might have an 'rI' constraint.  If the operand
2866     // is an integer in the range [0..31] we want to use I (saving a load
2867     // of a register), otherwise we must use 'r'.
2868     if (CType == TargetLowering::C_Other && Op.getNode()) {
2869       assert(OpInfo.Codes[i].size() == 1 &&
2870              "Unhandled multi-letter 'other' constraint");
2871       std::vector<SDValue> ResultOps;
2872       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2873                                        ResultOps, *DAG);
2874       if (!ResultOps.empty()) {
2875         BestType = CType;
2876         BestIdx = i;
2877         break;
2878       }
2879     }
2880 
2881     // Things with matching constraints can only be registers, per gcc
2882     // documentation.  This mainly affects "g" constraints.
2883     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2884       continue;
2885 
2886     // This constraint letter is more general than the previous one, use it.
2887     int Generality = getConstraintGenerality(CType);
2888     if (Generality > BestGenerality) {
2889       BestType = CType;
2890       BestIdx = i;
2891       BestGenerality = Generality;
2892     }
2893   }
2894 
2895   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2896   OpInfo.ConstraintType = BestType;
2897 }
2898 
2899 /// Determines the constraint code and constraint type to use for the specific
2900 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2901 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2902                                             SDValue Op,
2903                                             SelectionDAG *DAG) const {
2904   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2905 
2906   // Single-letter constraints ('r') are very common.
2907   if (OpInfo.Codes.size() == 1) {
2908     OpInfo.ConstraintCode = OpInfo.Codes[0];
2909     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2910   } else {
2911     ChooseConstraint(OpInfo, *this, Op, DAG);
2912   }
2913 
2914   // 'X' matches anything.
2915   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2916     // Labels and constants are handled elsewhere ('X' is the only thing
2917     // that matches labels).  For Functions, the type here is the type of
2918     // the result, which is not what we want to look at; leave them alone.
2919     Value *v = OpInfo.CallOperandVal;
2920     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2921       OpInfo.CallOperandVal = v;
2922       return;
2923     }
2924 
2925     // Otherwise, try to resolve it to something we know about by looking at
2926     // the actual operand type.
2927     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2928       OpInfo.ConstraintCode = Repl;
2929       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2930     }
2931   }
2932 }
2933 
2934 /// \brief Given an exact SDIV by a constant, create a multiplication
2935 /// with the multiplicative inverse of the constant.
2936 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2937                               const SDLoc &dl, SelectionDAG &DAG,
2938                               std::vector<SDNode *> &Created) {
2939   assert(d != 0 && "Division by zero!");
2940 
2941   // Shift the value upfront if it is even, so the LSB is one.
2942   unsigned ShAmt = d.countTrailingZeros();
2943   if (ShAmt) {
2944     // TODO: For UDIV use SRL instead of SRA.
2945     SDValue Amt =
2946         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2947                                                         DAG.getDataLayout()));
2948     SDNodeFlags Flags;
2949     Flags.setExact(true);
2950     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
2951     Created.push_back(Op1.getNode());
2952     d.ashrInPlace(ShAmt);
2953   }
2954 
2955   // Calculate the multiplicative inverse, using Newton's method.
2956   APInt t, xn = d;
2957   while ((t = d*xn) != 1)
2958     xn *= APInt(d.getBitWidth(), 2) - t;
2959 
2960   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2961   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2962   Created.push_back(Mul.getNode());
2963   return Mul;
2964 }
2965 
2966 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2967                                       SelectionDAG &DAG,
2968                                       std::vector<SDNode *> *Created) const {
2969   AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2971   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2972     return SDValue(N,0); // Lower SDIV as SDIV
2973   return SDValue();
2974 }
2975 
2976 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2977 /// return a DAG expression to select that will generate the same value by
2978 /// multiplying by a magic number.
2979 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2980 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2981                                   SelectionDAG &DAG, bool IsAfterLegalization,
2982                                   std::vector<SDNode *> *Created) const {
2983   assert(Created && "No vector to hold sdiv ops.");
2984 
2985   EVT VT = N->getValueType(0);
2986   SDLoc dl(N);
2987 
2988   // Check to see if we can do this.
2989   // FIXME: We should be more aggressive here.
2990   if (!isTypeLegal(VT))
2991     return SDValue();
2992 
2993   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2994   if (N->getFlags().hasExact())
2995     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2996 
2997   APInt::ms magics = Divisor.magic();
2998 
2999   // Multiply the numerator (operand 0) by the magic value
3000   // FIXME: We should support doing a MUL in a wider type
3001   SDValue Q;
3002   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3003                             isOperationLegalOrCustom(ISD::MULHS, VT))
3004     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3005                     DAG.getConstant(magics.m, dl, VT));
3006   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3007                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3008     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3009                               N->getOperand(0),
3010                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3011   else
3012     return SDValue();       // No mulhs or equvialent
3013   // If d > 0 and m < 0, add the numerator
3014   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3015     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3016     Created->push_back(Q.getNode());
3017   }
3018   // If d < 0 and m > 0, subtract the numerator.
3019   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3020     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3021     Created->push_back(Q.getNode());
3022   }
3023   auto &DL = DAG.getDataLayout();
3024   // Shift right algebraic if shift value is nonzero
3025   if (magics.s > 0) {
3026     Q = DAG.getNode(
3027         ISD::SRA, dl, VT, Q,
3028         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3029     Created->push_back(Q.getNode());
3030   }
3031   // Extract the sign bit and add it to the quotient
3032   SDValue T =
3033       DAG.getNode(ISD::SRL, dl, VT, Q,
3034                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3035                                   getShiftAmountTy(Q.getValueType(), DL)));
3036   Created->push_back(T.getNode());
3037   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3038 }
3039 
3040 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3041 /// return a DAG expression to select that will generate the same value by
3042 /// multiplying by a magic number.
3043 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3044 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3045                                   SelectionDAG &DAG, bool IsAfterLegalization,
3046                                   std::vector<SDNode *> *Created) const {
3047   assert(Created && "No vector to hold udiv ops.");
3048 
3049   EVT VT = N->getValueType(0);
3050   SDLoc dl(N);
3051   auto &DL = DAG.getDataLayout();
3052 
3053   // Check to see if we can do this.
3054   // FIXME: We should be more aggressive here.
3055   if (!isTypeLegal(VT))
3056     return SDValue();
3057 
3058   // FIXME: We should use a narrower constant when the upper
3059   // bits are known to be zero.
3060   APInt::mu magics = Divisor.magicu();
3061 
3062   SDValue Q = N->getOperand(0);
3063 
3064   // If the divisor is even, we can avoid using the expensive fixup by shifting
3065   // the divided value upfront.
3066   if (magics.a != 0 && !Divisor[0]) {
3067     unsigned Shift = Divisor.countTrailingZeros();
3068     Q = DAG.getNode(
3069         ISD::SRL, dl, VT, Q,
3070         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3071     Created->push_back(Q.getNode());
3072 
3073     // Get magic number for the shifted divisor.
3074     magics = Divisor.lshr(Shift).magicu(Shift);
3075     assert(magics.a == 0 && "Should use cheap fixup now");
3076   }
3077 
3078   // Multiply the numerator (operand 0) by the magic value
3079   // FIXME: We should support doing a MUL in a wider type
3080   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3081                             isOperationLegalOrCustom(ISD::MULHU, VT))
3082     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3083   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3084                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3085     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3086                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3087   else
3088     return SDValue();       // No mulhu or equivalent
3089 
3090   Created->push_back(Q.getNode());
3091 
3092   if (magics.a == 0) {
3093     assert(magics.s < Divisor.getBitWidth() &&
3094            "We shouldn't generate an undefined shift!");
3095     return DAG.getNode(
3096         ISD::SRL, dl, VT, Q,
3097         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3098   } else {
3099     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3100     Created->push_back(NPQ.getNode());
3101     NPQ = DAG.getNode(
3102         ISD::SRL, dl, VT, NPQ,
3103         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3104     Created->push_back(NPQ.getNode());
3105     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3106     Created->push_back(NPQ.getNode());
3107     return DAG.getNode(
3108         ISD::SRL, dl, VT, NPQ,
3109         DAG.getConstant(magics.s - 1, dl,
3110                         getShiftAmountTy(NPQ.getValueType(), DL)));
3111   }
3112 }
3113 
3114 bool TargetLowering::
3115 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3116   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3117     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3118                                 "be a constant integer");
3119     return true;
3120   }
3121 
3122   return false;
3123 }
3124 
3125 //===----------------------------------------------------------------------===//
3126 // Legalization Utilities
3127 //===----------------------------------------------------------------------===//
3128 
3129 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3130                                     SDValue LHS, SDValue RHS,
3131                                     SmallVectorImpl<SDValue> &Result,
3132                                     EVT HiLoVT, SelectionDAG &DAG,
3133                                     MulExpansionKind Kind, SDValue LL,
3134                                     SDValue LH, SDValue RL, SDValue RH) const {
3135   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3136          Opcode == ISD::SMUL_LOHI);
3137 
3138   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3139                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3140   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3141                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3142   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3143                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3144   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3145                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3146 
3147   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3148     return false;
3149 
3150   unsigned OuterBitSize = VT.getScalarSizeInBits();
3151   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3152   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3153   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3154 
3155   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3156   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3157          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3158 
3159   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3160   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3161                           bool Signed) -> bool {
3162     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3163       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3164       Hi = SDValue(Lo.getNode(), 1);
3165       return true;
3166     }
3167     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3168       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3169       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3170       return true;
3171     }
3172     return false;
3173   };
3174 
3175   SDValue Lo, Hi;
3176 
3177   if (!LL.getNode() && !RL.getNode() &&
3178       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3179     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3180     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3181   }
3182 
3183   if (!LL.getNode())
3184     return false;
3185 
3186   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3187   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3188       DAG.MaskedValueIsZero(RHS, HighMask)) {
3189     // The inputs are both zero-extended.
3190     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3191       Result.push_back(Lo);
3192       Result.push_back(Hi);
3193       if (Opcode != ISD::MUL) {
3194         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3195         Result.push_back(Zero);
3196         Result.push_back(Zero);
3197       }
3198       return true;
3199     }
3200   }
3201 
3202   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3203       RHSSB > InnerBitSize) {
3204     // The input values are both sign-extended.
3205     // TODO non-MUL case?
3206     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3207       Result.push_back(Lo);
3208       Result.push_back(Hi);
3209       return true;
3210     }
3211   }
3212 
3213   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3214   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3215   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3216     // FIXME getShiftAmountTy does not always return a sensible result when VT
3217     // is an illegal type, and so the type may be too small to fit the shift
3218     // amount. Override it with i32. The shift will have to be legalized.
3219     ShiftAmountTy = MVT::i32;
3220   }
3221   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3222 
3223   if (!LH.getNode() && !RH.getNode() &&
3224       isOperationLegalOrCustom(ISD::SRL, VT) &&
3225       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3226     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3227     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3228     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3229     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3230   }
3231 
3232   if (!LH.getNode())
3233     return false;
3234 
3235   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3236     return false;
3237 
3238   Result.push_back(Lo);
3239 
3240   if (Opcode == ISD::MUL) {
3241     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3242     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3243     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3244     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3245     Result.push_back(Hi);
3246     return true;
3247   }
3248 
3249   // Compute the full width result.
3250   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3251     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3252     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3253     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3254     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3255   };
3256 
3257   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3258   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3259     return false;
3260 
3261   // This is effectively the add part of a multiply-add of half-sized operands,
3262   // so it cannot overflow.
3263   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3264 
3265   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3266     return false;
3267 
3268   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3269                      Merge(Lo, Hi));
3270 
3271   SDValue Carry = Next.getValue(1);
3272   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3273   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3274 
3275   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3276     return false;
3277 
3278   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3279   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3280                    Carry);
3281   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3282 
3283   if (Opcode == ISD::SMUL_LOHI) {
3284     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3285                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3286     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3287 
3288     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3289                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3290     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3291   }
3292 
3293   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3294   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3295   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3296   return true;
3297 }
3298 
3299 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3300                                SelectionDAG &DAG, MulExpansionKind Kind,
3301                                SDValue LL, SDValue LH, SDValue RL,
3302                                SDValue RH) const {
3303   SmallVector<SDValue, 2> Result;
3304   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3305                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3306                            DAG, Kind, LL, LH, RL, RH);
3307   if (Ok) {
3308     assert(Result.size() == 2);
3309     Lo = Result[0];
3310     Hi = Result[1];
3311   }
3312   return Ok;
3313 }
3314 
3315 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3316                                SelectionDAG &DAG) const {
3317   EVT VT = Node->getOperand(0).getValueType();
3318   EVT NVT = Node->getValueType(0);
3319   SDLoc dl(SDValue(Node, 0));
3320 
3321   // FIXME: Only f32 to i64 conversions are supported.
3322   if (VT != MVT::f32 || NVT != MVT::i64)
3323     return false;
3324 
3325   // Expand f32 -> i64 conversion
3326   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3327   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3328   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3329                                 VT.getSizeInBits());
3330   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3331   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3332   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3333   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
3334                                      IntVT);
3335   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3336   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3337 
3338   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3339 
3340   auto &DL = DAG.getDataLayout();
3341   SDValue ExponentBits = DAG.getNode(
3342       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3343       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3344   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3345 
3346   SDValue Sign = DAG.getNode(
3347       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3348       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3349   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3350 
3351   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3352       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3353       DAG.getConstant(0x00800000, dl, IntVT));
3354 
3355   R = DAG.getZExtOrTrunc(R, dl, NVT);
3356 
3357   R = DAG.getSelectCC(
3358       dl, Exponent, ExponentLoBit,
3359       DAG.getNode(ISD::SHL, dl, NVT, R,
3360                   DAG.getZExtOrTrunc(
3361                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3362                       dl, getShiftAmountTy(IntVT, DL))),
3363       DAG.getNode(ISD::SRL, dl, NVT, R,
3364                   DAG.getZExtOrTrunc(
3365                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3366                       dl, getShiftAmountTy(IntVT, DL))),
3367       ISD::SETGT);
3368 
3369   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3370       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3371       Sign);
3372 
3373   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3374       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3375   return true;
3376 }
3377 
3378 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3379                                             SelectionDAG &DAG) const {
3380   SDLoc SL(LD);
3381   SDValue Chain = LD->getChain();
3382   SDValue BasePTR = LD->getBasePtr();
3383   EVT SrcVT = LD->getMemoryVT();
3384   ISD::LoadExtType ExtType = LD->getExtensionType();
3385 
3386   unsigned NumElem = SrcVT.getVectorNumElements();
3387 
3388   EVT SrcEltVT = SrcVT.getScalarType();
3389   EVT DstEltVT = LD->getValueType(0).getScalarType();
3390 
3391   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3392   assert(SrcEltVT.isByteSized());
3393 
3394   EVT PtrVT = BasePTR.getValueType();
3395 
3396   SmallVector<SDValue, 8> Vals;
3397   SmallVector<SDValue, 8> LoadChains;
3398 
3399   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3400     SDValue ScalarLoad =
3401         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3402                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3403                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3404                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3405 
3406     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3407                           DAG.getConstant(Stride, SL, PtrVT));
3408 
3409     Vals.push_back(ScalarLoad.getValue(0));
3410     LoadChains.push_back(ScalarLoad.getValue(1));
3411   }
3412 
3413   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3414   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3415 
3416   return DAG.getMergeValues({ Value, NewChain }, SL);
3417 }
3418 
3419 // FIXME: This relies on each element having a byte size, otherwise the stride
3420 // is 0 and just overwrites the same location. ExpandStore currently expects
3421 // this broken behavior.
3422 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3423                                              SelectionDAG &DAG) const {
3424   SDLoc SL(ST);
3425 
3426   SDValue Chain = ST->getChain();
3427   SDValue BasePtr = ST->getBasePtr();
3428   SDValue Value = ST->getValue();
3429   EVT StVT = ST->getMemoryVT();
3430 
3431   // The type of the data we want to save
3432   EVT RegVT = Value.getValueType();
3433   EVT RegSclVT = RegVT.getScalarType();
3434 
3435   // The type of data as saved in memory.
3436   EVT MemSclVT = StVT.getScalarType();
3437 
3438   EVT PtrVT = BasePtr.getValueType();
3439 
3440   // Store Stride in bytes
3441   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3442   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3443   unsigned NumElem = StVT.getVectorNumElements();
3444 
3445   // Extract each of the elements from the original vector and save them into
3446   // memory individually.
3447   SmallVector<SDValue, 8> Stores;
3448   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3449     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3450                               DAG.getConstant(Idx, SL, IdxVT));
3451 
3452     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3453                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3454 
3455     // This scalar TruncStore may be illegal, but we legalize it later.
3456     SDValue Store = DAG.getTruncStore(
3457         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3458         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3459         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3460 
3461     Stores.push_back(Store);
3462   }
3463 
3464   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3465 }
3466 
3467 std::pair<SDValue, SDValue>
3468 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3469   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3470          "unaligned indexed loads not implemented!");
3471   SDValue Chain = LD->getChain();
3472   SDValue Ptr = LD->getBasePtr();
3473   EVT VT = LD->getValueType(0);
3474   EVT LoadedVT = LD->getMemoryVT();
3475   SDLoc dl(LD);
3476   if (VT.isFloatingPoint() || VT.isVector()) {
3477     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3478     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3479       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3480         // Scalarize the load and let the individual components be handled.
3481         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3482         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3483       }
3484 
3485       // Expand to a (misaligned) integer load of the same size,
3486       // then bitconvert to floating point or vector.
3487       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3488                                     LD->getMemOperand());
3489       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3490       if (LoadedVT != VT)
3491         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3492                              ISD::ANY_EXTEND, dl, VT, Result);
3493 
3494       return std::make_pair(Result, newLoad.getValue(1));
3495     }
3496 
3497     // Copy the value to a (aligned) stack slot using (unaligned) integer
3498     // loads and stores, then do a (aligned) load from the stack slot.
3499     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3500     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3501     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3502     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3503 
3504     // Make sure the stack slot is also aligned for the register type.
3505     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3506 
3507     SmallVector<SDValue, 8> Stores;
3508     SDValue StackPtr = StackBase;
3509     unsigned Offset = 0;
3510 
3511     EVT PtrVT = Ptr.getValueType();
3512     EVT StackPtrVT = StackPtr.getValueType();
3513 
3514     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3515     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3516 
3517     // Do all but one copies using the full register width.
3518     for (unsigned i = 1; i < NumRegs; i++) {
3519       // Load one integer register's worth from the original location.
3520       SDValue Load = DAG.getLoad(
3521           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3522           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3523           LD->getAAInfo());
3524       // Follow the load with a store to the stack slot.  Remember the store.
3525       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3526                                     MachinePointerInfo()));
3527       // Increment the pointers.
3528       Offset += RegBytes;
3529       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3530       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3531                              StackPtrIncrement);
3532     }
3533 
3534     // The last copy may be partial.  Do an extending load.
3535     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3536                                   8 * (LoadedBytes - Offset));
3537     SDValue Load =
3538         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3539                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3540                        MinAlign(LD->getAlignment(), Offset),
3541                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3542     // Follow the load with a store to the stack slot.  Remember the store.
3543     // On big-endian machines this requires a truncating store to ensure
3544     // that the bits end up in the right place.
3545     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3546                                        MachinePointerInfo(), MemVT));
3547 
3548     // The order of the stores doesn't matter - say it with a TokenFactor.
3549     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3550 
3551     // Finally, perform the original load only redirected to the stack slot.
3552     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3553                           MachinePointerInfo(), LoadedVT);
3554 
3555     // Callers expect a MERGE_VALUES node.
3556     return std::make_pair(Load, TF);
3557   }
3558 
3559   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3560          "Unaligned load of unsupported type.");
3561 
3562   // Compute the new VT that is half the size of the old one.  This is an
3563   // integer MVT.
3564   unsigned NumBits = LoadedVT.getSizeInBits();
3565   EVT NewLoadedVT;
3566   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3567   NumBits >>= 1;
3568 
3569   unsigned Alignment = LD->getAlignment();
3570   unsigned IncrementSize = NumBits / 8;
3571   ISD::LoadExtType HiExtType = LD->getExtensionType();
3572 
3573   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3574   if (HiExtType == ISD::NON_EXTLOAD)
3575     HiExtType = ISD::ZEXTLOAD;
3576 
3577   // Load the value in two parts
3578   SDValue Lo, Hi;
3579   if (DAG.getDataLayout().isLittleEndian()) {
3580     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3581                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3582                         LD->getAAInfo());
3583     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3584                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3585     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3586                         LD->getPointerInfo().getWithOffset(IncrementSize),
3587                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3588                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3589   } else {
3590     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3591                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3592                         LD->getAAInfo());
3593     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3594                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3595     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3596                         LD->getPointerInfo().getWithOffset(IncrementSize),
3597                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3598                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3599   }
3600 
3601   // aggregate the two parts
3602   SDValue ShiftAmount =
3603       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3604                                                     DAG.getDataLayout()));
3605   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3606   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3607 
3608   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3609                              Hi.getValue(1));
3610 
3611   return std::make_pair(Result, TF);
3612 }
3613 
3614 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3615                                              SelectionDAG &DAG) const {
3616   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3617          "unaligned indexed stores not implemented!");
3618   SDValue Chain = ST->getChain();
3619   SDValue Ptr = ST->getBasePtr();
3620   SDValue Val = ST->getValue();
3621   EVT VT = Val.getValueType();
3622   int Alignment = ST->getAlignment();
3623 
3624   SDLoc dl(ST);
3625   if (ST->getMemoryVT().isFloatingPoint() ||
3626       ST->getMemoryVT().isVector()) {
3627     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3628     if (isTypeLegal(intVT)) {
3629       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3630         // Scalarize the store and let the individual components be handled.
3631         SDValue Result = scalarizeVectorStore(ST, DAG);
3632 
3633         return Result;
3634       }
3635       // Expand to a bitconvert of the value to the integer type of the
3636       // same size, then a (misaligned) int store.
3637       // FIXME: Does not handle truncating floating point stores!
3638       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3639       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3640                             Alignment, ST->getMemOperand()->getFlags());
3641       return Result;
3642     }
3643     // Do a (aligned) store to a stack slot, then copy from the stack slot
3644     // to the final destination using (unaligned) integer loads and stores.
3645     EVT StoredVT = ST->getMemoryVT();
3646     MVT RegVT =
3647       getRegisterType(*DAG.getContext(),
3648                       EVT::getIntegerVT(*DAG.getContext(),
3649                                         StoredVT.getSizeInBits()));
3650     EVT PtrVT = Ptr.getValueType();
3651     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3652     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3653     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3654 
3655     // Make sure the stack slot is also aligned for the register type.
3656     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3657 
3658     // Perform the original store, only redirected to the stack slot.
3659     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
3660                                       MachinePointerInfo(), StoredVT);
3661 
3662     EVT StackPtrVT = StackPtr.getValueType();
3663 
3664     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3665     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3666     SmallVector<SDValue, 8> Stores;
3667     unsigned Offset = 0;
3668 
3669     // Do all but one copies using the full register width.
3670     for (unsigned i = 1; i < NumRegs; i++) {
3671       // Load one integer register's worth from the stack slot.
3672       SDValue Load =
3673           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
3674       // Store it to the final location.  Remember the store.
3675       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3676                                     ST->getPointerInfo().getWithOffset(Offset),
3677                                     MinAlign(ST->getAlignment(), Offset),
3678                                     ST->getMemOperand()->getFlags()));
3679       // Increment the pointers.
3680       Offset += RegBytes;
3681       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3682                              StackPtr, StackPtrIncrement);
3683       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3684     }
3685 
3686     // The last store may be partial.  Do a truncating store.  On big-endian
3687     // machines this requires an extending load from the stack slot to ensure
3688     // that the bits are in the right place.
3689     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3690                                   8 * (StoredBytes - Offset));
3691 
3692     // Load from the stack slot.
3693     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3694                                   MachinePointerInfo(), MemVT);
3695 
3696     Stores.push_back(
3697         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3698                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3699                           MinAlign(ST->getAlignment(), Offset),
3700                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3701     // The order of the stores doesn't matter - say it with a TokenFactor.
3702     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3703     return Result;
3704   }
3705 
3706   assert(ST->getMemoryVT().isInteger() &&
3707          !ST->getMemoryVT().isVector() &&
3708          "Unaligned store of unknown type.");
3709   // Get the half-size VT
3710   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3711   int NumBits = NewStoredVT.getSizeInBits();
3712   int IncrementSize = NumBits / 8;
3713 
3714   // Divide the stored value in two parts.
3715   SDValue ShiftAmount =
3716       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3717                                                     DAG.getDataLayout()));
3718   SDValue Lo = Val;
3719   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3720 
3721   // Store the two parts
3722   SDValue Store1, Store2;
3723   Store1 = DAG.getTruncStore(Chain, dl,
3724                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3725                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3726                              ST->getMemOperand()->getFlags());
3727 
3728   EVT PtrVT = Ptr.getValueType();
3729   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3730                     DAG.getConstant(IncrementSize, dl, PtrVT));
3731   Alignment = MinAlign(Alignment, IncrementSize);
3732   Store2 = DAG.getTruncStore(
3733       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3734       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3735       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3736 
3737   SDValue Result =
3738     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3739   return Result;
3740 }
3741 
3742 SDValue
3743 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3744                                        const SDLoc &DL, EVT DataVT,
3745                                        SelectionDAG &DAG,
3746                                        bool IsCompressedMemory) const {
3747   SDValue Increment;
3748   EVT AddrVT = Addr.getValueType();
3749   EVT MaskVT = Mask.getValueType();
3750   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3751          "Incompatible types of Data and Mask");
3752   if (IsCompressedMemory) {
3753     // Incrementing the pointer according to number of '1's in the mask.
3754     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3755     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3756     if (MaskIntVT.getSizeInBits() < 32) {
3757       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3758       MaskIntVT = MVT::i32;
3759     }
3760 
3761     // Count '1's with POPCNT.
3762     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3763     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3764     // Scale is an element size in bytes.
3765     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3766                                     AddrVT);
3767     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3768   } else
3769     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
3770 
3771   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3772 }
3773 
3774 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3775                                        SDValue Idx,
3776                                        EVT VecVT,
3777                                        const SDLoc &dl) {
3778   if (isa<ConstantSDNode>(Idx))
3779     return Idx;
3780 
3781   EVT IdxVT = Idx.getValueType();
3782   unsigned NElts = VecVT.getVectorNumElements();
3783   if (isPowerOf2_32(NElts)) {
3784     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3785                                      Log2_32(NElts));
3786     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3787                        DAG.getConstant(Imm, dl, IdxVT));
3788   }
3789 
3790   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3791                      DAG.getConstant(NElts - 1, dl, IdxVT));
3792 }
3793 
3794 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3795                                                 SDValue VecPtr, EVT VecVT,
3796                                                 SDValue Index) const {
3797   SDLoc dl(Index);
3798   // Make sure the index type is big enough to compute in.
3799   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
3800 
3801   EVT EltVT = VecVT.getVectorElementType();
3802 
3803   // Calculate the element offset and add it to the pointer.
3804   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3805   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3806          "Converting bits to bytes lost precision");
3807 
3808   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3809 
3810   EVT IdxVT = Index.getValueType();
3811 
3812   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3813                       DAG.getConstant(EltSize, dl, IdxVT));
3814   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
3815 }
3816 
3817 //===----------------------------------------------------------------------===//
3818 // Implementation of Emulated TLS Model
3819 //===----------------------------------------------------------------------===//
3820 
3821 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3822                                                 SelectionDAG &DAG) const {
3823   // Access to address of TLS varialbe xyz is lowered to a function call:
3824   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3825   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3826   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3827   SDLoc dl(GA);
3828 
3829   ArgListTy Args;
3830   ArgListEntry Entry;
3831   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3832   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3833   StringRef EmuTlsVarName(NameString);
3834   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3835   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3836   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3837   Entry.Ty = VoidPtrType;
3838   Args.push_back(Entry);
3839 
3840   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3841 
3842   TargetLowering::CallLoweringInfo CLI(DAG);
3843   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3844   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3845   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3846 
3847   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3848   // At last for X86 targets, maybe good for other targets too?
3849   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3850   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3851   MFI.setHasCalls(true);
3852 
3853   assert((GA->getOffset() == 0) &&
3854          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3855   return CallResult.first;
3856 }
3857 
3858 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3859                                                 SelectionDAG &DAG) const {
3860   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3861   if (!isCtlzFast())
3862     return SDValue();
3863   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3864   SDLoc dl(Op);
3865   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3866     if (C->isNullValue() && CC == ISD::SETEQ) {
3867       EVT VT = Op.getOperand(0).getValueType();
3868       SDValue Zext = Op.getOperand(0);
3869       if (VT.bitsLT(MVT::i32)) {
3870         VT = MVT::i32;
3871         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3872       }
3873       unsigned Log2b = Log2_32(VT.getSizeInBits());
3874       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3875       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3876                                 DAG.getConstant(Log2b, dl, MVT::i32));
3877       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3878     }
3879   }
3880   return SDValue();
3881 }
3882