1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
487                                             const APInt &DemandedBits,
488                                             const APInt &DemandedElts,
489                                             TargetLoweringOpt &TLO) const {
490   SDLoc DL(Op);
491   unsigned Opcode = Op.getOpcode();
492 
493   // Do target-specific constant optimization.
494   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
495     return TLO.New.getNode();
496 
497   // FIXME: ISD::SELECT, ISD::SELECT_CC
498   switch (Opcode) {
499   default:
500     break;
501   case ISD::XOR:
502   case ISD::AND:
503   case ISD::OR: {
504     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
505     if (!Op1C)
506       return false;
507 
508     // If this is a 'not' op, don't touch it because that's a canonical form.
509     const APInt &C = Op1C->getAPIntValue();
510     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
511       return false;
512 
513     if (!C.isSubsetOf(DemandedBits)) {
514       EVT VT = Op.getValueType();
515       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
516       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
517       return TLO.CombineTo(Op, NewOp);
518     }
519 
520     break;
521   }
522   }
523 
524   return false;
525 }
526 
527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
528                                             const APInt &DemandedBits,
529                                             TargetLoweringOpt &TLO) const {
530   EVT VT = Op.getValueType();
531   APInt DemandedElts = VT.isVector()
532                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
533                            : APInt(1, 1);
534   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
535 }
536 
537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
539 /// generalized for targets with other types of implicit widening casts.
540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
541                                       const APInt &Demanded,
542                                       TargetLoweringOpt &TLO) const {
543   assert(Op.getNumOperands() == 2 &&
544          "ShrinkDemandedOp only supports binary operators!");
545   assert(Op.getNode()->getNumValues() == 1 &&
546          "ShrinkDemandedOp only supports nodes with one result!");
547 
548   SelectionDAG &DAG = TLO.DAG;
549   SDLoc dl(Op);
550 
551   // Early return, as this function cannot handle vector types.
552   if (Op.getValueType().isVector())
553     return false;
554 
555   // Don't do this if the node has another user, which may require the
556   // full value.
557   if (!Op.getNode()->hasOneUse())
558     return false;
559 
560   // Search for the smallest integer type with free casts to and from
561   // Op's type. For expedience, just check power-of-2 integer types.
562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
563   unsigned DemandedSize = Demanded.getActiveBits();
564   unsigned SmallVTBits = DemandedSize;
565   if (!isPowerOf2_32(SmallVTBits))
566     SmallVTBits = NextPowerOf2(SmallVTBits);
567   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
568     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
569     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
570         TLI.isZExtFree(SmallVT, Op.getValueType())) {
571       // We found a type with free casts.
572       SDValue X = DAG.getNode(
573           Op.getOpcode(), dl, SmallVT,
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
575           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
576       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
577       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
578       return TLO.CombineTo(Op, Z);
579     }
580   }
581   return false;
582 }
583 
584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
585                                           DAGCombinerInfo &DCI) const {
586   SelectionDAG &DAG = DCI.DAG;
587   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
588                         !DCI.isBeforeLegalizeOps());
589   KnownBits Known;
590 
591   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
592   if (Simplified) {
593     DCI.AddToWorklist(Op.getNode());
594     DCI.CommitTargetLoweringOpt(TLO);
595   }
596   return Simplified;
597 }
598 
599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
600                                           KnownBits &Known,
601                                           TargetLoweringOpt &TLO,
602                                           unsigned Depth,
603                                           bool AssumeSingleUse) const {
604   EVT VT = Op.getValueType();
605 
606   // TODO: We can probably do more work on calculating the known bits and
607   // simplifying the operations for scalable vectors, but for now we just
608   // bail out.
609   if (VT.isScalableVector()) {
610     // Pretend we don't know anything for now.
611     Known = KnownBits(DemandedBits.getBitWidth());
612     return false;
613   }
614 
615   APInt DemandedElts = VT.isVector()
616                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
617                            : APInt(1, 1);
618   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
619                               AssumeSingleUse);
620 }
621 
622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
623 // TODO: Under what circumstances can we create nodes? Constant folding?
624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
625     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
626     SelectionDAG &DAG, unsigned Depth) const {
627   // Limit search depth.
628   if (Depth >= SelectionDAG::MaxRecursionDepth)
629     return SDValue();
630 
631   // Ignore UNDEFs.
632   if (Op.isUndef())
633     return SDValue();
634 
635   // Not demanding any bits/elts from Op.
636   if (DemandedBits == 0 || DemandedElts == 0)
637     return DAG.getUNDEF(Op.getValueType());
638 
639   unsigned NumElts = DemandedElts.getBitWidth();
640   unsigned BitWidth = DemandedBits.getBitWidth();
641   KnownBits LHSKnown, RHSKnown;
642   switch (Op.getOpcode()) {
643   case ISD::BITCAST: {
644     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
645     EVT SrcVT = Src.getValueType();
646     EVT DstVT = Op.getValueType();
647     if (SrcVT == DstVT)
648       return Src;
649 
650     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
651     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
652     if (NumSrcEltBits == NumDstEltBits)
653       if (SDValue V = SimplifyMultipleUseDemandedBits(
654               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
655         return DAG.getBitcast(DstVT, V);
656 
657     // TODO - bigendian once we have test coverage.
658     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumDstEltBits / NumSrcEltBits;
661       unsigned NumSrcElts = SrcVT.getVectorNumElements();
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != Scale; ++i) {
665         unsigned Offset = i * NumSrcEltBits;
666         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
667         if (!Sub.isNullValue()) {
668           DemandedSrcBits |= Sub;
669           for (unsigned j = 0; j != NumElts; ++j)
670             if (DemandedElts[j])
671               DemandedSrcElts.setBit((j * Scale) + i);
672         }
673       }
674 
675       if (SDValue V = SimplifyMultipleUseDemandedBits(
676               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
677         return DAG.getBitcast(DstVT, V);
678     }
679 
680     // TODO - bigendian once we have test coverage.
681     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
682         DAG.getDataLayout().isLittleEndian()) {
683       unsigned Scale = NumSrcEltBits / NumDstEltBits;
684       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
685       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
686       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
687       for (unsigned i = 0; i != NumElts; ++i)
688         if (DemandedElts[i]) {
689           unsigned Offset = (i % Scale) * NumDstEltBits;
690           DemandedSrcBits.insertBits(DemandedBits, Offset);
691           DemandedSrcElts.setBit(i / Scale);
692         }
693 
694       if (SDValue V = SimplifyMultipleUseDemandedBits(
695               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
696         return DAG.getBitcast(DstVT, V);
697     }
698 
699     break;
700   }
701   case ISD::AND: {
702     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
703     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
704 
705     // If all of the demanded bits are known 1 on one side, return the other.
706     // These bits cannot contribute to the result of the 'and' in this
707     // context.
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
709       return Op.getOperand(0);
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
711       return Op.getOperand(1);
712     break;
713   }
714   case ISD::OR: {
715     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
716     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
717 
718     // If all of the demanded bits are known zero on one side, return the
719     // other.  These bits cannot contribute to the result of the 'or' in this
720     // context.
721     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
722       return Op.getOperand(0);
723     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
724       return Op.getOperand(1);
725     break;
726   }
727   case ISD::XOR: {
728     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
729     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
730 
731     // If all of the demanded bits are known zero on one side, return the
732     // other.
733     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
734       return Op.getOperand(0);
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
736       return Op.getOperand(1);
737     break;
738   }
739   case ISD::SHL: {
740     // If we are only demanding sign bits then we can use the shift source
741     // directly.
742     if (const APInt *MaxSA =
743             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
744       SDValue Op0 = Op.getOperand(0);
745       unsigned ShAmt = MaxSA->getZExtValue();
746       unsigned NumSignBits =
747           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
748       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
749       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
750         return Op0;
751     }
752     break;
753   }
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (DemandedBits.isSignMask() &&
762         Op0.getScalarValueSizeInBits() == BitWidth &&
763         getBooleanContents(Op0.getValueType()) ==
764             BooleanContent::ZeroOrNegativeOneBooleanContent) {
765       // If we're testing X < 0, then this compare isn't needed - just use X!
766       // FIXME: We're limiting to integer types here, but this should also work
767       // if we don't care about FP signed-zero. The use of SETLT with FP means
768       // that we don't care about NaNs.
769       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
770           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
771         return Op0;
772     }
773     break;
774   }
775   case ISD::SIGN_EXTEND_INREG: {
776     // If none of the extended bits are demanded, eliminate the sextinreg.
777     SDValue Op0 = Op.getOperand(0);
778     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779     unsigned ExBits = ExVT.getScalarSizeInBits();
780     if (DemandedBits.getActiveBits() <= ExBits)
781       return Op0;
782     // If the input is already sign extended, just drop the extension.
783     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
784     if (NumSignBits >= (BitWidth - ExBits + 1))
785       return Op0;
786     break;
787   }
788   case ISD::ANY_EXTEND_VECTOR_INREG:
789   case ISD::SIGN_EXTEND_VECTOR_INREG:
790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
791     // If we only want the lowest element and none of extended bits, then we can
792     // return the bitcasted source vector.
793     SDValue Src = Op.getOperand(0);
794     EVT SrcVT = Src.getValueType();
795     EVT DstVT = Op.getValueType();
796     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
797         DAG.getDataLayout().isLittleEndian() &&
798         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
799       return DAG.getBitcast(DstVT, Src);
800     }
801     break;
802   }
803   case ISD::INSERT_VECTOR_ELT: {
804     // If we don't demand the inserted element, return the base vector.
805     SDValue Vec = Op.getOperand(0);
806     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
807     EVT VecVT = Vec.getValueType();
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
809         !DemandedElts[CIdx->getZExtValue()])
810       return Vec;
811     break;
812   }
813   case ISD::INSERT_SUBVECTOR: {
814     // If we don't demand the inserted subvector, return the base vector.
815     SDValue Vec = Op.getOperand(0);
816     SDValue Sub = Op.getOperand(1);
817     uint64_t Idx = Op.getConstantOperandVal(2);
818     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
819     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
820       return Vec;
821     break;
822   }
823   case ISD::VECTOR_SHUFFLE: {
824     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
825 
826     // If all the demanded elts are from one operand and are inline,
827     // then we can use the operand directly.
828     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
829     for (unsigned i = 0; i != NumElts; ++i) {
830       int M = ShuffleMask[i];
831       if (M < 0 || !DemandedElts[i])
832         continue;
833       AllUndef = false;
834       IdentityLHS &= (M == (int)i);
835       IdentityRHS &= ((M - NumElts) == i);
836     }
837 
838     if (AllUndef)
839       return DAG.getUNDEF(Op.getValueType());
840     if (IdentityLHS)
841       return Op.getOperand(0);
842     if (IdentityRHS)
843       return Op.getOperand(1);
844     break;
845   }
846   default:
847     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
848       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
849               Op, DemandedBits, DemandedElts, DAG, Depth))
850         return V;
851     break;
852   }
853   return SDValue();
854 }
855 
856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
857     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
858     unsigned Depth) const {
859   EVT VT = Op.getValueType();
860   APInt DemandedElts = VT.isVector()
861                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
862                            : APInt(1, 1);
863   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
864                                          Depth);
865 }
866 
867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
868     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
869     unsigned Depth) const {
870   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
876 /// result of Op are ever used downstream. If we can use this information to
877 /// simplify Op, create a new simplified DAG node and return true, returning the
878 /// original and new nodes in Old and New. Otherwise, analyze the expression and
879 /// return a mask of Known bits for the expression (used to simplify the
880 /// caller).  The Known bits may only be accurate for those bits in the
881 /// OriginalDemandedBits and OriginalDemandedElts.
882 bool TargetLowering::SimplifyDemandedBits(
883     SDValue Op, const APInt &OriginalDemandedBits,
884     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
885     unsigned Depth, bool AssumeSingleUse) const {
886   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
887   assert(Op.getScalarValueSizeInBits() == BitWidth &&
888          "Mask size mismatches value type size!");
889 
890   // Don't know anything.
891   Known = KnownBits(BitWidth);
892 
893   // TODO: We can probably do more work on calculating the known bits and
894   // simplifying the operations for scalable vectors, but for now we just
895   // bail out.
896   if (Op.getValueType().isScalableVector())
897     return false;
898 
899   unsigned NumElts = OriginalDemandedElts.getBitWidth();
900   assert((!Op.getValueType().isVector() ||
901           NumElts == Op.getValueType().getVectorNumElements()) &&
902          "Unexpected vector size");
903 
904   APInt DemandedBits = OriginalDemandedBits;
905   APInt DemandedElts = OriginalDemandedElts;
906   SDLoc dl(Op);
907   auto &DL = TLO.DAG.getDataLayout();
908 
909   // Undef operand.
910   if (Op.isUndef())
911     return false;
912 
913   if (Op.getOpcode() == ISD::Constant) {
914     // We know all of the bits for a constant!
915     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
916     return false;
917   }
918 
919   if (Op.getOpcode() == ISD::ConstantFP) {
920     // We know all of the bits for a floating point constant!
921     Known = KnownBits::makeConstant(
922         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
923     return false;
924   }
925 
926   // Other users may use these bits.
927   EVT VT = Op.getValueType();
928   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
929     if (Depth != 0) {
930       // If not at the root, Just compute the Known bits to
931       // simplify things downstream.
932       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
933       return false;
934     }
935     // If this is the root being simplified, allow it to have multiple uses,
936     // just set the DemandedBits/Elts to all bits.
937     DemandedBits = APInt::getAllOnesValue(BitWidth);
938     DemandedElts = APInt::getAllOnesValue(NumElts);
939   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
940     // Not demanding any bits/elts from Op.
941     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
942   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
943     // Limit search depth.
944     return false;
945   }
946 
947   KnownBits Known2;
948   switch (Op.getOpcode()) {
949   case ISD::TargetConstant:
950     llvm_unreachable("Can't simplify this node");
951   case ISD::SCALAR_TO_VECTOR: {
952     if (!DemandedElts[0])
953       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
954 
955     KnownBits SrcKnown;
956     SDValue Src = Op.getOperand(0);
957     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
958     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
959     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
960       return true;
961 
962     // Upper elements are undef, so only get the knownbits if we just demand
963     // the bottom element.
964     if (DemandedElts == 1)
965       Known = SrcKnown.anyextOrTrunc(BitWidth);
966     break;
967   }
968   case ISD::BUILD_VECTOR:
969     // Collect the known bits that are shared by every demanded element.
970     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
971     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
972     return false; // Don't fall through, will infinitely loop.
973   case ISD::LOAD: {
974     LoadSDNode *LD = cast<LoadSDNode>(Op);
975     if (getTargetConstantFromLoad(LD)) {
976       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
977       return false; // Don't fall through, will infinitely loop.
978     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
979       // If this is a ZEXTLoad and we are looking at the loaded value.
980       EVT MemVT = LD->getMemoryVT();
981       unsigned MemBits = MemVT.getScalarSizeInBits();
982       Known.Zero.setBitsFrom(MemBits);
983       return false; // Don't fall through, will infinitely loop.
984     }
985     break;
986   }
987   case ISD::INSERT_VECTOR_ELT: {
988     SDValue Vec = Op.getOperand(0);
989     SDValue Scl = Op.getOperand(1);
990     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
991     EVT VecVT = Vec.getValueType();
992 
993     // If index isn't constant, assume we need all vector elements AND the
994     // inserted element.
995     APInt DemandedVecElts(DemandedElts);
996     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
997       unsigned Idx = CIdx->getZExtValue();
998       DemandedVecElts.clearBit(Idx);
999 
1000       // Inserted element is not required.
1001       if (!DemandedElts[Idx])
1002         return TLO.CombineTo(Op, Vec);
1003     }
1004 
1005     KnownBits KnownScl;
1006     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1007     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1008     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1009       return true;
1010 
1011     Known = KnownScl.anyextOrTrunc(BitWidth);
1012 
1013     KnownBits KnownVec;
1014     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1015                              Depth + 1))
1016       return true;
1017 
1018     if (!!DemandedVecElts)
1019       Known = KnownBits::commonBits(Known, KnownVec);
1020 
1021     return false;
1022   }
1023   case ISD::INSERT_SUBVECTOR: {
1024     // Demand any elements from the subvector and the remainder from the src its
1025     // inserted into.
1026     SDValue Src = Op.getOperand(0);
1027     SDValue Sub = Op.getOperand(1);
1028     uint64_t Idx = Op.getConstantOperandVal(2);
1029     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1030     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1031     APInt DemandedSrcElts = DemandedElts;
1032     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1033 
1034     KnownBits KnownSub, KnownSrc;
1035     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1036                              Depth + 1))
1037       return true;
1038     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1039                              Depth + 1))
1040       return true;
1041 
1042     Known.Zero.setAllBits();
1043     Known.One.setAllBits();
1044     if (!!DemandedSubElts)
1045       Known = KnownBits::commonBits(Known, KnownSub);
1046     if (!!DemandedSrcElts)
1047       Known = KnownBits::commonBits(Known, KnownSrc);
1048 
1049     // Attempt to avoid multi-use src if we don't need anything from it.
1050     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1051         !DemandedSrcElts.isAllOnesValue()) {
1052       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1053           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1054       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1055           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1056       if (NewSub || NewSrc) {
1057         NewSub = NewSub ? NewSub : Sub;
1058         NewSrc = NewSrc ? NewSrc : Src;
1059         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1060                                         Op.getOperand(2));
1061         return TLO.CombineTo(Op, NewOp);
1062       }
1063     }
1064     break;
1065   }
1066   case ISD::EXTRACT_SUBVECTOR: {
1067     // Offset the demanded elts by the subvector index.
1068     SDValue Src = Op.getOperand(0);
1069     if (Src.getValueType().isScalableVector())
1070       break;
1071     uint64_t Idx = Op.getConstantOperandVal(1);
1072     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1073     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1074 
1075     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1076                              Depth + 1))
1077       return true;
1078 
1079     // Attempt to avoid multi-use src if we don't need anything from it.
1080     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1081       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1082           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1083       if (DemandedSrc) {
1084         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1085                                         Op.getOperand(1));
1086         return TLO.CombineTo(Op, NewOp);
1087       }
1088     }
1089     break;
1090   }
1091   case ISD::CONCAT_VECTORS: {
1092     Known.Zero.setAllBits();
1093     Known.One.setAllBits();
1094     EVT SubVT = Op.getOperand(0).getValueType();
1095     unsigned NumSubVecs = Op.getNumOperands();
1096     unsigned NumSubElts = SubVT.getVectorNumElements();
1097     for (unsigned i = 0; i != NumSubVecs; ++i) {
1098       APInt DemandedSubElts =
1099           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1100       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1101                                Known2, TLO, Depth + 1))
1102         return true;
1103       // Known bits are shared by every demanded subvector element.
1104       if (!!DemandedSubElts)
1105         Known = KnownBits::commonBits(Known, Known2);
1106     }
1107     break;
1108   }
1109   case ISD::VECTOR_SHUFFLE: {
1110     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1111 
1112     // Collect demanded elements from shuffle operands..
1113     APInt DemandedLHS(NumElts, 0);
1114     APInt DemandedRHS(NumElts, 0);
1115     for (unsigned i = 0; i != NumElts; ++i) {
1116       if (!DemandedElts[i])
1117         continue;
1118       int M = ShuffleMask[i];
1119       if (M < 0) {
1120         // For UNDEF elements, we don't know anything about the common state of
1121         // the shuffle result.
1122         DemandedLHS.clearAllBits();
1123         DemandedRHS.clearAllBits();
1124         break;
1125       }
1126       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1127       if (M < (int)NumElts)
1128         DemandedLHS.setBit(M);
1129       else
1130         DemandedRHS.setBit(M - NumElts);
1131     }
1132 
1133     if (!!DemandedLHS || !!DemandedRHS) {
1134       SDValue Op0 = Op.getOperand(0);
1135       SDValue Op1 = Op.getOperand(1);
1136 
1137       Known.Zero.setAllBits();
1138       Known.One.setAllBits();
1139       if (!!DemandedLHS) {
1140         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1141                                  Depth + 1))
1142           return true;
1143         Known = KnownBits::commonBits(Known, Known2);
1144       }
1145       if (!!DemandedRHS) {
1146         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1147                                  Depth + 1))
1148           return true;
1149         Known = KnownBits::commonBits(Known, Known2);
1150       }
1151 
1152       // Attempt to avoid multi-use ops if we don't need anything from them.
1153       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1154           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1155       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1156           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1157       if (DemandedOp0 || DemandedOp1) {
1158         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1159         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1160         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1161         return TLO.CombineTo(Op, NewOp);
1162       }
1163     }
1164     break;
1165   }
1166   case ISD::AND: {
1167     SDValue Op0 = Op.getOperand(0);
1168     SDValue Op1 = Op.getOperand(1);
1169 
1170     // If the RHS is a constant, check to see if the LHS would be zero without
1171     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1172     // simplify the LHS, here we're using information from the LHS to simplify
1173     // the RHS.
1174     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1175       // Do not increment Depth here; that can cause an infinite loop.
1176       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1177       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1178       if ((LHSKnown.Zero & DemandedBits) ==
1179           (~RHSC->getAPIntValue() & DemandedBits))
1180         return TLO.CombineTo(Op, Op0);
1181 
1182       // If any of the set bits in the RHS are known zero on the LHS, shrink
1183       // the constant.
1184       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1185                                  DemandedElts, TLO))
1186         return true;
1187 
1188       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1189       // constant, but if this 'and' is only clearing bits that were just set by
1190       // the xor, then this 'and' can be eliminated by shrinking the mask of
1191       // the xor. For example, for a 32-bit X:
1192       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1193       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1194           LHSKnown.One == ~RHSC->getAPIntValue()) {
1195         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1196         return TLO.CombineTo(Op, Xor);
1197       }
1198     }
1199 
1200     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1201                              Depth + 1))
1202       return true;
1203     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1204     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1205                              Known2, TLO, Depth + 1))
1206       return true;
1207     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1208 
1209     // Attempt to avoid multi-use ops if we don't need anything from them.
1210     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1211       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1212           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1213       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1214           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1215       if (DemandedOp0 || DemandedOp1) {
1216         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1217         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1218         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1219         return TLO.CombineTo(Op, NewOp);
1220       }
1221     }
1222 
1223     // If all of the demanded bits are known one on one side, return the other.
1224     // These bits cannot contribute to the result of the 'and'.
1225     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1226       return TLO.CombineTo(Op, Op0);
1227     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1228       return TLO.CombineTo(Op, Op1);
1229     // If all of the demanded bits in the inputs are known zeros, return zero.
1230     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1231       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1232     // If the RHS is a constant, see if we can simplify it.
1233     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1234                                TLO))
1235       return true;
1236     // If the operation can be done in a smaller type, do so.
1237     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1238       return true;
1239 
1240     Known &= Known2;
1241     break;
1242   }
1243   case ISD::OR: {
1244     SDValue Op0 = Op.getOperand(0);
1245     SDValue Op1 = Op.getOperand(1);
1246 
1247     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1248                              Depth + 1))
1249       return true;
1250     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1251     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1252                              Known2, TLO, Depth + 1))
1253       return true;
1254     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1255 
1256     // Attempt to avoid multi-use ops if we don't need anything from them.
1257     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1258       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1259           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1260       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1261           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1262       if (DemandedOp0 || DemandedOp1) {
1263         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1264         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1265         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1266         return TLO.CombineTo(Op, NewOp);
1267       }
1268     }
1269 
1270     // If all of the demanded bits are known zero on one side, return the other.
1271     // These bits cannot contribute to the result of the 'or'.
1272     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1273       return TLO.CombineTo(Op, Op0);
1274     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1275       return TLO.CombineTo(Op, Op1);
1276     // If the RHS is a constant, see if we can simplify it.
1277     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1278       return true;
1279     // If the operation can be done in a smaller type, do so.
1280     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1281       return true;
1282 
1283     Known |= Known2;
1284     break;
1285   }
1286   case ISD::XOR: {
1287     SDValue Op0 = Op.getOperand(0);
1288     SDValue Op1 = Op.getOperand(1);
1289 
1290     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1291                              Depth + 1))
1292       return true;
1293     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1294     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1295                              Depth + 1))
1296       return true;
1297     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1298 
1299     // Attempt to avoid multi-use ops if we don't need anything from them.
1300     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1301       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1302           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1303       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1304           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1305       if (DemandedOp0 || DemandedOp1) {
1306         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1307         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1308         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1309         return TLO.CombineTo(Op, NewOp);
1310       }
1311     }
1312 
1313     // If all of the demanded bits are known zero on one side, return the other.
1314     // These bits cannot contribute to the result of the 'xor'.
1315     if (DemandedBits.isSubsetOf(Known.Zero))
1316       return TLO.CombineTo(Op, Op0);
1317     if (DemandedBits.isSubsetOf(Known2.Zero))
1318       return TLO.CombineTo(Op, Op1);
1319     // If the operation can be done in a smaller type, do so.
1320     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1321       return true;
1322 
1323     // If all of the unknown bits are known to be zero on one side or the other
1324     // turn this into an *inclusive* or.
1325     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1326     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1327       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1328 
1329     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1330     if (C) {
1331       // If one side is a constant, and all of the set bits in the constant are
1332       // also known set on the other side, turn this into an AND, as we know
1333       // the bits will be cleared.
1334       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1335       // NB: it is okay if more bits are known than are requested
1336       if (C->getAPIntValue() == Known2.One) {
1337         SDValue ANDC =
1338             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1339         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1340       }
1341 
1342       // If the RHS is a constant, see if we can change it. Don't alter a -1
1343       // constant because that's a 'not' op, and that is better for combining
1344       // and codegen.
1345       if (!C->isAllOnesValue() &&
1346           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1347         // We're flipping all demanded bits. Flip the undemanded bits too.
1348         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1349         return TLO.CombineTo(Op, New);
1350       }
1351     }
1352 
1353     // If we can't turn this into a 'not', try to shrink the constant.
1354     if (!C || !C->isAllOnesValue())
1355       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1356         return true;
1357 
1358     Known ^= Known2;
1359     break;
1360   }
1361   case ISD::SELECT:
1362     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1363                              Depth + 1))
1364       return true;
1365     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1370 
1371     // If the operands are constants, see if we can simplify them.
1372     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373       return true;
1374 
1375     // Only known if known in both the LHS and RHS.
1376     Known = KnownBits::commonBits(Known, Known2);
1377     break;
1378   case ISD::SELECT_CC:
1379     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SETCC: {
1396     SDValue Op0 = Op.getOperand(0);
1397     SDValue Op1 = Op.getOperand(1);
1398     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1399     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1400     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1401     // -1, we may be able to bypass the setcc.
1402     if (DemandedBits.isSignMask() &&
1403         Op0.getScalarValueSizeInBits() == BitWidth &&
1404         getBooleanContents(Op0.getValueType()) ==
1405             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1406       // If we're testing X < 0, then this compare isn't needed - just use X!
1407       // FIXME: We're limiting to integer types here, but this should also work
1408       // if we don't care about FP signed-zero. The use of SETLT with FP means
1409       // that we don't care about NaNs.
1410       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1411           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1412         return TLO.CombineTo(Op, Op0);
1413 
1414       // TODO: Should we check for other forms of sign-bit comparisons?
1415       // Examples: X <= -1, X >= 0
1416     }
1417     if (getBooleanContents(Op0.getValueType()) ==
1418             TargetLowering::ZeroOrOneBooleanContent &&
1419         BitWidth > 1)
1420       Known.Zero.setBitsFrom(1);
1421     break;
1422   }
1423   case ISD::SHL: {
1424     SDValue Op0 = Op.getOperand(0);
1425     SDValue Op1 = Op.getOperand(1);
1426     EVT ShiftVT = Op1.getValueType();
1427 
1428     if (const APInt *SA =
1429             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1430       unsigned ShAmt = SA->getZExtValue();
1431       if (ShAmt == 0)
1432         return TLO.CombineTo(Op, Op0);
1433 
1434       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1435       // single shift.  We can do this if the bottom bits (which are shifted
1436       // out) are never demanded.
1437       // TODO - support non-uniform vector amounts.
1438       if (Op0.getOpcode() == ISD::SRL) {
1439         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1440           if (const APInt *SA2 =
1441                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1442             unsigned C1 = SA2->getZExtValue();
1443             unsigned Opc = ISD::SHL;
1444             int Diff = ShAmt - C1;
1445             if (Diff < 0) {
1446               Diff = -Diff;
1447               Opc = ISD::SRL;
1448             }
1449             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1450             return TLO.CombineTo(
1451                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1452           }
1453         }
1454       }
1455 
1456       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1457       // are not demanded. This will likely allow the anyext to be folded away.
1458       // TODO - support non-uniform vector amounts.
1459       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1460         SDValue InnerOp = Op0.getOperand(0);
1461         EVT InnerVT = InnerOp.getValueType();
1462         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1463         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1464             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1465           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1466           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1467             ShTy = InnerVT;
1468           SDValue NarrowShl =
1469               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1470                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1471           return TLO.CombineTo(
1472               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1473         }
1474 
1475         // Repeat the SHL optimization above in cases where an extension
1476         // intervenes: (shl (anyext (shr x, c1)), c2) to
1477         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1478         // aren't demanded (as above) and that the shifted upper c1 bits of
1479         // x aren't demanded.
1480         // TODO - support non-uniform vector amounts.
1481         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1482             InnerOp.hasOneUse()) {
1483           if (const APInt *SA2 =
1484                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1485             unsigned InnerShAmt = SA2->getZExtValue();
1486             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1487                 DemandedBits.getActiveBits() <=
1488                     (InnerBits - InnerShAmt + ShAmt) &&
1489                 DemandedBits.countTrailingZeros() >= ShAmt) {
1490               SDValue NewSA =
1491                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1492               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1493                                                InnerOp.getOperand(0));
1494               return TLO.CombineTo(
1495                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1496             }
1497           }
1498         }
1499       }
1500 
1501       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1502       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1503                                Depth + 1))
1504         return true;
1505       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1506       Known.Zero <<= ShAmt;
1507       Known.One <<= ShAmt;
1508       // low bits known zero.
1509       Known.Zero.setLowBits(ShAmt);
1510 
1511       // Try shrinking the operation as long as the shift amount will still be
1512       // in range.
1513       if ((ShAmt < DemandedBits.getActiveBits()) &&
1514           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1515         return true;
1516     }
1517 
1518     // If we are only demanding sign bits then we can use the shift source
1519     // directly.
1520     if (const APInt *MaxSA =
1521             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1522       unsigned ShAmt = MaxSA->getZExtValue();
1523       unsigned NumSignBits =
1524           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1525       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1526       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1527         return TLO.CombineTo(Op, Op0);
1528     }
1529     break;
1530   }
1531   case ISD::SRL: {
1532     SDValue Op0 = Op.getOperand(0);
1533     SDValue Op1 = Op.getOperand(1);
1534     EVT ShiftVT = Op1.getValueType();
1535 
1536     if (const APInt *SA =
1537             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1538       unsigned ShAmt = SA->getZExtValue();
1539       if (ShAmt == 0)
1540         return TLO.CombineTo(Op, Op0);
1541 
1542       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1543       // single shift.  We can do this if the top bits (which are shifted out)
1544       // are never demanded.
1545       // TODO - support non-uniform vector amounts.
1546       if (Op0.getOpcode() == ISD::SHL) {
1547         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1548           if (const APInt *SA2 =
1549                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1550             unsigned C1 = SA2->getZExtValue();
1551             unsigned Opc = ISD::SRL;
1552             int Diff = ShAmt - C1;
1553             if (Diff < 0) {
1554               Diff = -Diff;
1555               Opc = ISD::SHL;
1556             }
1557             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1558             return TLO.CombineTo(
1559                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1560           }
1561         }
1562       }
1563 
1564       APInt InDemandedMask = (DemandedBits << ShAmt);
1565 
1566       // If the shift is exact, then it does demand the low bits (and knows that
1567       // they are zero).
1568       if (Op->getFlags().hasExact())
1569         InDemandedMask.setLowBits(ShAmt);
1570 
1571       // Compute the new bits that are at the top now.
1572       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1573                                Depth + 1))
1574         return true;
1575       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1576       Known.Zero.lshrInPlace(ShAmt);
1577       Known.One.lshrInPlace(ShAmt);
1578       // High bits known zero.
1579       Known.Zero.setHighBits(ShAmt);
1580     }
1581     break;
1582   }
1583   case ISD::SRA: {
1584     SDValue Op0 = Op.getOperand(0);
1585     SDValue Op1 = Op.getOperand(1);
1586     EVT ShiftVT = Op1.getValueType();
1587 
1588     // If we only want bits that already match the signbit then we don't need
1589     // to shift.
1590     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1591     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1592         NumHiDemandedBits)
1593       return TLO.CombineTo(Op, Op0);
1594 
1595     // If this is an arithmetic shift right and only the low-bit is set, we can
1596     // always convert this into a logical shr, even if the shift amount is
1597     // variable.  The low bit of the shift cannot be an input sign bit unless
1598     // the shift amount is >= the size of the datatype, which is undefined.
1599     if (DemandedBits.isOneValue())
1600       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1601 
1602     if (const APInt *SA =
1603             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1604       unsigned ShAmt = SA->getZExtValue();
1605       if (ShAmt == 0)
1606         return TLO.CombineTo(Op, Op0);
1607 
1608       APInt InDemandedMask = (DemandedBits << ShAmt);
1609 
1610       // If the shift is exact, then it does demand the low bits (and knows that
1611       // they are zero).
1612       if (Op->getFlags().hasExact())
1613         InDemandedMask.setLowBits(ShAmt);
1614 
1615       // If any of the demanded bits are produced by the sign extension, we also
1616       // demand the input sign bit.
1617       if (DemandedBits.countLeadingZeros() < ShAmt)
1618         InDemandedMask.setSignBit();
1619 
1620       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1621                                Depth + 1))
1622         return true;
1623       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1624       Known.Zero.lshrInPlace(ShAmt);
1625       Known.One.lshrInPlace(ShAmt);
1626 
1627       // If the input sign bit is known to be zero, or if none of the top bits
1628       // are demanded, turn this into an unsigned shift right.
1629       if (Known.Zero[BitWidth - ShAmt - 1] ||
1630           DemandedBits.countLeadingZeros() >= ShAmt) {
1631         SDNodeFlags Flags;
1632         Flags.setExact(Op->getFlags().hasExact());
1633         return TLO.CombineTo(
1634             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1635       }
1636 
1637       int Log2 = DemandedBits.exactLogBase2();
1638       if (Log2 >= 0) {
1639         // The bit must come from the sign.
1640         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1641         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1642       }
1643 
1644       if (Known.One[BitWidth - ShAmt - 1])
1645         // New bits are known one.
1646         Known.One.setHighBits(ShAmt);
1647 
1648       // Attempt to avoid multi-use ops if we don't need anything from them.
1649       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1650         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1651             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1652         if (DemandedOp0) {
1653           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1654           return TLO.CombineTo(Op, NewOp);
1655         }
1656       }
1657     }
1658     break;
1659   }
1660   case ISD::FSHL:
1661   case ISD::FSHR: {
1662     SDValue Op0 = Op.getOperand(0);
1663     SDValue Op1 = Op.getOperand(1);
1664     SDValue Op2 = Op.getOperand(2);
1665     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1666 
1667     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1668       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1669 
1670       // For fshl, 0-shift returns the 1st arg.
1671       // For fshr, 0-shift returns the 2nd arg.
1672       if (Amt == 0) {
1673         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1674                                  Known, TLO, Depth + 1))
1675           return true;
1676         break;
1677       }
1678 
1679       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1680       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1681       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1682       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1683       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1684                                Depth + 1))
1685         return true;
1686       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1687                                Depth + 1))
1688         return true;
1689 
1690       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1691       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1692       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1693       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1694       Known.One |= Known2.One;
1695       Known.Zero |= Known2.Zero;
1696     }
1697 
1698     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1699     if (isPowerOf2_32(BitWidth)) {
1700       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1701       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1702                                Known2, TLO, Depth + 1))
1703         return true;
1704     }
1705     break;
1706   }
1707   case ISD::ROTL:
1708   case ISD::ROTR: {
1709     SDValue Op0 = Op.getOperand(0);
1710     SDValue Op1 = Op.getOperand(1);
1711 
1712     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1713     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1714       return TLO.CombineTo(Op, Op0);
1715 
1716     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1717     if (isPowerOf2_32(BitWidth)) {
1718       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1719       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1720                                Depth + 1))
1721         return true;
1722     }
1723     break;
1724   }
1725   case ISD::UMIN: {
1726     // Check if one arg is always less than (or equal) to the other arg.
1727     SDValue Op0 = Op.getOperand(0);
1728     SDValue Op1 = Op.getOperand(1);
1729     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1730     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1731     Known = KnownBits::umin(Known0, Known1);
1732     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1733       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1734     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1735       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1736     break;
1737   }
1738   case ISD::UMAX: {
1739     // Check if one arg is always greater than (or equal) to the other arg.
1740     SDValue Op0 = Op.getOperand(0);
1741     SDValue Op1 = Op.getOperand(1);
1742     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1743     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1744     Known = KnownBits::umax(Known0, Known1);
1745     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1746       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1747     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1748       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1749     break;
1750   }
1751   case ISD::BITREVERSE: {
1752     SDValue Src = Op.getOperand(0);
1753     APInt DemandedSrcBits = DemandedBits.reverseBits();
1754     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1755                              Depth + 1))
1756       return true;
1757     Known.One = Known2.One.reverseBits();
1758     Known.Zero = Known2.Zero.reverseBits();
1759     break;
1760   }
1761   case ISD::BSWAP: {
1762     SDValue Src = Op.getOperand(0);
1763     APInt DemandedSrcBits = DemandedBits.byteSwap();
1764     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1765                              Depth + 1))
1766       return true;
1767     Known.One = Known2.One.byteSwap();
1768     Known.Zero = Known2.Zero.byteSwap();
1769     break;
1770   }
1771   case ISD::CTPOP: {
1772     // If only 1 bit is demanded, replace with PARITY as long as we're before
1773     // op legalization.
1774     // FIXME: Limit to scalars for now.
1775     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1776       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1777                                                Op.getOperand(0)));
1778 
1779     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1780     break;
1781   }
1782   case ISD::SIGN_EXTEND_INREG: {
1783     SDValue Op0 = Op.getOperand(0);
1784     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1785     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1786 
1787     // If we only care about the highest bit, don't bother shifting right.
1788     if (DemandedBits.isSignMask()) {
1789       unsigned NumSignBits =
1790           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1791       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1792       // However if the input is already sign extended we expect the sign
1793       // extension to be dropped altogether later and do not simplify.
1794       if (!AlreadySignExtended) {
1795         // Compute the correct shift amount type, which must be getShiftAmountTy
1796         // for scalar types after legalization.
1797         EVT ShiftAmtTy = VT;
1798         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1799           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1800 
1801         SDValue ShiftAmt =
1802             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1803         return TLO.CombineTo(Op,
1804                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1805       }
1806     }
1807 
1808     // If none of the extended bits are demanded, eliminate the sextinreg.
1809     if (DemandedBits.getActiveBits() <= ExVTBits)
1810       return TLO.CombineTo(Op, Op0);
1811 
1812     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1813 
1814     // Since the sign extended bits are demanded, we know that the sign
1815     // bit is demanded.
1816     InputDemandedBits.setBit(ExVTBits - 1);
1817 
1818     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1819       return true;
1820     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1821 
1822     // If the sign bit of the input is known set or clear, then we know the
1823     // top bits of the result.
1824 
1825     // If the input sign bit is known zero, convert this into a zero extension.
1826     if (Known.Zero[ExVTBits - 1])
1827       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1828 
1829     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1830     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1831       Known.One.setBitsFrom(ExVTBits);
1832       Known.Zero &= Mask;
1833     } else { // Input sign bit unknown
1834       Known.Zero &= Mask;
1835       Known.One &= Mask;
1836     }
1837     break;
1838   }
1839   case ISD::BUILD_PAIR: {
1840     EVT HalfVT = Op.getOperand(0).getValueType();
1841     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1842 
1843     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1844     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1845 
1846     KnownBits KnownLo, KnownHi;
1847 
1848     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1849       return true;
1850 
1851     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1852       return true;
1853 
1854     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1855                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1856 
1857     Known.One = KnownLo.One.zext(BitWidth) |
1858                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1859     break;
1860   }
1861   case ISD::ZERO_EXTEND:
1862   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1863     SDValue Src = Op.getOperand(0);
1864     EVT SrcVT = Src.getValueType();
1865     unsigned InBits = SrcVT.getScalarSizeInBits();
1866     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1867     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1868 
1869     // If none of the top bits are demanded, convert this into an any_extend.
1870     if (DemandedBits.getActiveBits() <= InBits) {
1871       // If we only need the non-extended bits of the bottom element
1872       // then we can just bitcast to the result.
1873       if (IsVecInReg && DemandedElts == 1 &&
1874           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1875           TLO.DAG.getDataLayout().isLittleEndian())
1876         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1877 
1878       unsigned Opc =
1879           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1880       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1881         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1882     }
1883 
1884     APInt InDemandedBits = DemandedBits.trunc(InBits);
1885     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1886     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1887                              Depth + 1))
1888       return true;
1889     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1890     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1891     Known = Known.zext(BitWidth);
1892 
1893     // Attempt to avoid multi-use ops if we don't need anything from them.
1894     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1895             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1896       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1897     break;
1898   }
1899   case ISD::SIGN_EXTEND:
1900   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1901     SDValue Src = Op.getOperand(0);
1902     EVT SrcVT = Src.getValueType();
1903     unsigned InBits = SrcVT.getScalarSizeInBits();
1904     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1905     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1906 
1907     // If none of the top bits are demanded, convert this into an any_extend.
1908     if (DemandedBits.getActiveBits() <= InBits) {
1909       // If we only need the non-extended bits of the bottom element
1910       // then we can just bitcast to the result.
1911       if (IsVecInReg && DemandedElts == 1 &&
1912           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1913           TLO.DAG.getDataLayout().isLittleEndian())
1914         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1915 
1916       unsigned Opc =
1917           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1918       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1919         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1920     }
1921 
1922     APInt InDemandedBits = DemandedBits.trunc(InBits);
1923     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1924 
1925     // Since some of the sign extended bits are demanded, we know that the sign
1926     // bit is demanded.
1927     InDemandedBits.setBit(InBits - 1);
1928 
1929     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1930                              Depth + 1))
1931       return true;
1932     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1933     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1934 
1935     // If the sign bit is known one, the top bits match.
1936     Known = Known.sext(BitWidth);
1937 
1938     // If the sign bit is known zero, convert this to a zero extend.
1939     if (Known.isNonNegative()) {
1940       unsigned Opc =
1941           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1942       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1943         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1944     }
1945 
1946     // Attempt to avoid multi-use ops if we don't need anything from them.
1947     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1948             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1949       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1950     break;
1951   }
1952   case ISD::ANY_EXTEND:
1953   case ISD::ANY_EXTEND_VECTOR_INREG: {
1954     SDValue Src = Op.getOperand(0);
1955     EVT SrcVT = Src.getValueType();
1956     unsigned InBits = SrcVT.getScalarSizeInBits();
1957     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1958     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1959 
1960     // If we only need the bottom element then we can just bitcast.
1961     // TODO: Handle ANY_EXTEND?
1962     if (IsVecInReg && DemandedElts == 1 &&
1963         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1964         TLO.DAG.getDataLayout().isLittleEndian())
1965       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1966 
1967     APInt InDemandedBits = DemandedBits.trunc(InBits);
1968     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1969     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1970                              Depth + 1))
1971       return true;
1972     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1973     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1974     Known = Known.anyext(BitWidth);
1975 
1976     // Attempt to avoid multi-use ops if we don't need anything from them.
1977     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1978             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1979       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1980     break;
1981   }
1982   case ISD::TRUNCATE: {
1983     SDValue Src = Op.getOperand(0);
1984 
1985     // Simplify the input, using demanded bit information, and compute the known
1986     // zero/one bits live out.
1987     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1988     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1989     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1990       return true;
1991     Known = Known.trunc(BitWidth);
1992 
1993     // Attempt to avoid multi-use ops if we don't need anything from them.
1994     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1995             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1996       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1997 
1998     // If the input is only used by this truncate, see if we can shrink it based
1999     // on the known demanded bits.
2000     if (Src.getNode()->hasOneUse()) {
2001       switch (Src.getOpcode()) {
2002       default:
2003         break;
2004       case ISD::SRL:
2005         // Shrink SRL by a constant if none of the high bits shifted in are
2006         // demanded.
2007         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2008           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2009           // undesirable.
2010           break;
2011 
2012         SDValue ShAmt = Src.getOperand(1);
2013         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
2014         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
2015           break;
2016         uint64_t ShVal = ShAmtC->getZExtValue();
2017 
2018         APInt HighBits =
2019             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2020         HighBits.lshrInPlace(ShVal);
2021         HighBits = HighBits.trunc(BitWidth);
2022 
2023         if (!(HighBits & DemandedBits)) {
2024           // None of the shifted in bits are needed.  Add a truncate of the
2025           // shift input, then shift it.
2026           if (TLO.LegalTypes())
2027             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
2028           SDValue NewTrunc =
2029               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2030           return TLO.CombineTo(
2031               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
2032         }
2033         break;
2034       }
2035     }
2036 
2037     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2038     break;
2039   }
2040   case ISD::AssertZext: {
2041     // AssertZext demands all of the high bits, plus any of the low bits
2042     // demanded by its users.
2043     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2044     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2045     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2046                              TLO, Depth + 1))
2047       return true;
2048     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2049 
2050     Known.Zero |= ~InMask;
2051     break;
2052   }
2053   case ISD::EXTRACT_VECTOR_ELT: {
2054     SDValue Src = Op.getOperand(0);
2055     SDValue Idx = Op.getOperand(1);
2056     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2057     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2058 
2059     if (SrcEltCnt.isScalable())
2060       return false;
2061 
2062     // Demand the bits from every vector element without a constant index.
2063     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2064     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2065     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2066       if (CIdx->getAPIntValue().ult(NumSrcElts))
2067         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2068 
2069     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2070     // anything about the extended bits.
2071     APInt DemandedSrcBits = DemandedBits;
2072     if (BitWidth > EltBitWidth)
2073       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2074 
2075     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2076                              Depth + 1))
2077       return true;
2078 
2079     // Attempt to avoid multi-use ops if we don't need anything from them.
2080     if (!DemandedSrcBits.isAllOnesValue() ||
2081         !DemandedSrcElts.isAllOnesValue()) {
2082       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2083               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2084         SDValue NewOp =
2085             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2086         return TLO.CombineTo(Op, NewOp);
2087       }
2088     }
2089 
2090     Known = Known2;
2091     if (BitWidth > EltBitWidth)
2092       Known = Known.anyext(BitWidth);
2093     break;
2094   }
2095   case ISD::BITCAST: {
2096     SDValue Src = Op.getOperand(0);
2097     EVT SrcVT = Src.getValueType();
2098     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2099 
2100     // If this is an FP->Int bitcast and if the sign bit is the only
2101     // thing demanded, turn this into a FGETSIGN.
2102     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2103         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2104         SrcVT.isFloatingPoint()) {
2105       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2106       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2107       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2108           SrcVT != MVT::f128) {
2109         // Cannot eliminate/lower SHL for f128 yet.
2110         EVT Ty = OpVTLegal ? VT : MVT::i32;
2111         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2112         // place.  We expect the SHL to be eliminated by other optimizations.
2113         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2114         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2115         if (!OpVTLegal && OpVTSizeInBits > 32)
2116           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2117         unsigned ShVal = Op.getValueSizeInBits() - 1;
2118         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2119         return TLO.CombineTo(Op,
2120                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2121       }
2122     }
2123 
2124     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2125     // Demand the elt/bit if any of the original elts/bits are demanded.
2126     // TODO - bigendian once we have test coverage.
2127     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2128         TLO.DAG.getDataLayout().isLittleEndian()) {
2129       unsigned Scale = BitWidth / NumSrcEltBits;
2130       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2131       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2132       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2133       for (unsigned i = 0; i != Scale; ++i) {
2134         unsigned Offset = i * NumSrcEltBits;
2135         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2136         if (!Sub.isNullValue()) {
2137           DemandedSrcBits |= Sub;
2138           for (unsigned j = 0; j != NumElts; ++j)
2139             if (DemandedElts[j])
2140               DemandedSrcElts.setBit((j * Scale) + i);
2141         }
2142       }
2143 
2144       APInt KnownSrcUndef, KnownSrcZero;
2145       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2146                                      KnownSrcZero, TLO, Depth + 1))
2147         return true;
2148 
2149       KnownBits KnownSrcBits;
2150       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2151                                KnownSrcBits, TLO, Depth + 1))
2152         return true;
2153     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2154                TLO.DAG.getDataLayout().isLittleEndian()) {
2155       unsigned Scale = NumSrcEltBits / BitWidth;
2156       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2157       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2158       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2159       for (unsigned i = 0; i != NumElts; ++i)
2160         if (DemandedElts[i]) {
2161           unsigned Offset = (i % Scale) * BitWidth;
2162           DemandedSrcBits.insertBits(DemandedBits, Offset);
2163           DemandedSrcElts.setBit(i / Scale);
2164         }
2165 
2166       if (SrcVT.isVector()) {
2167         APInt KnownSrcUndef, KnownSrcZero;
2168         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2169                                        KnownSrcZero, TLO, Depth + 1))
2170           return true;
2171       }
2172 
2173       KnownBits KnownSrcBits;
2174       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2175                                KnownSrcBits, TLO, Depth + 1))
2176         return true;
2177     }
2178 
2179     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2180     // recursive call where Known may be useful to the caller.
2181     if (Depth > 0) {
2182       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2183       return false;
2184     }
2185     break;
2186   }
2187   case ISD::ADD:
2188   case ISD::MUL:
2189   case ISD::SUB: {
2190     // Add, Sub, and Mul don't demand any bits in positions beyond that
2191     // of the highest bit demanded of them.
2192     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2193     SDNodeFlags Flags = Op.getNode()->getFlags();
2194     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2195     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2196     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2197                              Depth + 1) ||
2198         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2199                              Depth + 1) ||
2200         // See if the operation should be performed at a smaller bit width.
2201         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2202       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2203         // Disable the nsw and nuw flags. We can no longer guarantee that we
2204         // won't wrap after simplification.
2205         Flags.setNoSignedWrap(false);
2206         Flags.setNoUnsignedWrap(false);
2207         SDValue NewOp =
2208             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2209         return TLO.CombineTo(Op, NewOp);
2210       }
2211       return true;
2212     }
2213 
2214     // Attempt to avoid multi-use ops if we don't need anything from them.
2215     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2216       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2217           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2218       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2219           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2220       if (DemandedOp0 || DemandedOp1) {
2221         Flags.setNoSignedWrap(false);
2222         Flags.setNoUnsignedWrap(false);
2223         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2224         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2225         SDValue NewOp =
2226             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2227         return TLO.CombineTo(Op, NewOp);
2228       }
2229     }
2230 
2231     // If we have a constant operand, we may be able to turn it into -1 if we
2232     // do not demand the high bits. This can make the constant smaller to
2233     // encode, allow more general folding, or match specialized instruction
2234     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2235     // is probably not useful (and could be detrimental).
2236     ConstantSDNode *C = isConstOrConstSplat(Op1);
2237     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2238     if (C && !C->isAllOnesValue() && !C->isOne() &&
2239         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2240       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2241       // Disable the nsw and nuw flags. We can no longer guarantee that we
2242       // won't wrap after simplification.
2243       Flags.setNoSignedWrap(false);
2244       Flags.setNoUnsignedWrap(false);
2245       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2246       return TLO.CombineTo(Op, NewOp);
2247     }
2248 
2249     LLVM_FALLTHROUGH;
2250   }
2251   default:
2252     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2253       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2254                                             Known, TLO, Depth))
2255         return true;
2256       break;
2257     }
2258 
2259     // Just use computeKnownBits to compute output bits.
2260     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2261     break;
2262   }
2263 
2264   // If we know the value of all of the demanded bits, return this as a
2265   // constant.
2266   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2267     // Avoid folding to a constant if any OpaqueConstant is involved.
2268     const SDNode *N = Op.getNode();
2269     for (SDNodeIterator I = SDNodeIterator::begin(N),
2270                         E = SDNodeIterator::end(N);
2271          I != E; ++I) {
2272       SDNode *Op = *I;
2273       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2274         if (C->isOpaque())
2275           return false;
2276     }
2277     if (VT.isInteger())
2278       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2279     if (VT.isFloatingPoint())
2280       return TLO.CombineTo(
2281           Op,
2282           TLO.DAG.getConstantFP(
2283               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2284   }
2285 
2286   return false;
2287 }
2288 
2289 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2290                                                 const APInt &DemandedElts,
2291                                                 APInt &KnownUndef,
2292                                                 APInt &KnownZero,
2293                                                 DAGCombinerInfo &DCI) const {
2294   SelectionDAG &DAG = DCI.DAG;
2295   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2296                         !DCI.isBeforeLegalizeOps());
2297 
2298   bool Simplified =
2299       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2300   if (Simplified) {
2301     DCI.AddToWorklist(Op.getNode());
2302     DCI.CommitTargetLoweringOpt(TLO);
2303   }
2304 
2305   return Simplified;
2306 }
2307 
2308 /// Given a vector binary operation and known undefined elements for each input
2309 /// operand, compute whether each element of the output is undefined.
2310 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2311                                          const APInt &UndefOp0,
2312                                          const APInt &UndefOp1) {
2313   EVT VT = BO.getValueType();
2314   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2315          "Vector binop only");
2316 
2317   EVT EltVT = VT.getVectorElementType();
2318   unsigned NumElts = VT.getVectorNumElements();
2319   assert(UndefOp0.getBitWidth() == NumElts &&
2320          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2321 
2322   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2323                                    const APInt &UndefVals) {
2324     if (UndefVals[Index])
2325       return DAG.getUNDEF(EltVT);
2326 
2327     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2328       // Try hard to make sure that the getNode() call is not creating temporary
2329       // nodes. Ignore opaque integers because they do not constant fold.
2330       SDValue Elt = BV->getOperand(Index);
2331       auto *C = dyn_cast<ConstantSDNode>(Elt);
2332       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2333         return Elt;
2334     }
2335 
2336     return SDValue();
2337   };
2338 
2339   APInt KnownUndef = APInt::getNullValue(NumElts);
2340   for (unsigned i = 0; i != NumElts; ++i) {
2341     // If both inputs for this element are either constant or undef and match
2342     // the element type, compute the constant/undef result for this element of
2343     // the vector.
2344     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2345     // not handle FP constants. The code within getNode() should be refactored
2346     // to avoid the danger of creating a bogus temporary node here.
2347     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2348     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2349     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2350       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2351         KnownUndef.setBit(i);
2352   }
2353   return KnownUndef;
2354 }
2355 
2356 bool TargetLowering::SimplifyDemandedVectorElts(
2357     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2358     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2359     bool AssumeSingleUse) const {
2360   EVT VT = Op.getValueType();
2361   unsigned Opcode = Op.getOpcode();
2362   APInt DemandedElts = OriginalDemandedElts;
2363   unsigned NumElts = DemandedElts.getBitWidth();
2364   assert(VT.isVector() && "Expected vector op");
2365 
2366   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2367 
2368   // TODO: For now we assume we know nothing about scalable vectors.
2369   if (VT.isScalableVector())
2370     return false;
2371 
2372   assert(VT.getVectorNumElements() == NumElts &&
2373          "Mask size mismatches value type element count!");
2374 
2375   // Undef operand.
2376   if (Op.isUndef()) {
2377     KnownUndef.setAllBits();
2378     return false;
2379   }
2380 
2381   // If Op has other users, assume that all elements are needed.
2382   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2383     DemandedElts.setAllBits();
2384 
2385   // Not demanding any elements from Op.
2386   if (DemandedElts == 0) {
2387     KnownUndef.setAllBits();
2388     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2389   }
2390 
2391   // Limit search depth.
2392   if (Depth >= SelectionDAG::MaxRecursionDepth)
2393     return false;
2394 
2395   SDLoc DL(Op);
2396   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2397 
2398   // Helper for demanding the specified elements and all the bits of both binary
2399   // operands.
2400   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2401     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2402                                                            TLO.DAG, Depth + 1);
2403     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2404                                                            TLO.DAG, Depth + 1);
2405     if (NewOp0 || NewOp1) {
2406       SDValue NewOp = TLO.DAG.getNode(
2407           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2408       return TLO.CombineTo(Op, NewOp);
2409     }
2410     return false;
2411   };
2412 
2413   switch (Opcode) {
2414   case ISD::SCALAR_TO_VECTOR: {
2415     if (!DemandedElts[0]) {
2416       KnownUndef.setAllBits();
2417       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2418     }
2419     KnownUndef.setHighBits(NumElts - 1);
2420     break;
2421   }
2422   case ISD::BITCAST: {
2423     SDValue Src = Op.getOperand(0);
2424     EVT SrcVT = Src.getValueType();
2425 
2426     // We only handle vectors here.
2427     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2428     if (!SrcVT.isVector())
2429       break;
2430 
2431     // Fast handling of 'identity' bitcasts.
2432     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2433     if (NumSrcElts == NumElts)
2434       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2435                                         KnownZero, TLO, Depth + 1);
2436 
2437     APInt SrcZero, SrcUndef;
2438     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2439 
2440     // Bitcast from 'large element' src vector to 'small element' vector, we
2441     // must demand a source element if any DemandedElt maps to it.
2442     if ((NumElts % NumSrcElts) == 0) {
2443       unsigned Scale = NumElts / NumSrcElts;
2444       for (unsigned i = 0; i != NumElts; ++i)
2445         if (DemandedElts[i])
2446           SrcDemandedElts.setBit(i / Scale);
2447 
2448       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2449                                      TLO, Depth + 1))
2450         return true;
2451 
2452       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2453       // of the large element.
2454       // TODO - bigendian once we have test coverage.
2455       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2456         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2457         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2458         for (unsigned i = 0; i != NumElts; ++i)
2459           if (DemandedElts[i]) {
2460             unsigned Ofs = (i % Scale) * EltSizeInBits;
2461             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2462           }
2463 
2464         KnownBits Known;
2465         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2466                                  TLO, Depth + 1))
2467           return true;
2468       }
2469 
2470       // If the src element is zero/undef then all the output elements will be -
2471       // only demanded elements are guaranteed to be correct.
2472       for (unsigned i = 0; i != NumSrcElts; ++i) {
2473         if (SrcDemandedElts[i]) {
2474           if (SrcZero[i])
2475             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2476           if (SrcUndef[i])
2477             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2478         }
2479       }
2480     }
2481 
2482     // Bitcast from 'small element' src vector to 'large element' vector, we
2483     // demand all smaller source elements covered by the larger demanded element
2484     // of this vector.
2485     if ((NumSrcElts % NumElts) == 0) {
2486       unsigned Scale = NumSrcElts / NumElts;
2487       for (unsigned i = 0; i != NumElts; ++i)
2488         if (DemandedElts[i])
2489           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2490 
2491       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2492                                      TLO, Depth + 1))
2493         return true;
2494 
2495       // If all the src elements covering an output element are zero/undef, then
2496       // the output element will be as well, assuming it was demanded.
2497       for (unsigned i = 0; i != NumElts; ++i) {
2498         if (DemandedElts[i]) {
2499           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2500             KnownZero.setBit(i);
2501           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2502             KnownUndef.setBit(i);
2503         }
2504       }
2505     }
2506     break;
2507   }
2508   case ISD::BUILD_VECTOR: {
2509     // Check all elements and simplify any unused elements with UNDEF.
2510     if (!DemandedElts.isAllOnesValue()) {
2511       // Don't simplify BROADCASTS.
2512       if (llvm::any_of(Op->op_values(),
2513                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2514         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2515         bool Updated = false;
2516         for (unsigned i = 0; i != NumElts; ++i) {
2517           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2518             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2519             KnownUndef.setBit(i);
2520             Updated = true;
2521           }
2522         }
2523         if (Updated)
2524           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2525       }
2526     }
2527     for (unsigned i = 0; i != NumElts; ++i) {
2528       SDValue SrcOp = Op.getOperand(i);
2529       if (SrcOp.isUndef()) {
2530         KnownUndef.setBit(i);
2531       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2532                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2533         KnownZero.setBit(i);
2534       }
2535     }
2536     break;
2537   }
2538   case ISD::CONCAT_VECTORS: {
2539     EVT SubVT = Op.getOperand(0).getValueType();
2540     unsigned NumSubVecs = Op.getNumOperands();
2541     unsigned NumSubElts = SubVT.getVectorNumElements();
2542     for (unsigned i = 0; i != NumSubVecs; ++i) {
2543       SDValue SubOp = Op.getOperand(i);
2544       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2545       APInt SubUndef, SubZero;
2546       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2547                                      Depth + 1))
2548         return true;
2549       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2550       KnownZero.insertBits(SubZero, i * NumSubElts);
2551     }
2552     break;
2553   }
2554   case ISD::INSERT_SUBVECTOR: {
2555     // Demand any elements from the subvector and the remainder from the src its
2556     // inserted into.
2557     SDValue Src = Op.getOperand(0);
2558     SDValue Sub = Op.getOperand(1);
2559     uint64_t Idx = Op.getConstantOperandVal(2);
2560     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2561     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2562     APInt DemandedSrcElts = DemandedElts;
2563     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2564 
2565     APInt SubUndef, SubZero;
2566     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2567                                    Depth + 1))
2568       return true;
2569 
2570     // If none of the src operand elements are demanded, replace it with undef.
2571     if (!DemandedSrcElts && !Src.isUndef())
2572       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2573                                                TLO.DAG.getUNDEF(VT), Sub,
2574                                                Op.getOperand(2)));
2575 
2576     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2577                                    TLO, Depth + 1))
2578       return true;
2579     KnownUndef.insertBits(SubUndef, Idx);
2580     KnownZero.insertBits(SubZero, Idx);
2581 
2582     // Attempt to avoid multi-use ops if we don't need anything from them.
2583     if (!DemandedSrcElts.isAllOnesValue() ||
2584         !DemandedSubElts.isAllOnesValue()) {
2585       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2586           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2587       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2588           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2589       if (NewSrc || NewSub) {
2590         NewSrc = NewSrc ? NewSrc : Src;
2591         NewSub = NewSub ? NewSub : Sub;
2592         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2593                                         NewSub, Op.getOperand(2));
2594         return TLO.CombineTo(Op, NewOp);
2595       }
2596     }
2597     break;
2598   }
2599   case ISD::EXTRACT_SUBVECTOR: {
2600     // Offset the demanded elts by the subvector index.
2601     SDValue Src = Op.getOperand(0);
2602     if (Src.getValueType().isScalableVector())
2603       break;
2604     uint64_t Idx = Op.getConstantOperandVal(1);
2605     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2606     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2607 
2608     APInt SrcUndef, SrcZero;
2609     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2610                                    Depth + 1))
2611       return true;
2612     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2613     KnownZero = SrcZero.extractBits(NumElts, Idx);
2614 
2615     // Attempt to avoid multi-use ops if we don't need anything from them.
2616     if (!DemandedElts.isAllOnesValue()) {
2617       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2618           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2619       if (NewSrc) {
2620         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2621                                         Op.getOperand(1));
2622         return TLO.CombineTo(Op, NewOp);
2623       }
2624     }
2625     break;
2626   }
2627   case ISD::INSERT_VECTOR_ELT: {
2628     SDValue Vec = Op.getOperand(0);
2629     SDValue Scl = Op.getOperand(1);
2630     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2631 
2632     // For a legal, constant insertion index, if we don't need this insertion
2633     // then strip it, else remove it from the demanded elts.
2634     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2635       unsigned Idx = CIdx->getZExtValue();
2636       if (!DemandedElts[Idx])
2637         return TLO.CombineTo(Op, Vec);
2638 
2639       APInt DemandedVecElts(DemandedElts);
2640       DemandedVecElts.clearBit(Idx);
2641       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2642                                      KnownZero, TLO, Depth + 1))
2643         return true;
2644 
2645       KnownUndef.setBitVal(Idx, Scl.isUndef());
2646 
2647       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2648       break;
2649     }
2650 
2651     APInt VecUndef, VecZero;
2652     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2653                                    Depth + 1))
2654       return true;
2655     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2656     break;
2657   }
2658   case ISD::VSELECT: {
2659     // Try to transform the select condition based on the current demanded
2660     // elements.
2661     // TODO: If a condition element is undef, we can choose from one arm of the
2662     //       select (and if one arm is undef, then we can propagate that to the
2663     //       result).
2664     // TODO - add support for constant vselect masks (see IR version of this).
2665     APInt UnusedUndef, UnusedZero;
2666     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2667                                    UnusedZero, TLO, Depth + 1))
2668       return true;
2669 
2670     // See if we can simplify either vselect operand.
2671     APInt DemandedLHS(DemandedElts);
2672     APInt DemandedRHS(DemandedElts);
2673     APInt UndefLHS, ZeroLHS;
2674     APInt UndefRHS, ZeroRHS;
2675     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2676                                    ZeroLHS, TLO, Depth + 1))
2677       return true;
2678     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2679                                    ZeroRHS, TLO, Depth + 1))
2680       return true;
2681 
2682     KnownUndef = UndefLHS & UndefRHS;
2683     KnownZero = ZeroLHS & ZeroRHS;
2684     break;
2685   }
2686   case ISD::VECTOR_SHUFFLE: {
2687     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2688 
2689     // Collect demanded elements from shuffle operands..
2690     APInt DemandedLHS(NumElts, 0);
2691     APInt DemandedRHS(NumElts, 0);
2692     for (unsigned i = 0; i != NumElts; ++i) {
2693       int M = ShuffleMask[i];
2694       if (M < 0 || !DemandedElts[i])
2695         continue;
2696       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2697       if (M < (int)NumElts)
2698         DemandedLHS.setBit(M);
2699       else
2700         DemandedRHS.setBit(M - NumElts);
2701     }
2702 
2703     // See if we can simplify either shuffle operand.
2704     APInt UndefLHS, ZeroLHS;
2705     APInt UndefRHS, ZeroRHS;
2706     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2707                                    ZeroLHS, TLO, Depth + 1))
2708       return true;
2709     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2710                                    ZeroRHS, TLO, Depth + 1))
2711       return true;
2712 
2713     // Simplify mask using undef elements from LHS/RHS.
2714     bool Updated = false;
2715     bool IdentityLHS = true, IdentityRHS = true;
2716     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2717     for (unsigned i = 0; i != NumElts; ++i) {
2718       int &M = NewMask[i];
2719       if (M < 0)
2720         continue;
2721       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2722           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2723         Updated = true;
2724         M = -1;
2725       }
2726       IdentityLHS &= (M < 0) || (M == (int)i);
2727       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2728     }
2729 
2730     // Update legal shuffle masks based on demanded elements if it won't reduce
2731     // to Identity which can cause premature removal of the shuffle mask.
2732     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2733       SDValue LegalShuffle =
2734           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2735                                   NewMask, TLO.DAG);
2736       if (LegalShuffle)
2737         return TLO.CombineTo(Op, LegalShuffle);
2738     }
2739 
2740     // Propagate undef/zero elements from LHS/RHS.
2741     for (unsigned i = 0; i != NumElts; ++i) {
2742       int M = ShuffleMask[i];
2743       if (M < 0) {
2744         KnownUndef.setBit(i);
2745       } else if (M < (int)NumElts) {
2746         if (UndefLHS[M])
2747           KnownUndef.setBit(i);
2748         if (ZeroLHS[M])
2749           KnownZero.setBit(i);
2750       } else {
2751         if (UndefRHS[M - NumElts])
2752           KnownUndef.setBit(i);
2753         if (ZeroRHS[M - NumElts])
2754           KnownZero.setBit(i);
2755       }
2756     }
2757     break;
2758   }
2759   case ISD::ANY_EXTEND_VECTOR_INREG:
2760   case ISD::SIGN_EXTEND_VECTOR_INREG:
2761   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2762     APInt SrcUndef, SrcZero;
2763     SDValue Src = Op.getOperand(0);
2764     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2765     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2766     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2767                                    Depth + 1))
2768       return true;
2769     KnownZero = SrcZero.zextOrTrunc(NumElts);
2770     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2771 
2772     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2773         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2774         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2775       // aext - if we just need the bottom element then we can bitcast.
2776       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2777     }
2778 
2779     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2780       // zext(undef) upper bits are guaranteed to be zero.
2781       if (DemandedElts.isSubsetOf(KnownUndef))
2782         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2783       KnownUndef.clearAllBits();
2784     }
2785     break;
2786   }
2787 
2788   // TODO: There are more binop opcodes that could be handled here - MIN,
2789   // MAX, saturated math, etc.
2790   case ISD::OR:
2791   case ISD::XOR:
2792   case ISD::ADD:
2793   case ISD::SUB:
2794   case ISD::FADD:
2795   case ISD::FSUB:
2796   case ISD::FMUL:
2797   case ISD::FDIV:
2798   case ISD::FREM: {
2799     SDValue Op0 = Op.getOperand(0);
2800     SDValue Op1 = Op.getOperand(1);
2801 
2802     APInt UndefRHS, ZeroRHS;
2803     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2804                                    Depth + 1))
2805       return true;
2806     APInt UndefLHS, ZeroLHS;
2807     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2808                                    Depth + 1))
2809       return true;
2810 
2811     KnownZero = ZeroLHS & ZeroRHS;
2812     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2813 
2814     // Attempt to avoid multi-use ops if we don't need anything from them.
2815     // TODO - use KnownUndef to relax the demandedelts?
2816     if (!DemandedElts.isAllOnesValue())
2817       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2818         return true;
2819     break;
2820   }
2821   case ISD::SHL:
2822   case ISD::SRL:
2823   case ISD::SRA:
2824   case ISD::ROTL:
2825   case ISD::ROTR: {
2826     SDValue Op0 = Op.getOperand(0);
2827     SDValue Op1 = Op.getOperand(1);
2828 
2829     APInt UndefRHS, ZeroRHS;
2830     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2831                                    Depth + 1))
2832       return true;
2833     APInt UndefLHS, ZeroLHS;
2834     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2835                                    Depth + 1))
2836       return true;
2837 
2838     KnownZero = ZeroLHS;
2839     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2840 
2841     // Attempt to avoid multi-use ops if we don't need anything from them.
2842     // TODO - use KnownUndef to relax the demandedelts?
2843     if (!DemandedElts.isAllOnesValue())
2844       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2845         return true;
2846     break;
2847   }
2848   case ISD::MUL:
2849   case ISD::AND: {
2850     SDValue Op0 = Op.getOperand(0);
2851     SDValue Op1 = Op.getOperand(1);
2852 
2853     APInt SrcUndef, SrcZero;
2854     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2855                                    Depth + 1))
2856       return true;
2857     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2858                                    TLO, Depth + 1))
2859       return true;
2860 
2861     // If either side has a zero element, then the result element is zero, even
2862     // if the other is an UNDEF.
2863     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2864     // and then handle 'and' nodes with the rest of the binop opcodes.
2865     KnownZero |= SrcZero;
2866     KnownUndef &= SrcUndef;
2867     KnownUndef &= ~KnownZero;
2868 
2869     // Attempt to avoid multi-use ops if we don't need anything from them.
2870     // TODO - use KnownUndef to relax the demandedelts?
2871     if (!DemandedElts.isAllOnesValue())
2872       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2873         return true;
2874     break;
2875   }
2876   case ISD::TRUNCATE:
2877   case ISD::SIGN_EXTEND:
2878   case ISD::ZERO_EXTEND:
2879     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2880                                    KnownZero, TLO, Depth + 1))
2881       return true;
2882 
2883     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2884       // zext(undef) upper bits are guaranteed to be zero.
2885       if (DemandedElts.isSubsetOf(KnownUndef))
2886         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2887       KnownUndef.clearAllBits();
2888     }
2889     break;
2890   default: {
2891     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2892       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2893                                                   KnownZero, TLO, Depth))
2894         return true;
2895     } else {
2896       KnownBits Known;
2897       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2898       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2899                                TLO, Depth, AssumeSingleUse))
2900         return true;
2901     }
2902     break;
2903   }
2904   }
2905   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2906 
2907   // Constant fold all undef cases.
2908   // TODO: Handle zero cases as well.
2909   if (DemandedElts.isSubsetOf(KnownUndef))
2910     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2911 
2912   return false;
2913 }
2914 
2915 /// Determine which of the bits specified in Mask are known to be either zero or
2916 /// one and return them in the Known.
2917 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2918                                                    KnownBits &Known,
2919                                                    const APInt &DemandedElts,
2920                                                    const SelectionDAG &DAG,
2921                                                    unsigned Depth) const {
2922   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2923           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2924           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2925           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2926          "Should use MaskedValueIsZero if you don't know whether Op"
2927          " is a target node!");
2928   Known.resetAll();
2929 }
2930 
2931 void TargetLowering::computeKnownBitsForTargetInstr(
2932     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2933     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2934     unsigned Depth) const {
2935   Known.resetAll();
2936 }
2937 
2938 void TargetLowering::computeKnownBitsForFrameIndex(
2939   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2940   // The low bits are known zero if the pointer is aligned.
2941   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2942 }
2943 
2944 Align TargetLowering::computeKnownAlignForTargetInstr(
2945   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2946   unsigned Depth) const {
2947   return Align(1);
2948 }
2949 
2950 /// This method can be implemented by targets that want to expose additional
2951 /// information about sign bits to the DAG Combiner.
2952 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2953                                                          const APInt &,
2954                                                          const SelectionDAG &,
2955                                                          unsigned Depth) const {
2956   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2957           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2958           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2959           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2960          "Should use ComputeNumSignBits if you don't know whether Op"
2961          " is a target node!");
2962   return 1;
2963 }
2964 
2965 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2966   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2967   const MachineRegisterInfo &MRI, unsigned Depth) const {
2968   return 1;
2969 }
2970 
2971 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2972     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2973     TargetLoweringOpt &TLO, unsigned Depth) const {
2974   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2975           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2976           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2977           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2978          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2979          " is a target node!");
2980   return false;
2981 }
2982 
2983 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2984     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2985     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2986   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2987           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2988           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2989           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2990          "Should use SimplifyDemandedBits if you don't know whether Op"
2991          " is a target node!");
2992   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2993   return false;
2994 }
2995 
2996 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2997     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2998     SelectionDAG &DAG, unsigned Depth) const {
2999   assert(
3000       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3001        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3002        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3003        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3004       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3005       " is a target node!");
3006   return SDValue();
3007 }
3008 
3009 SDValue
3010 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3011                                         SDValue N1, MutableArrayRef<int> Mask,
3012                                         SelectionDAG &DAG) const {
3013   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3014   if (!LegalMask) {
3015     std::swap(N0, N1);
3016     ShuffleVectorSDNode::commuteMask(Mask);
3017     LegalMask = isShuffleMaskLegal(Mask, VT);
3018   }
3019 
3020   if (!LegalMask)
3021     return SDValue();
3022 
3023   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3024 }
3025 
3026 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3027   return nullptr;
3028 }
3029 
3030 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3031                                                   const SelectionDAG &DAG,
3032                                                   bool SNaN,
3033                                                   unsigned Depth) const {
3034   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3035           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3036           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3037           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3038          "Should use isKnownNeverNaN if you don't know whether Op"
3039          " is a target node!");
3040   return false;
3041 }
3042 
3043 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3044 // work with truncating build vectors and vectors with elements of less than
3045 // 8 bits.
3046 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3047   if (!N)
3048     return false;
3049 
3050   APInt CVal;
3051   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3052     CVal = CN->getAPIntValue();
3053   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3054     auto *CN = BV->getConstantSplatNode();
3055     if (!CN)
3056       return false;
3057 
3058     // If this is a truncating build vector, truncate the splat value.
3059     // Otherwise, we may fail to match the expected values below.
3060     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3061     CVal = CN->getAPIntValue();
3062     if (BVEltWidth < CVal.getBitWidth())
3063       CVal = CVal.trunc(BVEltWidth);
3064   } else {
3065     return false;
3066   }
3067 
3068   switch (getBooleanContents(N->getValueType(0))) {
3069   case UndefinedBooleanContent:
3070     return CVal[0];
3071   case ZeroOrOneBooleanContent:
3072     return CVal.isOneValue();
3073   case ZeroOrNegativeOneBooleanContent:
3074     return CVal.isAllOnesValue();
3075   }
3076 
3077   llvm_unreachable("Invalid boolean contents");
3078 }
3079 
3080 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3081   if (!N)
3082     return false;
3083 
3084   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3085   if (!CN) {
3086     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3087     if (!BV)
3088       return false;
3089 
3090     // Only interested in constant splats, we don't care about undef
3091     // elements in identifying boolean constants and getConstantSplatNode
3092     // returns NULL if all ops are undef;
3093     CN = BV->getConstantSplatNode();
3094     if (!CN)
3095       return false;
3096   }
3097 
3098   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3099     return !CN->getAPIntValue()[0];
3100 
3101   return CN->isNullValue();
3102 }
3103 
3104 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3105                                        bool SExt) const {
3106   if (VT == MVT::i1)
3107     return N->isOne();
3108 
3109   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3110   switch (Cnt) {
3111   case TargetLowering::ZeroOrOneBooleanContent:
3112     // An extended value of 1 is always true, unless its original type is i1,
3113     // in which case it will be sign extended to -1.
3114     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3115   case TargetLowering::UndefinedBooleanContent:
3116   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3117     return N->isAllOnesValue() && SExt;
3118   }
3119   llvm_unreachable("Unexpected enumeration.");
3120 }
3121 
3122 /// This helper function of SimplifySetCC tries to optimize the comparison when
3123 /// either operand of the SetCC node is a bitwise-and instruction.
3124 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3125                                          ISD::CondCode Cond, const SDLoc &DL,
3126                                          DAGCombinerInfo &DCI) const {
3127   // Match these patterns in any of their permutations:
3128   // (X & Y) == Y
3129   // (X & Y) != Y
3130   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3131     std::swap(N0, N1);
3132 
3133   EVT OpVT = N0.getValueType();
3134   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3135       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3136     return SDValue();
3137 
3138   SDValue X, Y;
3139   if (N0.getOperand(0) == N1) {
3140     X = N0.getOperand(1);
3141     Y = N0.getOperand(0);
3142   } else if (N0.getOperand(1) == N1) {
3143     X = N0.getOperand(0);
3144     Y = N0.getOperand(1);
3145   } else {
3146     return SDValue();
3147   }
3148 
3149   SelectionDAG &DAG = DCI.DAG;
3150   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3151   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3152     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3153     // Note that where Y is variable and is known to have at most one bit set
3154     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3155     // equivalent when Y == 0.
3156     assert(OpVT.isInteger());
3157     Cond = ISD::getSetCCInverse(Cond, OpVT);
3158     if (DCI.isBeforeLegalizeOps() ||
3159         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3160       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3161   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3162     // If the target supports an 'and-not' or 'and-complement' logic operation,
3163     // try to use that to make a comparison operation more efficient.
3164     // But don't do this transform if the mask is a single bit because there are
3165     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3166     // 'rlwinm' on PPC).
3167 
3168     // Bail out if the compare operand that we want to turn into a zero is
3169     // already a zero (otherwise, infinite loop).
3170     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3171     if (YConst && YConst->isNullValue())
3172       return SDValue();
3173 
3174     // Transform this into: ~X & Y == 0.
3175     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3176     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3177     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3178   }
3179 
3180   return SDValue();
3181 }
3182 
3183 /// There are multiple IR patterns that could be checking whether certain
3184 /// truncation of a signed number would be lossy or not. The pattern which is
3185 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3186 /// We are looking for the following pattern: (KeptBits is a constant)
3187 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3188 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3189 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3190 /// We will unfold it into the natural trunc+sext pattern:
3191 ///   ((%x << C) a>> C) dstcond %x
3192 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3193 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3194     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3195     const SDLoc &DL) const {
3196   // We must be comparing with a constant.
3197   ConstantSDNode *C1;
3198   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3199     return SDValue();
3200 
3201   // N0 should be:  add %x, (1 << (KeptBits-1))
3202   if (N0->getOpcode() != ISD::ADD)
3203     return SDValue();
3204 
3205   // And we must be 'add'ing a constant.
3206   ConstantSDNode *C01;
3207   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3208     return SDValue();
3209 
3210   SDValue X = N0->getOperand(0);
3211   EVT XVT = X.getValueType();
3212 
3213   // Validate constants ...
3214 
3215   APInt I1 = C1->getAPIntValue();
3216 
3217   ISD::CondCode NewCond;
3218   if (Cond == ISD::CondCode::SETULT) {
3219     NewCond = ISD::CondCode::SETEQ;
3220   } else if (Cond == ISD::CondCode::SETULE) {
3221     NewCond = ISD::CondCode::SETEQ;
3222     // But need to 'canonicalize' the constant.
3223     I1 += 1;
3224   } else if (Cond == ISD::CondCode::SETUGT) {
3225     NewCond = ISD::CondCode::SETNE;
3226     // But need to 'canonicalize' the constant.
3227     I1 += 1;
3228   } else if (Cond == ISD::CondCode::SETUGE) {
3229     NewCond = ISD::CondCode::SETNE;
3230   } else
3231     return SDValue();
3232 
3233   APInt I01 = C01->getAPIntValue();
3234 
3235   auto checkConstants = [&I1, &I01]() -> bool {
3236     // Both of them must be power-of-two, and the constant from setcc is bigger.
3237     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3238   };
3239 
3240   if (checkConstants()) {
3241     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3242   } else {
3243     // What if we invert constants? (and the target predicate)
3244     I1.negate();
3245     I01.negate();
3246     assert(XVT.isInteger());
3247     NewCond = getSetCCInverse(NewCond, XVT);
3248     if (!checkConstants())
3249       return SDValue();
3250     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3251   }
3252 
3253   // They are power-of-two, so which bit is set?
3254   const unsigned KeptBits = I1.logBase2();
3255   const unsigned KeptBitsMinusOne = I01.logBase2();
3256 
3257   // Magic!
3258   if (KeptBits != (KeptBitsMinusOne + 1))
3259     return SDValue();
3260   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3261 
3262   // We don't want to do this in every single case.
3263   SelectionDAG &DAG = DCI.DAG;
3264   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3265           XVT, KeptBits))
3266     return SDValue();
3267 
3268   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3269   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3270 
3271   // Unfold into:  ((%x << C) a>> C) cond %x
3272   // Where 'cond' will be either 'eq' or 'ne'.
3273   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3274   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3275   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3276   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3277 
3278   return T2;
3279 }
3280 
3281 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3282 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3283     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3284     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3285   assert(isConstOrConstSplat(N1C) &&
3286          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3287          "Should be a comparison with 0.");
3288   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3289          "Valid only for [in]equality comparisons.");
3290 
3291   unsigned NewShiftOpcode;
3292   SDValue X, C, Y;
3293 
3294   SelectionDAG &DAG = DCI.DAG;
3295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3296 
3297   // Look for '(C l>>/<< Y)'.
3298   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3299     // The shift should be one-use.
3300     if (!V.hasOneUse())
3301       return false;
3302     unsigned OldShiftOpcode = V.getOpcode();
3303     switch (OldShiftOpcode) {
3304     case ISD::SHL:
3305       NewShiftOpcode = ISD::SRL;
3306       break;
3307     case ISD::SRL:
3308       NewShiftOpcode = ISD::SHL;
3309       break;
3310     default:
3311       return false; // must be a logical shift.
3312     }
3313     // We should be shifting a constant.
3314     // FIXME: best to use isConstantOrConstantVector().
3315     C = V.getOperand(0);
3316     ConstantSDNode *CC =
3317         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3318     if (!CC)
3319       return false;
3320     Y = V.getOperand(1);
3321 
3322     ConstantSDNode *XC =
3323         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3324     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3325         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3326   };
3327 
3328   // LHS of comparison should be an one-use 'and'.
3329   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3330     return SDValue();
3331 
3332   X = N0.getOperand(0);
3333   SDValue Mask = N0.getOperand(1);
3334 
3335   // 'and' is commutative!
3336   if (!Match(Mask)) {
3337     std::swap(X, Mask);
3338     if (!Match(Mask))
3339       return SDValue();
3340   }
3341 
3342   EVT VT = X.getValueType();
3343 
3344   // Produce:
3345   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3346   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3347   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3348   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3349   return T2;
3350 }
3351 
3352 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3353 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3354 /// handle the commuted versions of these patterns.
3355 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3356                                            ISD::CondCode Cond, const SDLoc &DL,
3357                                            DAGCombinerInfo &DCI) const {
3358   unsigned BOpcode = N0.getOpcode();
3359   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3360          "Unexpected binop");
3361   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3362 
3363   // (X + Y) == X --> Y == 0
3364   // (X - Y) == X --> Y == 0
3365   // (X ^ Y) == X --> Y == 0
3366   SelectionDAG &DAG = DCI.DAG;
3367   EVT OpVT = N0.getValueType();
3368   SDValue X = N0.getOperand(0);
3369   SDValue Y = N0.getOperand(1);
3370   if (X == N1)
3371     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3372 
3373   if (Y != N1)
3374     return SDValue();
3375 
3376   // (X + Y) == Y --> X == 0
3377   // (X ^ Y) == Y --> X == 0
3378   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3379     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3380 
3381   // The shift would not be valid if the operands are boolean (i1).
3382   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3383     return SDValue();
3384 
3385   // (X - Y) == Y --> X == Y << 1
3386   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3387                                  !DCI.isBeforeLegalize());
3388   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3389   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3390   if (!DCI.isCalledByLegalizer())
3391     DCI.AddToWorklist(YShl1.getNode());
3392   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3393 }
3394 
3395 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3396                                       SDValue N0, const APInt &C1,
3397                                       ISD::CondCode Cond, const SDLoc &dl,
3398                                       SelectionDAG &DAG) {
3399   // Look through truncs that don't change the value of a ctpop.
3400   // FIXME: Add vector support? Need to be careful with setcc result type below.
3401   SDValue CTPOP = N0;
3402   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3403       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3404     CTPOP = N0.getOperand(0);
3405 
3406   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3407     return SDValue();
3408 
3409   EVT CTVT = CTPOP.getValueType();
3410   SDValue CTOp = CTPOP.getOperand(0);
3411 
3412   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3413   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3414   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3415     return SDValue();
3416 
3417   // (ctpop x) u< 2 -> (x & x-1) == 0
3418   // (ctpop x) u> 1 -> (x & x-1) != 0
3419   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3420     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3421     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3422       return SDValue();
3423     if (C1 == 0 && (Cond == ISD::SETULT))
3424       return SDValue(); // This is handled elsewhere.
3425 
3426     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3427 
3428     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3429     SDValue Result = CTOp;
3430     for (unsigned i = 0; i < Passes; i++) {
3431       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3432       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3433     }
3434     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3435     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3436   }
3437 
3438   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3439   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3440     // For scalars, keep CTPOP if it is legal or custom.
3441     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3442       return SDValue();
3443     // This is based on X86's custom lowering for CTPOP which produces more
3444     // instructions than the expansion here.
3445 
3446     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3447     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3448     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3449     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3450     assert(CTVT.isInteger());
3451     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3452     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3453     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3454     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3455     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3456     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3457     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3458   }
3459 
3460   return SDValue();
3461 }
3462 
3463 /// Try to simplify a setcc built with the specified operands and cc. If it is
3464 /// unable to simplify it, return a null SDValue.
3465 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3466                                       ISD::CondCode Cond, bool foldBooleans,
3467                                       DAGCombinerInfo &DCI,
3468                                       const SDLoc &dl) const {
3469   SelectionDAG &DAG = DCI.DAG;
3470   const DataLayout &Layout = DAG.getDataLayout();
3471   EVT OpVT = N0.getValueType();
3472 
3473   // Constant fold or commute setcc.
3474   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3475     return Fold;
3476 
3477   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3478   // TODO: Handle non-splat vector constants. All undef causes trouble.
3479   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3480   // infinite loop here when we encounter one.
3481   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3482   if (isConstOrConstSplat(N0) &&
3483       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3484       (DCI.isBeforeLegalizeOps() ||
3485        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3486     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3487 
3488   // If we have a subtract with the same 2 non-constant operands as this setcc
3489   // -- but in reverse order -- then try to commute the operands of this setcc
3490   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3491   // instruction on some targets.
3492   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3493       (DCI.isBeforeLegalizeOps() ||
3494        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3495       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3496       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3497     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3498 
3499   if (auto *N1C = isConstOrConstSplat(N1)) {
3500     const APInt &C1 = N1C->getAPIntValue();
3501 
3502     // Optimize some CTPOP cases.
3503     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3504       return V;
3505 
3506     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3507     // equality comparison, then we're just comparing whether X itself is
3508     // zero.
3509     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3510         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3511         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3512       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3513         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3514             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3515           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3516             // (srl (ctlz x), 5) == 0  -> X != 0
3517             // (srl (ctlz x), 5) != 1  -> X != 0
3518             Cond = ISD::SETNE;
3519           } else {
3520             // (srl (ctlz x), 5) != 0  -> X == 0
3521             // (srl (ctlz x), 5) == 1  -> X == 0
3522             Cond = ISD::SETEQ;
3523           }
3524           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3525           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3526                               Cond);
3527         }
3528       }
3529     }
3530   }
3531 
3532   // FIXME: Support vectors.
3533   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3534     const APInt &C1 = N1C->getAPIntValue();
3535 
3536     // (zext x) == C --> x == (trunc C)
3537     // (sext x) == C --> x == (trunc C)
3538     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3539         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3540       unsigned MinBits = N0.getValueSizeInBits();
3541       SDValue PreExt;
3542       bool Signed = false;
3543       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3544         // ZExt
3545         MinBits = N0->getOperand(0).getValueSizeInBits();
3546         PreExt = N0->getOperand(0);
3547       } else if (N0->getOpcode() == ISD::AND) {
3548         // DAGCombine turns costly ZExts into ANDs
3549         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3550           if ((C->getAPIntValue()+1).isPowerOf2()) {
3551             MinBits = C->getAPIntValue().countTrailingOnes();
3552             PreExt = N0->getOperand(0);
3553           }
3554       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3555         // SExt
3556         MinBits = N0->getOperand(0).getValueSizeInBits();
3557         PreExt = N0->getOperand(0);
3558         Signed = true;
3559       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3560         // ZEXTLOAD / SEXTLOAD
3561         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3562           MinBits = LN0->getMemoryVT().getSizeInBits();
3563           PreExt = N0;
3564         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3565           Signed = true;
3566           MinBits = LN0->getMemoryVT().getSizeInBits();
3567           PreExt = N0;
3568         }
3569       }
3570 
3571       // Figure out how many bits we need to preserve this constant.
3572       unsigned ReqdBits = Signed ?
3573         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3574         C1.getActiveBits();
3575 
3576       // Make sure we're not losing bits from the constant.
3577       if (MinBits > 0 &&
3578           MinBits < C1.getBitWidth() &&
3579           MinBits >= ReqdBits) {
3580         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3581         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3582           // Will get folded away.
3583           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3584           if (MinBits == 1 && C1 == 1)
3585             // Invert the condition.
3586             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3587                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3588           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3589           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3590         }
3591 
3592         // If truncating the setcc operands is not desirable, we can still
3593         // simplify the expression in some cases:
3594         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3595         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3596         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3597         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3598         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3599         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3600         SDValue TopSetCC = N0->getOperand(0);
3601         unsigned N0Opc = N0->getOpcode();
3602         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3603         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3604             TopSetCC.getOpcode() == ISD::SETCC &&
3605             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3606             (isConstFalseVal(N1C) ||
3607              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3608 
3609           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3610                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3611 
3612           if (!Inverse)
3613             return TopSetCC;
3614 
3615           ISD::CondCode InvCond = ISD::getSetCCInverse(
3616               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3617               TopSetCC.getOperand(0).getValueType());
3618           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3619                                       TopSetCC.getOperand(1),
3620                                       InvCond);
3621         }
3622       }
3623     }
3624 
3625     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3626     // equality or unsigned, and all 1 bits of the const are in the same
3627     // partial word, see if we can shorten the load.
3628     if (DCI.isBeforeLegalize() &&
3629         !ISD::isSignedIntSetCC(Cond) &&
3630         N0.getOpcode() == ISD::AND && C1 == 0 &&
3631         N0.getNode()->hasOneUse() &&
3632         isa<LoadSDNode>(N0.getOperand(0)) &&
3633         N0.getOperand(0).getNode()->hasOneUse() &&
3634         isa<ConstantSDNode>(N0.getOperand(1))) {
3635       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3636       APInt bestMask;
3637       unsigned bestWidth = 0, bestOffset = 0;
3638       if (Lod->isSimple() && Lod->isUnindexed()) {
3639         unsigned origWidth = N0.getValueSizeInBits();
3640         unsigned maskWidth = origWidth;
3641         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3642         // 8 bits, but have to be careful...
3643         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3644           origWidth = Lod->getMemoryVT().getSizeInBits();
3645         const APInt &Mask = N0.getConstantOperandAPInt(1);
3646         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3647           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3648           for (unsigned offset=0; offset<origWidth/width; offset++) {
3649             if (Mask.isSubsetOf(newMask)) {
3650               if (Layout.isLittleEndian())
3651                 bestOffset = (uint64_t)offset * (width/8);
3652               else
3653                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3654               bestMask = Mask.lshr(offset * (width/8) * 8);
3655               bestWidth = width;
3656               break;
3657             }
3658             newMask <<= width;
3659           }
3660         }
3661       }
3662       if (bestWidth) {
3663         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3664         if (newVT.isRound() &&
3665             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3666           SDValue Ptr = Lod->getBasePtr();
3667           if (bestOffset != 0)
3668             Ptr =
3669                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3670           SDValue NewLoad =
3671               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3672                           Lod->getPointerInfo().getWithOffset(bestOffset),
3673                           Lod->getOriginalAlign());
3674           return DAG.getSetCC(dl, VT,
3675                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3676                                       DAG.getConstant(bestMask.trunc(bestWidth),
3677                                                       dl, newVT)),
3678                               DAG.getConstant(0LL, dl, newVT), Cond);
3679         }
3680       }
3681     }
3682 
3683     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3684     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3685       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3686 
3687       // If the comparison constant has bits in the upper part, the
3688       // zero-extended value could never match.
3689       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3690                                               C1.getBitWidth() - InSize))) {
3691         switch (Cond) {
3692         case ISD::SETUGT:
3693         case ISD::SETUGE:
3694         case ISD::SETEQ:
3695           return DAG.getConstant(0, dl, VT);
3696         case ISD::SETULT:
3697         case ISD::SETULE:
3698         case ISD::SETNE:
3699           return DAG.getConstant(1, dl, VT);
3700         case ISD::SETGT:
3701         case ISD::SETGE:
3702           // True if the sign bit of C1 is set.
3703           return DAG.getConstant(C1.isNegative(), dl, VT);
3704         case ISD::SETLT:
3705         case ISD::SETLE:
3706           // True if the sign bit of C1 isn't set.
3707           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3708         default:
3709           break;
3710         }
3711       }
3712 
3713       // Otherwise, we can perform the comparison with the low bits.
3714       switch (Cond) {
3715       case ISD::SETEQ:
3716       case ISD::SETNE:
3717       case ISD::SETUGT:
3718       case ISD::SETUGE:
3719       case ISD::SETULT:
3720       case ISD::SETULE: {
3721         EVT newVT = N0.getOperand(0).getValueType();
3722         if (DCI.isBeforeLegalizeOps() ||
3723             (isOperationLegal(ISD::SETCC, newVT) &&
3724              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3725           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3726           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3727 
3728           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3729                                           NewConst, Cond);
3730           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3731         }
3732         break;
3733       }
3734       default:
3735         break; // todo, be more careful with signed comparisons
3736       }
3737     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3738                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3739       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3740       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3741       EVT ExtDstTy = N0.getValueType();
3742       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3743 
3744       // If the constant doesn't fit into the number of bits for the source of
3745       // the sign extension, it is impossible for both sides to be equal.
3746       if (C1.getMinSignedBits() > ExtSrcTyBits)
3747         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3748 
3749       SDValue ZextOp;
3750       EVT Op0Ty = N0.getOperand(0).getValueType();
3751       if (Op0Ty == ExtSrcTy) {
3752         ZextOp = N0.getOperand(0);
3753       } else {
3754         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3755         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3756                              DAG.getConstant(Imm, dl, Op0Ty));
3757       }
3758       if (!DCI.isCalledByLegalizer())
3759         DCI.AddToWorklist(ZextOp.getNode());
3760       // Otherwise, make this a use of a zext.
3761       return DAG.getSetCC(dl, VT, ZextOp,
3762                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3763                                                               ExtDstTyBits,
3764                                                               ExtSrcTyBits),
3765                                           dl, ExtDstTy),
3766                           Cond);
3767     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3768                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3769       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3770       if (N0.getOpcode() == ISD::SETCC &&
3771           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3772           (N0.getValueType() == MVT::i1 ||
3773            getBooleanContents(N0.getOperand(0).getValueType()) ==
3774                        ZeroOrOneBooleanContent)) {
3775         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3776         if (TrueWhenTrue)
3777           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3778         // Invert the condition.
3779         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3780         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3781         if (DCI.isBeforeLegalizeOps() ||
3782             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3783           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3784       }
3785 
3786       if ((N0.getOpcode() == ISD::XOR ||
3787            (N0.getOpcode() == ISD::AND &&
3788             N0.getOperand(0).getOpcode() == ISD::XOR &&
3789             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3790           isa<ConstantSDNode>(N0.getOperand(1)) &&
3791           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3792         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3793         // can only do this if the top bits are known zero.
3794         unsigned BitWidth = N0.getValueSizeInBits();
3795         if (DAG.MaskedValueIsZero(N0,
3796                                   APInt::getHighBitsSet(BitWidth,
3797                                                         BitWidth-1))) {
3798           // Okay, get the un-inverted input value.
3799           SDValue Val;
3800           if (N0.getOpcode() == ISD::XOR) {
3801             Val = N0.getOperand(0);
3802           } else {
3803             assert(N0.getOpcode() == ISD::AND &&
3804                     N0.getOperand(0).getOpcode() == ISD::XOR);
3805             // ((X^1)&1)^1 -> X & 1
3806             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3807                               N0.getOperand(0).getOperand(0),
3808                               N0.getOperand(1));
3809           }
3810 
3811           return DAG.getSetCC(dl, VT, Val, N1,
3812                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3813         }
3814       } else if (N1C->isOne()) {
3815         SDValue Op0 = N0;
3816         if (Op0.getOpcode() == ISD::TRUNCATE)
3817           Op0 = Op0.getOperand(0);
3818 
3819         if ((Op0.getOpcode() == ISD::XOR) &&
3820             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3821             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3822           SDValue XorLHS = Op0.getOperand(0);
3823           SDValue XorRHS = Op0.getOperand(1);
3824           // Ensure that the input setccs return an i1 type or 0/1 value.
3825           if (Op0.getValueType() == MVT::i1 ||
3826               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3827                       ZeroOrOneBooleanContent &&
3828                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3829                         ZeroOrOneBooleanContent)) {
3830             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3831             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3832             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3833           }
3834         }
3835         if (Op0.getOpcode() == ISD::AND &&
3836             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3837             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3838           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3839           if (Op0.getValueType().bitsGT(VT))
3840             Op0 = DAG.getNode(ISD::AND, dl, VT,
3841                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3842                           DAG.getConstant(1, dl, VT));
3843           else if (Op0.getValueType().bitsLT(VT))
3844             Op0 = DAG.getNode(ISD::AND, dl, VT,
3845                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3846                         DAG.getConstant(1, dl, VT));
3847 
3848           return DAG.getSetCC(dl, VT, Op0,
3849                               DAG.getConstant(0, dl, Op0.getValueType()),
3850                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3851         }
3852         if (Op0.getOpcode() == ISD::AssertZext &&
3853             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3854           return DAG.getSetCC(dl, VT, Op0,
3855                               DAG.getConstant(0, dl, Op0.getValueType()),
3856                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3857       }
3858     }
3859 
3860     // Given:
3861     //   icmp eq/ne (urem %x, %y), 0
3862     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3863     //   icmp eq/ne %x, 0
3864     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3865         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3866       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3867       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3868       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3869         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3870     }
3871 
3872     if (SDValue V =
3873             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3874       return V;
3875   }
3876 
3877   // These simplifications apply to splat vectors as well.
3878   // TODO: Handle more splat vector cases.
3879   if (auto *N1C = isConstOrConstSplat(N1)) {
3880     const APInt &C1 = N1C->getAPIntValue();
3881 
3882     APInt MinVal, MaxVal;
3883     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3884     if (ISD::isSignedIntSetCC(Cond)) {
3885       MinVal = APInt::getSignedMinValue(OperandBitSize);
3886       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3887     } else {
3888       MinVal = APInt::getMinValue(OperandBitSize);
3889       MaxVal = APInt::getMaxValue(OperandBitSize);
3890     }
3891 
3892     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3893     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3894       // X >= MIN --> true
3895       if (C1 == MinVal)
3896         return DAG.getBoolConstant(true, dl, VT, OpVT);
3897 
3898       if (!VT.isVector()) { // TODO: Support this for vectors.
3899         // X >= C0 --> X > (C0 - 1)
3900         APInt C = C1 - 1;
3901         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3902         if ((DCI.isBeforeLegalizeOps() ||
3903              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3904             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3905                                   isLegalICmpImmediate(C.getSExtValue())))) {
3906           return DAG.getSetCC(dl, VT, N0,
3907                               DAG.getConstant(C, dl, N1.getValueType()),
3908                               NewCC);
3909         }
3910       }
3911     }
3912 
3913     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3914       // X <= MAX --> true
3915       if (C1 == MaxVal)
3916         return DAG.getBoolConstant(true, dl, VT, OpVT);
3917 
3918       // X <= C0 --> X < (C0 + 1)
3919       if (!VT.isVector()) { // TODO: Support this for vectors.
3920         APInt C = C1 + 1;
3921         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3922         if ((DCI.isBeforeLegalizeOps() ||
3923              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3924             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3925                                   isLegalICmpImmediate(C.getSExtValue())))) {
3926           return DAG.getSetCC(dl, VT, N0,
3927                               DAG.getConstant(C, dl, N1.getValueType()),
3928                               NewCC);
3929         }
3930       }
3931     }
3932 
3933     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3934       if (C1 == MinVal)
3935         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3936 
3937       // TODO: Support this for vectors after legalize ops.
3938       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3939         // Canonicalize setlt X, Max --> setne X, Max
3940         if (C1 == MaxVal)
3941           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3942 
3943         // If we have setult X, 1, turn it into seteq X, 0
3944         if (C1 == MinVal+1)
3945           return DAG.getSetCC(dl, VT, N0,
3946                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3947                               ISD::SETEQ);
3948       }
3949     }
3950 
3951     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3952       if (C1 == MaxVal)
3953         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3954 
3955       // TODO: Support this for vectors after legalize ops.
3956       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3957         // Canonicalize setgt X, Min --> setne X, Min
3958         if (C1 == MinVal)
3959           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3960 
3961         // If we have setugt X, Max-1, turn it into seteq X, Max
3962         if (C1 == MaxVal-1)
3963           return DAG.getSetCC(dl, VT, N0,
3964                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3965                               ISD::SETEQ);
3966       }
3967     }
3968 
3969     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3970       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3971       if (C1.isNullValue())
3972         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3973                 VT, N0, N1, Cond, DCI, dl))
3974           return CC;
3975 
3976       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3977       // For example, when high 32-bits of i64 X are known clear:
3978       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3979       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3980       bool CmpZero = N1C->getAPIntValue().isNullValue();
3981       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3982       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3983         // Match or(lo,shl(hi,bw/2)) pattern.
3984         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3985           unsigned EltBits = V.getScalarValueSizeInBits();
3986           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3987             return false;
3988           SDValue LHS = V.getOperand(0);
3989           SDValue RHS = V.getOperand(1);
3990           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3991           // Unshifted element must have zero upperbits.
3992           if (RHS.getOpcode() == ISD::SHL &&
3993               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3994               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3995               DAG.MaskedValueIsZero(LHS, HiBits)) {
3996             Lo = LHS;
3997             Hi = RHS.getOperand(0);
3998             return true;
3999           }
4000           if (LHS.getOpcode() == ISD::SHL &&
4001               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4002               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4003               DAG.MaskedValueIsZero(RHS, HiBits)) {
4004             Lo = RHS;
4005             Hi = LHS.getOperand(0);
4006             return true;
4007           }
4008           return false;
4009         };
4010 
4011         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4012           unsigned EltBits = N0.getScalarValueSizeInBits();
4013           unsigned HalfBits = EltBits / 2;
4014           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4015           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4016           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4017           SDValue NewN0 =
4018               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4019           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4020           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4021         };
4022 
4023         SDValue Lo, Hi;
4024         if (IsConcat(N0, Lo, Hi))
4025           return MergeConcat(Lo, Hi);
4026 
4027         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4028           SDValue Lo0, Lo1, Hi0, Hi1;
4029           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4030               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4031             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4032                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4033           }
4034         }
4035       }
4036     }
4037 
4038     // If we have "setcc X, C0", check to see if we can shrink the immediate
4039     // by changing cc.
4040     // TODO: Support this for vectors after legalize ops.
4041     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4042       // SETUGT X, SINTMAX  -> SETLT X, 0
4043       // SETUGE X, SINTMIN -> SETLT X, 0
4044       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4045           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4046         return DAG.getSetCC(dl, VT, N0,
4047                             DAG.getConstant(0, dl, N1.getValueType()),
4048                             ISD::SETLT);
4049 
4050       // SETULT X, SINTMIN  -> SETGT X, -1
4051       // SETULE X, SINTMAX  -> SETGT X, -1
4052       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4053           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4054         return DAG.getSetCC(dl, VT, N0,
4055                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4056                             ISD::SETGT);
4057     }
4058   }
4059 
4060   // Back to non-vector simplifications.
4061   // TODO: Can we do these for vector splats?
4062   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4063     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4064     const APInt &C1 = N1C->getAPIntValue();
4065     EVT ShValTy = N0.getValueType();
4066 
4067     // Fold bit comparisons when we can. This will result in an
4068     // incorrect value when boolean false is negative one, unless
4069     // the bitsize is 1 in which case the false value is the same
4070     // in practice regardless of the representation.
4071     if ((VT.getSizeInBits() == 1 ||
4072          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4073         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4074         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4075         N0.getOpcode() == ISD::AND) {
4076       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4077         EVT ShiftTy =
4078             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4079         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4080           // Perform the xform if the AND RHS is a single bit.
4081           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4082           if (AndRHS->getAPIntValue().isPowerOf2() &&
4083               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4084             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4085                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4086                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4087           }
4088         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4089           // (X & 8) == 8  -->  (X & 8) >> 3
4090           // Perform the xform if C1 is a single bit.
4091           unsigned ShCt = C1.logBase2();
4092           if (C1.isPowerOf2() &&
4093               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4094             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4095                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4096                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4097           }
4098         }
4099       }
4100     }
4101 
4102     if (C1.getMinSignedBits() <= 64 &&
4103         !isLegalICmpImmediate(C1.getSExtValue())) {
4104       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4105       // (X & -256) == 256 -> (X >> 8) == 1
4106       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4107           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4108         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4109           const APInt &AndRHSC = AndRHS->getAPIntValue();
4110           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4111             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4112             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4113               SDValue Shift =
4114                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4115                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4116               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4117               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4118             }
4119           }
4120         }
4121       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4122                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4123         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4124         // X <  0x100000000 -> (X >> 32) <  1
4125         // X >= 0x100000000 -> (X >> 32) >= 1
4126         // X <= 0x0ffffffff -> (X >> 32) <  1
4127         // X >  0x0ffffffff -> (X >> 32) >= 1
4128         unsigned ShiftBits;
4129         APInt NewC = C1;
4130         ISD::CondCode NewCond = Cond;
4131         if (AdjOne) {
4132           ShiftBits = C1.countTrailingOnes();
4133           NewC = NewC + 1;
4134           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4135         } else {
4136           ShiftBits = C1.countTrailingZeros();
4137         }
4138         NewC.lshrInPlace(ShiftBits);
4139         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4140             isLegalICmpImmediate(NewC.getSExtValue()) &&
4141             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4142           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4143                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4144           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4145           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4146         }
4147       }
4148     }
4149   }
4150 
4151   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4152     auto *CFP = cast<ConstantFPSDNode>(N1);
4153     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4154 
4155     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4156     // constant if knowing that the operand is non-nan is enough.  We prefer to
4157     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4158     // materialize 0.0.
4159     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4160       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4161 
4162     // setcc (fneg x), C -> setcc swap(pred) x, -C
4163     if (N0.getOpcode() == ISD::FNEG) {
4164       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4165       if (DCI.isBeforeLegalizeOps() ||
4166           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4167         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4168         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4169       }
4170     }
4171 
4172     // If the condition is not legal, see if we can find an equivalent one
4173     // which is legal.
4174     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4175       // If the comparison was an awkward floating-point == or != and one of
4176       // the comparison operands is infinity or negative infinity, convert the
4177       // condition to a less-awkward <= or >=.
4178       if (CFP->getValueAPF().isInfinity()) {
4179         bool IsNegInf = CFP->getValueAPF().isNegative();
4180         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4181         switch (Cond) {
4182         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4183         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4184         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4185         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4186         default: break;
4187         }
4188         if (NewCond != ISD::SETCC_INVALID &&
4189             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4190           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4191       }
4192     }
4193   }
4194 
4195   if (N0 == N1) {
4196     // The sext(setcc()) => setcc() optimization relies on the appropriate
4197     // constant being emitted.
4198     assert(!N0.getValueType().isInteger() &&
4199            "Integer types should be handled by FoldSetCC");
4200 
4201     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4202     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4203     if (UOF == 2) // FP operators that are undefined on NaNs.
4204       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4205     if (UOF == unsigned(EqTrue))
4206       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4207     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4208     // if it is not already.
4209     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4210     if (NewCond != Cond &&
4211         (DCI.isBeforeLegalizeOps() ||
4212                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4213       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4214   }
4215 
4216   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4217       N0.getValueType().isInteger()) {
4218     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4219         N0.getOpcode() == ISD::XOR) {
4220       // Simplify (X+Y) == (X+Z) -->  Y == Z
4221       if (N0.getOpcode() == N1.getOpcode()) {
4222         if (N0.getOperand(0) == N1.getOperand(0))
4223           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4224         if (N0.getOperand(1) == N1.getOperand(1))
4225           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4226         if (isCommutativeBinOp(N0.getOpcode())) {
4227           // If X op Y == Y op X, try other combinations.
4228           if (N0.getOperand(0) == N1.getOperand(1))
4229             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4230                                 Cond);
4231           if (N0.getOperand(1) == N1.getOperand(0))
4232             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4233                                 Cond);
4234         }
4235       }
4236 
4237       // If RHS is a legal immediate value for a compare instruction, we need
4238       // to be careful about increasing register pressure needlessly.
4239       bool LegalRHSImm = false;
4240 
4241       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4242         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4243           // Turn (X+C1) == C2 --> X == C2-C1
4244           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4245             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4246                                 DAG.getConstant(RHSC->getAPIntValue()-
4247                                                 LHSR->getAPIntValue(),
4248                                 dl, N0.getValueType()), Cond);
4249           }
4250 
4251           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4252           if (N0.getOpcode() == ISD::XOR)
4253             // If we know that all of the inverted bits are zero, don't bother
4254             // performing the inversion.
4255             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4256               return
4257                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4258                              DAG.getConstant(LHSR->getAPIntValue() ^
4259                                                RHSC->getAPIntValue(),
4260                                              dl, N0.getValueType()),
4261                              Cond);
4262         }
4263 
4264         // Turn (C1-X) == C2 --> X == C1-C2
4265         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4266           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4267             return
4268               DAG.getSetCC(dl, VT, N0.getOperand(1),
4269                            DAG.getConstant(SUBC->getAPIntValue() -
4270                                              RHSC->getAPIntValue(),
4271                                            dl, N0.getValueType()),
4272                            Cond);
4273           }
4274         }
4275 
4276         // Could RHSC fold directly into a compare?
4277         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4278           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4279       }
4280 
4281       // (X+Y) == X --> Y == 0 and similar folds.
4282       // Don't do this if X is an immediate that can fold into a cmp
4283       // instruction and X+Y has other uses. It could be an induction variable
4284       // chain, and the transform would increase register pressure.
4285       if (!LegalRHSImm || N0.hasOneUse())
4286         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4287           return V;
4288     }
4289 
4290     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4291         N1.getOpcode() == ISD::XOR)
4292       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4293         return V;
4294 
4295     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4296       return V;
4297   }
4298 
4299   // Fold remainder of division by a constant.
4300   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4301       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4302     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4303 
4304     // When division is cheap or optimizing for minimum size,
4305     // fall through to DIVREM creation by skipping this fold.
4306     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4307       if (N0.getOpcode() == ISD::UREM) {
4308         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4309           return Folded;
4310       } else if (N0.getOpcode() == ISD::SREM) {
4311         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4312           return Folded;
4313       }
4314     }
4315   }
4316 
4317   // Fold away ALL boolean setcc's.
4318   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4319     SDValue Temp;
4320     switch (Cond) {
4321     default: llvm_unreachable("Unknown integer setcc!");
4322     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4323       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4324       N0 = DAG.getNOT(dl, Temp, OpVT);
4325       if (!DCI.isCalledByLegalizer())
4326         DCI.AddToWorklist(Temp.getNode());
4327       break;
4328     case ISD::SETNE:  // X != Y   -->  (X^Y)
4329       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4330       break;
4331     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4332     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4333       Temp = DAG.getNOT(dl, N0, OpVT);
4334       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4335       if (!DCI.isCalledByLegalizer())
4336         DCI.AddToWorklist(Temp.getNode());
4337       break;
4338     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4339     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4340       Temp = DAG.getNOT(dl, N1, OpVT);
4341       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4342       if (!DCI.isCalledByLegalizer())
4343         DCI.AddToWorklist(Temp.getNode());
4344       break;
4345     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4346     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4347       Temp = DAG.getNOT(dl, N0, OpVT);
4348       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4349       if (!DCI.isCalledByLegalizer())
4350         DCI.AddToWorklist(Temp.getNode());
4351       break;
4352     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4353     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4354       Temp = DAG.getNOT(dl, N1, OpVT);
4355       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4356       break;
4357     }
4358     if (VT.getScalarType() != MVT::i1) {
4359       if (!DCI.isCalledByLegalizer())
4360         DCI.AddToWorklist(N0.getNode());
4361       // FIXME: If running after legalize, we probably can't do this.
4362       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4363       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4364     }
4365     return N0;
4366   }
4367 
4368   // Could not fold it.
4369   return SDValue();
4370 }
4371 
4372 /// Returns true (and the GlobalValue and the offset) if the node is a
4373 /// GlobalAddress + offset.
4374 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4375                                     int64_t &Offset) const {
4376 
4377   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4378 
4379   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4380     GA = GASD->getGlobal();
4381     Offset += GASD->getOffset();
4382     return true;
4383   }
4384 
4385   if (N->getOpcode() == ISD::ADD) {
4386     SDValue N1 = N->getOperand(0);
4387     SDValue N2 = N->getOperand(1);
4388     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4389       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4390         Offset += V->getSExtValue();
4391         return true;
4392       }
4393     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4394       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4395         Offset += V->getSExtValue();
4396         return true;
4397       }
4398     }
4399   }
4400 
4401   return false;
4402 }
4403 
4404 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4405                                           DAGCombinerInfo &DCI) const {
4406   // Default implementation: no optimization.
4407   return SDValue();
4408 }
4409 
4410 //===----------------------------------------------------------------------===//
4411 //  Inline Assembler Implementation Methods
4412 //===----------------------------------------------------------------------===//
4413 
4414 TargetLowering::ConstraintType
4415 TargetLowering::getConstraintType(StringRef Constraint) const {
4416   unsigned S = Constraint.size();
4417 
4418   if (S == 1) {
4419     switch (Constraint[0]) {
4420     default: break;
4421     case 'r':
4422       return C_RegisterClass;
4423     case 'm': // memory
4424     case 'o': // offsetable
4425     case 'V': // not offsetable
4426       return C_Memory;
4427     case 'n': // Simple Integer
4428     case 'E': // Floating Point Constant
4429     case 'F': // Floating Point Constant
4430       return C_Immediate;
4431     case 'i': // Simple Integer or Relocatable Constant
4432     case 's': // Relocatable Constant
4433     case 'p': // Address.
4434     case 'X': // Allow ANY value.
4435     case 'I': // Target registers.
4436     case 'J':
4437     case 'K':
4438     case 'L':
4439     case 'M':
4440     case 'N':
4441     case 'O':
4442     case 'P':
4443     case '<':
4444     case '>':
4445       return C_Other;
4446     }
4447   }
4448 
4449   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4450     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4451       return C_Memory;
4452     return C_Register;
4453   }
4454   return C_Unknown;
4455 }
4456 
4457 /// Try to replace an X constraint, which matches anything, with another that
4458 /// has more specific requirements based on the type of the corresponding
4459 /// operand.
4460 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4461   if (ConstraintVT.isInteger())
4462     return "r";
4463   if (ConstraintVT.isFloatingPoint())
4464     return "f"; // works for many targets
4465   return nullptr;
4466 }
4467 
4468 SDValue TargetLowering::LowerAsmOutputForConstraint(
4469     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4470     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4471   return SDValue();
4472 }
4473 
4474 /// Lower the specified operand into the Ops vector.
4475 /// If it is invalid, don't add anything to Ops.
4476 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4477                                                   std::string &Constraint,
4478                                                   std::vector<SDValue> &Ops,
4479                                                   SelectionDAG &DAG) const {
4480 
4481   if (Constraint.length() > 1) return;
4482 
4483   char ConstraintLetter = Constraint[0];
4484   switch (ConstraintLetter) {
4485   default: break;
4486   case 'X':     // Allows any operand; labels (basic block) use this.
4487     if (Op.getOpcode() == ISD::BasicBlock ||
4488         Op.getOpcode() == ISD::TargetBlockAddress) {
4489       Ops.push_back(Op);
4490       return;
4491     }
4492     LLVM_FALLTHROUGH;
4493   case 'i':    // Simple Integer or Relocatable Constant
4494   case 'n':    // Simple Integer
4495   case 's': {  // Relocatable Constant
4496 
4497     GlobalAddressSDNode *GA;
4498     ConstantSDNode *C;
4499     BlockAddressSDNode *BA;
4500     uint64_t Offset = 0;
4501 
4502     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4503     // etc., since getelementpointer is variadic. We can't use
4504     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4505     // while in this case the GA may be furthest from the root node which is
4506     // likely an ISD::ADD.
4507     while (1) {
4508       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4509         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4510                                                  GA->getValueType(0),
4511                                                  Offset + GA->getOffset()));
4512         return;
4513       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4514                  ConstraintLetter != 's') {
4515         // gcc prints these as sign extended.  Sign extend value to 64 bits
4516         // now; without this it would get ZExt'd later in
4517         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4518         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4519         BooleanContent BCont = getBooleanContents(MVT::i64);
4520         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4521                                       : ISD::SIGN_EXTEND;
4522         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4523                                                     : C->getSExtValue();
4524         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4525                                             SDLoc(C), MVT::i64));
4526         return;
4527       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4528                  ConstraintLetter != 'n') {
4529         Ops.push_back(DAG.getTargetBlockAddress(
4530             BA->getBlockAddress(), BA->getValueType(0),
4531             Offset + BA->getOffset(), BA->getTargetFlags()));
4532         return;
4533       } else {
4534         const unsigned OpCode = Op.getOpcode();
4535         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4536           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4537             Op = Op.getOperand(1);
4538           // Subtraction is not commutative.
4539           else if (OpCode == ISD::ADD &&
4540                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4541             Op = Op.getOperand(0);
4542           else
4543             return;
4544           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4545           continue;
4546         }
4547       }
4548       return;
4549     }
4550     break;
4551   }
4552   }
4553 }
4554 
4555 std::pair<unsigned, const TargetRegisterClass *>
4556 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4557                                              StringRef Constraint,
4558                                              MVT VT) const {
4559   if (Constraint.empty() || Constraint[0] != '{')
4560     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4561   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4562 
4563   // Remove the braces from around the name.
4564   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4565 
4566   std::pair<unsigned, const TargetRegisterClass *> R =
4567       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4568 
4569   // Figure out which register class contains this reg.
4570   for (const TargetRegisterClass *RC : RI->regclasses()) {
4571     // If none of the value types for this register class are valid, we
4572     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4573     if (!isLegalRC(*RI, *RC))
4574       continue;
4575 
4576     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4577          I != E; ++I) {
4578       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4579         std::pair<unsigned, const TargetRegisterClass *> S =
4580             std::make_pair(*I, RC);
4581 
4582         // If this register class has the requested value type, return it,
4583         // otherwise keep searching and return the first class found
4584         // if no other is found which explicitly has the requested type.
4585         if (RI->isTypeLegalForClass(*RC, VT))
4586           return S;
4587         if (!R.second)
4588           R = S;
4589       }
4590     }
4591   }
4592 
4593   return R;
4594 }
4595 
4596 //===----------------------------------------------------------------------===//
4597 // Constraint Selection.
4598 
4599 /// Return true of this is an input operand that is a matching constraint like
4600 /// "4".
4601 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4602   assert(!ConstraintCode.empty() && "No known constraint!");
4603   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4604 }
4605 
4606 /// If this is an input matching constraint, this method returns the output
4607 /// operand it matches.
4608 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4609   assert(!ConstraintCode.empty() && "No known constraint!");
4610   return atoi(ConstraintCode.c_str());
4611 }
4612 
4613 /// Split up the constraint string from the inline assembly value into the
4614 /// specific constraints and their prefixes, and also tie in the associated
4615 /// operand values.
4616 /// If this returns an empty vector, and if the constraint string itself
4617 /// isn't empty, there was an error parsing.
4618 TargetLowering::AsmOperandInfoVector
4619 TargetLowering::ParseConstraints(const DataLayout &DL,
4620                                  const TargetRegisterInfo *TRI,
4621                                  const CallBase &Call) const {
4622   /// Information about all of the constraints.
4623   AsmOperandInfoVector ConstraintOperands;
4624   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4625   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4626 
4627   // Do a prepass over the constraints, canonicalizing them, and building up the
4628   // ConstraintOperands list.
4629   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4630   unsigned ResNo = 0; // ResNo - The result number of the next output.
4631 
4632   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4633     ConstraintOperands.emplace_back(std::move(CI));
4634     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4635 
4636     // Update multiple alternative constraint count.
4637     if (OpInfo.multipleAlternatives.size() > maCount)
4638       maCount = OpInfo.multipleAlternatives.size();
4639 
4640     OpInfo.ConstraintVT = MVT::Other;
4641 
4642     // Compute the value type for each operand.
4643     switch (OpInfo.Type) {
4644     case InlineAsm::isOutput:
4645       // Indirect outputs just consume an argument.
4646       if (OpInfo.isIndirect) {
4647         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4648         break;
4649       }
4650 
4651       // The return value of the call is this value.  As such, there is no
4652       // corresponding argument.
4653       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4654       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4655         OpInfo.ConstraintVT =
4656             getSimpleValueType(DL, STy->getElementType(ResNo));
4657       } else {
4658         assert(ResNo == 0 && "Asm only has one result!");
4659         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4660       }
4661       ++ResNo;
4662       break;
4663     case InlineAsm::isInput:
4664       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4665       break;
4666     case InlineAsm::isClobber:
4667       // Nothing to do.
4668       break;
4669     }
4670 
4671     if (OpInfo.CallOperandVal) {
4672       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4673       if (OpInfo.isIndirect) {
4674         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4675         if (!PtrTy)
4676           report_fatal_error("Indirect operand for inline asm not a pointer!");
4677         OpTy = PtrTy->getElementType();
4678       }
4679 
4680       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4681       if (StructType *STy = dyn_cast<StructType>(OpTy))
4682         if (STy->getNumElements() == 1)
4683           OpTy = STy->getElementType(0);
4684 
4685       // If OpTy is not a single value, it may be a struct/union that we
4686       // can tile with integers.
4687       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4688         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4689         switch (BitSize) {
4690         default: break;
4691         case 1:
4692         case 8:
4693         case 16:
4694         case 32:
4695         case 64:
4696         case 128:
4697           OpInfo.ConstraintVT =
4698               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4699           break;
4700         }
4701       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4702         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4703         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4704       } else {
4705         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4706       }
4707     }
4708   }
4709 
4710   // If we have multiple alternative constraints, select the best alternative.
4711   if (!ConstraintOperands.empty()) {
4712     if (maCount) {
4713       unsigned bestMAIndex = 0;
4714       int bestWeight = -1;
4715       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4716       int weight = -1;
4717       unsigned maIndex;
4718       // Compute the sums of the weights for each alternative, keeping track
4719       // of the best (highest weight) one so far.
4720       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4721         int weightSum = 0;
4722         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4723              cIndex != eIndex; ++cIndex) {
4724           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4725           if (OpInfo.Type == InlineAsm::isClobber)
4726             continue;
4727 
4728           // If this is an output operand with a matching input operand,
4729           // look up the matching input. If their types mismatch, e.g. one
4730           // is an integer, the other is floating point, or their sizes are
4731           // different, flag it as an maCantMatch.
4732           if (OpInfo.hasMatchingInput()) {
4733             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4734             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4735               if ((OpInfo.ConstraintVT.isInteger() !=
4736                    Input.ConstraintVT.isInteger()) ||
4737                   (OpInfo.ConstraintVT.getSizeInBits() !=
4738                    Input.ConstraintVT.getSizeInBits())) {
4739                 weightSum = -1; // Can't match.
4740                 break;
4741               }
4742             }
4743           }
4744           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4745           if (weight == -1) {
4746             weightSum = -1;
4747             break;
4748           }
4749           weightSum += weight;
4750         }
4751         // Update best.
4752         if (weightSum > bestWeight) {
4753           bestWeight = weightSum;
4754           bestMAIndex = maIndex;
4755         }
4756       }
4757 
4758       // Now select chosen alternative in each constraint.
4759       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4760            cIndex != eIndex; ++cIndex) {
4761         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4762         if (cInfo.Type == InlineAsm::isClobber)
4763           continue;
4764         cInfo.selectAlternative(bestMAIndex);
4765       }
4766     }
4767   }
4768 
4769   // Check and hook up tied operands, choose constraint code to use.
4770   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4771        cIndex != eIndex; ++cIndex) {
4772     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4773 
4774     // If this is an output operand with a matching input operand, look up the
4775     // matching input. If their types mismatch, e.g. one is an integer, the
4776     // other is floating point, or their sizes are different, flag it as an
4777     // error.
4778     if (OpInfo.hasMatchingInput()) {
4779       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4780 
4781       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4782         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4783             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4784                                          OpInfo.ConstraintVT);
4785         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4786             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4787                                          Input.ConstraintVT);
4788         if ((OpInfo.ConstraintVT.isInteger() !=
4789              Input.ConstraintVT.isInteger()) ||
4790             (MatchRC.second != InputRC.second)) {
4791           report_fatal_error("Unsupported asm: input constraint"
4792                              " with a matching output constraint of"
4793                              " incompatible type!");
4794         }
4795       }
4796     }
4797   }
4798 
4799   return ConstraintOperands;
4800 }
4801 
4802 /// Return an integer indicating how general CT is.
4803 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4804   switch (CT) {
4805   case TargetLowering::C_Immediate:
4806   case TargetLowering::C_Other:
4807   case TargetLowering::C_Unknown:
4808     return 0;
4809   case TargetLowering::C_Register:
4810     return 1;
4811   case TargetLowering::C_RegisterClass:
4812     return 2;
4813   case TargetLowering::C_Memory:
4814     return 3;
4815   }
4816   llvm_unreachable("Invalid constraint type");
4817 }
4818 
4819 /// Examine constraint type and operand type and determine a weight value.
4820 /// This object must already have been set up with the operand type
4821 /// and the current alternative constraint selected.
4822 TargetLowering::ConstraintWeight
4823   TargetLowering::getMultipleConstraintMatchWeight(
4824     AsmOperandInfo &info, int maIndex) const {
4825   InlineAsm::ConstraintCodeVector *rCodes;
4826   if (maIndex >= (int)info.multipleAlternatives.size())
4827     rCodes = &info.Codes;
4828   else
4829     rCodes = &info.multipleAlternatives[maIndex].Codes;
4830   ConstraintWeight BestWeight = CW_Invalid;
4831 
4832   // Loop over the options, keeping track of the most general one.
4833   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4834     ConstraintWeight weight =
4835       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4836     if (weight > BestWeight)
4837       BestWeight = weight;
4838   }
4839 
4840   return BestWeight;
4841 }
4842 
4843 /// Examine constraint type and operand type and determine a weight value.
4844 /// This object must already have been set up with the operand type
4845 /// and the current alternative constraint selected.
4846 TargetLowering::ConstraintWeight
4847   TargetLowering::getSingleConstraintMatchWeight(
4848     AsmOperandInfo &info, const char *constraint) const {
4849   ConstraintWeight weight = CW_Invalid;
4850   Value *CallOperandVal = info.CallOperandVal;
4851     // If we don't have a value, we can't do a match,
4852     // but allow it at the lowest weight.
4853   if (!CallOperandVal)
4854     return CW_Default;
4855   // Look at the constraint type.
4856   switch (*constraint) {
4857     case 'i': // immediate integer.
4858     case 'n': // immediate integer with a known value.
4859       if (isa<ConstantInt>(CallOperandVal))
4860         weight = CW_Constant;
4861       break;
4862     case 's': // non-explicit intregal immediate.
4863       if (isa<GlobalValue>(CallOperandVal))
4864         weight = CW_Constant;
4865       break;
4866     case 'E': // immediate float if host format.
4867     case 'F': // immediate float.
4868       if (isa<ConstantFP>(CallOperandVal))
4869         weight = CW_Constant;
4870       break;
4871     case '<': // memory operand with autodecrement.
4872     case '>': // memory operand with autoincrement.
4873     case 'm': // memory operand.
4874     case 'o': // offsettable memory operand
4875     case 'V': // non-offsettable memory operand
4876       weight = CW_Memory;
4877       break;
4878     case 'r': // general register.
4879     case 'g': // general register, memory operand or immediate integer.
4880               // note: Clang converts "g" to "imr".
4881       if (CallOperandVal->getType()->isIntegerTy())
4882         weight = CW_Register;
4883       break;
4884     case 'X': // any operand.
4885   default:
4886     weight = CW_Default;
4887     break;
4888   }
4889   return weight;
4890 }
4891 
4892 /// If there are multiple different constraints that we could pick for this
4893 /// operand (e.g. "imr") try to pick the 'best' one.
4894 /// This is somewhat tricky: constraints fall into four classes:
4895 ///    Other         -> immediates and magic values
4896 ///    Register      -> one specific register
4897 ///    RegisterClass -> a group of regs
4898 ///    Memory        -> memory
4899 /// Ideally, we would pick the most specific constraint possible: if we have
4900 /// something that fits into a register, we would pick it.  The problem here
4901 /// is that if we have something that could either be in a register or in
4902 /// memory that use of the register could cause selection of *other*
4903 /// operands to fail: they might only succeed if we pick memory.  Because of
4904 /// this the heuristic we use is:
4905 ///
4906 ///  1) If there is an 'other' constraint, and if the operand is valid for
4907 ///     that constraint, use it.  This makes us take advantage of 'i'
4908 ///     constraints when available.
4909 ///  2) Otherwise, pick the most general constraint present.  This prefers
4910 ///     'm' over 'r', for example.
4911 ///
4912 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4913                              const TargetLowering &TLI,
4914                              SDValue Op, SelectionDAG *DAG) {
4915   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4916   unsigned BestIdx = 0;
4917   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4918   int BestGenerality = -1;
4919 
4920   // Loop over the options, keeping track of the most general one.
4921   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4922     TargetLowering::ConstraintType CType =
4923       TLI.getConstraintType(OpInfo.Codes[i]);
4924 
4925     // Indirect 'other' or 'immediate' constraints are not allowed.
4926     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4927                                CType == TargetLowering::C_Register ||
4928                                CType == TargetLowering::C_RegisterClass))
4929       continue;
4930 
4931     // If this is an 'other' or 'immediate' constraint, see if the operand is
4932     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4933     // the operand is an integer in the range [0..31] we want to use I (saving a
4934     // load of a register), otherwise we must use 'r'.
4935     if ((CType == TargetLowering::C_Other ||
4936          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4937       assert(OpInfo.Codes[i].size() == 1 &&
4938              "Unhandled multi-letter 'other' constraint");
4939       std::vector<SDValue> ResultOps;
4940       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4941                                        ResultOps, *DAG);
4942       if (!ResultOps.empty()) {
4943         BestType = CType;
4944         BestIdx = i;
4945         break;
4946       }
4947     }
4948 
4949     // Things with matching constraints can only be registers, per gcc
4950     // documentation.  This mainly affects "g" constraints.
4951     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4952       continue;
4953 
4954     // This constraint letter is more general than the previous one, use it.
4955     int Generality = getConstraintGenerality(CType);
4956     if (Generality > BestGenerality) {
4957       BestType = CType;
4958       BestIdx = i;
4959       BestGenerality = Generality;
4960     }
4961   }
4962 
4963   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4964   OpInfo.ConstraintType = BestType;
4965 }
4966 
4967 /// Determines the constraint code and constraint type to use for the specific
4968 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4969 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4970                                             SDValue Op,
4971                                             SelectionDAG *DAG) const {
4972   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4973 
4974   // Single-letter constraints ('r') are very common.
4975   if (OpInfo.Codes.size() == 1) {
4976     OpInfo.ConstraintCode = OpInfo.Codes[0];
4977     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4978   } else {
4979     ChooseConstraint(OpInfo, *this, Op, DAG);
4980   }
4981 
4982   // 'X' matches anything.
4983   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4984     // Labels and constants are handled elsewhere ('X' is the only thing
4985     // that matches labels).  For Functions, the type here is the type of
4986     // the result, which is not what we want to look at; leave them alone.
4987     Value *v = OpInfo.CallOperandVal;
4988     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4989       OpInfo.CallOperandVal = v;
4990       return;
4991     }
4992 
4993     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4994       return;
4995 
4996     // Otherwise, try to resolve it to something we know about by looking at
4997     // the actual operand type.
4998     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4999       OpInfo.ConstraintCode = Repl;
5000       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5001     }
5002   }
5003 }
5004 
5005 /// Given an exact SDIV by a constant, create a multiplication
5006 /// with the multiplicative inverse of the constant.
5007 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5008                               const SDLoc &dl, SelectionDAG &DAG,
5009                               SmallVectorImpl<SDNode *> &Created) {
5010   SDValue Op0 = N->getOperand(0);
5011   SDValue Op1 = N->getOperand(1);
5012   EVT VT = N->getValueType(0);
5013   EVT SVT = VT.getScalarType();
5014   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5015   EVT ShSVT = ShVT.getScalarType();
5016 
5017   bool UseSRA = false;
5018   SmallVector<SDValue, 16> Shifts, Factors;
5019 
5020   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5021     if (C->isNullValue())
5022       return false;
5023     APInt Divisor = C->getAPIntValue();
5024     unsigned Shift = Divisor.countTrailingZeros();
5025     if (Shift) {
5026       Divisor.ashrInPlace(Shift);
5027       UseSRA = true;
5028     }
5029     // Calculate the multiplicative inverse, using Newton's method.
5030     APInt t;
5031     APInt Factor = Divisor;
5032     while ((t = Divisor * Factor) != 1)
5033       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5034     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5035     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5036     return true;
5037   };
5038 
5039   // Collect all magic values from the build vector.
5040   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5041     return SDValue();
5042 
5043   SDValue Shift, Factor;
5044   if (VT.isVector()) {
5045     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5046     Factor = DAG.getBuildVector(VT, dl, Factors);
5047   } else {
5048     Shift = Shifts[0];
5049     Factor = Factors[0];
5050   }
5051 
5052   SDValue Res = Op0;
5053 
5054   // Shift the value upfront if it is even, so the LSB is one.
5055   if (UseSRA) {
5056     // TODO: For UDIV use SRL instead of SRA.
5057     SDNodeFlags Flags;
5058     Flags.setExact(true);
5059     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5060     Created.push_back(Res.getNode());
5061   }
5062 
5063   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5064 }
5065 
5066 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5067                               SelectionDAG &DAG,
5068                               SmallVectorImpl<SDNode *> &Created) const {
5069   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5070   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5071   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5072     return SDValue(N, 0); // Lower SDIV as SDIV
5073   return SDValue();
5074 }
5075 
5076 /// Given an ISD::SDIV node expressing a divide by constant,
5077 /// return a DAG expression to select that will generate the same value by
5078 /// multiplying by a magic number.
5079 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5080 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5081                                   bool IsAfterLegalization,
5082                                   SmallVectorImpl<SDNode *> &Created) const {
5083   SDLoc dl(N);
5084   EVT VT = N->getValueType(0);
5085   EVT SVT = VT.getScalarType();
5086   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5087   EVT ShSVT = ShVT.getScalarType();
5088   unsigned EltBits = VT.getScalarSizeInBits();
5089 
5090   // Check to see if we can do this.
5091   // FIXME: We should be more aggressive here.
5092   if (!isTypeLegal(VT))
5093     return SDValue();
5094 
5095   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5096   if (N->getFlags().hasExact())
5097     return BuildExactSDIV(*this, N, dl, DAG, Created);
5098 
5099   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5100 
5101   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5102     if (C->isNullValue())
5103       return false;
5104 
5105     const APInt &Divisor = C->getAPIntValue();
5106     APInt::ms magics = Divisor.magic();
5107     int NumeratorFactor = 0;
5108     int ShiftMask = -1;
5109 
5110     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5111       // If d is +1/-1, we just multiply the numerator by +1/-1.
5112       NumeratorFactor = Divisor.getSExtValue();
5113       magics.m = 0;
5114       magics.s = 0;
5115       ShiftMask = 0;
5116     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5117       // If d > 0 and m < 0, add the numerator.
5118       NumeratorFactor = 1;
5119     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5120       // If d < 0 and m > 0, subtract the numerator.
5121       NumeratorFactor = -1;
5122     }
5123 
5124     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5125     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5126     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5127     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5128     return true;
5129   };
5130 
5131   SDValue N0 = N->getOperand(0);
5132   SDValue N1 = N->getOperand(1);
5133 
5134   // Collect the shifts / magic values from each element.
5135   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5136     return SDValue();
5137 
5138   SDValue MagicFactor, Factor, Shift, ShiftMask;
5139   if (VT.isVector()) {
5140     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5141     Factor = DAG.getBuildVector(VT, dl, Factors);
5142     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5143     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5144   } else {
5145     MagicFactor = MagicFactors[0];
5146     Factor = Factors[0];
5147     Shift = Shifts[0];
5148     ShiftMask = ShiftMasks[0];
5149   }
5150 
5151   // Multiply the numerator (operand 0) by the magic value.
5152   // FIXME: We should support doing a MUL in a wider type.
5153   SDValue Q;
5154   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
5155                           : isOperationLegalOrCustom(ISD::MULHS, VT))
5156     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
5157   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
5158                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5159     SDValue LoHi =
5160         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
5161     Q = SDValue(LoHi.getNode(), 1);
5162   } else
5163     return SDValue(); // No mulhs or equivalent.
5164   Created.push_back(Q.getNode());
5165 
5166   // (Optionally) Add/subtract the numerator using Factor.
5167   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5168   Created.push_back(Factor.getNode());
5169   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5170   Created.push_back(Q.getNode());
5171 
5172   // Shift right algebraic by shift value.
5173   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5174   Created.push_back(Q.getNode());
5175 
5176   // Extract the sign bit, mask it and add it to the quotient.
5177   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5178   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5179   Created.push_back(T.getNode());
5180   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5181   Created.push_back(T.getNode());
5182   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5183 }
5184 
5185 /// Given an ISD::UDIV node expressing a divide by constant,
5186 /// return a DAG expression to select that will generate the same value by
5187 /// multiplying by a magic number.
5188 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5189 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5190                                   bool IsAfterLegalization,
5191                                   SmallVectorImpl<SDNode *> &Created) const {
5192   SDLoc dl(N);
5193   EVT VT = N->getValueType(0);
5194   EVT SVT = VT.getScalarType();
5195   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5196   EVT ShSVT = ShVT.getScalarType();
5197   unsigned EltBits = VT.getScalarSizeInBits();
5198 
5199   // Check to see if we can do this.
5200   // FIXME: We should be more aggressive here.
5201   if (!isTypeLegal(VT))
5202     return SDValue();
5203 
5204   bool UseNPQ = false;
5205   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5206 
5207   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5208     if (C->isNullValue())
5209       return false;
5210     // FIXME: We should use a narrower constant when the upper
5211     // bits are known to be zero.
5212     APInt Divisor = C->getAPIntValue();
5213     APInt::mu magics = Divisor.magicu();
5214     unsigned PreShift = 0, PostShift = 0;
5215 
5216     // If the divisor is even, we can avoid using the expensive fixup by
5217     // shifting the divided value upfront.
5218     if (magics.a != 0 && !Divisor[0]) {
5219       PreShift = Divisor.countTrailingZeros();
5220       // Get magic number for the shifted divisor.
5221       magics = Divisor.lshr(PreShift).magicu(PreShift);
5222       assert(magics.a == 0 && "Should use cheap fixup now");
5223     }
5224 
5225     APInt Magic = magics.m;
5226 
5227     unsigned SelNPQ;
5228     if (magics.a == 0 || Divisor.isOneValue()) {
5229       assert(magics.s < Divisor.getBitWidth() &&
5230              "We shouldn't generate an undefined shift!");
5231       PostShift = magics.s;
5232       SelNPQ = false;
5233     } else {
5234       PostShift = magics.s - 1;
5235       SelNPQ = true;
5236     }
5237 
5238     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5239     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5240     NPQFactors.push_back(
5241         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5242                                : APInt::getNullValue(EltBits),
5243                         dl, SVT));
5244     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5245     UseNPQ |= SelNPQ;
5246     return true;
5247   };
5248 
5249   SDValue N0 = N->getOperand(0);
5250   SDValue N1 = N->getOperand(1);
5251 
5252   // Collect the shifts/magic values from each element.
5253   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5254     return SDValue();
5255 
5256   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5257   if (VT.isVector()) {
5258     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5259     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5260     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5261     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5262   } else {
5263     PreShift = PreShifts[0];
5264     MagicFactor = MagicFactors[0];
5265     PostShift = PostShifts[0];
5266   }
5267 
5268   SDValue Q = N0;
5269   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5270   Created.push_back(Q.getNode());
5271 
5272   // FIXME: We should support doing a MUL in a wider type.
5273   auto GetMULHU = [&](SDValue X, SDValue Y) {
5274     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5275                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5276       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5277     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5278                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5279       SDValue LoHi =
5280           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5281       return SDValue(LoHi.getNode(), 1);
5282     }
5283     return SDValue(); // No mulhu or equivalent
5284   };
5285 
5286   // Multiply the numerator (operand 0) by the magic value.
5287   Q = GetMULHU(Q, MagicFactor);
5288   if (!Q)
5289     return SDValue();
5290 
5291   Created.push_back(Q.getNode());
5292 
5293   if (UseNPQ) {
5294     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5295     Created.push_back(NPQ.getNode());
5296 
5297     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5298     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5299     if (VT.isVector())
5300       NPQ = GetMULHU(NPQ, NPQFactor);
5301     else
5302       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5303 
5304     Created.push_back(NPQ.getNode());
5305 
5306     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5307     Created.push_back(Q.getNode());
5308   }
5309 
5310   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5311   Created.push_back(Q.getNode());
5312 
5313   SDValue One = DAG.getConstant(1, dl, VT);
5314   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5315   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5316 }
5317 
5318 /// If all values in Values that *don't* match the predicate are same 'splat'
5319 /// value, then replace all values with that splat value.
5320 /// Else, if AlternativeReplacement was provided, then replace all values that
5321 /// do match predicate with AlternativeReplacement value.
5322 static void
5323 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5324                           std::function<bool(SDValue)> Predicate,
5325                           SDValue AlternativeReplacement = SDValue()) {
5326   SDValue Replacement;
5327   // Is there a value for which the Predicate does *NOT* match? What is it?
5328   auto SplatValue = llvm::find_if_not(Values, Predicate);
5329   if (SplatValue != Values.end()) {
5330     // Does Values consist only of SplatValue's and values matching Predicate?
5331     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5332           return Value == *SplatValue || Predicate(Value);
5333         })) // Then we shall replace values matching predicate with SplatValue.
5334       Replacement = *SplatValue;
5335   }
5336   if (!Replacement) {
5337     // Oops, we did not find the "baseline" splat value.
5338     if (!AlternativeReplacement)
5339       return; // Nothing to do.
5340     // Let's replace with provided value then.
5341     Replacement = AlternativeReplacement;
5342   }
5343   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5344 }
5345 
5346 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5347 /// where the divisor is constant and the comparison target is zero,
5348 /// return a DAG expression that will generate the same comparison result
5349 /// using only multiplications, additions and shifts/rotations.
5350 /// Ref: "Hacker's Delight" 10-17.
5351 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5352                                         SDValue CompTargetNode,
5353                                         ISD::CondCode Cond,
5354                                         DAGCombinerInfo &DCI,
5355                                         const SDLoc &DL) const {
5356   SmallVector<SDNode *, 5> Built;
5357   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5358                                          DCI, DL, Built)) {
5359     for (SDNode *N : Built)
5360       DCI.AddToWorklist(N);
5361     return Folded;
5362   }
5363 
5364   return SDValue();
5365 }
5366 
5367 SDValue
5368 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5369                                   SDValue CompTargetNode, ISD::CondCode Cond,
5370                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5371                                   SmallVectorImpl<SDNode *> &Created) const {
5372   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5373   // - D must be constant, with D = D0 * 2^K where D0 is odd
5374   // - P is the multiplicative inverse of D0 modulo 2^W
5375   // - Q = floor(((2^W) - 1) / D)
5376   // where W is the width of the common type of N and D.
5377   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5378          "Only applicable for (in)equality comparisons.");
5379 
5380   SelectionDAG &DAG = DCI.DAG;
5381 
5382   EVT VT = REMNode.getValueType();
5383   EVT SVT = VT.getScalarType();
5384   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5385   EVT ShSVT = ShVT.getScalarType();
5386 
5387   // If MUL is unavailable, we cannot proceed in any case.
5388   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5389     return SDValue();
5390 
5391   bool ComparingWithAllZeros = true;
5392   bool AllComparisonsWithNonZerosAreTautological = true;
5393   bool HadTautologicalLanes = false;
5394   bool AllLanesAreTautological = true;
5395   bool HadEvenDivisor = false;
5396   bool AllDivisorsArePowerOfTwo = true;
5397   bool HadTautologicalInvertedLanes = false;
5398   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5399 
5400   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5401     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5402     if (CDiv->isNullValue())
5403       return false;
5404 
5405     const APInt &D = CDiv->getAPIntValue();
5406     const APInt &Cmp = CCmp->getAPIntValue();
5407 
5408     ComparingWithAllZeros &= Cmp.isNullValue();
5409 
5410     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5411     // if C2 is not less than C1, the comparison is always false.
5412     // But we will only be able to produce the comparison that will give the
5413     // opposive tautological answer. So this lane would need to be fixed up.
5414     bool TautologicalInvertedLane = D.ule(Cmp);
5415     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5416 
5417     // If all lanes are tautological (either all divisors are ones, or divisor
5418     // is not greater than the constant we are comparing with),
5419     // we will prefer to avoid the fold.
5420     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5421     HadTautologicalLanes |= TautologicalLane;
5422     AllLanesAreTautological &= TautologicalLane;
5423 
5424     // If we are comparing with non-zero, we need'll need  to subtract said
5425     // comparison value from the LHS. But there is no point in doing that if
5426     // every lane where we are comparing with non-zero is tautological..
5427     if (!Cmp.isNullValue())
5428       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5429 
5430     // Decompose D into D0 * 2^K
5431     unsigned K = D.countTrailingZeros();
5432     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5433     APInt D0 = D.lshr(K);
5434 
5435     // D is even if it has trailing zeros.
5436     HadEvenDivisor |= (K != 0);
5437     // D is a power-of-two if D0 is one.
5438     // If all divisors are power-of-two, we will prefer to avoid the fold.
5439     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5440 
5441     // P = inv(D0, 2^W)
5442     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5443     unsigned W = D.getBitWidth();
5444     APInt P = D0.zext(W + 1)
5445                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5446                   .trunc(W);
5447     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5448     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5449 
5450     // Q = floor((2^W - 1) u/ D)
5451     // R = ((2^W - 1) u% D)
5452     APInt Q, R;
5453     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5454 
5455     // If we are comparing with zero, then that comparison constant is okay,
5456     // else it may need to be one less than that.
5457     if (Cmp.ugt(R))
5458       Q -= 1;
5459 
5460     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5461            "We are expecting that K is always less than all-ones for ShSVT");
5462 
5463     // If the lane is tautological the result can be constant-folded.
5464     if (TautologicalLane) {
5465       // Set P and K amount to a bogus values so we can try to splat them.
5466       P = 0;
5467       K = -1;
5468       // And ensure that comparison constant is tautological,
5469       // it will always compare true/false.
5470       Q = -1;
5471     }
5472 
5473     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5474     KAmts.push_back(
5475         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5476     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5477     return true;
5478   };
5479 
5480   SDValue N = REMNode.getOperand(0);
5481   SDValue D = REMNode.getOperand(1);
5482 
5483   // Collect the values from each element.
5484   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5485     return SDValue();
5486 
5487   // If all lanes are tautological, the result can be constant-folded.
5488   if (AllLanesAreTautological)
5489     return SDValue();
5490 
5491   // If this is a urem by a powers-of-two, avoid the fold since it can be
5492   // best implemented as a bit test.
5493   if (AllDivisorsArePowerOfTwo)
5494     return SDValue();
5495 
5496   SDValue PVal, KVal, QVal;
5497   if (VT.isVector()) {
5498     if (HadTautologicalLanes) {
5499       // Try to turn PAmts into a splat, since we don't care about the values
5500       // that are currently '0'. If we can't, just keep '0'`s.
5501       turnVectorIntoSplatVector(PAmts, isNullConstant);
5502       // Try to turn KAmts into a splat, since we don't care about the values
5503       // that are currently '-1'. If we can't, change them to '0'`s.
5504       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5505                                 DAG.getConstant(0, DL, ShSVT));
5506     }
5507 
5508     PVal = DAG.getBuildVector(VT, DL, PAmts);
5509     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5510     QVal = DAG.getBuildVector(VT, DL, QAmts);
5511   } else {
5512     PVal = PAmts[0];
5513     KVal = KAmts[0];
5514     QVal = QAmts[0];
5515   }
5516 
5517   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5518     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5519       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5520     assert(CompTargetNode.getValueType() == N.getValueType() &&
5521            "Expecting that the types on LHS and RHS of comparisons match.");
5522     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5523   }
5524 
5525   // (mul N, P)
5526   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5527   Created.push_back(Op0.getNode());
5528 
5529   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5530   // divisors as a performance improvement, since rotating by 0 is a no-op.
5531   if (HadEvenDivisor) {
5532     // We need ROTR to do this.
5533     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5534       return SDValue();
5535     SDNodeFlags Flags;
5536     Flags.setExact(true);
5537     // UREM: (rotr (mul N, P), K)
5538     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5539     Created.push_back(Op0.getNode());
5540   }
5541 
5542   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5543   SDValue NewCC =
5544       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5545                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5546   if (!HadTautologicalInvertedLanes)
5547     return NewCC;
5548 
5549   // If any lanes previously compared always-false, the NewCC will give
5550   // always-true result for them, so we need to fixup those lanes.
5551   // Or the other way around for inequality predicate.
5552   assert(VT.isVector() && "Can/should only get here for vectors.");
5553   Created.push_back(NewCC.getNode());
5554 
5555   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5556   // if C2 is not less than C1, the comparison is always false.
5557   // But we have produced the comparison that will give the
5558   // opposive tautological answer. So these lanes would need to be fixed up.
5559   SDValue TautologicalInvertedChannels =
5560       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5561   Created.push_back(TautologicalInvertedChannels.getNode());
5562 
5563   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5564     // If we have a vector select, let's replace the comparison results in the
5565     // affected lanes with the correct tautological result.
5566     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5567                                               DL, SETCCVT, SETCCVT);
5568     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5569                        Replacement, NewCC);
5570   }
5571 
5572   // Else, we can just invert the comparison result in the appropriate lanes.
5573   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5574     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5575                        TautologicalInvertedChannels);
5576 
5577   return SDValue(); // Don't know how to lower.
5578 }
5579 
5580 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5581 /// where the divisor is constant and the comparison target is zero,
5582 /// return a DAG expression that will generate the same comparison result
5583 /// using only multiplications, additions and shifts/rotations.
5584 /// Ref: "Hacker's Delight" 10-17.
5585 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5586                                         SDValue CompTargetNode,
5587                                         ISD::CondCode Cond,
5588                                         DAGCombinerInfo &DCI,
5589                                         const SDLoc &DL) const {
5590   SmallVector<SDNode *, 7> Built;
5591   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5592                                          DCI, DL, Built)) {
5593     assert(Built.size() <= 7 && "Max size prediction failed.");
5594     for (SDNode *N : Built)
5595       DCI.AddToWorklist(N);
5596     return Folded;
5597   }
5598 
5599   return SDValue();
5600 }
5601 
5602 SDValue
5603 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5604                                   SDValue CompTargetNode, ISD::CondCode Cond,
5605                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5606                                   SmallVectorImpl<SDNode *> &Created) const {
5607   // Fold:
5608   //   (seteq/ne (srem N, D), 0)
5609   // To:
5610   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5611   //
5612   // - D must be constant, with D = D0 * 2^K where D0 is odd
5613   // - P is the multiplicative inverse of D0 modulo 2^W
5614   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5615   // - Q = floor((2 * A) / (2^K))
5616   // where W is the width of the common type of N and D.
5617   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5618          "Only applicable for (in)equality comparisons.");
5619 
5620   SelectionDAG &DAG = DCI.DAG;
5621 
5622   EVT VT = REMNode.getValueType();
5623   EVT SVT = VT.getScalarType();
5624   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5625   EVT ShSVT = ShVT.getScalarType();
5626 
5627   // If MUL is unavailable, we cannot proceed in any case.
5628   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5629     return SDValue();
5630 
5631   // TODO: Could support comparing with non-zero too.
5632   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5633   if (!CompTarget || !CompTarget->isNullValue())
5634     return SDValue();
5635 
5636   bool HadIntMinDivisor = false;
5637   bool HadOneDivisor = false;
5638   bool AllDivisorsAreOnes = true;
5639   bool HadEvenDivisor = false;
5640   bool NeedToApplyOffset = false;
5641   bool AllDivisorsArePowerOfTwo = true;
5642   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5643 
5644   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5645     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5646     if (C->isNullValue())
5647       return false;
5648 
5649     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5650 
5651     // WARNING: this fold is only valid for positive divisors!
5652     APInt D = C->getAPIntValue();
5653     if (D.isNegative())
5654       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5655 
5656     HadIntMinDivisor |= D.isMinSignedValue();
5657 
5658     // If all divisors are ones, we will prefer to avoid the fold.
5659     HadOneDivisor |= D.isOneValue();
5660     AllDivisorsAreOnes &= D.isOneValue();
5661 
5662     // Decompose D into D0 * 2^K
5663     unsigned K = D.countTrailingZeros();
5664     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5665     APInt D0 = D.lshr(K);
5666 
5667     if (!D.isMinSignedValue()) {
5668       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5669       // we don't care about this lane in this fold, we'll special-handle it.
5670       HadEvenDivisor |= (K != 0);
5671     }
5672 
5673     // D is a power-of-two if D0 is one. This includes INT_MIN.
5674     // If all divisors are power-of-two, we will prefer to avoid the fold.
5675     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5676 
5677     // P = inv(D0, 2^W)
5678     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5679     unsigned W = D.getBitWidth();
5680     APInt P = D0.zext(W + 1)
5681                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5682                   .trunc(W);
5683     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5684     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5685 
5686     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5687     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5688     A.clearLowBits(K);
5689 
5690     if (!D.isMinSignedValue()) {
5691       // If divisor INT_MIN, then we don't care about this lane in this fold,
5692       // we'll special-handle it.
5693       NeedToApplyOffset |= A != 0;
5694     }
5695 
5696     // Q = floor((2 * A) / (2^K))
5697     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5698 
5699     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5700            "We are expecting that A is always less than all-ones for SVT");
5701     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5702            "We are expecting that K is always less than all-ones for ShSVT");
5703 
5704     // If the divisor is 1 the result can be constant-folded. Likewise, we
5705     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5706     if (D.isOneValue()) {
5707       // Set P, A and K to a bogus values so we can try to splat them.
5708       P = 0;
5709       A = -1;
5710       K = -1;
5711 
5712       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5713       Q = -1;
5714     }
5715 
5716     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5717     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5718     KAmts.push_back(
5719         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5720     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5721     return true;
5722   };
5723 
5724   SDValue N = REMNode.getOperand(0);
5725   SDValue D = REMNode.getOperand(1);
5726 
5727   // Collect the values from each element.
5728   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5729     return SDValue();
5730 
5731   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5732   if (AllDivisorsAreOnes)
5733     return SDValue();
5734 
5735   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5736   // since it can be best implemented as a bit test.
5737   if (AllDivisorsArePowerOfTwo)
5738     return SDValue();
5739 
5740   SDValue PVal, AVal, KVal, QVal;
5741   if (VT.isVector()) {
5742     if (HadOneDivisor) {
5743       // Try to turn PAmts into a splat, since we don't care about the values
5744       // that are currently '0'. If we can't, just keep '0'`s.
5745       turnVectorIntoSplatVector(PAmts, isNullConstant);
5746       // Try to turn AAmts into a splat, since we don't care about the
5747       // values that are currently '-1'. If we can't, change them to '0'`s.
5748       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5749                                 DAG.getConstant(0, DL, SVT));
5750       // Try to turn KAmts into a splat, since we don't care about the values
5751       // that are currently '-1'. If we can't, change them to '0'`s.
5752       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5753                                 DAG.getConstant(0, DL, ShSVT));
5754     }
5755 
5756     PVal = DAG.getBuildVector(VT, DL, PAmts);
5757     AVal = DAG.getBuildVector(VT, DL, AAmts);
5758     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5759     QVal = DAG.getBuildVector(VT, DL, QAmts);
5760   } else {
5761     PVal = PAmts[0];
5762     AVal = AAmts[0];
5763     KVal = KAmts[0];
5764     QVal = QAmts[0];
5765   }
5766 
5767   // (mul N, P)
5768   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5769   Created.push_back(Op0.getNode());
5770 
5771   if (NeedToApplyOffset) {
5772     // We need ADD to do this.
5773     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5774       return SDValue();
5775 
5776     // (add (mul N, P), A)
5777     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5778     Created.push_back(Op0.getNode());
5779   }
5780 
5781   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5782   // divisors as a performance improvement, since rotating by 0 is a no-op.
5783   if (HadEvenDivisor) {
5784     // We need ROTR to do this.
5785     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5786       return SDValue();
5787     SDNodeFlags Flags;
5788     Flags.setExact(true);
5789     // SREM: (rotr (add (mul N, P), A), K)
5790     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5791     Created.push_back(Op0.getNode());
5792   }
5793 
5794   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5795   SDValue Fold =
5796       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5797                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5798 
5799   // If we didn't have lanes with INT_MIN divisor, then we're done.
5800   if (!HadIntMinDivisor)
5801     return Fold;
5802 
5803   // That fold is only valid for positive divisors. Which effectively means,
5804   // it is invalid for INT_MIN divisors. So if we have such a lane,
5805   // we must fix-up results for said lanes.
5806   assert(VT.isVector() && "Can/should only get here for vectors.");
5807 
5808   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5809       !isOperationLegalOrCustom(ISD::AND, VT) ||
5810       !isOperationLegalOrCustom(Cond, VT) ||
5811       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5812     return SDValue();
5813 
5814   Created.push_back(Fold.getNode());
5815 
5816   SDValue IntMin = DAG.getConstant(
5817       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5818   SDValue IntMax = DAG.getConstant(
5819       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5820   SDValue Zero =
5821       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5822 
5823   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5824   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5825   Created.push_back(DivisorIsIntMin.getNode());
5826 
5827   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5828   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5829   Created.push_back(Masked.getNode());
5830   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5831   Created.push_back(MaskedIsZero.getNode());
5832 
5833   // To produce final result we need to blend 2 vectors: 'SetCC' and
5834   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5835   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5836   // constant-folded, select can get lowered to a shuffle with constant mask.
5837   SDValue Blended =
5838       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5839 
5840   return Blended;
5841 }
5842 
5843 bool TargetLowering::
5844 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5845   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5846     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5847                                 "be a constant integer");
5848     return true;
5849   }
5850 
5851   return false;
5852 }
5853 
5854 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5855                                              bool LegalOps, bool OptForSize,
5856                                              NegatibleCost &Cost,
5857                                              unsigned Depth) const {
5858   // fneg is removable even if it has multiple uses.
5859   if (Op.getOpcode() == ISD::FNEG) {
5860     Cost = NegatibleCost::Cheaper;
5861     return Op.getOperand(0);
5862   }
5863 
5864   // Don't recurse exponentially.
5865   if (Depth > SelectionDAG::MaxRecursionDepth)
5866     return SDValue();
5867 
5868   // Pre-increment recursion depth for use in recursive calls.
5869   ++Depth;
5870   const SDNodeFlags Flags = Op->getFlags();
5871   const TargetOptions &Options = DAG.getTarget().Options;
5872   EVT VT = Op.getValueType();
5873   unsigned Opcode = Op.getOpcode();
5874 
5875   // Don't allow anything with multiple uses unless we know it is free.
5876   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5877     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5878                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5879     if (!IsFreeExtend)
5880       return SDValue();
5881   }
5882 
5883   auto RemoveDeadNode = [&](SDValue N) {
5884     if (N && N.getNode()->use_empty())
5885       DAG.RemoveDeadNode(N.getNode());
5886   };
5887 
5888   SDLoc DL(Op);
5889 
5890   switch (Opcode) {
5891   case ISD::ConstantFP: {
5892     // Don't invert constant FP values after legalization unless the target says
5893     // the negated constant is legal.
5894     bool IsOpLegal =
5895         isOperationLegal(ISD::ConstantFP, VT) ||
5896         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5897                      OptForSize);
5898 
5899     if (LegalOps && !IsOpLegal)
5900       break;
5901 
5902     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5903     V.changeSign();
5904     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5905 
5906     // If we already have the use of the negated floating constant, it is free
5907     // to negate it even it has multiple uses.
5908     if (!Op.hasOneUse() && CFP.use_empty())
5909       break;
5910     Cost = NegatibleCost::Neutral;
5911     return CFP;
5912   }
5913   case ISD::BUILD_VECTOR: {
5914     // Only permit BUILD_VECTOR of constants.
5915     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5916           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5917         }))
5918       break;
5919 
5920     bool IsOpLegal =
5921         (isOperationLegal(ISD::ConstantFP, VT) &&
5922          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5923         llvm::all_of(Op->op_values(), [&](SDValue N) {
5924           return N.isUndef() ||
5925                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5926                               OptForSize);
5927         });
5928 
5929     if (LegalOps && !IsOpLegal)
5930       break;
5931 
5932     SmallVector<SDValue, 4> Ops;
5933     for (SDValue C : Op->op_values()) {
5934       if (C.isUndef()) {
5935         Ops.push_back(C);
5936         continue;
5937       }
5938       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5939       V.changeSign();
5940       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5941     }
5942     Cost = NegatibleCost::Neutral;
5943     return DAG.getBuildVector(VT, DL, Ops);
5944   }
5945   case ISD::FADD: {
5946     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5947       break;
5948 
5949     // After operation legalization, it might not be legal to create new FSUBs.
5950     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5951       break;
5952     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5953 
5954     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5955     NegatibleCost CostX = NegatibleCost::Expensive;
5956     SDValue NegX =
5957         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5958     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5959     NegatibleCost CostY = NegatibleCost::Expensive;
5960     SDValue NegY =
5961         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5962 
5963     // Negate the X if its cost is less or equal than Y.
5964     if (NegX && (CostX <= CostY)) {
5965       Cost = CostX;
5966       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5967       if (NegY != N)
5968         RemoveDeadNode(NegY);
5969       return N;
5970     }
5971 
5972     // Negate the Y if it is not expensive.
5973     if (NegY) {
5974       Cost = CostY;
5975       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5976       if (NegX != N)
5977         RemoveDeadNode(NegX);
5978       return N;
5979     }
5980     break;
5981   }
5982   case ISD::FSUB: {
5983     // We can't turn -(A-B) into B-A when we honor signed zeros.
5984     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5985       break;
5986 
5987     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5988     // fold (fneg (fsub 0, Y)) -> Y
5989     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5990       if (C->isZero()) {
5991         Cost = NegatibleCost::Cheaper;
5992         return Y;
5993       }
5994 
5995     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5996     Cost = NegatibleCost::Neutral;
5997     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5998   }
5999   case ISD::FMUL:
6000   case ISD::FDIV: {
6001     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6002 
6003     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6004     NegatibleCost CostX = NegatibleCost::Expensive;
6005     SDValue NegX =
6006         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6007     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6008     NegatibleCost CostY = NegatibleCost::Expensive;
6009     SDValue NegY =
6010         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6011 
6012     // Negate the X if its cost is less or equal than Y.
6013     if (NegX && (CostX <= CostY)) {
6014       Cost = CostX;
6015       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6016       if (NegY != N)
6017         RemoveDeadNode(NegY);
6018       return N;
6019     }
6020 
6021     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6022     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6023       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6024         break;
6025 
6026     // Negate the Y if it is not expensive.
6027     if (NegY) {
6028       Cost = CostY;
6029       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6030       if (NegX != N)
6031         RemoveDeadNode(NegX);
6032       return N;
6033     }
6034     break;
6035   }
6036   case ISD::FMA:
6037   case ISD::FMAD: {
6038     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6039       break;
6040 
6041     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6042     NegatibleCost CostZ = NegatibleCost::Expensive;
6043     SDValue NegZ =
6044         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6045     // Give up if fail to negate the Z.
6046     if (!NegZ)
6047       break;
6048 
6049     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6050     NegatibleCost CostX = NegatibleCost::Expensive;
6051     SDValue NegX =
6052         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6053     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6054     NegatibleCost CostY = NegatibleCost::Expensive;
6055     SDValue NegY =
6056         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6057 
6058     // Negate the X if its cost is less or equal than Y.
6059     if (NegX && (CostX <= CostY)) {
6060       Cost = std::min(CostX, CostZ);
6061       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6062       if (NegY != N)
6063         RemoveDeadNode(NegY);
6064       return N;
6065     }
6066 
6067     // Negate the Y if it is not expensive.
6068     if (NegY) {
6069       Cost = std::min(CostY, CostZ);
6070       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6071       if (NegX != N)
6072         RemoveDeadNode(NegX);
6073       return N;
6074     }
6075     break;
6076   }
6077 
6078   case ISD::FP_EXTEND:
6079   case ISD::FSIN:
6080     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6081                                             OptForSize, Cost, Depth))
6082       return DAG.getNode(Opcode, DL, VT, NegV);
6083     break;
6084   case ISD::FP_ROUND:
6085     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6086                                             OptForSize, Cost, Depth))
6087       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6088     break;
6089   }
6090 
6091   return SDValue();
6092 }
6093 
6094 //===----------------------------------------------------------------------===//
6095 // Legalization Utilities
6096 //===----------------------------------------------------------------------===//
6097 
6098 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6099                                     SDValue LHS, SDValue RHS,
6100                                     SmallVectorImpl<SDValue> &Result,
6101                                     EVT HiLoVT, SelectionDAG &DAG,
6102                                     MulExpansionKind Kind, SDValue LL,
6103                                     SDValue LH, SDValue RL, SDValue RH) const {
6104   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6105          Opcode == ISD::SMUL_LOHI);
6106 
6107   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6108                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6109   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6110                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6111   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6112                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6113   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6114                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6115 
6116   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6117     return false;
6118 
6119   unsigned OuterBitSize = VT.getScalarSizeInBits();
6120   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6121 
6122   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6123   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6124          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6125 
6126   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6127   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6128                           bool Signed) -> bool {
6129     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6130       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6131       Hi = SDValue(Lo.getNode(), 1);
6132       return true;
6133     }
6134     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6135       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6136       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6137       return true;
6138     }
6139     return false;
6140   };
6141 
6142   SDValue Lo, Hi;
6143 
6144   if (!LL.getNode() && !RL.getNode() &&
6145       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6146     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6147     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6148   }
6149 
6150   if (!LL.getNode())
6151     return false;
6152 
6153   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6154   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6155       DAG.MaskedValueIsZero(RHS, HighMask)) {
6156     // The inputs are both zero-extended.
6157     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6158       Result.push_back(Lo);
6159       Result.push_back(Hi);
6160       if (Opcode != ISD::MUL) {
6161         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6162         Result.push_back(Zero);
6163         Result.push_back(Zero);
6164       }
6165       return true;
6166     }
6167   }
6168 
6169   if (!VT.isVector() && Opcode == ISD::MUL &&
6170       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6171       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6172     // The input values are both sign-extended.
6173     // TODO non-MUL case?
6174     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6175       Result.push_back(Lo);
6176       Result.push_back(Hi);
6177       return true;
6178     }
6179   }
6180 
6181   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6182   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6183   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6184     // FIXME getShiftAmountTy does not always return a sensible result when VT
6185     // is an illegal type, and so the type may be too small to fit the shift
6186     // amount. Override it with i32. The shift will have to be legalized.
6187     ShiftAmountTy = MVT::i32;
6188   }
6189   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6190 
6191   if (!LH.getNode() && !RH.getNode() &&
6192       isOperationLegalOrCustom(ISD::SRL, VT) &&
6193       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6194     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6195     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6196     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6197     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6198   }
6199 
6200   if (!LH.getNode())
6201     return false;
6202 
6203   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6204     return false;
6205 
6206   Result.push_back(Lo);
6207 
6208   if (Opcode == ISD::MUL) {
6209     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6210     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6211     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6212     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6213     Result.push_back(Hi);
6214     return true;
6215   }
6216 
6217   // Compute the full width result.
6218   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6219     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6220     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6221     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6222     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6223   };
6224 
6225   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6226   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6227     return false;
6228 
6229   // This is effectively the add part of a multiply-add of half-sized operands,
6230   // so it cannot overflow.
6231   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6232 
6233   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6234     return false;
6235 
6236   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6237   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6238 
6239   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6240                   isOperationLegalOrCustom(ISD::ADDE, VT));
6241   if (UseGlue)
6242     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6243                        Merge(Lo, Hi));
6244   else
6245     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6246                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6247 
6248   SDValue Carry = Next.getValue(1);
6249   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6250   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6251 
6252   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6253     return false;
6254 
6255   if (UseGlue)
6256     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6257                      Carry);
6258   else
6259     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6260                      Zero, Carry);
6261 
6262   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6263 
6264   if (Opcode == ISD::SMUL_LOHI) {
6265     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6266                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6267     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6268 
6269     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6270                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6271     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6272   }
6273 
6274   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6275   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6276   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6277   return true;
6278 }
6279 
6280 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6281                                SelectionDAG &DAG, MulExpansionKind Kind,
6282                                SDValue LL, SDValue LH, SDValue RL,
6283                                SDValue RH) const {
6284   SmallVector<SDValue, 2> Result;
6285   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6286                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6287                            DAG, Kind, LL, LH, RL, RH);
6288   if (Ok) {
6289     assert(Result.size() == 2);
6290     Lo = Result[0];
6291     Hi = Result[1];
6292   }
6293   return Ok;
6294 }
6295 
6296 // Check that (every element of) Z is undef or not an exact multiple of BW.
6297 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6298   return ISD::matchUnaryPredicate(
6299       Z,
6300       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6301       true);
6302 }
6303 
6304 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6305                                        SelectionDAG &DAG) const {
6306   EVT VT = Node->getValueType(0);
6307 
6308   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6309                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6310                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6311                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6312     return false;
6313 
6314   SDValue X = Node->getOperand(0);
6315   SDValue Y = Node->getOperand(1);
6316   SDValue Z = Node->getOperand(2);
6317 
6318   unsigned BW = VT.getScalarSizeInBits();
6319   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6320   SDLoc DL(SDValue(Node, 0));
6321 
6322   EVT ShVT = Z.getValueType();
6323 
6324   // If a funnel shift in the other direction is more supported, use it.
6325   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6326   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6327       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6328     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6329       // fshl X, Y, Z -> fshr X, Y, -Z
6330       // fshr X, Y, Z -> fshl X, Y, -Z
6331       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6332       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6333     } else {
6334       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6335       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6336       SDValue One = DAG.getConstant(1, DL, ShVT);
6337       if (IsFSHL) {
6338         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6339         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6340       } else {
6341         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6342         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6343       }
6344       Z = DAG.getNOT(DL, Z, ShVT);
6345     }
6346     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6347     return true;
6348   }
6349 
6350   SDValue ShX, ShY;
6351   SDValue ShAmt, InvShAmt;
6352   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6353     // fshl: X << C | Y >> (BW - C)
6354     // fshr: X << (BW - C) | Y >> C
6355     // where C = Z % BW is not zero
6356     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6357     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6358     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6359     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6360     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6361   } else {
6362     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6363     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6364     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6365     if (isPowerOf2_32(BW)) {
6366       // Z % BW -> Z & (BW - 1)
6367       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6368       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6369       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6370     } else {
6371       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6372       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6373       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6374     }
6375 
6376     SDValue One = DAG.getConstant(1, DL, ShVT);
6377     if (IsFSHL) {
6378       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6379       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6380       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6381     } else {
6382       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6383       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6384       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6385     }
6386   }
6387   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6388   return true;
6389 }
6390 
6391 // TODO: Merge with expandFunnelShift.
6392 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6393                                SDValue &Result, SelectionDAG &DAG) const {
6394   EVT VT = Node->getValueType(0);
6395   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6396   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6397   SDValue Op0 = Node->getOperand(0);
6398   SDValue Op1 = Node->getOperand(1);
6399   SDLoc DL(SDValue(Node, 0));
6400 
6401   EVT ShVT = Op1.getValueType();
6402   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6403 
6404   // If a rotate in the other direction is supported, use it.
6405   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6406   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6407     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6408     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6409     return true;
6410   }
6411 
6412   if (!AllowVectorOps && VT.isVector() &&
6413       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6414        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6415        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6416        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6417        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6418     return false;
6419 
6420   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6421   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6422   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6423   SDValue ShVal;
6424   SDValue HsVal;
6425   if (isPowerOf2_32(EltSizeInBits)) {
6426     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6427     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6428     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6429     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6430     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6431     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6432     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6433   } else {
6434     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6435     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6436     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6437     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6438     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6439     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6440     SDValue One = DAG.getConstant(1, DL, ShVT);
6441     HsVal =
6442         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6443   }
6444   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6445   return true;
6446 }
6447 
6448 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6449                                       SelectionDAG &DAG) const {
6450   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6451   SDValue Src = Node->getOperand(OpNo);
6452   EVT SrcVT = Src.getValueType();
6453   EVT DstVT = Node->getValueType(0);
6454   SDLoc dl(SDValue(Node, 0));
6455 
6456   // FIXME: Only f32 to i64 conversions are supported.
6457   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6458     return false;
6459 
6460   if (Node->isStrictFPOpcode())
6461     // When a NaN is converted to an integer a trap is allowed. We can't
6462     // use this expansion here because it would eliminate that trap. Other
6463     // traps are also allowed and cannot be eliminated. See
6464     // IEEE 754-2008 sec 5.8.
6465     return false;
6466 
6467   // Expand f32 -> i64 conversion
6468   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6469   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6470   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6471   EVT IntVT = SrcVT.changeTypeToInteger();
6472   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6473 
6474   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6475   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6476   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6477   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6478   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6479   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6480 
6481   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6482 
6483   SDValue ExponentBits = DAG.getNode(
6484       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6485       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6486   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6487 
6488   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6489                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6490                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6491   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6492 
6493   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6494                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6495                           DAG.getConstant(0x00800000, dl, IntVT));
6496 
6497   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6498 
6499   R = DAG.getSelectCC(
6500       dl, Exponent, ExponentLoBit,
6501       DAG.getNode(ISD::SHL, dl, DstVT, R,
6502                   DAG.getZExtOrTrunc(
6503                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6504                       dl, IntShVT)),
6505       DAG.getNode(ISD::SRL, dl, DstVT, R,
6506                   DAG.getZExtOrTrunc(
6507                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6508                       dl, IntShVT)),
6509       ISD::SETGT);
6510 
6511   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6512                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6513 
6514   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6515                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6516   return true;
6517 }
6518 
6519 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6520                                       SDValue &Chain,
6521                                       SelectionDAG &DAG) const {
6522   SDLoc dl(SDValue(Node, 0));
6523   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6524   SDValue Src = Node->getOperand(OpNo);
6525 
6526   EVT SrcVT = Src.getValueType();
6527   EVT DstVT = Node->getValueType(0);
6528   EVT SetCCVT =
6529       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6530   EVT DstSetCCVT =
6531       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6532 
6533   // Only expand vector types if we have the appropriate vector bit operations.
6534   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6535                                                    ISD::FP_TO_SINT;
6536   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6537                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6538     return false;
6539 
6540   // If the maximum float value is smaller then the signed integer range,
6541   // the destination signmask can't be represented by the float, so we can
6542   // just use FP_TO_SINT directly.
6543   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6544   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6545   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6546   if (APFloat::opOverflow &
6547       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6548     if (Node->isStrictFPOpcode()) {
6549       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6550                            { Node->getOperand(0), Src });
6551       Chain = Result.getValue(1);
6552     } else
6553       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6554     return true;
6555   }
6556 
6557   // Don't expand it if there isn't cheap fsub instruction.
6558   if (!isOperationLegalOrCustom(
6559           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6560     return false;
6561 
6562   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6563   SDValue Sel;
6564 
6565   if (Node->isStrictFPOpcode()) {
6566     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6567                        Node->getOperand(0), /*IsSignaling*/ true);
6568     Chain = Sel.getValue(1);
6569   } else {
6570     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6571   }
6572 
6573   bool Strict = Node->isStrictFPOpcode() ||
6574                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6575 
6576   if (Strict) {
6577     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6578     // signmask then offset (the result of which should be fully representable).
6579     // Sel = Src < 0x8000000000000000
6580     // FltOfs = select Sel, 0, 0x8000000000000000
6581     // IntOfs = select Sel, 0, 0x8000000000000000
6582     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6583 
6584     // TODO: Should any fast-math-flags be set for the FSUB?
6585     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6586                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6587     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6588     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6589                                    DAG.getConstant(0, dl, DstVT),
6590                                    DAG.getConstant(SignMask, dl, DstVT));
6591     SDValue SInt;
6592     if (Node->isStrictFPOpcode()) {
6593       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6594                                 { Chain, Src, FltOfs });
6595       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6596                          { Val.getValue(1), Val });
6597       Chain = SInt.getValue(1);
6598     } else {
6599       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6600       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6601     }
6602     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6603   } else {
6604     // Expand based on maximum range of FP_TO_SINT:
6605     // True = fp_to_sint(Src)
6606     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6607     // Result = select (Src < 0x8000000000000000), True, False
6608 
6609     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6610     // TODO: Should any fast-math-flags be set for the FSUB?
6611     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6612                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6613     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6614                         DAG.getConstant(SignMask, dl, DstVT));
6615     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6616     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6617   }
6618   return true;
6619 }
6620 
6621 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6622                                       SDValue &Chain,
6623                                       SelectionDAG &DAG) const {
6624   // This transform is not correct for converting 0 when rounding mode is set
6625   // to round toward negative infinity which will produce -0.0. So disable under
6626   // strictfp.
6627   if (Node->isStrictFPOpcode())
6628     return false;
6629 
6630   SDValue Src = Node->getOperand(0);
6631   EVT SrcVT = Src.getValueType();
6632   EVT DstVT = Node->getValueType(0);
6633 
6634   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6635     return false;
6636 
6637   // Only expand vector types if we have the appropriate vector bit operations.
6638   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6639                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6640                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6641                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6642                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6643     return false;
6644 
6645   SDLoc dl(SDValue(Node, 0));
6646   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6647 
6648   // Implementation of unsigned i64 to f64 following the algorithm in
6649   // __floatundidf in compiler_rt.  This implementation performs rounding
6650   // correctly in all rounding modes with the exception of converting 0
6651   // when rounding toward negative infinity. In that case the fsub will produce
6652   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6653   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6654   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6655       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6656   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6657   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6658   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6659 
6660   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6661   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6662   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6663   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6664   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6665   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6666   SDValue HiSub =
6667       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6668   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6669   return true;
6670 }
6671 
6672 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6673                                               SelectionDAG &DAG) const {
6674   SDLoc dl(Node);
6675   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6676     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6677   EVT VT = Node->getValueType(0);
6678 
6679   if (VT.isScalableVector())
6680     report_fatal_error(
6681         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6682 
6683   if (isOperationLegalOrCustom(NewOp, VT)) {
6684     SDValue Quiet0 = Node->getOperand(0);
6685     SDValue Quiet1 = Node->getOperand(1);
6686 
6687     if (!Node->getFlags().hasNoNaNs()) {
6688       // Insert canonicalizes if it's possible we need to quiet to get correct
6689       // sNaN behavior.
6690       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6691         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6692                              Node->getFlags());
6693       }
6694       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6695         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6696                              Node->getFlags());
6697       }
6698     }
6699 
6700     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6701   }
6702 
6703   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6704   // instead if there are no NaNs.
6705   if (Node->getFlags().hasNoNaNs()) {
6706     unsigned IEEE2018Op =
6707         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6708     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6709       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6710                          Node->getOperand(1), Node->getFlags());
6711     }
6712   }
6713 
6714   // If none of the above worked, but there are no NaNs, then expand to
6715   // a compare/select sequence.  This is required for correctness since
6716   // InstCombine might have canonicalized a fcmp+select sequence to a
6717   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6718   // expansion to libcall, we might introduce a link-time dependency
6719   // on libm into a file that originally did not have one.
6720   if (Node->getFlags().hasNoNaNs()) {
6721     ISD::CondCode Pred =
6722         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6723     SDValue Op1 = Node->getOperand(0);
6724     SDValue Op2 = Node->getOperand(1);
6725     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6726     // Copy FMF flags, but always set the no-signed-zeros flag
6727     // as this is implied by the FMINNUM/FMAXNUM semantics.
6728     SDNodeFlags Flags = Node->getFlags();
6729     Flags.setNoSignedZeros(true);
6730     SelCC->setFlags(Flags);
6731     return SelCC;
6732   }
6733 
6734   return SDValue();
6735 }
6736 
6737 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6738                                  SelectionDAG &DAG) const {
6739   SDLoc dl(Node);
6740   EVT VT = Node->getValueType(0);
6741   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6742   SDValue Op = Node->getOperand(0);
6743   unsigned Len = VT.getScalarSizeInBits();
6744   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6745 
6746   // TODO: Add support for irregular type lengths.
6747   if (!(Len <= 128 && Len % 8 == 0))
6748     return false;
6749 
6750   // Only expand vector types if we have the appropriate vector bit operations.
6751   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6752                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6753                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6754                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6755                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6756     return false;
6757 
6758   // This is the "best" algorithm from
6759   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6760   SDValue Mask55 =
6761       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6762   SDValue Mask33 =
6763       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6764   SDValue Mask0F =
6765       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6766   SDValue Mask01 =
6767       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6768 
6769   // v = v - ((v >> 1) & 0x55555555...)
6770   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6771                    DAG.getNode(ISD::AND, dl, VT,
6772                                DAG.getNode(ISD::SRL, dl, VT, Op,
6773                                            DAG.getConstant(1, dl, ShVT)),
6774                                Mask55));
6775   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6776   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6777                    DAG.getNode(ISD::AND, dl, VT,
6778                                DAG.getNode(ISD::SRL, dl, VT, Op,
6779                                            DAG.getConstant(2, dl, ShVT)),
6780                                Mask33));
6781   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6782   Op = DAG.getNode(ISD::AND, dl, VT,
6783                    DAG.getNode(ISD::ADD, dl, VT, Op,
6784                                DAG.getNode(ISD::SRL, dl, VT, Op,
6785                                            DAG.getConstant(4, dl, ShVT))),
6786                    Mask0F);
6787   // v = (v * 0x01010101...) >> (Len - 8)
6788   if (Len > 8)
6789     Op =
6790         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6791                     DAG.getConstant(Len - 8, dl, ShVT));
6792 
6793   Result = Op;
6794   return true;
6795 }
6796 
6797 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6798                                 SelectionDAG &DAG) const {
6799   SDLoc dl(Node);
6800   EVT VT = Node->getValueType(0);
6801   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6802   SDValue Op = Node->getOperand(0);
6803   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6804 
6805   // If the non-ZERO_UNDEF version is supported we can use that instead.
6806   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6807       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6808     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6809     return true;
6810   }
6811 
6812   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6813   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6814     EVT SetCCVT =
6815         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6816     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6817     SDValue Zero = DAG.getConstant(0, dl, VT);
6818     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6819     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6820                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6821     return true;
6822   }
6823 
6824   // Only expand vector types if we have the appropriate vector bit operations.
6825   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6826                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6827                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6828                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6829     return false;
6830 
6831   // for now, we do this:
6832   // x = x | (x >> 1);
6833   // x = x | (x >> 2);
6834   // ...
6835   // x = x | (x >>16);
6836   // x = x | (x >>32); // for 64-bit input
6837   // return popcount(~x);
6838   //
6839   // Ref: "Hacker's Delight" by Henry Warren
6840   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6841     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6842     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6843                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6844   }
6845   Op = DAG.getNOT(dl, Op, VT);
6846   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6847   return true;
6848 }
6849 
6850 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6851                                 SelectionDAG &DAG) const {
6852   SDLoc dl(Node);
6853   EVT VT = Node->getValueType(0);
6854   SDValue Op = Node->getOperand(0);
6855   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6856 
6857   // If the non-ZERO_UNDEF version is supported we can use that instead.
6858   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6859       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6860     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6861     return true;
6862   }
6863 
6864   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6865   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6866     EVT SetCCVT =
6867         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6868     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6869     SDValue Zero = DAG.getConstant(0, dl, VT);
6870     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6871     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6872                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6873     return true;
6874   }
6875 
6876   // Only expand vector types if we have the appropriate vector bit operations.
6877   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6878                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6879                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6880                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6881                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6882                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6883     return false;
6884 
6885   // for now, we use: { return popcount(~x & (x - 1)); }
6886   // unless the target has ctlz but not ctpop, in which case we use:
6887   // { return 32 - nlz(~x & (x-1)); }
6888   // Ref: "Hacker's Delight" by Henry Warren
6889   SDValue Tmp = DAG.getNode(
6890       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6891       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6892 
6893   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6894   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6895     Result =
6896         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6897                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6898     return true;
6899   }
6900 
6901   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6902   return true;
6903 }
6904 
6905 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6906                                SelectionDAG &DAG, bool IsNegative) const {
6907   SDLoc dl(N);
6908   EVT VT = N->getValueType(0);
6909   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6910   SDValue Op = N->getOperand(0);
6911 
6912   // abs(x) -> smax(x,sub(0,x))
6913   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
6914       isOperationLegal(ISD::SMAX, VT)) {
6915     SDValue Zero = DAG.getConstant(0, dl, VT);
6916     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
6917                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6918     return true;
6919   }
6920 
6921   // abs(x) -> umin(x,sub(0,x))
6922   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
6923       isOperationLegal(ISD::UMIN, VT)) {
6924     SDValue Zero = DAG.getConstant(0, dl, VT);
6925     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
6926                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6927     return true;
6928   }
6929 
6930   // 0 - abs(x) -> smin(x, sub(0,x))
6931   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
6932       isOperationLegal(ISD::SMIN, VT)) {
6933     SDValue Zero = DAG.getConstant(0, dl, VT);
6934     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
6935                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
6936     return true;
6937   }
6938 
6939   // Only expand vector types if we have the appropriate vector operations.
6940   if (VT.isVector() &&
6941       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6942        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
6943        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
6944        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6945     return false;
6946 
6947   SDValue Shift =
6948       DAG.getNode(ISD::SRA, dl, VT, Op,
6949                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6950   if (!IsNegative) {
6951     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6952     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6953   } else {
6954     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
6955     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
6956     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
6957   }
6958   return true;
6959 }
6960 
6961 std::pair<SDValue, SDValue>
6962 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6963                                     SelectionDAG &DAG) const {
6964   SDLoc SL(LD);
6965   SDValue Chain = LD->getChain();
6966   SDValue BasePTR = LD->getBasePtr();
6967   EVT SrcVT = LD->getMemoryVT();
6968   EVT DstVT = LD->getValueType(0);
6969   ISD::LoadExtType ExtType = LD->getExtensionType();
6970 
6971   if (SrcVT.isScalableVector())
6972     report_fatal_error("Cannot scalarize scalable vector loads");
6973 
6974   unsigned NumElem = SrcVT.getVectorNumElements();
6975 
6976   EVT SrcEltVT = SrcVT.getScalarType();
6977   EVT DstEltVT = DstVT.getScalarType();
6978 
6979   // A vector must always be stored in memory as-is, i.e. without any padding
6980   // between the elements, since various code depend on it, e.g. in the
6981   // handling of a bitcast of a vector type to int, which may be done with a
6982   // vector store followed by an integer load. A vector that does not have
6983   // elements that are byte-sized must therefore be stored as an integer
6984   // built out of the extracted vector elements.
6985   if (!SrcEltVT.isByteSized()) {
6986     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6987     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6988 
6989     unsigned NumSrcBits = SrcVT.getSizeInBits();
6990     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6991 
6992     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6993     SDValue SrcEltBitMask = DAG.getConstant(
6994         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6995 
6996     // Load the whole vector and avoid masking off the top bits as it makes
6997     // the codegen worse.
6998     SDValue Load =
6999         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7000                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7001                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7002 
7003     SmallVector<SDValue, 8> Vals;
7004     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7005       unsigned ShiftIntoIdx =
7006           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7007       SDValue ShiftAmount =
7008           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7009                                      LoadVT, SL, /*LegalTypes=*/false);
7010       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7011       SDValue Elt =
7012           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7013       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7014 
7015       if (ExtType != ISD::NON_EXTLOAD) {
7016         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7017         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7018       }
7019 
7020       Vals.push_back(Scalar);
7021     }
7022 
7023     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7024     return std::make_pair(Value, Load.getValue(1));
7025   }
7026 
7027   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7028   assert(SrcEltVT.isByteSized());
7029 
7030   SmallVector<SDValue, 8> Vals;
7031   SmallVector<SDValue, 8> LoadChains;
7032 
7033   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7034     SDValue ScalarLoad =
7035         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7036                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7037                        SrcEltVT, LD->getOriginalAlign(),
7038                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7039 
7040     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7041 
7042     Vals.push_back(ScalarLoad.getValue(0));
7043     LoadChains.push_back(ScalarLoad.getValue(1));
7044   }
7045 
7046   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7047   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7048 
7049   return std::make_pair(Value, NewChain);
7050 }
7051 
7052 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7053                                              SelectionDAG &DAG) const {
7054   SDLoc SL(ST);
7055 
7056   SDValue Chain = ST->getChain();
7057   SDValue BasePtr = ST->getBasePtr();
7058   SDValue Value = ST->getValue();
7059   EVT StVT = ST->getMemoryVT();
7060 
7061   if (StVT.isScalableVector())
7062     report_fatal_error("Cannot scalarize scalable vector stores");
7063 
7064   // The type of the data we want to save
7065   EVT RegVT = Value.getValueType();
7066   EVT RegSclVT = RegVT.getScalarType();
7067 
7068   // The type of data as saved in memory.
7069   EVT MemSclVT = StVT.getScalarType();
7070 
7071   unsigned NumElem = StVT.getVectorNumElements();
7072 
7073   // A vector must always be stored in memory as-is, i.e. without any padding
7074   // between the elements, since various code depend on it, e.g. in the
7075   // handling of a bitcast of a vector type to int, which may be done with a
7076   // vector store followed by an integer load. A vector that does not have
7077   // elements that are byte-sized must therefore be stored as an integer
7078   // built out of the extracted vector elements.
7079   if (!MemSclVT.isByteSized()) {
7080     unsigned NumBits = StVT.getSizeInBits();
7081     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7082 
7083     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7084 
7085     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7086       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7087                                 DAG.getVectorIdxConstant(Idx, SL));
7088       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7089       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7090       unsigned ShiftIntoIdx =
7091           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7092       SDValue ShiftAmount =
7093           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7094       SDValue ShiftedElt =
7095           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7096       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7097     }
7098 
7099     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7100                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7101                         ST->getAAInfo());
7102   }
7103 
7104   // Store Stride in bytes
7105   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7106   assert(Stride && "Zero stride!");
7107   // Extract each of the elements from the original vector and save them into
7108   // memory individually.
7109   SmallVector<SDValue, 8> Stores;
7110   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7111     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7112                               DAG.getVectorIdxConstant(Idx, SL));
7113 
7114     SDValue Ptr =
7115         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7116 
7117     // This scalar TruncStore may be illegal, but we legalize it later.
7118     SDValue Store = DAG.getTruncStore(
7119         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7120         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7121         ST->getAAInfo());
7122 
7123     Stores.push_back(Store);
7124   }
7125 
7126   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7127 }
7128 
7129 std::pair<SDValue, SDValue>
7130 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7131   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7132          "unaligned indexed loads not implemented!");
7133   SDValue Chain = LD->getChain();
7134   SDValue Ptr = LD->getBasePtr();
7135   EVT VT = LD->getValueType(0);
7136   EVT LoadedVT = LD->getMemoryVT();
7137   SDLoc dl(LD);
7138   auto &MF = DAG.getMachineFunction();
7139 
7140   if (VT.isFloatingPoint() || VT.isVector()) {
7141     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7142     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7143       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7144           LoadedVT.isVector()) {
7145         // Scalarize the load and let the individual components be handled.
7146         return scalarizeVectorLoad(LD, DAG);
7147       }
7148 
7149       // Expand to a (misaligned) integer load of the same size,
7150       // then bitconvert to floating point or vector.
7151       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7152                                     LD->getMemOperand());
7153       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7154       if (LoadedVT != VT)
7155         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7156                              ISD::ANY_EXTEND, dl, VT, Result);
7157 
7158       return std::make_pair(Result, newLoad.getValue(1));
7159     }
7160 
7161     // Copy the value to a (aligned) stack slot using (unaligned) integer
7162     // loads and stores, then do a (aligned) load from the stack slot.
7163     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7164     unsigned LoadedBytes = LoadedVT.getStoreSize();
7165     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7166     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7167 
7168     // Make sure the stack slot is also aligned for the register type.
7169     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7170     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7171     SmallVector<SDValue, 8> Stores;
7172     SDValue StackPtr = StackBase;
7173     unsigned Offset = 0;
7174 
7175     EVT PtrVT = Ptr.getValueType();
7176     EVT StackPtrVT = StackPtr.getValueType();
7177 
7178     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7179     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7180 
7181     // Do all but one copies using the full register width.
7182     for (unsigned i = 1; i < NumRegs; i++) {
7183       // Load one integer register's worth from the original location.
7184       SDValue Load = DAG.getLoad(
7185           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7186           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7187           LD->getAAInfo());
7188       // Follow the load with a store to the stack slot.  Remember the store.
7189       Stores.push_back(DAG.getStore(
7190           Load.getValue(1), dl, Load, StackPtr,
7191           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7192       // Increment the pointers.
7193       Offset += RegBytes;
7194 
7195       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7196       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7197     }
7198 
7199     // The last copy may be partial.  Do an extending load.
7200     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7201                                   8 * (LoadedBytes - Offset));
7202     SDValue Load =
7203         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7204                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7205                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7206                        LD->getAAInfo());
7207     // Follow the load with a store to the stack slot.  Remember the store.
7208     // On big-endian machines this requires a truncating store to ensure
7209     // that the bits end up in the right place.
7210     Stores.push_back(DAG.getTruncStore(
7211         Load.getValue(1), dl, Load, StackPtr,
7212         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7213 
7214     // The order of the stores doesn't matter - say it with a TokenFactor.
7215     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7216 
7217     // Finally, perform the original load only redirected to the stack slot.
7218     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7219                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7220                           LoadedVT);
7221 
7222     // Callers expect a MERGE_VALUES node.
7223     return std::make_pair(Load, TF);
7224   }
7225 
7226   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7227          "Unaligned load of unsupported type.");
7228 
7229   // Compute the new VT that is half the size of the old one.  This is an
7230   // integer MVT.
7231   unsigned NumBits = LoadedVT.getSizeInBits();
7232   EVT NewLoadedVT;
7233   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7234   NumBits >>= 1;
7235 
7236   Align Alignment = LD->getOriginalAlign();
7237   unsigned IncrementSize = NumBits / 8;
7238   ISD::LoadExtType HiExtType = LD->getExtensionType();
7239 
7240   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7241   if (HiExtType == ISD::NON_EXTLOAD)
7242     HiExtType = ISD::ZEXTLOAD;
7243 
7244   // Load the value in two parts
7245   SDValue Lo, Hi;
7246   if (DAG.getDataLayout().isLittleEndian()) {
7247     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7248                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7249                         LD->getAAInfo());
7250 
7251     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7252     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7253                         LD->getPointerInfo().getWithOffset(IncrementSize),
7254                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7255                         LD->getAAInfo());
7256   } else {
7257     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7258                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7259                         LD->getAAInfo());
7260 
7261     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7262     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7263                         LD->getPointerInfo().getWithOffset(IncrementSize),
7264                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7265                         LD->getAAInfo());
7266   }
7267 
7268   // aggregate the two parts
7269   SDValue ShiftAmount =
7270       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7271                                                     DAG.getDataLayout()));
7272   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7273   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7274 
7275   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7276                              Hi.getValue(1));
7277 
7278   return std::make_pair(Result, TF);
7279 }
7280 
7281 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7282                                              SelectionDAG &DAG) const {
7283   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7284          "unaligned indexed stores not implemented!");
7285   SDValue Chain = ST->getChain();
7286   SDValue Ptr = ST->getBasePtr();
7287   SDValue Val = ST->getValue();
7288   EVT VT = Val.getValueType();
7289   Align Alignment = ST->getOriginalAlign();
7290   auto &MF = DAG.getMachineFunction();
7291   EVT StoreMemVT = ST->getMemoryVT();
7292 
7293   SDLoc dl(ST);
7294   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7295     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7296     if (isTypeLegal(intVT)) {
7297       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7298           StoreMemVT.isVector()) {
7299         // Scalarize the store and let the individual components be handled.
7300         SDValue Result = scalarizeVectorStore(ST, DAG);
7301         return Result;
7302       }
7303       // Expand to a bitconvert of the value to the integer type of the
7304       // same size, then a (misaligned) int store.
7305       // FIXME: Does not handle truncating floating point stores!
7306       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7307       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7308                             Alignment, ST->getMemOperand()->getFlags());
7309       return Result;
7310     }
7311     // Do a (aligned) store to a stack slot, then copy from the stack slot
7312     // to the final destination using (unaligned) integer loads and stores.
7313     MVT RegVT = getRegisterType(
7314         *DAG.getContext(),
7315         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7316     EVT PtrVT = Ptr.getValueType();
7317     unsigned StoredBytes = StoreMemVT.getStoreSize();
7318     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7319     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7320 
7321     // Make sure the stack slot is also aligned for the register type.
7322     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7323     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7324 
7325     // Perform the original store, only redirected to the stack slot.
7326     SDValue Store = DAG.getTruncStore(
7327         Chain, dl, Val, StackPtr,
7328         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7329 
7330     EVT StackPtrVT = StackPtr.getValueType();
7331 
7332     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7333     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7334     SmallVector<SDValue, 8> Stores;
7335     unsigned Offset = 0;
7336 
7337     // Do all but one copies using the full register width.
7338     for (unsigned i = 1; i < NumRegs; i++) {
7339       // Load one integer register's worth from the stack slot.
7340       SDValue Load = DAG.getLoad(
7341           RegVT, dl, Store, StackPtr,
7342           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7343       // Store it to the final location.  Remember the store.
7344       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7345                                     ST->getPointerInfo().getWithOffset(Offset),
7346                                     ST->getOriginalAlign(),
7347                                     ST->getMemOperand()->getFlags()));
7348       // Increment the pointers.
7349       Offset += RegBytes;
7350       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7351       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7352     }
7353 
7354     // The last store may be partial.  Do a truncating store.  On big-endian
7355     // machines this requires an extending load from the stack slot to ensure
7356     // that the bits are in the right place.
7357     EVT LoadMemVT =
7358         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7359 
7360     // Load from the stack slot.
7361     SDValue Load = DAG.getExtLoad(
7362         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7363         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7364 
7365     Stores.push_back(
7366         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7367                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7368                           ST->getOriginalAlign(),
7369                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7370     // The order of the stores doesn't matter - say it with a TokenFactor.
7371     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7372     return Result;
7373   }
7374 
7375   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7376          "Unaligned store of unknown type.");
7377   // Get the half-size VT
7378   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7379   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7380   unsigned IncrementSize = NumBits / 8;
7381 
7382   // Divide the stored value in two parts.
7383   SDValue ShiftAmount = DAG.getConstant(
7384       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7385   SDValue Lo = Val;
7386   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7387 
7388   // Store the two parts
7389   SDValue Store1, Store2;
7390   Store1 = DAG.getTruncStore(Chain, dl,
7391                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7392                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7393                              ST->getMemOperand()->getFlags());
7394 
7395   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7396   Store2 = DAG.getTruncStore(
7397       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7398       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7399       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7400 
7401   SDValue Result =
7402       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7403   return Result;
7404 }
7405 
7406 SDValue
7407 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7408                                        const SDLoc &DL, EVT DataVT,
7409                                        SelectionDAG &DAG,
7410                                        bool IsCompressedMemory) const {
7411   SDValue Increment;
7412   EVT AddrVT = Addr.getValueType();
7413   EVT MaskVT = Mask.getValueType();
7414   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7415          "Incompatible types of Data and Mask");
7416   if (IsCompressedMemory) {
7417     if (DataVT.isScalableVector())
7418       report_fatal_error(
7419           "Cannot currently handle compressed memory with scalable vectors");
7420     // Incrementing the pointer according to number of '1's in the mask.
7421     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7422     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7423     if (MaskIntVT.getSizeInBits() < 32) {
7424       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7425       MaskIntVT = MVT::i32;
7426     }
7427 
7428     // Count '1's with POPCNT.
7429     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7430     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7431     // Scale is an element size in bytes.
7432     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7433                                     AddrVT);
7434     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7435   } else if (DataVT.isScalableVector()) {
7436     Increment = DAG.getVScale(DL, AddrVT,
7437                               APInt(AddrVT.getFixedSizeInBits(),
7438                                     DataVT.getStoreSize().getKnownMinSize()));
7439   } else
7440     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7441 
7442   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7443 }
7444 
7445 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7446                                        SDValue Idx,
7447                                        EVT VecVT,
7448                                        const SDLoc &dl) {
7449   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7450     return Idx;
7451 
7452   EVT IdxVT = Idx.getValueType();
7453   unsigned NElts = VecVT.getVectorMinNumElements();
7454   if (VecVT.isScalableVector()) {
7455     SDValue VS = DAG.getVScale(dl, IdxVT,
7456                                APInt(IdxVT.getFixedSizeInBits(),
7457                                      NElts));
7458     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7459                               DAG.getConstant(1, dl, IdxVT));
7460 
7461     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7462   } else {
7463     if (isPowerOf2_32(NElts)) {
7464       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7465                                        Log2_32(NElts));
7466       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7467                          DAG.getConstant(Imm, dl, IdxVT));
7468     }
7469   }
7470 
7471   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7472                      DAG.getConstant(NElts - 1, dl, IdxVT));
7473 }
7474 
7475 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7476                                                 SDValue VecPtr, EVT VecVT,
7477                                                 SDValue Index) const {
7478   SDLoc dl(Index);
7479   // Make sure the index type is big enough to compute in.
7480   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7481 
7482   EVT EltVT = VecVT.getVectorElementType();
7483 
7484   // Calculate the element offset and add it to the pointer.
7485   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7486   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7487          "Converting bits to bytes lost precision");
7488 
7489   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7490 
7491   EVT IdxVT = Index.getValueType();
7492 
7493   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7494                       DAG.getConstant(EltSize, dl, IdxVT));
7495   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7496 }
7497 
7498 //===----------------------------------------------------------------------===//
7499 // Implementation of Emulated TLS Model
7500 //===----------------------------------------------------------------------===//
7501 
7502 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7503                                                 SelectionDAG &DAG) const {
7504   // Access to address of TLS varialbe xyz is lowered to a function call:
7505   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7506   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7507   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7508   SDLoc dl(GA);
7509 
7510   ArgListTy Args;
7511   ArgListEntry Entry;
7512   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7513   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7514   StringRef EmuTlsVarName(NameString);
7515   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7516   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7517   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7518   Entry.Ty = VoidPtrType;
7519   Args.push_back(Entry);
7520 
7521   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7522 
7523   TargetLowering::CallLoweringInfo CLI(DAG);
7524   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7525   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7526   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7527 
7528   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7529   // At last for X86 targets, maybe good for other targets too?
7530   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7531   MFI.setAdjustsStack(true); // Is this only for X86 target?
7532   MFI.setHasCalls(true);
7533 
7534   assert((GA->getOffset() == 0) &&
7535          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7536   return CallResult.first;
7537 }
7538 
7539 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7540                                                 SelectionDAG &DAG) const {
7541   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7542   if (!isCtlzFast())
7543     return SDValue();
7544   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7545   SDLoc dl(Op);
7546   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7547     if (C->isNullValue() && CC == ISD::SETEQ) {
7548       EVT VT = Op.getOperand(0).getValueType();
7549       SDValue Zext = Op.getOperand(0);
7550       if (VT.bitsLT(MVT::i32)) {
7551         VT = MVT::i32;
7552         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7553       }
7554       unsigned Log2b = Log2_32(VT.getSizeInBits());
7555       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7556       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7557                                 DAG.getConstant(Log2b, dl, MVT::i32));
7558       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7559     }
7560   }
7561   return SDValue();
7562 }
7563 
7564 // Convert redundant addressing modes (e.g. scaling is redundant
7565 // when accessing bytes).
7566 ISD::MemIndexType
7567 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7568                                       SDValue Offsets) const {
7569   bool IsScaledIndex =
7570       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7571   bool IsSignedIndex =
7572       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7573 
7574   // Scaling is unimportant for bytes, canonicalize to unscaled.
7575   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7576     IsScaledIndex = false;
7577     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7578   }
7579 
7580   return IndexType;
7581 }
7582 
7583 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7584   SDValue Op0 = Node->getOperand(0);
7585   SDValue Op1 = Node->getOperand(1);
7586   EVT VT = Op0.getValueType();
7587   unsigned Opcode = Node->getOpcode();
7588   SDLoc DL(Node);
7589 
7590   // umin(x,y) -> sub(x,usubsat(x,y))
7591   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7592       isOperationLegal(ISD::USUBSAT, VT)) {
7593     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7594                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7595   }
7596 
7597   // umax(x,y) -> add(x,usubsat(y,x))
7598   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7599       isOperationLegal(ISD::USUBSAT, VT)) {
7600     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7601                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7602   }
7603 
7604   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7605   ISD::CondCode CC;
7606   switch (Opcode) {
7607   default: llvm_unreachable("How did we get here?");
7608   case ISD::SMAX: CC = ISD::SETGT; break;
7609   case ISD::SMIN: CC = ISD::SETLT; break;
7610   case ISD::UMAX: CC = ISD::SETUGT; break;
7611   case ISD::UMIN: CC = ISD::SETULT; break;
7612   }
7613 
7614   // FIXME: Should really try to split the vector in case it's legal on a
7615   // subvector.
7616   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7617     return DAG.UnrollVectorOp(Node);
7618 
7619   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7620   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7621 }
7622 
7623 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7624   unsigned Opcode = Node->getOpcode();
7625   SDValue LHS = Node->getOperand(0);
7626   SDValue RHS = Node->getOperand(1);
7627   EVT VT = LHS.getValueType();
7628   SDLoc dl(Node);
7629 
7630   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7631   assert(VT.isInteger() && "Expected operands to be integers");
7632 
7633   // usub.sat(a, b) -> umax(a, b) - b
7634   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7635     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7636     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7637   }
7638 
7639   // uadd.sat(a, b) -> umin(a, ~b) + b
7640   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7641     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7642     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7643     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7644   }
7645 
7646   unsigned OverflowOp;
7647   switch (Opcode) {
7648   case ISD::SADDSAT:
7649     OverflowOp = ISD::SADDO;
7650     break;
7651   case ISD::UADDSAT:
7652     OverflowOp = ISD::UADDO;
7653     break;
7654   case ISD::SSUBSAT:
7655     OverflowOp = ISD::SSUBO;
7656     break;
7657   case ISD::USUBSAT:
7658     OverflowOp = ISD::USUBO;
7659     break;
7660   default:
7661     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7662                      "addition or subtraction node.");
7663   }
7664 
7665   // FIXME: Should really try to split the vector in case it's legal on a
7666   // subvector.
7667   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7668     return DAG.UnrollVectorOp(Node);
7669 
7670   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7671   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7672   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7673                                LHS, RHS);
7674   SDValue SumDiff = Result.getValue(0);
7675   SDValue Overflow = Result.getValue(1);
7676   SDValue Zero = DAG.getConstant(0, dl, VT);
7677   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7678 
7679   if (Opcode == ISD::UADDSAT) {
7680     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7681       // (LHS + RHS) | OverflowMask
7682       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7683       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7684     }
7685     // Overflow ? 0xffff.... : (LHS + RHS)
7686     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7687   } else if (Opcode == ISD::USUBSAT) {
7688     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7689       // (LHS - RHS) & ~OverflowMask
7690       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7691       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7692       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7693     }
7694     // Overflow ? 0 : (LHS - RHS)
7695     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7696   } else {
7697     // SatMax -> Overflow && SumDiff < 0
7698     // SatMin -> Overflow && SumDiff >= 0
7699     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7700     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7701     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7702     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7703     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7704     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7705     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7706   }
7707 }
7708 
7709 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7710   unsigned Opcode = Node->getOpcode();
7711   bool IsSigned = Opcode == ISD::SSHLSAT;
7712   SDValue LHS = Node->getOperand(0);
7713   SDValue RHS = Node->getOperand(1);
7714   EVT VT = LHS.getValueType();
7715   SDLoc dl(Node);
7716 
7717   assert((Node->getOpcode() == ISD::SSHLSAT ||
7718           Node->getOpcode() == ISD::USHLSAT) &&
7719           "Expected a SHLSAT opcode");
7720   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7721   assert(VT.isInteger() && "Expected operands to be integers");
7722 
7723   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7724 
7725   unsigned BW = VT.getScalarSizeInBits();
7726   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7727   SDValue Orig =
7728       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7729 
7730   SDValue SatVal;
7731   if (IsSigned) {
7732     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7733     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7734     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7735                              SatMin, SatMax, ISD::SETLT);
7736   } else {
7737     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7738   }
7739   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7740 
7741   return Result;
7742 }
7743 
7744 SDValue
7745 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7746   assert((Node->getOpcode() == ISD::SMULFIX ||
7747           Node->getOpcode() == ISD::UMULFIX ||
7748           Node->getOpcode() == ISD::SMULFIXSAT ||
7749           Node->getOpcode() == ISD::UMULFIXSAT) &&
7750          "Expected a fixed point multiplication opcode");
7751 
7752   SDLoc dl(Node);
7753   SDValue LHS = Node->getOperand(0);
7754   SDValue RHS = Node->getOperand(1);
7755   EVT VT = LHS.getValueType();
7756   unsigned Scale = Node->getConstantOperandVal(2);
7757   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7758                      Node->getOpcode() == ISD::UMULFIXSAT);
7759   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7760                  Node->getOpcode() == ISD::SMULFIXSAT);
7761   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7762   unsigned VTSize = VT.getScalarSizeInBits();
7763 
7764   if (!Scale) {
7765     // [us]mul.fix(a, b, 0) -> mul(a, b)
7766     if (!Saturating) {
7767       if (isOperationLegalOrCustom(ISD::MUL, VT))
7768         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7769     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7770       SDValue Result =
7771           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7772       SDValue Product = Result.getValue(0);
7773       SDValue Overflow = Result.getValue(1);
7774       SDValue Zero = DAG.getConstant(0, dl, VT);
7775 
7776       APInt MinVal = APInt::getSignedMinValue(VTSize);
7777       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7778       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7779       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7780       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7781       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7782       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7783     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7784       SDValue Result =
7785           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7786       SDValue Product = Result.getValue(0);
7787       SDValue Overflow = Result.getValue(1);
7788 
7789       APInt MaxVal = APInt::getMaxValue(VTSize);
7790       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7791       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7792     }
7793   }
7794 
7795   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7796          "Expected scale to be less than the number of bits if signed or at "
7797          "most the number of bits if unsigned.");
7798   assert(LHS.getValueType() == RHS.getValueType() &&
7799          "Expected both operands to be the same type");
7800 
7801   // Get the upper and lower bits of the result.
7802   SDValue Lo, Hi;
7803   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7804   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7805   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7806     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7807     Lo = Result.getValue(0);
7808     Hi = Result.getValue(1);
7809   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7810     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7811     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7812   } else if (VT.isVector()) {
7813     return SDValue();
7814   } else {
7815     report_fatal_error("Unable to expand fixed point multiplication.");
7816   }
7817 
7818   if (Scale == VTSize)
7819     // Result is just the top half since we'd be shifting by the width of the
7820     // operand. Overflow impossible so this works for both UMULFIX and
7821     // UMULFIXSAT.
7822     return Hi;
7823 
7824   // The result will need to be shifted right by the scale since both operands
7825   // are scaled. The result is given to us in 2 halves, so we only want part of
7826   // both in the result.
7827   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7828   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7829                                DAG.getConstant(Scale, dl, ShiftTy));
7830   if (!Saturating)
7831     return Result;
7832 
7833   if (!Signed) {
7834     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7835     // widened multiplication) aren't all zeroes.
7836 
7837     // Saturate to max if ((Hi >> Scale) != 0),
7838     // which is the same as if (Hi > ((1 << Scale) - 1))
7839     APInt MaxVal = APInt::getMaxValue(VTSize);
7840     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7841                                       dl, VT);
7842     Result = DAG.getSelectCC(dl, Hi, LowMask,
7843                              DAG.getConstant(MaxVal, dl, VT), Result,
7844                              ISD::SETUGT);
7845 
7846     return Result;
7847   }
7848 
7849   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7850   // widened multiplication) aren't all ones or all zeroes.
7851 
7852   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7853   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7854 
7855   if (Scale == 0) {
7856     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7857                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7858     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7859     // Saturated to SatMin if wide product is negative, and SatMax if wide
7860     // product is positive ...
7861     SDValue Zero = DAG.getConstant(0, dl, VT);
7862     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7863                                                ISD::SETLT);
7864     // ... but only if we overflowed.
7865     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7866   }
7867 
7868   //  We handled Scale==0 above so all the bits to examine is in Hi.
7869 
7870   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7871   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7872   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7873                                     dl, VT);
7874   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7875   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7876   // which is the same as if (HI < (-1 << (Scale - 1))
7877   SDValue HighMask =
7878       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7879                       dl, VT);
7880   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7881   return Result;
7882 }
7883 
7884 SDValue
7885 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7886                                     SDValue LHS, SDValue RHS,
7887                                     unsigned Scale, SelectionDAG &DAG) const {
7888   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7889           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7890          "Expected a fixed point division opcode");
7891 
7892   EVT VT = LHS.getValueType();
7893   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7894   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7895   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7896 
7897   // If there is enough room in the type to upscale the LHS or downscale the
7898   // RHS before the division, we can perform it in this type without having to
7899   // resize. For signed operations, the LHS headroom is the number of
7900   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7901   // The headroom for the RHS is the number of trailing zeroes.
7902   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7903                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7904   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7905 
7906   // For signed saturating operations, we need to be able to detect true integer
7907   // division overflow; that is, when you have MIN / -EPS. However, this
7908   // is undefined behavior and if we emit divisions that could take such
7909   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7910   // example).
7911   // Avoid this by requiring an extra bit so that we never get this case.
7912   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7913   // signed saturating division, we need to emit a whopping 32-bit division.
7914   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7915     return SDValue();
7916 
7917   unsigned LHSShift = std::min(LHSLead, Scale);
7918   unsigned RHSShift = Scale - LHSShift;
7919 
7920   // At this point, we know that if we shift the LHS up by LHSShift and the
7921   // RHS down by RHSShift, we can emit a regular division with a final scaling
7922   // factor of Scale.
7923 
7924   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7925   if (LHSShift)
7926     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7927                       DAG.getConstant(LHSShift, dl, ShiftTy));
7928   if (RHSShift)
7929     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7930                       DAG.getConstant(RHSShift, dl, ShiftTy));
7931 
7932   SDValue Quot;
7933   if (Signed) {
7934     // For signed operations, if the resulting quotient is negative and the
7935     // remainder is nonzero, subtract 1 from the quotient to round towards
7936     // negative infinity.
7937     SDValue Rem;
7938     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7939     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7940     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7941     if (isTypeLegal(VT) &&
7942         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7943       Quot = DAG.getNode(ISD::SDIVREM, dl,
7944                          DAG.getVTList(VT, VT),
7945                          LHS, RHS);
7946       Rem = Quot.getValue(1);
7947       Quot = Quot.getValue(0);
7948     } else {
7949       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7950                          LHS, RHS);
7951       Rem = DAG.getNode(ISD::SREM, dl, VT,
7952                         LHS, RHS);
7953     }
7954     SDValue Zero = DAG.getConstant(0, dl, VT);
7955     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7956     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7957     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7958     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7959     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7960                                DAG.getConstant(1, dl, VT));
7961     Quot = DAG.getSelect(dl, VT,
7962                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7963                          Sub1, Quot);
7964   } else
7965     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7966                        LHS, RHS);
7967 
7968   return Quot;
7969 }
7970 
7971 void TargetLowering::expandUADDSUBO(
7972     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7973   SDLoc dl(Node);
7974   SDValue LHS = Node->getOperand(0);
7975   SDValue RHS = Node->getOperand(1);
7976   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7977 
7978   // If ADD/SUBCARRY is legal, use that instead.
7979   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7980   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7981     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7982     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7983                                     { LHS, RHS, CarryIn });
7984     Result = SDValue(NodeCarry.getNode(), 0);
7985     Overflow = SDValue(NodeCarry.getNode(), 1);
7986     return;
7987   }
7988 
7989   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7990                             LHS.getValueType(), LHS, RHS);
7991 
7992   EVT ResultType = Node->getValueType(1);
7993   EVT SetCCType = getSetCCResultType(
7994       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7995   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7996   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7997   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7998 }
7999 
8000 void TargetLowering::expandSADDSUBO(
8001     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8002   SDLoc dl(Node);
8003   SDValue LHS = Node->getOperand(0);
8004   SDValue RHS = Node->getOperand(1);
8005   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8006 
8007   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8008                             LHS.getValueType(), LHS, RHS);
8009 
8010   EVT ResultType = Node->getValueType(1);
8011   EVT OType = getSetCCResultType(
8012       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8013 
8014   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8015   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8016   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8017     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8018     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8019     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8020     return;
8021   }
8022 
8023   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8024 
8025   // For an addition, the result should be less than one of the operands (LHS)
8026   // if and only if the other operand (RHS) is negative, otherwise there will
8027   // be overflow.
8028   // For a subtraction, the result should be less than one of the operands
8029   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8030   // otherwise there will be overflow.
8031   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8032   SDValue ConditionRHS =
8033       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8034 
8035   Overflow = DAG.getBoolExtOrTrunc(
8036       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8037       ResultType, ResultType);
8038 }
8039 
8040 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8041                                 SDValue &Overflow, SelectionDAG &DAG) const {
8042   SDLoc dl(Node);
8043   EVT VT = Node->getValueType(0);
8044   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8045   SDValue LHS = Node->getOperand(0);
8046   SDValue RHS = Node->getOperand(1);
8047   bool isSigned = Node->getOpcode() == ISD::SMULO;
8048 
8049   // For power-of-two multiplications we can use a simpler shift expansion.
8050   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8051     const APInt &C = RHSC->getAPIntValue();
8052     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8053     if (C.isPowerOf2()) {
8054       // smulo(x, signed_min) is same as umulo(x, signed_min).
8055       bool UseArithShift = isSigned && !C.isMinSignedValue();
8056       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8057       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8058       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8059       Overflow = DAG.getSetCC(dl, SetCCVT,
8060           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8061                       dl, VT, Result, ShiftAmt),
8062           LHS, ISD::SETNE);
8063       return true;
8064     }
8065   }
8066 
8067   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8068   if (VT.isVector())
8069     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8070                               VT.getVectorNumElements());
8071 
8072   SDValue BottomHalf;
8073   SDValue TopHalf;
8074   static const unsigned Ops[2][3] =
8075       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8076         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8077   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8078     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8079     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8080   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8081     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8082                              RHS);
8083     TopHalf = BottomHalf.getValue(1);
8084   } else if (isTypeLegal(WideVT)) {
8085     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8086     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8087     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8088     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8089     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8090         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8091     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8092                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8093   } else {
8094     if (VT.isVector())
8095       return false;
8096 
8097     // We can fall back to a libcall with an illegal type for the MUL if we
8098     // have a libcall big enough.
8099     // Also, we can fall back to a division in some cases, but that's a big
8100     // performance hit in the general case.
8101     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8102     if (WideVT == MVT::i16)
8103       LC = RTLIB::MUL_I16;
8104     else if (WideVT == MVT::i32)
8105       LC = RTLIB::MUL_I32;
8106     else if (WideVT == MVT::i64)
8107       LC = RTLIB::MUL_I64;
8108     else if (WideVT == MVT::i128)
8109       LC = RTLIB::MUL_I128;
8110     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8111 
8112     SDValue HiLHS;
8113     SDValue HiRHS;
8114     if (isSigned) {
8115       // The high part is obtained by SRA'ing all but one of the bits of low
8116       // part.
8117       unsigned LoSize = VT.getFixedSizeInBits();
8118       HiLHS =
8119           DAG.getNode(ISD::SRA, dl, VT, LHS,
8120                       DAG.getConstant(LoSize - 1, dl,
8121                                       getPointerTy(DAG.getDataLayout())));
8122       HiRHS =
8123           DAG.getNode(ISD::SRA, dl, VT, RHS,
8124                       DAG.getConstant(LoSize - 1, dl,
8125                                       getPointerTy(DAG.getDataLayout())));
8126     } else {
8127         HiLHS = DAG.getConstant(0, dl, VT);
8128         HiRHS = DAG.getConstant(0, dl, VT);
8129     }
8130 
8131     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8132     // pre-lowered to the correct types. This all depends upon WideVT not
8133     // being a legal type for the architecture and thus has to be split to
8134     // two arguments.
8135     SDValue Ret;
8136     TargetLowering::MakeLibCallOptions CallOptions;
8137     CallOptions.setSExt(isSigned);
8138     CallOptions.setIsPostTypeLegalization(true);
8139     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8140       // Halves of WideVT are packed into registers in different order
8141       // depending on platform endianness. This is usually handled by
8142       // the C calling convention, but we can't defer to it in
8143       // the legalizer.
8144       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8145       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8146     } else {
8147       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8148       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8149     }
8150     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8151            "Ret value is a collection of constituent nodes holding result.");
8152     if (DAG.getDataLayout().isLittleEndian()) {
8153       // Same as above.
8154       BottomHalf = Ret.getOperand(0);
8155       TopHalf = Ret.getOperand(1);
8156     } else {
8157       BottomHalf = Ret.getOperand(1);
8158       TopHalf = Ret.getOperand(0);
8159     }
8160   }
8161 
8162   Result = BottomHalf;
8163   if (isSigned) {
8164     SDValue ShiftAmt = DAG.getConstant(
8165         VT.getScalarSizeInBits() - 1, dl,
8166         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8167     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8168     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8169   } else {
8170     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8171                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8172   }
8173 
8174   // Truncate the result if SetCC returns a larger type than needed.
8175   EVT RType = Node->getValueType(1);
8176   if (RType.bitsLT(Overflow.getValueType()))
8177     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8178 
8179   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8180          "Unexpected result type for S/UMULO legalization");
8181   return true;
8182 }
8183 
8184 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8185   SDLoc dl(Node);
8186   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8187   SDValue Op = Node->getOperand(0);
8188   EVT VT = Op.getValueType();
8189 
8190   if (VT.isScalableVector())
8191     report_fatal_error(
8192         "Expanding reductions for scalable vectors is undefined.");
8193 
8194   // Try to use a shuffle reduction for power of two vectors.
8195   if (VT.isPow2VectorType()) {
8196     while (VT.getVectorNumElements() > 1) {
8197       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8198       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8199         break;
8200 
8201       SDValue Lo, Hi;
8202       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8203       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8204       VT = HalfVT;
8205     }
8206   }
8207 
8208   EVT EltVT = VT.getVectorElementType();
8209   unsigned NumElts = VT.getVectorNumElements();
8210 
8211   SmallVector<SDValue, 8> Ops;
8212   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8213 
8214   SDValue Res = Ops[0];
8215   for (unsigned i = 1; i < NumElts; i++)
8216     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8217 
8218   // Result type may be wider than element type.
8219   if (EltVT != Node->getValueType(0))
8220     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8221   return Res;
8222 }
8223 
8224 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8225   SDLoc dl(Node);
8226   SDValue AccOp = Node->getOperand(0);
8227   SDValue VecOp = Node->getOperand(1);
8228   SDNodeFlags Flags = Node->getFlags();
8229 
8230   EVT VT = VecOp.getValueType();
8231   EVT EltVT = VT.getVectorElementType();
8232 
8233   if (VT.isScalableVector())
8234     report_fatal_error(
8235         "Expanding reductions for scalable vectors is undefined.");
8236 
8237   unsigned NumElts = VT.getVectorNumElements();
8238 
8239   SmallVector<SDValue, 8> Ops;
8240   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8241 
8242   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8243 
8244   SDValue Res = AccOp;
8245   for (unsigned i = 0; i < NumElts; i++)
8246     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8247 
8248   return Res;
8249 }
8250 
8251 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8252                                SelectionDAG &DAG) const {
8253   EVT VT = Node->getValueType(0);
8254   SDLoc dl(Node);
8255   bool isSigned = Node->getOpcode() == ISD::SREM;
8256   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8257   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8258   SDValue Dividend = Node->getOperand(0);
8259   SDValue Divisor = Node->getOperand(1);
8260   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8261     SDVTList VTs = DAG.getVTList(VT, VT);
8262     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8263     return true;
8264   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8265     // X % Y -> X-X/Y*Y
8266     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8267     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8268     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8269     return true;
8270   }
8271   return false;
8272 }
8273 
8274 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8275                                             SelectionDAG &DAG) const {
8276   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8277   SDLoc dl(SDValue(Node, 0));
8278   SDValue Src = Node->getOperand(0);
8279 
8280   // DstVT is the result type, while SatVT is the size to which we saturate
8281   EVT SrcVT = Src.getValueType();
8282   EVT DstVT = Node->getValueType(0);
8283 
8284   unsigned SatWidth = Node->getConstantOperandVal(1);
8285   unsigned DstWidth = DstVT.getScalarSizeInBits();
8286   assert(SatWidth <= DstWidth &&
8287          "Expected saturation width smaller than result width");
8288 
8289   // Determine minimum and maximum integer values and their corresponding
8290   // floating-point values.
8291   APInt MinInt, MaxInt;
8292   if (IsSigned) {
8293     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8294     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8295   } else {
8296     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8297     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8298   }
8299 
8300   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8301   // libcall emission cannot handle this. Large result types will fail.
8302   if (SrcVT == MVT::f16) {
8303     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8304     SrcVT = Src.getValueType();
8305   }
8306 
8307   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8308   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8309 
8310   APFloat::opStatus MinStatus =
8311       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8312   APFloat::opStatus MaxStatus =
8313       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8314   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8315                              !(MaxStatus & APFloat::opStatus::opInexact);
8316 
8317   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8318   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8319 
8320   // If the integer bounds are exactly representable as floats and min/max are
8321   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8322   // of comparisons and selects.
8323   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8324                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8325   if (AreExactFloatBounds && MinMaxLegal) {
8326     SDValue Clamped = Src;
8327 
8328     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8329     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8330     // Clamp by MaxFloat from above. NaN cannot occur.
8331     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8332     // Convert clamped value to integer.
8333     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8334                                   dl, DstVT, Clamped);
8335 
8336     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8337     // which will cast to zero.
8338     if (!IsSigned)
8339       return FpToInt;
8340 
8341     // Otherwise, select 0 if Src is NaN.
8342     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8343     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8344                            ISD::CondCode::SETUO);
8345   }
8346 
8347   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8348   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8349 
8350   // Result of direct conversion. The assumption here is that the operation is
8351   // non-trapping and it's fine to apply it to an out-of-range value if we
8352   // select it away later.
8353   SDValue FpToInt =
8354       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8355 
8356   SDValue Select = FpToInt;
8357 
8358   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8359   // MinInt if Src is NaN.
8360   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8361                            ISD::CondCode::SETULT);
8362   // If Src OGT MaxFloat, select MaxInt.
8363   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8364                            ISD::CondCode::SETOGT);
8365 
8366   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8367   // is already zero.
8368   if (!IsSigned)
8369     return Select;
8370 
8371   // Otherwise, select 0 if Src is NaN.
8372   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8373   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8374 }
8375