1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamStackAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal) {
121     ByValType = Call->getParamByValType(ArgIdx);
122     if (!Alignment)
123       Alignment = Call->getParamAlign(ArgIdx);
124   }
125   PreallocatedType = nullptr;
126   if (IsPreallocated)
127     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
128 }
129 
130 /// Generate a libcall taking the given operands as arguments and returning a
131 /// result of type RetVT.
132 std::pair<SDValue, SDValue>
133 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
134                             ArrayRef<SDValue> Ops,
135                             MakeLibCallOptions CallOptions,
136                             const SDLoc &dl,
137                             SDValue InChain) const {
138   if (!InChain)
139     InChain = DAG.getEntryNode();
140 
141   TargetLowering::ArgListTy Args;
142   Args.reserve(Ops.size());
143 
144   TargetLowering::ArgListEntry Entry;
145   for (unsigned i = 0; i < Ops.size(); ++i) {
146     SDValue NewOp = Ops[i];
147     Entry.Node = NewOp;
148     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
149     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
150                                                  CallOptions.IsSExt);
151     Entry.IsZExt = !Entry.IsSExt;
152 
153     if (CallOptions.IsSoften &&
154         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
155       Entry.IsSExt = Entry.IsZExt = false;
156     }
157     Args.push_back(Entry);
158   }
159 
160   if (LC == RTLIB::UNKNOWN_LIBCALL)
161     report_fatal_error("Unsupported library call operation!");
162   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
163                                          getPointerTy(DAG.getDataLayout()));
164 
165   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
166   TargetLowering::CallLoweringInfo CLI(DAG);
167   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
168   bool zeroExtend = !signExtend;
169 
170   if (CallOptions.IsSoften &&
171       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
172     signExtend = zeroExtend = false;
173   }
174 
175   CLI.setDebugLoc(dl)
176       .setChain(InChain)
177       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
178       .setNoReturn(CallOptions.DoesNotReturn)
179       .setDiscardResult(!CallOptions.IsReturnValueUsed)
180       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
181       .setSExtResult(signExtend)
182       .setZExtResult(zeroExtend);
183   return LowerCallTo(CLI);
184 }
185 
186 bool TargetLowering::findOptimalMemOpLowering(
187     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
188     unsigned SrcAS, const AttributeList &FuncAttributes) const {
189   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
190     return false;
191 
192   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
193 
194   if (VT == MVT::Other) {
195     // Use the largest integer type whose alignment constraints are satisfied.
196     // We only need to check DstAlign here as SrcAlign is always greater or
197     // equal to DstAlign (or zero).
198     VT = MVT::i64;
199     if (Op.isFixedDstAlign())
200       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
201              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
202         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
203     assert(VT.isInteger());
204 
205     // Find the largest legal integer type.
206     MVT LVT = MVT::i64;
207     while (!isTypeLegal(LVT))
208       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
209     assert(LVT.isInteger());
210 
211     // If the type we've chosen is larger than the largest legal integer type
212     // then use that instead.
213     if (VT.bitsGT(LVT))
214       VT = LVT;
215   }
216 
217   unsigned NumMemOps = 0;
218   uint64_t Size = Op.size();
219   while (Size) {
220     unsigned VTSize = VT.getSizeInBits() / 8;
221     while (VTSize > Size) {
222       // For now, only use non-vector load / store's for the left-over pieces.
223       EVT NewVT = VT;
224       unsigned NewVTSize;
225 
226       bool Found = false;
227       if (VT.isVector() || VT.isFloatingPoint()) {
228         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
229         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
230             isSafeMemOpType(NewVT.getSimpleVT()))
231           Found = true;
232         else if (NewVT == MVT::i64 &&
233                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
234                  isSafeMemOpType(MVT::f64)) {
235           // i64 is usually not legal on 32-bit targets, but f64 may be.
236           NewVT = MVT::f64;
237           Found = true;
238         }
239       }
240 
241       if (!Found) {
242         do {
243           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
244           if (NewVT == MVT::i8)
245             break;
246         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
247       }
248       NewVTSize = NewVT.getSizeInBits() / 8;
249 
250       // If the new VT cannot cover all of the remaining bits, then consider
251       // issuing a (or a pair of) unaligned and overlapping load / store.
252       bool Fast;
253       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
254           allowsMisalignedMemoryAccesses(
255               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
256               MachineMemOperand::MONone, &Fast) &&
257           Fast)
258         VTSize = Size;
259       else {
260         VT = NewVT;
261         VTSize = NewVTSize;
262       }
263     }
264 
265     if (++NumMemOps > Limit)
266       return false;
267 
268     MemOps.push_back(VT);
269     Size -= VTSize;
270   }
271 
272   return true;
273 }
274 
275 /// Soften the operands of a comparison. This code is shared among BR_CC,
276 /// SELECT_CC, and SETCC handlers.
277 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
278                                          SDValue &NewLHS, SDValue &NewRHS,
279                                          ISD::CondCode &CCCode,
280                                          const SDLoc &dl, const SDValue OldLHS,
281                                          const SDValue OldRHS) const {
282   SDValue Chain;
283   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
284                              OldRHS, Chain);
285 }
286 
287 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
288                                          SDValue &NewLHS, SDValue &NewRHS,
289                                          ISD::CondCode &CCCode,
290                                          const SDLoc &dl, const SDValue OldLHS,
291                                          const SDValue OldRHS,
292                                          SDValue &Chain,
293                                          bool IsSignaling) const {
294   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
295   // not supporting it. We can update this code when libgcc provides such
296   // functions.
297 
298   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
299          && "Unsupported setcc type!");
300 
301   // Expand into one or more soft-fp libcall(s).
302   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
303   bool ShouldInvertCC = false;
304   switch (CCCode) {
305   case ISD::SETEQ:
306   case ISD::SETOEQ:
307     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
308           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
309           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
310     break;
311   case ISD::SETNE:
312   case ISD::SETUNE:
313     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
314           (VT == MVT::f64) ? RTLIB::UNE_F64 :
315           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
316     break;
317   case ISD::SETGE:
318   case ISD::SETOGE:
319     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
320           (VT == MVT::f64) ? RTLIB::OGE_F64 :
321           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
322     break;
323   case ISD::SETLT:
324   case ISD::SETOLT:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
326           (VT == MVT::f64) ? RTLIB::OLT_F64 :
327           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
328     break;
329   case ISD::SETLE:
330   case ISD::SETOLE:
331     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
332           (VT == MVT::f64) ? RTLIB::OLE_F64 :
333           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
334     break;
335   case ISD::SETGT:
336   case ISD::SETOGT:
337     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
338           (VT == MVT::f64) ? RTLIB::OGT_F64 :
339           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
340     break;
341   case ISD::SETO:
342     ShouldInvertCC = true;
343     LLVM_FALLTHROUGH;
344   case ISD::SETUO:
345     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
346           (VT == MVT::f64) ? RTLIB::UO_F64 :
347           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
348     break;
349   case ISD::SETONE:
350     // SETONE = O && UNE
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUEQ:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
358           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
359           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
360     break;
361   default:
362     // Invert CC for unordered comparisons
363     ShouldInvertCC = true;
364     switch (CCCode) {
365     case ISD::SETULT:
366       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
367             (VT == MVT::f64) ? RTLIB::OGE_F64 :
368             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
369       break;
370     case ISD::SETULE:
371       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
372             (VT == MVT::f64) ? RTLIB::OGT_F64 :
373             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
374       break;
375     case ISD::SETUGT:
376       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
377             (VT == MVT::f64) ? RTLIB::OLE_F64 :
378             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
379       break;
380     case ISD::SETUGE:
381       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
382             (VT == MVT::f64) ? RTLIB::OLT_F64 :
383             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
384       break;
385     default: llvm_unreachable("Do not know how to soften this setcc!");
386     }
387   }
388 
389   // Use the target specific return value for comparions lib calls.
390   EVT RetVT = getCmpLibcallReturnType();
391   SDValue Ops[2] = {NewLHS, NewRHS};
392   TargetLowering::MakeLibCallOptions CallOptions;
393   EVT OpsVT[2] = { OldLHS.getValueType(),
394                    OldRHS.getValueType() };
395   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
396   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
397   NewLHS = Call.first;
398   NewRHS = DAG.getConstant(0, dl, RetVT);
399 
400   CCCode = getCmpLibcallCC(LC1);
401   if (ShouldInvertCC) {
402     assert(RetVT.isInteger());
403     CCCode = getSetCCInverse(CCCode, RetVT);
404   }
405 
406   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
407     // Update Chain.
408     Chain = Call.second;
409   } else {
410     EVT SetCCVT =
411         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
412     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
413     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
414     CCCode = getCmpLibcallCC(LC2);
415     if (ShouldInvertCC)
416       CCCode = getSetCCInverse(CCCode, RetVT);
417     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
418     if (Chain)
419       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
420                           Call2.second);
421     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
422                          Tmp.getValueType(), Tmp, NewLHS);
423     NewRHS = SDValue();
424   }
425 }
426 
427 /// Return the entry encoding for a jump table in the current function. The
428 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
429 unsigned TargetLowering::getJumpTableEncoding() const {
430   // In non-pic modes, just use the address of a block.
431   if (!isPositionIndependent())
432     return MachineJumpTableInfo::EK_BlockAddress;
433 
434   // In PIC mode, if the target supports a GPRel32 directive, use it.
435   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
436     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
437 
438   // Otherwise, use a label difference.
439   return MachineJumpTableInfo::EK_LabelDifference32;
440 }
441 
442 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
443                                                  SelectionDAG &DAG) const {
444   // If our PIC model is GP relative, use the global offset table as the base.
445   unsigned JTEncoding = getJumpTableEncoding();
446 
447   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
448       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
449     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
450 
451   return Table;
452 }
453 
454 /// This returns the relocation base for the given PIC jumptable, the same as
455 /// getPICJumpTableRelocBase, but as an MCExpr.
456 const MCExpr *
457 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
458                                              unsigned JTI,MCContext &Ctx) const{
459   // The normal PIC reloc base is the label at the start of the jump table.
460   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
461 }
462 
463 bool
464 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
465   const TargetMachine &TM = getTargetMachine();
466   const GlobalValue *GV = GA->getGlobal();
467 
468   // If the address is not even local to this DSO we will have to load it from
469   // a got and then add the offset.
470   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
471     return false;
472 
473   // If the code is position independent we will have to add a base register.
474   if (isPositionIndependent())
475     return false;
476 
477   // Otherwise we can do it.
478   return true;
479 }
480 
481 //===----------------------------------------------------------------------===//
482 //  Optimization Methods
483 //===----------------------------------------------------------------------===//
484 
485 /// If the specified instruction has a constant integer operand and there are
486 /// bits set in that constant that are not demanded, then clear those bits and
487 /// return true.
488 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
489                                             const APInt &DemandedBits,
490                                             const APInt &DemandedElts,
491                                             TargetLoweringOpt &TLO) const {
492   SDLoc DL(Op);
493   unsigned Opcode = Op.getOpcode();
494 
495   // Do target-specific constant optimization.
496   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
497     return TLO.New.getNode();
498 
499   // FIXME: ISD::SELECT, ISD::SELECT_CC
500   switch (Opcode) {
501   default:
502     break;
503   case ISD::XOR:
504   case ISD::AND:
505   case ISD::OR: {
506     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
507     if (!Op1C)
508       return false;
509 
510     // If this is a 'not' op, don't touch it because that's a canonical form.
511     const APInt &C = Op1C->getAPIntValue();
512     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
513       return false;
514 
515     if (!C.isSubsetOf(DemandedBits)) {
516       EVT VT = Op.getValueType();
517       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
518       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
519       return TLO.CombineTo(Op, NewOp);
520     }
521 
522     break;
523   }
524   }
525 
526   return false;
527 }
528 
529 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
530                                             const APInt &DemandedBits,
531                                             TargetLoweringOpt &TLO) const {
532   EVT VT = Op.getValueType();
533   APInt DemandedElts = VT.isVector()
534                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
535                            : APInt(1, 1);
536   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
537 }
538 
539 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
540 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
541 /// generalized for targets with other types of implicit widening casts.
542 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
543                                       const APInt &Demanded,
544                                       TargetLoweringOpt &TLO) const {
545   assert(Op.getNumOperands() == 2 &&
546          "ShrinkDemandedOp only supports binary operators!");
547   assert(Op.getNode()->getNumValues() == 1 &&
548          "ShrinkDemandedOp only supports nodes with one result!");
549 
550   SelectionDAG &DAG = TLO.DAG;
551   SDLoc dl(Op);
552 
553   // Early return, as this function cannot handle vector types.
554   if (Op.getValueType().isVector())
555     return false;
556 
557   // Don't do this if the node has another user, which may require the
558   // full value.
559   if (!Op.getNode()->hasOneUse())
560     return false;
561 
562   // Search for the smallest integer type with free casts to and from
563   // Op's type. For expedience, just check power-of-2 integer types.
564   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
565   unsigned DemandedSize = Demanded.getActiveBits();
566   unsigned SmallVTBits = DemandedSize;
567   if (!isPowerOf2_32(SmallVTBits))
568     SmallVTBits = NextPowerOf2(SmallVTBits);
569   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
570     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
571     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
572         TLI.isZExtFree(SmallVT, Op.getValueType())) {
573       // We found a type with free casts.
574       SDValue X = DAG.getNode(
575           Op.getOpcode(), dl, SmallVT,
576           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
577           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
578       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
579       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
580       return TLO.CombineTo(Op, Z);
581     }
582   }
583   return false;
584 }
585 
586 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
587                                           DAGCombinerInfo &DCI) const {
588   SelectionDAG &DAG = DCI.DAG;
589   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
590                         !DCI.isBeforeLegalizeOps());
591   KnownBits Known;
592 
593   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
594   if (Simplified) {
595     DCI.AddToWorklist(Op.getNode());
596     DCI.CommitTargetLoweringOpt(TLO);
597   }
598   return Simplified;
599 }
600 
601 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
602                                           KnownBits &Known,
603                                           TargetLoweringOpt &TLO,
604                                           unsigned Depth,
605                                           bool AssumeSingleUse) const {
606   EVT VT = Op.getValueType();
607 
608   // TODO: We can probably do more work on calculating the known bits and
609   // simplifying the operations for scalable vectors, but for now we just
610   // bail out.
611   if (VT.isScalableVector()) {
612     // Pretend we don't know anything for now.
613     Known = KnownBits(DemandedBits.getBitWidth());
614     return false;
615   }
616 
617   APInt DemandedElts = VT.isVector()
618                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
619                            : APInt(1, 1);
620   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
621                               AssumeSingleUse);
622 }
623 
624 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
625 // TODO: Under what circumstances can we create nodes? Constant folding?
626 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
627     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
628     SelectionDAG &DAG, unsigned Depth) const {
629   // Limit search depth.
630   if (Depth >= SelectionDAG::MaxRecursionDepth)
631     return SDValue();
632 
633   // Ignore UNDEFs.
634   if (Op.isUndef())
635     return SDValue();
636 
637   // Not demanding any bits/elts from Op.
638   if (DemandedBits == 0 || DemandedElts == 0)
639     return DAG.getUNDEF(Op.getValueType());
640 
641   unsigned NumElts = DemandedElts.getBitWidth();
642   unsigned BitWidth = DemandedBits.getBitWidth();
643   KnownBits LHSKnown, RHSKnown;
644   switch (Op.getOpcode()) {
645   case ISD::BITCAST: {
646     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
647     EVT SrcVT = Src.getValueType();
648     EVT DstVT = Op.getValueType();
649     if (SrcVT == DstVT)
650       return Src;
651 
652     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
653     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
654     if (NumSrcEltBits == NumDstEltBits)
655       if (SDValue V = SimplifyMultipleUseDemandedBits(
656               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
657         return DAG.getBitcast(DstVT, V);
658 
659     // TODO - bigendian once we have test coverage.
660     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
661         DAG.getDataLayout().isLittleEndian()) {
662       unsigned Scale = NumDstEltBits / NumSrcEltBits;
663       unsigned NumSrcElts = SrcVT.getVectorNumElements();
664       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
665       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
666       for (unsigned i = 0; i != Scale; ++i) {
667         unsigned Offset = i * NumSrcEltBits;
668         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
669         if (!Sub.isNullValue()) {
670           DemandedSrcBits |= Sub;
671           for (unsigned j = 0; j != NumElts; ++j)
672             if (DemandedElts[j])
673               DemandedSrcElts.setBit((j * Scale) + i);
674         }
675       }
676 
677       if (SDValue V = SimplifyMultipleUseDemandedBits(
678               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
679         return DAG.getBitcast(DstVT, V);
680     }
681 
682     // TODO - bigendian once we have test coverage.
683     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
684         DAG.getDataLayout().isLittleEndian()) {
685       unsigned Scale = NumSrcEltBits / NumDstEltBits;
686       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
687       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
688       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
689       for (unsigned i = 0; i != NumElts; ++i)
690         if (DemandedElts[i]) {
691           unsigned Offset = (i % Scale) * NumDstEltBits;
692           DemandedSrcBits.insertBits(DemandedBits, Offset);
693           DemandedSrcElts.setBit(i / Scale);
694         }
695 
696       if (SDValue V = SimplifyMultipleUseDemandedBits(
697               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
698         return DAG.getBitcast(DstVT, V);
699     }
700 
701     break;
702   }
703   case ISD::AND: {
704     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
705     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
706 
707     // If all of the demanded bits are known 1 on one side, return the other.
708     // These bits cannot contribute to the result of the 'and' in this
709     // context.
710     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
711       return Op.getOperand(0);
712     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
713       return Op.getOperand(1);
714     break;
715   }
716   case ISD::OR: {
717     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
718     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
719 
720     // If all of the demanded bits are known zero on one side, return the
721     // other.  These bits cannot contribute to the result of the 'or' in this
722     // context.
723     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
724       return Op.getOperand(0);
725     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
726       return Op.getOperand(1);
727     break;
728   }
729   case ISD::XOR: {
730     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
731     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
732 
733     // If all of the demanded bits are known zero on one side, return the
734     // other.
735     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::SHL: {
742     // If we are only demanding sign bits then we can use the shift source
743     // directly.
744     if (const APInt *MaxSA =
745             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
746       SDValue Op0 = Op.getOperand(0);
747       unsigned ShAmt = MaxSA->getZExtValue();
748       unsigned NumSignBits =
749           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
750       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
751       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
752         return Op0;
753     }
754     break;
755   }
756   case ISD::SETCC: {
757     SDValue Op0 = Op.getOperand(0);
758     SDValue Op1 = Op.getOperand(1);
759     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
760     // If (1) we only need the sign-bit, (2) the setcc operands are the same
761     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
762     // -1, we may be able to bypass the setcc.
763     if (DemandedBits.isSignMask() &&
764         Op0.getScalarValueSizeInBits() == BitWidth &&
765         getBooleanContents(Op0.getValueType()) ==
766             BooleanContent::ZeroOrNegativeOneBooleanContent) {
767       // If we're testing X < 0, then this compare isn't needed - just use X!
768       // FIXME: We're limiting to integer types here, but this should also work
769       // if we don't care about FP signed-zero. The use of SETLT with FP means
770       // that we don't care about NaNs.
771       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
772           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
773         return Op0;
774     }
775     break;
776   }
777   case ISD::SIGN_EXTEND_INREG: {
778     // If none of the extended bits are demanded, eliminate the sextinreg.
779     SDValue Op0 = Op.getOperand(0);
780     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
781     unsigned ExBits = ExVT.getScalarSizeInBits();
782     if (DemandedBits.getActiveBits() <= ExBits)
783       return Op0;
784     // If the input is already sign extended, just drop the extension.
785     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
786     if (NumSignBits >= (BitWidth - ExBits + 1))
787       return Op0;
788     break;
789   }
790   case ISD::ANY_EXTEND_VECTOR_INREG:
791   case ISD::SIGN_EXTEND_VECTOR_INREG:
792   case ISD::ZERO_EXTEND_VECTOR_INREG: {
793     // If we only want the lowest element and none of extended bits, then we can
794     // return the bitcasted source vector.
795     SDValue Src = Op.getOperand(0);
796     EVT SrcVT = Src.getValueType();
797     EVT DstVT = Op.getValueType();
798     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
799         DAG.getDataLayout().isLittleEndian() &&
800         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
801       return DAG.getBitcast(DstVT, Src);
802     }
803     break;
804   }
805   case ISD::INSERT_VECTOR_ELT: {
806     // If we don't demand the inserted element, return the base vector.
807     SDValue Vec = Op.getOperand(0);
808     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
809     EVT VecVT = Vec.getValueType();
810     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
811         !DemandedElts[CIdx->getZExtValue()])
812       return Vec;
813     break;
814   }
815   case ISD::INSERT_SUBVECTOR: {
816     // If we don't demand the inserted subvector, return the base vector.
817     SDValue Vec = Op.getOperand(0);
818     SDValue Sub = Op.getOperand(1);
819     uint64_t Idx = Op.getConstantOperandVal(2);
820     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
821     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
822       return Vec;
823     break;
824   }
825   case ISD::VECTOR_SHUFFLE: {
826     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
827 
828     // If all the demanded elts are from one operand and are inline,
829     // then we can use the operand directly.
830     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
831     for (unsigned i = 0; i != NumElts; ++i) {
832       int M = ShuffleMask[i];
833       if (M < 0 || !DemandedElts[i])
834         continue;
835       AllUndef = false;
836       IdentityLHS &= (M == (int)i);
837       IdentityRHS &= ((M - NumElts) == i);
838     }
839 
840     if (AllUndef)
841       return DAG.getUNDEF(Op.getValueType());
842     if (IdentityLHS)
843       return Op.getOperand(0);
844     if (IdentityRHS)
845       return Op.getOperand(1);
846     break;
847   }
848   default:
849     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
850       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
851               Op, DemandedBits, DemandedElts, DAG, Depth))
852         return V;
853     break;
854   }
855   return SDValue();
856 }
857 
858 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
859     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
860     unsigned Depth) const {
861   EVT VT = Op.getValueType();
862   APInt DemandedElts = VT.isVector()
863                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
864                            : APInt(1, 1);
865   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
866                                          Depth);
867 }
868 
869 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
870     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
871     unsigned Depth) const {
872   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
873   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
874                                          Depth);
875 }
876 
877 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
878 /// result of Op are ever used downstream. If we can use this information to
879 /// simplify Op, create a new simplified DAG node and return true, returning the
880 /// original and new nodes in Old and New. Otherwise, analyze the expression and
881 /// return a mask of Known bits for the expression (used to simplify the
882 /// caller).  The Known bits may only be accurate for those bits in the
883 /// OriginalDemandedBits and OriginalDemandedElts.
884 bool TargetLowering::SimplifyDemandedBits(
885     SDValue Op, const APInt &OriginalDemandedBits,
886     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
887     unsigned Depth, bool AssumeSingleUse) const {
888   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
889   assert(Op.getScalarValueSizeInBits() == BitWidth &&
890          "Mask size mismatches value type size!");
891 
892   // Don't know anything.
893   Known = KnownBits(BitWidth);
894 
895   // TODO: We can probably do more work on calculating the known bits and
896   // simplifying the operations for scalable vectors, but for now we just
897   // bail out.
898   if (Op.getValueType().isScalableVector())
899     return false;
900 
901   unsigned NumElts = OriginalDemandedElts.getBitWidth();
902   assert((!Op.getValueType().isVector() ||
903           NumElts == Op.getValueType().getVectorNumElements()) &&
904          "Unexpected vector size");
905 
906   APInt DemandedBits = OriginalDemandedBits;
907   APInt DemandedElts = OriginalDemandedElts;
908   SDLoc dl(Op);
909   auto &DL = TLO.DAG.getDataLayout();
910 
911   // Undef operand.
912   if (Op.isUndef())
913     return false;
914 
915   if (Op.getOpcode() == ISD::Constant) {
916     // We know all of the bits for a constant!
917     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
918     return false;
919   }
920 
921   if (Op.getOpcode() == ISD::ConstantFP) {
922     // We know all of the bits for a floating point constant!
923     Known = KnownBits::makeConstant(
924         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
925     return false;
926   }
927 
928   // Other users may use these bits.
929   EVT VT = Op.getValueType();
930   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
931     if (Depth != 0) {
932       // If not at the root, Just compute the Known bits to
933       // simplify things downstream.
934       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
935       return false;
936     }
937     // If this is the root being simplified, allow it to have multiple uses,
938     // just set the DemandedBits/Elts to all bits.
939     DemandedBits = APInt::getAllOnesValue(BitWidth);
940     DemandedElts = APInt::getAllOnesValue(NumElts);
941   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
942     // Not demanding any bits/elts from Op.
943     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
944   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
945     // Limit search depth.
946     return false;
947   }
948 
949   KnownBits Known2;
950   switch (Op.getOpcode()) {
951   case ISD::TargetConstant:
952     llvm_unreachable("Can't simplify this node");
953   case ISD::SCALAR_TO_VECTOR: {
954     if (!DemandedElts[0])
955       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
956 
957     KnownBits SrcKnown;
958     SDValue Src = Op.getOperand(0);
959     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
960     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
961     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
962       return true;
963 
964     // Upper elements are undef, so only get the knownbits if we just demand
965     // the bottom element.
966     if (DemandedElts == 1)
967       Known = SrcKnown.anyextOrTrunc(BitWidth);
968     break;
969   }
970   case ISD::BUILD_VECTOR:
971     // Collect the known bits that are shared by every demanded element.
972     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
973     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
974     return false; // Don't fall through, will infinitely loop.
975   case ISD::LOAD: {
976     LoadSDNode *LD = cast<LoadSDNode>(Op);
977     if (getTargetConstantFromLoad(LD)) {
978       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
979       return false; // Don't fall through, will infinitely loop.
980     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
981       // If this is a ZEXTLoad and we are looking at the loaded value.
982       EVT MemVT = LD->getMemoryVT();
983       unsigned MemBits = MemVT.getScalarSizeInBits();
984       Known.Zero.setBitsFrom(MemBits);
985       return false; // Don't fall through, will infinitely loop.
986     }
987     break;
988   }
989   case ISD::INSERT_VECTOR_ELT: {
990     SDValue Vec = Op.getOperand(0);
991     SDValue Scl = Op.getOperand(1);
992     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
993     EVT VecVT = Vec.getValueType();
994 
995     // If index isn't constant, assume we need all vector elements AND the
996     // inserted element.
997     APInt DemandedVecElts(DemandedElts);
998     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
999       unsigned Idx = CIdx->getZExtValue();
1000       DemandedVecElts.clearBit(Idx);
1001 
1002       // Inserted element is not required.
1003       if (!DemandedElts[Idx])
1004         return TLO.CombineTo(Op, Vec);
1005     }
1006 
1007     KnownBits KnownScl;
1008     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1009     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1010     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1011       return true;
1012 
1013     Known = KnownScl.anyextOrTrunc(BitWidth);
1014 
1015     KnownBits KnownVec;
1016     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1017                              Depth + 1))
1018       return true;
1019 
1020     if (!!DemandedVecElts)
1021       Known = KnownBits::commonBits(Known, KnownVec);
1022 
1023     return false;
1024   }
1025   case ISD::INSERT_SUBVECTOR: {
1026     // Demand any elements from the subvector and the remainder from the src its
1027     // inserted into.
1028     SDValue Src = Op.getOperand(0);
1029     SDValue Sub = Op.getOperand(1);
1030     uint64_t Idx = Op.getConstantOperandVal(2);
1031     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1032     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1033     APInt DemandedSrcElts = DemandedElts;
1034     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1035 
1036     KnownBits KnownSub, KnownSrc;
1037     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1038                              Depth + 1))
1039       return true;
1040     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1041                              Depth + 1))
1042       return true;
1043 
1044     Known.Zero.setAllBits();
1045     Known.One.setAllBits();
1046     if (!!DemandedSubElts)
1047       Known = KnownBits::commonBits(Known, KnownSub);
1048     if (!!DemandedSrcElts)
1049       Known = KnownBits::commonBits(Known, KnownSrc);
1050 
1051     // Attempt to avoid multi-use src if we don't need anything from it.
1052     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1053         !DemandedSrcElts.isAllOnesValue()) {
1054       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1055           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1056       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1057           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1058       if (NewSub || NewSrc) {
1059         NewSub = NewSub ? NewSub : Sub;
1060         NewSrc = NewSrc ? NewSrc : Src;
1061         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1062                                         Op.getOperand(2));
1063         return TLO.CombineTo(Op, NewOp);
1064       }
1065     }
1066     break;
1067   }
1068   case ISD::EXTRACT_SUBVECTOR: {
1069     // Offset the demanded elts by the subvector index.
1070     SDValue Src = Op.getOperand(0);
1071     if (Src.getValueType().isScalableVector())
1072       break;
1073     uint64_t Idx = Op.getConstantOperandVal(1);
1074     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1075     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1076 
1077     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1078                              Depth + 1))
1079       return true;
1080 
1081     // Attempt to avoid multi-use src if we don't need anything from it.
1082     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1083       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1084           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1085       if (DemandedSrc) {
1086         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1087                                         Op.getOperand(1));
1088         return TLO.CombineTo(Op, NewOp);
1089       }
1090     }
1091     break;
1092   }
1093   case ISD::CONCAT_VECTORS: {
1094     Known.Zero.setAllBits();
1095     Known.One.setAllBits();
1096     EVT SubVT = Op.getOperand(0).getValueType();
1097     unsigned NumSubVecs = Op.getNumOperands();
1098     unsigned NumSubElts = SubVT.getVectorNumElements();
1099     for (unsigned i = 0; i != NumSubVecs; ++i) {
1100       APInt DemandedSubElts =
1101           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1102       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1103                                Known2, TLO, Depth + 1))
1104         return true;
1105       // Known bits are shared by every demanded subvector element.
1106       if (!!DemandedSubElts)
1107         Known = KnownBits::commonBits(Known, Known2);
1108     }
1109     break;
1110   }
1111   case ISD::VECTOR_SHUFFLE: {
1112     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1113 
1114     // Collect demanded elements from shuffle operands..
1115     APInt DemandedLHS(NumElts, 0);
1116     APInt DemandedRHS(NumElts, 0);
1117     for (unsigned i = 0; i != NumElts; ++i) {
1118       if (!DemandedElts[i])
1119         continue;
1120       int M = ShuffleMask[i];
1121       if (M < 0) {
1122         // For UNDEF elements, we don't know anything about the common state of
1123         // the shuffle result.
1124         DemandedLHS.clearAllBits();
1125         DemandedRHS.clearAllBits();
1126         break;
1127       }
1128       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1129       if (M < (int)NumElts)
1130         DemandedLHS.setBit(M);
1131       else
1132         DemandedRHS.setBit(M - NumElts);
1133     }
1134 
1135     if (!!DemandedLHS || !!DemandedRHS) {
1136       SDValue Op0 = Op.getOperand(0);
1137       SDValue Op1 = Op.getOperand(1);
1138 
1139       Known.Zero.setAllBits();
1140       Known.One.setAllBits();
1141       if (!!DemandedLHS) {
1142         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1143                                  Depth + 1))
1144           return true;
1145         Known = KnownBits::commonBits(Known, Known2);
1146       }
1147       if (!!DemandedRHS) {
1148         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1149                                  Depth + 1))
1150           return true;
1151         Known = KnownBits::commonBits(Known, Known2);
1152       }
1153 
1154       // Attempt to avoid multi-use ops if we don't need anything from them.
1155       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1156           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1157       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1158           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1159       if (DemandedOp0 || DemandedOp1) {
1160         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1161         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1162         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1163         return TLO.CombineTo(Op, NewOp);
1164       }
1165     }
1166     break;
1167   }
1168   case ISD::AND: {
1169     SDValue Op0 = Op.getOperand(0);
1170     SDValue Op1 = Op.getOperand(1);
1171 
1172     // If the RHS is a constant, check to see if the LHS would be zero without
1173     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1174     // simplify the LHS, here we're using information from the LHS to simplify
1175     // the RHS.
1176     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1177       // Do not increment Depth here; that can cause an infinite loop.
1178       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1179       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1180       if ((LHSKnown.Zero & DemandedBits) ==
1181           (~RHSC->getAPIntValue() & DemandedBits))
1182         return TLO.CombineTo(Op, Op0);
1183 
1184       // If any of the set bits in the RHS are known zero on the LHS, shrink
1185       // the constant.
1186       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1187                                  DemandedElts, TLO))
1188         return true;
1189 
1190       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1191       // constant, but if this 'and' is only clearing bits that were just set by
1192       // the xor, then this 'and' can be eliminated by shrinking the mask of
1193       // the xor. For example, for a 32-bit X:
1194       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1195       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1196           LHSKnown.One == ~RHSC->getAPIntValue()) {
1197         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1198         return TLO.CombineTo(Op, Xor);
1199       }
1200     }
1201 
1202     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1203                              Depth + 1))
1204       return true;
1205     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1206     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1207                              Known2, TLO, Depth + 1))
1208       return true;
1209     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1210 
1211     // Attempt to avoid multi-use ops if we don't need anything from them.
1212     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1213       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1214           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1215       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1216           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1217       if (DemandedOp0 || DemandedOp1) {
1218         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1219         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1220         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1221         return TLO.CombineTo(Op, NewOp);
1222       }
1223     }
1224 
1225     // If all of the demanded bits are known one on one side, return the other.
1226     // These bits cannot contribute to the result of the 'and'.
1227     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1228       return TLO.CombineTo(Op, Op0);
1229     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1230       return TLO.CombineTo(Op, Op1);
1231     // If all of the demanded bits in the inputs are known zeros, return zero.
1232     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1233       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1234     // If the RHS is a constant, see if we can simplify it.
1235     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1236                                TLO))
1237       return true;
1238     // If the operation can be done in a smaller type, do so.
1239     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1240       return true;
1241 
1242     Known &= Known2;
1243     break;
1244   }
1245   case ISD::OR: {
1246     SDValue Op0 = Op.getOperand(0);
1247     SDValue Op1 = Op.getOperand(1);
1248 
1249     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1250                              Depth + 1))
1251       return true;
1252     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1253     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1254                              Known2, TLO, Depth + 1))
1255       return true;
1256     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1257 
1258     // Attempt to avoid multi-use ops if we don't need anything from them.
1259     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1260       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1261           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1262       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1263           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1264       if (DemandedOp0 || DemandedOp1) {
1265         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1266         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1267         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1268         return TLO.CombineTo(Op, NewOp);
1269       }
1270     }
1271 
1272     // If all of the demanded bits are known zero on one side, return the other.
1273     // These bits cannot contribute to the result of the 'or'.
1274     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1275       return TLO.CombineTo(Op, Op0);
1276     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1277       return TLO.CombineTo(Op, Op1);
1278     // If the RHS is a constant, see if we can simplify it.
1279     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1280       return true;
1281     // If the operation can be done in a smaller type, do so.
1282     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1283       return true;
1284 
1285     Known |= Known2;
1286     break;
1287   }
1288   case ISD::XOR: {
1289     SDValue Op0 = Op.getOperand(0);
1290     SDValue Op1 = Op.getOperand(1);
1291 
1292     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1293                              Depth + 1))
1294       return true;
1295     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1296     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1297                              Depth + 1))
1298       return true;
1299     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1300 
1301     // Attempt to avoid multi-use ops if we don't need anything from them.
1302     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1303       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1304           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1305       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1306           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1307       if (DemandedOp0 || DemandedOp1) {
1308         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1309         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1310         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1311         return TLO.CombineTo(Op, NewOp);
1312       }
1313     }
1314 
1315     // If all of the demanded bits are known zero on one side, return the other.
1316     // These bits cannot contribute to the result of the 'xor'.
1317     if (DemandedBits.isSubsetOf(Known.Zero))
1318       return TLO.CombineTo(Op, Op0);
1319     if (DemandedBits.isSubsetOf(Known2.Zero))
1320       return TLO.CombineTo(Op, Op1);
1321     // If the operation can be done in a smaller type, do so.
1322     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1323       return true;
1324 
1325     // If all of the unknown bits are known to be zero on one side or the other
1326     // turn this into an *inclusive* or.
1327     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1328     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1329       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1330 
1331     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1332     if (C) {
1333       // If one side is a constant, and all of the set bits in the constant are
1334       // also known set on the other side, turn this into an AND, as we know
1335       // the bits will be cleared.
1336       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1337       // NB: it is okay if more bits are known than are requested
1338       if (C->getAPIntValue() == Known2.One) {
1339         SDValue ANDC =
1340             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1341         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1342       }
1343 
1344       // If the RHS is a constant, see if we can change it. Don't alter a -1
1345       // constant because that's a 'not' op, and that is better for combining
1346       // and codegen.
1347       if (!C->isAllOnesValue() &&
1348           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1349         // We're flipping all demanded bits. Flip the undemanded bits too.
1350         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1351         return TLO.CombineTo(Op, New);
1352       }
1353     }
1354 
1355     // If we can't turn this into a 'not', try to shrink the constant.
1356     if (!C || !C->isAllOnesValue())
1357       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1358         return true;
1359 
1360     Known ^= Known2;
1361     break;
1362   }
1363   case ISD::SELECT:
1364     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1365                              Depth + 1))
1366       return true;
1367     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1368                              Depth + 1))
1369       return true;
1370     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1371     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1372 
1373     // If the operands are constants, see if we can simplify them.
1374     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1375       return true;
1376 
1377     // Only known if known in both the LHS and RHS.
1378     Known = KnownBits::commonBits(Known, Known2);
1379     break;
1380   case ISD::SELECT_CC:
1381     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1382                              Depth + 1))
1383       return true;
1384     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1385                              Depth + 1))
1386       return true;
1387     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1388     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1389 
1390     // If the operands are constants, see if we can simplify them.
1391     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1392       return true;
1393 
1394     // Only known if known in both the LHS and RHS.
1395     Known = KnownBits::commonBits(Known, Known2);
1396     break;
1397   case ISD::SETCC: {
1398     SDValue Op0 = Op.getOperand(0);
1399     SDValue Op1 = Op.getOperand(1);
1400     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1401     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1402     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1403     // -1, we may be able to bypass the setcc.
1404     if (DemandedBits.isSignMask() &&
1405         Op0.getScalarValueSizeInBits() == BitWidth &&
1406         getBooleanContents(Op0.getValueType()) ==
1407             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1408       // If we're testing X < 0, then this compare isn't needed - just use X!
1409       // FIXME: We're limiting to integer types here, but this should also work
1410       // if we don't care about FP signed-zero. The use of SETLT with FP means
1411       // that we don't care about NaNs.
1412       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1413           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1414         return TLO.CombineTo(Op, Op0);
1415 
1416       // TODO: Should we check for other forms of sign-bit comparisons?
1417       // Examples: X <= -1, X >= 0
1418     }
1419     if (getBooleanContents(Op0.getValueType()) ==
1420             TargetLowering::ZeroOrOneBooleanContent &&
1421         BitWidth > 1)
1422       Known.Zero.setBitsFrom(1);
1423     break;
1424   }
1425   case ISD::SHL: {
1426     SDValue Op0 = Op.getOperand(0);
1427     SDValue Op1 = Op.getOperand(1);
1428     EVT ShiftVT = Op1.getValueType();
1429 
1430     if (const APInt *SA =
1431             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1432       unsigned ShAmt = SA->getZExtValue();
1433       if (ShAmt == 0)
1434         return TLO.CombineTo(Op, Op0);
1435 
1436       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1437       // single shift.  We can do this if the bottom bits (which are shifted
1438       // out) are never demanded.
1439       // TODO - support non-uniform vector amounts.
1440       if (Op0.getOpcode() == ISD::SRL) {
1441         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1442           if (const APInt *SA2 =
1443                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1444             unsigned C1 = SA2->getZExtValue();
1445             unsigned Opc = ISD::SHL;
1446             int Diff = ShAmt - C1;
1447             if (Diff < 0) {
1448               Diff = -Diff;
1449               Opc = ISD::SRL;
1450             }
1451             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1452             return TLO.CombineTo(
1453                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1454           }
1455         }
1456       }
1457 
1458       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1459       // are not demanded. This will likely allow the anyext to be folded away.
1460       // TODO - support non-uniform vector amounts.
1461       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1462         SDValue InnerOp = Op0.getOperand(0);
1463         EVT InnerVT = InnerOp.getValueType();
1464         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1465         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1466             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1467           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1468           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1469             ShTy = InnerVT;
1470           SDValue NarrowShl =
1471               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1472                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1473           return TLO.CombineTo(
1474               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1475         }
1476 
1477         // Repeat the SHL optimization above in cases where an extension
1478         // intervenes: (shl (anyext (shr x, c1)), c2) to
1479         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1480         // aren't demanded (as above) and that the shifted upper c1 bits of
1481         // x aren't demanded.
1482         // TODO - support non-uniform vector amounts.
1483         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1484             InnerOp.hasOneUse()) {
1485           if (const APInt *SA2 =
1486                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1487             unsigned InnerShAmt = SA2->getZExtValue();
1488             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1489                 DemandedBits.getActiveBits() <=
1490                     (InnerBits - InnerShAmt + ShAmt) &&
1491                 DemandedBits.countTrailingZeros() >= ShAmt) {
1492               SDValue NewSA =
1493                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1494               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1495                                                InnerOp.getOperand(0));
1496               return TLO.CombineTo(
1497                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1498             }
1499           }
1500         }
1501       }
1502 
1503       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1504       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1505                                Depth + 1))
1506         return true;
1507       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1508       Known.Zero <<= ShAmt;
1509       Known.One <<= ShAmt;
1510       // low bits known zero.
1511       Known.Zero.setLowBits(ShAmt);
1512 
1513       // Try shrinking the operation as long as the shift amount will still be
1514       // in range.
1515       if ((ShAmt < DemandedBits.getActiveBits()) &&
1516           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1517         return true;
1518     }
1519 
1520     // If we are only demanding sign bits then we can use the shift source
1521     // directly.
1522     if (const APInt *MaxSA =
1523             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1524       unsigned ShAmt = MaxSA->getZExtValue();
1525       unsigned NumSignBits =
1526           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1527       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1528       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1529         return TLO.CombineTo(Op, Op0);
1530     }
1531     break;
1532   }
1533   case ISD::SRL: {
1534     SDValue Op0 = Op.getOperand(0);
1535     SDValue Op1 = Op.getOperand(1);
1536     EVT ShiftVT = Op1.getValueType();
1537 
1538     if (const APInt *SA =
1539             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1540       unsigned ShAmt = SA->getZExtValue();
1541       if (ShAmt == 0)
1542         return TLO.CombineTo(Op, Op0);
1543 
1544       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1545       // single shift.  We can do this if the top bits (which are shifted out)
1546       // are never demanded.
1547       // TODO - support non-uniform vector amounts.
1548       if (Op0.getOpcode() == ISD::SHL) {
1549         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1550           if (const APInt *SA2 =
1551                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1552             unsigned C1 = SA2->getZExtValue();
1553             unsigned Opc = ISD::SRL;
1554             int Diff = ShAmt - C1;
1555             if (Diff < 0) {
1556               Diff = -Diff;
1557               Opc = ISD::SHL;
1558             }
1559             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1560             return TLO.CombineTo(
1561                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1562           }
1563         }
1564       }
1565 
1566       APInt InDemandedMask = (DemandedBits << ShAmt);
1567 
1568       // If the shift is exact, then it does demand the low bits (and knows that
1569       // they are zero).
1570       if (Op->getFlags().hasExact())
1571         InDemandedMask.setLowBits(ShAmt);
1572 
1573       // Compute the new bits that are at the top now.
1574       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1575                                Depth + 1))
1576         return true;
1577       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1578       Known.Zero.lshrInPlace(ShAmt);
1579       Known.One.lshrInPlace(ShAmt);
1580       // High bits known zero.
1581       Known.Zero.setHighBits(ShAmt);
1582     }
1583     break;
1584   }
1585   case ISD::SRA: {
1586     SDValue Op0 = Op.getOperand(0);
1587     SDValue Op1 = Op.getOperand(1);
1588     EVT ShiftVT = Op1.getValueType();
1589 
1590     // If we only want bits that already match the signbit then we don't need
1591     // to shift.
1592     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1593     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1594         NumHiDemandedBits)
1595       return TLO.CombineTo(Op, Op0);
1596 
1597     // If this is an arithmetic shift right and only the low-bit is set, we can
1598     // always convert this into a logical shr, even if the shift amount is
1599     // variable.  The low bit of the shift cannot be an input sign bit unless
1600     // the shift amount is >= the size of the datatype, which is undefined.
1601     if (DemandedBits.isOneValue())
1602       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1603 
1604     if (const APInt *SA =
1605             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1606       unsigned ShAmt = SA->getZExtValue();
1607       if (ShAmt == 0)
1608         return TLO.CombineTo(Op, Op0);
1609 
1610       APInt InDemandedMask = (DemandedBits << ShAmt);
1611 
1612       // If the shift is exact, then it does demand the low bits (and knows that
1613       // they are zero).
1614       if (Op->getFlags().hasExact())
1615         InDemandedMask.setLowBits(ShAmt);
1616 
1617       // If any of the demanded bits are produced by the sign extension, we also
1618       // demand the input sign bit.
1619       if (DemandedBits.countLeadingZeros() < ShAmt)
1620         InDemandedMask.setSignBit();
1621 
1622       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1623                                Depth + 1))
1624         return true;
1625       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1626       Known.Zero.lshrInPlace(ShAmt);
1627       Known.One.lshrInPlace(ShAmt);
1628 
1629       // If the input sign bit is known to be zero, or if none of the top bits
1630       // are demanded, turn this into an unsigned shift right.
1631       if (Known.Zero[BitWidth - ShAmt - 1] ||
1632           DemandedBits.countLeadingZeros() >= ShAmt) {
1633         SDNodeFlags Flags;
1634         Flags.setExact(Op->getFlags().hasExact());
1635         return TLO.CombineTo(
1636             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1637       }
1638 
1639       int Log2 = DemandedBits.exactLogBase2();
1640       if (Log2 >= 0) {
1641         // The bit must come from the sign.
1642         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1643         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1644       }
1645 
1646       if (Known.One[BitWidth - ShAmt - 1])
1647         // New bits are known one.
1648         Known.One.setHighBits(ShAmt);
1649 
1650       // Attempt to avoid multi-use ops if we don't need anything from them.
1651       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1652         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1653             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1654         if (DemandedOp0) {
1655           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1656           return TLO.CombineTo(Op, NewOp);
1657         }
1658       }
1659     }
1660     break;
1661   }
1662   case ISD::FSHL:
1663   case ISD::FSHR: {
1664     SDValue Op0 = Op.getOperand(0);
1665     SDValue Op1 = Op.getOperand(1);
1666     SDValue Op2 = Op.getOperand(2);
1667     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1668 
1669     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1670       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1671 
1672       // For fshl, 0-shift returns the 1st arg.
1673       // For fshr, 0-shift returns the 2nd arg.
1674       if (Amt == 0) {
1675         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1676                                  Known, TLO, Depth + 1))
1677           return true;
1678         break;
1679       }
1680 
1681       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1682       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1683       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1684       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1685       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1686                                Depth + 1))
1687         return true;
1688       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1689                                Depth + 1))
1690         return true;
1691 
1692       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1693       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1694       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1695       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1696       Known.One |= Known2.One;
1697       Known.Zero |= Known2.Zero;
1698     }
1699 
1700     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1701     if (isPowerOf2_32(BitWidth)) {
1702       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1703       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1704                                Known2, TLO, Depth + 1))
1705         return true;
1706     }
1707     break;
1708   }
1709   case ISD::ROTL:
1710   case ISD::ROTR: {
1711     SDValue Op0 = Op.getOperand(0);
1712     SDValue Op1 = Op.getOperand(1);
1713 
1714     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1715     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1716       return TLO.CombineTo(Op, Op0);
1717 
1718     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1719     if (isPowerOf2_32(BitWidth)) {
1720       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1721       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1722                                Depth + 1))
1723         return true;
1724     }
1725     break;
1726   }
1727   case ISD::UMIN: {
1728     // Check if one arg is always less than (or equal) to the other arg.
1729     SDValue Op0 = Op.getOperand(0);
1730     SDValue Op1 = Op.getOperand(1);
1731     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1732     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1733     Known = KnownBits::umin(Known0, Known1);
1734     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1735       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1736     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1737       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1738     break;
1739   }
1740   case ISD::UMAX: {
1741     // Check if one arg is always greater than (or equal) to the other arg.
1742     SDValue Op0 = Op.getOperand(0);
1743     SDValue Op1 = Op.getOperand(1);
1744     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1745     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1746     Known = KnownBits::umax(Known0, Known1);
1747     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1748       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1749     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1750       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1751     break;
1752   }
1753   case ISD::BITREVERSE: {
1754     SDValue Src = Op.getOperand(0);
1755     APInt DemandedSrcBits = DemandedBits.reverseBits();
1756     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1757                              Depth + 1))
1758       return true;
1759     Known.One = Known2.One.reverseBits();
1760     Known.Zero = Known2.Zero.reverseBits();
1761     break;
1762   }
1763   case ISD::BSWAP: {
1764     SDValue Src = Op.getOperand(0);
1765     APInt DemandedSrcBits = DemandedBits.byteSwap();
1766     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1767                              Depth + 1))
1768       return true;
1769     Known.One = Known2.One.byteSwap();
1770     Known.Zero = Known2.Zero.byteSwap();
1771     break;
1772   }
1773   case ISD::CTPOP: {
1774     // If only 1 bit is demanded, replace with PARITY as long as we're before
1775     // op legalization.
1776     // FIXME: Limit to scalars for now.
1777     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1778       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1779                                                Op.getOperand(0)));
1780 
1781     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1782     break;
1783   }
1784   case ISD::SIGN_EXTEND_INREG: {
1785     SDValue Op0 = Op.getOperand(0);
1786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1787     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1788 
1789     // If we only care about the highest bit, don't bother shifting right.
1790     if (DemandedBits.isSignMask()) {
1791       unsigned NumSignBits =
1792           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1793       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1794       // However if the input is already sign extended we expect the sign
1795       // extension to be dropped altogether later and do not simplify.
1796       if (!AlreadySignExtended) {
1797         // Compute the correct shift amount type, which must be getShiftAmountTy
1798         // for scalar types after legalization.
1799         EVT ShiftAmtTy = VT;
1800         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1801           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1802 
1803         SDValue ShiftAmt =
1804             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1805         return TLO.CombineTo(Op,
1806                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1807       }
1808     }
1809 
1810     // If none of the extended bits are demanded, eliminate the sextinreg.
1811     if (DemandedBits.getActiveBits() <= ExVTBits)
1812       return TLO.CombineTo(Op, Op0);
1813 
1814     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1815 
1816     // Since the sign extended bits are demanded, we know that the sign
1817     // bit is demanded.
1818     InputDemandedBits.setBit(ExVTBits - 1);
1819 
1820     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1821       return true;
1822     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1823 
1824     // If the sign bit of the input is known set or clear, then we know the
1825     // top bits of the result.
1826 
1827     // If the input sign bit is known zero, convert this into a zero extension.
1828     if (Known.Zero[ExVTBits - 1])
1829       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1830 
1831     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1832     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1833       Known.One.setBitsFrom(ExVTBits);
1834       Known.Zero &= Mask;
1835     } else { // Input sign bit unknown
1836       Known.Zero &= Mask;
1837       Known.One &= Mask;
1838     }
1839     break;
1840   }
1841   case ISD::BUILD_PAIR: {
1842     EVT HalfVT = Op.getOperand(0).getValueType();
1843     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1844 
1845     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1846     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1847 
1848     KnownBits KnownLo, KnownHi;
1849 
1850     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1851       return true;
1852 
1853     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1854       return true;
1855 
1856     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1857                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1858 
1859     Known.One = KnownLo.One.zext(BitWidth) |
1860                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1861     break;
1862   }
1863   case ISD::ZERO_EXTEND:
1864   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1865     SDValue Src = Op.getOperand(0);
1866     EVT SrcVT = Src.getValueType();
1867     unsigned InBits = SrcVT.getScalarSizeInBits();
1868     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1869     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1870 
1871     // If none of the top bits are demanded, convert this into an any_extend.
1872     if (DemandedBits.getActiveBits() <= InBits) {
1873       // If we only need the non-extended bits of the bottom element
1874       // then we can just bitcast to the result.
1875       if (IsVecInReg && DemandedElts == 1 &&
1876           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1877           TLO.DAG.getDataLayout().isLittleEndian())
1878         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1879 
1880       unsigned Opc =
1881           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1882       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1883         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1884     }
1885 
1886     APInt InDemandedBits = DemandedBits.trunc(InBits);
1887     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1888     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1889                              Depth + 1))
1890       return true;
1891     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1892     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1893     Known = Known.zext(BitWidth);
1894 
1895     // Attempt to avoid multi-use ops if we don't need anything from them.
1896     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1897             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1898       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1899     break;
1900   }
1901   case ISD::SIGN_EXTEND:
1902   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1903     SDValue Src = Op.getOperand(0);
1904     EVT SrcVT = Src.getValueType();
1905     unsigned InBits = SrcVT.getScalarSizeInBits();
1906     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1907     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1908 
1909     // If none of the top bits are demanded, convert this into an any_extend.
1910     if (DemandedBits.getActiveBits() <= InBits) {
1911       // If we only need the non-extended bits of the bottom element
1912       // then we can just bitcast to the result.
1913       if (IsVecInReg && DemandedElts == 1 &&
1914           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1915           TLO.DAG.getDataLayout().isLittleEndian())
1916         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1917 
1918       unsigned Opc =
1919           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1920       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1921         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1922     }
1923 
1924     APInt InDemandedBits = DemandedBits.trunc(InBits);
1925     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1926 
1927     // Since some of the sign extended bits are demanded, we know that the sign
1928     // bit is demanded.
1929     InDemandedBits.setBit(InBits - 1);
1930 
1931     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1932                              Depth + 1))
1933       return true;
1934     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1935     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1936 
1937     // If the sign bit is known one, the top bits match.
1938     Known = Known.sext(BitWidth);
1939 
1940     // If the sign bit is known zero, convert this to a zero extend.
1941     if (Known.isNonNegative()) {
1942       unsigned Opc =
1943           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1944       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1945         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1946     }
1947 
1948     // Attempt to avoid multi-use ops if we don't need anything from them.
1949     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1950             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1951       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1952     break;
1953   }
1954   case ISD::ANY_EXTEND:
1955   case ISD::ANY_EXTEND_VECTOR_INREG: {
1956     SDValue Src = Op.getOperand(0);
1957     EVT SrcVT = Src.getValueType();
1958     unsigned InBits = SrcVT.getScalarSizeInBits();
1959     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1960     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1961 
1962     // If we only need the bottom element then we can just bitcast.
1963     // TODO: Handle ANY_EXTEND?
1964     if (IsVecInReg && DemandedElts == 1 &&
1965         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1966         TLO.DAG.getDataLayout().isLittleEndian())
1967       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1968 
1969     APInt InDemandedBits = DemandedBits.trunc(InBits);
1970     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1971     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1972                              Depth + 1))
1973       return true;
1974     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1975     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1976     Known = Known.anyext(BitWidth);
1977 
1978     // Attempt to avoid multi-use ops if we don't need anything from them.
1979     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1980             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1981       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1982     break;
1983   }
1984   case ISD::TRUNCATE: {
1985     SDValue Src = Op.getOperand(0);
1986 
1987     // Simplify the input, using demanded bit information, and compute the known
1988     // zero/one bits live out.
1989     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1990     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1991     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1992                              Depth + 1))
1993       return true;
1994     Known = Known.trunc(BitWidth);
1995 
1996     // Attempt to avoid multi-use ops if we don't need anything from them.
1997     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1998             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1999       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2000 
2001     // If the input is only used by this truncate, see if we can shrink it based
2002     // on the known demanded bits.
2003     if (Src.getNode()->hasOneUse()) {
2004       switch (Src.getOpcode()) {
2005       default:
2006         break;
2007       case ISD::SRL:
2008         // Shrink SRL by a constant if none of the high bits shifted in are
2009         // demanded.
2010         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2011           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2012           // undesirable.
2013           break;
2014 
2015         const APInt *ShAmtC =
2016             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2017         if (!ShAmtC || ShAmtC->uge(BitWidth))
2018           break;
2019         uint64_t ShVal = ShAmtC->getZExtValue();
2020 
2021         APInt HighBits =
2022             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2023         HighBits.lshrInPlace(ShVal);
2024         HighBits = HighBits.trunc(BitWidth);
2025 
2026         if (!(HighBits & DemandedBits)) {
2027           // None of the shifted in bits are needed.  Add a truncate of the
2028           // shift input, then shift it.
2029           SDValue NewShAmt = TLO.DAG.getConstant(
2030               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2031           SDValue NewTrunc =
2032               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2033           return TLO.CombineTo(
2034               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2035         }
2036         break;
2037       }
2038     }
2039 
2040     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2041     break;
2042   }
2043   case ISD::AssertZext: {
2044     // AssertZext demands all of the high bits, plus any of the low bits
2045     // demanded by its users.
2046     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2047     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2048     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2049                              TLO, Depth + 1))
2050       return true;
2051     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2052 
2053     Known.Zero |= ~InMask;
2054     break;
2055   }
2056   case ISD::EXTRACT_VECTOR_ELT: {
2057     SDValue Src = Op.getOperand(0);
2058     SDValue Idx = Op.getOperand(1);
2059     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2060     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2061 
2062     if (SrcEltCnt.isScalable())
2063       return false;
2064 
2065     // Demand the bits from every vector element without a constant index.
2066     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2067     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2068     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2069       if (CIdx->getAPIntValue().ult(NumSrcElts))
2070         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2071 
2072     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2073     // anything about the extended bits.
2074     APInt DemandedSrcBits = DemandedBits;
2075     if (BitWidth > EltBitWidth)
2076       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2077 
2078     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2079                              Depth + 1))
2080       return true;
2081 
2082     // Attempt to avoid multi-use ops if we don't need anything from them.
2083     if (!DemandedSrcBits.isAllOnesValue() ||
2084         !DemandedSrcElts.isAllOnesValue()) {
2085       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2086               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2087         SDValue NewOp =
2088             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2089         return TLO.CombineTo(Op, NewOp);
2090       }
2091     }
2092 
2093     Known = Known2;
2094     if (BitWidth > EltBitWidth)
2095       Known = Known.anyext(BitWidth);
2096     break;
2097   }
2098   case ISD::BITCAST: {
2099     SDValue Src = Op.getOperand(0);
2100     EVT SrcVT = Src.getValueType();
2101     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2102 
2103     // If this is an FP->Int bitcast and if the sign bit is the only
2104     // thing demanded, turn this into a FGETSIGN.
2105     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2106         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2107         SrcVT.isFloatingPoint()) {
2108       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2109       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2110       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2111           SrcVT != MVT::f128) {
2112         // Cannot eliminate/lower SHL for f128 yet.
2113         EVT Ty = OpVTLegal ? VT : MVT::i32;
2114         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2115         // place.  We expect the SHL to be eliminated by other optimizations.
2116         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2117         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2118         if (!OpVTLegal && OpVTSizeInBits > 32)
2119           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2120         unsigned ShVal = Op.getValueSizeInBits() - 1;
2121         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2122         return TLO.CombineTo(Op,
2123                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2124       }
2125     }
2126 
2127     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2128     // Demand the elt/bit if any of the original elts/bits are demanded.
2129     // TODO - bigendian once we have test coverage.
2130     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2131         TLO.DAG.getDataLayout().isLittleEndian()) {
2132       unsigned Scale = BitWidth / NumSrcEltBits;
2133       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2134       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2135       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2136       for (unsigned i = 0; i != Scale; ++i) {
2137         unsigned Offset = i * NumSrcEltBits;
2138         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2139         if (!Sub.isNullValue()) {
2140           DemandedSrcBits |= Sub;
2141           for (unsigned j = 0; j != NumElts; ++j)
2142             if (DemandedElts[j])
2143               DemandedSrcElts.setBit((j * Scale) + i);
2144         }
2145       }
2146 
2147       APInt KnownSrcUndef, KnownSrcZero;
2148       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2149                                      KnownSrcZero, TLO, Depth + 1))
2150         return true;
2151 
2152       KnownBits KnownSrcBits;
2153       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2154                                KnownSrcBits, TLO, Depth + 1))
2155         return true;
2156     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2157                TLO.DAG.getDataLayout().isLittleEndian()) {
2158       unsigned Scale = NumSrcEltBits / BitWidth;
2159       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2160       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2161       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2162       for (unsigned i = 0; i != NumElts; ++i)
2163         if (DemandedElts[i]) {
2164           unsigned Offset = (i % Scale) * BitWidth;
2165           DemandedSrcBits.insertBits(DemandedBits, Offset);
2166           DemandedSrcElts.setBit(i / Scale);
2167         }
2168 
2169       if (SrcVT.isVector()) {
2170         APInt KnownSrcUndef, KnownSrcZero;
2171         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2172                                        KnownSrcZero, TLO, Depth + 1))
2173           return true;
2174       }
2175 
2176       KnownBits KnownSrcBits;
2177       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2178                                KnownSrcBits, TLO, Depth + 1))
2179         return true;
2180     }
2181 
2182     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2183     // recursive call where Known may be useful to the caller.
2184     if (Depth > 0) {
2185       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2186       return false;
2187     }
2188     break;
2189   }
2190   case ISD::ADD:
2191   case ISD::MUL:
2192   case ISD::SUB: {
2193     // Add, Sub, and Mul don't demand any bits in positions beyond that
2194     // of the highest bit demanded of them.
2195     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2196     SDNodeFlags Flags = Op.getNode()->getFlags();
2197     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2198     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2199     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2200                              Depth + 1) ||
2201         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2202                              Depth + 1) ||
2203         // See if the operation should be performed at a smaller bit width.
2204         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2205       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2206         // Disable the nsw and nuw flags. We can no longer guarantee that we
2207         // won't wrap after simplification.
2208         Flags.setNoSignedWrap(false);
2209         Flags.setNoUnsignedWrap(false);
2210         SDValue NewOp =
2211             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2212         return TLO.CombineTo(Op, NewOp);
2213       }
2214       return true;
2215     }
2216 
2217     // Attempt to avoid multi-use ops if we don't need anything from them.
2218     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2219       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2220           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2221       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2222           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2223       if (DemandedOp0 || DemandedOp1) {
2224         Flags.setNoSignedWrap(false);
2225         Flags.setNoUnsignedWrap(false);
2226         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2227         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2228         SDValue NewOp =
2229             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2230         return TLO.CombineTo(Op, NewOp);
2231       }
2232     }
2233 
2234     // If we have a constant operand, we may be able to turn it into -1 if we
2235     // do not demand the high bits. This can make the constant smaller to
2236     // encode, allow more general folding, or match specialized instruction
2237     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2238     // is probably not useful (and could be detrimental).
2239     ConstantSDNode *C = isConstOrConstSplat(Op1);
2240     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2241     if (C && !C->isAllOnesValue() && !C->isOne() &&
2242         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2243       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2244       // Disable the nsw and nuw flags. We can no longer guarantee that we
2245       // won't wrap after simplification.
2246       Flags.setNoSignedWrap(false);
2247       Flags.setNoUnsignedWrap(false);
2248       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2249       return TLO.CombineTo(Op, NewOp);
2250     }
2251 
2252     LLVM_FALLTHROUGH;
2253   }
2254   default:
2255     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2256       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2257                                             Known, TLO, Depth))
2258         return true;
2259       break;
2260     }
2261 
2262     // Just use computeKnownBits to compute output bits.
2263     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2264     break;
2265   }
2266 
2267   // If we know the value of all of the demanded bits, return this as a
2268   // constant.
2269   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2270     // Avoid folding to a constant if any OpaqueConstant is involved.
2271     const SDNode *N = Op.getNode();
2272     for (SDNode *Op :
2273          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2274       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2275         if (C->isOpaque())
2276           return false;
2277     }
2278     if (VT.isInteger())
2279       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2280     if (VT.isFloatingPoint())
2281       return TLO.CombineTo(
2282           Op,
2283           TLO.DAG.getConstantFP(
2284               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2285   }
2286 
2287   return false;
2288 }
2289 
2290 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2291                                                 const APInt &DemandedElts,
2292                                                 APInt &KnownUndef,
2293                                                 APInt &KnownZero,
2294                                                 DAGCombinerInfo &DCI) const {
2295   SelectionDAG &DAG = DCI.DAG;
2296   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2297                         !DCI.isBeforeLegalizeOps());
2298 
2299   bool Simplified =
2300       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2301   if (Simplified) {
2302     DCI.AddToWorklist(Op.getNode());
2303     DCI.CommitTargetLoweringOpt(TLO);
2304   }
2305 
2306   return Simplified;
2307 }
2308 
2309 /// Given a vector binary operation and known undefined elements for each input
2310 /// operand, compute whether each element of the output is undefined.
2311 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2312                                          const APInt &UndefOp0,
2313                                          const APInt &UndefOp1) {
2314   EVT VT = BO.getValueType();
2315   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2316          "Vector binop only");
2317 
2318   EVT EltVT = VT.getVectorElementType();
2319   unsigned NumElts = VT.getVectorNumElements();
2320   assert(UndefOp0.getBitWidth() == NumElts &&
2321          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2322 
2323   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2324                                    const APInt &UndefVals) {
2325     if (UndefVals[Index])
2326       return DAG.getUNDEF(EltVT);
2327 
2328     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2329       // Try hard to make sure that the getNode() call is not creating temporary
2330       // nodes. Ignore opaque integers because they do not constant fold.
2331       SDValue Elt = BV->getOperand(Index);
2332       auto *C = dyn_cast<ConstantSDNode>(Elt);
2333       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2334         return Elt;
2335     }
2336 
2337     return SDValue();
2338   };
2339 
2340   APInt KnownUndef = APInt::getNullValue(NumElts);
2341   for (unsigned i = 0; i != NumElts; ++i) {
2342     // If both inputs for this element are either constant or undef and match
2343     // the element type, compute the constant/undef result for this element of
2344     // the vector.
2345     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2346     // not handle FP constants. The code within getNode() should be refactored
2347     // to avoid the danger of creating a bogus temporary node here.
2348     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2349     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2350     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2351       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2352         KnownUndef.setBit(i);
2353   }
2354   return KnownUndef;
2355 }
2356 
2357 bool TargetLowering::SimplifyDemandedVectorElts(
2358     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2359     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2360     bool AssumeSingleUse) const {
2361   EVT VT = Op.getValueType();
2362   unsigned Opcode = Op.getOpcode();
2363   APInt DemandedElts = OriginalDemandedElts;
2364   unsigned NumElts = DemandedElts.getBitWidth();
2365   assert(VT.isVector() && "Expected vector op");
2366 
2367   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2368 
2369   // TODO: For now we assume we know nothing about scalable vectors.
2370   if (VT.isScalableVector())
2371     return false;
2372 
2373   assert(VT.getVectorNumElements() == NumElts &&
2374          "Mask size mismatches value type element count!");
2375 
2376   // Undef operand.
2377   if (Op.isUndef()) {
2378     KnownUndef.setAllBits();
2379     return false;
2380   }
2381 
2382   // If Op has other users, assume that all elements are needed.
2383   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2384     DemandedElts.setAllBits();
2385 
2386   // Not demanding any elements from Op.
2387   if (DemandedElts == 0) {
2388     KnownUndef.setAllBits();
2389     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2390   }
2391 
2392   // Limit search depth.
2393   if (Depth >= SelectionDAG::MaxRecursionDepth)
2394     return false;
2395 
2396   SDLoc DL(Op);
2397   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2398 
2399   // Helper for demanding the specified elements and all the bits of both binary
2400   // operands.
2401   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2402     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2403                                                            TLO.DAG, Depth + 1);
2404     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2405                                                            TLO.DAG, Depth + 1);
2406     if (NewOp0 || NewOp1) {
2407       SDValue NewOp = TLO.DAG.getNode(
2408           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2409       return TLO.CombineTo(Op, NewOp);
2410     }
2411     return false;
2412   };
2413 
2414   switch (Opcode) {
2415   case ISD::SCALAR_TO_VECTOR: {
2416     if (!DemandedElts[0]) {
2417       KnownUndef.setAllBits();
2418       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2419     }
2420     KnownUndef.setHighBits(NumElts - 1);
2421     break;
2422   }
2423   case ISD::BITCAST: {
2424     SDValue Src = Op.getOperand(0);
2425     EVT SrcVT = Src.getValueType();
2426 
2427     // We only handle vectors here.
2428     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2429     if (!SrcVT.isVector())
2430       break;
2431 
2432     // Fast handling of 'identity' bitcasts.
2433     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2434     if (NumSrcElts == NumElts)
2435       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2436                                         KnownZero, TLO, Depth + 1);
2437 
2438     APInt SrcZero, SrcUndef;
2439     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2440 
2441     // Bitcast from 'large element' src vector to 'small element' vector, we
2442     // must demand a source element if any DemandedElt maps to it.
2443     if ((NumElts % NumSrcElts) == 0) {
2444       unsigned Scale = NumElts / NumSrcElts;
2445       for (unsigned i = 0; i != NumElts; ++i)
2446         if (DemandedElts[i])
2447           SrcDemandedElts.setBit(i / Scale);
2448 
2449       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2450                                      TLO, Depth + 1))
2451         return true;
2452 
2453       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2454       // of the large element.
2455       // TODO - bigendian once we have test coverage.
2456       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2457         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2458         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2459         for (unsigned i = 0; i != NumElts; ++i)
2460           if (DemandedElts[i]) {
2461             unsigned Ofs = (i % Scale) * EltSizeInBits;
2462             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2463           }
2464 
2465         KnownBits Known;
2466         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2467                                  TLO, Depth + 1))
2468           return true;
2469       }
2470 
2471       // If the src element is zero/undef then all the output elements will be -
2472       // only demanded elements are guaranteed to be correct.
2473       for (unsigned i = 0; i != NumSrcElts; ++i) {
2474         if (SrcDemandedElts[i]) {
2475           if (SrcZero[i])
2476             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2477           if (SrcUndef[i])
2478             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2479         }
2480       }
2481     }
2482 
2483     // Bitcast from 'small element' src vector to 'large element' vector, we
2484     // demand all smaller source elements covered by the larger demanded element
2485     // of this vector.
2486     if ((NumSrcElts % NumElts) == 0) {
2487       unsigned Scale = NumSrcElts / NumElts;
2488       for (unsigned i = 0; i != NumElts; ++i)
2489         if (DemandedElts[i])
2490           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2491 
2492       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2493                                      TLO, Depth + 1))
2494         return true;
2495 
2496       // If all the src elements covering an output element are zero/undef, then
2497       // the output element will be as well, assuming it was demanded.
2498       for (unsigned i = 0; i != NumElts; ++i) {
2499         if (DemandedElts[i]) {
2500           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2501             KnownZero.setBit(i);
2502           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2503             KnownUndef.setBit(i);
2504         }
2505       }
2506     }
2507     break;
2508   }
2509   case ISD::BUILD_VECTOR: {
2510     // Check all elements and simplify any unused elements with UNDEF.
2511     if (!DemandedElts.isAllOnesValue()) {
2512       // Don't simplify BROADCASTS.
2513       if (llvm::any_of(Op->op_values(),
2514                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2515         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2516         bool Updated = false;
2517         for (unsigned i = 0; i != NumElts; ++i) {
2518           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2519             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2520             KnownUndef.setBit(i);
2521             Updated = true;
2522           }
2523         }
2524         if (Updated)
2525           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2526       }
2527     }
2528     for (unsigned i = 0; i != NumElts; ++i) {
2529       SDValue SrcOp = Op.getOperand(i);
2530       if (SrcOp.isUndef()) {
2531         KnownUndef.setBit(i);
2532       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2533                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2534         KnownZero.setBit(i);
2535       }
2536     }
2537     break;
2538   }
2539   case ISD::CONCAT_VECTORS: {
2540     EVT SubVT = Op.getOperand(0).getValueType();
2541     unsigned NumSubVecs = Op.getNumOperands();
2542     unsigned NumSubElts = SubVT.getVectorNumElements();
2543     for (unsigned i = 0; i != NumSubVecs; ++i) {
2544       SDValue SubOp = Op.getOperand(i);
2545       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2546       APInt SubUndef, SubZero;
2547       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2548                                      Depth + 1))
2549         return true;
2550       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2551       KnownZero.insertBits(SubZero, i * NumSubElts);
2552     }
2553     break;
2554   }
2555   case ISD::INSERT_SUBVECTOR: {
2556     // Demand any elements from the subvector and the remainder from the src its
2557     // inserted into.
2558     SDValue Src = Op.getOperand(0);
2559     SDValue Sub = Op.getOperand(1);
2560     uint64_t Idx = Op.getConstantOperandVal(2);
2561     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2562     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2563     APInt DemandedSrcElts = DemandedElts;
2564     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2565 
2566     APInt SubUndef, SubZero;
2567     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2568                                    Depth + 1))
2569       return true;
2570 
2571     // If none of the src operand elements are demanded, replace it with undef.
2572     if (!DemandedSrcElts && !Src.isUndef())
2573       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2574                                                TLO.DAG.getUNDEF(VT), Sub,
2575                                                Op.getOperand(2)));
2576 
2577     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2578                                    TLO, Depth + 1))
2579       return true;
2580     KnownUndef.insertBits(SubUndef, Idx);
2581     KnownZero.insertBits(SubZero, Idx);
2582 
2583     // Attempt to avoid multi-use ops if we don't need anything from them.
2584     if (!DemandedSrcElts.isAllOnesValue() ||
2585         !DemandedSubElts.isAllOnesValue()) {
2586       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2587           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2588       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2589           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2590       if (NewSrc || NewSub) {
2591         NewSrc = NewSrc ? NewSrc : Src;
2592         NewSub = NewSub ? NewSub : Sub;
2593         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2594                                         NewSub, Op.getOperand(2));
2595         return TLO.CombineTo(Op, NewOp);
2596       }
2597     }
2598     break;
2599   }
2600   case ISD::EXTRACT_SUBVECTOR: {
2601     // Offset the demanded elts by the subvector index.
2602     SDValue Src = Op.getOperand(0);
2603     if (Src.getValueType().isScalableVector())
2604       break;
2605     uint64_t Idx = Op.getConstantOperandVal(1);
2606     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2607     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2608 
2609     APInt SrcUndef, SrcZero;
2610     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2611                                    Depth + 1))
2612       return true;
2613     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2614     KnownZero = SrcZero.extractBits(NumElts, Idx);
2615 
2616     // Attempt to avoid multi-use ops if we don't need anything from them.
2617     if (!DemandedElts.isAllOnesValue()) {
2618       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2619           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2620       if (NewSrc) {
2621         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2622                                         Op.getOperand(1));
2623         return TLO.CombineTo(Op, NewOp);
2624       }
2625     }
2626     break;
2627   }
2628   case ISD::INSERT_VECTOR_ELT: {
2629     SDValue Vec = Op.getOperand(0);
2630     SDValue Scl = Op.getOperand(1);
2631     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2632 
2633     // For a legal, constant insertion index, if we don't need this insertion
2634     // then strip it, else remove it from the demanded elts.
2635     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2636       unsigned Idx = CIdx->getZExtValue();
2637       if (!DemandedElts[Idx])
2638         return TLO.CombineTo(Op, Vec);
2639 
2640       APInt DemandedVecElts(DemandedElts);
2641       DemandedVecElts.clearBit(Idx);
2642       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2643                                      KnownZero, TLO, Depth + 1))
2644         return true;
2645 
2646       KnownUndef.setBitVal(Idx, Scl.isUndef());
2647 
2648       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2649       break;
2650     }
2651 
2652     APInt VecUndef, VecZero;
2653     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2654                                    Depth + 1))
2655       return true;
2656     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2657     break;
2658   }
2659   case ISD::VSELECT: {
2660     // Try to transform the select condition based on the current demanded
2661     // elements.
2662     // TODO: If a condition element is undef, we can choose from one arm of the
2663     //       select (and if one arm is undef, then we can propagate that to the
2664     //       result).
2665     // TODO - add support for constant vselect masks (see IR version of this).
2666     APInt UnusedUndef, UnusedZero;
2667     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2668                                    UnusedZero, TLO, Depth + 1))
2669       return true;
2670 
2671     // See if we can simplify either vselect operand.
2672     APInt DemandedLHS(DemandedElts);
2673     APInt DemandedRHS(DemandedElts);
2674     APInt UndefLHS, ZeroLHS;
2675     APInt UndefRHS, ZeroRHS;
2676     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2677                                    ZeroLHS, TLO, Depth + 1))
2678       return true;
2679     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2680                                    ZeroRHS, TLO, Depth + 1))
2681       return true;
2682 
2683     KnownUndef = UndefLHS & UndefRHS;
2684     KnownZero = ZeroLHS & ZeroRHS;
2685     break;
2686   }
2687   case ISD::VECTOR_SHUFFLE: {
2688     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2689 
2690     // Collect demanded elements from shuffle operands..
2691     APInt DemandedLHS(NumElts, 0);
2692     APInt DemandedRHS(NumElts, 0);
2693     for (unsigned i = 0; i != NumElts; ++i) {
2694       int M = ShuffleMask[i];
2695       if (M < 0 || !DemandedElts[i])
2696         continue;
2697       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2698       if (M < (int)NumElts)
2699         DemandedLHS.setBit(M);
2700       else
2701         DemandedRHS.setBit(M - NumElts);
2702     }
2703 
2704     // See if we can simplify either shuffle operand.
2705     APInt UndefLHS, ZeroLHS;
2706     APInt UndefRHS, ZeroRHS;
2707     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2708                                    ZeroLHS, TLO, Depth + 1))
2709       return true;
2710     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2711                                    ZeroRHS, TLO, Depth + 1))
2712       return true;
2713 
2714     // Simplify mask using undef elements from LHS/RHS.
2715     bool Updated = false;
2716     bool IdentityLHS = true, IdentityRHS = true;
2717     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2718     for (unsigned i = 0; i != NumElts; ++i) {
2719       int &M = NewMask[i];
2720       if (M < 0)
2721         continue;
2722       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2723           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2724         Updated = true;
2725         M = -1;
2726       }
2727       IdentityLHS &= (M < 0) || (M == (int)i);
2728       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2729     }
2730 
2731     // Update legal shuffle masks based on demanded elements if it won't reduce
2732     // to Identity which can cause premature removal of the shuffle mask.
2733     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2734       SDValue LegalShuffle =
2735           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2736                                   NewMask, TLO.DAG);
2737       if (LegalShuffle)
2738         return TLO.CombineTo(Op, LegalShuffle);
2739     }
2740 
2741     // Propagate undef/zero elements from LHS/RHS.
2742     for (unsigned i = 0; i != NumElts; ++i) {
2743       int M = ShuffleMask[i];
2744       if (M < 0) {
2745         KnownUndef.setBit(i);
2746       } else if (M < (int)NumElts) {
2747         if (UndefLHS[M])
2748           KnownUndef.setBit(i);
2749         if (ZeroLHS[M])
2750           KnownZero.setBit(i);
2751       } else {
2752         if (UndefRHS[M - NumElts])
2753           KnownUndef.setBit(i);
2754         if (ZeroRHS[M - NumElts])
2755           KnownZero.setBit(i);
2756       }
2757     }
2758     break;
2759   }
2760   case ISD::ANY_EXTEND_VECTOR_INREG:
2761   case ISD::SIGN_EXTEND_VECTOR_INREG:
2762   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2763     APInt SrcUndef, SrcZero;
2764     SDValue Src = Op.getOperand(0);
2765     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2766     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2767     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2768                                    Depth + 1))
2769       return true;
2770     KnownZero = SrcZero.zextOrTrunc(NumElts);
2771     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2772 
2773     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2774         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2775         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2776       // aext - if we just need the bottom element then we can bitcast.
2777       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2778     }
2779 
2780     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2781       // zext(undef) upper bits are guaranteed to be zero.
2782       if (DemandedElts.isSubsetOf(KnownUndef))
2783         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2784       KnownUndef.clearAllBits();
2785     }
2786     break;
2787   }
2788 
2789   // TODO: There are more binop opcodes that could be handled here - MIN,
2790   // MAX, saturated math, etc.
2791   case ISD::OR:
2792   case ISD::XOR:
2793   case ISD::ADD:
2794   case ISD::SUB:
2795   case ISD::FADD:
2796   case ISD::FSUB:
2797   case ISD::FMUL:
2798   case ISD::FDIV:
2799   case ISD::FREM: {
2800     SDValue Op0 = Op.getOperand(0);
2801     SDValue Op1 = Op.getOperand(1);
2802 
2803     APInt UndefRHS, ZeroRHS;
2804     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2805                                    Depth + 1))
2806       return true;
2807     APInt UndefLHS, ZeroLHS;
2808     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2809                                    Depth + 1))
2810       return true;
2811 
2812     KnownZero = ZeroLHS & ZeroRHS;
2813     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2814 
2815     // Attempt to avoid multi-use ops if we don't need anything from them.
2816     // TODO - use KnownUndef to relax the demandedelts?
2817     if (!DemandedElts.isAllOnesValue())
2818       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2819         return true;
2820     break;
2821   }
2822   case ISD::SHL:
2823   case ISD::SRL:
2824   case ISD::SRA:
2825   case ISD::ROTL:
2826   case ISD::ROTR: {
2827     SDValue Op0 = Op.getOperand(0);
2828     SDValue Op1 = Op.getOperand(1);
2829 
2830     APInt UndefRHS, ZeroRHS;
2831     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2832                                    Depth + 1))
2833       return true;
2834     APInt UndefLHS, ZeroLHS;
2835     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2836                                    Depth + 1))
2837       return true;
2838 
2839     KnownZero = ZeroLHS;
2840     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2841 
2842     // Attempt to avoid multi-use ops if we don't need anything from them.
2843     // TODO - use KnownUndef to relax the demandedelts?
2844     if (!DemandedElts.isAllOnesValue())
2845       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2846         return true;
2847     break;
2848   }
2849   case ISD::MUL:
2850   case ISD::AND: {
2851     SDValue Op0 = Op.getOperand(0);
2852     SDValue Op1 = Op.getOperand(1);
2853 
2854     APInt SrcUndef, SrcZero;
2855     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2856                                    Depth + 1))
2857       return true;
2858     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2859                                    TLO, Depth + 1))
2860       return true;
2861 
2862     // If either side has a zero element, then the result element is zero, even
2863     // if the other is an UNDEF.
2864     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2865     // and then handle 'and' nodes with the rest of the binop opcodes.
2866     KnownZero |= SrcZero;
2867     KnownUndef &= SrcUndef;
2868     KnownUndef &= ~KnownZero;
2869 
2870     // Attempt to avoid multi-use ops if we don't need anything from them.
2871     // TODO - use KnownUndef to relax the demandedelts?
2872     if (!DemandedElts.isAllOnesValue())
2873       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2874         return true;
2875     break;
2876   }
2877   case ISD::TRUNCATE:
2878   case ISD::SIGN_EXTEND:
2879   case ISD::ZERO_EXTEND:
2880     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2881                                    KnownZero, TLO, Depth + 1))
2882       return true;
2883 
2884     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2885       // zext(undef) upper bits are guaranteed to be zero.
2886       if (DemandedElts.isSubsetOf(KnownUndef))
2887         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2888       KnownUndef.clearAllBits();
2889     }
2890     break;
2891   default: {
2892     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2893       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2894                                                   KnownZero, TLO, Depth))
2895         return true;
2896     } else {
2897       KnownBits Known;
2898       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2899       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2900                                TLO, Depth, AssumeSingleUse))
2901         return true;
2902     }
2903     break;
2904   }
2905   }
2906   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2907 
2908   // Constant fold all undef cases.
2909   // TODO: Handle zero cases as well.
2910   if (DemandedElts.isSubsetOf(KnownUndef))
2911     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2912 
2913   return false;
2914 }
2915 
2916 /// Determine which of the bits specified in Mask are known to be either zero or
2917 /// one and return them in the Known.
2918 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2919                                                    KnownBits &Known,
2920                                                    const APInt &DemandedElts,
2921                                                    const SelectionDAG &DAG,
2922                                                    unsigned Depth) const {
2923   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2924           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2925           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2926           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2927          "Should use MaskedValueIsZero if you don't know whether Op"
2928          " is a target node!");
2929   Known.resetAll();
2930 }
2931 
2932 void TargetLowering::computeKnownBitsForTargetInstr(
2933     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2934     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2935     unsigned Depth) const {
2936   Known.resetAll();
2937 }
2938 
2939 void TargetLowering::computeKnownBitsForFrameIndex(
2940   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2941   // The low bits are known zero if the pointer is aligned.
2942   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2943 }
2944 
2945 Align TargetLowering::computeKnownAlignForTargetInstr(
2946   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2947   unsigned Depth) const {
2948   return Align(1);
2949 }
2950 
2951 /// This method can be implemented by targets that want to expose additional
2952 /// information about sign bits to the DAG Combiner.
2953 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2954                                                          const APInt &,
2955                                                          const SelectionDAG &,
2956                                                          unsigned Depth) const {
2957   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2958           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2959           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2960           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2961          "Should use ComputeNumSignBits if you don't know whether Op"
2962          " is a target node!");
2963   return 1;
2964 }
2965 
2966 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2967   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2968   const MachineRegisterInfo &MRI, unsigned Depth) const {
2969   return 1;
2970 }
2971 
2972 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2973     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2974     TargetLoweringOpt &TLO, unsigned Depth) const {
2975   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2976           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2977           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2978           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2979          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2980          " is a target node!");
2981   return false;
2982 }
2983 
2984 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2985     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2986     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2987   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2988           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2989           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2990           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2991          "Should use SimplifyDemandedBits if you don't know whether Op"
2992          " is a target node!");
2993   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2994   return false;
2995 }
2996 
2997 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2998     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2999     SelectionDAG &DAG, unsigned Depth) const {
3000   assert(
3001       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3002        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3003        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3004        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3005       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3006       " is a target node!");
3007   return SDValue();
3008 }
3009 
3010 SDValue
3011 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3012                                         SDValue N1, MutableArrayRef<int> Mask,
3013                                         SelectionDAG &DAG) const {
3014   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3015   if (!LegalMask) {
3016     std::swap(N0, N1);
3017     ShuffleVectorSDNode::commuteMask(Mask);
3018     LegalMask = isShuffleMaskLegal(Mask, VT);
3019   }
3020 
3021   if (!LegalMask)
3022     return SDValue();
3023 
3024   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3025 }
3026 
3027 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3028   return nullptr;
3029 }
3030 
3031 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3032                                                   const SelectionDAG &DAG,
3033                                                   bool SNaN,
3034                                                   unsigned Depth) const {
3035   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3036           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3037           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3038           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3039          "Should use isKnownNeverNaN if you don't know whether Op"
3040          " is a target node!");
3041   return false;
3042 }
3043 
3044 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3045 // work with truncating build vectors and vectors with elements of less than
3046 // 8 bits.
3047 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3048   if (!N)
3049     return false;
3050 
3051   APInt CVal;
3052   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3053     CVal = CN->getAPIntValue();
3054   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3055     auto *CN = BV->getConstantSplatNode();
3056     if (!CN)
3057       return false;
3058 
3059     // If this is a truncating build vector, truncate the splat value.
3060     // Otherwise, we may fail to match the expected values below.
3061     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3062     CVal = CN->getAPIntValue();
3063     if (BVEltWidth < CVal.getBitWidth())
3064       CVal = CVal.trunc(BVEltWidth);
3065   } else {
3066     return false;
3067   }
3068 
3069   switch (getBooleanContents(N->getValueType(0))) {
3070   case UndefinedBooleanContent:
3071     return CVal[0];
3072   case ZeroOrOneBooleanContent:
3073     return CVal.isOneValue();
3074   case ZeroOrNegativeOneBooleanContent:
3075     return CVal.isAllOnesValue();
3076   }
3077 
3078   llvm_unreachable("Invalid boolean contents");
3079 }
3080 
3081 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3082   if (!N)
3083     return false;
3084 
3085   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3086   if (!CN) {
3087     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3088     if (!BV)
3089       return false;
3090 
3091     // Only interested in constant splats, we don't care about undef
3092     // elements in identifying boolean constants and getConstantSplatNode
3093     // returns NULL if all ops are undef;
3094     CN = BV->getConstantSplatNode();
3095     if (!CN)
3096       return false;
3097   }
3098 
3099   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3100     return !CN->getAPIntValue()[0];
3101 
3102   return CN->isNullValue();
3103 }
3104 
3105 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3106                                        bool SExt) const {
3107   if (VT == MVT::i1)
3108     return N->isOne();
3109 
3110   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3111   switch (Cnt) {
3112   case TargetLowering::ZeroOrOneBooleanContent:
3113     // An extended value of 1 is always true, unless its original type is i1,
3114     // in which case it will be sign extended to -1.
3115     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3116   case TargetLowering::UndefinedBooleanContent:
3117   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3118     return N->isAllOnesValue() && SExt;
3119   }
3120   llvm_unreachable("Unexpected enumeration.");
3121 }
3122 
3123 /// This helper function of SimplifySetCC tries to optimize the comparison when
3124 /// either operand of the SetCC node is a bitwise-and instruction.
3125 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3126                                          ISD::CondCode Cond, const SDLoc &DL,
3127                                          DAGCombinerInfo &DCI) const {
3128   // Match these patterns in any of their permutations:
3129   // (X & Y) == Y
3130   // (X & Y) != Y
3131   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3132     std::swap(N0, N1);
3133 
3134   EVT OpVT = N0.getValueType();
3135   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3136       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3137     return SDValue();
3138 
3139   SDValue X, Y;
3140   if (N0.getOperand(0) == N1) {
3141     X = N0.getOperand(1);
3142     Y = N0.getOperand(0);
3143   } else if (N0.getOperand(1) == N1) {
3144     X = N0.getOperand(0);
3145     Y = N0.getOperand(1);
3146   } else {
3147     return SDValue();
3148   }
3149 
3150   SelectionDAG &DAG = DCI.DAG;
3151   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3152   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3153     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3154     // Note that where Y is variable and is known to have at most one bit set
3155     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3156     // equivalent when Y == 0.
3157     assert(OpVT.isInteger());
3158     Cond = ISD::getSetCCInverse(Cond, OpVT);
3159     if (DCI.isBeforeLegalizeOps() ||
3160         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3161       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3162   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3163     // If the target supports an 'and-not' or 'and-complement' logic operation,
3164     // try to use that to make a comparison operation more efficient.
3165     // But don't do this transform if the mask is a single bit because there are
3166     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3167     // 'rlwinm' on PPC).
3168 
3169     // Bail out if the compare operand that we want to turn into a zero is
3170     // already a zero (otherwise, infinite loop).
3171     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3172     if (YConst && YConst->isNullValue())
3173       return SDValue();
3174 
3175     // Transform this into: ~X & Y == 0.
3176     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3177     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3178     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3179   }
3180 
3181   return SDValue();
3182 }
3183 
3184 /// There are multiple IR patterns that could be checking whether certain
3185 /// truncation of a signed number would be lossy or not. The pattern which is
3186 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3187 /// We are looking for the following pattern: (KeptBits is a constant)
3188 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3189 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3190 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3191 /// We will unfold it into the natural trunc+sext pattern:
3192 ///   ((%x << C) a>> C) dstcond %x
3193 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3194 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3195     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3196     const SDLoc &DL) const {
3197   // We must be comparing with a constant.
3198   ConstantSDNode *C1;
3199   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3200     return SDValue();
3201 
3202   // N0 should be:  add %x, (1 << (KeptBits-1))
3203   if (N0->getOpcode() != ISD::ADD)
3204     return SDValue();
3205 
3206   // And we must be 'add'ing a constant.
3207   ConstantSDNode *C01;
3208   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3209     return SDValue();
3210 
3211   SDValue X = N0->getOperand(0);
3212   EVT XVT = X.getValueType();
3213 
3214   // Validate constants ...
3215 
3216   APInt I1 = C1->getAPIntValue();
3217 
3218   ISD::CondCode NewCond;
3219   if (Cond == ISD::CondCode::SETULT) {
3220     NewCond = ISD::CondCode::SETEQ;
3221   } else if (Cond == ISD::CondCode::SETULE) {
3222     NewCond = ISD::CondCode::SETEQ;
3223     // But need to 'canonicalize' the constant.
3224     I1 += 1;
3225   } else if (Cond == ISD::CondCode::SETUGT) {
3226     NewCond = ISD::CondCode::SETNE;
3227     // But need to 'canonicalize' the constant.
3228     I1 += 1;
3229   } else if (Cond == ISD::CondCode::SETUGE) {
3230     NewCond = ISD::CondCode::SETNE;
3231   } else
3232     return SDValue();
3233 
3234   APInt I01 = C01->getAPIntValue();
3235 
3236   auto checkConstants = [&I1, &I01]() -> bool {
3237     // Both of them must be power-of-two, and the constant from setcc is bigger.
3238     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3239   };
3240 
3241   if (checkConstants()) {
3242     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3243   } else {
3244     // What if we invert constants? (and the target predicate)
3245     I1.negate();
3246     I01.negate();
3247     assert(XVT.isInteger());
3248     NewCond = getSetCCInverse(NewCond, XVT);
3249     if (!checkConstants())
3250       return SDValue();
3251     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3252   }
3253 
3254   // They are power-of-two, so which bit is set?
3255   const unsigned KeptBits = I1.logBase2();
3256   const unsigned KeptBitsMinusOne = I01.logBase2();
3257 
3258   // Magic!
3259   if (KeptBits != (KeptBitsMinusOne + 1))
3260     return SDValue();
3261   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3262 
3263   // We don't want to do this in every single case.
3264   SelectionDAG &DAG = DCI.DAG;
3265   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3266           XVT, KeptBits))
3267     return SDValue();
3268 
3269   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3270   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3271 
3272   // Unfold into:  ((%x << C) a>> C) cond %x
3273   // Where 'cond' will be either 'eq' or 'ne'.
3274   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3275   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3276   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3277   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3278 
3279   return T2;
3280 }
3281 
3282 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3283 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3284     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3285     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3286   assert(isConstOrConstSplat(N1C) &&
3287          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3288          "Should be a comparison with 0.");
3289   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3290          "Valid only for [in]equality comparisons.");
3291 
3292   unsigned NewShiftOpcode;
3293   SDValue X, C, Y;
3294 
3295   SelectionDAG &DAG = DCI.DAG;
3296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3297 
3298   // Look for '(C l>>/<< Y)'.
3299   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3300     // The shift should be one-use.
3301     if (!V.hasOneUse())
3302       return false;
3303     unsigned OldShiftOpcode = V.getOpcode();
3304     switch (OldShiftOpcode) {
3305     case ISD::SHL:
3306       NewShiftOpcode = ISD::SRL;
3307       break;
3308     case ISD::SRL:
3309       NewShiftOpcode = ISD::SHL;
3310       break;
3311     default:
3312       return false; // must be a logical shift.
3313     }
3314     // We should be shifting a constant.
3315     // FIXME: best to use isConstantOrConstantVector().
3316     C = V.getOperand(0);
3317     ConstantSDNode *CC =
3318         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3319     if (!CC)
3320       return false;
3321     Y = V.getOperand(1);
3322 
3323     ConstantSDNode *XC =
3324         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3325     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3326         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3327   };
3328 
3329   // LHS of comparison should be an one-use 'and'.
3330   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3331     return SDValue();
3332 
3333   X = N0.getOperand(0);
3334   SDValue Mask = N0.getOperand(1);
3335 
3336   // 'and' is commutative!
3337   if (!Match(Mask)) {
3338     std::swap(X, Mask);
3339     if (!Match(Mask))
3340       return SDValue();
3341   }
3342 
3343   EVT VT = X.getValueType();
3344 
3345   // Produce:
3346   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3347   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3348   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3349   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3350   return T2;
3351 }
3352 
3353 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3354 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3355 /// handle the commuted versions of these patterns.
3356 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3357                                            ISD::CondCode Cond, const SDLoc &DL,
3358                                            DAGCombinerInfo &DCI) const {
3359   unsigned BOpcode = N0.getOpcode();
3360   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3361          "Unexpected binop");
3362   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3363 
3364   // (X + Y) == X --> Y == 0
3365   // (X - Y) == X --> Y == 0
3366   // (X ^ Y) == X --> Y == 0
3367   SelectionDAG &DAG = DCI.DAG;
3368   EVT OpVT = N0.getValueType();
3369   SDValue X = N0.getOperand(0);
3370   SDValue Y = N0.getOperand(1);
3371   if (X == N1)
3372     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3373 
3374   if (Y != N1)
3375     return SDValue();
3376 
3377   // (X + Y) == Y --> X == 0
3378   // (X ^ Y) == Y --> X == 0
3379   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3380     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3381 
3382   // The shift would not be valid if the operands are boolean (i1).
3383   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3384     return SDValue();
3385 
3386   // (X - Y) == Y --> X == Y << 1
3387   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3388                                  !DCI.isBeforeLegalize());
3389   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3390   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3391   if (!DCI.isCalledByLegalizer())
3392     DCI.AddToWorklist(YShl1.getNode());
3393   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3394 }
3395 
3396 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3397                                       SDValue N0, const APInt &C1,
3398                                       ISD::CondCode Cond, const SDLoc &dl,
3399                                       SelectionDAG &DAG) {
3400   // Look through truncs that don't change the value of a ctpop.
3401   // FIXME: Add vector support? Need to be careful with setcc result type below.
3402   SDValue CTPOP = N0;
3403   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3404       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3405     CTPOP = N0.getOperand(0);
3406 
3407   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3408     return SDValue();
3409 
3410   EVT CTVT = CTPOP.getValueType();
3411   SDValue CTOp = CTPOP.getOperand(0);
3412 
3413   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3414   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3415   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3416     return SDValue();
3417 
3418   // (ctpop x) u< 2 -> (x & x-1) == 0
3419   // (ctpop x) u> 1 -> (x & x-1) != 0
3420   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3421     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3422     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3423       return SDValue();
3424     if (C1 == 0 && (Cond == ISD::SETULT))
3425       return SDValue(); // This is handled elsewhere.
3426 
3427     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3428 
3429     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3430     SDValue Result = CTOp;
3431     for (unsigned i = 0; i < Passes; i++) {
3432       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3433       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3434     }
3435     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3436     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3437   }
3438 
3439   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3440   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3441     // For scalars, keep CTPOP if it is legal or custom.
3442     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3443       return SDValue();
3444     // This is based on X86's custom lowering for CTPOP which produces more
3445     // instructions than the expansion here.
3446 
3447     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3448     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3449     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3450     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3451     assert(CTVT.isInteger());
3452     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3453     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3454     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3455     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3456     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3457     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3458     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3459   }
3460 
3461   return SDValue();
3462 }
3463 
3464 /// Try to simplify a setcc built with the specified operands and cc. If it is
3465 /// unable to simplify it, return a null SDValue.
3466 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3467                                       ISD::CondCode Cond, bool foldBooleans,
3468                                       DAGCombinerInfo &DCI,
3469                                       const SDLoc &dl) const {
3470   SelectionDAG &DAG = DCI.DAG;
3471   const DataLayout &Layout = DAG.getDataLayout();
3472   EVT OpVT = N0.getValueType();
3473 
3474   // Constant fold or commute setcc.
3475   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3476     return Fold;
3477 
3478   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3479   // TODO: Handle non-splat vector constants. All undef causes trouble.
3480   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3481   // infinite loop here when we encounter one.
3482   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3483   if (isConstOrConstSplat(N0) &&
3484       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3485       (DCI.isBeforeLegalizeOps() ||
3486        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3487     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3488 
3489   // If we have a subtract with the same 2 non-constant operands as this setcc
3490   // -- but in reverse order -- then try to commute the operands of this setcc
3491   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3492   // instruction on some targets.
3493   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3494       (DCI.isBeforeLegalizeOps() ||
3495        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3496       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3497       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3498     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3499 
3500   if (auto *N1C = isConstOrConstSplat(N1)) {
3501     const APInt &C1 = N1C->getAPIntValue();
3502 
3503     // Optimize some CTPOP cases.
3504     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3505       return V;
3506 
3507     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3508     // equality comparison, then we're just comparing whether X itself is
3509     // zero.
3510     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3511         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3512         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3513       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3514         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3515             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3516           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3517             // (srl (ctlz x), 5) == 0  -> X != 0
3518             // (srl (ctlz x), 5) != 1  -> X != 0
3519             Cond = ISD::SETNE;
3520           } else {
3521             // (srl (ctlz x), 5) != 0  -> X == 0
3522             // (srl (ctlz x), 5) == 1  -> X == 0
3523             Cond = ISD::SETEQ;
3524           }
3525           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3526           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3527                               Cond);
3528         }
3529       }
3530     }
3531   }
3532 
3533   // FIXME: Support vectors.
3534   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3535     const APInt &C1 = N1C->getAPIntValue();
3536 
3537     // (zext x) == C --> x == (trunc C)
3538     // (sext x) == C --> x == (trunc C)
3539     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3540         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3541       unsigned MinBits = N0.getValueSizeInBits();
3542       SDValue PreExt;
3543       bool Signed = false;
3544       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3545         // ZExt
3546         MinBits = N0->getOperand(0).getValueSizeInBits();
3547         PreExt = N0->getOperand(0);
3548       } else if (N0->getOpcode() == ISD::AND) {
3549         // DAGCombine turns costly ZExts into ANDs
3550         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3551           if ((C->getAPIntValue()+1).isPowerOf2()) {
3552             MinBits = C->getAPIntValue().countTrailingOnes();
3553             PreExt = N0->getOperand(0);
3554           }
3555       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3556         // SExt
3557         MinBits = N0->getOperand(0).getValueSizeInBits();
3558         PreExt = N0->getOperand(0);
3559         Signed = true;
3560       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3561         // ZEXTLOAD / SEXTLOAD
3562         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3563           MinBits = LN0->getMemoryVT().getSizeInBits();
3564           PreExt = N0;
3565         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3566           Signed = true;
3567           MinBits = LN0->getMemoryVT().getSizeInBits();
3568           PreExt = N0;
3569         }
3570       }
3571 
3572       // Figure out how many bits we need to preserve this constant.
3573       unsigned ReqdBits = Signed ?
3574         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3575         C1.getActiveBits();
3576 
3577       // Make sure we're not losing bits from the constant.
3578       if (MinBits > 0 &&
3579           MinBits < C1.getBitWidth() &&
3580           MinBits >= ReqdBits) {
3581         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3582         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3583           // Will get folded away.
3584           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3585           if (MinBits == 1 && C1 == 1)
3586             // Invert the condition.
3587             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3588                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3589           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3590           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3591         }
3592 
3593         // If truncating the setcc operands is not desirable, we can still
3594         // simplify the expression in some cases:
3595         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3596         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3597         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3598         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3599         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3600         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3601         SDValue TopSetCC = N0->getOperand(0);
3602         unsigned N0Opc = N0->getOpcode();
3603         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3604         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3605             TopSetCC.getOpcode() == ISD::SETCC &&
3606             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3607             (isConstFalseVal(N1C) ||
3608              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3609 
3610           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3611                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3612 
3613           if (!Inverse)
3614             return TopSetCC;
3615 
3616           ISD::CondCode InvCond = ISD::getSetCCInverse(
3617               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3618               TopSetCC.getOperand(0).getValueType());
3619           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3620                                       TopSetCC.getOperand(1),
3621                                       InvCond);
3622         }
3623       }
3624     }
3625 
3626     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3627     // equality or unsigned, and all 1 bits of the const are in the same
3628     // partial word, see if we can shorten the load.
3629     if (DCI.isBeforeLegalize() &&
3630         !ISD::isSignedIntSetCC(Cond) &&
3631         N0.getOpcode() == ISD::AND && C1 == 0 &&
3632         N0.getNode()->hasOneUse() &&
3633         isa<LoadSDNode>(N0.getOperand(0)) &&
3634         N0.getOperand(0).getNode()->hasOneUse() &&
3635         isa<ConstantSDNode>(N0.getOperand(1))) {
3636       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3637       APInt bestMask;
3638       unsigned bestWidth = 0, bestOffset = 0;
3639       if (Lod->isSimple() && Lod->isUnindexed()) {
3640         unsigned origWidth = N0.getValueSizeInBits();
3641         unsigned maskWidth = origWidth;
3642         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3643         // 8 bits, but have to be careful...
3644         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3645           origWidth = Lod->getMemoryVT().getSizeInBits();
3646         const APInt &Mask = N0.getConstantOperandAPInt(1);
3647         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3648           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3649           for (unsigned offset=0; offset<origWidth/width; offset++) {
3650             if (Mask.isSubsetOf(newMask)) {
3651               if (Layout.isLittleEndian())
3652                 bestOffset = (uint64_t)offset * (width/8);
3653               else
3654                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3655               bestMask = Mask.lshr(offset * (width/8) * 8);
3656               bestWidth = width;
3657               break;
3658             }
3659             newMask <<= width;
3660           }
3661         }
3662       }
3663       if (bestWidth) {
3664         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3665         if (newVT.isRound() &&
3666             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3667           SDValue Ptr = Lod->getBasePtr();
3668           if (bestOffset != 0)
3669             Ptr =
3670                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3671           SDValue NewLoad =
3672               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3673                           Lod->getPointerInfo().getWithOffset(bestOffset),
3674                           Lod->getOriginalAlign());
3675           return DAG.getSetCC(dl, VT,
3676                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3677                                       DAG.getConstant(bestMask.trunc(bestWidth),
3678                                                       dl, newVT)),
3679                               DAG.getConstant(0LL, dl, newVT), Cond);
3680         }
3681       }
3682     }
3683 
3684     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3685     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3686       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3687 
3688       // If the comparison constant has bits in the upper part, the
3689       // zero-extended value could never match.
3690       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3691                                               C1.getBitWidth() - InSize))) {
3692         switch (Cond) {
3693         case ISD::SETUGT:
3694         case ISD::SETUGE:
3695         case ISD::SETEQ:
3696           return DAG.getConstant(0, dl, VT);
3697         case ISD::SETULT:
3698         case ISD::SETULE:
3699         case ISD::SETNE:
3700           return DAG.getConstant(1, dl, VT);
3701         case ISD::SETGT:
3702         case ISD::SETGE:
3703           // True if the sign bit of C1 is set.
3704           return DAG.getConstant(C1.isNegative(), dl, VT);
3705         case ISD::SETLT:
3706         case ISD::SETLE:
3707           // True if the sign bit of C1 isn't set.
3708           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3709         default:
3710           break;
3711         }
3712       }
3713 
3714       // Otherwise, we can perform the comparison with the low bits.
3715       switch (Cond) {
3716       case ISD::SETEQ:
3717       case ISD::SETNE:
3718       case ISD::SETUGT:
3719       case ISD::SETUGE:
3720       case ISD::SETULT:
3721       case ISD::SETULE: {
3722         EVT newVT = N0.getOperand(0).getValueType();
3723         if (DCI.isBeforeLegalizeOps() ||
3724             (isOperationLegal(ISD::SETCC, newVT) &&
3725              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3726           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3727           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3728 
3729           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3730                                           NewConst, Cond);
3731           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3732         }
3733         break;
3734       }
3735       default:
3736         break; // todo, be more careful with signed comparisons
3737       }
3738     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3739                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3740                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3741                                       OpVT)) {
3742       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3743       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3744       EVT ExtDstTy = N0.getValueType();
3745       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3746 
3747       // If the constant doesn't fit into the number of bits for the source of
3748       // the sign extension, it is impossible for both sides to be equal.
3749       if (C1.getMinSignedBits() > ExtSrcTyBits)
3750         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3751 
3752       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3753              ExtDstTy != ExtSrcTy && "Unexpected types!");
3754       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3755       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3756                                    DAG.getConstant(Imm, dl, ExtDstTy));
3757       if (!DCI.isCalledByLegalizer())
3758         DCI.AddToWorklist(ZextOp.getNode());
3759       // Otherwise, make this a use of a zext.
3760       return DAG.getSetCC(dl, VT, ZextOp,
3761                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3762     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3763                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3764       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3765       if (N0.getOpcode() == ISD::SETCC &&
3766           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3767           (N0.getValueType() == MVT::i1 ||
3768            getBooleanContents(N0.getOperand(0).getValueType()) ==
3769                        ZeroOrOneBooleanContent)) {
3770         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3771         if (TrueWhenTrue)
3772           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3773         // Invert the condition.
3774         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3775         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3776         if (DCI.isBeforeLegalizeOps() ||
3777             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3778           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3779       }
3780 
3781       if ((N0.getOpcode() == ISD::XOR ||
3782            (N0.getOpcode() == ISD::AND &&
3783             N0.getOperand(0).getOpcode() == ISD::XOR &&
3784             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3785           isOneConstant(N0.getOperand(1))) {
3786         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3787         // can only do this if the top bits are known zero.
3788         unsigned BitWidth = N0.getValueSizeInBits();
3789         if (DAG.MaskedValueIsZero(N0,
3790                                   APInt::getHighBitsSet(BitWidth,
3791                                                         BitWidth-1))) {
3792           // Okay, get the un-inverted input value.
3793           SDValue Val;
3794           if (N0.getOpcode() == ISD::XOR) {
3795             Val = N0.getOperand(0);
3796           } else {
3797             assert(N0.getOpcode() == ISD::AND &&
3798                     N0.getOperand(0).getOpcode() == ISD::XOR);
3799             // ((X^1)&1)^1 -> X & 1
3800             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3801                               N0.getOperand(0).getOperand(0),
3802                               N0.getOperand(1));
3803           }
3804 
3805           return DAG.getSetCC(dl, VT, Val, N1,
3806                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3807         }
3808       } else if (N1C->isOne()) {
3809         SDValue Op0 = N0;
3810         if (Op0.getOpcode() == ISD::TRUNCATE)
3811           Op0 = Op0.getOperand(0);
3812 
3813         if ((Op0.getOpcode() == ISD::XOR) &&
3814             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3815             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3816           SDValue XorLHS = Op0.getOperand(0);
3817           SDValue XorRHS = Op0.getOperand(1);
3818           // Ensure that the input setccs return an i1 type or 0/1 value.
3819           if (Op0.getValueType() == MVT::i1 ||
3820               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3821                       ZeroOrOneBooleanContent &&
3822                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3823                         ZeroOrOneBooleanContent)) {
3824             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3825             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3826             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3827           }
3828         }
3829         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3830           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3831           if (Op0.getValueType().bitsGT(VT))
3832             Op0 = DAG.getNode(ISD::AND, dl, VT,
3833                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3834                           DAG.getConstant(1, dl, VT));
3835           else if (Op0.getValueType().bitsLT(VT))
3836             Op0 = DAG.getNode(ISD::AND, dl, VT,
3837                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3838                         DAG.getConstant(1, dl, VT));
3839 
3840           return DAG.getSetCC(dl, VT, Op0,
3841                               DAG.getConstant(0, dl, Op0.getValueType()),
3842                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3843         }
3844         if (Op0.getOpcode() == ISD::AssertZext &&
3845             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3846           return DAG.getSetCC(dl, VT, Op0,
3847                               DAG.getConstant(0, dl, Op0.getValueType()),
3848                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3849       }
3850     }
3851 
3852     // Given:
3853     //   icmp eq/ne (urem %x, %y), 0
3854     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3855     //   icmp eq/ne %x, 0
3856     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3857         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3858       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3859       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3860       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3861         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3862     }
3863 
3864     if (SDValue V =
3865             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3866       return V;
3867   }
3868 
3869   // These simplifications apply to splat vectors as well.
3870   // TODO: Handle more splat vector cases.
3871   if (auto *N1C = isConstOrConstSplat(N1)) {
3872     const APInt &C1 = N1C->getAPIntValue();
3873 
3874     APInt MinVal, MaxVal;
3875     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3876     if (ISD::isSignedIntSetCC(Cond)) {
3877       MinVal = APInt::getSignedMinValue(OperandBitSize);
3878       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3879     } else {
3880       MinVal = APInt::getMinValue(OperandBitSize);
3881       MaxVal = APInt::getMaxValue(OperandBitSize);
3882     }
3883 
3884     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3885     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3886       // X >= MIN --> true
3887       if (C1 == MinVal)
3888         return DAG.getBoolConstant(true, dl, VT, OpVT);
3889 
3890       if (!VT.isVector()) { // TODO: Support this for vectors.
3891         // X >= C0 --> X > (C0 - 1)
3892         APInt C = C1 - 1;
3893         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3894         if ((DCI.isBeforeLegalizeOps() ||
3895              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3896             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3897                                   isLegalICmpImmediate(C.getSExtValue())))) {
3898           return DAG.getSetCC(dl, VT, N0,
3899                               DAG.getConstant(C, dl, N1.getValueType()),
3900                               NewCC);
3901         }
3902       }
3903     }
3904 
3905     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3906       // X <= MAX --> true
3907       if (C1 == MaxVal)
3908         return DAG.getBoolConstant(true, dl, VT, OpVT);
3909 
3910       // X <= C0 --> X < (C0 + 1)
3911       if (!VT.isVector()) { // TODO: Support this for vectors.
3912         APInt C = C1 + 1;
3913         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3914         if ((DCI.isBeforeLegalizeOps() ||
3915              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3916             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3917                                   isLegalICmpImmediate(C.getSExtValue())))) {
3918           return DAG.getSetCC(dl, VT, N0,
3919                               DAG.getConstant(C, dl, N1.getValueType()),
3920                               NewCC);
3921         }
3922       }
3923     }
3924 
3925     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3926       if (C1 == MinVal)
3927         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3928 
3929       // TODO: Support this for vectors after legalize ops.
3930       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3931         // Canonicalize setlt X, Max --> setne X, Max
3932         if (C1 == MaxVal)
3933           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3934 
3935         // If we have setult X, 1, turn it into seteq X, 0
3936         if (C1 == MinVal+1)
3937           return DAG.getSetCC(dl, VT, N0,
3938                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3939                               ISD::SETEQ);
3940       }
3941     }
3942 
3943     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3944       if (C1 == MaxVal)
3945         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3946 
3947       // TODO: Support this for vectors after legalize ops.
3948       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3949         // Canonicalize setgt X, Min --> setne X, Min
3950         if (C1 == MinVal)
3951           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3952 
3953         // If we have setugt X, Max-1, turn it into seteq X, Max
3954         if (C1 == MaxVal-1)
3955           return DAG.getSetCC(dl, VT, N0,
3956                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3957                               ISD::SETEQ);
3958       }
3959     }
3960 
3961     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3962       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3963       if (C1.isNullValue())
3964         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3965                 VT, N0, N1, Cond, DCI, dl))
3966           return CC;
3967 
3968       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3969       // For example, when high 32-bits of i64 X are known clear:
3970       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3971       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3972       bool CmpZero = N1C->getAPIntValue().isNullValue();
3973       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3974       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3975         // Match or(lo,shl(hi,bw/2)) pattern.
3976         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3977           unsigned EltBits = V.getScalarValueSizeInBits();
3978           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3979             return false;
3980           SDValue LHS = V.getOperand(0);
3981           SDValue RHS = V.getOperand(1);
3982           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3983           // Unshifted element must have zero upperbits.
3984           if (RHS.getOpcode() == ISD::SHL &&
3985               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3986               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3987               DAG.MaskedValueIsZero(LHS, HiBits)) {
3988             Lo = LHS;
3989             Hi = RHS.getOperand(0);
3990             return true;
3991           }
3992           if (LHS.getOpcode() == ISD::SHL &&
3993               isa<ConstantSDNode>(LHS.getOperand(1)) &&
3994               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3995               DAG.MaskedValueIsZero(RHS, HiBits)) {
3996             Lo = RHS;
3997             Hi = LHS.getOperand(0);
3998             return true;
3999           }
4000           return false;
4001         };
4002 
4003         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4004           unsigned EltBits = N0.getScalarValueSizeInBits();
4005           unsigned HalfBits = EltBits / 2;
4006           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4007           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4008           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4009           SDValue NewN0 =
4010               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4011           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4012           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4013         };
4014 
4015         SDValue Lo, Hi;
4016         if (IsConcat(N0, Lo, Hi))
4017           return MergeConcat(Lo, Hi);
4018 
4019         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4020           SDValue Lo0, Lo1, Hi0, Hi1;
4021           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4022               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4023             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4024                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4025           }
4026         }
4027       }
4028     }
4029 
4030     // If we have "setcc X, C0", check to see if we can shrink the immediate
4031     // by changing cc.
4032     // TODO: Support this for vectors after legalize ops.
4033     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4034       // SETUGT X, SINTMAX  -> SETLT X, 0
4035       // SETUGE X, SINTMIN -> SETLT X, 0
4036       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4037           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4038         return DAG.getSetCC(dl, VT, N0,
4039                             DAG.getConstant(0, dl, N1.getValueType()),
4040                             ISD::SETLT);
4041 
4042       // SETULT X, SINTMIN  -> SETGT X, -1
4043       // SETULE X, SINTMAX  -> SETGT X, -1
4044       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4045           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4046         return DAG.getSetCC(dl, VT, N0,
4047                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4048                             ISD::SETGT);
4049     }
4050   }
4051 
4052   // Back to non-vector simplifications.
4053   // TODO: Can we do these for vector splats?
4054   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4055     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4056     const APInt &C1 = N1C->getAPIntValue();
4057     EVT ShValTy = N0.getValueType();
4058 
4059     // Fold bit comparisons when we can. This will result in an
4060     // incorrect value when boolean false is negative one, unless
4061     // the bitsize is 1 in which case the false value is the same
4062     // in practice regardless of the representation.
4063     if ((VT.getSizeInBits() == 1 ||
4064          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4065         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4066         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4067         N0.getOpcode() == ISD::AND) {
4068       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4069         EVT ShiftTy =
4070             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4071         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4072           // Perform the xform if the AND RHS is a single bit.
4073           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4074           if (AndRHS->getAPIntValue().isPowerOf2() &&
4075               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4076             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4077                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4078                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4079           }
4080         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4081           // (X & 8) == 8  -->  (X & 8) >> 3
4082           // Perform the xform if C1 is a single bit.
4083           unsigned ShCt = C1.logBase2();
4084           if (C1.isPowerOf2() &&
4085               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4086             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4087                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4088                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4089           }
4090         }
4091       }
4092     }
4093 
4094     if (C1.getMinSignedBits() <= 64 &&
4095         !isLegalICmpImmediate(C1.getSExtValue())) {
4096       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4097       // (X & -256) == 256 -> (X >> 8) == 1
4098       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4099           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4100         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4101           const APInt &AndRHSC = AndRHS->getAPIntValue();
4102           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4103             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4104             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4105               SDValue Shift =
4106                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4107                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4108               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4109               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4110             }
4111           }
4112         }
4113       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4114                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4115         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4116         // X <  0x100000000 -> (X >> 32) <  1
4117         // X >= 0x100000000 -> (X >> 32) >= 1
4118         // X <= 0x0ffffffff -> (X >> 32) <  1
4119         // X >  0x0ffffffff -> (X >> 32) >= 1
4120         unsigned ShiftBits;
4121         APInt NewC = C1;
4122         ISD::CondCode NewCond = Cond;
4123         if (AdjOne) {
4124           ShiftBits = C1.countTrailingOnes();
4125           NewC = NewC + 1;
4126           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4127         } else {
4128           ShiftBits = C1.countTrailingZeros();
4129         }
4130         NewC.lshrInPlace(ShiftBits);
4131         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4132             isLegalICmpImmediate(NewC.getSExtValue()) &&
4133             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4134           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4135                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4136           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4137           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4138         }
4139       }
4140     }
4141   }
4142 
4143   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4144     auto *CFP = cast<ConstantFPSDNode>(N1);
4145     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4146 
4147     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4148     // constant if knowing that the operand is non-nan is enough.  We prefer to
4149     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4150     // materialize 0.0.
4151     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4152       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4153 
4154     // setcc (fneg x), C -> setcc swap(pred) x, -C
4155     if (N0.getOpcode() == ISD::FNEG) {
4156       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4157       if (DCI.isBeforeLegalizeOps() ||
4158           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4159         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4160         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4161       }
4162     }
4163 
4164     // If the condition is not legal, see if we can find an equivalent one
4165     // which is legal.
4166     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4167       // If the comparison was an awkward floating-point == or != and one of
4168       // the comparison operands is infinity or negative infinity, convert the
4169       // condition to a less-awkward <= or >=.
4170       if (CFP->getValueAPF().isInfinity()) {
4171         bool IsNegInf = CFP->getValueAPF().isNegative();
4172         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4173         switch (Cond) {
4174         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4175         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4176         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4177         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4178         default: break;
4179         }
4180         if (NewCond != ISD::SETCC_INVALID &&
4181             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4182           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4183       }
4184     }
4185   }
4186 
4187   if (N0 == N1) {
4188     // The sext(setcc()) => setcc() optimization relies on the appropriate
4189     // constant being emitted.
4190     assert(!N0.getValueType().isInteger() &&
4191            "Integer types should be handled by FoldSetCC");
4192 
4193     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4194     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4195     if (UOF == 2) // FP operators that are undefined on NaNs.
4196       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4197     if (UOF == unsigned(EqTrue))
4198       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4199     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4200     // if it is not already.
4201     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4202     if (NewCond != Cond &&
4203         (DCI.isBeforeLegalizeOps() ||
4204                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4205       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4206   }
4207 
4208   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4209       N0.getValueType().isInteger()) {
4210     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4211         N0.getOpcode() == ISD::XOR) {
4212       // Simplify (X+Y) == (X+Z) -->  Y == Z
4213       if (N0.getOpcode() == N1.getOpcode()) {
4214         if (N0.getOperand(0) == N1.getOperand(0))
4215           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4216         if (N0.getOperand(1) == N1.getOperand(1))
4217           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4218         if (isCommutativeBinOp(N0.getOpcode())) {
4219           // If X op Y == Y op X, try other combinations.
4220           if (N0.getOperand(0) == N1.getOperand(1))
4221             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4222                                 Cond);
4223           if (N0.getOperand(1) == N1.getOperand(0))
4224             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4225                                 Cond);
4226         }
4227       }
4228 
4229       // If RHS is a legal immediate value for a compare instruction, we need
4230       // to be careful about increasing register pressure needlessly.
4231       bool LegalRHSImm = false;
4232 
4233       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4234         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4235           // Turn (X+C1) == C2 --> X == C2-C1
4236           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4237             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4238                                 DAG.getConstant(RHSC->getAPIntValue()-
4239                                                 LHSR->getAPIntValue(),
4240                                 dl, N0.getValueType()), Cond);
4241           }
4242 
4243           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4244           if (N0.getOpcode() == ISD::XOR)
4245             // If we know that all of the inverted bits are zero, don't bother
4246             // performing the inversion.
4247             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4248               return
4249                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4250                              DAG.getConstant(LHSR->getAPIntValue() ^
4251                                                RHSC->getAPIntValue(),
4252                                              dl, N0.getValueType()),
4253                              Cond);
4254         }
4255 
4256         // Turn (C1-X) == C2 --> X == C1-C2
4257         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4258           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4259             return
4260               DAG.getSetCC(dl, VT, N0.getOperand(1),
4261                            DAG.getConstant(SUBC->getAPIntValue() -
4262                                              RHSC->getAPIntValue(),
4263                                            dl, N0.getValueType()),
4264                            Cond);
4265           }
4266         }
4267 
4268         // Could RHSC fold directly into a compare?
4269         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4270           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4271       }
4272 
4273       // (X+Y) == X --> Y == 0 and similar folds.
4274       // Don't do this if X is an immediate that can fold into a cmp
4275       // instruction and X+Y has other uses. It could be an induction variable
4276       // chain, and the transform would increase register pressure.
4277       if (!LegalRHSImm || N0.hasOneUse())
4278         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4279           return V;
4280     }
4281 
4282     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4283         N1.getOpcode() == ISD::XOR)
4284       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4285         return V;
4286 
4287     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4288       return V;
4289   }
4290 
4291   // Fold remainder of division by a constant.
4292   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4293       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4294     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4295 
4296     // When division is cheap or optimizing for minimum size,
4297     // fall through to DIVREM creation by skipping this fold.
4298     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4299       if (N0.getOpcode() == ISD::UREM) {
4300         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4301           return Folded;
4302       } else if (N0.getOpcode() == ISD::SREM) {
4303         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4304           return Folded;
4305       }
4306     }
4307   }
4308 
4309   // Fold away ALL boolean setcc's.
4310   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4311     SDValue Temp;
4312     switch (Cond) {
4313     default: llvm_unreachable("Unknown integer setcc!");
4314     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4315       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4316       N0 = DAG.getNOT(dl, Temp, OpVT);
4317       if (!DCI.isCalledByLegalizer())
4318         DCI.AddToWorklist(Temp.getNode());
4319       break;
4320     case ISD::SETNE:  // X != Y   -->  (X^Y)
4321       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4322       break;
4323     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4324     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4325       Temp = DAG.getNOT(dl, N0, OpVT);
4326       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4327       if (!DCI.isCalledByLegalizer())
4328         DCI.AddToWorklist(Temp.getNode());
4329       break;
4330     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4331     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4332       Temp = DAG.getNOT(dl, N1, OpVT);
4333       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4334       if (!DCI.isCalledByLegalizer())
4335         DCI.AddToWorklist(Temp.getNode());
4336       break;
4337     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4338     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4339       Temp = DAG.getNOT(dl, N0, OpVT);
4340       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4341       if (!DCI.isCalledByLegalizer())
4342         DCI.AddToWorklist(Temp.getNode());
4343       break;
4344     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4345     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4346       Temp = DAG.getNOT(dl, N1, OpVT);
4347       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4348       break;
4349     }
4350     if (VT.getScalarType() != MVT::i1) {
4351       if (!DCI.isCalledByLegalizer())
4352         DCI.AddToWorklist(N0.getNode());
4353       // FIXME: If running after legalize, we probably can't do this.
4354       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4355       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4356     }
4357     return N0;
4358   }
4359 
4360   // Could not fold it.
4361   return SDValue();
4362 }
4363 
4364 /// Returns true (and the GlobalValue and the offset) if the node is a
4365 /// GlobalAddress + offset.
4366 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4367                                     int64_t &Offset) const {
4368 
4369   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4370 
4371   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4372     GA = GASD->getGlobal();
4373     Offset += GASD->getOffset();
4374     return true;
4375   }
4376 
4377   if (N->getOpcode() == ISD::ADD) {
4378     SDValue N1 = N->getOperand(0);
4379     SDValue N2 = N->getOperand(1);
4380     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4381       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4382         Offset += V->getSExtValue();
4383         return true;
4384       }
4385     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4386       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4387         Offset += V->getSExtValue();
4388         return true;
4389       }
4390     }
4391   }
4392 
4393   return false;
4394 }
4395 
4396 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4397                                           DAGCombinerInfo &DCI) const {
4398   // Default implementation: no optimization.
4399   return SDValue();
4400 }
4401 
4402 //===----------------------------------------------------------------------===//
4403 //  Inline Assembler Implementation Methods
4404 //===----------------------------------------------------------------------===//
4405 
4406 TargetLowering::ConstraintType
4407 TargetLowering::getConstraintType(StringRef Constraint) const {
4408   unsigned S = Constraint.size();
4409 
4410   if (S == 1) {
4411     switch (Constraint[0]) {
4412     default: break;
4413     case 'r':
4414       return C_RegisterClass;
4415     case 'm': // memory
4416     case 'o': // offsetable
4417     case 'V': // not offsetable
4418       return C_Memory;
4419     case 'n': // Simple Integer
4420     case 'E': // Floating Point Constant
4421     case 'F': // Floating Point Constant
4422       return C_Immediate;
4423     case 'i': // Simple Integer or Relocatable Constant
4424     case 's': // Relocatable Constant
4425     case 'p': // Address.
4426     case 'X': // Allow ANY value.
4427     case 'I': // Target registers.
4428     case 'J':
4429     case 'K':
4430     case 'L':
4431     case 'M':
4432     case 'N':
4433     case 'O':
4434     case 'P':
4435     case '<':
4436     case '>':
4437       return C_Other;
4438     }
4439   }
4440 
4441   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4442     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4443       return C_Memory;
4444     return C_Register;
4445   }
4446   return C_Unknown;
4447 }
4448 
4449 /// Try to replace an X constraint, which matches anything, with another that
4450 /// has more specific requirements based on the type of the corresponding
4451 /// operand.
4452 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4453   if (ConstraintVT.isInteger())
4454     return "r";
4455   if (ConstraintVT.isFloatingPoint())
4456     return "f"; // works for many targets
4457   return nullptr;
4458 }
4459 
4460 SDValue TargetLowering::LowerAsmOutputForConstraint(
4461     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4462     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4463   return SDValue();
4464 }
4465 
4466 /// Lower the specified operand into the Ops vector.
4467 /// If it is invalid, don't add anything to Ops.
4468 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4469                                                   std::string &Constraint,
4470                                                   std::vector<SDValue> &Ops,
4471                                                   SelectionDAG &DAG) const {
4472 
4473   if (Constraint.length() > 1) return;
4474 
4475   char ConstraintLetter = Constraint[0];
4476   switch (ConstraintLetter) {
4477   default: break;
4478   case 'X':     // Allows any operand; labels (basic block) use this.
4479     if (Op.getOpcode() == ISD::BasicBlock ||
4480         Op.getOpcode() == ISD::TargetBlockAddress) {
4481       Ops.push_back(Op);
4482       return;
4483     }
4484     LLVM_FALLTHROUGH;
4485   case 'i':    // Simple Integer or Relocatable Constant
4486   case 'n':    // Simple Integer
4487   case 's': {  // Relocatable Constant
4488 
4489     GlobalAddressSDNode *GA;
4490     ConstantSDNode *C;
4491     BlockAddressSDNode *BA;
4492     uint64_t Offset = 0;
4493 
4494     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4495     // etc., since getelementpointer is variadic. We can't use
4496     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4497     // while in this case the GA may be furthest from the root node which is
4498     // likely an ISD::ADD.
4499     while (1) {
4500       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4501         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4502                                                  GA->getValueType(0),
4503                                                  Offset + GA->getOffset()));
4504         return;
4505       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4506                  ConstraintLetter != 's') {
4507         // gcc prints these as sign extended.  Sign extend value to 64 bits
4508         // now; without this it would get ZExt'd later in
4509         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4510         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4511         BooleanContent BCont = getBooleanContents(MVT::i64);
4512         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4513                                       : ISD::SIGN_EXTEND;
4514         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4515                                                     : C->getSExtValue();
4516         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4517                                             SDLoc(C), MVT::i64));
4518         return;
4519       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4520                  ConstraintLetter != 'n') {
4521         Ops.push_back(DAG.getTargetBlockAddress(
4522             BA->getBlockAddress(), BA->getValueType(0),
4523             Offset + BA->getOffset(), BA->getTargetFlags()));
4524         return;
4525       } else {
4526         const unsigned OpCode = Op.getOpcode();
4527         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4528           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4529             Op = Op.getOperand(1);
4530           // Subtraction is not commutative.
4531           else if (OpCode == ISD::ADD &&
4532                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4533             Op = Op.getOperand(0);
4534           else
4535             return;
4536           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4537           continue;
4538         }
4539       }
4540       return;
4541     }
4542     break;
4543   }
4544   }
4545 }
4546 
4547 std::pair<unsigned, const TargetRegisterClass *>
4548 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4549                                              StringRef Constraint,
4550                                              MVT VT) const {
4551   if (Constraint.empty() || Constraint[0] != '{')
4552     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4553   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4554 
4555   // Remove the braces from around the name.
4556   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4557 
4558   std::pair<unsigned, const TargetRegisterClass *> R =
4559       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4560 
4561   // Figure out which register class contains this reg.
4562   for (const TargetRegisterClass *RC : RI->regclasses()) {
4563     // If none of the value types for this register class are valid, we
4564     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4565     if (!isLegalRC(*RI, *RC))
4566       continue;
4567 
4568     for (const MCPhysReg &PR : *RC) {
4569       if (RegName.equals_lower(RI->getRegAsmName(PR))) {
4570         std::pair<unsigned, const TargetRegisterClass *> S =
4571             std::make_pair(PR, RC);
4572 
4573         // If this register class has the requested value type, return it,
4574         // otherwise keep searching and return the first class found
4575         // if no other is found which explicitly has the requested type.
4576         if (RI->isTypeLegalForClass(*RC, VT))
4577           return S;
4578         if (!R.second)
4579           R = S;
4580       }
4581     }
4582   }
4583 
4584   return R;
4585 }
4586 
4587 //===----------------------------------------------------------------------===//
4588 // Constraint Selection.
4589 
4590 /// Return true of this is an input operand that is a matching constraint like
4591 /// "4".
4592 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4593   assert(!ConstraintCode.empty() && "No known constraint!");
4594   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4595 }
4596 
4597 /// If this is an input matching constraint, this method returns the output
4598 /// operand it matches.
4599 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4600   assert(!ConstraintCode.empty() && "No known constraint!");
4601   return atoi(ConstraintCode.c_str());
4602 }
4603 
4604 /// Split up the constraint string from the inline assembly value into the
4605 /// specific constraints and their prefixes, and also tie in the associated
4606 /// operand values.
4607 /// If this returns an empty vector, and if the constraint string itself
4608 /// isn't empty, there was an error parsing.
4609 TargetLowering::AsmOperandInfoVector
4610 TargetLowering::ParseConstraints(const DataLayout &DL,
4611                                  const TargetRegisterInfo *TRI,
4612                                  const CallBase &Call) const {
4613   /// Information about all of the constraints.
4614   AsmOperandInfoVector ConstraintOperands;
4615   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4616   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4617 
4618   // Do a prepass over the constraints, canonicalizing them, and building up the
4619   // ConstraintOperands list.
4620   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4621   unsigned ResNo = 0; // ResNo - The result number of the next output.
4622 
4623   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4624     ConstraintOperands.emplace_back(std::move(CI));
4625     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4626 
4627     // Update multiple alternative constraint count.
4628     if (OpInfo.multipleAlternatives.size() > maCount)
4629       maCount = OpInfo.multipleAlternatives.size();
4630 
4631     OpInfo.ConstraintVT = MVT::Other;
4632 
4633     // Compute the value type for each operand.
4634     switch (OpInfo.Type) {
4635     case InlineAsm::isOutput:
4636       // Indirect outputs just consume an argument.
4637       if (OpInfo.isIndirect) {
4638         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4639         break;
4640       }
4641 
4642       // The return value of the call is this value.  As such, there is no
4643       // corresponding argument.
4644       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4645       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4646         OpInfo.ConstraintVT =
4647             getSimpleValueType(DL, STy->getElementType(ResNo));
4648       } else {
4649         assert(ResNo == 0 && "Asm only has one result!");
4650         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4651       }
4652       ++ResNo;
4653       break;
4654     case InlineAsm::isInput:
4655       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4656       break;
4657     case InlineAsm::isClobber:
4658       // Nothing to do.
4659       break;
4660     }
4661 
4662     if (OpInfo.CallOperandVal) {
4663       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4664       if (OpInfo.isIndirect) {
4665         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4666         if (!PtrTy)
4667           report_fatal_error("Indirect operand for inline asm not a pointer!");
4668         OpTy = PtrTy->getElementType();
4669       }
4670 
4671       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4672       if (StructType *STy = dyn_cast<StructType>(OpTy))
4673         if (STy->getNumElements() == 1)
4674           OpTy = STy->getElementType(0);
4675 
4676       // If OpTy is not a single value, it may be a struct/union that we
4677       // can tile with integers.
4678       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4679         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4680         switch (BitSize) {
4681         default: break;
4682         case 1:
4683         case 8:
4684         case 16:
4685         case 32:
4686         case 64:
4687         case 128:
4688           OpInfo.ConstraintVT =
4689               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4690           break;
4691         }
4692       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4693         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4694         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4695       } else {
4696         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4697       }
4698     }
4699   }
4700 
4701   // If we have multiple alternative constraints, select the best alternative.
4702   if (!ConstraintOperands.empty()) {
4703     if (maCount) {
4704       unsigned bestMAIndex = 0;
4705       int bestWeight = -1;
4706       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4707       int weight = -1;
4708       unsigned maIndex;
4709       // Compute the sums of the weights for each alternative, keeping track
4710       // of the best (highest weight) one so far.
4711       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4712         int weightSum = 0;
4713         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4714              cIndex != eIndex; ++cIndex) {
4715           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4716           if (OpInfo.Type == InlineAsm::isClobber)
4717             continue;
4718 
4719           // If this is an output operand with a matching input operand,
4720           // look up the matching input. If their types mismatch, e.g. one
4721           // is an integer, the other is floating point, or their sizes are
4722           // different, flag it as an maCantMatch.
4723           if (OpInfo.hasMatchingInput()) {
4724             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4725             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4726               if ((OpInfo.ConstraintVT.isInteger() !=
4727                    Input.ConstraintVT.isInteger()) ||
4728                   (OpInfo.ConstraintVT.getSizeInBits() !=
4729                    Input.ConstraintVT.getSizeInBits())) {
4730                 weightSum = -1; // Can't match.
4731                 break;
4732               }
4733             }
4734           }
4735           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4736           if (weight == -1) {
4737             weightSum = -1;
4738             break;
4739           }
4740           weightSum += weight;
4741         }
4742         // Update best.
4743         if (weightSum > bestWeight) {
4744           bestWeight = weightSum;
4745           bestMAIndex = maIndex;
4746         }
4747       }
4748 
4749       // Now select chosen alternative in each constraint.
4750       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4751            cIndex != eIndex; ++cIndex) {
4752         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4753         if (cInfo.Type == InlineAsm::isClobber)
4754           continue;
4755         cInfo.selectAlternative(bestMAIndex);
4756       }
4757     }
4758   }
4759 
4760   // Check and hook up tied operands, choose constraint code to use.
4761   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4762        cIndex != eIndex; ++cIndex) {
4763     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4764 
4765     // If this is an output operand with a matching input operand, look up the
4766     // matching input. If their types mismatch, e.g. one is an integer, the
4767     // other is floating point, or their sizes are different, flag it as an
4768     // error.
4769     if (OpInfo.hasMatchingInput()) {
4770       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4771 
4772       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4773         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4774             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4775                                          OpInfo.ConstraintVT);
4776         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4777             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4778                                          Input.ConstraintVT);
4779         if ((OpInfo.ConstraintVT.isInteger() !=
4780              Input.ConstraintVT.isInteger()) ||
4781             (MatchRC.second != InputRC.second)) {
4782           report_fatal_error("Unsupported asm: input constraint"
4783                              " with a matching output constraint of"
4784                              " incompatible type!");
4785         }
4786       }
4787     }
4788   }
4789 
4790   return ConstraintOperands;
4791 }
4792 
4793 /// Return an integer indicating how general CT is.
4794 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4795   switch (CT) {
4796   case TargetLowering::C_Immediate:
4797   case TargetLowering::C_Other:
4798   case TargetLowering::C_Unknown:
4799     return 0;
4800   case TargetLowering::C_Register:
4801     return 1;
4802   case TargetLowering::C_RegisterClass:
4803     return 2;
4804   case TargetLowering::C_Memory:
4805     return 3;
4806   }
4807   llvm_unreachable("Invalid constraint type");
4808 }
4809 
4810 /// Examine constraint type and operand type and determine a weight value.
4811 /// This object must already have been set up with the operand type
4812 /// and the current alternative constraint selected.
4813 TargetLowering::ConstraintWeight
4814   TargetLowering::getMultipleConstraintMatchWeight(
4815     AsmOperandInfo &info, int maIndex) const {
4816   InlineAsm::ConstraintCodeVector *rCodes;
4817   if (maIndex >= (int)info.multipleAlternatives.size())
4818     rCodes = &info.Codes;
4819   else
4820     rCodes = &info.multipleAlternatives[maIndex].Codes;
4821   ConstraintWeight BestWeight = CW_Invalid;
4822 
4823   // Loop over the options, keeping track of the most general one.
4824   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4825     ConstraintWeight weight =
4826       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4827     if (weight > BestWeight)
4828       BestWeight = weight;
4829   }
4830 
4831   return BestWeight;
4832 }
4833 
4834 /// Examine constraint type and operand type and determine a weight value.
4835 /// This object must already have been set up with the operand type
4836 /// and the current alternative constraint selected.
4837 TargetLowering::ConstraintWeight
4838   TargetLowering::getSingleConstraintMatchWeight(
4839     AsmOperandInfo &info, const char *constraint) const {
4840   ConstraintWeight weight = CW_Invalid;
4841   Value *CallOperandVal = info.CallOperandVal;
4842     // If we don't have a value, we can't do a match,
4843     // but allow it at the lowest weight.
4844   if (!CallOperandVal)
4845     return CW_Default;
4846   // Look at the constraint type.
4847   switch (*constraint) {
4848     case 'i': // immediate integer.
4849     case 'n': // immediate integer with a known value.
4850       if (isa<ConstantInt>(CallOperandVal))
4851         weight = CW_Constant;
4852       break;
4853     case 's': // non-explicit intregal immediate.
4854       if (isa<GlobalValue>(CallOperandVal))
4855         weight = CW_Constant;
4856       break;
4857     case 'E': // immediate float if host format.
4858     case 'F': // immediate float.
4859       if (isa<ConstantFP>(CallOperandVal))
4860         weight = CW_Constant;
4861       break;
4862     case '<': // memory operand with autodecrement.
4863     case '>': // memory operand with autoincrement.
4864     case 'm': // memory operand.
4865     case 'o': // offsettable memory operand
4866     case 'V': // non-offsettable memory operand
4867       weight = CW_Memory;
4868       break;
4869     case 'r': // general register.
4870     case 'g': // general register, memory operand or immediate integer.
4871               // note: Clang converts "g" to "imr".
4872       if (CallOperandVal->getType()->isIntegerTy())
4873         weight = CW_Register;
4874       break;
4875     case 'X': // any operand.
4876   default:
4877     weight = CW_Default;
4878     break;
4879   }
4880   return weight;
4881 }
4882 
4883 /// If there are multiple different constraints that we could pick for this
4884 /// operand (e.g. "imr") try to pick the 'best' one.
4885 /// This is somewhat tricky: constraints fall into four classes:
4886 ///    Other         -> immediates and magic values
4887 ///    Register      -> one specific register
4888 ///    RegisterClass -> a group of regs
4889 ///    Memory        -> memory
4890 /// Ideally, we would pick the most specific constraint possible: if we have
4891 /// something that fits into a register, we would pick it.  The problem here
4892 /// is that if we have something that could either be in a register or in
4893 /// memory that use of the register could cause selection of *other*
4894 /// operands to fail: they might only succeed if we pick memory.  Because of
4895 /// this the heuristic we use is:
4896 ///
4897 ///  1) If there is an 'other' constraint, and if the operand is valid for
4898 ///     that constraint, use it.  This makes us take advantage of 'i'
4899 ///     constraints when available.
4900 ///  2) Otherwise, pick the most general constraint present.  This prefers
4901 ///     'm' over 'r', for example.
4902 ///
4903 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4904                              const TargetLowering &TLI,
4905                              SDValue Op, SelectionDAG *DAG) {
4906   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4907   unsigned BestIdx = 0;
4908   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4909   int BestGenerality = -1;
4910 
4911   // Loop over the options, keeping track of the most general one.
4912   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4913     TargetLowering::ConstraintType CType =
4914       TLI.getConstraintType(OpInfo.Codes[i]);
4915 
4916     // Indirect 'other' or 'immediate' constraints are not allowed.
4917     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4918                                CType == TargetLowering::C_Register ||
4919                                CType == TargetLowering::C_RegisterClass))
4920       continue;
4921 
4922     // If this is an 'other' or 'immediate' constraint, see if the operand is
4923     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4924     // the operand is an integer in the range [0..31] we want to use I (saving a
4925     // load of a register), otherwise we must use 'r'.
4926     if ((CType == TargetLowering::C_Other ||
4927          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4928       assert(OpInfo.Codes[i].size() == 1 &&
4929              "Unhandled multi-letter 'other' constraint");
4930       std::vector<SDValue> ResultOps;
4931       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4932                                        ResultOps, *DAG);
4933       if (!ResultOps.empty()) {
4934         BestType = CType;
4935         BestIdx = i;
4936         break;
4937       }
4938     }
4939 
4940     // Things with matching constraints can only be registers, per gcc
4941     // documentation.  This mainly affects "g" constraints.
4942     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4943       continue;
4944 
4945     // This constraint letter is more general than the previous one, use it.
4946     int Generality = getConstraintGenerality(CType);
4947     if (Generality > BestGenerality) {
4948       BestType = CType;
4949       BestIdx = i;
4950       BestGenerality = Generality;
4951     }
4952   }
4953 
4954   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4955   OpInfo.ConstraintType = BestType;
4956 }
4957 
4958 /// Determines the constraint code and constraint type to use for the specific
4959 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4960 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4961                                             SDValue Op,
4962                                             SelectionDAG *DAG) const {
4963   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4964 
4965   // Single-letter constraints ('r') are very common.
4966   if (OpInfo.Codes.size() == 1) {
4967     OpInfo.ConstraintCode = OpInfo.Codes[0];
4968     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4969   } else {
4970     ChooseConstraint(OpInfo, *this, Op, DAG);
4971   }
4972 
4973   // 'X' matches anything.
4974   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4975     // Labels and constants are handled elsewhere ('X' is the only thing
4976     // that matches labels).  For Functions, the type here is the type of
4977     // the result, which is not what we want to look at; leave them alone.
4978     Value *v = OpInfo.CallOperandVal;
4979     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4980       OpInfo.CallOperandVal = v;
4981       return;
4982     }
4983 
4984     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4985       return;
4986 
4987     // Otherwise, try to resolve it to something we know about by looking at
4988     // the actual operand type.
4989     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4990       OpInfo.ConstraintCode = Repl;
4991       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4992     }
4993   }
4994 }
4995 
4996 /// Given an exact SDIV by a constant, create a multiplication
4997 /// with the multiplicative inverse of the constant.
4998 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4999                               const SDLoc &dl, SelectionDAG &DAG,
5000                               SmallVectorImpl<SDNode *> &Created) {
5001   SDValue Op0 = N->getOperand(0);
5002   SDValue Op1 = N->getOperand(1);
5003   EVT VT = N->getValueType(0);
5004   EVT SVT = VT.getScalarType();
5005   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5006   EVT ShSVT = ShVT.getScalarType();
5007 
5008   bool UseSRA = false;
5009   SmallVector<SDValue, 16> Shifts, Factors;
5010 
5011   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5012     if (C->isNullValue())
5013       return false;
5014     APInt Divisor = C->getAPIntValue();
5015     unsigned Shift = Divisor.countTrailingZeros();
5016     if (Shift) {
5017       Divisor.ashrInPlace(Shift);
5018       UseSRA = true;
5019     }
5020     // Calculate the multiplicative inverse, using Newton's method.
5021     APInt t;
5022     APInt Factor = Divisor;
5023     while ((t = Divisor * Factor) != 1)
5024       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5025     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5026     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5027     return true;
5028   };
5029 
5030   // Collect all magic values from the build vector.
5031   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5032     return SDValue();
5033 
5034   SDValue Shift, Factor;
5035   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5036     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5037     Factor = DAG.getBuildVector(VT, dl, Factors);
5038   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5039     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5040            "Expected matchUnaryPredicate to return one element for scalable "
5041            "vectors");
5042     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5043     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5044   } else {
5045     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5046     Shift = Shifts[0];
5047     Factor = Factors[0];
5048   }
5049 
5050   SDValue Res = Op0;
5051 
5052   // Shift the value upfront if it is even, so the LSB is one.
5053   if (UseSRA) {
5054     // TODO: For UDIV use SRL instead of SRA.
5055     SDNodeFlags Flags;
5056     Flags.setExact(true);
5057     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5058     Created.push_back(Res.getNode());
5059   }
5060 
5061   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5062 }
5063 
5064 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5065                               SelectionDAG &DAG,
5066                               SmallVectorImpl<SDNode *> &Created) const {
5067   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5069   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5070     return SDValue(N, 0); // Lower SDIV as SDIV
5071   return SDValue();
5072 }
5073 
5074 /// Given an ISD::SDIV node expressing a divide by constant,
5075 /// return a DAG expression to select that will generate the same value by
5076 /// multiplying by a magic number.
5077 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5078 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5079                                   bool IsAfterLegalization,
5080                                   SmallVectorImpl<SDNode *> &Created) const {
5081   SDLoc dl(N);
5082   EVT VT = N->getValueType(0);
5083   EVT SVT = VT.getScalarType();
5084   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5085   EVT ShSVT = ShVT.getScalarType();
5086   unsigned EltBits = VT.getScalarSizeInBits();
5087   EVT MulVT;
5088 
5089   // Check to see if we can do this.
5090   // FIXME: We should be more aggressive here.
5091   if (!isTypeLegal(VT)) {
5092     // Limit this to simple scalars for now.
5093     if (VT.isVector() || !VT.isSimple())
5094       return SDValue();
5095 
5096     // If this type will be promoted to a large enough type with a legal
5097     // multiply operation, we can go ahead and do this transform.
5098     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5099       return SDValue();
5100 
5101     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5102     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5103         !isOperationLegal(ISD::MUL, MulVT))
5104       return SDValue();
5105   }
5106 
5107   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5108   if (N->getFlags().hasExact())
5109     return BuildExactSDIV(*this, N, dl, DAG, Created);
5110 
5111   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5112 
5113   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5114     if (C->isNullValue())
5115       return false;
5116 
5117     const APInt &Divisor = C->getAPIntValue();
5118     APInt::ms magics = Divisor.magic();
5119     int NumeratorFactor = 0;
5120     int ShiftMask = -1;
5121 
5122     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5123       // If d is +1/-1, we just multiply the numerator by +1/-1.
5124       NumeratorFactor = Divisor.getSExtValue();
5125       magics.m = 0;
5126       magics.s = 0;
5127       ShiftMask = 0;
5128     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5129       // If d > 0 and m < 0, add the numerator.
5130       NumeratorFactor = 1;
5131     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5132       // If d < 0 and m > 0, subtract the numerator.
5133       NumeratorFactor = -1;
5134     }
5135 
5136     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5137     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5138     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5139     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5140     return true;
5141   };
5142 
5143   SDValue N0 = N->getOperand(0);
5144   SDValue N1 = N->getOperand(1);
5145 
5146   // Collect the shifts / magic values from each element.
5147   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5148     return SDValue();
5149 
5150   SDValue MagicFactor, Factor, Shift, ShiftMask;
5151   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5152     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5153     Factor = DAG.getBuildVector(VT, dl, Factors);
5154     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5155     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5156   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5157     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5158            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5159            "Expected matchUnaryPredicate to return one element for scalable "
5160            "vectors");
5161     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5162     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5163     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5164     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5165   } else {
5166     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5167     MagicFactor = MagicFactors[0];
5168     Factor = Factors[0];
5169     Shift = Shifts[0];
5170     ShiftMask = ShiftMasks[0];
5171   }
5172 
5173   // Multiply the numerator (operand 0) by the magic value.
5174   // FIXME: We should support doing a MUL in a wider type.
5175   auto GetMULHS = [&](SDValue X, SDValue Y) {
5176     // If the type isn't legal, use a wider mul of the the type calculated
5177     // earlier.
5178     if (!isTypeLegal(VT)) {
5179       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5180       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5181       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5182       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5183                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5184       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5185     }
5186 
5187     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5188       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5189     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5190       SDValue LoHi =
5191           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5192       return SDValue(LoHi.getNode(), 1);
5193     }
5194     return SDValue();
5195   };
5196 
5197   SDValue Q = GetMULHS(N0, MagicFactor);
5198   if (!Q)
5199     return SDValue();
5200 
5201   Created.push_back(Q.getNode());
5202 
5203   // (Optionally) Add/subtract the numerator using Factor.
5204   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5205   Created.push_back(Factor.getNode());
5206   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5207   Created.push_back(Q.getNode());
5208 
5209   // Shift right algebraic by shift value.
5210   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5211   Created.push_back(Q.getNode());
5212 
5213   // Extract the sign bit, mask it and add it to the quotient.
5214   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5215   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5216   Created.push_back(T.getNode());
5217   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5218   Created.push_back(T.getNode());
5219   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5220 }
5221 
5222 /// Given an ISD::UDIV node expressing a divide by constant,
5223 /// return a DAG expression to select that will generate the same value by
5224 /// multiplying by a magic number.
5225 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5226 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5227                                   bool IsAfterLegalization,
5228                                   SmallVectorImpl<SDNode *> &Created) const {
5229   SDLoc dl(N);
5230   EVT VT = N->getValueType(0);
5231   EVT SVT = VT.getScalarType();
5232   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5233   EVT ShSVT = ShVT.getScalarType();
5234   unsigned EltBits = VT.getScalarSizeInBits();
5235   EVT MulVT;
5236 
5237   // Check to see if we can do this.
5238   // FIXME: We should be more aggressive here.
5239   if (!isTypeLegal(VT)) {
5240     // Limit this to simple scalars for now.
5241     if (VT.isVector() || !VT.isSimple())
5242       return SDValue();
5243 
5244     // If this type will be promoted to a large enough type with a legal
5245     // multiply operation, we can go ahead and do this transform.
5246     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5247       return SDValue();
5248 
5249     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5250     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5251         !isOperationLegal(ISD::MUL, MulVT))
5252       return SDValue();
5253   }
5254 
5255   bool UseNPQ = false;
5256   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5257 
5258   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5259     if (C->isNullValue())
5260       return false;
5261     // FIXME: We should use a narrower constant when the upper
5262     // bits are known to be zero.
5263     const APInt& Divisor = C->getAPIntValue();
5264     APInt::mu magics = Divisor.magicu();
5265     unsigned PreShift = 0, PostShift = 0;
5266 
5267     // If the divisor is even, we can avoid using the expensive fixup by
5268     // shifting the divided value upfront.
5269     if (magics.a != 0 && !Divisor[0]) {
5270       PreShift = Divisor.countTrailingZeros();
5271       // Get magic number for the shifted divisor.
5272       magics = Divisor.lshr(PreShift).magicu(PreShift);
5273       assert(magics.a == 0 && "Should use cheap fixup now");
5274     }
5275 
5276     APInt Magic = magics.m;
5277 
5278     unsigned SelNPQ;
5279     if (magics.a == 0 || Divisor.isOneValue()) {
5280       assert(magics.s < Divisor.getBitWidth() &&
5281              "We shouldn't generate an undefined shift!");
5282       PostShift = magics.s;
5283       SelNPQ = false;
5284     } else {
5285       PostShift = magics.s - 1;
5286       SelNPQ = true;
5287     }
5288 
5289     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5290     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5291     NPQFactors.push_back(
5292         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5293                                : APInt::getNullValue(EltBits),
5294                         dl, SVT));
5295     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5296     UseNPQ |= SelNPQ;
5297     return true;
5298   };
5299 
5300   SDValue N0 = N->getOperand(0);
5301   SDValue N1 = N->getOperand(1);
5302 
5303   // Collect the shifts/magic values from each element.
5304   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5305     return SDValue();
5306 
5307   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5308   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5309     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5310     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5311     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5312     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5313   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5314     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5315            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5316            "Expected matchUnaryPredicate to return one for scalable vectors");
5317     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5318     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5319     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5320     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5321   } else {
5322     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5323     PreShift = PreShifts[0];
5324     MagicFactor = MagicFactors[0];
5325     PostShift = PostShifts[0];
5326   }
5327 
5328   SDValue Q = N0;
5329   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5330   Created.push_back(Q.getNode());
5331 
5332   // FIXME: We should support doing a MUL in a wider type.
5333   auto GetMULHU = [&](SDValue X, SDValue Y) {
5334     // If the type isn't legal, use a wider mul of the the type calculated
5335     // earlier.
5336     if (!isTypeLegal(VT)) {
5337       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5338       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5339       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5340       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5341                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5342       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5343     }
5344 
5345     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5346       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5347     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5348       SDValue LoHi =
5349           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5350       return SDValue(LoHi.getNode(), 1);
5351     }
5352     return SDValue(); // No mulhu or equivalent
5353   };
5354 
5355   // Multiply the numerator (operand 0) by the magic value.
5356   Q = GetMULHU(Q, MagicFactor);
5357   if (!Q)
5358     return SDValue();
5359 
5360   Created.push_back(Q.getNode());
5361 
5362   if (UseNPQ) {
5363     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5364     Created.push_back(NPQ.getNode());
5365 
5366     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5367     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5368     if (VT.isVector())
5369       NPQ = GetMULHU(NPQ, NPQFactor);
5370     else
5371       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5372 
5373     Created.push_back(NPQ.getNode());
5374 
5375     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5376     Created.push_back(Q.getNode());
5377   }
5378 
5379   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5380   Created.push_back(Q.getNode());
5381 
5382   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5383 
5384   SDValue One = DAG.getConstant(1, dl, VT);
5385   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5386   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5387 }
5388 
5389 /// If all values in Values that *don't* match the predicate are same 'splat'
5390 /// value, then replace all values with that splat value.
5391 /// Else, if AlternativeReplacement was provided, then replace all values that
5392 /// do match predicate with AlternativeReplacement value.
5393 static void
5394 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5395                           std::function<bool(SDValue)> Predicate,
5396                           SDValue AlternativeReplacement = SDValue()) {
5397   SDValue Replacement;
5398   // Is there a value for which the Predicate does *NOT* match? What is it?
5399   auto SplatValue = llvm::find_if_not(Values, Predicate);
5400   if (SplatValue != Values.end()) {
5401     // Does Values consist only of SplatValue's and values matching Predicate?
5402     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5403           return Value == *SplatValue || Predicate(Value);
5404         })) // Then we shall replace values matching predicate with SplatValue.
5405       Replacement = *SplatValue;
5406   }
5407   if (!Replacement) {
5408     // Oops, we did not find the "baseline" splat value.
5409     if (!AlternativeReplacement)
5410       return; // Nothing to do.
5411     // Let's replace with provided value then.
5412     Replacement = AlternativeReplacement;
5413   }
5414   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5415 }
5416 
5417 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5418 /// where the divisor is constant and the comparison target is zero,
5419 /// return a DAG expression that will generate the same comparison result
5420 /// using only multiplications, additions and shifts/rotations.
5421 /// Ref: "Hacker's Delight" 10-17.
5422 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5423                                         SDValue CompTargetNode,
5424                                         ISD::CondCode Cond,
5425                                         DAGCombinerInfo &DCI,
5426                                         const SDLoc &DL) const {
5427   SmallVector<SDNode *, 5> Built;
5428   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5429                                          DCI, DL, Built)) {
5430     for (SDNode *N : Built)
5431       DCI.AddToWorklist(N);
5432     return Folded;
5433   }
5434 
5435   return SDValue();
5436 }
5437 
5438 SDValue
5439 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5440                                   SDValue CompTargetNode, ISD::CondCode Cond,
5441                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5442                                   SmallVectorImpl<SDNode *> &Created) const {
5443   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5444   // - D must be constant, with D = D0 * 2^K where D0 is odd
5445   // - P is the multiplicative inverse of D0 modulo 2^W
5446   // - Q = floor(((2^W) - 1) / D)
5447   // where W is the width of the common type of N and D.
5448   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5449          "Only applicable for (in)equality comparisons.");
5450 
5451   SelectionDAG &DAG = DCI.DAG;
5452 
5453   EVT VT = REMNode.getValueType();
5454   EVT SVT = VT.getScalarType();
5455   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5456   EVT ShSVT = ShVT.getScalarType();
5457 
5458   // If MUL is unavailable, we cannot proceed in any case.
5459   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5460     return SDValue();
5461 
5462   bool ComparingWithAllZeros = true;
5463   bool AllComparisonsWithNonZerosAreTautological = true;
5464   bool HadTautologicalLanes = false;
5465   bool AllLanesAreTautological = true;
5466   bool HadEvenDivisor = false;
5467   bool AllDivisorsArePowerOfTwo = true;
5468   bool HadTautologicalInvertedLanes = false;
5469   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5470 
5471   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5472     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5473     if (CDiv->isNullValue())
5474       return false;
5475 
5476     const APInt &D = CDiv->getAPIntValue();
5477     const APInt &Cmp = CCmp->getAPIntValue();
5478 
5479     ComparingWithAllZeros &= Cmp.isNullValue();
5480 
5481     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5482     // if C2 is not less than C1, the comparison is always false.
5483     // But we will only be able to produce the comparison that will give the
5484     // opposive tautological answer. So this lane would need to be fixed up.
5485     bool TautologicalInvertedLane = D.ule(Cmp);
5486     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5487 
5488     // If all lanes are tautological (either all divisors are ones, or divisor
5489     // is not greater than the constant we are comparing with),
5490     // we will prefer to avoid the fold.
5491     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5492     HadTautologicalLanes |= TautologicalLane;
5493     AllLanesAreTautological &= TautologicalLane;
5494 
5495     // If we are comparing with non-zero, we need'll need  to subtract said
5496     // comparison value from the LHS. But there is no point in doing that if
5497     // every lane where we are comparing with non-zero is tautological..
5498     if (!Cmp.isNullValue())
5499       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5500 
5501     // Decompose D into D0 * 2^K
5502     unsigned K = D.countTrailingZeros();
5503     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5504     APInt D0 = D.lshr(K);
5505 
5506     // D is even if it has trailing zeros.
5507     HadEvenDivisor |= (K != 0);
5508     // D is a power-of-two if D0 is one.
5509     // If all divisors are power-of-two, we will prefer to avoid the fold.
5510     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5511 
5512     // P = inv(D0, 2^W)
5513     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5514     unsigned W = D.getBitWidth();
5515     APInt P = D0.zext(W + 1)
5516                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5517                   .trunc(W);
5518     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5519     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5520 
5521     // Q = floor((2^W - 1) u/ D)
5522     // R = ((2^W - 1) u% D)
5523     APInt Q, R;
5524     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5525 
5526     // If we are comparing with zero, then that comparison constant is okay,
5527     // else it may need to be one less than that.
5528     if (Cmp.ugt(R))
5529       Q -= 1;
5530 
5531     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5532            "We are expecting that K is always less than all-ones for ShSVT");
5533 
5534     // If the lane is tautological the result can be constant-folded.
5535     if (TautologicalLane) {
5536       // Set P and K amount to a bogus values so we can try to splat them.
5537       P = 0;
5538       K = -1;
5539       // And ensure that comparison constant is tautological,
5540       // it will always compare true/false.
5541       Q = -1;
5542     }
5543 
5544     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5545     KAmts.push_back(
5546         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5547     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5548     return true;
5549   };
5550 
5551   SDValue N = REMNode.getOperand(0);
5552   SDValue D = REMNode.getOperand(1);
5553 
5554   // Collect the values from each element.
5555   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5556     return SDValue();
5557 
5558   // If all lanes are tautological, the result can be constant-folded.
5559   if (AllLanesAreTautological)
5560     return SDValue();
5561 
5562   // If this is a urem by a powers-of-two, avoid the fold since it can be
5563   // best implemented as a bit test.
5564   if (AllDivisorsArePowerOfTwo)
5565     return SDValue();
5566 
5567   SDValue PVal, KVal, QVal;
5568   if (VT.isVector()) {
5569     if (HadTautologicalLanes) {
5570       // Try to turn PAmts into a splat, since we don't care about the values
5571       // that are currently '0'. If we can't, just keep '0'`s.
5572       turnVectorIntoSplatVector(PAmts, isNullConstant);
5573       // Try to turn KAmts into a splat, since we don't care about the values
5574       // that are currently '-1'. If we can't, change them to '0'`s.
5575       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5576                                 DAG.getConstant(0, DL, ShSVT));
5577     }
5578 
5579     PVal = DAG.getBuildVector(VT, DL, PAmts);
5580     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5581     QVal = DAG.getBuildVector(VT, DL, QAmts);
5582   } else {
5583     PVal = PAmts[0];
5584     KVal = KAmts[0];
5585     QVal = QAmts[0];
5586   }
5587 
5588   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5589     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5590       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5591     assert(CompTargetNode.getValueType() == N.getValueType() &&
5592            "Expecting that the types on LHS and RHS of comparisons match.");
5593     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5594   }
5595 
5596   // (mul N, P)
5597   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5598   Created.push_back(Op0.getNode());
5599 
5600   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5601   // divisors as a performance improvement, since rotating by 0 is a no-op.
5602   if (HadEvenDivisor) {
5603     // We need ROTR to do this.
5604     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5605       return SDValue();
5606     SDNodeFlags Flags;
5607     Flags.setExact(true);
5608     // UREM: (rotr (mul N, P), K)
5609     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5610     Created.push_back(Op0.getNode());
5611   }
5612 
5613   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5614   SDValue NewCC =
5615       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5616                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5617   if (!HadTautologicalInvertedLanes)
5618     return NewCC;
5619 
5620   // If any lanes previously compared always-false, the NewCC will give
5621   // always-true result for them, so we need to fixup those lanes.
5622   // Or the other way around for inequality predicate.
5623   assert(VT.isVector() && "Can/should only get here for vectors.");
5624   Created.push_back(NewCC.getNode());
5625 
5626   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5627   // if C2 is not less than C1, the comparison is always false.
5628   // But we have produced the comparison that will give the
5629   // opposive tautological answer. So these lanes would need to be fixed up.
5630   SDValue TautologicalInvertedChannels =
5631       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5632   Created.push_back(TautologicalInvertedChannels.getNode());
5633 
5634   // NOTE: we avoid letting illegal types through even if we're before legalize
5635   // ops – legalization has a hard time producing good code for this.
5636   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5637     // If we have a vector select, let's replace the comparison results in the
5638     // affected lanes with the correct tautological result.
5639     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5640                                               DL, SETCCVT, SETCCVT);
5641     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5642                        Replacement, NewCC);
5643   }
5644 
5645   // Else, we can just invert the comparison result in the appropriate lanes.
5646   //
5647   // NOTE: see the note above VSELECT above.
5648   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5649     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5650                        TautologicalInvertedChannels);
5651 
5652   return SDValue(); // Don't know how to lower.
5653 }
5654 
5655 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5656 /// where the divisor is constant and the comparison target is zero,
5657 /// return a DAG expression that will generate the same comparison result
5658 /// using only multiplications, additions and shifts/rotations.
5659 /// Ref: "Hacker's Delight" 10-17.
5660 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5661                                         SDValue CompTargetNode,
5662                                         ISD::CondCode Cond,
5663                                         DAGCombinerInfo &DCI,
5664                                         const SDLoc &DL) const {
5665   SmallVector<SDNode *, 7> Built;
5666   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5667                                          DCI, DL, Built)) {
5668     assert(Built.size() <= 7 && "Max size prediction failed.");
5669     for (SDNode *N : Built)
5670       DCI.AddToWorklist(N);
5671     return Folded;
5672   }
5673 
5674   return SDValue();
5675 }
5676 
5677 SDValue
5678 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5679                                   SDValue CompTargetNode, ISD::CondCode Cond,
5680                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5681                                   SmallVectorImpl<SDNode *> &Created) const {
5682   // Fold:
5683   //   (seteq/ne (srem N, D), 0)
5684   // To:
5685   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5686   //
5687   // - D must be constant, with D = D0 * 2^K where D0 is odd
5688   // - P is the multiplicative inverse of D0 modulo 2^W
5689   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5690   // - Q = floor((2 * A) / (2^K))
5691   // where W is the width of the common type of N and D.
5692   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5693          "Only applicable for (in)equality comparisons.");
5694 
5695   SelectionDAG &DAG = DCI.DAG;
5696 
5697   EVT VT = REMNode.getValueType();
5698   EVT SVT = VT.getScalarType();
5699   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5700   EVT ShSVT = ShVT.getScalarType();
5701 
5702   // If we are after ops legalization, and MUL is unavailable, we can not
5703   // proceed.
5704   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5705     return SDValue();
5706 
5707   // TODO: Could support comparing with non-zero too.
5708   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5709   if (!CompTarget || !CompTarget->isNullValue())
5710     return SDValue();
5711 
5712   bool HadIntMinDivisor = false;
5713   bool HadOneDivisor = false;
5714   bool AllDivisorsAreOnes = true;
5715   bool HadEvenDivisor = false;
5716   bool NeedToApplyOffset = false;
5717   bool AllDivisorsArePowerOfTwo = true;
5718   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5719 
5720   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5721     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5722     if (C->isNullValue())
5723       return false;
5724 
5725     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5726 
5727     // WARNING: this fold is only valid for positive divisors!
5728     APInt D = C->getAPIntValue();
5729     if (D.isNegative())
5730       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5731 
5732     HadIntMinDivisor |= D.isMinSignedValue();
5733 
5734     // If all divisors are ones, we will prefer to avoid the fold.
5735     HadOneDivisor |= D.isOneValue();
5736     AllDivisorsAreOnes &= D.isOneValue();
5737 
5738     // Decompose D into D0 * 2^K
5739     unsigned K = D.countTrailingZeros();
5740     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5741     APInt D0 = D.lshr(K);
5742 
5743     if (!D.isMinSignedValue()) {
5744       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5745       // we don't care about this lane in this fold, we'll special-handle it.
5746       HadEvenDivisor |= (K != 0);
5747     }
5748 
5749     // D is a power-of-two if D0 is one. This includes INT_MIN.
5750     // If all divisors are power-of-two, we will prefer to avoid the fold.
5751     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5752 
5753     // P = inv(D0, 2^W)
5754     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5755     unsigned W = D.getBitWidth();
5756     APInt P = D0.zext(W + 1)
5757                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5758                   .trunc(W);
5759     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5760     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5761 
5762     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5763     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5764     A.clearLowBits(K);
5765 
5766     if (!D.isMinSignedValue()) {
5767       // If divisor INT_MIN, then we don't care about this lane in this fold,
5768       // we'll special-handle it.
5769       NeedToApplyOffset |= A != 0;
5770     }
5771 
5772     // Q = floor((2 * A) / (2^K))
5773     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5774 
5775     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5776            "We are expecting that A is always less than all-ones for SVT");
5777     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5778            "We are expecting that K is always less than all-ones for ShSVT");
5779 
5780     // If the divisor is 1 the result can be constant-folded. Likewise, we
5781     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5782     if (D.isOneValue()) {
5783       // Set P, A and K to a bogus values so we can try to splat them.
5784       P = 0;
5785       A = -1;
5786       K = -1;
5787 
5788       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5789       Q = -1;
5790     }
5791 
5792     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5793     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5794     KAmts.push_back(
5795         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5796     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5797     return true;
5798   };
5799 
5800   SDValue N = REMNode.getOperand(0);
5801   SDValue D = REMNode.getOperand(1);
5802 
5803   // Collect the values from each element.
5804   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5805     return SDValue();
5806 
5807   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5808   if (AllDivisorsAreOnes)
5809     return SDValue();
5810 
5811   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5812   // since it can be best implemented as a bit test.
5813   if (AllDivisorsArePowerOfTwo)
5814     return SDValue();
5815 
5816   SDValue PVal, AVal, KVal, QVal;
5817   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5818     if (HadOneDivisor) {
5819       // Try to turn PAmts into a splat, since we don't care about the values
5820       // that are currently '0'. If we can't, just keep '0'`s.
5821       turnVectorIntoSplatVector(PAmts, isNullConstant);
5822       // Try to turn AAmts into a splat, since we don't care about the
5823       // values that are currently '-1'. If we can't, change them to '0'`s.
5824       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5825                                 DAG.getConstant(0, DL, SVT));
5826       // Try to turn KAmts into a splat, since we don't care about the values
5827       // that are currently '-1'. If we can't, change them to '0'`s.
5828       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5829                                 DAG.getConstant(0, DL, ShSVT));
5830     }
5831 
5832     PVal = DAG.getBuildVector(VT, DL, PAmts);
5833     AVal = DAG.getBuildVector(VT, DL, AAmts);
5834     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5835     QVal = DAG.getBuildVector(VT, DL, QAmts);
5836   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5837     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5838            QAmts.size() == 1 &&
5839            "Expected matchUnaryPredicate to return one element for scalable "
5840            "vectors");
5841     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5842     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5843     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5844     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5845   } else {
5846     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5847     PVal = PAmts[0];
5848     AVal = AAmts[0];
5849     KVal = KAmts[0];
5850     QVal = QAmts[0];
5851   }
5852 
5853   // (mul N, P)
5854   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5855   Created.push_back(Op0.getNode());
5856 
5857   if (NeedToApplyOffset) {
5858     // We need ADD to do this.
5859     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5860       return SDValue();
5861 
5862     // (add (mul N, P), A)
5863     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5864     Created.push_back(Op0.getNode());
5865   }
5866 
5867   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5868   // divisors as a performance improvement, since rotating by 0 is a no-op.
5869   if (HadEvenDivisor) {
5870     // We need ROTR to do this.
5871     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5872       return SDValue();
5873     SDNodeFlags Flags;
5874     Flags.setExact(true);
5875     // SREM: (rotr (add (mul N, P), A), K)
5876     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5877     Created.push_back(Op0.getNode());
5878   }
5879 
5880   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5881   SDValue Fold =
5882       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5883                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5884 
5885   // If we didn't have lanes with INT_MIN divisor, then we're done.
5886   if (!HadIntMinDivisor)
5887     return Fold;
5888 
5889   // That fold is only valid for positive divisors. Which effectively means,
5890   // it is invalid for INT_MIN divisors. So if we have such a lane,
5891   // we must fix-up results for said lanes.
5892   assert(VT.isVector() && "Can/should only get here for vectors.");
5893 
5894   // NOTE: we avoid letting illegal types through even if we're before legalize
5895   // ops – legalization has a hard time producing good code for the code that
5896   // follows.
5897   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5898       !isOperationLegalOrCustom(ISD::AND, VT) ||
5899       !isOperationLegalOrCustom(Cond, VT) ||
5900       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5901     return SDValue();
5902 
5903   Created.push_back(Fold.getNode());
5904 
5905   SDValue IntMin = DAG.getConstant(
5906       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5907   SDValue IntMax = DAG.getConstant(
5908       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5909   SDValue Zero =
5910       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5911 
5912   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5913   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5914   Created.push_back(DivisorIsIntMin.getNode());
5915 
5916   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5917   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5918   Created.push_back(Masked.getNode());
5919   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5920   Created.push_back(MaskedIsZero.getNode());
5921 
5922   // To produce final result we need to blend 2 vectors: 'SetCC' and
5923   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5924   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5925   // constant-folded, select can get lowered to a shuffle with constant mask.
5926   SDValue Blended =
5927       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5928 
5929   return Blended;
5930 }
5931 
5932 bool TargetLowering::
5933 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5934   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5935     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5936                                 "be a constant integer");
5937     return true;
5938   }
5939 
5940   return false;
5941 }
5942 
5943 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5944                                          const DenormalMode &Mode) const {
5945   SDLoc DL(Op);
5946   EVT VT = Op.getValueType();
5947   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5948   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5949   // Testing it with denormal inputs to avoid wrong estimate.
5950   if (Mode.Input == DenormalMode::IEEE) {
5951     // This is specifically a check for the handling of denormal inputs,
5952     // not the result.
5953 
5954     // Test = fabs(X) < SmallestNormal
5955     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
5956     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
5957     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
5958     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
5959     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
5960   }
5961   // Test = X == 0.0
5962   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
5963 }
5964 
5965 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5966                                              bool LegalOps, bool OptForSize,
5967                                              NegatibleCost &Cost,
5968                                              unsigned Depth) const {
5969   // fneg is removable even if it has multiple uses.
5970   if (Op.getOpcode() == ISD::FNEG) {
5971     Cost = NegatibleCost::Cheaper;
5972     return Op.getOperand(0);
5973   }
5974 
5975   // Don't recurse exponentially.
5976   if (Depth > SelectionDAG::MaxRecursionDepth)
5977     return SDValue();
5978 
5979   // Pre-increment recursion depth for use in recursive calls.
5980   ++Depth;
5981   const SDNodeFlags Flags = Op->getFlags();
5982   const TargetOptions &Options = DAG.getTarget().Options;
5983   EVT VT = Op.getValueType();
5984   unsigned Opcode = Op.getOpcode();
5985 
5986   // Don't allow anything with multiple uses unless we know it is free.
5987   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5988     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5989                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5990     if (!IsFreeExtend)
5991       return SDValue();
5992   }
5993 
5994   auto RemoveDeadNode = [&](SDValue N) {
5995     if (N && N.getNode()->use_empty())
5996       DAG.RemoveDeadNode(N.getNode());
5997   };
5998 
5999   SDLoc DL(Op);
6000 
6001   // Because getNegatedExpression can delete nodes we need a handle to keep
6002   // temporary nodes alive in case the recursion manages to create an identical
6003   // node.
6004   std::list<HandleSDNode> Handles;
6005 
6006   switch (Opcode) {
6007   case ISD::ConstantFP: {
6008     // Don't invert constant FP values after legalization unless the target says
6009     // the negated constant is legal.
6010     bool IsOpLegal =
6011         isOperationLegal(ISD::ConstantFP, VT) ||
6012         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6013                      OptForSize);
6014 
6015     if (LegalOps && !IsOpLegal)
6016       break;
6017 
6018     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6019     V.changeSign();
6020     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6021 
6022     // If we already have the use of the negated floating constant, it is free
6023     // to negate it even it has multiple uses.
6024     if (!Op.hasOneUse() && CFP.use_empty())
6025       break;
6026     Cost = NegatibleCost::Neutral;
6027     return CFP;
6028   }
6029   case ISD::BUILD_VECTOR: {
6030     // Only permit BUILD_VECTOR of constants.
6031     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6032           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6033         }))
6034       break;
6035 
6036     bool IsOpLegal =
6037         (isOperationLegal(ISD::ConstantFP, VT) &&
6038          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6039         llvm::all_of(Op->op_values(), [&](SDValue N) {
6040           return N.isUndef() ||
6041                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6042                               OptForSize);
6043         });
6044 
6045     if (LegalOps && !IsOpLegal)
6046       break;
6047 
6048     SmallVector<SDValue, 4> Ops;
6049     for (SDValue C : Op->op_values()) {
6050       if (C.isUndef()) {
6051         Ops.push_back(C);
6052         continue;
6053       }
6054       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6055       V.changeSign();
6056       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6057     }
6058     Cost = NegatibleCost::Neutral;
6059     return DAG.getBuildVector(VT, DL, Ops);
6060   }
6061   case ISD::FADD: {
6062     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6063       break;
6064 
6065     // After operation legalization, it might not be legal to create new FSUBs.
6066     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6067       break;
6068     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6069 
6070     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6071     NegatibleCost CostX = NegatibleCost::Expensive;
6072     SDValue NegX =
6073         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6074     // Prevent this node from being deleted by the next call.
6075     if (NegX)
6076       Handles.emplace_back(NegX);
6077 
6078     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6079     NegatibleCost CostY = NegatibleCost::Expensive;
6080     SDValue NegY =
6081         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6082 
6083     // We're done with the handles.
6084     Handles.clear();
6085 
6086     // Negate the X if its cost is less or equal than Y.
6087     if (NegX && (CostX <= CostY)) {
6088       Cost = CostX;
6089       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6090       if (NegY != N)
6091         RemoveDeadNode(NegY);
6092       return N;
6093     }
6094 
6095     // Negate the Y if it is not expensive.
6096     if (NegY) {
6097       Cost = CostY;
6098       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6099       if (NegX != N)
6100         RemoveDeadNode(NegX);
6101       return N;
6102     }
6103     break;
6104   }
6105   case ISD::FSUB: {
6106     // We can't turn -(A-B) into B-A when we honor signed zeros.
6107     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6108       break;
6109 
6110     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6111     // fold (fneg (fsub 0, Y)) -> Y
6112     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6113       if (C->isZero()) {
6114         Cost = NegatibleCost::Cheaper;
6115         return Y;
6116       }
6117 
6118     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6119     Cost = NegatibleCost::Neutral;
6120     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6121   }
6122   case ISD::FMUL:
6123   case ISD::FDIV: {
6124     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6125 
6126     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6127     NegatibleCost CostX = NegatibleCost::Expensive;
6128     SDValue NegX =
6129         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6130     // Prevent this node from being deleted by the next call.
6131     if (NegX)
6132       Handles.emplace_back(NegX);
6133 
6134     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6135     NegatibleCost CostY = NegatibleCost::Expensive;
6136     SDValue NegY =
6137         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6138 
6139     // We're done with the handles.
6140     Handles.clear();
6141 
6142     // Negate the X if its cost is less or equal than Y.
6143     if (NegX && (CostX <= CostY)) {
6144       Cost = CostX;
6145       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6146       if (NegY != N)
6147         RemoveDeadNode(NegY);
6148       return N;
6149     }
6150 
6151     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6152     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6153       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6154         break;
6155 
6156     // Negate the Y if it is not expensive.
6157     if (NegY) {
6158       Cost = CostY;
6159       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6160       if (NegX != N)
6161         RemoveDeadNode(NegX);
6162       return N;
6163     }
6164     break;
6165   }
6166   case ISD::FMA:
6167   case ISD::FMAD: {
6168     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6169       break;
6170 
6171     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6172     NegatibleCost CostZ = NegatibleCost::Expensive;
6173     SDValue NegZ =
6174         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6175     // Give up if fail to negate the Z.
6176     if (!NegZ)
6177       break;
6178 
6179     // Prevent this node from being deleted by the next two calls.
6180     Handles.emplace_back(NegZ);
6181 
6182     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6183     NegatibleCost CostX = NegatibleCost::Expensive;
6184     SDValue NegX =
6185         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6186     // Prevent this node from being deleted by the next call.
6187     if (NegX)
6188       Handles.emplace_back(NegX);
6189 
6190     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6191     NegatibleCost CostY = NegatibleCost::Expensive;
6192     SDValue NegY =
6193         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6194 
6195     // We're done with the handles.
6196     Handles.clear();
6197 
6198     // Negate the X if its cost is less or equal than Y.
6199     if (NegX && (CostX <= CostY)) {
6200       Cost = std::min(CostX, CostZ);
6201       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6202       if (NegY != N)
6203         RemoveDeadNode(NegY);
6204       return N;
6205     }
6206 
6207     // Negate the Y if it is not expensive.
6208     if (NegY) {
6209       Cost = std::min(CostY, CostZ);
6210       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6211       if (NegX != N)
6212         RemoveDeadNode(NegX);
6213       return N;
6214     }
6215     break;
6216   }
6217 
6218   case ISD::FP_EXTEND:
6219   case ISD::FSIN:
6220     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6221                                             OptForSize, Cost, Depth))
6222       return DAG.getNode(Opcode, DL, VT, NegV);
6223     break;
6224   case ISD::FP_ROUND:
6225     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6226                                             OptForSize, Cost, Depth))
6227       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6228     break;
6229   }
6230 
6231   return SDValue();
6232 }
6233 
6234 //===----------------------------------------------------------------------===//
6235 // Legalization Utilities
6236 //===----------------------------------------------------------------------===//
6237 
6238 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6239                                     SDValue LHS, SDValue RHS,
6240                                     SmallVectorImpl<SDValue> &Result,
6241                                     EVT HiLoVT, SelectionDAG &DAG,
6242                                     MulExpansionKind Kind, SDValue LL,
6243                                     SDValue LH, SDValue RL, SDValue RH) const {
6244   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6245          Opcode == ISD::SMUL_LOHI);
6246 
6247   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6248                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6249   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6250                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6251   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6252                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6253   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6254                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6255 
6256   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6257     return false;
6258 
6259   unsigned OuterBitSize = VT.getScalarSizeInBits();
6260   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6261 
6262   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6263   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6264          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6265 
6266   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6267   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6268                           bool Signed) -> bool {
6269     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6270       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6271       Hi = SDValue(Lo.getNode(), 1);
6272       return true;
6273     }
6274     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6275       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6276       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6277       return true;
6278     }
6279     return false;
6280   };
6281 
6282   SDValue Lo, Hi;
6283 
6284   if (!LL.getNode() && !RL.getNode() &&
6285       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6286     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6287     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6288   }
6289 
6290   if (!LL.getNode())
6291     return false;
6292 
6293   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6294   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6295       DAG.MaskedValueIsZero(RHS, HighMask)) {
6296     // The inputs are both zero-extended.
6297     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6298       Result.push_back(Lo);
6299       Result.push_back(Hi);
6300       if (Opcode != ISD::MUL) {
6301         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6302         Result.push_back(Zero);
6303         Result.push_back(Zero);
6304       }
6305       return true;
6306     }
6307   }
6308 
6309   if (!VT.isVector() && Opcode == ISD::MUL &&
6310       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6311       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6312     // The input values are both sign-extended.
6313     // TODO non-MUL case?
6314     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6315       Result.push_back(Lo);
6316       Result.push_back(Hi);
6317       return true;
6318     }
6319   }
6320 
6321   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6322   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6323   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6324     // FIXME getShiftAmountTy does not always return a sensible result when VT
6325     // is an illegal type, and so the type may be too small to fit the shift
6326     // amount. Override it with i32. The shift will have to be legalized.
6327     ShiftAmountTy = MVT::i32;
6328   }
6329   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6330 
6331   if (!LH.getNode() && !RH.getNode() &&
6332       isOperationLegalOrCustom(ISD::SRL, VT) &&
6333       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6334     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6335     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6336     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6337     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6338   }
6339 
6340   if (!LH.getNode())
6341     return false;
6342 
6343   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6344     return false;
6345 
6346   Result.push_back(Lo);
6347 
6348   if (Opcode == ISD::MUL) {
6349     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6350     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6351     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6352     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6353     Result.push_back(Hi);
6354     return true;
6355   }
6356 
6357   // Compute the full width result.
6358   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6359     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6360     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6361     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6362     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6363   };
6364 
6365   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6366   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6367     return false;
6368 
6369   // This is effectively the add part of a multiply-add of half-sized operands,
6370   // so it cannot overflow.
6371   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6372 
6373   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6374     return false;
6375 
6376   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6377   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6378 
6379   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6380                   isOperationLegalOrCustom(ISD::ADDE, VT));
6381   if (UseGlue)
6382     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6383                        Merge(Lo, Hi));
6384   else
6385     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6386                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6387 
6388   SDValue Carry = Next.getValue(1);
6389   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6390   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6391 
6392   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6393     return false;
6394 
6395   if (UseGlue)
6396     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6397                      Carry);
6398   else
6399     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6400                      Zero, Carry);
6401 
6402   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6403 
6404   if (Opcode == ISD::SMUL_LOHI) {
6405     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6406                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6407     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6408 
6409     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6410                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6411     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6412   }
6413 
6414   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6415   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6416   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6417   return true;
6418 }
6419 
6420 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6421                                SelectionDAG &DAG, MulExpansionKind Kind,
6422                                SDValue LL, SDValue LH, SDValue RL,
6423                                SDValue RH) const {
6424   SmallVector<SDValue, 2> Result;
6425   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6426                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6427                            DAG, Kind, LL, LH, RL, RH);
6428   if (Ok) {
6429     assert(Result.size() == 2);
6430     Lo = Result[0];
6431     Hi = Result[1];
6432   }
6433   return Ok;
6434 }
6435 
6436 // Check that (every element of) Z is undef or not an exact multiple of BW.
6437 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6438   return ISD::matchUnaryPredicate(
6439       Z,
6440       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6441       true);
6442 }
6443 
6444 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6445                                        SelectionDAG &DAG) const {
6446   EVT VT = Node->getValueType(0);
6447 
6448   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6449                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6450                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6451                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6452     return false;
6453 
6454   SDValue X = Node->getOperand(0);
6455   SDValue Y = Node->getOperand(1);
6456   SDValue Z = Node->getOperand(2);
6457 
6458   unsigned BW = VT.getScalarSizeInBits();
6459   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6460   SDLoc DL(SDValue(Node, 0));
6461 
6462   EVT ShVT = Z.getValueType();
6463 
6464   // If a funnel shift in the other direction is more supported, use it.
6465   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6466   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6467       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6468     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6469       // fshl X, Y, Z -> fshr X, Y, -Z
6470       // fshr X, Y, Z -> fshl X, Y, -Z
6471       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6472       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6473     } else {
6474       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6475       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6476       SDValue One = DAG.getConstant(1, DL, ShVT);
6477       if (IsFSHL) {
6478         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6479         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6480       } else {
6481         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6482         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6483       }
6484       Z = DAG.getNOT(DL, Z, ShVT);
6485     }
6486     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6487     return true;
6488   }
6489 
6490   SDValue ShX, ShY;
6491   SDValue ShAmt, InvShAmt;
6492   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6493     // fshl: X << C | Y >> (BW - C)
6494     // fshr: X << (BW - C) | Y >> C
6495     // where C = Z % BW is not zero
6496     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6497     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6498     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6499     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6500     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6501   } else {
6502     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6503     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6504     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6505     if (isPowerOf2_32(BW)) {
6506       // Z % BW -> Z & (BW - 1)
6507       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6508       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6509       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6510     } else {
6511       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6512       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6513       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6514     }
6515 
6516     SDValue One = DAG.getConstant(1, DL, ShVT);
6517     if (IsFSHL) {
6518       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6519       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6520       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6521     } else {
6522       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6523       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6524       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6525     }
6526   }
6527   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6528   return true;
6529 }
6530 
6531 // TODO: Merge with expandFunnelShift.
6532 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6533                                SDValue &Result, SelectionDAG &DAG) const {
6534   EVT VT = Node->getValueType(0);
6535   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6536   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6537   SDValue Op0 = Node->getOperand(0);
6538   SDValue Op1 = Node->getOperand(1);
6539   SDLoc DL(SDValue(Node, 0));
6540 
6541   EVT ShVT = Op1.getValueType();
6542   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6543 
6544   // If a rotate in the other direction is supported, use it.
6545   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6546   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6547     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6548     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6549     return true;
6550   }
6551 
6552   if (!AllowVectorOps && VT.isVector() &&
6553       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6554        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6555        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6556        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6557        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6558     return false;
6559 
6560   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6561   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6562   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6563   SDValue ShVal;
6564   SDValue HsVal;
6565   if (isPowerOf2_32(EltSizeInBits)) {
6566     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6567     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6568     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6569     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6570     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6571     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6572     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6573   } else {
6574     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6575     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6576     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6577     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6578     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6579     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6580     SDValue One = DAG.getConstant(1, DL, ShVT);
6581     HsVal =
6582         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6583   }
6584   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6585   return true;
6586 }
6587 
6588 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6589                                       SelectionDAG &DAG) const {
6590   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6591   SDValue Src = Node->getOperand(OpNo);
6592   EVT SrcVT = Src.getValueType();
6593   EVT DstVT = Node->getValueType(0);
6594   SDLoc dl(SDValue(Node, 0));
6595 
6596   // FIXME: Only f32 to i64 conversions are supported.
6597   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6598     return false;
6599 
6600   if (Node->isStrictFPOpcode())
6601     // When a NaN is converted to an integer a trap is allowed. We can't
6602     // use this expansion here because it would eliminate that trap. Other
6603     // traps are also allowed and cannot be eliminated. See
6604     // IEEE 754-2008 sec 5.8.
6605     return false;
6606 
6607   // Expand f32 -> i64 conversion
6608   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6609   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6610   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6611   EVT IntVT = SrcVT.changeTypeToInteger();
6612   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6613 
6614   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6615   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6616   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6617   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6618   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6619   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6620 
6621   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6622 
6623   SDValue ExponentBits = DAG.getNode(
6624       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6625       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6626   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6627 
6628   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6629                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6630                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6631   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6632 
6633   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6634                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6635                           DAG.getConstant(0x00800000, dl, IntVT));
6636 
6637   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6638 
6639   R = DAG.getSelectCC(
6640       dl, Exponent, ExponentLoBit,
6641       DAG.getNode(ISD::SHL, dl, DstVT, R,
6642                   DAG.getZExtOrTrunc(
6643                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6644                       dl, IntShVT)),
6645       DAG.getNode(ISD::SRL, dl, DstVT, R,
6646                   DAG.getZExtOrTrunc(
6647                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6648                       dl, IntShVT)),
6649       ISD::SETGT);
6650 
6651   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6652                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6653 
6654   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6655                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6656   return true;
6657 }
6658 
6659 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6660                                       SDValue &Chain,
6661                                       SelectionDAG &DAG) const {
6662   SDLoc dl(SDValue(Node, 0));
6663   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6664   SDValue Src = Node->getOperand(OpNo);
6665 
6666   EVT SrcVT = Src.getValueType();
6667   EVT DstVT = Node->getValueType(0);
6668   EVT SetCCVT =
6669       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6670   EVT DstSetCCVT =
6671       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6672 
6673   // Only expand vector types if we have the appropriate vector bit operations.
6674   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6675                                                    ISD::FP_TO_SINT;
6676   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6677                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6678     return false;
6679 
6680   // If the maximum float value is smaller then the signed integer range,
6681   // the destination signmask can't be represented by the float, so we can
6682   // just use FP_TO_SINT directly.
6683   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6684   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6685   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6686   if (APFloat::opOverflow &
6687       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6688     if (Node->isStrictFPOpcode()) {
6689       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6690                            { Node->getOperand(0), Src });
6691       Chain = Result.getValue(1);
6692     } else
6693       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6694     return true;
6695   }
6696 
6697   // Don't expand it if there isn't cheap fsub instruction.
6698   if (!isOperationLegalOrCustom(
6699           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6700     return false;
6701 
6702   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6703   SDValue Sel;
6704 
6705   if (Node->isStrictFPOpcode()) {
6706     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6707                        Node->getOperand(0), /*IsSignaling*/ true);
6708     Chain = Sel.getValue(1);
6709   } else {
6710     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6711   }
6712 
6713   bool Strict = Node->isStrictFPOpcode() ||
6714                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6715 
6716   if (Strict) {
6717     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6718     // signmask then offset (the result of which should be fully representable).
6719     // Sel = Src < 0x8000000000000000
6720     // FltOfs = select Sel, 0, 0x8000000000000000
6721     // IntOfs = select Sel, 0, 0x8000000000000000
6722     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6723 
6724     // TODO: Should any fast-math-flags be set for the FSUB?
6725     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6726                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6727     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6728     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6729                                    DAG.getConstant(0, dl, DstVT),
6730                                    DAG.getConstant(SignMask, dl, DstVT));
6731     SDValue SInt;
6732     if (Node->isStrictFPOpcode()) {
6733       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6734                                 { Chain, Src, FltOfs });
6735       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6736                          { Val.getValue(1), Val });
6737       Chain = SInt.getValue(1);
6738     } else {
6739       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6740       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6741     }
6742     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6743   } else {
6744     // Expand based on maximum range of FP_TO_SINT:
6745     // True = fp_to_sint(Src)
6746     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6747     // Result = select (Src < 0x8000000000000000), True, False
6748 
6749     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6750     // TODO: Should any fast-math-flags be set for the FSUB?
6751     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6752                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6753     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6754                         DAG.getConstant(SignMask, dl, DstVT));
6755     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6756     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6757   }
6758   return true;
6759 }
6760 
6761 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6762                                       SDValue &Chain,
6763                                       SelectionDAG &DAG) const {
6764   // This transform is not correct for converting 0 when rounding mode is set
6765   // to round toward negative infinity which will produce -0.0. So disable under
6766   // strictfp.
6767   if (Node->isStrictFPOpcode())
6768     return false;
6769 
6770   SDValue Src = Node->getOperand(0);
6771   EVT SrcVT = Src.getValueType();
6772   EVT DstVT = Node->getValueType(0);
6773 
6774   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6775     return false;
6776 
6777   // Only expand vector types if we have the appropriate vector bit operations.
6778   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6779                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6780                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6781                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6782                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6783     return false;
6784 
6785   SDLoc dl(SDValue(Node, 0));
6786   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6787 
6788   // Implementation of unsigned i64 to f64 following the algorithm in
6789   // __floatundidf in compiler_rt.  This implementation performs rounding
6790   // correctly in all rounding modes with the exception of converting 0
6791   // when rounding toward negative infinity. In that case the fsub will produce
6792   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6793   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6794   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6795       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6796   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6797   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6798   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6799 
6800   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6801   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6802   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6803   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6804   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6805   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6806   SDValue HiSub =
6807       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6808   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6809   return true;
6810 }
6811 
6812 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6813                                               SelectionDAG &DAG) const {
6814   SDLoc dl(Node);
6815   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6816     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6817   EVT VT = Node->getValueType(0);
6818 
6819   if (VT.isScalableVector())
6820     report_fatal_error(
6821         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6822 
6823   if (isOperationLegalOrCustom(NewOp, VT)) {
6824     SDValue Quiet0 = Node->getOperand(0);
6825     SDValue Quiet1 = Node->getOperand(1);
6826 
6827     if (!Node->getFlags().hasNoNaNs()) {
6828       // Insert canonicalizes if it's possible we need to quiet to get correct
6829       // sNaN behavior.
6830       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6831         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6832                              Node->getFlags());
6833       }
6834       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6835         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6836                              Node->getFlags());
6837       }
6838     }
6839 
6840     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6841   }
6842 
6843   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6844   // instead if there are no NaNs.
6845   if (Node->getFlags().hasNoNaNs()) {
6846     unsigned IEEE2018Op =
6847         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6848     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6849       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6850                          Node->getOperand(1), Node->getFlags());
6851     }
6852   }
6853 
6854   // If none of the above worked, but there are no NaNs, then expand to
6855   // a compare/select sequence.  This is required for correctness since
6856   // InstCombine might have canonicalized a fcmp+select sequence to a
6857   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6858   // expansion to libcall, we might introduce a link-time dependency
6859   // on libm into a file that originally did not have one.
6860   if (Node->getFlags().hasNoNaNs()) {
6861     ISD::CondCode Pred =
6862         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6863     SDValue Op1 = Node->getOperand(0);
6864     SDValue Op2 = Node->getOperand(1);
6865     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6866     // Copy FMF flags, but always set the no-signed-zeros flag
6867     // as this is implied by the FMINNUM/FMAXNUM semantics.
6868     SDNodeFlags Flags = Node->getFlags();
6869     Flags.setNoSignedZeros(true);
6870     SelCC->setFlags(Flags);
6871     return SelCC;
6872   }
6873 
6874   return SDValue();
6875 }
6876 
6877 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6878                                  SelectionDAG &DAG) const {
6879   SDLoc dl(Node);
6880   EVT VT = Node->getValueType(0);
6881   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6882   SDValue Op = Node->getOperand(0);
6883   unsigned Len = VT.getScalarSizeInBits();
6884   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6885 
6886   // TODO: Add support for irregular type lengths.
6887   if (!(Len <= 128 && Len % 8 == 0))
6888     return false;
6889 
6890   // Only expand vector types if we have the appropriate vector bit operations.
6891   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6892                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6893                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6894                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6895                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6896     return false;
6897 
6898   // This is the "best" algorithm from
6899   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6900   SDValue Mask55 =
6901       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6902   SDValue Mask33 =
6903       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6904   SDValue Mask0F =
6905       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6906   SDValue Mask01 =
6907       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6908 
6909   // v = v - ((v >> 1) & 0x55555555...)
6910   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6911                    DAG.getNode(ISD::AND, dl, VT,
6912                                DAG.getNode(ISD::SRL, dl, VT, Op,
6913                                            DAG.getConstant(1, dl, ShVT)),
6914                                Mask55));
6915   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6916   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6917                    DAG.getNode(ISD::AND, dl, VT,
6918                                DAG.getNode(ISD::SRL, dl, VT, Op,
6919                                            DAG.getConstant(2, dl, ShVT)),
6920                                Mask33));
6921   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6922   Op = DAG.getNode(ISD::AND, dl, VT,
6923                    DAG.getNode(ISD::ADD, dl, VT, Op,
6924                                DAG.getNode(ISD::SRL, dl, VT, Op,
6925                                            DAG.getConstant(4, dl, ShVT))),
6926                    Mask0F);
6927   // v = (v * 0x01010101...) >> (Len - 8)
6928   if (Len > 8)
6929     Op =
6930         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6931                     DAG.getConstant(Len - 8, dl, ShVT));
6932 
6933   Result = Op;
6934   return true;
6935 }
6936 
6937 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6938                                 SelectionDAG &DAG) const {
6939   SDLoc dl(Node);
6940   EVT VT = Node->getValueType(0);
6941   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6942   SDValue Op = Node->getOperand(0);
6943   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6944 
6945   // If the non-ZERO_UNDEF version is supported we can use that instead.
6946   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6947       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6948     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6949     return true;
6950   }
6951 
6952   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6953   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6954     EVT SetCCVT =
6955         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6956     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6957     SDValue Zero = DAG.getConstant(0, dl, VT);
6958     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6959     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6960                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6961     return true;
6962   }
6963 
6964   // Only expand vector types if we have the appropriate vector bit operations.
6965   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6966                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6967                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6968                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6969     return false;
6970 
6971   // for now, we do this:
6972   // x = x | (x >> 1);
6973   // x = x | (x >> 2);
6974   // ...
6975   // x = x | (x >>16);
6976   // x = x | (x >>32); // for 64-bit input
6977   // return popcount(~x);
6978   //
6979   // Ref: "Hacker's Delight" by Henry Warren
6980   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6981     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6982     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6983                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6984   }
6985   Op = DAG.getNOT(dl, Op, VT);
6986   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6987   return true;
6988 }
6989 
6990 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6991                                 SelectionDAG &DAG) const {
6992   SDLoc dl(Node);
6993   EVT VT = Node->getValueType(0);
6994   SDValue Op = Node->getOperand(0);
6995   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6996 
6997   // If the non-ZERO_UNDEF version is supported we can use that instead.
6998   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6999       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7000     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7001     return true;
7002   }
7003 
7004   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7005   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7006     EVT SetCCVT =
7007         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7008     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7009     SDValue Zero = DAG.getConstant(0, dl, VT);
7010     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7011     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7012                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7013     return true;
7014   }
7015 
7016   // Only expand vector types if we have the appropriate vector bit operations.
7017   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7018                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7019                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7020                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7021                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7022                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7023     return false;
7024 
7025   // for now, we use: { return popcount(~x & (x - 1)); }
7026   // unless the target has ctlz but not ctpop, in which case we use:
7027   // { return 32 - nlz(~x & (x-1)); }
7028   // Ref: "Hacker's Delight" by Henry Warren
7029   SDValue Tmp = DAG.getNode(
7030       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7031       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7032 
7033   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7034   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7035     Result =
7036         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7037                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7038     return true;
7039   }
7040 
7041   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7042   return true;
7043 }
7044 
7045 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7046                                SelectionDAG &DAG, bool IsNegative) const {
7047   SDLoc dl(N);
7048   EVT VT = N->getValueType(0);
7049   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7050   SDValue Op = N->getOperand(0);
7051 
7052   // abs(x) -> smax(x,sub(0,x))
7053   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7054       isOperationLegal(ISD::SMAX, VT)) {
7055     SDValue Zero = DAG.getConstant(0, dl, VT);
7056     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7057                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7058     return true;
7059   }
7060 
7061   // abs(x) -> umin(x,sub(0,x))
7062   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7063       isOperationLegal(ISD::UMIN, VT)) {
7064     SDValue Zero = DAG.getConstant(0, dl, VT);
7065     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7066                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7067     return true;
7068   }
7069 
7070   // 0 - abs(x) -> smin(x, sub(0,x))
7071   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7072       isOperationLegal(ISD::SMIN, VT)) {
7073     SDValue Zero = DAG.getConstant(0, dl, VT);
7074     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7075                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7076     return true;
7077   }
7078 
7079   // Only expand vector types if we have the appropriate vector operations.
7080   if (VT.isVector() &&
7081       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7082        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7083        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7084        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7085     return false;
7086 
7087   SDValue Shift =
7088       DAG.getNode(ISD::SRA, dl, VT, Op,
7089                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7090   if (!IsNegative) {
7091     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7092     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7093   } else {
7094     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7095     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7096     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7097   }
7098   return true;
7099 }
7100 
7101 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7102   SDLoc dl(N);
7103   EVT VT = N->getValueType(0);
7104   SDValue Op = N->getOperand(0);
7105 
7106   if (!VT.isSimple())
7107     return SDValue();
7108 
7109   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7110   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7111   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7112   default:
7113     return SDValue();
7114   case MVT::i16:
7115     // Use a rotate by 8. This can be further expanded if necessary.
7116     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7117   case MVT::i32:
7118     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7119     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7120     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7121     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7122     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7123                        DAG.getConstant(0xFF0000, dl, VT));
7124     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7125     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7126     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7127     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7128   case MVT::i64:
7129     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7130     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7131     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7132     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7133     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7134     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7135     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7136     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7137     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7138                        DAG.getConstant(255ULL<<48, dl, VT));
7139     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7140                        DAG.getConstant(255ULL<<40, dl, VT));
7141     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7142                        DAG.getConstant(255ULL<<32, dl, VT));
7143     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7144                        DAG.getConstant(255ULL<<24, dl, VT));
7145     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7146                        DAG.getConstant(255ULL<<16, dl, VT));
7147     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7148                        DAG.getConstant(255ULL<<8 , dl, VT));
7149     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7150     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7151     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7152     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7153     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7154     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7155     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7156   }
7157 }
7158 
7159 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7160   SDLoc dl(N);
7161   EVT VT = N->getValueType(0);
7162   SDValue Op = N->getOperand(0);
7163   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7164   unsigned Sz = VT.getScalarSizeInBits();
7165 
7166   SDValue Tmp, Tmp2, Tmp3;
7167 
7168   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7169   // and finally the i1 pairs.
7170   // TODO: We can easily support i4/i2 legal types if any target ever does.
7171   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7172     // Create the masks - repeating the pattern every byte.
7173     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
7174     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
7175     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
7176     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7177     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
7178     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
7179 
7180     // BSWAP if the type is wider than a single byte.
7181     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7182 
7183     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
7184     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
7185     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
7186     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
7187     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7188     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7189 
7190     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
7191     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
7192     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
7193     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
7194     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7195     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7196 
7197     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
7198     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
7199     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
7200     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
7201     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7202     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7203     return Tmp;
7204   }
7205 
7206   Tmp = DAG.getConstant(0, dl, VT);
7207   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7208     if (I < J)
7209       Tmp2 =
7210           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7211     else
7212       Tmp2 =
7213           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7214 
7215     APInt Shift(Sz, 1);
7216     Shift <<= J;
7217     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7218     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7219   }
7220 
7221   return Tmp;
7222 }
7223 
7224 std::pair<SDValue, SDValue>
7225 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7226                                     SelectionDAG &DAG) const {
7227   SDLoc SL(LD);
7228   SDValue Chain = LD->getChain();
7229   SDValue BasePTR = LD->getBasePtr();
7230   EVT SrcVT = LD->getMemoryVT();
7231   EVT DstVT = LD->getValueType(0);
7232   ISD::LoadExtType ExtType = LD->getExtensionType();
7233 
7234   if (SrcVT.isScalableVector())
7235     report_fatal_error("Cannot scalarize scalable vector loads");
7236 
7237   unsigned NumElem = SrcVT.getVectorNumElements();
7238 
7239   EVT SrcEltVT = SrcVT.getScalarType();
7240   EVT DstEltVT = DstVT.getScalarType();
7241 
7242   // A vector must always be stored in memory as-is, i.e. without any padding
7243   // between the elements, since various code depend on it, e.g. in the
7244   // handling of a bitcast of a vector type to int, which may be done with a
7245   // vector store followed by an integer load. A vector that does not have
7246   // elements that are byte-sized must therefore be stored as an integer
7247   // built out of the extracted vector elements.
7248   if (!SrcEltVT.isByteSized()) {
7249     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7250     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7251 
7252     unsigned NumSrcBits = SrcVT.getSizeInBits();
7253     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7254 
7255     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7256     SDValue SrcEltBitMask = DAG.getConstant(
7257         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7258 
7259     // Load the whole vector and avoid masking off the top bits as it makes
7260     // the codegen worse.
7261     SDValue Load =
7262         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7263                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7264                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7265 
7266     SmallVector<SDValue, 8> Vals;
7267     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7268       unsigned ShiftIntoIdx =
7269           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7270       SDValue ShiftAmount =
7271           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7272                                      LoadVT, SL, /*LegalTypes=*/false);
7273       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7274       SDValue Elt =
7275           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7276       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7277 
7278       if (ExtType != ISD::NON_EXTLOAD) {
7279         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7280         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7281       }
7282 
7283       Vals.push_back(Scalar);
7284     }
7285 
7286     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7287     return std::make_pair(Value, Load.getValue(1));
7288   }
7289 
7290   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7291   assert(SrcEltVT.isByteSized());
7292 
7293   SmallVector<SDValue, 8> Vals;
7294   SmallVector<SDValue, 8> LoadChains;
7295 
7296   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7297     SDValue ScalarLoad =
7298         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7299                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7300                        SrcEltVT, LD->getOriginalAlign(),
7301                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7302 
7303     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7304 
7305     Vals.push_back(ScalarLoad.getValue(0));
7306     LoadChains.push_back(ScalarLoad.getValue(1));
7307   }
7308 
7309   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7310   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7311 
7312   return std::make_pair(Value, NewChain);
7313 }
7314 
7315 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7316                                              SelectionDAG &DAG) const {
7317   SDLoc SL(ST);
7318 
7319   SDValue Chain = ST->getChain();
7320   SDValue BasePtr = ST->getBasePtr();
7321   SDValue Value = ST->getValue();
7322   EVT StVT = ST->getMemoryVT();
7323 
7324   if (StVT.isScalableVector())
7325     report_fatal_error("Cannot scalarize scalable vector stores");
7326 
7327   // The type of the data we want to save
7328   EVT RegVT = Value.getValueType();
7329   EVT RegSclVT = RegVT.getScalarType();
7330 
7331   // The type of data as saved in memory.
7332   EVT MemSclVT = StVT.getScalarType();
7333 
7334   unsigned NumElem = StVT.getVectorNumElements();
7335 
7336   // A vector must always be stored in memory as-is, i.e. without any padding
7337   // between the elements, since various code depend on it, e.g. in the
7338   // handling of a bitcast of a vector type to int, which may be done with a
7339   // vector store followed by an integer load. A vector that does not have
7340   // elements that are byte-sized must therefore be stored as an integer
7341   // built out of the extracted vector elements.
7342   if (!MemSclVT.isByteSized()) {
7343     unsigned NumBits = StVT.getSizeInBits();
7344     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7345 
7346     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7347 
7348     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7349       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7350                                 DAG.getVectorIdxConstant(Idx, SL));
7351       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7352       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7353       unsigned ShiftIntoIdx =
7354           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7355       SDValue ShiftAmount =
7356           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7357       SDValue ShiftedElt =
7358           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7359       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7360     }
7361 
7362     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7363                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7364                         ST->getAAInfo());
7365   }
7366 
7367   // Store Stride in bytes
7368   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7369   assert(Stride && "Zero stride!");
7370   // Extract each of the elements from the original vector and save them into
7371   // memory individually.
7372   SmallVector<SDValue, 8> Stores;
7373   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7374     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7375                               DAG.getVectorIdxConstant(Idx, SL));
7376 
7377     SDValue Ptr =
7378         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7379 
7380     // This scalar TruncStore may be illegal, but we legalize it later.
7381     SDValue Store = DAG.getTruncStore(
7382         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7383         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7384         ST->getAAInfo());
7385 
7386     Stores.push_back(Store);
7387   }
7388 
7389   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7390 }
7391 
7392 std::pair<SDValue, SDValue>
7393 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7394   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7395          "unaligned indexed loads not implemented!");
7396   SDValue Chain = LD->getChain();
7397   SDValue Ptr = LD->getBasePtr();
7398   EVT VT = LD->getValueType(0);
7399   EVT LoadedVT = LD->getMemoryVT();
7400   SDLoc dl(LD);
7401   auto &MF = DAG.getMachineFunction();
7402 
7403   if (VT.isFloatingPoint() || VT.isVector()) {
7404     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7405     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7406       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7407           LoadedVT.isVector()) {
7408         // Scalarize the load and let the individual components be handled.
7409         return scalarizeVectorLoad(LD, DAG);
7410       }
7411 
7412       // Expand to a (misaligned) integer load of the same size,
7413       // then bitconvert to floating point or vector.
7414       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7415                                     LD->getMemOperand());
7416       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7417       if (LoadedVT != VT)
7418         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7419                              ISD::ANY_EXTEND, dl, VT, Result);
7420 
7421       return std::make_pair(Result, newLoad.getValue(1));
7422     }
7423 
7424     // Copy the value to a (aligned) stack slot using (unaligned) integer
7425     // loads and stores, then do a (aligned) load from the stack slot.
7426     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7427     unsigned LoadedBytes = LoadedVT.getStoreSize();
7428     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7429     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7430 
7431     // Make sure the stack slot is also aligned for the register type.
7432     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7433     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7434     SmallVector<SDValue, 8> Stores;
7435     SDValue StackPtr = StackBase;
7436     unsigned Offset = 0;
7437 
7438     EVT PtrVT = Ptr.getValueType();
7439     EVT StackPtrVT = StackPtr.getValueType();
7440 
7441     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7442     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7443 
7444     // Do all but one copies using the full register width.
7445     for (unsigned i = 1; i < NumRegs; i++) {
7446       // Load one integer register's worth from the original location.
7447       SDValue Load = DAG.getLoad(
7448           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7449           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7450           LD->getAAInfo());
7451       // Follow the load with a store to the stack slot.  Remember the store.
7452       Stores.push_back(DAG.getStore(
7453           Load.getValue(1), dl, Load, StackPtr,
7454           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7455       // Increment the pointers.
7456       Offset += RegBytes;
7457 
7458       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7459       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7460     }
7461 
7462     // The last copy may be partial.  Do an extending load.
7463     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7464                                   8 * (LoadedBytes - Offset));
7465     SDValue Load =
7466         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7467                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7468                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7469                        LD->getAAInfo());
7470     // Follow the load with a store to the stack slot.  Remember the store.
7471     // On big-endian machines this requires a truncating store to ensure
7472     // that the bits end up in the right place.
7473     Stores.push_back(DAG.getTruncStore(
7474         Load.getValue(1), dl, Load, StackPtr,
7475         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7476 
7477     // The order of the stores doesn't matter - say it with a TokenFactor.
7478     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7479 
7480     // Finally, perform the original load only redirected to the stack slot.
7481     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7482                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7483                           LoadedVT);
7484 
7485     // Callers expect a MERGE_VALUES node.
7486     return std::make_pair(Load, TF);
7487   }
7488 
7489   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7490          "Unaligned load of unsupported type.");
7491 
7492   // Compute the new VT that is half the size of the old one.  This is an
7493   // integer MVT.
7494   unsigned NumBits = LoadedVT.getSizeInBits();
7495   EVT NewLoadedVT;
7496   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7497   NumBits >>= 1;
7498 
7499   Align Alignment = LD->getOriginalAlign();
7500   unsigned IncrementSize = NumBits / 8;
7501   ISD::LoadExtType HiExtType = LD->getExtensionType();
7502 
7503   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7504   if (HiExtType == ISD::NON_EXTLOAD)
7505     HiExtType = ISD::ZEXTLOAD;
7506 
7507   // Load the value in two parts
7508   SDValue Lo, Hi;
7509   if (DAG.getDataLayout().isLittleEndian()) {
7510     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7511                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7512                         LD->getAAInfo());
7513 
7514     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7515     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7516                         LD->getPointerInfo().getWithOffset(IncrementSize),
7517                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7518                         LD->getAAInfo());
7519   } else {
7520     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7521                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7522                         LD->getAAInfo());
7523 
7524     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7525     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7526                         LD->getPointerInfo().getWithOffset(IncrementSize),
7527                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7528                         LD->getAAInfo());
7529   }
7530 
7531   // aggregate the two parts
7532   SDValue ShiftAmount =
7533       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7534                                                     DAG.getDataLayout()));
7535   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7536   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7537 
7538   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7539                              Hi.getValue(1));
7540 
7541   return std::make_pair(Result, TF);
7542 }
7543 
7544 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7545                                              SelectionDAG &DAG) const {
7546   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7547          "unaligned indexed stores not implemented!");
7548   SDValue Chain = ST->getChain();
7549   SDValue Ptr = ST->getBasePtr();
7550   SDValue Val = ST->getValue();
7551   EVT VT = Val.getValueType();
7552   Align Alignment = ST->getOriginalAlign();
7553   auto &MF = DAG.getMachineFunction();
7554   EVT StoreMemVT = ST->getMemoryVT();
7555 
7556   SDLoc dl(ST);
7557   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7558     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7559     if (isTypeLegal(intVT)) {
7560       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7561           StoreMemVT.isVector()) {
7562         // Scalarize the store and let the individual components be handled.
7563         SDValue Result = scalarizeVectorStore(ST, DAG);
7564         return Result;
7565       }
7566       // Expand to a bitconvert of the value to the integer type of the
7567       // same size, then a (misaligned) int store.
7568       // FIXME: Does not handle truncating floating point stores!
7569       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7570       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7571                             Alignment, ST->getMemOperand()->getFlags());
7572       return Result;
7573     }
7574     // Do a (aligned) store to a stack slot, then copy from the stack slot
7575     // to the final destination using (unaligned) integer loads and stores.
7576     MVT RegVT = getRegisterType(
7577         *DAG.getContext(),
7578         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7579     EVT PtrVT = Ptr.getValueType();
7580     unsigned StoredBytes = StoreMemVT.getStoreSize();
7581     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7582     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7583 
7584     // Make sure the stack slot is also aligned for the register type.
7585     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7586     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7587 
7588     // Perform the original store, only redirected to the stack slot.
7589     SDValue Store = DAG.getTruncStore(
7590         Chain, dl, Val, StackPtr,
7591         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7592 
7593     EVT StackPtrVT = StackPtr.getValueType();
7594 
7595     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7596     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7597     SmallVector<SDValue, 8> Stores;
7598     unsigned Offset = 0;
7599 
7600     // Do all but one copies using the full register width.
7601     for (unsigned i = 1; i < NumRegs; i++) {
7602       // Load one integer register's worth from the stack slot.
7603       SDValue Load = DAG.getLoad(
7604           RegVT, dl, Store, StackPtr,
7605           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7606       // Store it to the final location.  Remember the store.
7607       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7608                                     ST->getPointerInfo().getWithOffset(Offset),
7609                                     ST->getOriginalAlign(),
7610                                     ST->getMemOperand()->getFlags()));
7611       // Increment the pointers.
7612       Offset += RegBytes;
7613       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7614       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7615     }
7616 
7617     // The last store may be partial.  Do a truncating store.  On big-endian
7618     // machines this requires an extending load from the stack slot to ensure
7619     // that the bits are in the right place.
7620     EVT LoadMemVT =
7621         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7622 
7623     // Load from the stack slot.
7624     SDValue Load = DAG.getExtLoad(
7625         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7626         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7627 
7628     Stores.push_back(
7629         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7630                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7631                           ST->getOriginalAlign(),
7632                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7633     // The order of the stores doesn't matter - say it with a TokenFactor.
7634     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7635     return Result;
7636   }
7637 
7638   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7639          "Unaligned store of unknown type.");
7640   // Get the half-size VT
7641   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7642   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7643   unsigned IncrementSize = NumBits / 8;
7644 
7645   // Divide the stored value in two parts.
7646   SDValue ShiftAmount = DAG.getConstant(
7647       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7648   SDValue Lo = Val;
7649   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7650 
7651   // Store the two parts
7652   SDValue Store1, Store2;
7653   Store1 = DAG.getTruncStore(Chain, dl,
7654                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7655                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7656                              ST->getMemOperand()->getFlags());
7657 
7658   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7659   Store2 = DAG.getTruncStore(
7660       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7661       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7662       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7663 
7664   SDValue Result =
7665       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7666   return Result;
7667 }
7668 
7669 SDValue
7670 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7671                                        const SDLoc &DL, EVT DataVT,
7672                                        SelectionDAG &DAG,
7673                                        bool IsCompressedMemory) const {
7674   SDValue Increment;
7675   EVT AddrVT = Addr.getValueType();
7676   EVT MaskVT = Mask.getValueType();
7677   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7678          "Incompatible types of Data and Mask");
7679   if (IsCompressedMemory) {
7680     if (DataVT.isScalableVector())
7681       report_fatal_error(
7682           "Cannot currently handle compressed memory with scalable vectors");
7683     // Incrementing the pointer according to number of '1's in the mask.
7684     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7685     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7686     if (MaskIntVT.getSizeInBits() < 32) {
7687       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7688       MaskIntVT = MVT::i32;
7689     }
7690 
7691     // Count '1's with POPCNT.
7692     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7693     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7694     // Scale is an element size in bytes.
7695     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7696                                     AddrVT);
7697     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7698   } else if (DataVT.isScalableVector()) {
7699     Increment = DAG.getVScale(DL, AddrVT,
7700                               APInt(AddrVT.getFixedSizeInBits(),
7701                                     DataVT.getStoreSize().getKnownMinSize()));
7702   } else
7703     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7704 
7705   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7706 }
7707 
7708 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7709                                        SDValue Idx,
7710                                        EVT VecVT,
7711                                        const SDLoc &dl) {
7712   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7713     return Idx;
7714 
7715   EVT IdxVT = Idx.getValueType();
7716   unsigned NElts = VecVT.getVectorMinNumElements();
7717   if (VecVT.isScalableVector()) {
7718     // If this is a constant index and we know the value is less than the
7719     // minimum number of elements then it's safe to return Idx.
7720     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7721       if (IdxCst->getZExtValue() < NElts)
7722         return Idx;
7723 
7724     SDValue VS = DAG.getVScale(dl, IdxVT,
7725                                APInt(IdxVT.getFixedSizeInBits(),
7726                                      NElts));
7727     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7728                               DAG.getConstant(1, dl, IdxVT));
7729 
7730     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7731   } else {
7732     if (isPowerOf2_32(NElts)) {
7733       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7734                                        Log2_32(NElts));
7735       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7736                          DAG.getConstant(Imm, dl, IdxVT));
7737     }
7738   }
7739 
7740   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7741                      DAG.getConstant(NElts - 1, dl, IdxVT));
7742 }
7743 
7744 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7745                                                 SDValue VecPtr, EVT VecVT,
7746                                                 SDValue Index) const {
7747   SDLoc dl(Index);
7748   // Make sure the index type is big enough to compute in.
7749   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7750 
7751   EVT EltVT = VecVT.getVectorElementType();
7752 
7753   // Calculate the element offset and add it to the pointer.
7754   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7755   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7756          "Converting bits to bytes lost precision");
7757 
7758   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7759 
7760   EVT IdxVT = Index.getValueType();
7761 
7762   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7763                       DAG.getConstant(EltSize, dl, IdxVT));
7764   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7765 }
7766 
7767 //===----------------------------------------------------------------------===//
7768 // Implementation of Emulated TLS Model
7769 //===----------------------------------------------------------------------===//
7770 
7771 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7772                                                 SelectionDAG &DAG) const {
7773   // Access to address of TLS varialbe xyz is lowered to a function call:
7774   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7775   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7776   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7777   SDLoc dl(GA);
7778 
7779   ArgListTy Args;
7780   ArgListEntry Entry;
7781   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7782   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7783   StringRef EmuTlsVarName(NameString);
7784   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7785   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7786   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7787   Entry.Ty = VoidPtrType;
7788   Args.push_back(Entry);
7789 
7790   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7791 
7792   TargetLowering::CallLoweringInfo CLI(DAG);
7793   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7794   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7795   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7796 
7797   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7798   // At last for X86 targets, maybe good for other targets too?
7799   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7800   MFI.setAdjustsStack(true); // Is this only for X86 target?
7801   MFI.setHasCalls(true);
7802 
7803   assert((GA->getOffset() == 0) &&
7804          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7805   return CallResult.first;
7806 }
7807 
7808 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7809                                                 SelectionDAG &DAG) const {
7810   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7811   if (!isCtlzFast())
7812     return SDValue();
7813   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7814   SDLoc dl(Op);
7815   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7816     if (C->isNullValue() && CC == ISD::SETEQ) {
7817       EVT VT = Op.getOperand(0).getValueType();
7818       SDValue Zext = Op.getOperand(0);
7819       if (VT.bitsLT(MVT::i32)) {
7820         VT = MVT::i32;
7821         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7822       }
7823       unsigned Log2b = Log2_32(VT.getSizeInBits());
7824       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7825       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7826                                 DAG.getConstant(Log2b, dl, MVT::i32));
7827       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7828     }
7829   }
7830   return SDValue();
7831 }
7832 
7833 // Convert redundant addressing modes (e.g. scaling is redundant
7834 // when accessing bytes).
7835 ISD::MemIndexType
7836 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7837                                       SDValue Offsets) const {
7838   bool IsScaledIndex =
7839       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7840   bool IsSignedIndex =
7841       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7842 
7843   // Scaling is unimportant for bytes, canonicalize to unscaled.
7844   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7845     IsScaledIndex = false;
7846     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7847   }
7848 
7849   return IndexType;
7850 }
7851 
7852 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7853   SDValue Op0 = Node->getOperand(0);
7854   SDValue Op1 = Node->getOperand(1);
7855   EVT VT = Op0.getValueType();
7856   unsigned Opcode = Node->getOpcode();
7857   SDLoc DL(Node);
7858 
7859   // umin(x,y) -> sub(x,usubsat(x,y))
7860   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7861       isOperationLegal(ISD::USUBSAT, VT)) {
7862     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7863                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7864   }
7865 
7866   // umax(x,y) -> add(x,usubsat(y,x))
7867   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7868       isOperationLegal(ISD::USUBSAT, VT)) {
7869     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7870                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7871   }
7872 
7873   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7874   ISD::CondCode CC;
7875   switch (Opcode) {
7876   default: llvm_unreachable("How did we get here?");
7877   case ISD::SMAX: CC = ISD::SETGT; break;
7878   case ISD::SMIN: CC = ISD::SETLT; break;
7879   case ISD::UMAX: CC = ISD::SETUGT; break;
7880   case ISD::UMIN: CC = ISD::SETULT; break;
7881   }
7882 
7883   // FIXME: Should really try to split the vector in case it's legal on a
7884   // subvector.
7885   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7886     return DAG.UnrollVectorOp(Node);
7887 
7888   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7889   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7890 }
7891 
7892 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7893   unsigned Opcode = Node->getOpcode();
7894   SDValue LHS = Node->getOperand(0);
7895   SDValue RHS = Node->getOperand(1);
7896   EVT VT = LHS.getValueType();
7897   SDLoc dl(Node);
7898 
7899   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7900   assert(VT.isInteger() && "Expected operands to be integers");
7901 
7902   // usub.sat(a, b) -> umax(a, b) - b
7903   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7904     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7905     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7906   }
7907 
7908   // uadd.sat(a, b) -> umin(a, ~b) + b
7909   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7910     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7911     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7912     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7913   }
7914 
7915   unsigned OverflowOp;
7916   switch (Opcode) {
7917   case ISD::SADDSAT:
7918     OverflowOp = ISD::SADDO;
7919     break;
7920   case ISD::UADDSAT:
7921     OverflowOp = ISD::UADDO;
7922     break;
7923   case ISD::SSUBSAT:
7924     OverflowOp = ISD::SSUBO;
7925     break;
7926   case ISD::USUBSAT:
7927     OverflowOp = ISD::USUBO;
7928     break;
7929   default:
7930     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7931                      "addition or subtraction node.");
7932   }
7933 
7934   // FIXME: Should really try to split the vector in case it's legal on a
7935   // subvector.
7936   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7937     return DAG.UnrollVectorOp(Node);
7938 
7939   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7940   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7941   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7942   SDValue SumDiff = Result.getValue(0);
7943   SDValue Overflow = Result.getValue(1);
7944   SDValue Zero = DAG.getConstant(0, dl, VT);
7945   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7946 
7947   if (Opcode == ISD::UADDSAT) {
7948     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7949       // (LHS + RHS) | OverflowMask
7950       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7951       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7952     }
7953     // Overflow ? 0xffff.... : (LHS + RHS)
7954     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7955   }
7956 
7957   if (Opcode == ISD::USUBSAT) {
7958     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7959       // (LHS - RHS) & ~OverflowMask
7960       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7961       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7962       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7963     }
7964     // Overflow ? 0 : (LHS - RHS)
7965     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7966   }
7967 
7968   // SatMax -> Overflow && SumDiff < 0
7969   // SatMin -> Overflow && SumDiff >= 0
7970   APInt MinVal = APInt::getSignedMinValue(BitWidth);
7971   APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7972   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7973   SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7974   SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7975   Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7976   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7977 }
7978 
7979 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7980   unsigned Opcode = Node->getOpcode();
7981   bool IsSigned = Opcode == ISD::SSHLSAT;
7982   SDValue LHS = Node->getOperand(0);
7983   SDValue RHS = Node->getOperand(1);
7984   EVT VT = LHS.getValueType();
7985   SDLoc dl(Node);
7986 
7987   assert((Node->getOpcode() == ISD::SSHLSAT ||
7988           Node->getOpcode() == ISD::USHLSAT) &&
7989           "Expected a SHLSAT opcode");
7990   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7991   assert(VT.isInteger() && "Expected operands to be integers");
7992 
7993   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7994 
7995   unsigned BW = VT.getScalarSizeInBits();
7996   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7997   SDValue Orig =
7998       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7999 
8000   SDValue SatVal;
8001   if (IsSigned) {
8002     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8003     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8004     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8005                              SatMin, SatMax, ISD::SETLT);
8006   } else {
8007     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8008   }
8009   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8010 
8011   return Result;
8012 }
8013 
8014 SDValue
8015 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8016   assert((Node->getOpcode() == ISD::SMULFIX ||
8017           Node->getOpcode() == ISD::UMULFIX ||
8018           Node->getOpcode() == ISD::SMULFIXSAT ||
8019           Node->getOpcode() == ISD::UMULFIXSAT) &&
8020          "Expected a fixed point multiplication opcode");
8021 
8022   SDLoc dl(Node);
8023   SDValue LHS = Node->getOperand(0);
8024   SDValue RHS = Node->getOperand(1);
8025   EVT VT = LHS.getValueType();
8026   unsigned Scale = Node->getConstantOperandVal(2);
8027   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8028                      Node->getOpcode() == ISD::UMULFIXSAT);
8029   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8030                  Node->getOpcode() == ISD::SMULFIXSAT);
8031   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8032   unsigned VTSize = VT.getScalarSizeInBits();
8033 
8034   if (!Scale) {
8035     // [us]mul.fix(a, b, 0) -> mul(a, b)
8036     if (!Saturating) {
8037       if (isOperationLegalOrCustom(ISD::MUL, VT))
8038         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8039     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8040       SDValue Result =
8041           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8042       SDValue Product = Result.getValue(0);
8043       SDValue Overflow = Result.getValue(1);
8044       SDValue Zero = DAG.getConstant(0, dl, VT);
8045 
8046       APInt MinVal = APInt::getSignedMinValue(VTSize);
8047       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8048       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8049       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8050       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
8051       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
8052       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8053     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8054       SDValue Result =
8055           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8056       SDValue Product = Result.getValue(0);
8057       SDValue Overflow = Result.getValue(1);
8058 
8059       APInt MaxVal = APInt::getMaxValue(VTSize);
8060       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8061       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8062     }
8063   }
8064 
8065   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8066          "Expected scale to be less than the number of bits if signed or at "
8067          "most the number of bits if unsigned.");
8068   assert(LHS.getValueType() == RHS.getValueType() &&
8069          "Expected both operands to be the same type");
8070 
8071   // Get the upper and lower bits of the result.
8072   SDValue Lo, Hi;
8073   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8074   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8075   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8076     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8077     Lo = Result.getValue(0);
8078     Hi = Result.getValue(1);
8079   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8080     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8081     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8082   } else if (VT.isVector()) {
8083     return SDValue();
8084   } else {
8085     report_fatal_error("Unable to expand fixed point multiplication.");
8086   }
8087 
8088   if (Scale == VTSize)
8089     // Result is just the top half since we'd be shifting by the width of the
8090     // operand. Overflow impossible so this works for both UMULFIX and
8091     // UMULFIXSAT.
8092     return Hi;
8093 
8094   // The result will need to be shifted right by the scale since both operands
8095   // are scaled. The result is given to us in 2 halves, so we only want part of
8096   // both in the result.
8097   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8098   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8099                                DAG.getConstant(Scale, dl, ShiftTy));
8100   if (!Saturating)
8101     return Result;
8102 
8103   if (!Signed) {
8104     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8105     // widened multiplication) aren't all zeroes.
8106 
8107     // Saturate to max if ((Hi >> Scale) != 0),
8108     // which is the same as if (Hi > ((1 << Scale) - 1))
8109     APInt MaxVal = APInt::getMaxValue(VTSize);
8110     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8111                                       dl, VT);
8112     Result = DAG.getSelectCC(dl, Hi, LowMask,
8113                              DAG.getConstant(MaxVal, dl, VT), Result,
8114                              ISD::SETUGT);
8115 
8116     return Result;
8117   }
8118 
8119   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8120   // widened multiplication) aren't all ones or all zeroes.
8121 
8122   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8123   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8124 
8125   if (Scale == 0) {
8126     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8127                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8128     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8129     // Saturated to SatMin if wide product is negative, and SatMax if wide
8130     // product is positive ...
8131     SDValue Zero = DAG.getConstant(0, dl, VT);
8132     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8133                                                ISD::SETLT);
8134     // ... but only if we overflowed.
8135     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8136   }
8137 
8138   //  We handled Scale==0 above so all the bits to examine is in Hi.
8139 
8140   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8141   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8142   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8143                                     dl, VT);
8144   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8145   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8146   // which is the same as if (HI < (-1 << (Scale - 1))
8147   SDValue HighMask =
8148       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8149                       dl, VT);
8150   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8151   return Result;
8152 }
8153 
8154 SDValue
8155 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8156                                     SDValue LHS, SDValue RHS,
8157                                     unsigned Scale, SelectionDAG &DAG) const {
8158   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8159           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8160          "Expected a fixed point division opcode");
8161 
8162   EVT VT = LHS.getValueType();
8163   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8164   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8165   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8166 
8167   // If there is enough room in the type to upscale the LHS or downscale the
8168   // RHS before the division, we can perform it in this type without having to
8169   // resize. For signed operations, the LHS headroom is the number of
8170   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8171   // The headroom for the RHS is the number of trailing zeroes.
8172   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8173                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8174   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8175 
8176   // For signed saturating operations, we need to be able to detect true integer
8177   // division overflow; that is, when you have MIN / -EPS. However, this
8178   // is undefined behavior and if we emit divisions that could take such
8179   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8180   // example).
8181   // Avoid this by requiring an extra bit so that we never get this case.
8182   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8183   // signed saturating division, we need to emit a whopping 32-bit division.
8184   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8185     return SDValue();
8186 
8187   unsigned LHSShift = std::min(LHSLead, Scale);
8188   unsigned RHSShift = Scale - LHSShift;
8189 
8190   // At this point, we know that if we shift the LHS up by LHSShift and the
8191   // RHS down by RHSShift, we can emit a regular division with a final scaling
8192   // factor of Scale.
8193 
8194   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8195   if (LHSShift)
8196     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8197                       DAG.getConstant(LHSShift, dl, ShiftTy));
8198   if (RHSShift)
8199     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8200                       DAG.getConstant(RHSShift, dl, ShiftTy));
8201 
8202   SDValue Quot;
8203   if (Signed) {
8204     // For signed operations, if the resulting quotient is negative and the
8205     // remainder is nonzero, subtract 1 from the quotient to round towards
8206     // negative infinity.
8207     SDValue Rem;
8208     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8209     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8210     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8211     if (isTypeLegal(VT) &&
8212         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8213       Quot = DAG.getNode(ISD::SDIVREM, dl,
8214                          DAG.getVTList(VT, VT),
8215                          LHS, RHS);
8216       Rem = Quot.getValue(1);
8217       Quot = Quot.getValue(0);
8218     } else {
8219       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8220                          LHS, RHS);
8221       Rem = DAG.getNode(ISD::SREM, dl, VT,
8222                         LHS, RHS);
8223     }
8224     SDValue Zero = DAG.getConstant(0, dl, VT);
8225     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8226     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8227     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8228     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8229     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8230                                DAG.getConstant(1, dl, VT));
8231     Quot = DAG.getSelect(dl, VT,
8232                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8233                          Sub1, Quot);
8234   } else
8235     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8236                        LHS, RHS);
8237 
8238   return Quot;
8239 }
8240 
8241 void TargetLowering::expandUADDSUBO(
8242     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8243   SDLoc dl(Node);
8244   SDValue LHS = Node->getOperand(0);
8245   SDValue RHS = Node->getOperand(1);
8246   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8247 
8248   // If ADD/SUBCARRY is legal, use that instead.
8249   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8250   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8251     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8252     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8253                                     { LHS, RHS, CarryIn });
8254     Result = SDValue(NodeCarry.getNode(), 0);
8255     Overflow = SDValue(NodeCarry.getNode(), 1);
8256     return;
8257   }
8258 
8259   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8260                             LHS.getValueType(), LHS, RHS);
8261 
8262   EVT ResultType = Node->getValueType(1);
8263   EVT SetCCType = getSetCCResultType(
8264       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8265   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8266   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8267   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8268 }
8269 
8270 void TargetLowering::expandSADDSUBO(
8271     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8272   SDLoc dl(Node);
8273   SDValue LHS = Node->getOperand(0);
8274   SDValue RHS = Node->getOperand(1);
8275   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8276 
8277   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8278                             LHS.getValueType(), LHS, RHS);
8279 
8280   EVT ResultType = Node->getValueType(1);
8281   EVT OType = getSetCCResultType(
8282       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8283 
8284   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8285   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8286   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8287     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8288     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8289     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8290     return;
8291   }
8292 
8293   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8294 
8295   // For an addition, the result should be less than one of the operands (LHS)
8296   // if and only if the other operand (RHS) is negative, otherwise there will
8297   // be overflow.
8298   // For a subtraction, the result should be less than one of the operands
8299   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8300   // otherwise there will be overflow.
8301   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8302   SDValue ConditionRHS =
8303       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8304 
8305   Overflow = DAG.getBoolExtOrTrunc(
8306       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8307       ResultType, ResultType);
8308 }
8309 
8310 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8311                                 SDValue &Overflow, SelectionDAG &DAG) const {
8312   SDLoc dl(Node);
8313   EVT VT = Node->getValueType(0);
8314   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8315   SDValue LHS = Node->getOperand(0);
8316   SDValue RHS = Node->getOperand(1);
8317   bool isSigned = Node->getOpcode() == ISD::SMULO;
8318 
8319   // For power-of-two multiplications we can use a simpler shift expansion.
8320   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8321     const APInt &C = RHSC->getAPIntValue();
8322     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8323     if (C.isPowerOf2()) {
8324       // smulo(x, signed_min) is same as umulo(x, signed_min).
8325       bool UseArithShift = isSigned && !C.isMinSignedValue();
8326       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8327       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8328       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8329       Overflow = DAG.getSetCC(dl, SetCCVT,
8330           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8331                       dl, VT, Result, ShiftAmt),
8332           LHS, ISD::SETNE);
8333       return true;
8334     }
8335   }
8336 
8337   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8338   if (VT.isVector())
8339     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8340                               VT.getVectorNumElements());
8341 
8342   SDValue BottomHalf;
8343   SDValue TopHalf;
8344   static const unsigned Ops[2][3] =
8345       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8346         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8347   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8348     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8349     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8350   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8351     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8352                              RHS);
8353     TopHalf = BottomHalf.getValue(1);
8354   } else if (isTypeLegal(WideVT)) {
8355     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8356     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8357     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8358     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8359     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8360         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8361     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8362                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8363   } else {
8364     if (VT.isVector())
8365       return false;
8366 
8367     // We can fall back to a libcall with an illegal type for the MUL if we
8368     // have a libcall big enough.
8369     // Also, we can fall back to a division in some cases, but that's a big
8370     // performance hit in the general case.
8371     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8372     if (WideVT == MVT::i16)
8373       LC = RTLIB::MUL_I16;
8374     else if (WideVT == MVT::i32)
8375       LC = RTLIB::MUL_I32;
8376     else if (WideVT == MVT::i64)
8377       LC = RTLIB::MUL_I64;
8378     else if (WideVT == MVT::i128)
8379       LC = RTLIB::MUL_I128;
8380     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8381 
8382     SDValue HiLHS;
8383     SDValue HiRHS;
8384     if (isSigned) {
8385       // The high part is obtained by SRA'ing all but one of the bits of low
8386       // part.
8387       unsigned LoSize = VT.getFixedSizeInBits();
8388       HiLHS =
8389           DAG.getNode(ISD::SRA, dl, VT, LHS,
8390                       DAG.getConstant(LoSize - 1, dl,
8391                                       getPointerTy(DAG.getDataLayout())));
8392       HiRHS =
8393           DAG.getNode(ISD::SRA, dl, VT, RHS,
8394                       DAG.getConstant(LoSize - 1, dl,
8395                                       getPointerTy(DAG.getDataLayout())));
8396     } else {
8397         HiLHS = DAG.getConstant(0, dl, VT);
8398         HiRHS = DAG.getConstant(0, dl, VT);
8399     }
8400 
8401     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8402     // pre-lowered to the correct types. This all depends upon WideVT not
8403     // being a legal type for the architecture and thus has to be split to
8404     // two arguments.
8405     SDValue Ret;
8406     TargetLowering::MakeLibCallOptions CallOptions;
8407     CallOptions.setSExt(isSigned);
8408     CallOptions.setIsPostTypeLegalization(true);
8409     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8410       // Halves of WideVT are packed into registers in different order
8411       // depending on platform endianness. This is usually handled by
8412       // the C calling convention, but we can't defer to it in
8413       // the legalizer.
8414       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8415       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8416     } else {
8417       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8418       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8419     }
8420     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8421            "Ret value is a collection of constituent nodes holding result.");
8422     if (DAG.getDataLayout().isLittleEndian()) {
8423       // Same as above.
8424       BottomHalf = Ret.getOperand(0);
8425       TopHalf = Ret.getOperand(1);
8426     } else {
8427       BottomHalf = Ret.getOperand(1);
8428       TopHalf = Ret.getOperand(0);
8429     }
8430   }
8431 
8432   Result = BottomHalf;
8433   if (isSigned) {
8434     SDValue ShiftAmt = DAG.getConstant(
8435         VT.getScalarSizeInBits() - 1, dl,
8436         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8437     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8438     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8439   } else {
8440     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8441                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8442   }
8443 
8444   // Truncate the result if SetCC returns a larger type than needed.
8445   EVT RType = Node->getValueType(1);
8446   if (RType.bitsLT(Overflow.getValueType()))
8447     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8448 
8449   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8450          "Unexpected result type for S/UMULO legalization");
8451   return true;
8452 }
8453 
8454 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8455   SDLoc dl(Node);
8456   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8457   SDValue Op = Node->getOperand(0);
8458   EVT VT = Op.getValueType();
8459 
8460   if (VT.isScalableVector())
8461     report_fatal_error(
8462         "Expanding reductions for scalable vectors is undefined.");
8463 
8464   // Try to use a shuffle reduction for power of two vectors.
8465   if (VT.isPow2VectorType()) {
8466     while (VT.getVectorNumElements() > 1) {
8467       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8468       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8469         break;
8470 
8471       SDValue Lo, Hi;
8472       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8473       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8474       VT = HalfVT;
8475     }
8476   }
8477 
8478   EVT EltVT = VT.getVectorElementType();
8479   unsigned NumElts = VT.getVectorNumElements();
8480 
8481   SmallVector<SDValue, 8> Ops;
8482   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8483 
8484   SDValue Res = Ops[0];
8485   for (unsigned i = 1; i < NumElts; i++)
8486     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8487 
8488   // Result type may be wider than element type.
8489   if (EltVT != Node->getValueType(0))
8490     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8491   return Res;
8492 }
8493 
8494 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8495   SDLoc dl(Node);
8496   SDValue AccOp = Node->getOperand(0);
8497   SDValue VecOp = Node->getOperand(1);
8498   SDNodeFlags Flags = Node->getFlags();
8499 
8500   EVT VT = VecOp.getValueType();
8501   EVT EltVT = VT.getVectorElementType();
8502 
8503   if (VT.isScalableVector())
8504     report_fatal_error(
8505         "Expanding reductions for scalable vectors is undefined.");
8506 
8507   unsigned NumElts = VT.getVectorNumElements();
8508 
8509   SmallVector<SDValue, 8> Ops;
8510   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8511 
8512   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8513 
8514   SDValue Res = AccOp;
8515   for (unsigned i = 0; i < NumElts; i++)
8516     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8517 
8518   return Res;
8519 }
8520 
8521 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8522                                SelectionDAG &DAG) const {
8523   EVT VT = Node->getValueType(0);
8524   SDLoc dl(Node);
8525   bool isSigned = Node->getOpcode() == ISD::SREM;
8526   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8527   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8528   SDValue Dividend = Node->getOperand(0);
8529   SDValue Divisor = Node->getOperand(1);
8530   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8531     SDVTList VTs = DAG.getVTList(VT, VT);
8532     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8533     return true;
8534   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8535     // X % Y -> X-X/Y*Y
8536     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8537     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8538     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8539     return true;
8540   }
8541   return false;
8542 }
8543 
8544 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8545                                             SelectionDAG &DAG) const {
8546   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8547   SDLoc dl(SDValue(Node, 0));
8548   SDValue Src = Node->getOperand(0);
8549 
8550   // DstVT is the result type, while SatVT is the size to which we saturate
8551   EVT SrcVT = Src.getValueType();
8552   EVT DstVT = Node->getValueType(0);
8553 
8554   unsigned SatWidth = Node->getConstantOperandVal(1);
8555   unsigned DstWidth = DstVT.getScalarSizeInBits();
8556   assert(SatWidth <= DstWidth &&
8557          "Expected saturation width smaller than result width");
8558 
8559   // Determine minimum and maximum integer values and their corresponding
8560   // floating-point values.
8561   APInt MinInt, MaxInt;
8562   if (IsSigned) {
8563     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8564     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8565   } else {
8566     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8567     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8568   }
8569 
8570   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8571   // libcall emission cannot handle this. Large result types will fail.
8572   if (SrcVT == MVT::f16) {
8573     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8574     SrcVT = Src.getValueType();
8575   }
8576 
8577   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8578   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8579 
8580   APFloat::opStatus MinStatus =
8581       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8582   APFloat::opStatus MaxStatus =
8583       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8584   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8585                              !(MaxStatus & APFloat::opStatus::opInexact);
8586 
8587   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8588   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8589 
8590   // If the integer bounds are exactly representable as floats and min/max are
8591   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8592   // of comparisons and selects.
8593   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8594                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8595   if (AreExactFloatBounds && MinMaxLegal) {
8596     SDValue Clamped = Src;
8597 
8598     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8599     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8600     // Clamp by MaxFloat from above. NaN cannot occur.
8601     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8602     // Convert clamped value to integer.
8603     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8604                                   dl, DstVT, Clamped);
8605 
8606     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8607     // which will cast to zero.
8608     if (!IsSigned)
8609       return FpToInt;
8610 
8611     // Otherwise, select 0 if Src is NaN.
8612     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8613     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8614                            ISD::CondCode::SETUO);
8615   }
8616 
8617   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8618   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8619 
8620   // Result of direct conversion. The assumption here is that the operation is
8621   // non-trapping and it's fine to apply it to an out-of-range value if we
8622   // select it away later.
8623   SDValue FpToInt =
8624       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8625 
8626   SDValue Select = FpToInt;
8627 
8628   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8629   // MinInt if Src is NaN.
8630   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8631                            ISD::CondCode::SETULT);
8632   // If Src OGT MaxFloat, select MaxInt.
8633   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8634                            ISD::CondCode::SETOGT);
8635 
8636   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8637   // is already zero.
8638   if (!IsSigned)
8639     return Select;
8640 
8641   // Otherwise, select 0 if Src is NaN.
8642   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8643   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8644 }
8645 
8646 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8647                                            SelectionDAG &DAG) const {
8648   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8649   assert(Node->getValueType(0).isScalableVector() &&
8650          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8651 
8652   EVT VT = Node->getValueType(0);
8653   SDValue V1 = Node->getOperand(0);
8654   SDValue V2 = Node->getOperand(1);
8655   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8656   SDLoc DL(Node);
8657 
8658   // Expand through memory thusly:
8659   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8660   //  Store V1, Ptr
8661   //  Store V2, Ptr + sizeof(V1)
8662   //  If (Imm < 0)
8663   //    TrailingElts = -Imm
8664   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8665   //  else
8666   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8667   //  Res = Load Ptr
8668 
8669   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8670 
8671   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8672                                VT.getVectorElementCount() * 2);
8673   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8674   EVT PtrVT = StackPtr.getValueType();
8675   auto &MF = DAG.getMachineFunction();
8676   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8677   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8678 
8679   // Store the lo part of CONCAT_VECTORS(V1, V2)
8680   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8681   // Store the hi part of CONCAT_VECTORS(V1, V2)
8682   SDValue OffsetToV2 = DAG.getVScale(
8683       DL, PtrVT,
8684       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8685   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8686   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8687 
8688   if (Imm >= 0) {
8689     // Load back the required element. getVectorElementPointer takes care of
8690     // clamping the index if it's out-of-bounds.
8691     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8692     // Load the spliced result
8693     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8694                        MachinePointerInfo::getUnknownStack(MF));
8695   }
8696 
8697   uint64_t TrailingElts = -Imm;
8698 
8699   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8700   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8701   SDValue TrailingBytes =
8702       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8703 
8704   if (TrailingElts > VT.getVectorMinNumElements()) {
8705     SDValue VLBytes = DAG.getVScale(
8706         DL, PtrVT,
8707         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8708     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8709   }
8710 
8711   // Calculate the start address of the spliced result.
8712   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8713 
8714   // Load the spliced result
8715   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8716                      MachinePointerInfo::getUnknownStack(MF));
8717 }
8718 
8719 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8720                                            SDValue &LHS, SDValue &RHS,
8721                                            SDValue &CC, bool &NeedInvert,
8722                                            const SDLoc &dl, SDValue &Chain,
8723                                            bool IsSignaling) const {
8724   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8725   MVT OpVT = LHS.getSimpleValueType();
8726   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8727   NeedInvert = false;
8728   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8729   default:
8730     llvm_unreachable("Unknown condition code action!");
8731   case TargetLowering::Legal:
8732     // Nothing to do.
8733     break;
8734   case TargetLowering::Expand: {
8735     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8736     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8737       std::swap(LHS, RHS);
8738       CC = DAG.getCondCode(InvCC);
8739       return true;
8740     }
8741     // Swapping operands didn't work. Try inverting the condition.
8742     bool NeedSwap = false;
8743     InvCC = getSetCCInverse(CCCode, OpVT);
8744     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8745       // If inverting the condition is not enough, try swapping operands
8746       // on top of it.
8747       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8748       NeedSwap = true;
8749     }
8750     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8751       CC = DAG.getCondCode(InvCC);
8752       NeedInvert = true;
8753       if (NeedSwap)
8754         std::swap(LHS, RHS);
8755       return true;
8756     }
8757 
8758     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8759     unsigned Opc = 0;
8760     switch (CCCode) {
8761     default:
8762       llvm_unreachable("Don't know how to expand this condition!");
8763     case ISD::SETUO:
8764       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8765         CC1 = ISD::SETUNE;
8766         CC2 = ISD::SETUNE;
8767         Opc = ISD::OR;
8768         break;
8769       }
8770       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8771              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8772       NeedInvert = true;
8773       LLVM_FALLTHROUGH;
8774     case ISD::SETO:
8775       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8776              "If SETO is expanded, SETOEQ must be legal!");
8777       CC1 = ISD::SETOEQ;
8778       CC2 = ISD::SETOEQ;
8779       Opc = ISD::AND;
8780       break;
8781     case ISD::SETONE:
8782     case ISD::SETUEQ:
8783       // If the SETUO or SETO CC isn't legal, we might be able to use
8784       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8785       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8786       // the operands.
8787       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8788       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8789           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8790            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8791         CC1 = ISD::SETOGT;
8792         CC2 = ISD::SETOLT;
8793         Opc = ISD::OR;
8794         NeedInvert = ((unsigned)CCCode & 0x8U);
8795         break;
8796       }
8797       LLVM_FALLTHROUGH;
8798     case ISD::SETOEQ:
8799     case ISD::SETOGT:
8800     case ISD::SETOGE:
8801     case ISD::SETOLT:
8802     case ISD::SETOLE:
8803     case ISD::SETUNE:
8804     case ISD::SETUGT:
8805     case ISD::SETUGE:
8806     case ISD::SETULT:
8807     case ISD::SETULE:
8808       // If we are floating point, assign and break, otherwise fall through.
8809       if (!OpVT.isInteger()) {
8810         // We can use the 4th bit to tell if we are the unordered
8811         // or ordered version of the opcode.
8812         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8813         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8814         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8815         break;
8816       }
8817       // Fallthrough if we are unsigned integer.
8818       LLVM_FALLTHROUGH;
8819     case ISD::SETLE:
8820     case ISD::SETGT:
8821     case ISD::SETGE:
8822     case ISD::SETLT:
8823     case ISD::SETNE:
8824     case ISD::SETEQ:
8825       // If all combinations of inverting the condition and swapping operands
8826       // didn't work then we have no means to expand the condition.
8827       llvm_unreachable("Don't know how to expand this condition!");
8828     }
8829 
8830     SDValue SetCC1, SetCC2;
8831     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8832       // If we aren't the ordered or unorder operation,
8833       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8834       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8835       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8836     } else {
8837       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8838       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8839       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8840     }
8841     if (Chain)
8842       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8843                           SetCC2.getValue(1));
8844     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8845     RHS = SDValue();
8846     CC = SDValue();
8847     return true;
8848   }
8849   }
8850   return false;
8851 }
8852