1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2, KnownOut;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878 
879     // Upper elements are undef, so only get the knownbits if we just demand
880     // the bottom element.
881     if (DemandedElts == 1)
882       Known = SrcKnown.anyextOrTrunc(BitWidth);
883     break;
884   }
885   case ISD::BUILD_VECTOR:
886     // Collect the known bits that are shared by every demanded element.
887     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
888     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
889     return false; // Don't fall through, will infinitely loop.
890   case ISD::LOAD: {
891     LoadSDNode *LD = cast<LoadSDNode>(Op);
892     if (getTargetConstantFromLoad(LD)) {
893       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
894       return false; // Don't fall through, will infinitely loop.
895     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
896       // If this is a ZEXTLoad and we are looking at the loaded value.
897       EVT MemVT = LD->getMemoryVT();
898       unsigned MemBits = MemVT.getScalarSizeInBits();
899       Known.Zero.setBitsFrom(MemBits);
900       return false; // Don't fall through, will infinitely loop.
901     }
902     break;
903   }
904   case ISD::INSERT_VECTOR_ELT: {
905     SDValue Vec = Op.getOperand(0);
906     SDValue Scl = Op.getOperand(1);
907     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
908     EVT VecVT = Vec.getValueType();
909 
910     // If index isn't constant, assume we need all vector elements AND the
911     // inserted element.
912     APInt DemandedVecElts(DemandedElts);
913     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
914       unsigned Idx = CIdx->getZExtValue();
915       DemandedVecElts.clearBit(Idx);
916 
917       // Inserted element is not required.
918       if (!DemandedElts[Idx])
919         return TLO.CombineTo(Op, Vec);
920     }
921 
922     KnownBits KnownScl;
923     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
924     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
925     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
926       return true;
927 
928     Known = KnownScl.anyextOrTrunc(BitWidth);
929 
930     KnownBits KnownVec;
931     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
932                              Depth + 1))
933       return true;
934 
935     if (!!DemandedVecElts) {
936       Known.One &= KnownVec.One;
937       Known.Zero &= KnownVec.Zero;
938     }
939 
940     return false;
941   }
942   case ISD::INSERT_SUBVECTOR: {
943     SDValue Base = Op.getOperand(0);
944     SDValue Sub = Op.getOperand(1);
945     EVT SubVT = Sub.getValueType();
946     unsigned NumSubElts = SubVT.getVectorNumElements();
947 
948     // If index isn't constant, assume we need the original demanded base
949     // elements and ALL the inserted subvector elements.
950     APInt BaseElts = DemandedElts;
951     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
952     if (isa<ConstantSDNode>(Op.getOperand(2))) {
953       const APInt &Idx = Op.getConstantOperandAPInt(2);
954       if (Idx.ule(NumElts - NumSubElts)) {
955         unsigned SubIdx = Idx.getZExtValue();
956         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
957         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
958       }
959     }
960 
961     KnownBits KnownSub, KnownBase;
962     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
963                              Depth + 1))
964       return true;
965     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
966                              Depth + 1))
967       return true;
968 
969     Known.Zero.setAllBits();
970     Known.One.setAllBits();
971     if (!!SubElts) {
972         Known.One &= KnownSub.One;
973         Known.Zero &= KnownSub.Zero;
974     }
975     if (!!BaseElts) {
976         Known.One &= KnownBase.One;
977         Known.Zero &= KnownBase.Zero;
978     }
979 
980     // Attempt to avoid multi-use src if we don't need anything from it.
981     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
982         !BaseElts.isAllOnesValue()) {
983       SDValue NewSub = SimplifyMultipleUseDemandedBits(
984           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
985       SDValue NewBase = SimplifyMultipleUseDemandedBits(
986           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
987       if (NewSub || NewBase) {
988         NewSub = NewSub ? NewSub : Sub;
989         NewBase = NewBase ? NewBase : Base;
990         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
991                                         Op.getOperand(2));
992         return TLO.CombineTo(Op, NewOp);
993       }
994     }
995     break;
996   }
997   case ISD::EXTRACT_SUBVECTOR: {
998     // If index isn't constant, assume we need all the source vector elements.
999     SDValue Src = Op.getOperand(0);
1000     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1002     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
1003     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1004       // Offset the demanded elts by the subvector index.
1005       uint64_t Idx = SubIdx->getZExtValue();
1006       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1007     }
1008     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1009       return true;
1010 
1011     // Attempt to avoid multi-use src if we don't need anything from it.
1012     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1013       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1014           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1015       if (DemandedSrc) {
1016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1017                                         Op.getOperand(1));
1018         return TLO.CombineTo(Op, NewOp);
1019       }
1020     }
1021     break;
1022   }
1023   case ISD::CONCAT_VECTORS: {
1024     Known.Zero.setAllBits();
1025     Known.One.setAllBits();
1026     EVT SubVT = Op.getOperand(0).getValueType();
1027     unsigned NumSubVecs = Op.getNumOperands();
1028     unsigned NumSubElts = SubVT.getVectorNumElements();
1029     for (unsigned i = 0; i != NumSubVecs; ++i) {
1030       APInt DemandedSubElts =
1031           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1032       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1033                                Known2, TLO, Depth + 1))
1034         return true;
1035       // Known bits are shared by every demanded subvector element.
1036       if (!!DemandedSubElts) {
1037         Known.One &= Known2.One;
1038         Known.Zero &= Known2.Zero;
1039       }
1040     }
1041     break;
1042   }
1043   case ISD::VECTOR_SHUFFLE: {
1044     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1045 
1046     // Collect demanded elements from shuffle operands..
1047     APInt DemandedLHS(NumElts, 0);
1048     APInt DemandedRHS(NumElts, 0);
1049     for (unsigned i = 0; i != NumElts; ++i) {
1050       if (!DemandedElts[i])
1051         continue;
1052       int M = ShuffleMask[i];
1053       if (M < 0) {
1054         // For UNDEF elements, we don't know anything about the common state of
1055         // the shuffle result.
1056         DemandedLHS.clearAllBits();
1057         DemandedRHS.clearAllBits();
1058         break;
1059       }
1060       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1061       if (M < (int)NumElts)
1062         DemandedLHS.setBit(M);
1063       else
1064         DemandedRHS.setBit(M - NumElts);
1065     }
1066 
1067     if (!!DemandedLHS || !!DemandedRHS) {
1068       SDValue Op0 = Op.getOperand(0);
1069       SDValue Op1 = Op.getOperand(1);
1070 
1071       Known.Zero.setAllBits();
1072       Known.One.setAllBits();
1073       if (!!DemandedLHS) {
1074         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080       if (!!DemandedRHS) {
1081         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1082                                  Depth + 1))
1083           return true;
1084         Known.One &= Known2.One;
1085         Known.Zero &= Known2.Zero;
1086       }
1087 
1088       // Attempt to avoid multi-use ops if we don't need anything from them.
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100     break;
1101   }
1102   case ISD::AND: {
1103     SDValue Op0 = Op.getOperand(0);
1104     SDValue Op1 = Op.getOperand(1);
1105 
1106     // If the RHS is a constant, check to see if the LHS would be zero without
1107     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1108     // simplify the LHS, here we're using information from the LHS to simplify
1109     // the RHS.
1110     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1111       // Do not increment Depth here; that can cause an infinite loop.
1112       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1113       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1114       if ((LHSKnown.Zero & DemandedBits) ==
1115           (~RHSC->getAPIntValue() & DemandedBits))
1116         return TLO.CombineTo(Op, Op0);
1117 
1118       // If any of the set bits in the RHS are known zero on the LHS, shrink
1119       // the constant.
1120       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1121         return true;
1122 
1123       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1124       // constant, but if this 'and' is only clearing bits that were just set by
1125       // the xor, then this 'and' can be eliminated by shrinking the mask of
1126       // the xor. For example, for a 32-bit X:
1127       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1128       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1129           LHSKnown.One == ~RHSC->getAPIntValue()) {
1130         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1131         return TLO.CombineTo(Op, Xor);
1132       }
1133     }
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1140                              Known2, TLO, Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known one on one side, return the other.
1159     // These bits cannot contribute to the result of the 'and'.
1160     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1163       return TLO.CombineTo(Op, Op1);
1164     // If all of the demanded bits in the inputs are known zeros, return zero.
1165     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1166       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1167     // If the RHS is a constant, see if we can simplify it.
1168     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1169       return true;
1170     // If the operation can be done in a smaller type, do so.
1171     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1172       return true;
1173 
1174     // Output known-1 bits are only known if set in both the LHS & RHS.
1175     Known.One &= Known2.One;
1176     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1177     Known.Zero |= Known2.Zero;
1178     break;
1179   }
1180   case ISD::OR: {
1181     SDValue Op0 = Op.getOperand(0);
1182     SDValue Op1 = Op.getOperand(1);
1183 
1184     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1185                              Depth + 1))
1186       return true;
1187     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1188     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1189                              Known2, TLO, Depth + 1))
1190       return true;
1191     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     // Attempt to avoid multi-use ops if we don't need anything from them.
1194     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1195       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1196           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1198           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1199       if (DemandedOp0 || DemandedOp1) {
1200         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1201         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1202         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1203         return TLO.CombineTo(Op, NewOp);
1204       }
1205     }
1206 
1207     // If all of the demanded bits are known zero on one side, return the other.
1208     // These bits cannot contribute to the result of the 'or'.
1209     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1210       return TLO.CombineTo(Op, Op0);
1211     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1212       return TLO.CombineTo(Op, Op1);
1213     // If the RHS is a constant, see if we can simplify it.
1214     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1215       return true;
1216     // If the operation can be done in a smaller type, do so.
1217     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1218       return true;
1219 
1220     // Output known-0 bits are only known if clear in both the LHS & RHS.
1221     Known.Zero &= Known2.Zero;
1222     // Output known-1 are known to be set if set in either the LHS | RHS.
1223     Known.One |= Known2.One;
1224     break;
1225   }
1226   case ISD::XOR: {
1227     SDValue Op0 = Op.getOperand(0);
1228     SDValue Op1 = Op.getOperand(1);
1229 
1230     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1234     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1235                              Depth + 1))
1236       return true;
1237     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1238 
1239     // Attempt to avoid multi-use ops if we don't need anything from them.
1240     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1241       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1242           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1243       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1244           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1245       if (DemandedOp0 || DemandedOp1) {
1246         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1247         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1248         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252 
1253     // If all of the demanded bits are known zero on one side, return the other.
1254     // These bits cannot contribute to the result of the 'xor'.
1255     if (DemandedBits.isSubsetOf(Known.Zero))
1256       return TLO.CombineTo(Op, Op0);
1257     if (DemandedBits.isSubsetOf(Known2.Zero))
1258       return TLO.CombineTo(Op, Op1);
1259     // If the operation can be done in a smaller type, do so.
1260     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1261       return true;
1262 
1263     // If all of the unknown bits are known to be zero on one side or the other
1264     // (but not both) turn this into an *inclusive* or.
1265     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1266     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1267       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1268 
1269     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1270     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1271     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1272     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1273 
1274     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1275       // If one side is a constant, and all of the known set bits on the other
1276       // side are also set in the constant, turn this into an AND, as we know
1277       // the bits will be cleared.
1278       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1279       // NB: it is okay if more bits are known than are requested
1280       if (C->getAPIntValue() == Known2.One) {
1281         SDValue ANDC =
1282             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1283         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1284       }
1285 
1286       // If the RHS is a constant, see if we can change it. Don't alter a -1
1287       // constant because that's a 'not' op, and that is better for combining
1288       // and codegen.
1289       if (!C->isAllOnesValue()) {
1290         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1291           // We're flipping all demanded bits. Flip the undemanded bits too.
1292           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1293           return TLO.CombineTo(Op, New);
1294         }
1295         // If we can't turn this into a 'not', try to shrink the constant.
1296         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1297           return true;
1298       }
1299     }
1300 
1301     Known = std::move(KnownOut);
1302     break;
1303   }
1304   case ISD::SELECT:
1305     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1306                              Depth + 1))
1307       return true;
1308     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1313 
1314     // If the operands are constants, see if we can simplify them.
1315     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1316       return true;
1317 
1318     // Only known if known in both the LHS and RHS.
1319     Known.One &= Known2.One;
1320     Known.Zero &= Known2.Zero;
1321     break;
1322   case ISD::SELECT_CC:
1323     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1324                              Depth + 1))
1325       return true;
1326     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1327                              Depth + 1))
1328       return true;
1329     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1330     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1331 
1332     // If the operands are constants, see if we can simplify them.
1333     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1334       return true;
1335 
1336     // Only known if known in both the LHS and RHS.
1337     Known.One &= Known2.One;
1338     Known.Zero &= Known2.Zero;
1339     break;
1340   case ISD::SETCC: {
1341     SDValue Op0 = Op.getOperand(0);
1342     SDValue Op1 = Op.getOperand(1);
1343     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1344     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1345     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1346     // -1, we may be able to bypass the setcc.
1347     if (DemandedBits.isSignMask() &&
1348         Op0.getScalarValueSizeInBits() == BitWidth &&
1349         getBooleanContents(Op0.getValueType()) ==
1350             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1351       // If we're testing X < 0, then this compare isn't needed - just use X!
1352       // FIXME: We're limiting to integer types here, but this should also work
1353       // if we don't care about FP signed-zero. The use of SETLT with FP means
1354       // that we don't care about NaNs.
1355       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1356           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1357         return TLO.CombineTo(Op, Op0);
1358 
1359       // TODO: Should we check for other forms of sign-bit comparisons?
1360       // Examples: X <= -1, X >= 0
1361     }
1362     if (getBooleanContents(Op0.getValueType()) ==
1363             TargetLowering::ZeroOrOneBooleanContent &&
1364         BitWidth > 1)
1365       Known.Zero.setBitsFrom(1);
1366     break;
1367   }
1368   case ISD::SHL: {
1369     SDValue Op0 = Op.getOperand(0);
1370     SDValue Op1 = Op.getOperand(1);
1371     EVT ShiftVT = Op1.getValueType();
1372 
1373     if (const APInt *SA =
1374             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1375       unsigned ShAmt = SA->getZExtValue();
1376       if (ShAmt == 0)
1377         return TLO.CombineTo(Op, Op0);
1378 
1379       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1380       // single shift.  We can do this if the bottom bits (which are shifted
1381       // out) are never demanded.
1382       // TODO - support non-uniform vector amounts.
1383       if (Op0.getOpcode() == ISD::SRL) {
1384         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1385           if (const APInt *SA2 =
1386                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1387             if (SA2->ult(BitWidth)) {
1388               unsigned C1 = SA2->getZExtValue();
1389               unsigned Opc = ISD::SHL;
1390               int Diff = ShAmt - C1;
1391               if (Diff < 0) {
1392                 Diff = -Diff;
1393                 Opc = ISD::SRL;
1394               }
1395 
1396               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1397               return TLO.CombineTo(
1398                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1399             }
1400           }
1401         }
1402       }
1403 
1404       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1405       // are not demanded. This will likely allow the anyext to be folded away.
1406       // TODO - support non-uniform vector amounts.
1407       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1408         SDValue InnerOp = Op0.getOperand(0);
1409         EVT InnerVT = InnerOp.getValueType();
1410         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1411         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1412             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1413           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1414           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1415             ShTy = InnerVT;
1416           SDValue NarrowShl =
1417               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1418                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1419           return TLO.CombineTo(
1420               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1421         }
1422 
1423         // Repeat the SHL optimization above in cases where an extension
1424         // intervenes: (shl (anyext (shr x, c1)), c2) to
1425         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1426         // aren't demanded (as above) and that the shifted upper c1 bits of
1427         // x aren't demanded.
1428         // TODO - support non-uniform vector amounts.
1429         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1430             InnerOp.hasOneUse()) {
1431           if (const APInt *SA2 =
1432                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1433             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1434             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1435                 DemandedBits.getActiveBits() <=
1436                     (InnerBits - InnerShAmt + ShAmt) &&
1437                 DemandedBits.countTrailingZeros() >= ShAmt) {
1438               SDValue NewSA =
1439                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1440               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1441                                                InnerOp.getOperand(0));
1442               return TLO.CombineTo(
1443                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1444             }
1445           }
1446         }
1447       }
1448 
1449       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1450       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1451                                Depth + 1))
1452         return true;
1453       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1454       Known.Zero <<= ShAmt;
1455       Known.One <<= ShAmt;
1456       // low bits known zero.
1457       Known.Zero.setLowBits(ShAmt);
1458 
1459       // Try shrinking the operation as long as the shift amount will still be
1460       // in range.
1461       if ((ShAmt < DemandedBits.getActiveBits()) &&
1462           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1463         return true;
1464     }
1465     break;
1466   }
1467   case ISD::SRL: {
1468     SDValue Op0 = Op.getOperand(0);
1469     SDValue Op1 = Op.getOperand(1);
1470     EVT ShiftVT = Op1.getValueType();
1471 
1472     if (const APInt *SA =
1473             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1474       unsigned ShAmt = SA->getZExtValue();
1475       if (ShAmt == 0)
1476         return TLO.CombineTo(Op, Op0);
1477 
1478       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1479       // single shift.  We can do this if the top bits (which are shifted out)
1480       // are never demanded.
1481       // TODO - support non-uniform vector amounts.
1482       if (Op0.getOpcode() == ISD::SHL) {
1483         if (const APInt *SA2 =
1484                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1485           if (!DemandedBits.intersects(
1486                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1487             if (SA2->ult(BitWidth)) {
1488               unsigned C1 = SA2->getZExtValue();
1489               unsigned Opc = ISD::SRL;
1490               int Diff = ShAmt - C1;
1491               if (Diff < 0) {
1492                 Diff = -Diff;
1493                 Opc = ISD::SHL;
1494               }
1495 
1496               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1497               return TLO.CombineTo(
1498                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1499             }
1500           }
1501         }
1502       }
1503 
1504       APInt InDemandedMask = (DemandedBits << ShAmt);
1505 
1506       // If the shift is exact, then it does demand the low bits (and knows that
1507       // they are zero).
1508       if (Op->getFlags().hasExact())
1509         InDemandedMask.setLowBits(ShAmt);
1510 
1511       // Compute the new bits that are at the top now.
1512       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1513                                Depth + 1))
1514         return true;
1515       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1516       Known.Zero.lshrInPlace(ShAmt);
1517       Known.One.lshrInPlace(ShAmt);
1518       // High bits known zero.
1519       Known.Zero.setHighBits(ShAmt);
1520     }
1521     break;
1522   }
1523   case ISD::SRA: {
1524     SDValue Op0 = Op.getOperand(0);
1525     SDValue Op1 = Op.getOperand(1);
1526     EVT ShiftVT = Op1.getValueType();
1527 
1528     // If we only want bits that already match the signbit then we don't need
1529     // to shift.
1530     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1531     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1532         NumHiDemandedBits)
1533       return TLO.CombineTo(Op, Op0);
1534 
1535     // If this is an arithmetic shift right and only the low-bit is set, we can
1536     // always convert this into a logical shr, even if the shift amount is
1537     // variable.  The low bit of the shift cannot be an input sign bit unless
1538     // the shift amount is >= the size of the datatype, which is undefined.
1539     if (DemandedBits.isOneValue())
1540       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1541 
1542     if (const APInt *SA =
1543             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1544       unsigned ShAmt = SA->getZExtValue();
1545       if (ShAmt == 0)
1546         return TLO.CombineTo(Op, Op0);
1547 
1548       APInt InDemandedMask = (DemandedBits << ShAmt);
1549 
1550       // If the shift is exact, then it does demand the low bits (and knows that
1551       // they are zero).
1552       if (Op->getFlags().hasExact())
1553         InDemandedMask.setLowBits(ShAmt);
1554 
1555       // If any of the demanded bits are produced by the sign extension, we also
1556       // demand the input sign bit.
1557       if (DemandedBits.countLeadingZeros() < ShAmt)
1558         InDemandedMask.setSignBit();
1559 
1560       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1561                                Depth + 1))
1562         return true;
1563       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1564       Known.Zero.lshrInPlace(ShAmt);
1565       Known.One.lshrInPlace(ShAmt);
1566 
1567       // If the input sign bit is known to be zero, or if none of the top bits
1568       // are demanded, turn this into an unsigned shift right.
1569       if (Known.Zero[BitWidth - ShAmt - 1] ||
1570           DemandedBits.countLeadingZeros() >= ShAmt) {
1571         SDNodeFlags Flags;
1572         Flags.setExact(Op->getFlags().hasExact());
1573         return TLO.CombineTo(
1574             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1575       }
1576 
1577       int Log2 = DemandedBits.exactLogBase2();
1578       if (Log2 >= 0) {
1579         // The bit must come from the sign.
1580         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1581         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1582       }
1583 
1584       if (Known.One[BitWidth - ShAmt - 1])
1585         // New bits are known one.
1586         Known.One.setHighBits(ShAmt);
1587 
1588       // Attempt to avoid multi-use ops if we don't need anything from them.
1589       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1590         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1591             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1592         if (DemandedOp0) {
1593           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1594           return TLO.CombineTo(Op, NewOp);
1595         }
1596       }
1597     }
1598     break;
1599   }
1600   case ISD::FSHL:
1601   case ISD::FSHR: {
1602     SDValue Op0 = Op.getOperand(0);
1603     SDValue Op1 = Op.getOperand(1);
1604     SDValue Op2 = Op.getOperand(2);
1605     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1606 
1607     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1608       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1609 
1610       // For fshl, 0-shift returns the 1st arg.
1611       // For fshr, 0-shift returns the 2nd arg.
1612       if (Amt == 0) {
1613         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1614                                  Known, TLO, Depth + 1))
1615           return true;
1616         break;
1617       }
1618 
1619       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1620       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1621       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1622       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1623       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1624                                Depth + 1))
1625         return true;
1626       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1627                                Depth + 1))
1628         return true;
1629 
1630       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1631       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1632       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1633       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1634       Known.One |= Known2.One;
1635       Known.Zero |= Known2.Zero;
1636     }
1637 
1638     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1639     if (isPowerOf2_32(BitWidth)) {
1640       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1641       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1642                                Known2, TLO, Depth + 1))
1643         return true;
1644     }
1645     break;
1646   }
1647   case ISD::ROTL:
1648   case ISD::ROTR: {
1649     SDValue Op0 = Op.getOperand(0);
1650     SDValue Op1 = Op.getOperand(1);
1651 
1652     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1653     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1654       return TLO.CombineTo(Op, Op0);
1655 
1656     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1657     if (isPowerOf2_32(BitWidth)) {
1658       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1659       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1660                                Depth + 1))
1661         return true;
1662     }
1663     break;
1664   }
1665   case ISD::BITREVERSE: {
1666     SDValue Src = Op.getOperand(0);
1667     APInt DemandedSrcBits = DemandedBits.reverseBits();
1668     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1669                              Depth + 1))
1670       return true;
1671     Known.One = Known2.One.reverseBits();
1672     Known.Zero = Known2.Zero.reverseBits();
1673     break;
1674   }
1675   case ISD::BSWAP: {
1676     SDValue Src = Op.getOperand(0);
1677     APInt DemandedSrcBits = DemandedBits.byteSwap();
1678     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1679                              Depth + 1))
1680       return true;
1681     Known.One = Known2.One.byteSwap();
1682     Known.Zero = Known2.Zero.byteSwap();
1683     break;
1684   }
1685   case ISD::SIGN_EXTEND_INREG: {
1686     SDValue Op0 = Op.getOperand(0);
1687     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1688     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1689 
1690     // If we only care about the highest bit, don't bother shifting right.
1691     if (DemandedBits.isSignMask()) {
1692       unsigned NumSignBits =
1693           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1694       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1695       // However if the input is already sign extended we expect the sign
1696       // extension to be dropped altogether later and do not simplify.
1697       if (!AlreadySignExtended) {
1698         // Compute the correct shift amount type, which must be getShiftAmountTy
1699         // for scalar types after legalization.
1700         EVT ShiftAmtTy = VT;
1701         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1702           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1703 
1704         SDValue ShiftAmt =
1705             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1706         return TLO.CombineTo(Op,
1707                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1708       }
1709     }
1710 
1711     // If none of the extended bits are demanded, eliminate the sextinreg.
1712     if (DemandedBits.getActiveBits() <= ExVTBits)
1713       return TLO.CombineTo(Op, Op0);
1714 
1715     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1716 
1717     // Since the sign extended bits are demanded, we know that the sign
1718     // bit is demanded.
1719     InputDemandedBits.setBit(ExVTBits - 1);
1720 
1721     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1722       return true;
1723     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1724 
1725     // If the sign bit of the input is known set or clear, then we know the
1726     // top bits of the result.
1727 
1728     // If the input sign bit is known zero, convert this into a zero extension.
1729     if (Known.Zero[ExVTBits - 1])
1730       return TLO.CombineTo(
1731           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1732 
1733     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1734     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1735       Known.One.setBitsFrom(ExVTBits);
1736       Known.Zero &= Mask;
1737     } else { // Input sign bit unknown
1738       Known.Zero &= Mask;
1739       Known.One &= Mask;
1740     }
1741     break;
1742   }
1743   case ISD::BUILD_PAIR: {
1744     EVT HalfVT = Op.getOperand(0).getValueType();
1745     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1746 
1747     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1748     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1749 
1750     KnownBits KnownLo, KnownHi;
1751 
1752     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1753       return true;
1754 
1755     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1756       return true;
1757 
1758     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1759                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1760 
1761     Known.One = KnownLo.One.zext(BitWidth) |
1762                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1763     break;
1764   }
1765   case ISD::ZERO_EXTEND:
1766   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1767     SDValue Src = Op.getOperand(0);
1768     EVT SrcVT = Src.getValueType();
1769     unsigned InBits = SrcVT.getScalarSizeInBits();
1770     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1771     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1772 
1773     // If none of the top bits are demanded, convert this into an any_extend.
1774     if (DemandedBits.getActiveBits() <= InBits) {
1775       // If we only need the non-extended bits of the bottom element
1776       // then we can just bitcast to the result.
1777       if (IsVecInReg && DemandedElts == 1 &&
1778           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1779           TLO.DAG.getDataLayout().isLittleEndian())
1780         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1781 
1782       unsigned Opc =
1783           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1784       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1785         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1786     }
1787 
1788     APInt InDemandedBits = DemandedBits.trunc(InBits);
1789     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1790     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1791                              Depth + 1))
1792       return true;
1793     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1794     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1795     Known = Known.zext(BitWidth);
1796     break;
1797   }
1798   case ISD::SIGN_EXTEND:
1799   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1800     SDValue Src = Op.getOperand(0);
1801     EVT SrcVT = Src.getValueType();
1802     unsigned InBits = SrcVT.getScalarSizeInBits();
1803     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1804     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1805 
1806     // If none of the top bits are demanded, convert this into an any_extend.
1807     if (DemandedBits.getActiveBits() <= InBits) {
1808       // If we only need the non-extended bits of the bottom element
1809       // then we can just bitcast to the result.
1810       if (IsVecInReg && DemandedElts == 1 &&
1811           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1812           TLO.DAG.getDataLayout().isLittleEndian())
1813         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1814 
1815       unsigned Opc =
1816           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1817       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1818         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1819     }
1820 
1821     APInt InDemandedBits = DemandedBits.trunc(InBits);
1822     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1823 
1824     // Since some of the sign extended bits are demanded, we know that the sign
1825     // bit is demanded.
1826     InDemandedBits.setBit(InBits - 1);
1827 
1828     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1829                              Depth + 1))
1830       return true;
1831     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1832     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1833 
1834     // If the sign bit is known one, the top bits match.
1835     Known = Known.sext(BitWidth);
1836 
1837     // If the sign bit is known zero, convert this to a zero extend.
1838     if (Known.isNonNegative()) {
1839       unsigned Opc =
1840           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1841       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1842         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1843     }
1844     break;
1845   }
1846   case ISD::ANY_EXTEND:
1847   case ISD::ANY_EXTEND_VECTOR_INREG: {
1848     SDValue Src = Op.getOperand(0);
1849     EVT SrcVT = Src.getValueType();
1850     unsigned InBits = SrcVT.getScalarSizeInBits();
1851     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1852     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1853 
1854     // If we only need the bottom element then we can just bitcast.
1855     // TODO: Handle ANY_EXTEND?
1856     if (IsVecInReg && DemandedElts == 1 &&
1857         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1858         TLO.DAG.getDataLayout().isLittleEndian())
1859       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1860 
1861     APInt InDemandedBits = DemandedBits.trunc(InBits);
1862     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1863     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1864                              Depth + 1))
1865       return true;
1866     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1867     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1868     Known = Known.anyext(BitWidth);
1869 
1870     // Attempt to avoid multi-use ops if we don't need anything from them.
1871     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1872             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1873       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1874     break;
1875   }
1876   case ISD::TRUNCATE: {
1877     SDValue Src = Op.getOperand(0);
1878 
1879     // Simplify the input, using demanded bit information, and compute the known
1880     // zero/one bits live out.
1881     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1882     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1883     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1884       return true;
1885     Known = Known.trunc(BitWidth);
1886 
1887     // Attempt to avoid multi-use ops if we don't need anything from them.
1888     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1889             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1890       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1891 
1892     // If the input is only used by this truncate, see if we can shrink it based
1893     // on the known demanded bits.
1894     if (Src.getNode()->hasOneUse()) {
1895       switch (Src.getOpcode()) {
1896       default:
1897         break;
1898       case ISD::SRL:
1899         // Shrink SRL by a constant if none of the high bits shifted in are
1900         // demanded.
1901         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1902           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1903           // undesirable.
1904           break;
1905 
1906         SDValue ShAmt = Src.getOperand(1);
1907         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1908         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1909           break;
1910         uint64_t ShVal = ShAmtC->getZExtValue();
1911 
1912         APInt HighBits =
1913             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1914         HighBits.lshrInPlace(ShVal);
1915         HighBits = HighBits.trunc(BitWidth);
1916 
1917         if (!(HighBits & DemandedBits)) {
1918           // None of the shifted in bits are needed.  Add a truncate of the
1919           // shift input, then shift it.
1920           if (TLO.LegalTypes())
1921             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1922           SDValue NewTrunc =
1923               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1924           return TLO.CombineTo(
1925               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1926         }
1927         break;
1928       }
1929     }
1930 
1931     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1932     break;
1933   }
1934   case ISD::AssertZext: {
1935     // AssertZext demands all of the high bits, plus any of the low bits
1936     // demanded by its users.
1937     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1938     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1939     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1940                              TLO, Depth + 1))
1941       return true;
1942     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1943 
1944     Known.Zero |= ~InMask;
1945     break;
1946   }
1947   case ISD::EXTRACT_VECTOR_ELT: {
1948     SDValue Src = Op.getOperand(0);
1949     SDValue Idx = Op.getOperand(1);
1950     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1951     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1952 
1953     // Demand the bits from every vector element without a constant index.
1954     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1955     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1956       if (CIdx->getAPIntValue().ult(NumSrcElts))
1957         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1958 
1959     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1960     // anything about the extended bits.
1961     APInt DemandedSrcBits = DemandedBits;
1962     if (BitWidth > EltBitWidth)
1963       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1964 
1965     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1966                              Depth + 1))
1967       return true;
1968 
1969     // Attempt to avoid multi-use ops if we don't need anything from them.
1970     if (!DemandedSrcBits.isAllOnesValue() ||
1971         !DemandedSrcElts.isAllOnesValue()) {
1972       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1973               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1974         SDValue NewOp =
1975             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1976         return TLO.CombineTo(Op, NewOp);
1977       }
1978     }
1979 
1980     Known = Known2;
1981     if (BitWidth > EltBitWidth)
1982       Known = Known.anyext(BitWidth);
1983     break;
1984   }
1985   case ISD::BITCAST: {
1986     SDValue Src = Op.getOperand(0);
1987     EVT SrcVT = Src.getValueType();
1988     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1989 
1990     // If this is an FP->Int bitcast and if the sign bit is the only
1991     // thing demanded, turn this into a FGETSIGN.
1992     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1993         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1994         SrcVT.isFloatingPoint()) {
1995       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1996       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1997       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1998           SrcVT != MVT::f128) {
1999         // Cannot eliminate/lower SHL for f128 yet.
2000         EVT Ty = OpVTLegal ? VT : MVT::i32;
2001         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2002         // place.  We expect the SHL to be eliminated by other optimizations.
2003         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2004         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2005         if (!OpVTLegal && OpVTSizeInBits > 32)
2006           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2007         unsigned ShVal = Op.getValueSizeInBits() - 1;
2008         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2009         return TLO.CombineTo(Op,
2010                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2011       }
2012     }
2013 
2014     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2015     // Demand the elt/bit if any of the original elts/bits are demanded.
2016     // TODO - bigendian once we have test coverage.
2017     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2018         TLO.DAG.getDataLayout().isLittleEndian()) {
2019       unsigned Scale = BitWidth / NumSrcEltBits;
2020       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2021       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2022       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2023       for (unsigned i = 0; i != Scale; ++i) {
2024         unsigned Offset = i * NumSrcEltBits;
2025         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2026         if (!Sub.isNullValue()) {
2027           DemandedSrcBits |= Sub;
2028           for (unsigned j = 0; j != NumElts; ++j)
2029             if (DemandedElts[j])
2030               DemandedSrcElts.setBit((j * Scale) + i);
2031         }
2032       }
2033 
2034       APInt KnownSrcUndef, KnownSrcZero;
2035       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2036                                      KnownSrcZero, TLO, Depth + 1))
2037         return true;
2038 
2039       KnownBits KnownSrcBits;
2040       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2041                                KnownSrcBits, TLO, Depth + 1))
2042         return true;
2043     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2044                TLO.DAG.getDataLayout().isLittleEndian()) {
2045       unsigned Scale = NumSrcEltBits / BitWidth;
2046       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2047       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2048       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2049       for (unsigned i = 0; i != NumElts; ++i)
2050         if (DemandedElts[i]) {
2051           unsigned Offset = (i % Scale) * BitWidth;
2052           DemandedSrcBits.insertBits(DemandedBits, Offset);
2053           DemandedSrcElts.setBit(i / Scale);
2054         }
2055 
2056       if (SrcVT.isVector()) {
2057         APInt KnownSrcUndef, KnownSrcZero;
2058         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2059                                        KnownSrcZero, TLO, Depth + 1))
2060           return true;
2061       }
2062 
2063       KnownBits KnownSrcBits;
2064       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2065                                KnownSrcBits, TLO, Depth + 1))
2066         return true;
2067     }
2068 
2069     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2070     // recursive call where Known may be useful to the caller.
2071     if (Depth > 0) {
2072       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2073       return false;
2074     }
2075     break;
2076   }
2077   case ISD::ADD:
2078   case ISD::MUL:
2079   case ISD::SUB: {
2080     // Add, Sub, and Mul don't demand any bits in positions beyond that
2081     // of the highest bit demanded of them.
2082     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2083     SDNodeFlags Flags = Op.getNode()->getFlags();
2084     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2085     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2086     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2087                              Depth + 1) ||
2088         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2089                              Depth + 1) ||
2090         // See if the operation should be performed at a smaller bit width.
2091         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2092       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2093         // Disable the nsw and nuw flags. We can no longer guarantee that we
2094         // won't wrap after simplification.
2095         Flags.setNoSignedWrap(false);
2096         Flags.setNoUnsignedWrap(false);
2097         SDValue NewOp =
2098             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2099         return TLO.CombineTo(Op, NewOp);
2100       }
2101       return true;
2102     }
2103 
2104     // Attempt to avoid multi-use ops if we don't need anything from them.
2105     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2106       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2107           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2108       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2109           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2110       if (DemandedOp0 || DemandedOp1) {
2111         Flags.setNoSignedWrap(false);
2112         Flags.setNoUnsignedWrap(false);
2113         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2114         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2115         SDValue NewOp =
2116             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2117         return TLO.CombineTo(Op, NewOp);
2118       }
2119     }
2120 
2121     // If we have a constant operand, we may be able to turn it into -1 if we
2122     // do not demand the high bits. This can make the constant smaller to
2123     // encode, allow more general folding, or match specialized instruction
2124     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2125     // is probably not useful (and could be detrimental).
2126     ConstantSDNode *C = isConstOrConstSplat(Op1);
2127     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2128     if (C && !C->isAllOnesValue() && !C->isOne() &&
2129         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2130       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2131       // Disable the nsw and nuw flags. We can no longer guarantee that we
2132       // won't wrap after simplification.
2133       Flags.setNoSignedWrap(false);
2134       Flags.setNoUnsignedWrap(false);
2135       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2136       return TLO.CombineTo(Op, NewOp);
2137     }
2138 
2139     LLVM_FALLTHROUGH;
2140   }
2141   default:
2142     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2143       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2144                                             Known, TLO, Depth))
2145         return true;
2146       break;
2147     }
2148 
2149     // Just use computeKnownBits to compute output bits.
2150     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2151     break;
2152   }
2153 
2154   // If we know the value of all of the demanded bits, return this as a
2155   // constant.
2156   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2157     // Avoid folding to a constant if any OpaqueConstant is involved.
2158     const SDNode *N = Op.getNode();
2159     for (SDNodeIterator I = SDNodeIterator::begin(N),
2160                         E = SDNodeIterator::end(N);
2161          I != E; ++I) {
2162       SDNode *Op = *I;
2163       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2164         if (C->isOpaque())
2165           return false;
2166     }
2167     // TODO: Handle float bits as well.
2168     if (VT.isInteger())
2169       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2170   }
2171 
2172   return false;
2173 }
2174 
2175 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2176                                                 const APInt &DemandedElts,
2177                                                 APInt &KnownUndef,
2178                                                 APInt &KnownZero,
2179                                                 DAGCombinerInfo &DCI) const {
2180   SelectionDAG &DAG = DCI.DAG;
2181   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2182                         !DCI.isBeforeLegalizeOps());
2183 
2184   bool Simplified =
2185       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2186   if (Simplified) {
2187     DCI.AddToWorklist(Op.getNode());
2188     DCI.CommitTargetLoweringOpt(TLO);
2189   }
2190 
2191   return Simplified;
2192 }
2193 
2194 /// Given a vector binary operation and known undefined elements for each input
2195 /// operand, compute whether each element of the output is undefined.
2196 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2197                                          const APInt &UndefOp0,
2198                                          const APInt &UndefOp1) {
2199   EVT VT = BO.getValueType();
2200   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2201          "Vector binop only");
2202 
2203   EVT EltVT = VT.getVectorElementType();
2204   unsigned NumElts = VT.getVectorNumElements();
2205   assert(UndefOp0.getBitWidth() == NumElts &&
2206          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2207 
2208   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2209                                    const APInt &UndefVals) {
2210     if (UndefVals[Index])
2211       return DAG.getUNDEF(EltVT);
2212 
2213     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2214       // Try hard to make sure that the getNode() call is not creating temporary
2215       // nodes. Ignore opaque integers because they do not constant fold.
2216       SDValue Elt = BV->getOperand(Index);
2217       auto *C = dyn_cast<ConstantSDNode>(Elt);
2218       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2219         return Elt;
2220     }
2221 
2222     return SDValue();
2223   };
2224 
2225   APInt KnownUndef = APInt::getNullValue(NumElts);
2226   for (unsigned i = 0; i != NumElts; ++i) {
2227     // If both inputs for this element are either constant or undef and match
2228     // the element type, compute the constant/undef result for this element of
2229     // the vector.
2230     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2231     // not handle FP constants. The code within getNode() should be refactored
2232     // to avoid the danger of creating a bogus temporary node here.
2233     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2234     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2235     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2236       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2237         KnownUndef.setBit(i);
2238   }
2239   return KnownUndef;
2240 }
2241 
2242 bool TargetLowering::SimplifyDemandedVectorElts(
2243     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2244     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2245     bool AssumeSingleUse) const {
2246   EVT VT = Op.getValueType();
2247   APInt DemandedElts = OriginalDemandedElts;
2248   unsigned NumElts = DemandedElts.getBitWidth();
2249   assert(VT.isVector() && "Expected vector op");
2250   assert(VT.getVectorNumElements() == NumElts &&
2251          "Mask size mismatches value type element count!");
2252 
2253   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2254 
2255   // Undef operand.
2256   if (Op.isUndef()) {
2257     KnownUndef.setAllBits();
2258     return false;
2259   }
2260 
2261   // If Op has other users, assume that all elements are needed.
2262   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2263     DemandedElts.setAllBits();
2264 
2265   // Not demanding any elements from Op.
2266   if (DemandedElts == 0) {
2267     KnownUndef.setAllBits();
2268     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2269   }
2270 
2271   // Limit search depth.
2272   if (Depth >= SelectionDAG::MaxRecursionDepth)
2273     return false;
2274 
2275   SDLoc DL(Op);
2276   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2277 
2278   switch (Op.getOpcode()) {
2279   case ISD::SCALAR_TO_VECTOR: {
2280     if (!DemandedElts[0]) {
2281       KnownUndef.setAllBits();
2282       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2283     }
2284     KnownUndef.setHighBits(NumElts - 1);
2285     break;
2286   }
2287   case ISD::BITCAST: {
2288     SDValue Src = Op.getOperand(0);
2289     EVT SrcVT = Src.getValueType();
2290 
2291     // We only handle vectors here.
2292     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2293     if (!SrcVT.isVector())
2294       break;
2295 
2296     // Fast handling of 'identity' bitcasts.
2297     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2298     if (NumSrcElts == NumElts)
2299       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2300                                         KnownZero, TLO, Depth + 1);
2301 
2302     APInt SrcZero, SrcUndef;
2303     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2304 
2305     // Bitcast from 'large element' src vector to 'small element' vector, we
2306     // must demand a source element if any DemandedElt maps to it.
2307     if ((NumElts % NumSrcElts) == 0) {
2308       unsigned Scale = NumElts / NumSrcElts;
2309       for (unsigned i = 0; i != NumElts; ++i)
2310         if (DemandedElts[i])
2311           SrcDemandedElts.setBit(i / Scale);
2312 
2313       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2314                                      TLO, Depth + 1))
2315         return true;
2316 
2317       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2318       // of the large element.
2319       // TODO - bigendian once we have test coverage.
2320       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2321         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2322         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2323         for (unsigned i = 0; i != NumElts; ++i)
2324           if (DemandedElts[i]) {
2325             unsigned Ofs = (i % Scale) * EltSizeInBits;
2326             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2327           }
2328 
2329         KnownBits Known;
2330         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2331                                  TLO, Depth + 1))
2332           return true;
2333       }
2334 
2335       // If the src element is zero/undef then all the output elements will be -
2336       // only demanded elements are guaranteed to be correct.
2337       for (unsigned i = 0; i != NumSrcElts; ++i) {
2338         if (SrcDemandedElts[i]) {
2339           if (SrcZero[i])
2340             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2341           if (SrcUndef[i])
2342             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2343         }
2344       }
2345     }
2346 
2347     // Bitcast from 'small element' src vector to 'large element' vector, we
2348     // demand all smaller source elements covered by the larger demanded element
2349     // of this vector.
2350     if ((NumSrcElts % NumElts) == 0) {
2351       unsigned Scale = NumSrcElts / NumElts;
2352       for (unsigned i = 0; i != NumElts; ++i)
2353         if (DemandedElts[i])
2354           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2355 
2356       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2357                                      TLO, Depth + 1))
2358         return true;
2359 
2360       // If all the src elements covering an output element are zero/undef, then
2361       // the output element will be as well, assuming it was demanded.
2362       for (unsigned i = 0; i != NumElts; ++i) {
2363         if (DemandedElts[i]) {
2364           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2365             KnownZero.setBit(i);
2366           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2367             KnownUndef.setBit(i);
2368         }
2369       }
2370     }
2371     break;
2372   }
2373   case ISD::BUILD_VECTOR: {
2374     // Check all elements and simplify any unused elements with UNDEF.
2375     if (!DemandedElts.isAllOnesValue()) {
2376       // Don't simplify BROADCASTS.
2377       if (llvm::any_of(Op->op_values(),
2378                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2379         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2380         bool Updated = false;
2381         for (unsigned i = 0; i != NumElts; ++i) {
2382           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2383             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2384             KnownUndef.setBit(i);
2385             Updated = true;
2386           }
2387         }
2388         if (Updated)
2389           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2390       }
2391     }
2392     for (unsigned i = 0; i != NumElts; ++i) {
2393       SDValue SrcOp = Op.getOperand(i);
2394       if (SrcOp.isUndef()) {
2395         KnownUndef.setBit(i);
2396       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2397                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2398         KnownZero.setBit(i);
2399       }
2400     }
2401     break;
2402   }
2403   case ISD::CONCAT_VECTORS: {
2404     EVT SubVT = Op.getOperand(0).getValueType();
2405     unsigned NumSubVecs = Op.getNumOperands();
2406     unsigned NumSubElts = SubVT.getVectorNumElements();
2407     for (unsigned i = 0; i != NumSubVecs; ++i) {
2408       SDValue SubOp = Op.getOperand(i);
2409       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2410       APInt SubUndef, SubZero;
2411       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2412                                      Depth + 1))
2413         return true;
2414       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2415       KnownZero.insertBits(SubZero, i * NumSubElts);
2416     }
2417     break;
2418   }
2419   case ISD::INSERT_SUBVECTOR: {
2420     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2421       break;
2422     SDValue Base = Op.getOperand(0);
2423     SDValue Sub = Op.getOperand(1);
2424     EVT SubVT = Sub.getValueType();
2425     unsigned NumSubElts = SubVT.getVectorNumElements();
2426     const APInt &Idx = Op.getConstantOperandAPInt(2);
2427     if (Idx.ugt(NumElts - NumSubElts))
2428       break;
2429     unsigned SubIdx = Idx.getZExtValue();
2430     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2431     APInt SubUndef, SubZero;
2432     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2433                                    Depth + 1))
2434       return true;
2435     APInt BaseElts = DemandedElts;
2436     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2437 
2438     // If none of the base operand elements are demanded, replace it with undef.
2439     if (!BaseElts && !Base.isUndef())
2440       return TLO.CombineTo(Op,
2441                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2442                                            TLO.DAG.getUNDEF(VT),
2443                                            Op.getOperand(1),
2444                                            Op.getOperand(2)));
2445 
2446     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2447                                    Depth + 1))
2448       return true;
2449     KnownUndef.insertBits(SubUndef, SubIdx);
2450     KnownZero.insertBits(SubZero, SubIdx);
2451     break;
2452   }
2453   case ISD::EXTRACT_SUBVECTOR: {
2454     SDValue Src = Op.getOperand(0);
2455     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2456     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2457     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2458       // Offset the demanded elts by the subvector index.
2459       uint64_t Idx = SubIdx->getZExtValue();
2460       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2461       APInt SrcUndef, SrcZero;
2462       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2463                                      Depth + 1))
2464         return true;
2465       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2466       KnownZero = SrcZero.extractBits(NumElts, Idx);
2467     }
2468     break;
2469   }
2470   case ISD::INSERT_VECTOR_ELT: {
2471     SDValue Vec = Op.getOperand(0);
2472     SDValue Scl = Op.getOperand(1);
2473     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2474 
2475     // For a legal, constant insertion index, if we don't need this insertion
2476     // then strip it, else remove it from the demanded elts.
2477     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2478       unsigned Idx = CIdx->getZExtValue();
2479       if (!DemandedElts[Idx])
2480         return TLO.CombineTo(Op, Vec);
2481 
2482       APInt DemandedVecElts(DemandedElts);
2483       DemandedVecElts.clearBit(Idx);
2484       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2485                                      KnownZero, TLO, Depth + 1))
2486         return true;
2487 
2488       KnownUndef.clearBit(Idx);
2489       if (Scl.isUndef())
2490         KnownUndef.setBit(Idx);
2491 
2492       KnownZero.clearBit(Idx);
2493       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2494         KnownZero.setBit(Idx);
2495       break;
2496     }
2497 
2498     APInt VecUndef, VecZero;
2499     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2500                                    Depth + 1))
2501       return true;
2502     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2503     break;
2504   }
2505   case ISD::VSELECT: {
2506     // Try to transform the select condition based on the current demanded
2507     // elements.
2508     // TODO: If a condition element is undef, we can choose from one arm of the
2509     //       select (and if one arm is undef, then we can propagate that to the
2510     //       result).
2511     // TODO - add support for constant vselect masks (see IR version of this).
2512     APInt UnusedUndef, UnusedZero;
2513     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2514                                    UnusedZero, TLO, Depth + 1))
2515       return true;
2516 
2517     // See if we can simplify either vselect operand.
2518     APInt DemandedLHS(DemandedElts);
2519     APInt DemandedRHS(DemandedElts);
2520     APInt UndefLHS, ZeroLHS;
2521     APInt UndefRHS, ZeroRHS;
2522     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2523                                    ZeroLHS, TLO, Depth + 1))
2524       return true;
2525     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2526                                    ZeroRHS, TLO, Depth + 1))
2527       return true;
2528 
2529     KnownUndef = UndefLHS & UndefRHS;
2530     KnownZero = ZeroLHS & ZeroRHS;
2531     break;
2532   }
2533   case ISD::VECTOR_SHUFFLE: {
2534     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2535 
2536     // Collect demanded elements from shuffle operands..
2537     APInt DemandedLHS(NumElts, 0);
2538     APInt DemandedRHS(NumElts, 0);
2539     for (unsigned i = 0; i != NumElts; ++i) {
2540       int M = ShuffleMask[i];
2541       if (M < 0 || !DemandedElts[i])
2542         continue;
2543       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2544       if (M < (int)NumElts)
2545         DemandedLHS.setBit(M);
2546       else
2547         DemandedRHS.setBit(M - NumElts);
2548     }
2549 
2550     // See if we can simplify either shuffle operand.
2551     APInt UndefLHS, ZeroLHS;
2552     APInt UndefRHS, ZeroRHS;
2553     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2554                                    ZeroLHS, TLO, Depth + 1))
2555       return true;
2556     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2557                                    ZeroRHS, TLO, Depth + 1))
2558       return true;
2559 
2560     // Simplify mask using undef elements from LHS/RHS.
2561     bool Updated = false;
2562     bool IdentityLHS = true, IdentityRHS = true;
2563     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2564     for (unsigned i = 0; i != NumElts; ++i) {
2565       int &M = NewMask[i];
2566       if (M < 0)
2567         continue;
2568       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2569           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2570         Updated = true;
2571         M = -1;
2572       }
2573       IdentityLHS &= (M < 0) || (M == (int)i);
2574       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2575     }
2576 
2577     // Update legal shuffle masks based on demanded elements if it won't reduce
2578     // to Identity which can cause premature removal of the shuffle mask.
2579     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2580       SDValue LegalShuffle =
2581           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2582                                   NewMask, TLO.DAG);
2583       if (LegalShuffle)
2584         return TLO.CombineTo(Op, LegalShuffle);
2585     }
2586 
2587     // Propagate undef/zero elements from LHS/RHS.
2588     for (unsigned i = 0; i != NumElts; ++i) {
2589       int M = ShuffleMask[i];
2590       if (M < 0) {
2591         KnownUndef.setBit(i);
2592       } else if (M < (int)NumElts) {
2593         if (UndefLHS[M])
2594           KnownUndef.setBit(i);
2595         if (ZeroLHS[M])
2596           KnownZero.setBit(i);
2597       } else {
2598         if (UndefRHS[M - NumElts])
2599           KnownUndef.setBit(i);
2600         if (ZeroRHS[M - NumElts])
2601           KnownZero.setBit(i);
2602       }
2603     }
2604     break;
2605   }
2606   case ISD::ANY_EXTEND_VECTOR_INREG:
2607   case ISD::SIGN_EXTEND_VECTOR_INREG:
2608   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2609     APInt SrcUndef, SrcZero;
2610     SDValue Src = Op.getOperand(0);
2611     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2612     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2613     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2614                                    Depth + 1))
2615       return true;
2616     KnownZero = SrcZero.zextOrTrunc(NumElts);
2617     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2618 
2619     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2620         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2621         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2622       // aext - if we just need the bottom element then we can bitcast.
2623       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2624     }
2625 
2626     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2627       // zext(undef) upper bits are guaranteed to be zero.
2628       if (DemandedElts.isSubsetOf(KnownUndef))
2629         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2630       KnownUndef.clearAllBits();
2631     }
2632     break;
2633   }
2634 
2635   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2636   // MAX, saturated math, etc.
2637   case ISD::OR:
2638   case ISD::XOR:
2639   case ISD::ADD:
2640   case ISD::SUB:
2641   case ISD::FADD:
2642   case ISD::FSUB:
2643   case ISD::FMUL:
2644   case ISD::FDIV:
2645   case ISD::FREM: {
2646     APInt UndefRHS, ZeroRHS;
2647     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2648                                    ZeroRHS, TLO, Depth + 1))
2649       return true;
2650     APInt UndefLHS, ZeroLHS;
2651     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2652                                    ZeroLHS, TLO, Depth + 1))
2653       return true;
2654 
2655     KnownZero = ZeroLHS & ZeroRHS;
2656     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2657     break;
2658   }
2659   case ISD::SHL:
2660   case ISD::SRL:
2661   case ISD::SRA:
2662   case ISD::ROTL:
2663   case ISD::ROTR: {
2664     APInt UndefRHS, ZeroRHS;
2665     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2666                                    ZeroRHS, TLO, Depth + 1))
2667       return true;
2668     APInt UndefLHS, ZeroLHS;
2669     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2670                                    ZeroLHS, TLO, Depth + 1))
2671       return true;
2672 
2673     KnownZero = ZeroLHS;
2674     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2675     break;
2676   }
2677   case ISD::MUL:
2678   case ISD::AND: {
2679     APInt SrcUndef, SrcZero;
2680     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2681                                    SrcZero, TLO, Depth + 1))
2682       return true;
2683     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2684                                    KnownZero, TLO, Depth + 1))
2685       return true;
2686 
2687     // If either side has a zero element, then the result element is zero, even
2688     // if the other is an UNDEF.
2689     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2690     // and then handle 'and' nodes with the rest of the binop opcodes.
2691     KnownZero |= SrcZero;
2692     KnownUndef &= SrcUndef;
2693     KnownUndef &= ~KnownZero;
2694     break;
2695   }
2696   case ISD::TRUNCATE:
2697   case ISD::SIGN_EXTEND:
2698   case ISD::ZERO_EXTEND:
2699     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2700                                    KnownZero, TLO, Depth + 1))
2701       return true;
2702 
2703     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2704       // zext(undef) upper bits are guaranteed to be zero.
2705       if (DemandedElts.isSubsetOf(KnownUndef))
2706         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2707       KnownUndef.clearAllBits();
2708     }
2709     break;
2710   default: {
2711     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2712       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2713                                                   KnownZero, TLO, Depth))
2714         return true;
2715     } else {
2716       KnownBits Known;
2717       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2718       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2719                                TLO, Depth, AssumeSingleUse))
2720         return true;
2721     }
2722     break;
2723   }
2724   }
2725   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2726 
2727   // Constant fold all undef cases.
2728   // TODO: Handle zero cases as well.
2729   if (DemandedElts.isSubsetOf(KnownUndef))
2730     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2731 
2732   return false;
2733 }
2734 
2735 /// Determine which of the bits specified in Mask are known to be either zero or
2736 /// one and return them in the Known.
2737 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2738                                                    KnownBits &Known,
2739                                                    const APInt &DemandedElts,
2740                                                    const SelectionDAG &DAG,
2741                                                    unsigned Depth) const {
2742   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2743           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2744           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2745           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2746          "Should use MaskedValueIsZero if you don't know whether Op"
2747          " is a target node!");
2748   Known.resetAll();
2749 }
2750 
2751 void TargetLowering::computeKnownBitsForTargetInstr(
2752     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2753     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2754     unsigned Depth) const {
2755   Known.resetAll();
2756 }
2757 
2758 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2759                                                    KnownBits &Known,
2760                                                    const APInt &DemandedElts,
2761                                                    const SelectionDAG &DAG,
2762                                                    unsigned Depth) const {
2763   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2764 
2765   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2766     // The low bits are known zero if the pointer is aligned.
2767     Known.Zero.setLowBits(Log2_32(Align));
2768   }
2769 }
2770 
2771 /// This method can be implemented by targets that want to expose additional
2772 /// information about sign bits to the DAG Combiner.
2773 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2774                                                          const APInt &,
2775                                                          const SelectionDAG &,
2776                                                          unsigned Depth) const {
2777   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2778           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2779           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2780           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2781          "Should use ComputeNumSignBits if you don't know whether Op"
2782          " is a target node!");
2783   return 1;
2784 }
2785 
2786 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2787   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2788   const MachineRegisterInfo &MRI, unsigned Depth) const {
2789   return 1;
2790 }
2791 
2792 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2793     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2794     TargetLoweringOpt &TLO, unsigned Depth) const {
2795   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2796           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2797           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2798           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2799          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2800          " is a target node!");
2801   return false;
2802 }
2803 
2804 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2805     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2806     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2807   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2808           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2809           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2810           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2811          "Should use SimplifyDemandedBits if you don't know whether Op"
2812          " is a target node!");
2813   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2814   return false;
2815 }
2816 
2817 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2818     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2819     SelectionDAG &DAG, unsigned Depth) const {
2820   assert(
2821       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2822        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2823        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2824        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2825       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2826       " is a target node!");
2827   return SDValue();
2828 }
2829 
2830 SDValue
2831 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2832                                         SDValue N1, MutableArrayRef<int> Mask,
2833                                         SelectionDAG &DAG) const {
2834   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2835   if (!LegalMask) {
2836     std::swap(N0, N1);
2837     ShuffleVectorSDNode::commuteMask(Mask);
2838     LegalMask = isShuffleMaskLegal(Mask, VT);
2839   }
2840 
2841   if (!LegalMask)
2842     return SDValue();
2843 
2844   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2845 }
2846 
2847 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2848   return nullptr;
2849 }
2850 
2851 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2852                                                   const SelectionDAG &DAG,
2853                                                   bool SNaN,
2854                                                   unsigned Depth) const {
2855   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2856           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2857           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2858           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2859          "Should use isKnownNeverNaN if you don't know whether Op"
2860          " is a target node!");
2861   return false;
2862 }
2863 
2864 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2865 // work with truncating build vectors and vectors with elements of less than
2866 // 8 bits.
2867 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2868   if (!N)
2869     return false;
2870 
2871   APInt CVal;
2872   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2873     CVal = CN->getAPIntValue();
2874   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2875     auto *CN = BV->getConstantSplatNode();
2876     if (!CN)
2877       return false;
2878 
2879     // If this is a truncating build vector, truncate the splat value.
2880     // Otherwise, we may fail to match the expected values below.
2881     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2882     CVal = CN->getAPIntValue();
2883     if (BVEltWidth < CVal.getBitWidth())
2884       CVal = CVal.trunc(BVEltWidth);
2885   } else {
2886     return false;
2887   }
2888 
2889   switch (getBooleanContents(N->getValueType(0))) {
2890   case UndefinedBooleanContent:
2891     return CVal[0];
2892   case ZeroOrOneBooleanContent:
2893     return CVal.isOneValue();
2894   case ZeroOrNegativeOneBooleanContent:
2895     return CVal.isAllOnesValue();
2896   }
2897 
2898   llvm_unreachable("Invalid boolean contents");
2899 }
2900 
2901 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2902   if (!N)
2903     return false;
2904 
2905   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2906   if (!CN) {
2907     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2908     if (!BV)
2909       return false;
2910 
2911     // Only interested in constant splats, we don't care about undef
2912     // elements in identifying boolean constants and getConstantSplatNode
2913     // returns NULL if all ops are undef;
2914     CN = BV->getConstantSplatNode();
2915     if (!CN)
2916       return false;
2917   }
2918 
2919   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2920     return !CN->getAPIntValue()[0];
2921 
2922   return CN->isNullValue();
2923 }
2924 
2925 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2926                                        bool SExt) const {
2927   if (VT == MVT::i1)
2928     return N->isOne();
2929 
2930   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2931   switch (Cnt) {
2932   case TargetLowering::ZeroOrOneBooleanContent:
2933     // An extended value of 1 is always true, unless its original type is i1,
2934     // in which case it will be sign extended to -1.
2935     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2936   case TargetLowering::UndefinedBooleanContent:
2937   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2938     return N->isAllOnesValue() && SExt;
2939   }
2940   llvm_unreachable("Unexpected enumeration.");
2941 }
2942 
2943 /// This helper function of SimplifySetCC tries to optimize the comparison when
2944 /// either operand of the SetCC node is a bitwise-and instruction.
2945 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2946                                          ISD::CondCode Cond, const SDLoc &DL,
2947                                          DAGCombinerInfo &DCI) const {
2948   // Match these patterns in any of their permutations:
2949   // (X & Y) == Y
2950   // (X & Y) != Y
2951   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2952     std::swap(N0, N1);
2953 
2954   EVT OpVT = N0.getValueType();
2955   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2956       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2957     return SDValue();
2958 
2959   SDValue X, Y;
2960   if (N0.getOperand(0) == N1) {
2961     X = N0.getOperand(1);
2962     Y = N0.getOperand(0);
2963   } else if (N0.getOperand(1) == N1) {
2964     X = N0.getOperand(0);
2965     Y = N0.getOperand(1);
2966   } else {
2967     return SDValue();
2968   }
2969 
2970   SelectionDAG &DAG = DCI.DAG;
2971   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2972   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2973     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2974     // Note that where Y is variable and is known to have at most one bit set
2975     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2976     // equivalent when Y == 0.
2977     assert(OpVT.isInteger());
2978     Cond = ISD::getSetCCInverse(Cond, OpVT);
2979     if (DCI.isBeforeLegalizeOps() ||
2980         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2981       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2982   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2983     // If the target supports an 'and-not' or 'and-complement' logic operation,
2984     // try to use that to make a comparison operation more efficient.
2985     // But don't do this transform if the mask is a single bit because there are
2986     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2987     // 'rlwinm' on PPC).
2988 
2989     // Bail out if the compare operand that we want to turn into a zero is
2990     // already a zero (otherwise, infinite loop).
2991     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2992     if (YConst && YConst->isNullValue())
2993       return SDValue();
2994 
2995     // Transform this into: ~X & Y == 0.
2996     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2997     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2998     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2999   }
3000 
3001   return SDValue();
3002 }
3003 
3004 /// There are multiple IR patterns that could be checking whether certain
3005 /// truncation of a signed number would be lossy or not. The pattern which is
3006 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3007 /// We are looking for the following pattern: (KeptBits is a constant)
3008 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3009 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3010 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3011 /// We will unfold it into the natural trunc+sext pattern:
3012 ///   ((%x << C) a>> C) dstcond %x
3013 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3014 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3015     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3016     const SDLoc &DL) const {
3017   // We must be comparing with a constant.
3018   ConstantSDNode *C1;
3019   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3020     return SDValue();
3021 
3022   // N0 should be:  add %x, (1 << (KeptBits-1))
3023   if (N0->getOpcode() != ISD::ADD)
3024     return SDValue();
3025 
3026   // And we must be 'add'ing a constant.
3027   ConstantSDNode *C01;
3028   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3029     return SDValue();
3030 
3031   SDValue X = N0->getOperand(0);
3032   EVT XVT = X.getValueType();
3033 
3034   // Validate constants ...
3035 
3036   APInt I1 = C1->getAPIntValue();
3037 
3038   ISD::CondCode NewCond;
3039   if (Cond == ISD::CondCode::SETULT) {
3040     NewCond = ISD::CondCode::SETEQ;
3041   } else if (Cond == ISD::CondCode::SETULE) {
3042     NewCond = ISD::CondCode::SETEQ;
3043     // But need to 'canonicalize' the constant.
3044     I1 += 1;
3045   } else if (Cond == ISD::CondCode::SETUGT) {
3046     NewCond = ISD::CondCode::SETNE;
3047     // But need to 'canonicalize' the constant.
3048     I1 += 1;
3049   } else if (Cond == ISD::CondCode::SETUGE) {
3050     NewCond = ISD::CondCode::SETNE;
3051   } else
3052     return SDValue();
3053 
3054   APInt I01 = C01->getAPIntValue();
3055 
3056   auto checkConstants = [&I1, &I01]() -> bool {
3057     // Both of them must be power-of-two, and the constant from setcc is bigger.
3058     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3059   };
3060 
3061   if (checkConstants()) {
3062     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3063   } else {
3064     // What if we invert constants? (and the target predicate)
3065     I1.negate();
3066     I01.negate();
3067     assert(XVT.isInteger());
3068     NewCond = getSetCCInverse(NewCond, XVT);
3069     if (!checkConstants())
3070       return SDValue();
3071     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3072   }
3073 
3074   // They are power-of-two, so which bit is set?
3075   const unsigned KeptBits = I1.logBase2();
3076   const unsigned KeptBitsMinusOne = I01.logBase2();
3077 
3078   // Magic!
3079   if (KeptBits != (KeptBitsMinusOne + 1))
3080     return SDValue();
3081   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3082 
3083   // We don't want to do this in every single case.
3084   SelectionDAG &DAG = DCI.DAG;
3085   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3086           XVT, KeptBits))
3087     return SDValue();
3088 
3089   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3090   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3091 
3092   // Unfold into:  ((%x << C) a>> C) cond %x
3093   // Where 'cond' will be either 'eq' or 'ne'.
3094   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3095   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3096   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3097   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3098 
3099   return T2;
3100 }
3101 
3102 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3103 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3104     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3105     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3106   assert(isConstOrConstSplat(N1C) &&
3107          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3108          "Should be a comparison with 0.");
3109   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3110          "Valid only for [in]equality comparisons.");
3111 
3112   unsigned NewShiftOpcode;
3113   SDValue X, C, Y;
3114 
3115   SelectionDAG &DAG = DCI.DAG;
3116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3117 
3118   // Look for '(C l>>/<< Y)'.
3119   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3120     // The shift should be one-use.
3121     if (!V.hasOneUse())
3122       return false;
3123     unsigned OldShiftOpcode = V.getOpcode();
3124     switch (OldShiftOpcode) {
3125     case ISD::SHL:
3126       NewShiftOpcode = ISD::SRL;
3127       break;
3128     case ISD::SRL:
3129       NewShiftOpcode = ISD::SHL;
3130       break;
3131     default:
3132       return false; // must be a logical shift.
3133     }
3134     // We should be shifting a constant.
3135     // FIXME: best to use isConstantOrConstantVector().
3136     C = V.getOperand(0);
3137     ConstantSDNode *CC =
3138         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3139     if (!CC)
3140       return false;
3141     Y = V.getOperand(1);
3142 
3143     ConstantSDNode *XC =
3144         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3145     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3146         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3147   };
3148 
3149   // LHS of comparison should be an one-use 'and'.
3150   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3151     return SDValue();
3152 
3153   X = N0.getOperand(0);
3154   SDValue Mask = N0.getOperand(1);
3155 
3156   // 'and' is commutative!
3157   if (!Match(Mask)) {
3158     std::swap(X, Mask);
3159     if (!Match(Mask))
3160       return SDValue();
3161   }
3162 
3163   EVT VT = X.getValueType();
3164 
3165   // Produce:
3166   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3167   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3168   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3169   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3170   return T2;
3171 }
3172 
3173 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3174 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3175 /// handle the commuted versions of these patterns.
3176 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3177                                            ISD::CondCode Cond, const SDLoc &DL,
3178                                            DAGCombinerInfo &DCI) const {
3179   unsigned BOpcode = N0.getOpcode();
3180   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3181          "Unexpected binop");
3182   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3183 
3184   // (X + Y) == X --> Y == 0
3185   // (X - Y) == X --> Y == 0
3186   // (X ^ Y) == X --> Y == 0
3187   SelectionDAG &DAG = DCI.DAG;
3188   EVT OpVT = N0.getValueType();
3189   SDValue X = N0.getOperand(0);
3190   SDValue Y = N0.getOperand(1);
3191   if (X == N1)
3192     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3193 
3194   if (Y != N1)
3195     return SDValue();
3196 
3197   // (X + Y) == Y --> X == 0
3198   // (X ^ Y) == Y --> X == 0
3199   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3200     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3201 
3202   // The shift would not be valid if the operands are boolean (i1).
3203   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3204     return SDValue();
3205 
3206   // (X - Y) == Y --> X == Y << 1
3207   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3208                                  !DCI.isBeforeLegalize());
3209   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3210   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3211   if (!DCI.isCalledByLegalizer())
3212     DCI.AddToWorklist(YShl1.getNode());
3213   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3214 }
3215 
3216 /// Try to simplify a setcc built with the specified operands and cc. If it is
3217 /// unable to simplify it, return a null SDValue.
3218 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3219                                       ISD::CondCode Cond, bool foldBooleans,
3220                                       DAGCombinerInfo &DCI,
3221                                       const SDLoc &dl) const {
3222   SelectionDAG &DAG = DCI.DAG;
3223   const DataLayout &Layout = DAG.getDataLayout();
3224   EVT OpVT = N0.getValueType();
3225 
3226   // Constant fold or commute setcc.
3227   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3228     return Fold;
3229 
3230   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3231   // TODO: Handle non-splat vector constants. All undef causes trouble.
3232   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3233   if (isConstOrConstSplat(N0) &&
3234       (DCI.isBeforeLegalizeOps() ||
3235        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3236     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3237 
3238   // If we have a subtract with the same 2 non-constant operands as this setcc
3239   // -- but in reverse order -- then try to commute the operands of this setcc
3240   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3241   // instruction on some targets.
3242   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3243       (DCI.isBeforeLegalizeOps() ||
3244        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3245       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3246       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3247     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3248 
3249   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3250     const APInt &C1 = N1C->getAPIntValue();
3251 
3252     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3253     // equality comparison, then we're just comparing whether X itself is
3254     // zero.
3255     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3256         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3257         N0.getOperand(1).getOpcode() == ISD::Constant) {
3258       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3259       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3260           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3261         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3262           // (srl (ctlz x), 5) == 0  -> X != 0
3263           // (srl (ctlz x), 5) != 1  -> X != 0
3264           Cond = ISD::SETNE;
3265         } else {
3266           // (srl (ctlz x), 5) != 0  -> X == 0
3267           // (srl (ctlz x), 5) == 1  -> X == 0
3268           Cond = ISD::SETEQ;
3269         }
3270         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3271         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3272                             Zero, Cond);
3273       }
3274     }
3275 
3276     SDValue CTPOP = N0;
3277     // Look through truncs that don't change the value of a ctpop.
3278     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3279       CTPOP = N0.getOperand(0);
3280 
3281     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3282         (N0 == CTPOP ||
3283          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3284       EVT CTVT = CTPOP.getValueType();
3285       SDValue CTOp = CTPOP.getOperand(0);
3286 
3287       // (ctpop x) u< 2 -> (x & x-1) == 0
3288       // (ctpop x) u> 1 -> (x & x-1) != 0
3289       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3290         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3291         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3292         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3293         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3294         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3295       }
3296 
3297       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3298       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3299           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3300         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3301         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3302         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3303         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3304         assert(CTVT.isInteger());
3305         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3306         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3307         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3308         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3309         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3310         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3311         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3312       }
3313     }
3314 
3315     // (zext x) == C --> x == (trunc C)
3316     // (sext x) == C --> x == (trunc C)
3317     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3318         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3319       unsigned MinBits = N0.getValueSizeInBits();
3320       SDValue PreExt;
3321       bool Signed = false;
3322       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3323         // ZExt
3324         MinBits = N0->getOperand(0).getValueSizeInBits();
3325         PreExt = N0->getOperand(0);
3326       } else if (N0->getOpcode() == ISD::AND) {
3327         // DAGCombine turns costly ZExts into ANDs
3328         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3329           if ((C->getAPIntValue()+1).isPowerOf2()) {
3330             MinBits = C->getAPIntValue().countTrailingOnes();
3331             PreExt = N0->getOperand(0);
3332           }
3333       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3334         // SExt
3335         MinBits = N0->getOperand(0).getValueSizeInBits();
3336         PreExt = N0->getOperand(0);
3337         Signed = true;
3338       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3339         // ZEXTLOAD / SEXTLOAD
3340         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3341           MinBits = LN0->getMemoryVT().getSizeInBits();
3342           PreExt = N0;
3343         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3344           Signed = true;
3345           MinBits = LN0->getMemoryVT().getSizeInBits();
3346           PreExt = N0;
3347         }
3348       }
3349 
3350       // Figure out how many bits we need to preserve this constant.
3351       unsigned ReqdBits = Signed ?
3352         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3353         C1.getActiveBits();
3354 
3355       // Make sure we're not losing bits from the constant.
3356       if (MinBits > 0 &&
3357           MinBits < C1.getBitWidth() &&
3358           MinBits >= ReqdBits) {
3359         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3360         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3361           // Will get folded away.
3362           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3363           if (MinBits == 1 && C1 == 1)
3364             // Invert the condition.
3365             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3366                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3367           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3368           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3369         }
3370 
3371         // If truncating the setcc operands is not desirable, we can still
3372         // simplify the expression in some cases:
3373         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3374         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3375         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3376         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3377         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3378         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3379         SDValue TopSetCC = N0->getOperand(0);
3380         unsigned N0Opc = N0->getOpcode();
3381         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3382         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3383             TopSetCC.getOpcode() == ISD::SETCC &&
3384             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3385             (isConstFalseVal(N1C) ||
3386              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3387 
3388           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3389                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3390 
3391           if (!Inverse)
3392             return TopSetCC;
3393 
3394           ISD::CondCode InvCond = ISD::getSetCCInverse(
3395               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3396               TopSetCC.getOperand(0).getValueType());
3397           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3398                                       TopSetCC.getOperand(1),
3399                                       InvCond);
3400         }
3401       }
3402     }
3403 
3404     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3405     // equality or unsigned, and all 1 bits of the const are in the same
3406     // partial word, see if we can shorten the load.
3407     if (DCI.isBeforeLegalize() &&
3408         !ISD::isSignedIntSetCC(Cond) &&
3409         N0.getOpcode() == ISD::AND && C1 == 0 &&
3410         N0.getNode()->hasOneUse() &&
3411         isa<LoadSDNode>(N0.getOperand(0)) &&
3412         N0.getOperand(0).getNode()->hasOneUse() &&
3413         isa<ConstantSDNode>(N0.getOperand(1))) {
3414       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3415       APInt bestMask;
3416       unsigned bestWidth = 0, bestOffset = 0;
3417       if (Lod->isSimple() && Lod->isUnindexed()) {
3418         unsigned origWidth = N0.getValueSizeInBits();
3419         unsigned maskWidth = origWidth;
3420         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3421         // 8 bits, but have to be careful...
3422         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3423           origWidth = Lod->getMemoryVT().getSizeInBits();
3424         const APInt &Mask = N0.getConstantOperandAPInt(1);
3425         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3426           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3427           for (unsigned offset=0; offset<origWidth/width; offset++) {
3428             if (Mask.isSubsetOf(newMask)) {
3429               if (Layout.isLittleEndian())
3430                 bestOffset = (uint64_t)offset * (width/8);
3431               else
3432                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3433               bestMask = Mask.lshr(offset * (width/8) * 8);
3434               bestWidth = width;
3435               break;
3436             }
3437             newMask <<= width;
3438           }
3439         }
3440       }
3441       if (bestWidth) {
3442         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3443         if (newVT.isRound() &&
3444             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3445           SDValue Ptr = Lod->getBasePtr();
3446           if (bestOffset != 0)
3447             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3448           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3449           SDValue NewLoad = DAG.getLoad(
3450               newVT, dl, Lod->getChain(), Ptr,
3451               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3452           return DAG.getSetCC(dl, VT,
3453                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3454                                       DAG.getConstant(bestMask.trunc(bestWidth),
3455                                                       dl, newVT)),
3456                               DAG.getConstant(0LL, dl, newVT), Cond);
3457         }
3458       }
3459     }
3460 
3461     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3462     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3463       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3464 
3465       // If the comparison constant has bits in the upper part, the
3466       // zero-extended value could never match.
3467       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3468                                               C1.getBitWidth() - InSize))) {
3469         switch (Cond) {
3470         case ISD::SETUGT:
3471         case ISD::SETUGE:
3472         case ISD::SETEQ:
3473           return DAG.getConstant(0, dl, VT);
3474         case ISD::SETULT:
3475         case ISD::SETULE:
3476         case ISD::SETNE:
3477           return DAG.getConstant(1, dl, VT);
3478         case ISD::SETGT:
3479         case ISD::SETGE:
3480           // True if the sign bit of C1 is set.
3481           return DAG.getConstant(C1.isNegative(), dl, VT);
3482         case ISD::SETLT:
3483         case ISD::SETLE:
3484           // True if the sign bit of C1 isn't set.
3485           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3486         default:
3487           break;
3488         }
3489       }
3490 
3491       // Otherwise, we can perform the comparison with the low bits.
3492       switch (Cond) {
3493       case ISD::SETEQ:
3494       case ISD::SETNE:
3495       case ISD::SETUGT:
3496       case ISD::SETUGE:
3497       case ISD::SETULT:
3498       case ISD::SETULE: {
3499         EVT newVT = N0.getOperand(0).getValueType();
3500         if (DCI.isBeforeLegalizeOps() ||
3501             (isOperationLegal(ISD::SETCC, newVT) &&
3502              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3503           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3504           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3505 
3506           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3507                                           NewConst, Cond);
3508           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3509         }
3510         break;
3511       }
3512       default:
3513         break; // todo, be more careful with signed comparisons
3514       }
3515     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3516                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3517       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3518       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3519       EVT ExtDstTy = N0.getValueType();
3520       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3521 
3522       // If the constant doesn't fit into the number of bits for the source of
3523       // the sign extension, it is impossible for both sides to be equal.
3524       if (C1.getMinSignedBits() > ExtSrcTyBits)
3525         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3526 
3527       SDValue ZextOp;
3528       EVT Op0Ty = N0.getOperand(0).getValueType();
3529       if (Op0Ty == ExtSrcTy) {
3530         ZextOp = N0.getOperand(0);
3531       } else {
3532         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3533         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3534                              DAG.getConstant(Imm, dl, Op0Ty));
3535       }
3536       if (!DCI.isCalledByLegalizer())
3537         DCI.AddToWorklist(ZextOp.getNode());
3538       // Otherwise, make this a use of a zext.
3539       return DAG.getSetCC(dl, VT, ZextOp,
3540                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3541                                                               ExtDstTyBits,
3542                                                               ExtSrcTyBits),
3543                                           dl, ExtDstTy),
3544                           Cond);
3545     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3546                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3547       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3548       if (N0.getOpcode() == ISD::SETCC &&
3549           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3550           (N0.getValueType() == MVT::i1 ||
3551            getBooleanContents(N0.getOperand(0).getValueType()) ==
3552                        ZeroOrOneBooleanContent)) {
3553         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3554         if (TrueWhenTrue)
3555           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3556         // Invert the condition.
3557         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3558         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3559         if (DCI.isBeforeLegalizeOps() ||
3560             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3561           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3562       }
3563 
3564       if ((N0.getOpcode() == ISD::XOR ||
3565            (N0.getOpcode() == ISD::AND &&
3566             N0.getOperand(0).getOpcode() == ISD::XOR &&
3567             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3568           isa<ConstantSDNode>(N0.getOperand(1)) &&
3569           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3570         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3571         // can only do this if the top bits are known zero.
3572         unsigned BitWidth = N0.getValueSizeInBits();
3573         if (DAG.MaskedValueIsZero(N0,
3574                                   APInt::getHighBitsSet(BitWidth,
3575                                                         BitWidth-1))) {
3576           // Okay, get the un-inverted input value.
3577           SDValue Val;
3578           if (N0.getOpcode() == ISD::XOR) {
3579             Val = N0.getOperand(0);
3580           } else {
3581             assert(N0.getOpcode() == ISD::AND &&
3582                     N0.getOperand(0).getOpcode() == ISD::XOR);
3583             // ((X^1)&1)^1 -> X & 1
3584             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3585                               N0.getOperand(0).getOperand(0),
3586                               N0.getOperand(1));
3587           }
3588 
3589           return DAG.getSetCC(dl, VT, Val, N1,
3590                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3591         }
3592       } else if (N1C->isOne()) {
3593         SDValue Op0 = N0;
3594         if (Op0.getOpcode() == ISD::TRUNCATE)
3595           Op0 = Op0.getOperand(0);
3596 
3597         if ((Op0.getOpcode() == ISD::XOR) &&
3598             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3599             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3600           SDValue XorLHS = Op0.getOperand(0);
3601           SDValue XorRHS = Op0.getOperand(1);
3602           // Ensure that the input setccs return an i1 type or 0/1 value.
3603           if (Op0.getValueType() == MVT::i1 ||
3604               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3605                       ZeroOrOneBooleanContent &&
3606                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3607                         ZeroOrOneBooleanContent)) {
3608             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3609             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3610             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3611           }
3612         }
3613         if (Op0.getOpcode() == ISD::AND &&
3614             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3615             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3616           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3617           if (Op0.getValueType().bitsGT(VT))
3618             Op0 = DAG.getNode(ISD::AND, dl, VT,
3619                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3620                           DAG.getConstant(1, dl, VT));
3621           else if (Op0.getValueType().bitsLT(VT))
3622             Op0 = DAG.getNode(ISD::AND, dl, VT,
3623                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3624                         DAG.getConstant(1, dl, VT));
3625 
3626           return DAG.getSetCC(dl, VT, Op0,
3627                               DAG.getConstant(0, dl, Op0.getValueType()),
3628                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3629         }
3630         if (Op0.getOpcode() == ISD::AssertZext &&
3631             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3632           return DAG.getSetCC(dl, VT, Op0,
3633                               DAG.getConstant(0, dl, Op0.getValueType()),
3634                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3635       }
3636     }
3637 
3638     // Given:
3639     //   icmp eq/ne (urem %x, %y), 0
3640     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3641     //   icmp eq/ne %x, 0
3642     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3643         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3644       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3645       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3646       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3647         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3648     }
3649 
3650     if (SDValue V =
3651             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3652       return V;
3653   }
3654 
3655   // These simplifications apply to splat vectors as well.
3656   // TODO: Handle more splat vector cases.
3657   if (auto *N1C = isConstOrConstSplat(N1)) {
3658     const APInt &C1 = N1C->getAPIntValue();
3659 
3660     APInt MinVal, MaxVal;
3661     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3662     if (ISD::isSignedIntSetCC(Cond)) {
3663       MinVal = APInt::getSignedMinValue(OperandBitSize);
3664       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3665     } else {
3666       MinVal = APInt::getMinValue(OperandBitSize);
3667       MaxVal = APInt::getMaxValue(OperandBitSize);
3668     }
3669 
3670     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3671     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3672       // X >= MIN --> true
3673       if (C1 == MinVal)
3674         return DAG.getBoolConstant(true, dl, VT, OpVT);
3675 
3676       if (!VT.isVector()) { // TODO: Support this for vectors.
3677         // X >= C0 --> X > (C0 - 1)
3678         APInt C = C1 - 1;
3679         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3680         if ((DCI.isBeforeLegalizeOps() ||
3681              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3682             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3683                                   isLegalICmpImmediate(C.getSExtValue())))) {
3684           return DAG.getSetCC(dl, VT, N0,
3685                               DAG.getConstant(C, dl, N1.getValueType()),
3686                               NewCC);
3687         }
3688       }
3689     }
3690 
3691     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3692       // X <= MAX --> true
3693       if (C1 == MaxVal)
3694         return DAG.getBoolConstant(true, dl, VT, OpVT);
3695 
3696       // X <= C0 --> X < (C0 + 1)
3697       if (!VT.isVector()) { // TODO: Support this for vectors.
3698         APInt C = C1 + 1;
3699         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3700         if ((DCI.isBeforeLegalizeOps() ||
3701              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3702             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3703                                   isLegalICmpImmediate(C.getSExtValue())))) {
3704           return DAG.getSetCC(dl, VT, N0,
3705                               DAG.getConstant(C, dl, N1.getValueType()),
3706                               NewCC);
3707         }
3708       }
3709     }
3710 
3711     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3712       if (C1 == MinVal)
3713         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3714 
3715       // TODO: Support this for vectors after legalize ops.
3716       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3717         // Canonicalize setlt X, Max --> setne X, Max
3718         if (C1 == MaxVal)
3719           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3720 
3721         // If we have setult X, 1, turn it into seteq X, 0
3722         if (C1 == MinVal+1)
3723           return DAG.getSetCC(dl, VT, N0,
3724                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3725                               ISD::SETEQ);
3726       }
3727     }
3728 
3729     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3730       if (C1 == MaxVal)
3731         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3732 
3733       // TODO: Support this for vectors after legalize ops.
3734       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3735         // Canonicalize setgt X, Min --> setne X, Min
3736         if (C1 == MinVal)
3737           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3738 
3739         // If we have setugt X, Max-1, turn it into seteq X, Max
3740         if (C1 == MaxVal-1)
3741           return DAG.getSetCC(dl, VT, N0,
3742                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3743                               ISD::SETEQ);
3744       }
3745     }
3746 
3747     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3748       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3749       if (C1.isNullValue())
3750         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3751                 VT, N0, N1, Cond, DCI, dl))
3752           return CC;
3753     }
3754 
3755     // If we have "setcc X, C0", check to see if we can shrink the immediate
3756     // by changing cc.
3757     // TODO: Support this for vectors after legalize ops.
3758     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3759       // SETUGT X, SINTMAX  -> SETLT X, 0
3760       if (Cond == ISD::SETUGT &&
3761           C1 == APInt::getSignedMaxValue(OperandBitSize))
3762         return DAG.getSetCC(dl, VT, N0,
3763                             DAG.getConstant(0, dl, N1.getValueType()),
3764                             ISD::SETLT);
3765 
3766       // SETULT X, SINTMIN  -> SETGT X, -1
3767       if (Cond == ISD::SETULT &&
3768           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3769         SDValue ConstMinusOne =
3770             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3771                             N1.getValueType());
3772         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3773       }
3774     }
3775   }
3776 
3777   // Back to non-vector simplifications.
3778   // TODO: Can we do these for vector splats?
3779   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3780     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3781     const APInt &C1 = N1C->getAPIntValue();
3782     EVT ShValTy = N0.getValueType();
3783 
3784     // Fold bit comparisons when we can.
3785     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3786         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3787         N0.getOpcode() == ISD::AND) {
3788       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3789         EVT ShiftTy =
3790             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3791         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3792           // Perform the xform if the AND RHS is a single bit.
3793           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3794           if (AndRHS->getAPIntValue().isPowerOf2() &&
3795               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3796             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3797                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3798                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3799           }
3800         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3801           // (X & 8) == 8  -->  (X & 8) >> 3
3802           // Perform the xform if C1 is a single bit.
3803           unsigned ShCt = C1.logBase2();
3804           if (C1.isPowerOf2() &&
3805               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3806             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3807                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3808                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3809           }
3810         }
3811       }
3812     }
3813 
3814     if (C1.getMinSignedBits() <= 64 &&
3815         !isLegalICmpImmediate(C1.getSExtValue())) {
3816       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3817       // (X & -256) == 256 -> (X >> 8) == 1
3818       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3819           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3820         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3821           const APInt &AndRHSC = AndRHS->getAPIntValue();
3822           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3823             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3824             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3825               SDValue Shift =
3826                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3827                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3828               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3829               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3830             }
3831           }
3832         }
3833       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3834                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3835         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3836         // X <  0x100000000 -> (X >> 32) <  1
3837         // X >= 0x100000000 -> (X >> 32) >= 1
3838         // X <= 0x0ffffffff -> (X >> 32) <  1
3839         // X >  0x0ffffffff -> (X >> 32) >= 1
3840         unsigned ShiftBits;
3841         APInt NewC = C1;
3842         ISD::CondCode NewCond = Cond;
3843         if (AdjOne) {
3844           ShiftBits = C1.countTrailingOnes();
3845           NewC = NewC + 1;
3846           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3847         } else {
3848           ShiftBits = C1.countTrailingZeros();
3849         }
3850         NewC.lshrInPlace(ShiftBits);
3851         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3852             isLegalICmpImmediate(NewC.getSExtValue()) &&
3853             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3854           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3855                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3856           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3857           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3858         }
3859       }
3860     }
3861   }
3862 
3863   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3864     auto *CFP = cast<ConstantFPSDNode>(N1);
3865     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3866 
3867     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3868     // constant if knowing that the operand is non-nan is enough.  We prefer to
3869     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3870     // materialize 0.0.
3871     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3872       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3873 
3874     // setcc (fneg x), C -> setcc swap(pred) x, -C
3875     if (N0.getOpcode() == ISD::FNEG) {
3876       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3877       if (DCI.isBeforeLegalizeOps() ||
3878           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3879         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3880         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3881       }
3882     }
3883 
3884     // If the condition is not legal, see if we can find an equivalent one
3885     // which is legal.
3886     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3887       // If the comparison was an awkward floating-point == or != and one of
3888       // the comparison operands is infinity or negative infinity, convert the
3889       // condition to a less-awkward <= or >=.
3890       if (CFP->getValueAPF().isInfinity()) {
3891         bool IsNegInf = CFP->getValueAPF().isNegative();
3892         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3893         switch (Cond) {
3894         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3895         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3896         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3897         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3898         default: break;
3899         }
3900         if (NewCond != ISD::SETCC_INVALID &&
3901             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3902           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3903       }
3904     }
3905   }
3906 
3907   if (N0 == N1) {
3908     // The sext(setcc()) => setcc() optimization relies on the appropriate
3909     // constant being emitted.
3910     assert(!N0.getValueType().isInteger() &&
3911            "Integer types should be handled by FoldSetCC");
3912 
3913     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3914     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3915     if (UOF == 2) // FP operators that are undefined on NaNs.
3916       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3917     if (UOF == unsigned(EqTrue))
3918       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3919     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3920     // if it is not already.
3921     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3922     if (NewCond != Cond &&
3923         (DCI.isBeforeLegalizeOps() ||
3924                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3925       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3926   }
3927 
3928   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3929       N0.getValueType().isInteger()) {
3930     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3931         N0.getOpcode() == ISD::XOR) {
3932       // Simplify (X+Y) == (X+Z) -->  Y == Z
3933       if (N0.getOpcode() == N1.getOpcode()) {
3934         if (N0.getOperand(0) == N1.getOperand(0))
3935           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3936         if (N0.getOperand(1) == N1.getOperand(1))
3937           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3938         if (isCommutativeBinOp(N0.getOpcode())) {
3939           // If X op Y == Y op X, try other combinations.
3940           if (N0.getOperand(0) == N1.getOperand(1))
3941             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3942                                 Cond);
3943           if (N0.getOperand(1) == N1.getOperand(0))
3944             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3945                                 Cond);
3946         }
3947       }
3948 
3949       // If RHS is a legal immediate value for a compare instruction, we need
3950       // to be careful about increasing register pressure needlessly.
3951       bool LegalRHSImm = false;
3952 
3953       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3954         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3955           // Turn (X+C1) == C2 --> X == C2-C1
3956           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3957             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3958                                 DAG.getConstant(RHSC->getAPIntValue()-
3959                                                 LHSR->getAPIntValue(),
3960                                 dl, N0.getValueType()), Cond);
3961           }
3962 
3963           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3964           if (N0.getOpcode() == ISD::XOR)
3965             // If we know that all of the inverted bits are zero, don't bother
3966             // performing the inversion.
3967             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3968               return
3969                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3970                              DAG.getConstant(LHSR->getAPIntValue() ^
3971                                                RHSC->getAPIntValue(),
3972                                              dl, N0.getValueType()),
3973                              Cond);
3974         }
3975 
3976         // Turn (C1-X) == C2 --> X == C1-C2
3977         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3978           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3979             return
3980               DAG.getSetCC(dl, VT, N0.getOperand(1),
3981                            DAG.getConstant(SUBC->getAPIntValue() -
3982                                              RHSC->getAPIntValue(),
3983                                            dl, N0.getValueType()),
3984                            Cond);
3985           }
3986         }
3987 
3988         // Could RHSC fold directly into a compare?
3989         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3990           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3991       }
3992 
3993       // (X+Y) == X --> Y == 0 and similar folds.
3994       // Don't do this if X is an immediate that can fold into a cmp
3995       // instruction and X+Y has other uses. It could be an induction variable
3996       // chain, and the transform would increase register pressure.
3997       if (!LegalRHSImm || N0.hasOneUse())
3998         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3999           return V;
4000     }
4001 
4002     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4003         N1.getOpcode() == ISD::XOR)
4004       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4005         return V;
4006 
4007     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4008       return V;
4009   }
4010 
4011   // Fold remainder of division by a constant.
4012   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4013       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4014     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4015 
4016     // When division is cheap or optimizing for minimum size,
4017     // fall through to DIVREM creation by skipping this fold.
4018     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4019       if (N0.getOpcode() == ISD::UREM) {
4020         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4021           return Folded;
4022       } else if (N0.getOpcode() == ISD::SREM) {
4023         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4024           return Folded;
4025       }
4026     }
4027   }
4028 
4029   // Fold away ALL boolean setcc's.
4030   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4031     SDValue Temp;
4032     switch (Cond) {
4033     default: llvm_unreachable("Unknown integer setcc!");
4034     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4035       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4036       N0 = DAG.getNOT(dl, Temp, OpVT);
4037       if (!DCI.isCalledByLegalizer())
4038         DCI.AddToWorklist(Temp.getNode());
4039       break;
4040     case ISD::SETNE:  // X != Y   -->  (X^Y)
4041       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4042       break;
4043     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4044     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4045       Temp = DAG.getNOT(dl, N0, OpVT);
4046       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4047       if (!DCI.isCalledByLegalizer())
4048         DCI.AddToWorklist(Temp.getNode());
4049       break;
4050     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4051     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4052       Temp = DAG.getNOT(dl, N1, OpVT);
4053       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4054       if (!DCI.isCalledByLegalizer())
4055         DCI.AddToWorklist(Temp.getNode());
4056       break;
4057     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4058     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4059       Temp = DAG.getNOT(dl, N0, OpVT);
4060       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4061       if (!DCI.isCalledByLegalizer())
4062         DCI.AddToWorklist(Temp.getNode());
4063       break;
4064     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4065     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4066       Temp = DAG.getNOT(dl, N1, OpVT);
4067       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4068       break;
4069     }
4070     if (VT.getScalarType() != MVT::i1) {
4071       if (!DCI.isCalledByLegalizer())
4072         DCI.AddToWorklist(N0.getNode());
4073       // FIXME: If running after legalize, we probably can't do this.
4074       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4075       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4076     }
4077     return N0;
4078   }
4079 
4080   // Could not fold it.
4081   return SDValue();
4082 }
4083 
4084 /// Returns true (and the GlobalValue and the offset) if the node is a
4085 /// GlobalAddress + offset.
4086 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4087                                     int64_t &Offset) const {
4088 
4089   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4090 
4091   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4092     GA = GASD->getGlobal();
4093     Offset += GASD->getOffset();
4094     return true;
4095   }
4096 
4097   if (N->getOpcode() == ISD::ADD) {
4098     SDValue N1 = N->getOperand(0);
4099     SDValue N2 = N->getOperand(1);
4100     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4101       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4102         Offset += V->getSExtValue();
4103         return true;
4104       }
4105     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4106       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4107         Offset += V->getSExtValue();
4108         return true;
4109       }
4110     }
4111   }
4112 
4113   return false;
4114 }
4115 
4116 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4117                                           DAGCombinerInfo &DCI) const {
4118   // Default implementation: no optimization.
4119   return SDValue();
4120 }
4121 
4122 //===----------------------------------------------------------------------===//
4123 //  Inline Assembler Implementation Methods
4124 //===----------------------------------------------------------------------===//
4125 
4126 TargetLowering::ConstraintType
4127 TargetLowering::getConstraintType(StringRef Constraint) const {
4128   unsigned S = Constraint.size();
4129 
4130   if (S == 1) {
4131     switch (Constraint[0]) {
4132     default: break;
4133     case 'r':
4134       return C_RegisterClass;
4135     case 'm': // memory
4136     case 'o': // offsetable
4137     case 'V': // not offsetable
4138       return C_Memory;
4139     case 'n': // Simple Integer
4140     case 'E': // Floating Point Constant
4141     case 'F': // Floating Point Constant
4142       return C_Immediate;
4143     case 'i': // Simple Integer or Relocatable Constant
4144     case 's': // Relocatable Constant
4145     case 'p': // Address.
4146     case 'X': // Allow ANY value.
4147     case 'I': // Target registers.
4148     case 'J':
4149     case 'K':
4150     case 'L':
4151     case 'M':
4152     case 'N':
4153     case 'O':
4154     case 'P':
4155     case '<':
4156     case '>':
4157       return C_Other;
4158     }
4159   }
4160 
4161   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4162     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4163       return C_Memory;
4164     return C_Register;
4165   }
4166   return C_Unknown;
4167 }
4168 
4169 /// Try to replace an X constraint, which matches anything, with another that
4170 /// has more specific requirements based on the type of the corresponding
4171 /// operand.
4172 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4173   if (ConstraintVT.isInteger())
4174     return "r";
4175   if (ConstraintVT.isFloatingPoint())
4176     return "f"; // works for many targets
4177   return nullptr;
4178 }
4179 
4180 SDValue TargetLowering::LowerAsmOutputForConstraint(
4181     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4182     SelectionDAG &DAG) const {
4183   return SDValue();
4184 }
4185 
4186 /// Lower the specified operand into the Ops vector.
4187 /// If it is invalid, don't add anything to Ops.
4188 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4189                                                   std::string &Constraint,
4190                                                   std::vector<SDValue> &Ops,
4191                                                   SelectionDAG &DAG) const {
4192 
4193   if (Constraint.length() > 1) return;
4194 
4195   char ConstraintLetter = Constraint[0];
4196   switch (ConstraintLetter) {
4197   default: break;
4198   case 'X':     // Allows any operand; labels (basic block) use this.
4199     if (Op.getOpcode() == ISD::BasicBlock ||
4200         Op.getOpcode() == ISD::TargetBlockAddress) {
4201       Ops.push_back(Op);
4202       return;
4203     }
4204     LLVM_FALLTHROUGH;
4205   case 'i':    // Simple Integer or Relocatable Constant
4206   case 'n':    // Simple Integer
4207   case 's': {  // Relocatable Constant
4208 
4209     GlobalAddressSDNode *GA;
4210     ConstantSDNode *C;
4211     BlockAddressSDNode *BA;
4212     uint64_t Offset = 0;
4213 
4214     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4215     // etc., since getelementpointer is variadic. We can't use
4216     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4217     // while in this case the GA may be furthest from the root node which is
4218     // likely an ISD::ADD.
4219     while (1) {
4220       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4221         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4222                                                  GA->getValueType(0),
4223                                                  Offset + GA->getOffset()));
4224         return;
4225       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4226                  ConstraintLetter != 's') {
4227         // gcc prints these as sign extended.  Sign extend value to 64 bits
4228         // now; without this it would get ZExt'd later in
4229         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4230         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4231         BooleanContent BCont = getBooleanContents(MVT::i64);
4232         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4233                                       : ISD::SIGN_EXTEND;
4234         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4235                                                     : C->getSExtValue();
4236         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4237                                             SDLoc(C), MVT::i64));
4238         return;
4239       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4240                  ConstraintLetter != 'n') {
4241         Ops.push_back(DAG.getTargetBlockAddress(
4242             BA->getBlockAddress(), BA->getValueType(0),
4243             Offset + BA->getOffset(), BA->getTargetFlags()));
4244         return;
4245       } else {
4246         const unsigned OpCode = Op.getOpcode();
4247         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4248           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4249             Op = Op.getOperand(1);
4250           // Subtraction is not commutative.
4251           else if (OpCode == ISD::ADD &&
4252                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4253             Op = Op.getOperand(0);
4254           else
4255             return;
4256           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4257           continue;
4258         }
4259       }
4260       return;
4261     }
4262     break;
4263   }
4264   }
4265 }
4266 
4267 std::pair<unsigned, const TargetRegisterClass *>
4268 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4269                                              StringRef Constraint,
4270                                              MVT VT) const {
4271   if (Constraint.empty() || Constraint[0] != '{')
4272     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4273   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4274 
4275   // Remove the braces from around the name.
4276   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4277 
4278   std::pair<unsigned, const TargetRegisterClass *> R =
4279       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4280 
4281   // Figure out which register class contains this reg.
4282   for (const TargetRegisterClass *RC : RI->regclasses()) {
4283     // If none of the value types for this register class are valid, we
4284     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4285     if (!isLegalRC(*RI, *RC))
4286       continue;
4287 
4288     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4289          I != E; ++I) {
4290       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4291         std::pair<unsigned, const TargetRegisterClass *> S =
4292             std::make_pair(*I, RC);
4293 
4294         // If this register class has the requested value type, return it,
4295         // otherwise keep searching and return the first class found
4296         // if no other is found which explicitly has the requested type.
4297         if (RI->isTypeLegalForClass(*RC, VT))
4298           return S;
4299         if (!R.second)
4300           R = S;
4301       }
4302     }
4303   }
4304 
4305   return R;
4306 }
4307 
4308 //===----------------------------------------------------------------------===//
4309 // Constraint Selection.
4310 
4311 /// Return true of this is an input operand that is a matching constraint like
4312 /// "4".
4313 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4314   assert(!ConstraintCode.empty() && "No known constraint!");
4315   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4316 }
4317 
4318 /// If this is an input matching constraint, this method returns the output
4319 /// operand it matches.
4320 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4321   assert(!ConstraintCode.empty() && "No known constraint!");
4322   return atoi(ConstraintCode.c_str());
4323 }
4324 
4325 /// Split up the constraint string from the inline assembly value into the
4326 /// specific constraints and their prefixes, and also tie in the associated
4327 /// operand values.
4328 /// If this returns an empty vector, and if the constraint string itself
4329 /// isn't empty, there was an error parsing.
4330 TargetLowering::AsmOperandInfoVector
4331 TargetLowering::ParseConstraints(const DataLayout &DL,
4332                                  const TargetRegisterInfo *TRI,
4333                                  ImmutableCallSite CS) const {
4334   /// Information about all of the constraints.
4335   AsmOperandInfoVector ConstraintOperands;
4336   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4337   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4338 
4339   // Do a prepass over the constraints, canonicalizing them, and building up the
4340   // ConstraintOperands list.
4341   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4342   unsigned ResNo = 0; // ResNo - The result number of the next output.
4343 
4344   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4345     ConstraintOperands.emplace_back(std::move(CI));
4346     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4347 
4348     // Update multiple alternative constraint count.
4349     if (OpInfo.multipleAlternatives.size() > maCount)
4350       maCount = OpInfo.multipleAlternatives.size();
4351 
4352     OpInfo.ConstraintVT = MVT::Other;
4353 
4354     // Compute the value type for each operand.
4355     switch (OpInfo.Type) {
4356     case InlineAsm::isOutput:
4357       // Indirect outputs just consume an argument.
4358       if (OpInfo.isIndirect) {
4359         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4360         break;
4361       }
4362 
4363       // The return value of the call is this value.  As such, there is no
4364       // corresponding argument.
4365       assert(!CS.getType()->isVoidTy() &&
4366              "Bad inline asm!");
4367       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4368         OpInfo.ConstraintVT =
4369             getSimpleValueType(DL, STy->getElementType(ResNo));
4370       } else {
4371         assert(ResNo == 0 && "Asm only has one result!");
4372         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4373       }
4374       ++ResNo;
4375       break;
4376     case InlineAsm::isInput:
4377       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4378       break;
4379     case InlineAsm::isClobber:
4380       // Nothing to do.
4381       break;
4382     }
4383 
4384     if (OpInfo.CallOperandVal) {
4385       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4386       if (OpInfo.isIndirect) {
4387         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4388         if (!PtrTy)
4389           report_fatal_error("Indirect operand for inline asm not a pointer!");
4390         OpTy = PtrTy->getElementType();
4391       }
4392 
4393       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4394       if (StructType *STy = dyn_cast<StructType>(OpTy))
4395         if (STy->getNumElements() == 1)
4396           OpTy = STy->getElementType(0);
4397 
4398       // If OpTy is not a single value, it may be a struct/union that we
4399       // can tile with integers.
4400       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4401         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4402         switch (BitSize) {
4403         default: break;
4404         case 1:
4405         case 8:
4406         case 16:
4407         case 32:
4408         case 64:
4409         case 128:
4410           OpInfo.ConstraintVT =
4411               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4412           break;
4413         }
4414       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4415         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4416         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4417       } else {
4418         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4419       }
4420     }
4421   }
4422 
4423   // If we have multiple alternative constraints, select the best alternative.
4424   if (!ConstraintOperands.empty()) {
4425     if (maCount) {
4426       unsigned bestMAIndex = 0;
4427       int bestWeight = -1;
4428       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4429       int weight = -1;
4430       unsigned maIndex;
4431       // Compute the sums of the weights for each alternative, keeping track
4432       // of the best (highest weight) one so far.
4433       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4434         int weightSum = 0;
4435         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4436              cIndex != eIndex; ++cIndex) {
4437           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4438           if (OpInfo.Type == InlineAsm::isClobber)
4439             continue;
4440 
4441           // If this is an output operand with a matching input operand,
4442           // look up the matching input. If their types mismatch, e.g. one
4443           // is an integer, the other is floating point, or their sizes are
4444           // different, flag it as an maCantMatch.
4445           if (OpInfo.hasMatchingInput()) {
4446             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4447             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4448               if ((OpInfo.ConstraintVT.isInteger() !=
4449                    Input.ConstraintVT.isInteger()) ||
4450                   (OpInfo.ConstraintVT.getSizeInBits() !=
4451                    Input.ConstraintVT.getSizeInBits())) {
4452                 weightSum = -1; // Can't match.
4453                 break;
4454               }
4455             }
4456           }
4457           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4458           if (weight == -1) {
4459             weightSum = -1;
4460             break;
4461           }
4462           weightSum += weight;
4463         }
4464         // Update best.
4465         if (weightSum > bestWeight) {
4466           bestWeight = weightSum;
4467           bestMAIndex = maIndex;
4468         }
4469       }
4470 
4471       // Now select chosen alternative in each constraint.
4472       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4473            cIndex != eIndex; ++cIndex) {
4474         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4475         if (cInfo.Type == InlineAsm::isClobber)
4476           continue;
4477         cInfo.selectAlternative(bestMAIndex);
4478       }
4479     }
4480   }
4481 
4482   // Check and hook up tied operands, choose constraint code to use.
4483   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4484        cIndex != eIndex; ++cIndex) {
4485     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4486 
4487     // If this is an output operand with a matching input operand, look up the
4488     // matching input. If their types mismatch, e.g. one is an integer, the
4489     // other is floating point, or their sizes are different, flag it as an
4490     // error.
4491     if (OpInfo.hasMatchingInput()) {
4492       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4493 
4494       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4495         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4496             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4497                                          OpInfo.ConstraintVT);
4498         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4499             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4500                                          Input.ConstraintVT);
4501         if ((OpInfo.ConstraintVT.isInteger() !=
4502              Input.ConstraintVT.isInteger()) ||
4503             (MatchRC.second != InputRC.second)) {
4504           report_fatal_error("Unsupported asm: input constraint"
4505                              " with a matching output constraint of"
4506                              " incompatible type!");
4507         }
4508       }
4509     }
4510   }
4511 
4512   return ConstraintOperands;
4513 }
4514 
4515 /// Return an integer indicating how general CT is.
4516 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4517   switch (CT) {
4518   case TargetLowering::C_Immediate:
4519   case TargetLowering::C_Other:
4520   case TargetLowering::C_Unknown:
4521     return 0;
4522   case TargetLowering::C_Register:
4523     return 1;
4524   case TargetLowering::C_RegisterClass:
4525     return 2;
4526   case TargetLowering::C_Memory:
4527     return 3;
4528   }
4529   llvm_unreachable("Invalid constraint type");
4530 }
4531 
4532 /// Examine constraint type and operand type and determine a weight value.
4533 /// This object must already have been set up with the operand type
4534 /// and the current alternative constraint selected.
4535 TargetLowering::ConstraintWeight
4536   TargetLowering::getMultipleConstraintMatchWeight(
4537     AsmOperandInfo &info, int maIndex) const {
4538   InlineAsm::ConstraintCodeVector *rCodes;
4539   if (maIndex >= (int)info.multipleAlternatives.size())
4540     rCodes = &info.Codes;
4541   else
4542     rCodes = &info.multipleAlternatives[maIndex].Codes;
4543   ConstraintWeight BestWeight = CW_Invalid;
4544 
4545   // Loop over the options, keeping track of the most general one.
4546   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4547     ConstraintWeight weight =
4548       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4549     if (weight > BestWeight)
4550       BestWeight = weight;
4551   }
4552 
4553   return BestWeight;
4554 }
4555 
4556 /// Examine constraint type and operand type and determine a weight value.
4557 /// This object must already have been set up with the operand type
4558 /// and the current alternative constraint selected.
4559 TargetLowering::ConstraintWeight
4560   TargetLowering::getSingleConstraintMatchWeight(
4561     AsmOperandInfo &info, const char *constraint) const {
4562   ConstraintWeight weight = CW_Invalid;
4563   Value *CallOperandVal = info.CallOperandVal;
4564     // If we don't have a value, we can't do a match,
4565     // but allow it at the lowest weight.
4566   if (!CallOperandVal)
4567     return CW_Default;
4568   // Look at the constraint type.
4569   switch (*constraint) {
4570     case 'i': // immediate integer.
4571     case 'n': // immediate integer with a known value.
4572       if (isa<ConstantInt>(CallOperandVal))
4573         weight = CW_Constant;
4574       break;
4575     case 's': // non-explicit intregal immediate.
4576       if (isa<GlobalValue>(CallOperandVal))
4577         weight = CW_Constant;
4578       break;
4579     case 'E': // immediate float if host format.
4580     case 'F': // immediate float.
4581       if (isa<ConstantFP>(CallOperandVal))
4582         weight = CW_Constant;
4583       break;
4584     case '<': // memory operand with autodecrement.
4585     case '>': // memory operand with autoincrement.
4586     case 'm': // memory operand.
4587     case 'o': // offsettable memory operand
4588     case 'V': // non-offsettable memory operand
4589       weight = CW_Memory;
4590       break;
4591     case 'r': // general register.
4592     case 'g': // general register, memory operand or immediate integer.
4593               // note: Clang converts "g" to "imr".
4594       if (CallOperandVal->getType()->isIntegerTy())
4595         weight = CW_Register;
4596       break;
4597     case 'X': // any operand.
4598   default:
4599     weight = CW_Default;
4600     break;
4601   }
4602   return weight;
4603 }
4604 
4605 /// If there are multiple different constraints that we could pick for this
4606 /// operand (e.g. "imr") try to pick the 'best' one.
4607 /// This is somewhat tricky: constraints fall into four classes:
4608 ///    Other         -> immediates and magic values
4609 ///    Register      -> one specific register
4610 ///    RegisterClass -> a group of regs
4611 ///    Memory        -> memory
4612 /// Ideally, we would pick the most specific constraint possible: if we have
4613 /// something that fits into a register, we would pick it.  The problem here
4614 /// is that if we have something that could either be in a register or in
4615 /// memory that use of the register could cause selection of *other*
4616 /// operands to fail: they might only succeed if we pick memory.  Because of
4617 /// this the heuristic we use is:
4618 ///
4619 ///  1) If there is an 'other' constraint, and if the operand is valid for
4620 ///     that constraint, use it.  This makes us take advantage of 'i'
4621 ///     constraints when available.
4622 ///  2) Otherwise, pick the most general constraint present.  This prefers
4623 ///     'm' over 'r', for example.
4624 ///
4625 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4626                              const TargetLowering &TLI,
4627                              SDValue Op, SelectionDAG *DAG) {
4628   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4629   unsigned BestIdx = 0;
4630   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4631   int BestGenerality = -1;
4632 
4633   // Loop over the options, keeping track of the most general one.
4634   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4635     TargetLowering::ConstraintType CType =
4636       TLI.getConstraintType(OpInfo.Codes[i]);
4637 
4638     // Indirect 'other' or 'immediate' constraints are not allowed.
4639     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4640                                CType == TargetLowering::C_Register ||
4641                                CType == TargetLowering::C_RegisterClass))
4642       continue;
4643 
4644     // If this is an 'other' or 'immediate' constraint, see if the operand is
4645     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4646     // the operand is an integer in the range [0..31] we want to use I (saving a
4647     // load of a register), otherwise we must use 'r'.
4648     if ((CType == TargetLowering::C_Other ||
4649          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4650       assert(OpInfo.Codes[i].size() == 1 &&
4651              "Unhandled multi-letter 'other' constraint");
4652       std::vector<SDValue> ResultOps;
4653       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4654                                        ResultOps, *DAG);
4655       if (!ResultOps.empty()) {
4656         BestType = CType;
4657         BestIdx = i;
4658         break;
4659       }
4660     }
4661 
4662     // Things with matching constraints can only be registers, per gcc
4663     // documentation.  This mainly affects "g" constraints.
4664     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4665       continue;
4666 
4667     // This constraint letter is more general than the previous one, use it.
4668     int Generality = getConstraintGenerality(CType);
4669     if (Generality > BestGenerality) {
4670       BestType = CType;
4671       BestIdx = i;
4672       BestGenerality = Generality;
4673     }
4674   }
4675 
4676   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4677   OpInfo.ConstraintType = BestType;
4678 }
4679 
4680 /// Determines the constraint code and constraint type to use for the specific
4681 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4682 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4683                                             SDValue Op,
4684                                             SelectionDAG *DAG) const {
4685   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4686 
4687   // Single-letter constraints ('r') are very common.
4688   if (OpInfo.Codes.size() == 1) {
4689     OpInfo.ConstraintCode = OpInfo.Codes[0];
4690     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4691   } else {
4692     ChooseConstraint(OpInfo, *this, Op, DAG);
4693   }
4694 
4695   // 'X' matches anything.
4696   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4697     // Labels and constants are handled elsewhere ('X' is the only thing
4698     // that matches labels).  For Functions, the type here is the type of
4699     // the result, which is not what we want to look at; leave them alone.
4700     Value *v = OpInfo.CallOperandVal;
4701     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4702       OpInfo.CallOperandVal = v;
4703       return;
4704     }
4705 
4706     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4707       return;
4708 
4709     // Otherwise, try to resolve it to something we know about by looking at
4710     // the actual operand type.
4711     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4712       OpInfo.ConstraintCode = Repl;
4713       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4714     }
4715   }
4716 }
4717 
4718 /// Given an exact SDIV by a constant, create a multiplication
4719 /// with the multiplicative inverse of the constant.
4720 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4721                               const SDLoc &dl, SelectionDAG &DAG,
4722                               SmallVectorImpl<SDNode *> &Created) {
4723   SDValue Op0 = N->getOperand(0);
4724   SDValue Op1 = N->getOperand(1);
4725   EVT VT = N->getValueType(0);
4726   EVT SVT = VT.getScalarType();
4727   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4728   EVT ShSVT = ShVT.getScalarType();
4729 
4730   bool UseSRA = false;
4731   SmallVector<SDValue, 16> Shifts, Factors;
4732 
4733   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4734     if (C->isNullValue())
4735       return false;
4736     APInt Divisor = C->getAPIntValue();
4737     unsigned Shift = Divisor.countTrailingZeros();
4738     if (Shift) {
4739       Divisor.ashrInPlace(Shift);
4740       UseSRA = true;
4741     }
4742     // Calculate the multiplicative inverse, using Newton's method.
4743     APInt t;
4744     APInt Factor = Divisor;
4745     while ((t = Divisor * Factor) != 1)
4746       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4747     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4748     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4749     return true;
4750   };
4751 
4752   // Collect all magic values from the build vector.
4753   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4754     return SDValue();
4755 
4756   SDValue Shift, Factor;
4757   if (VT.isVector()) {
4758     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4759     Factor = DAG.getBuildVector(VT, dl, Factors);
4760   } else {
4761     Shift = Shifts[0];
4762     Factor = Factors[0];
4763   }
4764 
4765   SDValue Res = Op0;
4766 
4767   // Shift the value upfront if it is even, so the LSB is one.
4768   if (UseSRA) {
4769     // TODO: For UDIV use SRL instead of SRA.
4770     SDNodeFlags Flags;
4771     Flags.setExact(true);
4772     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4773     Created.push_back(Res.getNode());
4774   }
4775 
4776   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4777 }
4778 
4779 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4780                               SelectionDAG &DAG,
4781                               SmallVectorImpl<SDNode *> &Created) const {
4782   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4784   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4785     return SDValue(N, 0); // Lower SDIV as SDIV
4786   return SDValue();
4787 }
4788 
4789 /// Given an ISD::SDIV node expressing a divide by constant,
4790 /// return a DAG expression to select that will generate the same value by
4791 /// multiplying by a magic number.
4792 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4793 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4794                                   bool IsAfterLegalization,
4795                                   SmallVectorImpl<SDNode *> &Created) const {
4796   SDLoc dl(N);
4797   EVT VT = N->getValueType(0);
4798   EVT SVT = VT.getScalarType();
4799   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4800   EVT ShSVT = ShVT.getScalarType();
4801   unsigned EltBits = VT.getScalarSizeInBits();
4802 
4803   // Check to see if we can do this.
4804   // FIXME: We should be more aggressive here.
4805   if (!isTypeLegal(VT))
4806     return SDValue();
4807 
4808   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4809   if (N->getFlags().hasExact())
4810     return BuildExactSDIV(*this, N, dl, DAG, Created);
4811 
4812   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4813 
4814   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4815     if (C->isNullValue())
4816       return false;
4817 
4818     const APInt &Divisor = C->getAPIntValue();
4819     APInt::ms magics = Divisor.magic();
4820     int NumeratorFactor = 0;
4821     int ShiftMask = -1;
4822 
4823     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4824       // If d is +1/-1, we just multiply the numerator by +1/-1.
4825       NumeratorFactor = Divisor.getSExtValue();
4826       magics.m = 0;
4827       magics.s = 0;
4828       ShiftMask = 0;
4829     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4830       // If d > 0 and m < 0, add the numerator.
4831       NumeratorFactor = 1;
4832     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4833       // If d < 0 and m > 0, subtract the numerator.
4834       NumeratorFactor = -1;
4835     }
4836 
4837     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4838     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4839     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4840     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4841     return true;
4842   };
4843 
4844   SDValue N0 = N->getOperand(0);
4845   SDValue N1 = N->getOperand(1);
4846 
4847   // Collect the shifts / magic values from each element.
4848   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4849     return SDValue();
4850 
4851   SDValue MagicFactor, Factor, Shift, ShiftMask;
4852   if (VT.isVector()) {
4853     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4854     Factor = DAG.getBuildVector(VT, dl, Factors);
4855     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4856     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4857   } else {
4858     MagicFactor = MagicFactors[0];
4859     Factor = Factors[0];
4860     Shift = Shifts[0];
4861     ShiftMask = ShiftMasks[0];
4862   }
4863 
4864   // Multiply the numerator (operand 0) by the magic value.
4865   // FIXME: We should support doing a MUL in a wider type.
4866   SDValue Q;
4867   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4868                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4869     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4870   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4871                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4872     SDValue LoHi =
4873         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4874     Q = SDValue(LoHi.getNode(), 1);
4875   } else
4876     return SDValue(); // No mulhs or equivalent.
4877   Created.push_back(Q.getNode());
4878 
4879   // (Optionally) Add/subtract the numerator using Factor.
4880   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4881   Created.push_back(Factor.getNode());
4882   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4883   Created.push_back(Q.getNode());
4884 
4885   // Shift right algebraic by shift value.
4886   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4887   Created.push_back(Q.getNode());
4888 
4889   // Extract the sign bit, mask it and add it to the quotient.
4890   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4891   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4892   Created.push_back(T.getNode());
4893   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4894   Created.push_back(T.getNode());
4895   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4896 }
4897 
4898 /// Given an ISD::UDIV node expressing a divide by constant,
4899 /// return a DAG expression to select that will generate the same value by
4900 /// multiplying by a magic number.
4901 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4902 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4903                                   bool IsAfterLegalization,
4904                                   SmallVectorImpl<SDNode *> &Created) const {
4905   SDLoc dl(N);
4906   EVT VT = N->getValueType(0);
4907   EVT SVT = VT.getScalarType();
4908   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4909   EVT ShSVT = ShVT.getScalarType();
4910   unsigned EltBits = VT.getScalarSizeInBits();
4911 
4912   // Check to see if we can do this.
4913   // FIXME: We should be more aggressive here.
4914   if (!isTypeLegal(VT))
4915     return SDValue();
4916 
4917   bool UseNPQ = false;
4918   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4919 
4920   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4921     if (C->isNullValue())
4922       return false;
4923     // FIXME: We should use a narrower constant when the upper
4924     // bits are known to be zero.
4925     APInt Divisor = C->getAPIntValue();
4926     APInt::mu magics = Divisor.magicu();
4927     unsigned PreShift = 0, PostShift = 0;
4928 
4929     // If the divisor is even, we can avoid using the expensive fixup by
4930     // shifting the divided value upfront.
4931     if (magics.a != 0 && !Divisor[0]) {
4932       PreShift = Divisor.countTrailingZeros();
4933       // Get magic number for the shifted divisor.
4934       magics = Divisor.lshr(PreShift).magicu(PreShift);
4935       assert(magics.a == 0 && "Should use cheap fixup now");
4936     }
4937 
4938     APInt Magic = magics.m;
4939 
4940     unsigned SelNPQ;
4941     if (magics.a == 0 || Divisor.isOneValue()) {
4942       assert(magics.s < Divisor.getBitWidth() &&
4943              "We shouldn't generate an undefined shift!");
4944       PostShift = magics.s;
4945       SelNPQ = false;
4946     } else {
4947       PostShift = magics.s - 1;
4948       SelNPQ = true;
4949     }
4950 
4951     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4952     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4953     NPQFactors.push_back(
4954         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4955                                : APInt::getNullValue(EltBits),
4956                         dl, SVT));
4957     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4958     UseNPQ |= SelNPQ;
4959     return true;
4960   };
4961 
4962   SDValue N0 = N->getOperand(0);
4963   SDValue N1 = N->getOperand(1);
4964 
4965   // Collect the shifts/magic values from each element.
4966   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4967     return SDValue();
4968 
4969   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4970   if (VT.isVector()) {
4971     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4972     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4973     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4974     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4975   } else {
4976     PreShift = PreShifts[0];
4977     MagicFactor = MagicFactors[0];
4978     PostShift = PostShifts[0];
4979   }
4980 
4981   SDValue Q = N0;
4982   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4983   Created.push_back(Q.getNode());
4984 
4985   // FIXME: We should support doing a MUL in a wider type.
4986   auto GetMULHU = [&](SDValue X, SDValue Y) {
4987     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4988                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4989       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4990     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4991                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4992       SDValue LoHi =
4993           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4994       return SDValue(LoHi.getNode(), 1);
4995     }
4996     return SDValue(); // No mulhu or equivalent
4997   };
4998 
4999   // Multiply the numerator (operand 0) by the magic value.
5000   Q = GetMULHU(Q, MagicFactor);
5001   if (!Q)
5002     return SDValue();
5003 
5004   Created.push_back(Q.getNode());
5005 
5006   if (UseNPQ) {
5007     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5008     Created.push_back(NPQ.getNode());
5009 
5010     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5011     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5012     if (VT.isVector())
5013       NPQ = GetMULHU(NPQ, NPQFactor);
5014     else
5015       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5016 
5017     Created.push_back(NPQ.getNode());
5018 
5019     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5020     Created.push_back(Q.getNode());
5021   }
5022 
5023   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5024   Created.push_back(Q.getNode());
5025 
5026   SDValue One = DAG.getConstant(1, dl, VT);
5027   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5028   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5029 }
5030 
5031 /// If all values in Values that *don't* match the predicate are same 'splat'
5032 /// value, then replace all values with that splat value.
5033 /// Else, if AlternativeReplacement was provided, then replace all values that
5034 /// do match predicate with AlternativeReplacement value.
5035 static void
5036 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5037                           std::function<bool(SDValue)> Predicate,
5038                           SDValue AlternativeReplacement = SDValue()) {
5039   SDValue Replacement;
5040   // Is there a value for which the Predicate does *NOT* match? What is it?
5041   auto SplatValue = llvm::find_if_not(Values, Predicate);
5042   if (SplatValue != Values.end()) {
5043     // Does Values consist only of SplatValue's and values matching Predicate?
5044     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5045           return Value == *SplatValue || Predicate(Value);
5046         })) // Then we shall replace values matching predicate with SplatValue.
5047       Replacement = *SplatValue;
5048   }
5049   if (!Replacement) {
5050     // Oops, we did not find the "baseline" splat value.
5051     if (!AlternativeReplacement)
5052       return; // Nothing to do.
5053     // Let's replace with provided value then.
5054     Replacement = AlternativeReplacement;
5055   }
5056   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5057 }
5058 
5059 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5060 /// where the divisor is constant and the comparison target is zero,
5061 /// return a DAG expression that will generate the same comparison result
5062 /// using only multiplications, additions and shifts/rotations.
5063 /// Ref: "Hacker's Delight" 10-17.
5064 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5065                                         SDValue CompTargetNode,
5066                                         ISD::CondCode Cond,
5067                                         DAGCombinerInfo &DCI,
5068                                         const SDLoc &DL) const {
5069   SmallVector<SDNode *, 5> Built;
5070   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5071                                          DCI, DL, Built)) {
5072     for (SDNode *N : Built)
5073       DCI.AddToWorklist(N);
5074     return Folded;
5075   }
5076 
5077   return SDValue();
5078 }
5079 
5080 SDValue
5081 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5082                                   SDValue CompTargetNode, ISD::CondCode Cond,
5083                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5084                                   SmallVectorImpl<SDNode *> &Created) const {
5085   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5086   // - D must be constant, with D = D0 * 2^K where D0 is odd
5087   // - P is the multiplicative inverse of D0 modulo 2^W
5088   // - Q = floor(((2^W) - 1) / D)
5089   // where W is the width of the common type of N and D.
5090   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5091          "Only applicable for (in)equality comparisons.");
5092 
5093   SelectionDAG &DAG = DCI.DAG;
5094 
5095   EVT VT = REMNode.getValueType();
5096   EVT SVT = VT.getScalarType();
5097   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5098   EVT ShSVT = ShVT.getScalarType();
5099 
5100   // If MUL is unavailable, we cannot proceed in any case.
5101   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5102     return SDValue();
5103 
5104   bool ComparingWithAllZeros = true;
5105   bool AllComparisonsWithNonZerosAreTautological = true;
5106   bool HadTautologicalLanes = false;
5107   bool AllLanesAreTautological = true;
5108   bool HadEvenDivisor = false;
5109   bool AllDivisorsArePowerOfTwo = true;
5110   bool HadTautologicalInvertedLanes = false;
5111   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5112 
5113   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5114     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5115     if (CDiv->isNullValue())
5116       return false;
5117 
5118     const APInt &D = CDiv->getAPIntValue();
5119     const APInt &Cmp = CCmp->getAPIntValue();
5120 
5121     ComparingWithAllZeros &= Cmp.isNullValue();
5122 
5123     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5124     // if C2 is not less than C1, the comparison is always false.
5125     // But we will only be able to produce the comparison that will give the
5126     // opposive tautological answer. So this lane would need to be fixed up.
5127     bool TautologicalInvertedLane = D.ule(Cmp);
5128     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5129 
5130     // If all lanes are tautological (either all divisors are ones, or divisor
5131     // is not greater than the constant we are comparing with),
5132     // we will prefer to avoid the fold.
5133     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5134     HadTautologicalLanes |= TautologicalLane;
5135     AllLanesAreTautological &= TautologicalLane;
5136 
5137     // If we are comparing with non-zero, we need'll need  to subtract said
5138     // comparison value from the LHS. But there is no point in doing that if
5139     // every lane where we are comparing with non-zero is tautological..
5140     if (!Cmp.isNullValue())
5141       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5142 
5143     // Decompose D into D0 * 2^K
5144     unsigned K = D.countTrailingZeros();
5145     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5146     APInt D0 = D.lshr(K);
5147 
5148     // D is even if it has trailing zeros.
5149     HadEvenDivisor |= (K != 0);
5150     // D is a power-of-two if D0 is one.
5151     // If all divisors are power-of-two, we will prefer to avoid the fold.
5152     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5153 
5154     // P = inv(D0, 2^W)
5155     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5156     unsigned W = D.getBitWidth();
5157     APInt P = D0.zext(W + 1)
5158                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5159                   .trunc(W);
5160     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5161     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5162 
5163     // Q = floor((2^W - 1) u/ D)
5164     // R = ((2^W - 1) u% D)
5165     APInt Q, R;
5166     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5167 
5168     // If we are comparing with zero, then that comparison constant is okay,
5169     // else it may need to be one less than that.
5170     if (Cmp.ugt(R))
5171       Q -= 1;
5172 
5173     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5174            "We are expecting that K is always less than all-ones for ShSVT");
5175 
5176     // If the lane is tautological the result can be constant-folded.
5177     if (TautologicalLane) {
5178       // Set P and K amount to a bogus values so we can try to splat them.
5179       P = 0;
5180       K = -1;
5181       // And ensure that comparison constant is tautological,
5182       // it will always compare true/false.
5183       Q = -1;
5184     }
5185 
5186     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5187     KAmts.push_back(
5188         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5189     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5190     return true;
5191   };
5192 
5193   SDValue N = REMNode.getOperand(0);
5194   SDValue D = REMNode.getOperand(1);
5195 
5196   // Collect the values from each element.
5197   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5198     return SDValue();
5199 
5200   // If all lanes are tautological, the result can be constant-folded.
5201   if (AllLanesAreTautological)
5202     return SDValue();
5203 
5204   // If this is a urem by a powers-of-two, avoid the fold since it can be
5205   // best implemented as a bit test.
5206   if (AllDivisorsArePowerOfTwo)
5207     return SDValue();
5208 
5209   SDValue PVal, KVal, QVal;
5210   if (VT.isVector()) {
5211     if (HadTautologicalLanes) {
5212       // Try to turn PAmts into a splat, since we don't care about the values
5213       // that are currently '0'. If we can't, just keep '0'`s.
5214       turnVectorIntoSplatVector(PAmts, isNullConstant);
5215       // Try to turn KAmts into a splat, since we don't care about the values
5216       // that are currently '-1'. If we can't, change them to '0'`s.
5217       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5218                                 DAG.getConstant(0, DL, ShSVT));
5219     }
5220 
5221     PVal = DAG.getBuildVector(VT, DL, PAmts);
5222     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5223     QVal = DAG.getBuildVector(VT, DL, QAmts);
5224   } else {
5225     PVal = PAmts[0];
5226     KVal = KAmts[0];
5227     QVal = QAmts[0];
5228   }
5229 
5230   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5231     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5232       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5233     assert(CompTargetNode.getValueType() == N.getValueType() &&
5234            "Expecting that the types on LHS and RHS of comparisons match.");
5235     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5236   }
5237 
5238   // (mul N, P)
5239   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5240   Created.push_back(Op0.getNode());
5241 
5242   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5243   // divisors as a performance improvement, since rotating by 0 is a no-op.
5244   if (HadEvenDivisor) {
5245     // We need ROTR to do this.
5246     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5247       return SDValue();
5248     SDNodeFlags Flags;
5249     Flags.setExact(true);
5250     // UREM: (rotr (mul N, P), K)
5251     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5252     Created.push_back(Op0.getNode());
5253   }
5254 
5255   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5256   SDValue NewCC =
5257       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5258                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5259   if (!HadTautologicalInvertedLanes)
5260     return NewCC;
5261 
5262   // If any lanes previously compared always-false, the NewCC will give
5263   // always-true result for them, so we need to fixup those lanes.
5264   // Or the other way around for inequality predicate.
5265   assert(VT.isVector() && "Can/should only get here for vectors.");
5266   Created.push_back(NewCC.getNode());
5267 
5268   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5269   // if C2 is not less than C1, the comparison is always false.
5270   // But we have produced the comparison that will give the
5271   // opposive tautological answer. So these lanes would need to be fixed up.
5272   SDValue TautologicalInvertedChannels =
5273       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5274   Created.push_back(TautologicalInvertedChannels.getNode());
5275 
5276   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5277     // If we have a vector select, let's replace the comparison results in the
5278     // affected lanes with the correct tautological result.
5279     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5280                                               DL, SETCCVT, SETCCVT);
5281     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5282                        Replacement, NewCC);
5283   }
5284 
5285   // Else, we can just invert the comparison result in the appropriate lanes.
5286   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5287     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5288                        TautologicalInvertedChannels);
5289 
5290   return SDValue(); // Don't know how to lower.
5291 }
5292 
5293 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5294 /// where the divisor is constant and the comparison target is zero,
5295 /// return a DAG expression that will generate the same comparison result
5296 /// using only multiplications, additions and shifts/rotations.
5297 /// Ref: "Hacker's Delight" 10-17.
5298 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5299                                         SDValue CompTargetNode,
5300                                         ISD::CondCode Cond,
5301                                         DAGCombinerInfo &DCI,
5302                                         const SDLoc &DL) const {
5303   SmallVector<SDNode *, 7> Built;
5304   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5305                                          DCI, DL, Built)) {
5306     assert(Built.size() <= 7 && "Max size prediction failed.");
5307     for (SDNode *N : Built)
5308       DCI.AddToWorklist(N);
5309     return Folded;
5310   }
5311 
5312   return SDValue();
5313 }
5314 
5315 SDValue
5316 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5317                                   SDValue CompTargetNode, ISD::CondCode Cond,
5318                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5319                                   SmallVectorImpl<SDNode *> &Created) const {
5320   // Fold:
5321   //   (seteq/ne (srem N, D), 0)
5322   // To:
5323   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5324   //
5325   // - D must be constant, with D = D0 * 2^K where D0 is odd
5326   // - P is the multiplicative inverse of D0 modulo 2^W
5327   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5328   // - Q = floor((2 * A) / (2^K))
5329   // where W is the width of the common type of N and D.
5330   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5331          "Only applicable for (in)equality comparisons.");
5332 
5333   SelectionDAG &DAG = DCI.DAG;
5334 
5335   EVT VT = REMNode.getValueType();
5336   EVT SVT = VT.getScalarType();
5337   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5338   EVT ShSVT = ShVT.getScalarType();
5339 
5340   // If MUL is unavailable, we cannot proceed in any case.
5341   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5342     return SDValue();
5343 
5344   // TODO: Could support comparing with non-zero too.
5345   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5346   if (!CompTarget || !CompTarget->isNullValue())
5347     return SDValue();
5348 
5349   bool HadIntMinDivisor = false;
5350   bool HadOneDivisor = false;
5351   bool AllDivisorsAreOnes = true;
5352   bool HadEvenDivisor = false;
5353   bool NeedToApplyOffset = false;
5354   bool AllDivisorsArePowerOfTwo = true;
5355   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5356 
5357   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5358     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5359     if (C->isNullValue())
5360       return false;
5361 
5362     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5363 
5364     // WARNING: this fold is only valid for positive divisors!
5365     APInt D = C->getAPIntValue();
5366     if (D.isNegative())
5367       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5368 
5369     HadIntMinDivisor |= D.isMinSignedValue();
5370 
5371     // If all divisors are ones, we will prefer to avoid the fold.
5372     HadOneDivisor |= D.isOneValue();
5373     AllDivisorsAreOnes &= D.isOneValue();
5374 
5375     // Decompose D into D0 * 2^K
5376     unsigned K = D.countTrailingZeros();
5377     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5378     APInt D0 = D.lshr(K);
5379 
5380     if (!D.isMinSignedValue()) {
5381       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5382       // we don't care about this lane in this fold, we'll special-handle it.
5383       HadEvenDivisor |= (K != 0);
5384     }
5385 
5386     // D is a power-of-two if D0 is one. This includes INT_MIN.
5387     // If all divisors are power-of-two, we will prefer to avoid the fold.
5388     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5389 
5390     // P = inv(D0, 2^W)
5391     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5392     unsigned W = D.getBitWidth();
5393     APInt P = D0.zext(W + 1)
5394                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5395                   .trunc(W);
5396     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5397     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5398 
5399     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5400     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5401     A.clearLowBits(K);
5402 
5403     if (!D.isMinSignedValue()) {
5404       // If divisor INT_MIN, then we don't care about this lane in this fold,
5405       // we'll special-handle it.
5406       NeedToApplyOffset |= A != 0;
5407     }
5408 
5409     // Q = floor((2 * A) / (2^K))
5410     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5411 
5412     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5413            "We are expecting that A is always less than all-ones for SVT");
5414     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5415            "We are expecting that K is always less than all-ones for ShSVT");
5416 
5417     // If the divisor is 1 the result can be constant-folded. Likewise, we
5418     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5419     if (D.isOneValue()) {
5420       // Set P, A and K to a bogus values so we can try to splat them.
5421       P = 0;
5422       A = -1;
5423       K = -1;
5424 
5425       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5426       Q = -1;
5427     }
5428 
5429     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5430     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5431     KAmts.push_back(
5432         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5433     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5434     return true;
5435   };
5436 
5437   SDValue N = REMNode.getOperand(0);
5438   SDValue D = REMNode.getOperand(1);
5439 
5440   // Collect the values from each element.
5441   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5442     return SDValue();
5443 
5444   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5445   if (AllDivisorsAreOnes)
5446     return SDValue();
5447 
5448   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5449   // since it can be best implemented as a bit test.
5450   if (AllDivisorsArePowerOfTwo)
5451     return SDValue();
5452 
5453   SDValue PVal, AVal, KVal, QVal;
5454   if (VT.isVector()) {
5455     if (HadOneDivisor) {
5456       // Try to turn PAmts into a splat, since we don't care about the values
5457       // that are currently '0'. If we can't, just keep '0'`s.
5458       turnVectorIntoSplatVector(PAmts, isNullConstant);
5459       // Try to turn AAmts into a splat, since we don't care about the
5460       // values that are currently '-1'. If we can't, change them to '0'`s.
5461       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5462                                 DAG.getConstant(0, DL, SVT));
5463       // Try to turn KAmts into a splat, since we don't care about the values
5464       // that are currently '-1'. If we can't, change them to '0'`s.
5465       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5466                                 DAG.getConstant(0, DL, ShSVT));
5467     }
5468 
5469     PVal = DAG.getBuildVector(VT, DL, PAmts);
5470     AVal = DAG.getBuildVector(VT, DL, AAmts);
5471     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5472     QVal = DAG.getBuildVector(VT, DL, QAmts);
5473   } else {
5474     PVal = PAmts[0];
5475     AVal = AAmts[0];
5476     KVal = KAmts[0];
5477     QVal = QAmts[0];
5478   }
5479 
5480   // (mul N, P)
5481   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5482   Created.push_back(Op0.getNode());
5483 
5484   if (NeedToApplyOffset) {
5485     // We need ADD to do this.
5486     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5487       return SDValue();
5488 
5489     // (add (mul N, P), A)
5490     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5491     Created.push_back(Op0.getNode());
5492   }
5493 
5494   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5495   // divisors as a performance improvement, since rotating by 0 is a no-op.
5496   if (HadEvenDivisor) {
5497     // We need ROTR to do this.
5498     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5499       return SDValue();
5500     SDNodeFlags Flags;
5501     Flags.setExact(true);
5502     // SREM: (rotr (add (mul N, P), A), K)
5503     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5504     Created.push_back(Op0.getNode());
5505   }
5506 
5507   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5508   SDValue Fold =
5509       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5510                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5511 
5512   // If we didn't have lanes with INT_MIN divisor, then we're done.
5513   if (!HadIntMinDivisor)
5514     return Fold;
5515 
5516   // That fold is only valid for positive divisors. Which effectively means,
5517   // it is invalid for INT_MIN divisors. So if we have such a lane,
5518   // we must fix-up results for said lanes.
5519   assert(VT.isVector() && "Can/should only get here for vectors.");
5520 
5521   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5522       !isOperationLegalOrCustom(ISD::AND, VT) ||
5523       !isOperationLegalOrCustom(Cond, VT) ||
5524       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5525     return SDValue();
5526 
5527   Created.push_back(Fold.getNode());
5528 
5529   SDValue IntMin = DAG.getConstant(
5530       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5531   SDValue IntMax = DAG.getConstant(
5532       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5533   SDValue Zero =
5534       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5535 
5536   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5537   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5538   Created.push_back(DivisorIsIntMin.getNode());
5539 
5540   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5541   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5542   Created.push_back(Masked.getNode());
5543   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5544   Created.push_back(MaskedIsZero.getNode());
5545 
5546   // To produce final result we need to blend 2 vectors: 'SetCC' and
5547   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5548   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5549   // constant-folded, select can get lowered to a shuffle with constant mask.
5550   SDValue Blended =
5551       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5552 
5553   return Blended;
5554 }
5555 
5556 bool TargetLowering::
5557 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5558   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5559     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5560                                 "be a constant integer");
5561     return true;
5562   }
5563 
5564   return false;
5565 }
5566 
5567 TargetLowering::NegatibleCost
5568 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5569                                  bool LegalOperations, bool ForCodeSize,
5570                                  unsigned Depth) const {
5571   // fneg is removable even if it has multiple uses.
5572   if (Op.getOpcode() == ISD::FNEG)
5573     return NegatibleCost::Cheaper;
5574 
5575   // Don't allow anything with multiple uses unless we know it is free.
5576   EVT VT = Op.getValueType();
5577   const SDNodeFlags Flags = Op->getFlags();
5578   const TargetOptions &Options = DAG.getTarget().Options;
5579   if (!Op.hasOneUse()) {
5580     bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND &&
5581                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5582 
5583     // If we already have the use of the negated floating constant, it is free
5584     // to negate it even it has multiple uses.
5585     bool IsFreeConstant =
5586         Op.getOpcode() == ISD::ConstantFP &&
5587         !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize)
5588              .use_empty();
5589 
5590     if (!IsFreeExtend && !IsFreeConstant)
5591       return NegatibleCost::Expensive;
5592   }
5593 
5594   // Don't recurse exponentially.
5595   if (Depth > SelectionDAG::MaxRecursionDepth)
5596     return NegatibleCost::Expensive;
5597 
5598   switch (Op.getOpcode()) {
5599   case ISD::ConstantFP: {
5600     if (!LegalOperations)
5601       return NegatibleCost::Neutral;
5602 
5603     // Don't invert constant FP values after legalization unless the target says
5604     // the negated constant is legal.
5605     if (isOperationLegal(ISD::ConstantFP, VT) ||
5606         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5607                      ForCodeSize))
5608       return NegatibleCost::Neutral;
5609     break;
5610   }
5611   case ISD::BUILD_VECTOR: {
5612     // Only permit BUILD_VECTOR of constants.
5613     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5614           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5615         }))
5616       return NegatibleCost::Expensive;
5617     if (!LegalOperations)
5618       return NegatibleCost::Neutral;
5619     if (isOperationLegal(ISD::ConstantFP, VT) &&
5620         isOperationLegal(ISD::BUILD_VECTOR, VT))
5621       return NegatibleCost::Neutral;
5622     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5623           return N.isUndef() ||
5624                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5625                               ForCodeSize);
5626         }))
5627       return NegatibleCost::Neutral;
5628     break;
5629   }
5630   case ISD::FADD: {
5631     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5632       return NegatibleCost::Expensive;
5633 
5634     // After operation legalization, it might not be legal to create new FSUBs.
5635     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5636       return NegatibleCost::Expensive;
5637 
5638     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5639     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5640                                         ForCodeSize, Depth + 1);
5641     if (V0 != NegatibleCost::Expensive)
5642       return V0;
5643     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5644     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5645                             Depth + 1);
5646   }
5647   case ISD::FSUB:
5648     // We can't turn -(A-B) into B-A when we honor signed zeros.
5649     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5650       return NegatibleCost::Expensive;
5651 
5652     // fold (fneg (fsub A, B)) -> (fsub B, A)
5653     return NegatibleCost::Neutral;
5654   case ISD::FMUL:
5655   case ISD::FDIV: {
5656     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5657     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5658                                         ForCodeSize, Depth + 1);
5659     if (V0 != NegatibleCost::Expensive)
5660       return V0;
5661 
5662     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5663     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5664       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5665         return NegatibleCost::Expensive;
5666 
5667     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5668                             Depth + 1);
5669   }
5670   case ISD::FMA:
5671   case ISD::FMAD: {
5672     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5673       return NegatibleCost::Expensive;
5674 
5675     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5676     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5677     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5678                                         ForCodeSize, Depth + 1);
5679     if (NegatibleCost::Expensive == V2)
5680       return NegatibleCost::Expensive;
5681 
5682     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5683     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5684                                         ForCodeSize, Depth + 1);
5685     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5686                                         ForCodeSize, Depth + 1);
5687     NegatibleCost V01 = std::max(V0, V1);
5688     if (V01 == NegatibleCost::Expensive)
5689       return NegatibleCost::Expensive;
5690     return std::max(V01, V2);
5691   }
5692 
5693   case ISD::FP_EXTEND:
5694   case ISD::FP_ROUND:
5695   case ISD::FSIN:
5696     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5697                             Depth + 1);
5698   }
5699 
5700   return NegatibleCost::Expensive;
5701 }
5702 
5703 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5704                                              bool LegalOps, bool OptForSize,
5705                                              unsigned Depth) const {
5706   // fneg is removable even if it has multiple uses.
5707   if (Op.getOpcode() == ISD::FNEG)
5708     return Op.getOperand(0);
5709 
5710   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5711          "getNegatedExpression doesn't match getNegatibleCost");
5712 
5713   // Pre-increment recursion depth for use in recursive calls.
5714   ++Depth;
5715   const SDNodeFlags Flags = Op->getFlags();
5716   EVT VT = Op.getValueType();
5717   unsigned Opcode = Op.getOpcode();
5718   SDLoc DL(Op);
5719 
5720   switch (Opcode) {
5721   case ISD::ConstantFP: {
5722     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5723     V.changeSign();
5724     return DAG.getConstantFP(V, DL, VT);
5725   }
5726   case ISD::BUILD_VECTOR: {
5727     SmallVector<SDValue, 4> Ops;
5728     for (SDValue C : Op->op_values()) {
5729       if (C.isUndef()) {
5730         Ops.push_back(C);
5731         continue;
5732       }
5733       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5734       V.changeSign();
5735       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5736     }
5737     return DAG.getBuildVector(VT, DL, Ops);
5738   }
5739   case ISD::FADD: {
5740     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5741     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5742             Flags.hasNoSignedZeros()) &&
5743            "Expected NSZ fp-flag");
5744 
5745     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5746     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5747     if (CostX != NegatibleCost::Expensive)
5748       return DAG.getNode(
5749           ISD::FSUB, DL, VT,
5750           getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags);
5751 
5752     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5753     return DAG.getNode(
5754         ISD::FSUB, DL, VT,
5755         getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), X, Flags);
5756   }
5757   case ISD::FSUB: {
5758     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5759     // fold (fneg (fsub 0, Y)) -> Y
5760     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5761       if (C->isZero())
5762         return Y;
5763 
5764     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5765     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5766   }
5767   case ISD::FMUL:
5768   case ISD::FDIV: {
5769     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5770     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5771     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5772     if (CostX != NegatibleCost::Expensive)
5773       return DAG.getNode(
5774           Opcode, DL, VT,
5775           getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth), Y, Flags);
5776 
5777     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5778     return DAG.getNode(
5779         Opcode, DL, VT, X,
5780         getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth), Flags);
5781   }
5782   case ISD::FMA:
5783   case ISD::FMAD: {
5784     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5785             Flags.hasNoSignedZeros()) &&
5786            "Expected NSZ fp-flag");
5787 
5788     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5789     SDValue NegZ = getNegatedExpression(Z, DAG, LegalOps, OptForSize, Depth);
5790     NegatibleCost CostX = getNegatibleCost(X, DAG, LegalOps, OptForSize, Depth);
5791     NegatibleCost CostY = getNegatibleCost(Y, DAG, LegalOps, OptForSize, Depth);
5792     if (CostX > CostY) {
5793       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5794       SDValue NegX = getNegatedExpression(X, DAG, LegalOps, OptForSize, Depth);
5795       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5796     }
5797 
5798     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5799     SDValue NegY = getNegatedExpression(Y, DAG, LegalOps, OptForSize, Depth);
5800     return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5801   }
5802 
5803   case ISD::FP_EXTEND:
5804   case ISD::FSIN:
5805     return DAG.getNode(Opcode, DL, VT,
5806                        getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5807                                             OptForSize, Depth));
5808   case ISD::FP_ROUND:
5809     return DAG.getNode(ISD::FP_ROUND, DL, VT,
5810                        getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5811                                             OptForSize, Depth),
5812                        Op.getOperand(1));
5813   }
5814 
5815   llvm_unreachable("Unknown code");
5816 }
5817 
5818 //===----------------------------------------------------------------------===//
5819 // Legalization Utilities
5820 //===----------------------------------------------------------------------===//
5821 
5822 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5823                                     SDValue LHS, SDValue RHS,
5824                                     SmallVectorImpl<SDValue> &Result,
5825                                     EVT HiLoVT, SelectionDAG &DAG,
5826                                     MulExpansionKind Kind, SDValue LL,
5827                                     SDValue LH, SDValue RL, SDValue RH) const {
5828   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5829          Opcode == ISD::SMUL_LOHI);
5830 
5831   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5832                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5833   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5834                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5835   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5836                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5837   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5838                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5839 
5840   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5841     return false;
5842 
5843   unsigned OuterBitSize = VT.getScalarSizeInBits();
5844   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5845   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5846   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5847 
5848   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5849   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5850          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5851 
5852   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5853   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5854                           bool Signed) -> bool {
5855     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5856       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5857       Hi = SDValue(Lo.getNode(), 1);
5858       return true;
5859     }
5860     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5861       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5862       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5863       return true;
5864     }
5865     return false;
5866   };
5867 
5868   SDValue Lo, Hi;
5869 
5870   if (!LL.getNode() && !RL.getNode() &&
5871       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5872     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5873     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5874   }
5875 
5876   if (!LL.getNode())
5877     return false;
5878 
5879   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5880   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5881       DAG.MaskedValueIsZero(RHS, HighMask)) {
5882     // The inputs are both zero-extended.
5883     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5884       Result.push_back(Lo);
5885       Result.push_back(Hi);
5886       if (Opcode != ISD::MUL) {
5887         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5888         Result.push_back(Zero);
5889         Result.push_back(Zero);
5890       }
5891       return true;
5892     }
5893   }
5894 
5895   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5896       RHSSB > InnerBitSize) {
5897     // The input values are both sign-extended.
5898     // TODO non-MUL case?
5899     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5900       Result.push_back(Lo);
5901       Result.push_back(Hi);
5902       return true;
5903     }
5904   }
5905 
5906   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5907   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5908   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5909     // FIXME getShiftAmountTy does not always return a sensible result when VT
5910     // is an illegal type, and so the type may be too small to fit the shift
5911     // amount. Override it with i32. The shift will have to be legalized.
5912     ShiftAmountTy = MVT::i32;
5913   }
5914   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5915 
5916   if (!LH.getNode() && !RH.getNode() &&
5917       isOperationLegalOrCustom(ISD::SRL, VT) &&
5918       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5919     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5920     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5921     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5922     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5923   }
5924 
5925   if (!LH.getNode())
5926     return false;
5927 
5928   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5929     return false;
5930 
5931   Result.push_back(Lo);
5932 
5933   if (Opcode == ISD::MUL) {
5934     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5935     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5936     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5937     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5938     Result.push_back(Hi);
5939     return true;
5940   }
5941 
5942   // Compute the full width result.
5943   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5944     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5945     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5946     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5947     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5948   };
5949 
5950   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5951   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5952     return false;
5953 
5954   // This is effectively the add part of a multiply-add of half-sized operands,
5955   // so it cannot overflow.
5956   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5957 
5958   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5959     return false;
5960 
5961   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5962   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5963 
5964   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5965                   isOperationLegalOrCustom(ISD::ADDE, VT));
5966   if (UseGlue)
5967     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5968                        Merge(Lo, Hi));
5969   else
5970     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5971                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5972 
5973   SDValue Carry = Next.getValue(1);
5974   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5975   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5976 
5977   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5978     return false;
5979 
5980   if (UseGlue)
5981     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5982                      Carry);
5983   else
5984     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5985                      Zero, Carry);
5986 
5987   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5988 
5989   if (Opcode == ISD::SMUL_LOHI) {
5990     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5991                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5992     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5993 
5994     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5995                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5996     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5997   }
5998 
5999   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6000   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6001   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6002   return true;
6003 }
6004 
6005 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6006                                SelectionDAG &DAG, MulExpansionKind Kind,
6007                                SDValue LL, SDValue LH, SDValue RL,
6008                                SDValue RH) const {
6009   SmallVector<SDValue, 2> Result;
6010   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6011                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6012                            DAG, Kind, LL, LH, RL, RH);
6013   if (Ok) {
6014     assert(Result.size() == 2);
6015     Lo = Result[0];
6016     Hi = Result[1];
6017   }
6018   return Ok;
6019 }
6020 
6021 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6022                                        SelectionDAG &DAG) const {
6023   EVT VT = Node->getValueType(0);
6024 
6025   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6026                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6027                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6028                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6029     return false;
6030 
6031   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6032   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6033   SDValue X = Node->getOperand(0);
6034   SDValue Y = Node->getOperand(1);
6035   SDValue Z = Node->getOperand(2);
6036 
6037   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6038   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6039   SDLoc DL(SDValue(Node, 0));
6040 
6041   EVT ShVT = Z.getValueType();
6042   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6043   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6044 
6045   SDValue ShAmt;
6046   if (isPowerOf2_32(EltSizeInBits)) {
6047     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6048     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6049   } else {
6050     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6051   }
6052 
6053   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6054   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6055   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6056   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6057 
6058   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6059   // and that is undefined. We must compare and select to avoid UB.
6060   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6061 
6062   // For fshl, 0-shift returns the 1st arg (X).
6063   // For fshr, 0-shift returns the 2nd arg (Y).
6064   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6065   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6066   return true;
6067 }
6068 
6069 // TODO: Merge with expandFunnelShift.
6070 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6071                                SelectionDAG &DAG) const {
6072   EVT VT = Node->getValueType(0);
6073   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6074   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6075   SDValue Op0 = Node->getOperand(0);
6076   SDValue Op1 = Node->getOperand(1);
6077   SDLoc DL(SDValue(Node, 0));
6078 
6079   EVT ShVT = Op1.getValueType();
6080   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6081 
6082   // If a rotate in the other direction is legal, use it.
6083   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6084   if (isOperationLegal(RevRot, VT)) {
6085     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6086     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6087     return true;
6088   }
6089 
6090   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6091                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6092                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6093                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6094                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6095     return false;
6096 
6097   // Otherwise,
6098   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6099   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6100   //
6101   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6102          "Expecting the type bitwidth to be a power of 2");
6103   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6104   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6105   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6106   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6107   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6108   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6109   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6110                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6111   return true;
6112 }
6113 
6114 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6115                                       SelectionDAG &DAG) const {
6116   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6117   SDValue Src = Node->getOperand(OpNo);
6118   EVT SrcVT = Src.getValueType();
6119   EVT DstVT = Node->getValueType(0);
6120   SDLoc dl(SDValue(Node, 0));
6121 
6122   // FIXME: Only f32 to i64 conversions are supported.
6123   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6124     return false;
6125 
6126   if (Node->isStrictFPOpcode())
6127     // When a NaN is converted to an integer a trap is allowed. We can't
6128     // use this expansion here because it would eliminate that trap. Other
6129     // traps are also allowed and cannot be eliminated. See
6130     // IEEE 754-2008 sec 5.8.
6131     return false;
6132 
6133   // Expand f32 -> i64 conversion
6134   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6135   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6136   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6137   EVT IntVT = SrcVT.changeTypeToInteger();
6138   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6139 
6140   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6141   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6142   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6143   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6144   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6145   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6146 
6147   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6148 
6149   SDValue ExponentBits = DAG.getNode(
6150       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6151       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6152   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6153 
6154   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6155                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6156                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6157   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6158 
6159   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6160                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6161                           DAG.getConstant(0x00800000, dl, IntVT));
6162 
6163   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6164 
6165   R = DAG.getSelectCC(
6166       dl, Exponent, ExponentLoBit,
6167       DAG.getNode(ISD::SHL, dl, DstVT, R,
6168                   DAG.getZExtOrTrunc(
6169                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6170                       dl, IntShVT)),
6171       DAG.getNode(ISD::SRL, dl, DstVT, R,
6172                   DAG.getZExtOrTrunc(
6173                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6174                       dl, IntShVT)),
6175       ISD::SETGT);
6176 
6177   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6178                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6179 
6180   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6181                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6182   return true;
6183 }
6184 
6185 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6186                                       SDValue &Chain,
6187                                       SelectionDAG &DAG) const {
6188   SDLoc dl(SDValue(Node, 0));
6189   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6190   SDValue Src = Node->getOperand(OpNo);
6191 
6192   EVT SrcVT = Src.getValueType();
6193   EVT DstVT = Node->getValueType(0);
6194   EVT SetCCVT =
6195       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6196   EVT DstSetCCVT =
6197       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6198 
6199   // Only expand vector types if we have the appropriate vector bit operations.
6200   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6201                                                    ISD::FP_TO_SINT;
6202   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6203                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6204     return false;
6205 
6206   // If the maximum float value is smaller then the signed integer range,
6207   // the destination signmask can't be represented by the float, so we can
6208   // just use FP_TO_SINT directly.
6209   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6210   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6211   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6212   if (APFloat::opOverflow &
6213       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6214     if (Node->isStrictFPOpcode()) {
6215       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6216                            { Node->getOperand(0), Src });
6217       Chain = Result.getValue(1);
6218     } else
6219       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6220     return true;
6221   }
6222 
6223   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6224   SDValue Sel;
6225 
6226   if (Node->isStrictFPOpcode()) {
6227     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6228                        Node->getOperand(0), /*IsSignaling*/ true);
6229     Chain = Sel.getValue(1);
6230   } else {
6231     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6232   }
6233 
6234   bool Strict = Node->isStrictFPOpcode() ||
6235                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6236 
6237   if (Strict) {
6238     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6239     // signmask then offset (the result of which should be fully representable).
6240     // Sel = Src < 0x8000000000000000
6241     // FltOfs = select Sel, 0, 0x8000000000000000
6242     // IntOfs = select Sel, 0, 0x8000000000000000
6243     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6244 
6245     // TODO: Should any fast-math-flags be set for the FSUB?
6246     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6247                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6248     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6249     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6250                                    DAG.getConstant(0, dl, DstVT),
6251                                    DAG.getConstant(SignMask, dl, DstVT));
6252     SDValue SInt;
6253     if (Node->isStrictFPOpcode()) {
6254       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6255                                 { Chain, Src, FltOfs });
6256       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6257                          { Val.getValue(1), Val });
6258       Chain = SInt.getValue(1);
6259     } else {
6260       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6261       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6262     }
6263     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6264   } else {
6265     // Expand based on maximum range of FP_TO_SINT:
6266     // True = fp_to_sint(Src)
6267     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6268     // Result = select (Src < 0x8000000000000000), True, False
6269 
6270     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6271     // TODO: Should any fast-math-flags be set for the FSUB?
6272     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6273                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6274     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6275                         DAG.getConstant(SignMask, dl, DstVT));
6276     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6277     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6278   }
6279   return true;
6280 }
6281 
6282 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6283                                       SDValue &Chain,
6284                                       SelectionDAG &DAG) const {
6285   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6286   SDValue Src = Node->getOperand(OpNo);
6287   EVT SrcVT = Src.getValueType();
6288   EVT DstVT = Node->getValueType(0);
6289 
6290   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6291     return false;
6292 
6293   // Only expand vector types if we have the appropriate vector bit operations.
6294   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6295                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6296                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6297                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6298                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6299     return false;
6300 
6301   SDLoc dl(SDValue(Node, 0));
6302   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6303 
6304   // Implementation of unsigned i64 to f64 following the algorithm in
6305   // __floatundidf in compiler_rt. This implementation has the advantage
6306   // of performing rounding correctly, both in the default rounding mode
6307   // and in all alternate rounding modes.
6308   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6309   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6310       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6311   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6312   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6313   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6314 
6315   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6316   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6317   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6318   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6319   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6320   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6321   if (Node->isStrictFPOpcode()) {
6322     SDValue HiSub =
6323         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6324                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6325     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6326                          {HiSub.getValue(1), LoFlt, HiSub});
6327     Chain = Result.getValue(1);
6328   } else {
6329     SDValue HiSub =
6330         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6331     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6332   }
6333   return true;
6334 }
6335 
6336 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6337                                               SelectionDAG &DAG) const {
6338   SDLoc dl(Node);
6339   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6340     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6341   EVT VT = Node->getValueType(0);
6342   if (isOperationLegalOrCustom(NewOp, VT)) {
6343     SDValue Quiet0 = Node->getOperand(0);
6344     SDValue Quiet1 = Node->getOperand(1);
6345 
6346     if (!Node->getFlags().hasNoNaNs()) {
6347       // Insert canonicalizes if it's possible we need to quiet to get correct
6348       // sNaN behavior.
6349       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6350         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6351                              Node->getFlags());
6352       }
6353       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6354         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6355                              Node->getFlags());
6356       }
6357     }
6358 
6359     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6360   }
6361 
6362   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6363   // instead if there are no NaNs.
6364   if (Node->getFlags().hasNoNaNs()) {
6365     unsigned IEEE2018Op =
6366         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6367     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6368       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6369                          Node->getOperand(1), Node->getFlags());
6370     }
6371   }
6372 
6373   // If none of the above worked, but there are no NaNs, then expand to
6374   // a compare/select sequence.  This is required for correctness since
6375   // InstCombine might have canonicalized a fcmp+select sequence to a
6376   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6377   // expansion to libcall, we might introduce a link-time dependency
6378   // on libm into a file that originally did not have one.
6379   if (Node->getFlags().hasNoNaNs()) {
6380     ISD::CondCode Pred =
6381         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6382     SDValue Op1 = Node->getOperand(0);
6383     SDValue Op2 = Node->getOperand(1);
6384     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6385     // Copy FMF flags, but always set the no-signed-zeros flag
6386     // as this is implied by the FMINNUM/FMAXNUM semantics.
6387     SDNodeFlags Flags = Node->getFlags();
6388     Flags.setNoSignedZeros(true);
6389     SelCC->setFlags(Flags);
6390     return SelCC;
6391   }
6392 
6393   return SDValue();
6394 }
6395 
6396 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6397                                  SelectionDAG &DAG) const {
6398   SDLoc dl(Node);
6399   EVT VT = Node->getValueType(0);
6400   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6401   SDValue Op = Node->getOperand(0);
6402   unsigned Len = VT.getScalarSizeInBits();
6403   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6404 
6405   // TODO: Add support for irregular type lengths.
6406   if (!(Len <= 128 && Len % 8 == 0))
6407     return false;
6408 
6409   // Only expand vector types if we have the appropriate vector bit operations.
6410   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6411                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6412                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6413                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6414                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6415     return false;
6416 
6417   // This is the "best" algorithm from
6418   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6419   SDValue Mask55 =
6420       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6421   SDValue Mask33 =
6422       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6423   SDValue Mask0F =
6424       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6425   SDValue Mask01 =
6426       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6427 
6428   // v = v - ((v >> 1) & 0x55555555...)
6429   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6430                    DAG.getNode(ISD::AND, dl, VT,
6431                                DAG.getNode(ISD::SRL, dl, VT, Op,
6432                                            DAG.getConstant(1, dl, ShVT)),
6433                                Mask55));
6434   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6435   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6436                    DAG.getNode(ISD::AND, dl, VT,
6437                                DAG.getNode(ISD::SRL, dl, VT, Op,
6438                                            DAG.getConstant(2, dl, ShVT)),
6439                                Mask33));
6440   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6441   Op = DAG.getNode(ISD::AND, dl, VT,
6442                    DAG.getNode(ISD::ADD, dl, VT, Op,
6443                                DAG.getNode(ISD::SRL, dl, VT, Op,
6444                                            DAG.getConstant(4, dl, ShVT))),
6445                    Mask0F);
6446   // v = (v * 0x01010101...) >> (Len - 8)
6447   if (Len > 8)
6448     Op =
6449         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6450                     DAG.getConstant(Len - 8, dl, ShVT));
6451 
6452   Result = Op;
6453   return true;
6454 }
6455 
6456 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6457                                 SelectionDAG &DAG) const {
6458   SDLoc dl(Node);
6459   EVT VT = Node->getValueType(0);
6460   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6461   SDValue Op = Node->getOperand(0);
6462   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6463 
6464   // If the non-ZERO_UNDEF version is supported we can use that instead.
6465   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6466       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6467     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6468     return true;
6469   }
6470 
6471   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6472   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6473     EVT SetCCVT =
6474         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6475     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6476     SDValue Zero = DAG.getConstant(0, dl, VT);
6477     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6478     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6479                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6480     return true;
6481   }
6482 
6483   // Only expand vector types if we have the appropriate vector bit operations.
6484   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6485                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6486                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6487                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6488     return false;
6489 
6490   // for now, we do this:
6491   // x = x | (x >> 1);
6492   // x = x | (x >> 2);
6493   // ...
6494   // x = x | (x >>16);
6495   // x = x | (x >>32); // for 64-bit input
6496   // return popcount(~x);
6497   //
6498   // Ref: "Hacker's Delight" by Henry Warren
6499   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6500     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6501     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6502                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6503   }
6504   Op = DAG.getNOT(dl, Op, VT);
6505   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6506   return true;
6507 }
6508 
6509 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6510                                 SelectionDAG &DAG) const {
6511   SDLoc dl(Node);
6512   EVT VT = Node->getValueType(0);
6513   SDValue Op = Node->getOperand(0);
6514   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6515 
6516   // If the non-ZERO_UNDEF version is supported we can use that instead.
6517   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6518       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6519     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6520     return true;
6521   }
6522 
6523   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6524   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6525     EVT SetCCVT =
6526         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6527     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6528     SDValue Zero = DAG.getConstant(0, dl, VT);
6529     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6530     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6531                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6532     return true;
6533   }
6534 
6535   // Only expand vector types if we have the appropriate vector bit operations.
6536   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6537                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6538                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6539                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6540                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6541                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6542     return false;
6543 
6544   // for now, we use: { return popcount(~x & (x - 1)); }
6545   // unless the target has ctlz but not ctpop, in which case we use:
6546   // { return 32 - nlz(~x & (x-1)); }
6547   // Ref: "Hacker's Delight" by Henry Warren
6548   SDValue Tmp = DAG.getNode(
6549       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6550       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6551 
6552   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6553   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6554     Result =
6555         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6556                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6557     return true;
6558   }
6559 
6560   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6561   return true;
6562 }
6563 
6564 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6565                                SelectionDAG &DAG) const {
6566   SDLoc dl(N);
6567   EVT VT = N->getValueType(0);
6568   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6569   SDValue Op = N->getOperand(0);
6570 
6571   // Only expand vector types if we have the appropriate vector operations.
6572   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6573                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6574                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6575     return false;
6576 
6577   SDValue Shift =
6578       DAG.getNode(ISD::SRA, dl, VT, Op,
6579                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6580   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6581   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6582   return true;
6583 }
6584 
6585 std::pair<SDValue, SDValue>
6586 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6587                                     SelectionDAG &DAG) const {
6588   SDLoc SL(LD);
6589   SDValue Chain = LD->getChain();
6590   SDValue BasePTR = LD->getBasePtr();
6591   EVT SrcVT = LD->getMemoryVT();
6592   EVT DstVT = LD->getValueType(0);
6593   ISD::LoadExtType ExtType = LD->getExtensionType();
6594 
6595   unsigned NumElem = SrcVT.getVectorNumElements();
6596 
6597   EVT SrcEltVT = SrcVT.getScalarType();
6598   EVT DstEltVT = DstVT.getScalarType();
6599 
6600   // A vector must always be stored in memory as-is, i.e. without any padding
6601   // between the elements, since various code depend on it, e.g. in the
6602   // handling of a bitcast of a vector type to int, which may be done with a
6603   // vector store followed by an integer load. A vector that does not have
6604   // elements that are byte-sized must therefore be stored as an integer
6605   // built out of the extracted vector elements.
6606   if (!SrcEltVT.isByteSized()) {
6607     unsigned NumBits = SrcVT.getSizeInBits();
6608     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6609 
6610     SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(),
6611                                LD->getAlignment(),
6612                                LD->getMemOperand()->getFlags(),
6613                                LD->getAAInfo());
6614 
6615     SmallVector<SDValue, 8> Vals;
6616     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6617       unsigned ShiftIntoIdx =
6618           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6619       SDValue ShiftAmount =
6620           DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT);
6621       SDValue ShiftedElt =
6622           DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount);
6623       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt);
6624       if (ExtType != ISD::NON_EXTLOAD) {
6625         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6626         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6627       }
6628       Vals.push_back(Scalar);
6629     }
6630 
6631     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6632     return std::make_pair(Value, Load.getValue(1));
6633   }
6634 
6635   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6636   assert(SrcEltVT.isByteSized());
6637 
6638   SmallVector<SDValue, 8> Vals;
6639   SmallVector<SDValue, 8> LoadChains;
6640 
6641   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6642     SDValue ScalarLoad =
6643         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6644                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6645                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6646                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6647 
6648     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6649 
6650     Vals.push_back(ScalarLoad.getValue(0));
6651     LoadChains.push_back(ScalarLoad.getValue(1));
6652   }
6653 
6654   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6655   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6656 
6657   return std::make_pair(Value, NewChain);
6658 }
6659 
6660 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6661                                              SelectionDAG &DAG) const {
6662   SDLoc SL(ST);
6663 
6664   SDValue Chain = ST->getChain();
6665   SDValue BasePtr = ST->getBasePtr();
6666   SDValue Value = ST->getValue();
6667   EVT StVT = ST->getMemoryVT();
6668 
6669   // The type of the data we want to save
6670   EVT RegVT = Value.getValueType();
6671   EVT RegSclVT = RegVT.getScalarType();
6672 
6673   // The type of data as saved in memory.
6674   EVT MemSclVT = StVT.getScalarType();
6675 
6676   unsigned NumElem = StVT.getVectorNumElements();
6677 
6678   // A vector must always be stored in memory as-is, i.e. without any padding
6679   // between the elements, since various code depend on it, e.g. in the
6680   // handling of a bitcast of a vector type to int, which may be done with a
6681   // vector store followed by an integer load. A vector that does not have
6682   // elements that are byte-sized must therefore be stored as an integer
6683   // built out of the extracted vector elements.
6684   if (!MemSclVT.isByteSized()) {
6685     unsigned NumBits = StVT.getSizeInBits();
6686     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6687 
6688     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6689 
6690     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6691       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6692                                 DAG.getVectorIdxConstant(Idx, SL));
6693       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6694       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6695       unsigned ShiftIntoIdx =
6696           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6697       SDValue ShiftAmount =
6698           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6699       SDValue ShiftedElt =
6700           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6701       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6702     }
6703 
6704     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6705                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6706                         ST->getAAInfo());
6707   }
6708 
6709   // Store Stride in bytes
6710   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6711   assert(Stride && "Zero stride!");
6712   // Extract each of the elements from the original vector and save them into
6713   // memory individually.
6714   SmallVector<SDValue, 8> Stores;
6715   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6716     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6717                               DAG.getVectorIdxConstant(Idx, SL));
6718 
6719     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6720 
6721     // This scalar TruncStore may be illegal, but we legalize it later.
6722     SDValue Store = DAG.getTruncStore(
6723         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6724         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6725         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6726 
6727     Stores.push_back(Store);
6728   }
6729 
6730   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6731 }
6732 
6733 std::pair<SDValue, SDValue>
6734 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6735   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6736          "unaligned indexed loads not implemented!");
6737   SDValue Chain = LD->getChain();
6738   SDValue Ptr = LD->getBasePtr();
6739   EVT VT = LD->getValueType(0);
6740   EVT LoadedVT = LD->getMemoryVT();
6741   SDLoc dl(LD);
6742   auto &MF = DAG.getMachineFunction();
6743 
6744   if (VT.isFloatingPoint() || VT.isVector()) {
6745     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6746     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6747       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6748           LoadedVT.isVector()) {
6749         // Scalarize the load and let the individual components be handled.
6750         return scalarizeVectorLoad(LD, DAG);
6751       }
6752 
6753       // Expand to a (misaligned) integer load of the same size,
6754       // then bitconvert to floating point or vector.
6755       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6756                                     LD->getMemOperand());
6757       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6758       if (LoadedVT != VT)
6759         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6760                              ISD::ANY_EXTEND, dl, VT, Result);
6761 
6762       return std::make_pair(Result, newLoad.getValue(1));
6763     }
6764 
6765     // Copy the value to a (aligned) stack slot using (unaligned) integer
6766     // loads and stores, then do a (aligned) load from the stack slot.
6767     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6768     unsigned LoadedBytes = LoadedVT.getStoreSize();
6769     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6770     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6771 
6772     // Make sure the stack slot is also aligned for the register type.
6773     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6774     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6775     SmallVector<SDValue, 8> Stores;
6776     SDValue StackPtr = StackBase;
6777     unsigned Offset = 0;
6778 
6779     EVT PtrVT = Ptr.getValueType();
6780     EVT StackPtrVT = StackPtr.getValueType();
6781 
6782     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6783     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6784 
6785     // Do all but one copies using the full register width.
6786     for (unsigned i = 1; i < NumRegs; i++) {
6787       // Load one integer register's worth from the original location.
6788       SDValue Load = DAG.getLoad(
6789           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6790           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6791           LD->getAAInfo());
6792       // Follow the load with a store to the stack slot.  Remember the store.
6793       Stores.push_back(DAG.getStore(
6794           Load.getValue(1), dl, Load, StackPtr,
6795           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6796       // Increment the pointers.
6797       Offset += RegBytes;
6798 
6799       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6800       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6801     }
6802 
6803     // The last copy may be partial.  Do an extending load.
6804     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6805                                   8 * (LoadedBytes - Offset));
6806     SDValue Load =
6807         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6808                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6809                        MinAlign(LD->getAlignment(), Offset),
6810                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6811     // Follow the load with a store to the stack slot.  Remember the store.
6812     // On big-endian machines this requires a truncating store to ensure
6813     // that the bits end up in the right place.
6814     Stores.push_back(DAG.getTruncStore(
6815         Load.getValue(1), dl, Load, StackPtr,
6816         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6817 
6818     // The order of the stores doesn't matter - say it with a TokenFactor.
6819     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6820 
6821     // Finally, perform the original load only redirected to the stack slot.
6822     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6823                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6824                           LoadedVT);
6825 
6826     // Callers expect a MERGE_VALUES node.
6827     return std::make_pair(Load, TF);
6828   }
6829 
6830   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6831          "Unaligned load of unsupported type.");
6832 
6833   // Compute the new VT that is half the size of the old one.  This is an
6834   // integer MVT.
6835   unsigned NumBits = LoadedVT.getSizeInBits();
6836   EVT NewLoadedVT;
6837   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6838   NumBits >>= 1;
6839 
6840   unsigned Alignment = LD->getAlignment();
6841   unsigned IncrementSize = NumBits / 8;
6842   ISD::LoadExtType HiExtType = LD->getExtensionType();
6843 
6844   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6845   if (HiExtType == ISD::NON_EXTLOAD)
6846     HiExtType = ISD::ZEXTLOAD;
6847 
6848   // Load the value in two parts
6849   SDValue Lo, Hi;
6850   if (DAG.getDataLayout().isLittleEndian()) {
6851     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6852                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6853                         LD->getAAInfo());
6854 
6855     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6856     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6857                         LD->getPointerInfo().getWithOffset(IncrementSize),
6858                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6859                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6860   } else {
6861     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6862                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6863                         LD->getAAInfo());
6864 
6865     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6866     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6867                         LD->getPointerInfo().getWithOffset(IncrementSize),
6868                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6869                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6870   }
6871 
6872   // aggregate the two parts
6873   SDValue ShiftAmount =
6874       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6875                                                     DAG.getDataLayout()));
6876   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6877   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6878 
6879   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6880                              Hi.getValue(1));
6881 
6882   return std::make_pair(Result, TF);
6883 }
6884 
6885 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6886                                              SelectionDAG &DAG) const {
6887   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6888          "unaligned indexed stores not implemented!");
6889   SDValue Chain = ST->getChain();
6890   SDValue Ptr = ST->getBasePtr();
6891   SDValue Val = ST->getValue();
6892   EVT VT = Val.getValueType();
6893   int Alignment = ST->getAlignment();
6894   auto &MF = DAG.getMachineFunction();
6895   EVT StoreMemVT = ST->getMemoryVT();
6896 
6897   SDLoc dl(ST);
6898   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6899     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6900     if (isTypeLegal(intVT)) {
6901       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6902           StoreMemVT.isVector()) {
6903         // Scalarize the store and let the individual components be handled.
6904         SDValue Result = scalarizeVectorStore(ST, DAG);
6905         return Result;
6906       }
6907       // Expand to a bitconvert of the value to the integer type of the
6908       // same size, then a (misaligned) int store.
6909       // FIXME: Does not handle truncating floating point stores!
6910       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6911       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6912                             Alignment, ST->getMemOperand()->getFlags());
6913       return Result;
6914     }
6915     // Do a (aligned) store to a stack slot, then copy from the stack slot
6916     // to the final destination using (unaligned) integer loads and stores.
6917     MVT RegVT = getRegisterType(
6918         *DAG.getContext(),
6919         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6920     EVT PtrVT = Ptr.getValueType();
6921     unsigned StoredBytes = StoreMemVT.getStoreSize();
6922     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6923     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6924 
6925     // Make sure the stack slot is also aligned for the register type.
6926     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6927     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6928 
6929     // Perform the original store, only redirected to the stack slot.
6930     SDValue Store = DAG.getTruncStore(
6931         Chain, dl, Val, StackPtr,
6932         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6933 
6934     EVT StackPtrVT = StackPtr.getValueType();
6935 
6936     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6937     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6938     SmallVector<SDValue, 8> Stores;
6939     unsigned Offset = 0;
6940 
6941     // Do all but one copies using the full register width.
6942     for (unsigned i = 1; i < NumRegs; i++) {
6943       // Load one integer register's worth from the stack slot.
6944       SDValue Load = DAG.getLoad(
6945           RegVT, dl, Store, StackPtr,
6946           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6947       // Store it to the final location.  Remember the store.
6948       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6949                                     ST->getPointerInfo().getWithOffset(Offset),
6950                                     MinAlign(ST->getAlignment(), Offset),
6951                                     ST->getMemOperand()->getFlags()));
6952       // Increment the pointers.
6953       Offset += RegBytes;
6954       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6955       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6956     }
6957 
6958     // The last store may be partial.  Do a truncating store.  On big-endian
6959     // machines this requires an extending load from the stack slot to ensure
6960     // that the bits are in the right place.
6961     EVT LoadMemVT =
6962         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6963 
6964     // Load from the stack slot.
6965     SDValue Load = DAG.getExtLoad(
6966         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6967         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6968 
6969     Stores.push_back(
6970         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6971                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6972                           MinAlign(ST->getAlignment(), Offset),
6973                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6974     // The order of the stores doesn't matter - say it with a TokenFactor.
6975     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6976     return Result;
6977   }
6978 
6979   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6980          "Unaligned store of unknown type.");
6981   // Get the half-size VT
6982   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6983   int NumBits = NewStoredVT.getSizeInBits();
6984   int IncrementSize = NumBits / 8;
6985 
6986   // Divide the stored value in two parts.
6987   SDValue ShiftAmount = DAG.getConstant(
6988       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6989   SDValue Lo = Val;
6990   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6991 
6992   // Store the two parts
6993   SDValue Store1, Store2;
6994   Store1 = DAG.getTruncStore(Chain, dl,
6995                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6996                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6997                              ST->getMemOperand()->getFlags());
6998 
6999   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
7000   Alignment = MinAlign(Alignment, IncrementSize);
7001   Store2 = DAG.getTruncStore(
7002       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7003       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7004       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7005 
7006   SDValue Result =
7007       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7008   return Result;
7009 }
7010 
7011 SDValue
7012 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7013                                        const SDLoc &DL, EVT DataVT,
7014                                        SelectionDAG &DAG,
7015                                        bool IsCompressedMemory) const {
7016   SDValue Increment;
7017   EVT AddrVT = Addr.getValueType();
7018   EVT MaskVT = Mask.getValueType();
7019   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7020          "Incompatible types of Data and Mask");
7021   if (IsCompressedMemory) {
7022     // Incrementing the pointer according to number of '1's in the mask.
7023     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7024     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7025     if (MaskIntVT.getSizeInBits() < 32) {
7026       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7027       MaskIntVT = MVT::i32;
7028     }
7029 
7030     // Count '1's with POPCNT.
7031     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7032     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7033     // Scale is an element size in bytes.
7034     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7035                                     AddrVT);
7036     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7037   } else
7038     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7039 
7040   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7041 }
7042 
7043 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7044                                        SDValue Idx,
7045                                        EVT VecVT,
7046                                        const SDLoc &dl) {
7047   if (isa<ConstantSDNode>(Idx))
7048     return Idx;
7049 
7050   EVT IdxVT = Idx.getValueType();
7051   unsigned NElts = VecVT.getVectorNumElements();
7052   if (isPowerOf2_32(NElts)) {
7053     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7054                                      Log2_32(NElts));
7055     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7056                        DAG.getConstant(Imm, dl, IdxVT));
7057   }
7058 
7059   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7060                      DAG.getConstant(NElts - 1, dl, IdxVT));
7061 }
7062 
7063 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7064                                                 SDValue VecPtr, EVT VecVT,
7065                                                 SDValue Index) const {
7066   SDLoc dl(Index);
7067   // Make sure the index type is big enough to compute in.
7068   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7069 
7070   EVT EltVT = VecVT.getVectorElementType();
7071 
7072   // Calculate the element offset and add it to the pointer.
7073   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7074   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7075          "Converting bits to bytes lost precision");
7076 
7077   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7078 
7079   EVT IdxVT = Index.getValueType();
7080 
7081   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7082                       DAG.getConstant(EltSize, dl, IdxVT));
7083   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7084 }
7085 
7086 //===----------------------------------------------------------------------===//
7087 // Implementation of Emulated TLS Model
7088 //===----------------------------------------------------------------------===//
7089 
7090 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7091                                                 SelectionDAG &DAG) const {
7092   // Access to address of TLS varialbe xyz is lowered to a function call:
7093   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7094   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7095   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7096   SDLoc dl(GA);
7097 
7098   ArgListTy Args;
7099   ArgListEntry Entry;
7100   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7101   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7102   StringRef EmuTlsVarName(NameString);
7103   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7104   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7105   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7106   Entry.Ty = VoidPtrType;
7107   Args.push_back(Entry);
7108 
7109   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7110 
7111   TargetLowering::CallLoweringInfo CLI(DAG);
7112   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7113   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7114   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7115 
7116   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7117   // At last for X86 targets, maybe good for other targets too?
7118   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7119   MFI.setAdjustsStack(true); // Is this only for X86 target?
7120   MFI.setHasCalls(true);
7121 
7122   assert((GA->getOffset() == 0) &&
7123          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7124   return CallResult.first;
7125 }
7126 
7127 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7128                                                 SelectionDAG &DAG) const {
7129   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7130   if (!isCtlzFast())
7131     return SDValue();
7132   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7133   SDLoc dl(Op);
7134   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7135     if (C->isNullValue() && CC == ISD::SETEQ) {
7136       EVT VT = Op.getOperand(0).getValueType();
7137       SDValue Zext = Op.getOperand(0);
7138       if (VT.bitsLT(MVT::i32)) {
7139         VT = MVT::i32;
7140         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7141       }
7142       unsigned Log2b = Log2_32(VT.getSizeInBits());
7143       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7144       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7145                                 DAG.getConstant(Log2b, dl, MVT::i32));
7146       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7147     }
7148   }
7149   return SDValue();
7150 }
7151 
7152 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7153   unsigned Opcode = Node->getOpcode();
7154   SDValue LHS = Node->getOperand(0);
7155   SDValue RHS = Node->getOperand(1);
7156   EVT VT = LHS.getValueType();
7157   SDLoc dl(Node);
7158 
7159   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7160   assert(VT.isInteger() && "Expected operands to be integers");
7161 
7162   // usub.sat(a, b) -> umax(a, b) - b
7163   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7164     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7165     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7166   }
7167 
7168   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7169     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7170     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7171     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7172   }
7173 
7174   unsigned OverflowOp;
7175   switch (Opcode) {
7176   case ISD::SADDSAT:
7177     OverflowOp = ISD::SADDO;
7178     break;
7179   case ISD::UADDSAT:
7180     OverflowOp = ISD::UADDO;
7181     break;
7182   case ISD::SSUBSAT:
7183     OverflowOp = ISD::SSUBO;
7184     break;
7185   case ISD::USUBSAT:
7186     OverflowOp = ISD::USUBO;
7187     break;
7188   default:
7189     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7190                      "addition or subtraction node.");
7191   }
7192 
7193   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7194   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7195   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7196                                LHS, RHS);
7197   SDValue SumDiff = Result.getValue(0);
7198   SDValue Overflow = Result.getValue(1);
7199   SDValue Zero = DAG.getConstant(0, dl, VT);
7200   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7201 
7202   if (Opcode == ISD::UADDSAT) {
7203     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7204       // (LHS + RHS) | OverflowMask
7205       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7206       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7207     }
7208     // Overflow ? 0xffff.... : (LHS + RHS)
7209     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7210   } else if (Opcode == ISD::USUBSAT) {
7211     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7212       // (LHS - RHS) & ~OverflowMask
7213       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7214       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7215       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7216     }
7217     // Overflow ? 0 : (LHS - RHS)
7218     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7219   } else {
7220     // SatMax -> Overflow && SumDiff < 0
7221     // SatMin -> Overflow && SumDiff >= 0
7222     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7223     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7224     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7225     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7226     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7227     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7228     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7229   }
7230 }
7231 
7232 SDValue
7233 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7234   assert((Node->getOpcode() == ISD::SMULFIX ||
7235           Node->getOpcode() == ISD::UMULFIX ||
7236           Node->getOpcode() == ISD::SMULFIXSAT ||
7237           Node->getOpcode() == ISD::UMULFIXSAT) &&
7238          "Expected a fixed point multiplication opcode");
7239 
7240   SDLoc dl(Node);
7241   SDValue LHS = Node->getOperand(0);
7242   SDValue RHS = Node->getOperand(1);
7243   EVT VT = LHS.getValueType();
7244   unsigned Scale = Node->getConstantOperandVal(2);
7245   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7246                      Node->getOpcode() == ISD::UMULFIXSAT);
7247   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7248                  Node->getOpcode() == ISD::SMULFIXSAT);
7249   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7250   unsigned VTSize = VT.getScalarSizeInBits();
7251 
7252   if (!Scale) {
7253     // [us]mul.fix(a, b, 0) -> mul(a, b)
7254     if (!Saturating) {
7255       if (isOperationLegalOrCustom(ISD::MUL, VT))
7256         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7257     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7258       SDValue Result =
7259           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7260       SDValue Product = Result.getValue(0);
7261       SDValue Overflow = Result.getValue(1);
7262       SDValue Zero = DAG.getConstant(0, dl, VT);
7263 
7264       APInt MinVal = APInt::getSignedMinValue(VTSize);
7265       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7266       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7267       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7268       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7269       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7270       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7271     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7272       SDValue Result =
7273           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7274       SDValue Product = Result.getValue(0);
7275       SDValue Overflow = Result.getValue(1);
7276 
7277       APInt MaxVal = APInt::getMaxValue(VTSize);
7278       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7279       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7280     }
7281   }
7282 
7283   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7284          "Expected scale to be less than the number of bits if signed or at "
7285          "most the number of bits if unsigned.");
7286   assert(LHS.getValueType() == RHS.getValueType() &&
7287          "Expected both operands to be the same type");
7288 
7289   // Get the upper and lower bits of the result.
7290   SDValue Lo, Hi;
7291   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7292   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7293   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7294     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7295     Lo = Result.getValue(0);
7296     Hi = Result.getValue(1);
7297   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7298     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7299     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7300   } else if (VT.isVector()) {
7301     return SDValue();
7302   } else {
7303     report_fatal_error("Unable to expand fixed point multiplication.");
7304   }
7305 
7306   if (Scale == VTSize)
7307     // Result is just the top half since we'd be shifting by the width of the
7308     // operand. Overflow impossible so this works for both UMULFIX and
7309     // UMULFIXSAT.
7310     return Hi;
7311 
7312   // The result will need to be shifted right by the scale since both operands
7313   // are scaled. The result is given to us in 2 halves, so we only want part of
7314   // both in the result.
7315   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7316   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7317                                DAG.getConstant(Scale, dl, ShiftTy));
7318   if (!Saturating)
7319     return Result;
7320 
7321   if (!Signed) {
7322     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7323     // widened multiplication) aren't all zeroes.
7324 
7325     // Saturate to max if ((Hi >> Scale) != 0),
7326     // which is the same as if (Hi > ((1 << Scale) - 1))
7327     APInt MaxVal = APInt::getMaxValue(VTSize);
7328     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7329                                       dl, VT);
7330     Result = DAG.getSelectCC(dl, Hi, LowMask,
7331                              DAG.getConstant(MaxVal, dl, VT), Result,
7332                              ISD::SETUGT);
7333 
7334     return Result;
7335   }
7336 
7337   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7338   // widened multiplication) aren't all ones or all zeroes.
7339 
7340   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7341   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7342 
7343   if (Scale == 0) {
7344     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7345                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7346     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7347     // Saturated to SatMin if wide product is negative, and SatMax if wide
7348     // product is positive ...
7349     SDValue Zero = DAG.getConstant(0, dl, VT);
7350     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7351                                                ISD::SETLT);
7352     // ... but only if we overflowed.
7353     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7354   }
7355 
7356   //  We handled Scale==0 above so all the bits to examine is in Hi.
7357 
7358   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7359   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7360   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7361                                     dl, VT);
7362   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7363   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7364   // which is the same as if (HI < (-1 << (Scale - 1))
7365   SDValue HighMask =
7366       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7367                       dl, VT);
7368   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7369   return Result;
7370 }
7371 
7372 SDValue
7373 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7374                                     SDValue LHS, SDValue RHS,
7375                                     unsigned Scale, SelectionDAG &DAG) const {
7376   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7377           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7378          "Expected a fixed point division opcode");
7379 
7380   EVT VT = LHS.getValueType();
7381   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7382   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7383   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7384 
7385   // If there is enough room in the type to upscale the LHS or downscale the
7386   // RHS before the division, we can perform it in this type without having to
7387   // resize. For signed operations, the LHS headroom is the number of
7388   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7389   // The headroom for the RHS is the number of trailing zeroes.
7390   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7391                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7392   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7393 
7394   // For signed saturating operations, we need to be able to detect true integer
7395   // division overflow; that is, when you have MIN / -EPS. However, this
7396   // is undefined behavior and if we emit divisions that could take such
7397   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7398   // example).
7399   // Avoid this by requiring an extra bit so that we never get this case.
7400   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7401   // signed saturating division, we need to emit a whopping 32-bit division.
7402   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7403     return SDValue();
7404 
7405   unsigned LHSShift = std::min(LHSLead, Scale);
7406   unsigned RHSShift = Scale - LHSShift;
7407 
7408   // At this point, we know that if we shift the LHS up by LHSShift and the
7409   // RHS down by RHSShift, we can emit a regular division with a final scaling
7410   // factor of Scale.
7411 
7412   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7413   if (LHSShift)
7414     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7415                       DAG.getConstant(LHSShift, dl, ShiftTy));
7416   if (RHSShift)
7417     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7418                       DAG.getConstant(RHSShift, dl, ShiftTy));
7419 
7420   SDValue Quot;
7421   if (Signed) {
7422     // For signed operations, if the resulting quotient is negative and the
7423     // remainder is nonzero, subtract 1 from the quotient to round towards
7424     // negative infinity.
7425     SDValue Rem;
7426     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7427     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7428     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7429     if (isTypeLegal(VT) &&
7430         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7431       Quot = DAG.getNode(ISD::SDIVREM, dl,
7432                          DAG.getVTList(VT, VT),
7433                          LHS, RHS);
7434       Rem = Quot.getValue(1);
7435       Quot = Quot.getValue(0);
7436     } else {
7437       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7438                          LHS, RHS);
7439       Rem = DAG.getNode(ISD::SREM, dl, VT,
7440                         LHS, RHS);
7441     }
7442     SDValue Zero = DAG.getConstant(0, dl, VT);
7443     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7444     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7445     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7446     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7447     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7448                                DAG.getConstant(1, dl, VT));
7449     Quot = DAG.getSelect(dl, VT,
7450                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7451                          Sub1, Quot);
7452   } else
7453     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7454                        LHS, RHS);
7455 
7456   return Quot;
7457 }
7458 
7459 void TargetLowering::expandUADDSUBO(
7460     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7461   SDLoc dl(Node);
7462   SDValue LHS = Node->getOperand(0);
7463   SDValue RHS = Node->getOperand(1);
7464   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7465 
7466   // If ADD/SUBCARRY is legal, use that instead.
7467   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7468   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7469     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7470     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7471                                     { LHS, RHS, CarryIn });
7472     Result = SDValue(NodeCarry.getNode(), 0);
7473     Overflow = SDValue(NodeCarry.getNode(), 1);
7474     return;
7475   }
7476 
7477   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7478                             LHS.getValueType(), LHS, RHS);
7479 
7480   EVT ResultType = Node->getValueType(1);
7481   EVT SetCCType = getSetCCResultType(
7482       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7483   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7484   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7485   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7486 }
7487 
7488 void TargetLowering::expandSADDSUBO(
7489     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7490   SDLoc dl(Node);
7491   SDValue LHS = Node->getOperand(0);
7492   SDValue RHS = Node->getOperand(1);
7493   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7494 
7495   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7496                             LHS.getValueType(), LHS, RHS);
7497 
7498   EVT ResultType = Node->getValueType(1);
7499   EVT OType = getSetCCResultType(
7500       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7501 
7502   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7503   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7504   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7505     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7506     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7507     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7508     return;
7509   }
7510 
7511   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7512 
7513   // For an addition, the result should be less than one of the operands (LHS)
7514   // if and only if the other operand (RHS) is negative, otherwise there will
7515   // be overflow.
7516   // For a subtraction, the result should be less than one of the operands
7517   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7518   // otherwise there will be overflow.
7519   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7520   SDValue ConditionRHS =
7521       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7522 
7523   Overflow = DAG.getBoolExtOrTrunc(
7524       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7525       ResultType, ResultType);
7526 }
7527 
7528 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7529                                 SDValue &Overflow, SelectionDAG &DAG) const {
7530   SDLoc dl(Node);
7531   EVT VT = Node->getValueType(0);
7532   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7533   SDValue LHS = Node->getOperand(0);
7534   SDValue RHS = Node->getOperand(1);
7535   bool isSigned = Node->getOpcode() == ISD::SMULO;
7536 
7537   // For power-of-two multiplications we can use a simpler shift expansion.
7538   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7539     const APInt &C = RHSC->getAPIntValue();
7540     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7541     if (C.isPowerOf2()) {
7542       // smulo(x, signed_min) is same as umulo(x, signed_min).
7543       bool UseArithShift = isSigned && !C.isMinSignedValue();
7544       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7545       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7546       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7547       Overflow = DAG.getSetCC(dl, SetCCVT,
7548           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7549                       dl, VT, Result, ShiftAmt),
7550           LHS, ISD::SETNE);
7551       return true;
7552     }
7553   }
7554 
7555   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7556   if (VT.isVector())
7557     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7558                               VT.getVectorNumElements());
7559 
7560   SDValue BottomHalf;
7561   SDValue TopHalf;
7562   static const unsigned Ops[2][3] =
7563       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7564         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7565   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7566     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7567     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7568   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7569     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7570                              RHS);
7571     TopHalf = BottomHalf.getValue(1);
7572   } else if (isTypeLegal(WideVT)) {
7573     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7574     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7575     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7576     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7577     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7578         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7579     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7580                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7581   } else {
7582     if (VT.isVector())
7583       return false;
7584 
7585     // We can fall back to a libcall with an illegal type for the MUL if we
7586     // have a libcall big enough.
7587     // Also, we can fall back to a division in some cases, but that's a big
7588     // performance hit in the general case.
7589     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7590     if (WideVT == MVT::i16)
7591       LC = RTLIB::MUL_I16;
7592     else if (WideVT == MVT::i32)
7593       LC = RTLIB::MUL_I32;
7594     else if (WideVT == MVT::i64)
7595       LC = RTLIB::MUL_I64;
7596     else if (WideVT == MVT::i128)
7597       LC = RTLIB::MUL_I128;
7598     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7599 
7600     SDValue HiLHS;
7601     SDValue HiRHS;
7602     if (isSigned) {
7603       // The high part is obtained by SRA'ing all but one of the bits of low
7604       // part.
7605       unsigned LoSize = VT.getSizeInBits();
7606       HiLHS =
7607           DAG.getNode(ISD::SRA, dl, VT, LHS,
7608                       DAG.getConstant(LoSize - 1, dl,
7609                                       getPointerTy(DAG.getDataLayout())));
7610       HiRHS =
7611           DAG.getNode(ISD::SRA, dl, VT, RHS,
7612                       DAG.getConstant(LoSize - 1, dl,
7613                                       getPointerTy(DAG.getDataLayout())));
7614     } else {
7615         HiLHS = DAG.getConstant(0, dl, VT);
7616         HiRHS = DAG.getConstant(0, dl, VT);
7617     }
7618 
7619     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7620     // pre-lowered to the correct types. This all depends upon WideVT not
7621     // being a legal type for the architecture and thus has to be split to
7622     // two arguments.
7623     SDValue Ret;
7624     TargetLowering::MakeLibCallOptions CallOptions;
7625     CallOptions.setSExt(isSigned);
7626     CallOptions.setIsPostTypeLegalization(true);
7627     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7628       // Halves of WideVT are packed into registers in different order
7629       // depending on platform endianness. This is usually handled by
7630       // the C calling convention, but we can't defer to it in
7631       // the legalizer.
7632       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7633       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7634     } else {
7635       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7636       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7637     }
7638     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7639            "Ret value is a collection of constituent nodes holding result.");
7640     if (DAG.getDataLayout().isLittleEndian()) {
7641       // Same as above.
7642       BottomHalf = Ret.getOperand(0);
7643       TopHalf = Ret.getOperand(1);
7644     } else {
7645       BottomHalf = Ret.getOperand(1);
7646       TopHalf = Ret.getOperand(0);
7647     }
7648   }
7649 
7650   Result = BottomHalf;
7651   if (isSigned) {
7652     SDValue ShiftAmt = DAG.getConstant(
7653         VT.getScalarSizeInBits() - 1, dl,
7654         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7655     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7656     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7657   } else {
7658     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7659                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7660   }
7661 
7662   // Truncate the result if SetCC returns a larger type than needed.
7663   EVT RType = Node->getValueType(1);
7664   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7665     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7666 
7667   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7668          "Unexpected result type for S/UMULO legalization");
7669   return true;
7670 }
7671 
7672 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7673   SDLoc dl(Node);
7674   bool NoNaN = Node->getFlags().hasNoNaNs();
7675   unsigned BaseOpcode = 0;
7676   switch (Node->getOpcode()) {
7677   default: llvm_unreachable("Expected VECREDUCE opcode");
7678   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7679   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7680   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7681   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7682   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7683   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7684   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7685   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7686   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7687   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7688   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7689   case ISD::VECREDUCE_FMAX:
7690     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7691     break;
7692   case ISD::VECREDUCE_FMIN:
7693     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7694     break;
7695   }
7696 
7697   SDValue Op = Node->getOperand(0);
7698   EVT VT = Op.getValueType();
7699 
7700   // Try to use a shuffle reduction for power of two vectors.
7701   if (VT.isPow2VectorType()) {
7702     while (VT.getVectorNumElements() > 1) {
7703       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7704       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7705         break;
7706 
7707       SDValue Lo, Hi;
7708       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7709       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7710       VT = HalfVT;
7711     }
7712   }
7713 
7714   EVT EltVT = VT.getVectorElementType();
7715   unsigned NumElts = VT.getVectorNumElements();
7716 
7717   SmallVector<SDValue, 8> Ops;
7718   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7719 
7720   SDValue Res = Ops[0];
7721   for (unsigned i = 1; i < NumElts; i++)
7722     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7723 
7724   // Result type may be wider than element type.
7725   if (EltVT != Node->getValueType(0))
7726     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7727   return Res;
7728 }
7729