1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I)
1366     // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits).
1367     if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR &&
1368         (Op0.getOperand(0).isUndef() ||
1369          ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) &&
1370         Op0->hasOneUse()) {
1371       unsigned NumSubElts =
1372           Op0.getOperand(1).getValueType().getVectorNumElements();
1373       unsigned SubIdx = Op0.getConstantOperandVal(2);
1374       APInt DemandedSub =
1375           APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts);
1376       KnownBits KnownSubMask =
1377           TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1);
1378       if (DemandedBits.isSubsetOf(KnownSubMask.One)) {
1379         SDValue NewAnd =
1380             TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1);
1381         SDValue NewInsert =
1382             TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd,
1383                             Op0.getOperand(1), Op0.getOperand(2));
1384         return TLO.CombineTo(Op, NewInsert);
1385       }
1386     }
1387 
1388     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1389                              Depth + 1))
1390       return true;
1391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1392     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1393                              Known2, TLO, Depth + 1))
1394       return true;
1395     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1396 
1397     // If all of the demanded bits are known one on one side, return the other.
1398     // These bits cannot contribute to the result of the 'and'.
1399     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1400       return TLO.CombineTo(Op, Op0);
1401     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1402       return TLO.CombineTo(Op, Op1);
1403     // If all of the demanded bits in the inputs are known zeros, return zero.
1404     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1405       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1406     // If the RHS is a constant, see if we can simplify it.
1407     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1408                                TLO))
1409       return true;
1410     // If the operation can be done in a smaller type, do so.
1411     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1412       return true;
1413 
1414     // Attempt to avoid multi-use ops if we don't need anything from them.
1415     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1416       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1417           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1418       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1419           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1420       if (DemandedOp0 || DemandedOp1) {
1421         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1422         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1423         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1424         return TLO.CombineTo(Op, NewOp);
1425       }
1426     }
1427 
1428     Known &= Known2;
1429     break;
1430   }
1431   case ISD::OR: {
1432     SDValue Op0 = Op.getOperand(0);
1433     SDValue Op1 = Op.getOperand(1);
1434 
1435     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1436                              Depth + 1))
1437       return true;
1438     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1439     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1440                              Known2, TLO, Depth + 1))
1441       return true;
1442     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1443 
1444     // If all of the demanded bits are known zero on one side, return the other.
1445     // These bits cannot contribute to the result of the 'or'.
1446     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1447       return TLO.CombineTo(Op, Op0);
1448     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1449       return TLO.CombineTo(Op, Op1);
1450     // If the RHS is a constant, see if we can simplify it.
1451     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1452       return true;
1453     // If the operation can be done in a smaller type, do so.
1454     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1455       return true;
1456 
1457     // Attempt to avoid multi-use ops if we don't need anything from them.
1458     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1459       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1460           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1461       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1462           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1463       if (DemandedOp0 || DemandedOp1) {
1464         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1465         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1466         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1467         return TLO.CombineTo(Op, NewOp);
1468       }
1469     }
1470 
1471     Known |= Known2;
1472     break;
1473   }
1474   case ISD::XOR: {
1475     SDValue Op0 = Op.getOperand(0);
1476     SDValue Op1 = Op.getOperand(1);
1477 
1478     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1479                              Depth + 1))
1480       return true;
1481     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1482     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1483                              Depth + 1))
1484       return true;
1485     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1486 
1487     // If all of the demanded bits are known zero on one side, return the other.
1488     // These bits cannot contribute to the result of the 'xor'.
1489     if (DemandedBits.isSubsetOf(Known.Zero))
1490       return TLO.CombineTo(Op, Op0);
1491     if (DemandedBits.isSubsetOf(Known2.Zero))
1492       return TLO.CombineTo(Op, Op1);
1493     // If the operation can be done in a smaller type, do so.
1494     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1495       return true;
1496 
1497     // If all of the unknown bits are known to be zero on one side or the other
1498     // turn this into an *inclusive* or.
1499     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1500     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1501       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1502 
1503     ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts);
1504     if (C) {
1505       // If one side is a constant, and all of the set bits in the constant are
1506       // also known set on the other side, turn this into an AND, as we know
1507       // the bits will be cleared.
1508       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1509       // NB: it is okay if more bits are known than are requested
1510       if (C->getAPIntValue() == Known2.One) {
1511         SDValue ANDC =
1512             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1513         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1514       }
1515 
1516       // If the RHS is a constant, see if we can change it. Don't alter a -1
1517       // constant because that's a 'not' op, and that is better for combining
1518       // and codegen.
1519       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1520         // We're flipping all demanded bits. Flip the undemanded bits too.
1521         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1522         return TLO.CombineTo(Op, New);
1523       }
1524 
1525       unsigned Op0Opcode = Op0.getOpcode();
1526       if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) {
1527         if (ConstantSDNode *ShiftC =
1528                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1529           // Don't crash on an oversized shift. We can not guarantee that a
1530           // bogus shift has been simplified to undef.
1531           if (ShiftC->getAPIntValue().ult(BitWidth)) {
1532             uint64_t ShiftAmt = ShiftC->getZExtValue();
1533             APInt Ones = APInt::getAllOnes(BitWidth);
1534             Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt)
1535                                          : Ones.lshr(ShiftAmt);
1536             const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
1537             if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) &&
1538                 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) {
1539               // If the xor constant is a demanded mask, do a 'not' before the
1540               // shift:
1541               // xor (X << ShiftC), XorC --> (not X) << ShiftC
1542               // xor (X >> ShiftC), XorC --> (not X) >> ShiftC
1543               SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT);
1544               return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not,
1545                                                        Op0.getOperand(1)));
1546             }
1547           }
1548         }
1549       }
1550     }
1551 
1552     // If we can't turn this into a 'not', try to shrink the constant.
1553     if (!C || !C->isAllOnes())
1554       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1555         return true;
1556 
1557     // Attempt to avoid multi-use ops if we don't need anything from them.
1558     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1559       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1560           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1561       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1562           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1563       if (DemandedOp0 || DemandedOp1) {
1564         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1565         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1566         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1567         return TLO.CombineTo(Op, NewOp);
1568       }
1569     }
1570 
1571     Known ^= Known2;
1572     break;
1573   }
1574   case ISD::SELECT:
1575     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1576                              Depth + 1))
1577       return true;
1578     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1579                              Depth + 1))
1580       return true;
1581     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1582     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1583 
1584     // If the operands are constants, see if we can simplify them.
1585     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1586       return true;
1587 
1588     // Only known if known in both the LHS and RHS.
1589     Known = KnownBits::commonBits(Known, Known2);
1590     break;
1591   case ISD::VSELECT:
1592     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts,
1593                              Known, TLO, Depth + 1))
1594       return true;
1595     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts,
1596                              Known2, TLO, Depth + 1))
1597       return true;
1598     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1599     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1600 
1601     // Only known if known in both the LHS and RHS.
1602     Known = KnownBits::commonBits(Known, Known2);
1603     break;
1604   case ISD::SELECT_CC:
1605     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1606                              Depth + 1))
1607       return true;
1608     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1609                              Depth + 1))
1610       return true;
1611     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1612     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1613 
1614     // If the operands are constants, see if we can simplify them.
1615     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1616       return true;
1617 
1618     // Only known if known in both the LHS and RHS.
1619     Known = KnownBits::commonBits(Known, Known2);
1620     break;
1621   case ISD::SETCC: {
1622     SDValue Op0 = Op.getOperand(0);
1623     SDValue Op1 = Op.getOperand(1);
1624     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1625     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1626     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1627     // -1, we may be able to bypass the setcc.
1628     if (DemandedBits.isSignMask() &&
1629         Op0.getScalarValueSizeInBits() == BitWidth &&
1630         getBooleanContents(Op0.getValueType()) ==
1631             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1632       // If we're testing X < 0, then this compare isn't needed - just use X!
1633       // FIXME: We're limiting to integer types here, but this should also work
1634       // if we don't care about FP signed-zero. The use of SETLT with FP means
1635       // that we don't care about NaNs.
1636       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1637           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1638         return TLO.CombineTo(Op, Op0);
1639 
1640       // TODO: Should we check for other forms of sign-bit comparisons?
1641       // Examples: X <= -1, X >= 0
1642     }
1643     if (getBooleanContents(Op0.getValueType()) ==
1644             TargetLowering::ZeroOrOneBooleanContent &&
1645         BitWidth > 1)
1646       Known.Zero.setBitsFrom(1);
1647     break;
1648   }
1649   case ISD::SHL: {
1650     SDValue Op0 = Op.getOperand(0);
1651     SDValue Op1 = Op.getOperand(1);
1652     EVT ShiftVT = Op1.getValueType();
1653 
1654     if (const APInt *SA =
1655             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1656       unsigned ShAmt = SA->getZExtValue();
1657       if (ShAmt == 0)
1658         return TLO.CombineTo(Op, Op0);
1659 
1660       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1661       // single shift.  We can do this if the bottom bits (which are shifted
1662       // out) are never demanded.
1663       // TODO - support non-uniform vector amounts.
1664       if (Op0.getOpcode() == ISD::SRL) {
1665         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1666           if (const APInt *SA2 =
1667                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1668             unsigned C1 = SA2->getZExtValue();
1669             unsigned Opc = ISD::SHL;
1670             int Diff = ShAmt - C1;
1671             if (Diff < 0) {
1672               Diff = -Diff;
1673               Opc = ISD::SRL;
1674             }
1675             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1676             return TLO.CombineTo(
1677                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1678           }
1679         }
1680       }
1681 
1682       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1683       // are not demanded. This will likely allow the anyext to be folded away.
1684       // TODO - support non-uniform vector amounts.
1685       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1686         SDValue InnerOp = Op0.getOperand(0);
1687         EVT InnerVT = InnerOp.getValueType();
1688         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1689         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1690             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1691           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1692           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1693             ShTy = InnerVT;
1694           SDValue NarrowShl =
1695               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1696                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1697           return TLO.CombineTo(
1698               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1699         }
1700 
1701         // Repeat the SHL optimization above in cases where an extension
1702         // intervenes: (shl (anyext (shr x, c1)), c2) to
1703         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1704         // aren't demanded (as above) and that the shifted upper c1 bits of
1705         // x aren't demanded.
1706         // TODO - support non-uniform vector amounts.
1707         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1708             InnerOp.hasOneUse()) {
1709           if (const APInt *SA2 =
1710                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1711             unsigned InnerShAmt = SA2->getZExtValue();
1712             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1713                 DemandedBits.getActiveBits() <=
1714                     (InnerBits - InnerShAmt + ShAmt) &&
1715                 DemandedBits.countTrailingZeros() >= ShAmt) {
1716               SDValue NewSA =
1717                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1718               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1719                                                InnerOp.getOperand(0));
1720               return TLO.CombineTo(
1721                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1722             }
1723           }
1724         }
1725       }
1726 
1727       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1728       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1729                                Depth + 1))
1730         return true;
1731       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1732       Known.Zero <<= ShAmt;
1733       Known.One <<= ShAmt;
1734       // low bits known zero.
1735       Known.Zero.setLowBits(ShAmt);
1736 
1737       // Attempt to avoid multi-use ops if we don't need anything from them.
1738       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1739         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1740             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1741         if (DemandedOp0) {
1742           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1743           return TLO.CombineTo(Op, NewOp);
1744         }
1745       }
1746 
1747       // Try shrinking the operation as long as the shift amount will still be
1748       // in range.
1749       if ((ShAmt < DemandedBits.getActiveBits()) &&
1750           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1751         return true;
1752     } else {
1753       // This is a variable shift, so we can't shift the demand mask by a known
1754       // amount. But if we are not demanding high bits, then we are not
1755       // demanding those bits from the pre-shifted operand either.
1756       if (unsigned CTLZ = DemandedBits.countLeadingZeros()) {
1757         APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
1758         if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1759                                  Depth + 1)) {
1760           SDNodeFlags Flags = Op.getNode()->getFlags();
1761           if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1762             // Disable the nsw and nuw flags. We can no longer guarantee that we
1763             // won't wrap after simplification.
1764             Flags.setNoSignedWrap(false);
1765             Flags.setNoUnsignedWrap(false);
1766             Op->setFlags(Flags);
1767           }
1768           return true;
1769         }
1770         Known.resetAll();
1771       }
1772     }
1773 
1774     // If we are only demanding sign bits then we can use the shift source
1775     // directly.
1776     if (const APInt *MaxSA =
1777             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1778       unsigned ShAmt = MaxSA->getZExtValue();
1779       unsigned NumSignBits =
1780           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1781       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1782       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1783         return TLO.CombineTo(Op, Op0);
1784     }
1785     break;
1786   }
1787   case ISD::SRL: {
1788     SDValue Op0 = Op.getOperand(0);
1789     SDValue Op1 = Op.getOperand(1);
1790     EVT ShiftVT = Op1.getValueType();
1791 
1792     // Try to match AVG patterns.
1793     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1794                                         DemandedElts, Depth + 1))
1795       return TLO.CombineTo(Op, AVG);
1796 
1797     if (const APInt *SA =
1798             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1799       unsigned ShAmt = SA->getZExtValue();
1800       if (ShAmt == 0)
1801         return TLO.CombineTo(Op, Op0);
1802 
1803       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1804       // single shift.  We can do this if the top bits (which are shifted out)
1805       // are never demanded.
1806       // TODO - support non-uniform vector amounts.
1807       if (Op0.getOpcode() == ISD::SHL) {
1808         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1809           if (const APInt *SA2 =
1810                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1811             unsigned C1 = SA2->getZExtValue();
1812             unsigned Opc = ISD::SRL;
1813             int Diff = ShAmt - C1;
1814             if (Diff < 0) {
1815               Diff = -Diff;
1816               Opc = ISD::SHL;
1817             }
1818             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1819             return TLO.CombineTo(
1820                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1821           }
1822         }
1823       }
1824 
1825       APInt InDemandedMask = (DemandedBits << ShAmt);
1826 
1827       // If the shift is exact, then it does demand the low bits (and knows that
1828       // they are zero).
1829       if (Op->getFlags().hasExact())
1830         InDemandedMask.setLowBits(ShAmt);
1831 
1832       // Compute the new bits that are at the top now.
1833       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1834                                Depth + 1))
1835         return true;
1836       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1837       Known.Zero.lshrInPlace(ShAmt);
1838       Known.One.lshrInPlace(ShAmt);
1839       // High bits known zero.
1840       Known.Zero.setHighBits(ShAmt);
1841     }
1842     break;
1843   }
1844   case ISD::SRA: {
1845     SDValue Op0 = Op.getOperand(0);
1846     SDValue Op1 = Op.getOperand(1);
1847     EVT ShiftVT = Op1.getValueType();
1848 
1849     // If we only want bits that already match the signbit then we don't need
1850     // to shift.
1851     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1852     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1853         NumHiDemandedBits)
1854       return TLO.CombineTo(Op, Op0);
1855 
1856     // If this is an arithmetic shift right and only the low-bit is set, we can
1857     // always convert this into a logical shr, even if the shift amount is
1858     // variable.  The low bit of the shift cannot be an input sign bit unless
1859     // the shift amount is >= the size of the datatype, which is undefined.
1860     if (DemandedBits.isOne())
1861       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1862 
1863     // Try to match AVG patterns.
1864     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1865                                         DemandedElts, Depth + 1))
1866       return TLO.CombineTo(Op, AVG);
1867 
1868     if (const APInt *SA =
1869             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1870       unsigned ShAmt = SA->getZExtValue();
1871       if (ShAmt == 0)
1872         return TLO.CombineTo(Op, Op0);
1873 
1874       APInt InDemandedMask = (DemandedBits << ShAmt);
1875 
1876       // If the shift is exact, then it does demand the low bits (and knows that
1877       // they are zero).
1878       if (Op->getFlags().hasExact())
1879         InDemandedMask.setLowBits(ShAmt);
1880 
1881       // If any of the demanded bits are produced by the sign extension, we also
1882       // demand the input sign bit.
1883       if (DemandedBits.countLeadingZeros() < ShAmt)
1884         InDemandedMask.setSignBit();
1885 
1886       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1887                                Depth + 1))
1888         return true;
1889       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1890       Known.Zero.lshrInPlace(ShAmt);
1891       Known.One.lshrInPlace(ShAmt);
1892 
1893       // If the input sign bit is known to be zero, or if none of the top bits
1894       // are demanded, turn this into an unsigned shift right.
1895       if (Known.Zero[BitWidth - ShAmt - 1] ||
1896           DemandedBits.countLeadingZeros() >= ShAmt) {
1897         SDNodeFlags Flags;
1898         Flags.setExact(Op->getFlags().hasExact());
1899         return TLO.CombineTo(
1900             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1901       }
1902 
1903       int Log2 = DemandedBits.exactLogBase2();
1904       if (Log2 >= 0) {
1905         // The bit must come from the sign.
1906         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1907         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1908       }
1909 
1910       if (Known.One[BitWidth - ShAmt - 1])
1911         // New bits are known one.
1912         Known.One.setHighBits(ShAmt);
1913 
1914       // Attempt to avoid multi-use ops if we don't need anything from them.
1915       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1916         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1917             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1918         if (DemandedOp0) {
1919           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1920           return TLO.CombineTo(Op, NewOp);
1921         }
1922       }
1923     }
1924     break;
1925   }
1926   case ISD::FSHL:
1927   case ISD::FSHR: {
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     SDValue Op2 = Op.getOperand(2);
1931     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1932 
1933     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1934       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1935 
1936       // For fshl, 0-shift returns the 1st arg.
1937       // For fshr, 0-shift returns the 2nd arg.
1938       if (Amt == 0) {
1939         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1940                                  Known, TLO, Depth + 1))
1941           return true;
1942         break;
1943       }
1944 
1945       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1946       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1947       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1948       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1949       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1950                                Depth + 1))
1951         return true;
1952       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1953                                Depth + 1))
1954         return true;
1955 
1956       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1957       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1958       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1959       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1960       Known.One |= Known2.One;
1961       Known.Zero |= Known2.Zero;
1962 
1963       // Attempt to avoid multi-use ops if we don't need anything from them.
1964       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1965           !DemandedElts.isAllOnes()) {
1966         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1967             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1968         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1969             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1970         if (DemandedOp0 || DemandedOp1) {
1971           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1972           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1973           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1974                                           DemandedOp1, Op2);
1975           return TLO.CombineTo(Op, NewOp);
1976         }
1977       }
1978     }
1979 
1980     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1981     if (isPowerOf2_32(BitWidth)) {
1982       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1983       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1984                                Known2, TLO, Depth + 1))
1985         return true;
1986     }
1987     break;
1988   }
1989   case ISD::ROTL:
1990   case ISD::ROTR: {
1991     SDValue Op0 = Op.getOperand(0);
1992     SDValue Op1 = Op.getOperand(1);
1993     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1994 
1995     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1996     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1997       return TLO.CombineTo(Op, Op0);
1998 
1999     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
2000       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
2001       unsigned RevAmt = BitWidth - Amt;
2002 
2003       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
2004       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
2005       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
2006       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2007                                Depth + 1))
2008         return true;
2009 
2010       // rot*(x, 0) --> x
2011       if (Amt == 0)
2012         return TLO.CombineTo(Op, Op0);
2013 
2014       // See if we don't demand either half of the rotated bits.
2015       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
2016           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
2017         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
2018         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
2019       }
2020       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
2021           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
2022         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
2023         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
2024       }
2025     }
2026 
2027     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
2028     if (isPowerOf2_32(BitWidth)) {
2029       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
2030       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2031                                Depth + 1))
2032         return true;
2033     }
2034     break;
2035   }
2036   case ISD::UMIN: {
2037     // Check if one arg is always less than (or equal) to the other arg.
2038     SDValue Op0 = Op.getOperand(0);
2039     SDValue Op1 = Op.getOperand(1);
2040     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2041     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2042     Known = KnownBits::umin(Known0, Known1);
2043     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
2044       return TLO.CombineTo(Op, IsULE.value() ? Op0 : Op1);
2045     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
2046       return TLO.CombineTo(Op, IsULT.value() ? Op0 : Op1);
2047     break;
2048   }
2049   case ISD::UMAX: {
2050     // Check if one arg is always greater than (or equal) to the other arg.
2051     SDValue Op0 = Op.getOperand(0);
2052     SDValue Op1 = Op.getOperand(1);
2053     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
2054     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
2055     Known = KnownBits::umax(Known0, Known1);
2056     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
2057       return TLO.CombineTo(Op, IsUGE.value() ? Op0 : Op1);
2058     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
2059       return TLO.CombineTo(Op, IsUGT.value() ? Op0 : Op1);
2060     break;
2061   }
2062   case ISD::BITREVERSE: {
2063     SDValue Src = Op.getOperand(0);
2064     APInt DemandedSrcBits = DemandedBits.reverseBits();
2065     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2066                              Depth + 1))
2067       return true;
2068     Known.One = Known2.One.reverseBits();
2069     Known.Zero = Known2.Zero.reverseBits();
2070     break;
2071   }
2072   case ISD::BSWAP: {
2073     SDValue Src = Op.getOperand(0);
2074 
2075     // If the only bits demanded come from one byte of the bswap result,
2076     // just shift the input byte into position to eliminate the bswap.
2077     unsigned NLZ = DemandedBits.countLeadingZeros();
2078     unsigned NTZ = DemandedBits.countTrailingZeros();
2079 
2080     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
2081     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2082     // have 14 leading zeros, round to 8.
2083     NLZ = alignDown(NLZ, 8);
2084     NTZ = alignDown(NTZ, 8);
2085     // If we need exactly one byte, we can do this transformation.
2086     if (BitWidth - NLZ - NTZ == 8) {
2087       // Replace this with either a left or right shift to get the byte into
2088       // the right place.
2089       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2090       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2091         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2092         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2093         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2094         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2095         return TLO.CombineTo(Op, NewOp);
2096       }
2097     }
2098 
2099     APInt DemandedSrcBits = DemandedBits.byteSwap();
2100     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2101                              Depth + 1))
2102       return true;
2103     Known.One = Known2.One.byteSwap();
2104     Known.Zero = Known2.Zero.byteSwap();
2105     break;
2106   }
2107   case ISD::CTPOP: {
2108     // If only 1 bit is demanded, replace with PARITY as long as we're before
2109     // op legalization.
2110     // FIXME: Limit to scalars for now.
2111     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2112       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2113                                                Op.getOperand(0)));
2114 
2115     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2116     break;
2117   }
2118   case ISD::SIGN_EXTEND_INREG: {
2119     SDValue Op0 = Op.getOperand(0);
2120     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2121     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2122 
2123     // If we only care about the highest bit, don't bother shifting right.
2124     if (DemandedBits.isSignMask()) {
2125       unsigned MinSignedBits =
2126           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2127       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2128       // However if the input is already sign extended we expect the sign
2129       // extension to be dropped altogether later and do not simplify.
2130       if (!AlreadySignExtended) {
2131         // Compute the correct shift amount type, which must be getShiftAmountTy
2132         // for scalar types after legalization.
2133         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2134                                                getShiftAmountTy(VT, DL));
2135         return TLO.CombineTo(Op,
2136                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2137       }
2138     }
2139 
2140     // If none of the extended bits are demanded, eliminate the sextinreg.
2141     if (DemandedBits.getActiveBits() <= ExVTBits)
2142       return TLO.CombineTo(Op, Op0);
2143 
2144     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2145 
2146     // Since the sign extended bits are demanded, we know that the sign
2147     // bit is demanded.
2148     InputDemandedBits.setBit(ExVTBits - 1);
2149 
2150     if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2151                              Depth + 1))
2152       return true;
2153     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2154 
2155     // If the sign bit of the input is known set or clear, then we know the
2156     // top bits of the result.
2157 
2158     // If the input sign bit is known zero, convert this into a zero extension.
2159     if (Known.Zero[ExVTBits - 1])
2160       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2161 
2162     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2163     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2164       Known.One.setBitsFrom(ExVTBits);
2165       Known.Zero &= Mask;
2166     } else { // Input sign bit unknown
2167       Known.Zero &= Mask;
2168       Known.One &= Mask;
2169     }
2170     break;
2171   }
2172   case ISD::BUILD_PAIR: {
2173     EVT HalfVT = Op.getOperand(0).getValueType();
2174     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2175 
2176     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2177     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2178 
2179     KnownBits KnownLo, KnownHi;
2180 
2181     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2182       return true;
2183 
2184     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2185       return true;
2186 
2187     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2188                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2189 
2190     Known.One = KnownLo.One.zext(BitWidth) |
2191                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2192     break;
2193   }
2194   case ISD::ZERO_EXTEND:
2195   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2196     SDValue Src = Op.getOperand(0);
2197     EVT SrcVT = Src.getValueType();
2198     unsigned InBits = SrcVT.getScalarSizeInBits();
2199     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2200     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2201 
2202     // If none of the top bits are demanded, convert this into an any_extend.
2203     if (DemandedBits.getActiveBits() <= InBits) {
2204       // If we only need the non-extended bits of the bottom element
2205       // then we can just bitcast to the result.
2206       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2207           VT.getSizeInBits() == SrcVT.getSizeInBits())
2208         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2209 
2210       unsigned Opc =
2211           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2212       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2213         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2214     }
2215 
2216     APInt InDemandedBits = DemandedBits.trunc(InBits);
2217     APInt InDemandedElts = DemandedElts.zext(InElts);
2218     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2219                              Depth + 1))
2220       return true;
2221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2222     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2223     Known = Known.zext(BitWidth);
2224 
2225     // Attempt to avoid multi-use ops if we don't need anything from them.
2226     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2227             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2228       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2229     break;
2230   }
2231   case ISD::SIGN_EXTEND:
2232   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2233     SDValue Src = Op.getOperand(0);
2234     EVT SrcVT = Src.getValueType();
2235     unsigned InBits = SrcVT.getScalarSizeInBits();
2236     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2237     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2238 
2239     // If none of the top bits are demanded, convert this into an any_extend.
2240     if (DemandedBits.getActiveBits() <= InBits) {
2241       // If we only need the non-extended bits of the bottom element
2242       // then we can just bitcast to the result.
2243       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2244           VT.getSizeInBits() == SrcVT.getSizeInBits())
2245         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2246 
2247       unsigned Opc =
2248           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2249       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2250         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2251     }
2252 
2253     APInt InDemandedBits = DemandedBits.trunc(InBits);
2254     APInt InDemandedElts = DemandedElts.zext(InElts);
2255 
2256     // Since some of the sign extended bits are demanded, we know that the sign
2257     // bit is demanded.
2258     InDemandedBits.setBit(InBits - 1);
2259 
2260     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2261                              Depth + 1))
2262       return true;
2263     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2264     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2265 
2266     // If the sign bit is known one, the top bits match.
2267     Known = Known.sext(BitWidth);
2268 
2269     // If the sign bit is known zero, convert this to a zero extend.
2270     if (Known.isNonNegative()) {
2271       unsigned Opc =
2272           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2273       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2274         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2275     }
2276 
2277     // Attempt to avoid multi-use ops if we don't need anything from them.
2278     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2279             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2280       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2281     break;
2282   }
2283   case ISD::ANY_EXTEND:
2284   case ISD::ANY_EXTEND_VECTOR_INREG: {
2285     SDValue Src = Op.getOperand(0);
2286     EVT SrcVT = Src.getValueType();
2287     unsigned InBits = SrcVT.getScalarSizeInBits();
2288     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2289     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2290 
2291     // If we only need the bottom element then we can just bitcast.
2292     // TODO: Handle ANY_EXTEND?
2293     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2294         VT.getSizeInBits() == SrcVT.getSizeInBits())
2295       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2296 
2297     APInt InDemandedBits = DemandedBits.trunc(InBits);
2298     APInt InDemandedElts = DemandedElts.zext(InElts);
2299     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2300                              Depth + 1))
2301       return true;
2302     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2303     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2304     Known = Known.anyext(BitWidth);
2305 
2306     // Attempt to avoid multi-use ops if we don't need anything from them.
2307     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2308             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2309       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2310     break;
2311   }
2312   case ISD::TRUNCATE: {
2313     SDValue Src = Op.getOperand(0);
2314 
2315     // Simplify the input, using demanded bit information, and compute the known
2316     // zero/one bits live out.
2317     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2318     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2319     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2320                              Depth + 1))
2321       return true;
2322     Known = Known.trunc(BitWidth);
2323 
2324     // Attempt to avoid multi-use ops if we don't need anything from them.
2325     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2326             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2327       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2328 
2329     // If the input is only used by this truncate, see if we can shrink it based
2330     // on the known demanded bits.
2331     if (Src.getNode()->hasOneUse()) {
2332       switch (Src.getOpcode()) {
2333       default:
2334         break;
2335       case ISD::SRL:
2336         // Shrink SRL by a constant if none of the high bits shifted in are
2337         // demanded.
2338         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2339           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2340           // undesirable.
2341           break;
2342 
2343         const APInt *ShAmtC =
2344             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2345         if (!ShAmtC || ShAmtC->uge(BitWidth))
2346           break;
2347         uint64_t ShVal = ShAmtC->getZExtValue();
2348 
2349         APInt HighBits =
2350             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2351         HighBits.lshrInPlace(ShVal);
2352         HighBits = HighBits.trunc(BitWidth);
2353 
2354         if (!(HighBits & DemandedBits)) {
2355           // None of the shifted in bits are needed.  Add a truncate of the
2356           // shift input, then shift it.
2357           SDValue NewShAmt = TLO.DAG.getConstant(
2358               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2359           SDValue NewTrunc =
2360               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2361           return TLO.CombineTo(
2362               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2363         }
2364         break;
2365       }
2366     }
2367 
2368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2369     break;
2370   }
2371   case ISD::AssertZext: {
2372     // AssertZext demands all of the high bits, plus any of the low bits
2373     // demanded by its users.
2374     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2375     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2376     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2377                              TLO, Depth + 1))
2378       return true;
2379     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2380 
2381     Known.Zero |= ~InMask;
2382     break;
2383   }
2384   case ISD::EXTRACT_VECTOR_ELT: {
2385     SDValue Src = Op.getOperand(0);
2386     SDValue Idx = Op.getOperand(1);
2387     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2388     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2389 
2390     if (SrcEltCnt.isScalable())
2391       return false;
2392 
2393     // Demand the bits from every vector element without a constant index.
2394     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2395     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2396     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2397       if (CIdx->getAPIntValue().ult(NumSrcElts))
2398         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2399 
2400     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2401     // anything about the extended bits.
2402     APInt DemandedSrcBits = DemandedBits;
2403     if (BitWidth > EltBitWidth)
2404       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2405 
2406     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2407                              Depth + 1))
2408       return true;
2409 
2410     // Attempt to avoid multi-use ops if we don't need anything from them.
2411     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2412       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2413               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2414         SDValue NewOp =
2415             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2416         return TLO.CombineTo(Op, NewOp);
2417       }
2418     }
2419 
2420     Known = Known2;
2421     if (BitWidth > EltBitWidth)
2422       Known = Known.anyext(BitWidth);
2423     break;
2424   }
2425   case ISD::BITCAST: {
2426     SDValue Src = Op.getOperand(0);
2427     EVT SrcVT = Src.getValueType();
2428     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2429 
2430     // If this is an FP->Int bitcast and if the sign bit is the only
2431     // thing demanded, turn this into a FGETSIGN.
2432     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2433         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2434         SrcVT.isFloatingPoint()) {
2435       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2436       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2437       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2438           SrcVT != MVT::f128) {
2439         // Cannot eliminate/lower SHL for f128 yet.
2440         EVT Ty = OpVTLegal ? VT : MVT::i32;
2441         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2442         // place.  We expect the SHL to be eliminated by other optimizations.
2443         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2444         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2445         if (!OpVTLegal && OpVTSizeInBits > 32)
2446           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2447         unsigned ShVal = Op.getValueSizeInBits() - 1;
2448         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2449         return TLO.CombineTo(Op,
2450                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2451       }
2452     }
2453 
2454     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2455     // Demand the elt/bit if any of the original elts/bits are demanded.
2456     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2457       unsigned Scale = BitWidth / NumSrcEltBits;
2458       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2459       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2460       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2461       for (unsigned i = 0; i != Scale; ++i) {
2462         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2463         unsigned BitOffset = EltOffset * NumSrcEltBits;
2464         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2465         if (!Sub.isZero()) {
2466           DemandedSrcBits |= Sub;
2467           for (unsigned j = 0; j != NumElts; ++j)
2468             if (DemandedElts[j])
2469               DemandedSrcElts.setBit((j * Scale) + i);
2470         }
2471       }
2472 
2473       APInt KnownSrcUndef, KnownSrcZero;
2474       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2475                                      KnownSrcZero, TLO, Depth + 1))
2476         return true;
2477 
2478       KnownBits KnownSrcBits;
2479       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2480                                KnownSrcBits, TLO, Depth + 1))
2481         return true;
2482     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2483       // TODO - bigendian once we have test coverage.
2484       unsigned Scale = NumSrcEltBits / BitWidth;
2485       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2486       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2487       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2488       for (unsigned i = 0; i != NumElts; ++i)
2489         if (DemandedElts[i]) {
2490           unsigned Offset = (i % Scale) * BitWidth;
2491           DemandedSrcBits.insertBits(DemandedBits, Offset);
2492           DemandedSrcElts.setBit(i / Scale);
2493         }
2494 
2495       if (SrcVT.isVector()) {
2496         APInt KnownSrcUndef, KnownSrcZero;
2497         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2498                                        KnownSrcZero, TLO, Depth + 1))
2499           return true;
2500       }
2501 
2502       KnownBits KnownSrcBits;
2503       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2504                                KnownSrcBits, TLO, Depth + 1))
2505         return true;
2506     }
2507 
2508     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2509     // recursive call where Known may be useful to the caller.
2510     if (Depth > 0) {
2511       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2512       return false;
2513     }
2514     break;
2515   }
2516   case ISD::MUL:
2517     if (DemandedBits.isPowerOf2()) {
2518       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2519       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2520       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2521       unsigned CTZ = DemandedBits.countTrailingZeros();
2522       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2523       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2524         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2525         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2526         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2527         return TLO.CombineTo(Op, Shl);
2528       }
2529     }
2530     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2531     // X * X is odd iff X is odd.
2532     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2533     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2534       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2535       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2536       return TLO.CombineTo(Op, And1);
2537     }
2538     LLVM_FALLTHROUGH;
2539   case ISD::ADD:
2540   case ISD::SUB: {
2541     // Add, Sub, and Mul don't demand any bits in positions beyond that
2542     // of the highest bit demanded of them.
2543     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2544     SDNodeFlags Flags = Op.getNode()->getFlags();
2545     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2546     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2547     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2548                              Depth + 1) ||
2549         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2550                              Depth + 1) ||
2551         // See if the operation should be performed at a smaller bit width.
2552         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2553       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2554         // Disable the nsw and nuw flags. We can no longer guarantee that we
2555         // won't wrap after simplification.
2556         Flags.setNoSignedWrap(false);
2557         Flags.setNoUnsignedWrap(false);
2558         Op->setFlags(Flags);
2559       }
2560       return true;
2561     }
2562 
2563     // Attempt to avoid multi-use ops if we don't need anything from them.
2564     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2565       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2566           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2567       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2568           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2569       if (DemandedOp0 || DemandedOp1) {
2570         Flags.setNoSignedWrap(false);
2571         Flags.setNoUnsignedWrap(false);
2572         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2573         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2574         SDValue NewOp =
2575             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2576         return TLO.CombineTo(Op, NewOp);
2577       }
2578     }
2579 
2580     // If we have a constant operand, we may be able to turn it into -1 if we
2581     // do not demand the high bits. This can make the constant smaller to
2582     // encode, allow more general folding, or match specialized instruction
2583     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2584     // is probably not useful (and could be detrimental).
2585     ConstantSDNode *C = isConstOrConstSplat(Op1);
2586     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2587     if (C && !C->isAllOnes() && !C->isOne() &&
2588         (C->getAPIntValue() | HighMask).isAllOnes()) {
2589       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2590       // Disable the nsw and nuw flags. We can no longer guarantee that we
2591       // won't wrap after simplification.
2592       Flags.setNoSignedWrap(false);
2593       Flags.setNoUnsignedWrap(false);
2594       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2595       return TLO.CombineTo(Op, NewOp);
2596     }
2597 
2598     // Match a multiply with a disguised negated-power-of-2 and convert to a
2599     // an equivalent shift-left amount.
2600     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2601     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2602       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2603         return 0;
2604 
2605       // Don't touch opaque constants. Also, ignore zero and power-of-2
2606       // multiplies. Those will get folded later.
2607       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2608       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2609           !MulC->getAPIntValue().isPowerOf2()) {
2610         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2611         if (UnmaskedC.isNegatedPowerOf2())
2612           return (-UnmaskedC).logBase2();
2613       }
2614       return 0;
2615     };
2616 
2617     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2618       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2619       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2620       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2621       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2622       return TLO.CombineTo(Op, Res);
2623     };
2624 
2625     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2626       if (Op.getOpcode() == ISD::ADD) {
2627         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2628         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2629           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2630         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2631         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2632           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2633       }
2634       if (Op.getOpcode() == ISD::SUB) {
2635         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2636         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2637           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2638       }
2639     }
2640 
2641     LLVM_FALLTHROUGH;
2642   }
2643   default:
2644     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2645       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2646                                             Known, TLO, Depth))
2647         return true;
2648       break;
2649     }
2650 
2651     // Just use computeKnownBits to compute output bits.
2652     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2653     break;
2654   }
2655 
2656   // If we know the value of all of the demanded bits, return this as a
2657   // constant.
2658   if (!isTargetCanonicalConstantNode(Op) &&
2659       DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2660     // Avoid folding to a constant if any OpaqueConstant is involved.
2661     const SDNode *N = Op.getNode();
2662     for (SDNode *Op :
2663          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2664       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2665         if (C->isOpaque())
2666           return false;
2667     }
2668     if (VT.isInteger())
2669       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2670     if (VT.isFloatingPoint())
2671       return TLO.CombineTo(
2672           Op,
2673           TLO.DAG.getConstantFP(
2674               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2675   }
2676 
2677   return false;
2678 }
2679 
2680 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2681                                                 const APInt &DemandedElts,
2682                                                 DAGCombinerInfo &DCI) const {
2683   SelectionDAG &DAG = DCI.DAG;
2684   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2685                         !DCI.isBeforeLegalizeOps());
2686 
2687   APInt KnownUndef, KnownZero;
2688   bool Simplified =
2689       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2690   if (Simplified) {
2691     DCI.AddToWorklist(Op.getNode());
2692     DCI.CommitTargetLoweringOpt(TLO);
2693   }
2694 
2695   return Simplified;
2696 }
2697 
2698 /// Given a vector binary operation and known undefined elements for each input
2699 /// operand, compute whether each element of the output is undefined.
2700 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2701                                          const APInt &UndefOp0,
2702                                          const APInt &UndefOp1) {
2703   EVT VT = BO.getValueType();
2704   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2705          "Vector binop only");
2706 
2707   EVT EltVT = VT.getVectorElementType();
2708   unsigned NumElts = VT.getVectorNumElements();
2709   assert(UndefOp0.getBitWidth() == NumElts &&
2710          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2711 
2712   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2713                                    const APInt &UndefVals) {
2714     if (UndefVals[Index])
2715       return DAG.getUNDEF(EltVT);
2716 
2717     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2718       // Try hard to make sure that the getNode() call is not creating temporary
2719       // nodes. Ignore opaque integers because they do not constant fold.
2720       SDValue Elt = BV->getOperand(Index);
2721       auto *C = dyn_cast<ConstantSDNode>(Elt);
2722       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2723         return Elt;
2724     }
2725 
2726     return SDValue();
2727   };
2728 
2729   APInt KnownUndef = APInt::getZero(NumElts);
2730   for (unsigned i = 0; i != NumElts; ++i) {
2731     // If both inputs for this element are either constant or undef and match
2732     // the element type, compute the constant/undef result for this element of
2733     // the vector.
2734     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2735     // not handle FP constants. The code within getNode() should be refactored
2736     // to avoid the danger of creating a bogus temporary node here.
2737     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2738     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2739     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2740       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2741         KnownUndef.setBit(i);
2742   }
2743   return KnownUndef;
2744 }
2745 
2746 bool TargetLowering::SimplifyDemandedVectorElts(
2747     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2748     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2749     bool AssumeSingleUse) const {
2750   EVT VT = Op.getValueType();
2751   unsigned Opcode = Op.getOpcode();
2752   APInt DemandedElts = OriginalDemandedElts;
2753   unsigned NumElts = DemandedElts.getBitWidth();
2754   assert(VT.isVector() && "Expected vector op");
2755 
2756   KnownUndef = KnownZero = APInt::getZero(NumElts);
2757 
2758   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2759   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2760     return false;
2761 
2762   // TODO: For now we assume we know nothing about scalable vectors.
2763   if (VT.isScalableVector())
2764     return false;
2765 
2766   assert(VT.getVectorNumElements() == NumElts &&
2767          "Mask size mismatches value type element count!");
2768 
2769   // Undef operand.
2770   if (Op.isUndef()) {
2771     KnownUndef.setAllBits();
2772     return false;
2773   }
2774 
2775   // If Op has other users, assume that all elements are needed.
2776   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2777     DemandedElts.setAllBits();
2778 
2779   // Not demanding any elements from Op.
2780   if (DemandedElts == 0) {
2781     KnownUndef.setAllBits();
2782     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2783   }
2784 
2785   // Limit search depth.
2786   if (Depth >= SelectionDAG::MaxRecursionDepth)
2787     return false;
2788 
2789   SDLoc DL(Op);
2790   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2791   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2792 
2793   // Helper for demanding the specified elements and all the bits of both binary
2794   // operands.
2795   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2796     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2797                                                            TLO.DAG, Depth + 1);
2798     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2799                                                            TLO.DAG, Depth + 1);
2800     if (NewOp0 || NewOp1) {
2801       SDValue NewOp = TLO.DAG.getNode(
2802           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2803       return TLO.CombineTo(Op, NewOp);
2804     }
2805     return false;
2806   };
2807 
2808   switch (Opcode) {
2809   case ISD::SCALAR_TO_VECTOR: {
2810     if (!DemandedElts[0]) {
2811       KnownUndef.setAllBits();
2812       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2813     }
2814     SDValue ScalarSrc = Op.getOperand(0);
2815     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2816       SDValue Src = ScalarSrc.getOperand(0);
2817       SDValue Idx = ScalarSrc.getOperand(1);
2818       EVT SrcVT = Src.getValueType();
2819 
2820       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2821 
2822       if (SrcEltCnt.isScalable())
2823         return false;
2824 
2825       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2826       if (isNullConstant(Idx)) {
2827         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2828         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2829         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2830         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2831                                        TLO, Depth + 1))
2832           return true;
2833       }
2834     }
2835     KnownUndef.setHighBits(NumElts - 1);
2836     break;
2837   }
2838   case ISD::BITCAST: {
2839     SDValue Src = Op.getOperand(0);
2840     EVT SrcVT = Src.getValueType();
2841 
2842     // We only handle vectors here.
2843     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2844     if (!SrcVT.isVector())
2845       break;
2846 
2847     // Fast handling of 'identity' bitcasts.
2848     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2849     if (NumSrcElts == NumElts)
2850       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2851                                         KnownZero, TLO, Depth + 1);
2852 
2853     APInt SrcDemandedElts, SrcZero, SrcUndef;
2854 
2855     // Bitcast from 'large element' src vector to 'small element' vector, we
2856     // must demand a source element if any DemandedElt maps to it.
2857     if ((NumElts % NumSrcElts) == 0) {
2858       unsigned Scale = NumElts / NumSrcElts;
2859       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2860       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2861                                      TLO, Depth + 1))
2862         return true;
2863 
2864       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2865       // of the large element.
2866       // TODO - bigendian once we have test coverage.
2867       if (IsLE) {
2868         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2869         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2870         for (unsigned i = 0; i != NumElts; ++i)
2871           if (DemandedElts[i]) {
2872             unsigned Ofs = (i % Scale) * EltSizeInBits;
2873             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2874           }
2875 
2876         KnownBits Known;
2877         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2878                                  TLO, Depth + 1))
2879           return true;
2880 
2881         // The bitcast has split each wide element into a number of
2882         // narrow subelements. We have just computed the Known bits
2883         // for wide elements. See if element splitting results in
2884         // some subelements being zero. Only for demanded elements!
2885         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2886           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2887                    .isAllOnes())
2888             continue;
2889           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2890             unsigned Elt = Scale * SrcElt + SubElt;
2891             if (DemandedElts[Elt])
2892               KnownZero.setBit(Elt);
2893           }
2894         }
2895       }
2896 
2897       // If the src element is zero/undef then all the output elements will be -
2898       // only demanded elements are guaranteed to be correct.
2899       for (unsigned i = 0; i != NumSrcElts; ++i) {
2900         if (SrcDemandedElts[i]) {
2901           if (SrcZero[i])
2902             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2903           if (SrcUndef[i])
2904             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2905         }
2906       }
2907     }
2908 
2909     // Bitcast from 'small element' src vector to 'large element' vector, we
2910     // demand all smaller source elements covered by the larger demanded element
2911     // of this vector.
2912     if ((NumSrcElts % NumElts) == 0) {
2913       unsigned Scale = NumSrcElts / NumElts;
2914       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2915       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2916                                      TLO, Depth + 1))
2917         return true;
2918 
2919       // If all the src elements covering an output element are zero/undef, then
2920       // the output element will be as well, assuming it was demanded.
2921       for (unsigned i = 0; i != NumElts; ++i) {
2922         if (DemandedElts[i]) {
2923           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2924             KnownZero.setBit(i);
2925           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2926             KnownUndef.setBit(i);
2927         }
2928       }
2929     }
2930     break;
2931   }
2932   case ISD::BUILD_VECTOR: {
2933     // Check all elements and simplify any unused elements with UNDEF.
2934     if (!DemandedElts.isAllOnes()) {
2935       // Don't simplify BROADCASTS.
2936       if (llvm::any_of(Op->op_values(),
2937                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2938         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2939         bool Updated = false;
2940         for (unsigned i = 0; i != NumElts; ++i) {
2941           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2942             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2943             KnownUndef.setBit(i);
2944             Updated = true;
2945           }
2946         }
2947         if (Updated)
2948           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2949       }
2950     }
2951     for (unsigned i = 0; i != NumElts; ++i) {
2952       SDValue SrcOp = Op.getOperand(i);
2953       if (SrcOp.isUndef()) {
2954         KnownUndef.setBit(i);
2955       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2956                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2957         KnownZero.setBit(i);
2958       }
2959     }
2960     break;
2961   }
2962   case ISD::CONCAT_VECTORS: {
2963     EVT SubVT = Op.getOperand(0).getValueType();
2964     unsigned NumSubVecs = Op.getNumOperands();
2965     unsigned NumSubElts = SubVT.getVectorNumElements();
2966     for (unsigned i = 0; i != NumSubVecs; ++i) {
2967       SDValue SubOp = Op.getOperand(i);
2968       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2969       APInt SubUndef, SubZero;
2970       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2971                                      Depth + 1))
2972         return true;
2973       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2974       KnownZero.insertBits(SubZero, i * NumSubElts);
2975     }
2976 
2977     // Attempt to avoid multi-use ops if we don't need anything from them.
2978     if (!DemandedElts.isAllOnes()) {
2979       bool FoundNewSub = false;
2980       SmallVector<SDValue, 2> DemandedSubOps;
2981       for (unsigned i = 0; i != NumSubVecs; ++i) {
2982         SDValue SubOp = Op.getOperand(i);
2983         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2984         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2985             SubOp, SubElts, TLO.DAG, Depth + 1);
2986         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2987         FoundNewSub = NewSubOp ? true : FoundNewSub;
2988       }
2989       if (FoundNewSub) {
2990         SDValue NewOp =
2991             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2992         return TLO.CombineTo(Op, NewOp);
2993       }
2994     }
2995     break;
2996   }
2997   case ISD::INSERT_SUBVECTOR: {
2998     // Demand any elements from the subvector and the remainder from the src its
2999     // inserted into.
3000     SDValue Src = Op.getOperand(0);
3001     SDValue Sub = Op.getOperand(1);
3002     uint64_t Idx = Op.getConstantOperandVal(2);
3003     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3004     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3005     APInt DemandedSrcElts = DemandedElts;
3006     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3007 
3008     APInt SubUndef, SubZero;
3009     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3010                                    Depth + 1))
3011       return true;
3012 
3013     // If none of the src operand elements are demanded, replace it with undef.
3014     if (!DemandedSrcElts && !Src.isUndef())
3015       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
3016                                                TLO.DAG.getUNDEF(VT), Sub,
3017                                                Op.getOperand(2)));
3018 
3019     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3020                                    TLO, Depth + 1))
3021       return true;
3022     KnownUndef.insertBits(SubUndef, Idx);
3023     KnownZero.insertBits(SubZero, Idx);
3024 
3025     // Attempt to avoid multi-use ops if we don't need anything from them.
3026     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
3027       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3028           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3029       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3030           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
3031       if (NewSrc || NewSub) {
3032         NewSrc = NewSrc ? NewSrc : Src;
3033         NewSub = NewSub ? NewSub : Sub;
3034         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3035                                         NewSub, Op.getOperand(2));
3036         return TLO.CombineTo(Op, NewOp);
3037       }
3038     }
3039     break;
3040   }
3041   case ISD::EXTRACT_SUBVECTOR: {
3042     // Offset the demanded elts by the subvector index.
3043     SDValue Src = Op.getOperand(0);
3044     if (Src.getValueType().isScalableVector())
3045       break;
3046     uint64_t Idx = Op.getConstantOperandVal(1);
3047     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3048     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3049 
3050     APInt SrcUndef, SrcZero;
3051     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3052                                    Depth + 1))
3053       return true;
3054     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
3055     KnownZero = SrcZero.extractBits(NumElts, Idx);
3056 
3057     // Attempt to avoid multi-use ops if we don't need anything from them.
3058     if (!DemandedElts.isAllOnes()) {
3059       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3060           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
3061       if (NewSrc) {
3062         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
3063                                         Op.getOperand(1));
3064         return TLO.CombineTo(Op, NewOp);
3065       }
3066     }
3067     break;
3068   }
3069   case ISD::INSERT_VECTOR_ELT: {
3070     SDValue Vec = Op.getOperand(0);
3071     SDValue Scl = Op.getOperand(1);
3072     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3073 
3074     // For a legal, constant insertion index, if we don't need this insertion
3075     // then strip it, else remove it from the demanded elts.
3076     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3077       unsigned Idx = CIdx->getZExtValue();
3078       if (!DemandedElts[Idx])
3079         return TLO.CombineTo(Op, Vec);
3080 
3081       APInt DemandedVecElts(DemandedElts);
3082       DemandedVecElts.clearBit(Idx);
3083       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3084                                      KnownZero, TLO, Depth + 1))
3085         return true;
3086 
3087       KnownUndef.setBitVal(Idx, Scl.isUndef());
3088 
3089       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3090       break;
3091     }
3092 
3093     APInt VecUndef, VecZero;
3094     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3095                                    Depth + 1))
3096       return true;
3097     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3098     break;
3099   }
3100   case ISD::VSELECT: {
3101     SDValue Sel = Op.getOperand(0);
3102     SDValue LHS = Op.getOperand(1);
3103     SDValue RHS = Op.getOperand(2);
3104 
3105     // Try to transform the select condition based on the current demanded
3106     // elements.
3107     APInt UndefSel, UndefZero;
3108     if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO,
3109                                    Depth + 1))
3110       return true;
3111 
3112     // See if we can simplify either vselect operand.
3113     APInt DemandedLHS(DemandedElts);
3114     APInt DemandedRHS(DemandedElts);
3115     APInt UndefLHS, ZeroLHS;
3116     APInt UndefRHS, ZeroRHS;
3117     if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3118                                    Depth + 1))
3119       return true;
3120     if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3121                                    Depth + 1))
3122       return true;
3123 
3124     KnownUndef = UndefLHS & UndefRHS;
3125     KnownZero = ZeroLHS & ZeroRHS;
3126 
3127     // If we know that the selected element is always zero, we don't need the
3128     // select value element.
3129     APInt DemandedSel = DemandedElts & ~KnownZero;
3130     if (DemandedSel != DemandedElts)
3131       if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO,
3132                                      Depth + 1))
3133         return true;
3134 
3135     break;
3136   }
3137   case ISD::VECTOR_SHUFFLE: {
3138     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3139 
3140     // Collect demanded elements from shuffle operands..
3141     APInt DemandedLHS(NumElts, 0);
3142     APInt DemandedRHS(NumElts, 0);
3143     for (unsigned i = 0; i != NumElts; ++i) {
3144       int M = ShuffleMask[i];
3145       if (M < 0 || !DemandedElts[i])
3146         continue;
3147       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3148       if (M < (int)NumElts)
3149         DemandedLHS.setBit(M);
3150       else
3151         DemandedRHS.setBit(M - NumElts);
3152     }
3153 
3154     // See if we can simplify either shuffle operand.
3155     APInt UndefLHS, ZeroLHS;
3156     APInt UndefRHS, ZeroRHS;
3157     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3158                                    ZeroLHS, TLO, Depth + 1))
3159       return true;
3160     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3161                                    ZeroRHS, TLO, Depth + 1))
3162       return true;
3163 
3164     // Simplify mask using undef elements from LHS/RHS.
3165     bool Updated = false;
3166     bool IdentityLHS = true, IdentityRHS = true;
3167     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3168     for (unsigned i = 0; i != NumElts; ++i) {
3169       int &M = NewMask[i];
3170       if (M < 0)
3171         continue;
3172       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3173           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3174         Updated = true;
3175         M = -1;
3176       }
3177       IdentityLHS &= (M < 0) || (M == (int)i);
3178       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3179     }
3180 
3181     // Update legal shuffle masks based on demanded elements if it won't reduce
3182     // to Identity which can cause premature removal of the shuffle mask.
3183     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3184       SDValue LegalShuffle =
3185           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3186                                   NewMask, TLO.DAG);
3187       if (LegalShuffle)
3188         return TLO.CombineTo(Op, LegalShuffle);
3189     }
3190 
3191     // Propagate undef/zero elements from LHS/RHS.
3192     for (unsigned i = 0; i != NumElts; ++i) {
3193       int M = ShuffleMask[i];
3194       if (M < 0) {
3195         KnownUndef.setBit(i);
3196       } else if (M < (int)NumElts) {
3197         if (UndefLHS[M])
3198           KnownUndef.setBit(i);
3199         if (ZeroLHS[M])
3200           KnownZero.setBit(i);
3201       } else {
3202         if (UndefRHS[M - NumElts])
3203           KnownUndef.setBit(i);
3204         if (ZeroRHS[M - NumElts])
3205           KnownZero.setBit(i);
3206       }
3207     }
3208     break;
3209   }
3210   case ISD::ANY_EXTEND_VECTOR_INREG:
3211   case ISD::SIGN_EXTEND_VECTOR_INREG:
3212   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3213     APInt SrcUndef, SrcZero;
3214     SDValue Src = Op.getOperand(0);
3215     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3216     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3217     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3218                                    Depth + 1))
3219       return true;
3220     KnownZero = SrcZero.zextOrTrunc(NumElts);
3221     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3222 
3223     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3224         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3225         DemandedSrcElts == 1) {
3226       // aext - if we just need the bottom element then we can bitcast.
3227       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3228     }
3229 
3230     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3231       // zext(undef) upper bits are guaranteed to be zero.
3232       if (DemandedElts.isSubsetOf(KnownUndef))
3233         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3234       KnownUndef.clearAllBits();
3235 
3236       // zext - if we just need the bottom element then we can mask:
3237       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3238       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3239           Op->isOnlyUserOf(Src.getNode()) &&
3240           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3241         SDLoc DL(Op);
3242         EVT SrcVT = Src.getValueType();
3243         EVT SrcSVT = SrcVT.getScalarType();
3244         SmallVector<SDValue> MaskElts;
3245         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3246         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3247         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3248         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3249                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3250           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3251           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3252         }
3253       }
3254     }
3255     break;
3256   }
3257 
3258   // TODO: There are more binop opcodes that could be handled here - MIN,
3259   // MAX, saturated math, etc.
3260   case ISD::ADD: {
3261     SDValue Op0 = Op.getOperand(0);
3262     SDValue Op1 = Op.getOperand(1);
3263     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3264       APInt UndefLHS, ZeroLHS;
3265       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3266                                      Depth + 1, /*AssumeSingleUse*/ true))
3267         return true;
3268     }
3269     LLVM_FALLTHROUGH;
3270   }
3271   case ISD::OR:
3272   case ISD::XOR:
3273   case ISD::SUB:
3274   case ISD::FADD:
3275   case ISD::FSUB:
3276   case ISD::FMUL:
3277   case ISD::FDIV:
3278   case ISD::FREM: {
3279     SDValue Op0 = Op.getOperand(0);
3280     SDValue Op1 = Op.getOperand(1);
3281 
3282     APInt UndefRHS, ZeroRHS;
3283     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3284                                    Depth + 1))
3285       return true;
3286     APInt UndefLHS, ZeroLHS;
3287     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3288                                    Depth + 1))
3289       return true;
3290 
3291     KnownZero = ZeroLHS & ZeroRHS;
3292     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3293 
3294     // Attempt to avoid multi-use ops if we don't need anything from them.
3295     // TODO - use KnownUndef to relax the demandedelts?
3296     if (!DemandedElts.isAllOnes())
3297       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3298         return true;
3299     break;
3300   }
3301   case ISD::SHL:
3302   case ISD::SRL:
3303   case ISD::SRA:
3304   case ISD::ROTL:
3305   case ISD::ROTR: {
3306     SDValue Op0 = Op.getOperand(0);
3307     SDValue Op1 = Op.getOperand(1);
3308 
3309     APInt UndefRHS, ZeroRHS;
3310     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3311                                    Depth + 1))
3312       return true;
3313     APInt UndefLHS, ZeroLHS;
3314     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3315                                    Depth + 1))
3316       return true;
3317 
3318     KnownZero = ZeroLHS;
3319     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3320 
3321     // Attempt to avoid multi-use ops if we don't need anything from them.
3322     // TODO - use KnownUndef to relax the demandedelts?
3323     if (!DemandedElts.isAllOnes())
3324       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3325         return true;
3326     break;
3327   }
3328   case ISD::MUL:
3329   case ISD::AND: {
3330     SDValue Op0 = Op.getOperand(0);
3331     SDValue Op1 = Op.getOperand(1);
3332 
3333     APInt SrcUndef, SrcZero;
3334     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3335                                    Depth + 1))
3336       return true;
3337     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3338                                    TLO, Depth + 1))
3339       return true;
3340 
3341     // If either side has a zero element, then the result element is zero, even
3342     // if the other is an UNDEF.
3343     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3344     // and then handle 'and' nodes with the rest of the binop opcodes.
3345     KnownZero |= SrcZero;
3346     KnownUndef &= SrcUndef;
3347     KnownUndef &= ~KnownZero;
3348 
3349     // Attempt to avoid multi-use ops if we don't need anything from them.
3350     // TODO - use KnownUndef to relax the demandedelts?
3351     if (!DemandedElts.isAllOnes())
3352       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3353         return true;
3354     break;
3355   }
3356   case ISD::TRUNCATE:
3357   case ISD::SIGN_EXTEND:
3358   case ISD::ZERO_EXTEND:
3359     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3360                                    KnownZero, TLO, Depth + 1))
3361       return true;
3362 
3363     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3364       // zext(undef) upper bits are guaranteed to be zero.
3365       if (DemandedElts.isSubsetOf(KnownUndef))
3366         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3367       KnownUndef.clearAllBits();
3368     }
3369     break;
3370   default: {
3371     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3372       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3373                                                   KnownZero, TLO, Depth))
3374         return true;
3375     } else {
3376       KnownBits Known;
3377       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3378       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3379                                TLO, Depth, AssumeSingleUse))
3380         return true;
3381     }
3382     break;
3383   }
3384   }
3385   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3386 
3387   // Constant fold all undef cases.
3388   // TODO: Handle zero cases as well.
3389   if (DemandedElts.isSubsetOf(KnownUndef))
3390     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3391 
3392   return false;
3393 }
3394 
3395 /// Determine which of the bits specified in Mask are known to be either zero or
3396 /// one and return them in the Known.
3397 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3398                                                    KnownBits &Known,
3399                                                    const APInt &DemandedElts,
3400                                                    const SelectionDAG &DAG,
3401                                                    unsigned Depth) const {
3402   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3403           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3404           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3405           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3406          "Should use MaskedValueIsZero if you don't know whether Op"
3407          " is a target node!");
3408   Known.resetAll();
3409 }
3410 
3411 void TargetLowering::computeKnownBitsForTargetInstr(
3412     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3413     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3414     unsigned Depth) const {
3415   Known.resetAll();
3416 }
3417 
3418 void TargetLowering::computeKnownBitsForFrameIndex(
3419   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3420   // The low bits are known zero if the pointer is aligned.
3421   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3422 }
3423 
3424 Align TargetLowering::computeKnownAlignForTargetInstr(
3425   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3426   unsigned Depth) const {
3427   return Align(1);
3428 }
3429 
3430 /// This method can be implemented by targets that want to expose additional
3431 /// information about sign bits to the DAG Combiner.
3432 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3433                                                          const APInt &,
3434                                                          const SelectionDAG &,
3435                                                          unsigned Depth) const {
3436   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3437           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3438           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3439           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3440          "Should use ComputeNumSignBits if you don't know whether Op"
3441          " is a target node!");
3442   return 1;
3443 }
3444 
3445 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3446   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3447   const MachineRegisterInfo &MRI, unsigned Depth) const {
3448   return 1;
3449 }
3450 
3451 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3452     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3453     TargetLoweringOpt &TLO, unsigned Depth) const {
3454   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3455           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3456           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3457           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3458          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3459          " is a target node!");
3460   return false;
3461 }
3462 
3463 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3464     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3465     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3466   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3467           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3468           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3469           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3470          "Should use SimplifyDemandedBits if you don't know whether Op"
3471          " is a target node!");
3472   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3473   return false;
3474 }
3475 
3476 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3477     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3478     SelectionDAG &DAG, unsigned Depth) const {
3479   assert(
3480       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3481        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3482        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3483        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3484       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3485       " is a target node!");
3486   return SDValue();
3487 }
3488 
3489 SDValue
3490 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3491                                         SDValue N1, MutableArrayRef<int> Mask,
3492                                         SelectionDAG &DAG) const {
3493   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3494   if (!LegalMask) {
3495     std::swap(N0, N1);
3496     ShuffleVectorSDNode::commuteMask(Mask);
3497     LegalMask = isShuffleMaskLegal(Mask, VT);
3498   }
3499 
3500   if (!LegalMask)
3501     return SDValue();
3502 
3503   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3504 }
3505 
3506 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3507   return nullptr;
3508 }
3509 
3510 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3511     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3512     bool PoisonOnly, unsigned Depth) const {
3513   assert(
3514       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3515        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3516        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3517        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3518       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3519       " is a target node!");
3520   return false;
3521 }
3522 
3523 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3524                                                   const SelectionDAG &DAG,
3525                                                   bool SNaN,
3526                                                   unsigned Depth) const {
3527   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3528           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3529           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3530           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3531          "Should use isKnownNeverNaN if you don't know whether Op"
3532          " is a target node!");
3533   return false;
3534 }
3535 
3536 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3537                                                const APInt &DemandedElts,
3538                                                APInt &UndefElts,
3539                                                unsigned Depth) const {
3540   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3541           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3542           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3543           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3544          "Should use isSplatValue if you don't know whether Op"
3545          " is a target node!");
3546   return false;
3547 }
3548 
3549 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3550 // work with truncating build vectors and vectors with elements of less than
3551 // 8 bits.
3552 bool TargetLowering::isConstTrueVal(SDValue N) const {
3553   if (!N)
3554     return false;
3555 
3556   unsigned EltWidth;
3557   APInt CVal;
3558   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3559                                                /*AllowTruncation=*/true)) {
3560     CVal = CN->getAPIntValue();
3561     EltWidth = N.getValueType().getScalarSizeInBits();
3562   } else
3563     return false;
3564 
3565   // If this is a truncating splat, truncate the splat value.
3566   // Otherwise, we may fail to match the expected values below.
3567   if (EltWidth < CVal.getBitWidth())
3568     CVal = CVal.trunc(EltWidth);
3569 
3570   switch (getBooleanContents(N.getValueType())) {
3571   case UndefinedBooleanContent:
3572     return CVal[0];
3573   case ZeroOrOneBooleanContent:
3574     return CVal.isOne();
3575   case ZeroOrNegativeOneBooleanContent:
3576     return CVal.isAllOnes();
3577   }
3578 
3579   llvm_unreachable("Invalid boolean contents");
3580 }
3581 
3582 bool TargetLowering::isConstFalseVal(SDValue N) const {
3583   if (!N)
3584     return false;
3585 
3586   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3587   if (!CN) {
3588     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3589     if (!BV)
3590       return false;
3591 
3592     // Only interested in constant splats, we don't care about undef
3593     // elements in identifying boolean constants and getConstantSplatNode
3594     // returns NULL if all ops are undef;
3595     CN = BV->getConstantSplatNode();
3596     if (!CN)
3597       return false;
3598   }
3599 
3600   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3601     return !CN->getAPIntValue()[0];
3602 
3603   return CN->isZero();
3604 }
3605 
3606 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3607                                        bool SExt) const {
3608   if (VT == MVT::i1)
3609     return N->isOne();
3610 
3611   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3612   switch (Cnt) {
3613   case TargetLowering::ZeroOrOneBooleanContent:
3614     // An extended value of 1 is always true, unless its original type is i1,
3615     // in which case it will be sign extended to -1.
3616     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3617   case TargetLowering::UndefinedBooleanContent:
3618   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3619     return N->isAllOnes() && SExt;
3620   }
3621   llvm_unreachable("Unexpected enumeration.");
3622 }
3623 
3624 /// This helper function of SimplifySetCC tries to optimize the comparison when
3625 /// either operand of the SetCC node is a bitwise-and instruction.
3626 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3627                                          ISD::CondCode Cond, const SDLoc &DL,
3628                                          DAGCombinerInfo &DCI) const {
3629   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3630     std::swap(N0, N1);
3631 
3632   SelectionDAG &DAG = DCI.DAG;
3633   EVT OpVT = N0.getValueType();
3634   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3635       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3636     return SDValue();
3637 
3638   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3639   // iff everything but LSB is known zero:
3640   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3641       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3642        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3643     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3644     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3645     if (DAG.MaskedValueIsZero(N0, UpperBits))
3646       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3647   }
3648 
3649   // Match these patterns in any of their permutations:
3650   // (X & Y) == Y
3651   // (X & Y) != Y
3652   SDValue X, Y;
3653   if (N0.getOperand(0) == N1) {
3654     X = N0.getOperand(1);
3655     Y = N0.getOperand(0);
3656   } else if (N0.getOperand(1) == N1) {
3657     X = N0.getOperand(0);
3658     Y = N0.getOperand(1);
3659   } else {
3660     return SDValue();
3661   }
3662 
3663   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3664   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3665     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3666     // Note that where Y is variable and is known to have at most one bit set
3667     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3668     // equivalent when Y == 0.
3669     assert(OpVT.isInteger());
3670     Cond = ISD::getSetCCInverse(Cond, OpVT);
3671     if (DCI.isBeforeLegalizeOps() ||
3672         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3673       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3674   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3675     // If the target supports an 'and-not' or 'and-complement' logic operation,
3676     // try to use that to make a comparison operation more efficient.
3677     // But don't do this transform if the mask is a single bit because there are
3678     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3679     // 'rlwinm' on PPC).
3680 
3681     // Bail out if the compare operand that we want to turn into a zero is
3682     // already a zero (otherwise, infinite loop).
3683     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3684     if (YConst && YConst->isZero())
3685       return SDValue();
3686 
3687     // Transform this into: ~X & Y == 0.
3688     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3689     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3690     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3691   }
3692 
3693   return SDValue();
3694 }
3695 
3696 /// There are multiple IR patterns that could be checking whether certain
3697 /// truncation of a signed number would be lossy or not. The pattern which is
3698 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3699 /// We are looking for the following pattern: (KeptBits is a constant)
3700 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3701 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3702 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3703 /// We will unfold it into the natural trunc+sext pattern:
3704 ///   ((%x << C) a>> C) dstcond %x
3705 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3706 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3707     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3708     const SDLoc &DL) const {
3709   // We must be comparing with a constant.
3710   ConstantSDNode *C1;
3711   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3712     return SDValue();
3713 
3714   // N0 should be:  add %x, (1 << (KeptBits-1))
3715   if (N0->getOpcode() != ISD::ADD)
3716     return SDValue();
3717 
3718   // And we must be 'add'ing a constant.
3719   ConstantSDNode *C01;
3720   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3721     return SDValue();
3722 
3723   SDValue X = N0->getOperand(0);
3724   EVT XVT = X.getValueType();
3725 
3726   // Validate constants ...
3727 
3728   APInt I1 = C1->getAPIntValue();
3729 
3730   ISD::CondCode NewCond;
3731   if (Cond == ISD::CondCode::SETULT) {
3732     NewCond = ISD::CondCode::SETEQ;
3733   } else if (Cond == ISD::CondCode::SETULE) {
3734     NewCond = ISD::CondCode::SETEQ;
3735     // But need to 'canonicalize' the constant.
3736     I1 += 1;
3737   } else if (Cond == ISD::CondCode::SETUGT) {
3738     NewCond = ISD::CondCode::SETNE;
3739     // But need to 'canonicalize' the constant.
3740     I1 += 1;
3741   } else if (Cond == ISD::CondCode::SETUGE) {
3742     NewCond = ISD::CondCode::SETNE;
3743   } else
3744     return SDValue();
3745 
3746   APInt I01 = C01->getAPIntValue();
3747 
3748   auto checkConstants = [&I1, &I01]() -> bool {
3749     // Both of them must be power-of-two, and the constant from setcc is bigger.
3750     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3751   };
3752 
3753   if (checkConstants()) {
3754     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3755   } else {
3756     // What if we invert constants? (and the target predicate)
3757     I1.negate();
3758     I01.negate();
3759     assert(XVT.isInteger());
3760     NewCond = getSetCCInverse(NewCond, XVT);
3761     if (!checkConstants())
3762       return SDValue();
3763     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3764   }
3765 
3766   // They are power-of-two, so which bit is set?
3767   const unsigned KeptBits = I1.logBase2();
3768   const unsigned KeptBitsMinusOne = I01.logBase2();
3769 
3770   // Magic!
3771   if (KeptBits != (KeptBitsMinusOne + 1))
3772     return SDValue();
3773   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3774 
3775   // We don't want to do this in every single case.
3776   SelectionDAG &DAG = DCI.DAG;
3777   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3778           XVT, KeptBits))
3779     return SDValue();
3780 
3781   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3782   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3783 
3784   // Unfold into:  ((%x << C) a>> C) cond %x
3785   // Where 'cond' will be either 'eq' or 'ne'.
3786   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3787   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3788   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3789   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3790 
3791   return T2;
3792 }
3793 
3794 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3795 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3796     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3797     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3798   assert(isConstOrConstSplat(N1C) &&
3799          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3800          "Should be a comparison with 0.");
3801   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3802          "Valid only for [in]equality comparisons.");
3803 
3804   unsigned NewShiftOpcode;
3805   SDValue X, C, Y;
3806 
3807   SelectionDAG &DAG = DCI.DAG;
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809 
3810   // Look for '(C l>>/<< Y)'.
3811   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3812     // The shift should be one-use.
3813     if (!V.hasOneUse())
3814       return false;
3815     unsigned OldShiftOpcode = V.getOpcode();
3816     switch (OldShiftOpcode) {
3817     case ISD::SHL:
3818       NewShiftOpcode = ISD::SRL;
3819       break;
3820     case ISD::SRL:
3821       NewShiftOpcode = ISD::SHL;
3822       break;
3823     default:
3824       return false; // must be a logical shift.
3825     }
3826     // We should be shifting a constant.
3827     // FIXME: best to use isConstantOrConstantVector().
3828     C = V.getOperand(0);
3829     ConstantSDNode *CC =
3830         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3831     if (!CC)
3832       return false;
3833     Y = V.getOperand(1);
3834 
3835     ConstantSDNode *XC =
3836         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3837     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3838         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3839   };
3840 
3841   // LHS of comparison should be an one-use 'and'.
3842   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3843     return SDValue();
3844 
3845   X = N0.getOperand(0);
3846   SDValue Mask = N0.getOperand(1);
3847 
3848   // 'and' is commutative!
3849   if (!Match(Mask)) {
3850     std::swap(X, Mask);
3851     if (!Match(Mask))
3852       return SDValue();
3853   }
3854 
3855   EVT VT = X.getValueType();
3856 
3857   // Produce:
3858   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3859   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3860   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3861   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3862   return T2;
3863 }
3864 
3865 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3866 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3867 /// handle the commuted versions of these patterns.
3868 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3869                                            ISD::CondCode Cond, const SDLoc &DL,
3870                                            DAGCombinerInfo &DCI) const {
3871   unsigned BOpcode = N0.getOpcode();
3872   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3873          "Unexpected binop");
3874   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3875 
3876   // (X + Y) == X --> Y == 0
3877   // (X - Y) == X --> Y == 0
3878   // (X ^ Y) == X --> Y == 0
3879   SelectionDAG &DAG = DCI.DAG;
3880   EVT OpVT = N0.getValueType();
3881   SDValue X = N0.getOperand(0);
3882   SDValue Y = N0.getOperand(1);
3883   if (X == N1)
3884     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3885 
3886   if (Y != N1)
3887     return SDValue();
3888 
3889   // (X + Y) == Y --> X == 0
3890   // (X ^ Y) == Y --> X == 0
3891   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3892     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3893 
3894   // The shift would not be valid if the operands are boolean (i1).
3895   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3896     return SDValue();
3897 
3898   // (X - Y) == Y --> X == Y << 1
3899   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3900                                  !DCI.isBeforeLegalize());
3901   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3902   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3903   if (!DCI.isCalledByLegalizer())
3904     DCI.AddToWorklist(YShl1.getNode());
3905   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3906 }
3907 
3908 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3909                                       SDValue N0, const APInt &C1,
3910                                       ISD::CondCode Cond, const SDLoc &dl,
3911                                       SelectionDAG &DAG) {
3912   // Look through truncs that don't change the value of a ctpop.
3913   // FIXME: Add vector support? Need to be careful with setcc result type below.
3914   SDValue CTPOP = N0;
3915   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3916       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3917     CTPOP = N0.getOperand(0);
3918 
3919   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3920     return SDValue();
3921 
3922   EVT CTVT = CTPOP.getValueType();
3923   SDValue CTOp = CTPOP.getOperand(0);
3924 
3925   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3926   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3927   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3928     return SDValue();
3929 
3930   // (ctpop x) u< 2 -> (x & x-1) == 0
3931   // (ctpop x) u> 1 -> (x & x-1) != 0
3932   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3933     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3934     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3935       return SDValue();
3936     if (C1 == 0 && (Cond == ISD::SETULT))
3937       return SDValue(); // This is handled elsewhere.
3938 
3939     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3940 
3941     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3942     SDValue Result = CTOp;
3943     for (unsigned i = 0; i < Passes; i++) {
3944       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3945       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3946     }
3947     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3948     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3949   }
3950 
3951   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3952   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3953     // For scalars, keep CTPOP if it is legal or custom.
3954     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3955       return SDValue();
3956     // This is based on X86's custom lowering for CTPOP which produces more
3957     // instructions than the expansion here.
3958 
3959     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3960     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3961     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3962     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3963     assert(CTVT.isInteger());
3964     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3965     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3966     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3967     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3968     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3969     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3970     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3971   }
3972 
3973   return SDValue();
3974 }
3975 
3976 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3977                                    ISD::CondCode Cond, const SDLoc &dl,
3978                                    SelectionDAG &DAG) {
3979   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3980     return SDValue();
3981 
3982   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3983   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3984     return SDValue();
3985 
3986   auto getRotateSource = [](SDValue X) {
3987     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3988       return X.getOperand(0);
3989     return SDValue();
3990   };
3991 
3992   // Peek through a rotated value compared against 0 or -1:
3993   // (rot X, Y) == 0/-1 --> X == 0/-1
3994   // (rot X, Y) != 0/-1 --> X != 0/-1
3995   if (SDValue R = getRotateSource(N0))
3996     return DAG.getSetCC(dl, VT, R, N1, Cond);
3997 
3998   // Peek through an 'or' of a rotated value compared against 0:
3999   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
4000   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
4001   //
4002   // TODO: Add the 'and' with -1 sibling.
4003   // TODO: Recurse through a series of 'or' ops to find the rotate.
4004   EVT OpVT = N0.getValueType();
4005   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
4006     if (SDValue R = getRotateSource(N0.getOperand(0))) {
4007       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
4008       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4009     }
4010     if (SDValue R = getRotateSource(N0.getOperand(1))) {
4011       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
4012       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4013     }
4014   }
4015 
4016   return SDValue();
4017 }
4018 
4019 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
4020                                         ISD::CondCode Cond, const SDLoc &dl,
4021                                         SelectionDAG &DAG) {
4022   // If we are testing for all-bits-clear, we might be able to do that with
4023   // less shifting since bit-order does not matter.
4024   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
4025     return SDValue();
4026 
4027   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
4028   if (!C1 || !C1->isZero())
4029     return SDValue();
4030 
4031   if (!N0.hasOneUse() ||
4032       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
4033     return SDValue();
4034 
4035   unsigned BitWidth = N0.getScalarValueSizeInBits();
4036   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
4037   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
4038     return SDValue();
4039 
4040   // Canonicalize fshr as fshl to reduce pattern-matching.
4041   unsigned ShAmt = ShAmtC->getZExtValue();
4042   if (N0.getOpcode() == ISD::FSHR)
4043     ShAmt = BitWidth - ShAmt;
4044 
4045   // Match an 'or' with a specific operand 'Other' in either commuted variant.
4046   SDValue X, Y;
4047   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
4048     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
4049       return false;
4050     if (Or.getOperand(0) == Other) {
4051       X = Or.getOperand(0);
4052       Y = Or.getOperand(1);
4053       return true;
4054     }
4055     if (Or.getOperand(1) == Other) {
4056       X = Or.getOperand(1);
4057       Y = Or.getOperand(0);
4058       return true;
4059     }
4060     return false;
4061   };
4062 
4063   EVT OpVT = N0.getValueType();
4064   EVT ShAmtVT = N0.getOperand(2).getValueType();
4065   SDValue F0 = N0.getOperand(0);
4066   SDValue F1 = N0.getOperand(1);
4067   if (matchOr(F0, F1)) {
4068     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
4069     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
4070     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
4071     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4072     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4073   }
4074   if (matchOr(F1, F0)) {
4075     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
4076     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
4077     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
4078     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
4079     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
4080   }
4081 
4082   return SDValue();
4083 }
4084 
4085 /// Try to simplify a setcc built with the specified operands and cc. If it is
4086 /// unable to simplify it, return a null SDValue.
4087 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
4088                                       ISD::CondCode Cond, bool foldBooleans,
4089                                       DAGCombinerInfo &DCI,
4090                                       const SDLoc &dl) const {
4091   SelectionDAG &DAG = DCI.DAG;
4092   const DataLayout &Layout = DAG.getDataLayout();
4093   EVT OpVT = N0.getValueType();
4094 
4095   // Constant fold or commute setcc.
4096   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4097     return Fold;
4098 
4099   bool N0ConstOrSplat =
4100       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4101   bool N1ConstOrSplat =
4102       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4103 
4104   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4105   // TODO: Handle non-splat vector constants. All undef causes trouble.
4106   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4107   // infinite loop here when we encounter one.
4108   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4109   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4110       (DCI.isBeforeLegalizeOps() ||
4111        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4112     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4113 
4114   // If we have a subtract with the same 2 non-constant operands as this setcc
4115   // -- but in reverse order -- then try to commute the operands of this setcc
4116   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4117   // instruction on some targets.
4118   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4119       (DCI.isBeforeLegalizeOps() ||
4120        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4121       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4122       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4123     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4124 
4125   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4126     return V;
4127 
4128   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4129     return V;
4130 
4131   if (auto *N1C = isConstOrConstSplat(N1)) {
4132     const APInt &C1 = N1C->getAPIntValue();
4133 
4134     // Optimize some CTPOP cases.
4135     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4136       return V;
4137 
4138     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4139     // equality comparison, then we're just comparing whether X itself is
4140     // zero.
4141     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4142         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4143         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4144       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4145         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4146             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4147           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4148             // (srl (ctlz x), 5) == 0  -> X != 0
4149             // (srl (ctlz x), 5) != 1  -> X != 0
4150             Cond = ISD::SETNE;
4151           } else {
4152             // (srl (ctlz x), 5) != 0  -> X == 0
4153             // (srl (ctlz x), 5) == 1  -> X == 0
4154             Cond = ISD::SETEQ;
4155           }
4156           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4157           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4158                               Cond);
4159         }
4160       }
4161     }
4162   }
4163 
4164   // FIXME: Support vectors.
4165   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4166     const APInt &C1 = N1C->getAPIntValue();
4167 
4168     // (zext x) == C --> x == (trunc C)
4169     // (sext x) == C --> x == (trunc C)
4170     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4171         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4172       unsigned MinBits = N0.getValueSizeInBits();
4173       SDValue PreExt;
4174       bool Signed = false;
4175       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4176         // ZExt
4177         MinBits = N0->getOperand(0).getValueSizeInBits();
4178         PreExt = N0->getOperand(0);
4179       } else if (N0->getOpcode() == ISD::AND) {
4180         // DAGCombine turns costly ZExts into ANDs
4181         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4182           if ((C->getAPIntValue()+1).isPowerOf2()) {
4183             MinBits = C->getAPIntValue().countTrailingOnes();
4184             PreExt = N0->getOperand(0);
4185           }
4186       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4187         // SExt
4188         MinBits = N0->getOperand(0).getValueSizeInBits();
4189         PreExt = N0->getOperand(0);
4190         Signed = true;
4191       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4192         // ZEXTLOAD / SEXTLOAD
4193         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4194           MinBits = LN0->getMemoryVT().getSizeInBits();
4195           PreExt = N0;
4196         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4197           Signed = true;
4198           MinBits = LN0->getMemoryVT().getSizeInBits();
4199           PreExt = N0;
4200         }
4201       }
4202 
4203       // Figure out how many bits we need to preserve this constant.
4204       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4205 
4206       // Make sure we're not losing bits from the constant.
4207       if (MinBits > 0 &&
4208           MinBits < C1.getBitWidth() &&
4209           MinBits >= ReqdBits) {
4210         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4211         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4212           // Will get folded away.
4213           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4214           if (MinBits == 1 && C1 == 1)
4215             // Invert the condition.
4216             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4217                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4218           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4219           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4220         }
4221 
4222         // If truncating the setcc operands is not desirable, we can still
4223         // simplify the expression in some cases:
4224         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4225         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4226         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4227         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4228         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4229         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4230         SDValue TopSetCC = N0->getOperand(0);
4231         unsigned N0Opc = N0->getOpcode();
4232         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4233         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4234             TopSetCC.getOpcode() == ISD::SETCC &&
4235             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4236             (isConstFalseVal(N1) ||
4237              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4238 
4239           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4240                          (!N1C->isZero() && Cond == ISD::SETNE);
4241 
4242           if (!Inverse)
4243             return TopSetCC;
4244 
4245           ISD::CondCode InvCond = ISD::getSetCCInverse(
4246               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4247               TopSetCC.getOperand(0).getValueType());
4248           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4249                                       TopSetCC.getOperand(1),
4250                                       InvCond);
4251         }
4252       }
4253     }
4254 
4255     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4256     // equality or unsigned, and all 1 bits of the const are in the same
4257     // partial word, see if we can shorten the load.
4258     if (DCI.isBeforeLegalize() &&
4259         !ISD::isSignedIntSetCC(Cond) &&
4260         N0.getOpcode() == ISD::AND && C1 == 0 &&
4261         N0.getNode()->hasOneUse() &&
4262         isa<LoadSDNode>(N0.getOperand(0)) &&
4263         N0.getOperand(0).getNode()->hasOneUse() &&
4264         isa<ConstantSDNode>(N0.getOperand(1))) {
4265       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4266       APInt bestMask;
4267       unsigned bestWidth = 0, bestOffset = 0;
4268       if (Lod->isSimple() && Lod->isUnindexed()) {
4269         unsigned origWidth = N0.getValueSizeInBits();
4270         unsigned maskWidth = origWidth;
4271         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4272         // 8 bits, but have to be careful...
4273         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4274           origWidth = Lod->getMemoryVT().getSizeInBits();
4275         const APInt &Mask = N0.getConstantOperandAPInt(1);
4276         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4277           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4278           for (unsigned offset=0; offset<origWidth/width; offset++) {
4279             if (Mask.isSubsetOf(newMask)) {
4280               if (Layout.isLittleEndian())
4281                 bestOffset = (uint64_t)offset * (width/8);
4282               else
4283                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4284               bestMask = Mask.lshr(offset * (width/8) * 8);
4285               bestWidth = width;
4286               break;
4287             }
4288             newMask <<= width;
4289           }
4290         }
4291       }
4292       if (bestWidth) {
4293         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4294         if (newVT.isRound() &&
4295             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4296           SDValue Ptr = Lod->getBasePtr();
4297           if (bestOffset != 0)
4298             Ptr =
4299                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4300           SDValue NewLoad =
4301               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4302                           Lod->getPointerInfo().getWithOffset(bestOffset),
4303                           Lod->getOriginalAlign());
4304           return DAG.getSetCC(dl, VT,
4305                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4306                                       DAG.getConstant(bestMask.trunc(bestWidth),
4307                                                       dl, newVT)),
4308                               DAG.getConstant(0LL, dl, newVT), Cond);
4309         }
4310       }
4311     }
4312 
4313     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4314     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4315       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4316 
4317       // If the comparison constant has bits in the upper part, the
4318       // zero-extended value could never match.
4319       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4320                                               C1.getBitWidth() - InSize))) {
4321         switch (Cond) {
4322         case ISD::SETUGT:
4323         case ISD::SETUGE:
4324         case ISD::SETEQ:
4325           return DAG.getConstant(0, dl, VT);
4326         case ISD::SETULT:
4327         case ISD::SETULE:
4328         case ISD::SETNE:
4329           return DAG.getConstant(1, dl, VT);
4330         case ISD::SETGT:
4331         case ISD::SETGE:
4332           // True if the sign bit of C1 is set.
4333           return DAG.getConstant(C1.isNegative(), dl, VT);
4334         case ISD::SETLT:
4335         case ISD::SETLE:
4336           // True if the sign bit of C1 isn't set.
4337           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4338         default:
4339           break;
4340         }
4341       }
4342 
4343       // Otherwise, we can perform the comparison with the low bits.
4344       switch (Cond) {
4345       case ISD::SETEQ:
4346       case ISD::SETNE:
4347       case ISD::SETUGT:
4348       case ISD::SETUGE:
4349       case ISD::SETULT:
4350       case ISD::SETULE: {
4351         EVT newVT = N0.getOperand(0).getValueType();
4352         if (DCI.isBeforeLegalizeOps() ||
4353             (isOperationLegal(ISD::SETCC, newVT) &&
4354              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4355           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4356           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4357 
4358           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4359                                           NewConst, Cond);
4360           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4361         }
4362         break;
4363       }
4364       default:
4365         break; // todo, be more careful with signed comparisons
4366       }
4367     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4368                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4369                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4370                                       OpVT)) {
4371       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4372       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4373       EVT ExtDstTy = N0.getValueType();
4374       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4375 
4376       // If the constant doesn't fit into the number of bits for the source of
4377       // the sign extension, it is impossible for both sides to be equal.
4378       if (C1.getMinSignedBits() > ExtSrcTyBits)
4379         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4380 
4381       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4382              ExtDstTy != ExtSrcTy && "Unexpected types!");
4383       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4384       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4385                                    DAG.getConstant(Imm, dl, ExtDstTy));
4386       if (!DCI.isCalledByLegalizer())
4387         DCI.AddToWorklist(ZextOp.getNode());
4388       // Otherwise, make this a use of a zext.
4389       return DAG.getSetCC(dl, VT, ZextOp,
4390                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4391     } else if ((N1C->isZero() || N1C->isOne()) &&
4392                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4393       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4394       if (N0.getOpcode() == ISD::SETCC &&
4395           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4396           (N0.getValueType() == MVT::i1 ||
4397            getBooleanContents(N0.getOperand(0).getValueType()) ==
4398                        ZeroOrOneBooleanContent)) {
4399         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4400         if (TrueWhenTrue)
4401           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4402         // Invert the condition.
4403         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4404         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4405         if (DCI.isBeforeLegalizeOps() ||
4406             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4407           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4408       }
4409 
4410       if ((N0.getOpcode() == ISD::XOR ||
4411            (N0.getOpcode() == ISD::AND &&
4412             N0.getOperand(0).getOpcode() == ISD::XOR &&
4413             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4414           isOneConstant(N0.getOperand(1))) {
4415         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4416         // can only do this if the top bits are known zero.
4417         unsigned BitWidth = N0.getValueSizeInBits();
4418         if (DAG.MaskedValueIsZero(N0,
4419                                   APInt::getHighBitsSet(BitWidth,
4420                                                         BitWidth-1))) {
4421           // Okay, get the un-inverted input value.
4422           SDValue Val;
4423           if (N0.getOpcode() == ISD::XOR) {
4424             Val = N0.getOperand(0);
4425           } else {
4426             assert(N0.getOpcode() == ISD::AND &&
4427                     N0.getOperand(0).getOpcode() == ISD::XOR);
4428             // ((X^1)&1)^1 -> X & 1
4429             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4430                               N0.getOperand(0).getOperand(0),
4431                               N0.getOperand(1));
4432           }
4433 
4434           return DAG.getSetCC(dl, VT, Val, N1,
4435                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4436         }
4437       } else if (N1C->isOne()) {
4438         SDValue Op0 = N0;
4439         if (Op0.getOpcode() == ISD::TRUNCATE)
4440           Op0 = Op0.getOperand(0);
4441 
4442         if ((Op0.getOpcode() == ISD::XOR) &&
4443             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4444             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4445           SDValue XorLHS = Op0.getOperand(0);
4446           SDValue XorRHS = Op0.getOperand(1);
4447           // Ensure that the input setccs return an i1 type or 0/1 value.
4448           if (Op0.getValueType() == MVT::i1 ||
4449               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4450                       ZeroOrOneBooleanContent &&
4451                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4452                         ZeroOrOneBooleanContent)) {
4453             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4454             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4455             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4456           }
4457         }
4458         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4459           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4460           if (Op0.getValueType().bitsGT(VT))
4461             Op0 = DAG.getNode(ISD::AND, dl, VT,
4462                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4463                           DAG.getConstant(1, dl, VT));
4464           else if (Op0.getValueType().bitsLT(VT))
4465             Op0 = DAG.getNode(ISD::AND, dl, VT,
4466                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4467                         DAG.getConstant(1, dl, VT));
4468 
4469           return DAG.getSetCC(dl, VT, Op0,
4470                               DAG.getConstant(0, dl, Op0.getValueType()),
4471                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4472         }
4473         if (Op0.getOpcode() == ISD::AssertZext &&
4474             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4475           return DAG.getSetCC(dl, VT, Op0,
4476                               DAG.getConstant(0, dl, Op0.getValueType()),
4477                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4478       }
4479     }
4480 
4481     // Given:
4482     //   icmp eq/ne (urem %x, %y), 0
4483     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4484     //   icmp eq/ne %x, 0
4485     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4486         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4487       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4488       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4489       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4490         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4491     }
4492 
4493     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4494     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4495     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4496         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4497         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4498         N1C && N1C->isAllOnes()) {
4499       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4500                           DAG.getConstant(0, dl, OpVT),
4501                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4502     }
4503 
4504     if (SDValue V =
4505             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4506       return V;
4507   }
4508 
4509   // These simplifications apply to splat vectors as well.
4510   // TODO: Handle more splat vector cases.
4511   if (auto *N1C = isConstOrConstSplat(N1)) {
4512     const APInt &C1 = N1C->getAPIntValue();
4513 
4514     APInt MinVal, MaxVal;
4515     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4516     if (ISD::isSignedIntSetCC(Cond)) {
4517       MinVal = APInt::getSignedMinValue(OperandBitSize);
4518       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4519     } else {
4520       MinVal = APInt::getMinValue(OperandBitSize);
4521       MaxVal = APInt::getMaxValue(OperandBitSize);
4522     }
4523 
4524     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4525     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4526       // X >= MIN --> true
4527       if (C1 == MinVal)
4528         return DAG.getBoolConstant(true, dl, VT, OpVT);
4529 
4530       if (!VT.isVector()) { // TODO: Support this for vectors.
4531         // X >= C0 --> X > (C0 - 1)
4532         APInt C = C1 - 1;
4533         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4534         if ((DCI.isBeforeLegalizeOps() ||
4535              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4536             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4537                                   isLegalICmpImmediate(C.getSExtValue())))) {
4538           return DAG.getSetCC(dl, VT, N0,
4539                               DAG.getConstant(C, dl, N1.getValueType()),
4540                               NewCC);
4541         }
4542       }
4543     }
4544 
4545     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4546       // X <= MAX --> true
4547       if (C1 == MaxVal)
4548         return DAG.getBoolConstant(true, dl, VT, OpVT);
4549 
4550       // X <= C0 --> X < (C0 + 1)
4551       if (!VT.isVector()) { // TODO: Support this for vectors.
4552         APInt C = C1 + 1;
4553         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4554         if ((DCI.isBeforeLegalizeOps() ||
4555              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4556             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4557                                   isLegalICmpImmediate(C.getSExtValue())))) {
4558           return DAG.getSetCC(dl, VT, N0,
4559                               DAG.getConstant(C, dl, N1.getValueType()),
4560                               NewCC);
4561         }
4562       }
4563     }
4564 
4565     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4566       if (C1 == MinVal)
4567         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4568 
4569       // TODO: Support this for vectors after legalize ops.
4570       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4571         // Canonicalize setlt X, Max --> setne X, Max
4572         if (C1 == MaxVal)
4573           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4574 
4575         // If we have setult X, 1, turn it into seteq X, 0
4576         if (C1 == MinVal+1)
4577           return DAG.getSetCC(dl, VT, N0,
4578                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4579                               ISD::SETEQ);
4580       }
4581     }
4582 
4583     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4584       if (C1 == MaxVal)
4585         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4586 
4587       // TODO: Support this for vectors after legalize ops.
4588       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4589         // Canonicalize setgt X, Min --> setne X, Min
4590         if (C1 == MinVal)
4591           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4592 
4593         // If we have setugt X, Max-1, turn it into seteq X, Max
4594         if (C1 == MaxVal-1)
4595           return DAG.getSetCC(dl, VT, N0,
4596                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4597                               ISD::SETEQ);
4598       }
4599     }
4600 
4601     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4602       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4603       if (C1.isZero())
4604         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4605                 VT, N0, N1, Cond, DCI, dl))
4606           return CC;
4607 
4608       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4609       // For example, when high 32-bits of i64 X are known clear:
4610       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4611       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4612       bool CmpZero = N1C->getAPIntValue().isZero();
4613       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4614       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4615         // Match or(lo,shl(hi,bw/2)) pattern.
4616         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4617           unsigned EltBits = V.getScalarValueSizeInBits();
4618           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4619             return false;
4620           SDValue LHS = V.getOperand(0);
4621           SDValue RHS = V.getOperand(1);
4622           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4623           // Unshifted element must have zero upperbits.
4624           if (RHS.getOpcode() == ISD::SHL &&
4625               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4626               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4627               DAG.MaskedValueIsZero(LHS, HiBits)) {
4628             Lo = LHS;
4629             Hi = RHS.getOperand(0);
4630             return true;
4631           }
4632           if (LHS.getOpcode() == ISD::SHL &&
4633               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4634               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4635               DAG.MaskedValueIsZero(RHS, HiBits)) {
4636             Lo = RHS;
4637             Hi = LHS.getOperand(0);
4638             return true;
4639           }
4640           return false;
4641         };
4642 
4643         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4644           unsigned EltBits = N0.getScalarValueSizeInBits();
4645           unsigned HalfBits = EltBits / 2;
4646           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4647           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4648           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4649           SDValue NewN0 =
4650               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4651           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4652           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4653         };
4654 
4655         SDValue Lo, Hi;
4656         if (IsConcat(N0, Lo, Hi))
4657           return MergeConcat(Lo, Hi);
4658 
4659         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4660           SDValue Lo0, Lo1, Hi0, Hi1;
4661           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4662               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4663             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4664                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4665           }
4666         }
4667       }
4668     }
4669 
4670     // If we have "setcc X, C0", check to see if we can shrink the immediate
4671     // by changing cc.
4672     // TODO: Support this for vectors after legalize ops.
4673     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4674       // SETUGT X, SINTMAX  -> SETLT X, 0
4675       // SETUGE X, SINTMIN -> SETLT X, 0
4676       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4677           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4678         return DAG.getSetCC(dl, VT, N0,
4679                             DAG.getConstant(0, dl, N1.getValueType()),
4680                             ISD::SETLT);
4681 
4682       // SETULT X, SINTMIN  -> SETGT X, -1
4683       // SETULE X, SINTMAX  -> SETGT X, -1
4684       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4685           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4686         return DAG.getSetCC(dl, VT, N0,
4687                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4688                             ISD::SETGT);
4689     }
4690   }
4691 
4692   // Back to non-vector simplifications.
4693   // TODO: Can we do these for vector splats?
4694   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4695     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4696     const APInt &C1 = N1C->getAPIntValue();
4697     EVT ShValTy = N0.getValueType();
4698 
4699     // Fold bit comparisons when we can. This will result in an
4700     // incorrect value when boolean false is negative one, unless
4701     // the bitsize is 1 in which case the false value is the same
4702     // in practice regardless of the representation.
4703     if ((VT.getSizeInBits() == 1 ||
4704          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4705         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4706         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4707         N0.getOpcode() == ISD::AND) {
4708       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4709         EVT ShiftTy =
4710             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4711         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4712           // Perform the xform if the AND RHS is a single bit.
4713           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4714           if (AndRHS->getAPIntValue().isPowerOf2() &&
4715               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4716             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4717                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4718                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4719           }
4720         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4721           // (X & 8) == 8  -->  (X & 8) >> 3
4722           // Perform the xform if C1 is a single bit.
4723           unsigned ShCt = C1.logBase2();
4724           if (C1.isPowerOf2() &&
4725               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4726             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4727                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4728                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4729           }
4730         }
4731       }
4732     }
4733 
4734     if (C1.getMinSignedBits() <= 64 &&
4735         !isLegalICmpImmediate(C1.getSExtValue())) {
4736       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4737       // (X & -256) == 256 -> (X >> 8) == 1
4738       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4739           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4740         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4741           const APInt &AndRHSC = AndRHS->getAPIntValue();
4742           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4743             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4744             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4745               SDValue Shift =
4746                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4747                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4748               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4749               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4750             }
4751           }
4752         }
4753       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4754                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4755         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4756         // X <  0x100000000 -> (X >> 32) <  1
4757         // X >= 0x100000000 -> (X >> 32) >= 1
4758         // X <= 0x0ffffffff -> (X >> 32) <  1
4759         // X >  0x0ffffffff -> (X >> 32) >= 1
4760         unsigned ShiftBits;
4761         APInt NewC = C1;
4762         ISD::CondCode NewCond = Cond;
4763         if (AdjOne) {
4764           ShiftBits = C1.countTrailingOnes();
4765           NewC = NewC + 1;
4766           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4767         } else {
4768           ShiftBits = C1.countTrailingZeros();
4769         }
4770         NewC.lshrInPlace(ShiftBits);
4771         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4772             isLegalICmpImmediate(NewC.getSExtValue()) &&
4773             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4774           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4775                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4776           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4777           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4778         }
4779       }
4780     }
4781   }
4782 
4783   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4784     auto *CFP = cast<ConstantFPSDNode>(N1);
4785     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4786 
4787     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4788     // constant if knowing that the operand is non-nan is enough.  We prefer to
4789     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4790     // materialize 0.0.
4791     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4792       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4793 
4794     // setcc (fneg x), C -> setcc swap(pred) x, -C
4795     if (N0.getOpcode() == ISD::FNEG) {
4796       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4797       if (DCI.isBeforeLegalizeOps() ||
4798           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4799         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4800         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4801       }
4802     }
4803 
4804     // If the condition is not legal, see if we can find an equivalent one
4805     // which is legal.
4806     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4807       // If the comparison was an awkward floating-point == or != and one of
4808       // the comparison operands is infinity or negative infinity, convert the
4809       // condition to a less-awkward <= or >=.
4810       if (CFP->getValueAPF().isInfinity()) {
4811         bool IsNegInf = CFP->getValueAPF().isNegative();
4812         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4813         switch (Cond) {
4814         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4815         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4816         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4817         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4818         default: break;
4819         }
4820         if (NewCond != ISD::SETCC_INVALID &&
4821             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4822           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4823       }
4824     }
4825   }
4826 
4827   if (N0 == N1) {
4828     // The sext(setcc()) => setcc() optimization relies on the appropriate
4829     // constant being emitted.
4830     assert(!N0.getValueType().isInteger() &&
4831            "Integer types should be handled by FoldSetCC");
4832 
4833     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4834     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4835     if (UOF == 2) // FP operators that are undefined on NaNs.
4836       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4837     if (UOF == unsigned(EqTrue))
4838       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4839     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4840     // if it is not already.
4841     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4842     if (NewCond != Cond &&
4843         (DCI.isBeforeLegalizeOps() ||
4844                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4845       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4846   }
4847 
4848   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4849       N0.getValueType().isInteger()) {
4850     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4851         N0.getOpcode() == ISD::XOR) {
4852       // Simplify (X+Y) == (X+Z) -->  Y == Z
4853       if (N0.getOpcode() == N1.getOpcode()) {
4854         if (N0.getOperand(0) == N1.getOperand(0))
4855           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4856         if (N0.getOperand(1) == N1.getOperand(1))
4857           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4858         if (isCommutativeBinOp(N0.getOpcode())) {
4859           // If X op Y == Y op X, try other combinations.
4860           if (N0.getOperand(0) == N1.getOperand(1))
4861             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4862                                 Cond);
4863           if (N0.getOperand(1) == N1.getOperand(0))
4864             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4865                                 Cond);
4866         }
4867       }
4868 
4869       // If RHS is a legal immediate value for a compare instruction, we need
4870       // to be careful about increasing register pressure needlessly.
4871       bool LegalRHSImm = false;
4872 
4873       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4874         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4875           // Turn (X+C1) == C2 --> X == C2-C1
4876           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4877             return DAG.getSetCC(
4878                 dl, VT, N0.getOperand(0),
4879                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4880                                 dl, N0.getValueType()),
4881                 Cond);
4882 
4883           // Turn (X^C1) == C2 --> X == C1^C2
4884           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4885             return DAG.getSetCC(
4886                 dl, VT, N0.getOperand(0),
4887                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4888                                 dl, N0.getValueType()),
4889                 Cond);
4890         }
4891 
4892         // Turn (C1-X) == C2 --> X == C1-C2
4893         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4894           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4895             return DAG.getSetCC(
4896                 dl, VT, N0.getOperand(1),
4897                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4898                                 dl, N0.getValueType()),
4899                 Cond);
4900 
4901         // Could RHSC fold directly into a compare?
4902         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4903           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4904       }
4905 
4906       // (X+Y) == X --> Y == 0 and similar folds.
4907       // Don't do this if X is an immediate that can fold into a cmp
4908       // instruction and X+Y has other uses. It could be an induction variable
4909       // chain, and the transform would increase register pressure.
4910       if (!LegalRHSImm || N0.hasOneUse())
4911         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4912           return V;
4913     }
4914 
4915     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4916         N1.getOpcode() == ISD::XOR)
4917       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4918         return V;
4919 
4920     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4921       return V;
4922   }
4923 
4924   // Fold remainder of division by a constant.
4925   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4926       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4927     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4928 
4929     // When division is cheap or optimizing for minimum size,
4930     // fall through to DIVREM creation by skipping this fold.
4931     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4932       if (N0.getOpcode() == ISD::UREM) {
4933         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4934           return Folded;
4935       } else if (N0.getOpcode() == ISD::SREM) {
4936         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4937           return Folded;
4938       }
4939     }
4940   }
4941 
4942   // Fold away ALL boolean setcc's.
4943   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4944     SDValue Temp;
4945     switch (Cond) {
4946     default: llvm_unreachable("Unknown integer setcc!");
4947     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4948       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4949       N0 = DAG.getNOT(dl, Temp, OpVT);
4950       if (!DCI.isCalledByLegalizer())
4951         DCI.AddToWorklist(Temp.getNode());
4952       break;
4953     case ISD::SETNE:  // X != Y   -->  (X^Y)
4954       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4955       break;
4956     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4957     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4958       Temp = DAG.getNOT(dl, N0, OpVT);
4959       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4960       if (!DCI.isCalledByLegalizer())
4961         DCI.AddToWorklist(Temp.getNode());
4962       break;
4963     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4964     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4965       Temp = DAG.getNOT(dl, N1, OpVT);
4966       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4967       if (!DCI.isCalledByLegalizer())
4968         DCI.AddToWorklist(Temp.getNode());
4969       break;
4970     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4971     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4972       Temp = DAG.getNOT(dl, N0, OpVT);
4973       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4974       if (!DCI.isCalledByLegalizer())
4975         DCI.AddToWorklist(Temp.getNode());
4976       break;
4977     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4978     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4979       Temp = DAG.getNOT(dl, N1, OpVT);
4980       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4981       break;
4982     }
4983     if (VT.getScalarType() != MVT::i1) {
4984       if (!DCI.isCalledByLegalizer())
4985         DCI.AddToWorklist(N0.getNode());
4986       // FIXME: If running after legalize, we probably can't do this.
4987       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4988       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4989     }
4990     return N0;
4991   }
4992 
4993   // Could not fold it.
4994   return SDValue();
4995 }
4996 
4997 /// Returns true (and the GlobalValue and the offset) if the node is a
4998 /// GlobalAddress + offset.
4999 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
5000                                     int64_t &Offset) const {
5001 
5002   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
5003 
5004   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
5005     GA = GASD->getGlobal();
5006     Offset += GASD->getOffset();
5007     return true;
5008   }
5009 
5010   if (N->getOpcode() == ISD::ADD) {
5011     SDValue N1 = N->getOperand(0);
5012     SDValue N2 = N->getOperand(1);
5013     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
5014       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
5015         Offset += V->getSExtValue();
5016         return true;
5017       }
5018     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
5019       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
5020         Offset += V->getSExtValue();
5021         return true;
5022       }
5023     }
5024   }
5025 
5026   return false;
5027 }
5028 
5029 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
5030                                           DAGCombinerInfo &DCI) const {
5031   // Default implementation: no optimization.
5032   return SDValue();
5033 }
5034 
5035 //===----------------------------------------------------------------------===//
5036 //  Inline Assembler Implementation Methods
5037 //===----------------------------------------------------------------------===//
5038 
5039 TargetLowering::ConstraintType
5040 TargetLowering::getConstraintType(StringRef Constraint) const {
5041   unsigned S = Constraint.size();
5042 
5043   if (S == 1) {
5044     switch (Constraint[0]) {
5045     default: break;
5046     case 'r':
5047       return C_RegisterClass;
5048     case 'm': // memory
5049     case 'o': // offsetable
5050     case 'V': // not offsetable
5051       return C_Memory;
5052     case 'p': // Address.
5053       return C_Address;
5054     case 'n': // Simple Integer
5055     case 'E': // Floating Point Constant
5056     case 'F': // Floating Point Constant
5057       return C_Immediate;
5058     case 'i': // Simple Integer or Relocatable Constant
5059     case 's': // Relocatable Constant
5060     case 'X': // Allow ANY value.
5061     case 'I': // Target registers.
5062     case 'J':
5063     case 'K':
5064     case 'L':
5065     case 'M':
5066     case 'N':
5067     case 'O':
5068     case 'P':
5069     case '<':
5070     case '>':
5071       return C_Other;
5072     }
5073   }
5074 
5075   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
5076     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
5077       return C_Memory;
5078     return C_Register;
5079   }
5080   return C_Unknown;
5081 }
5082 
5083 /// Try to replace an X constraint, which matches anything, with another that
5084 /// has more specific requirements based on the type of the corresponding
5085 /// operand.
5086 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5087   if (ConstraintVT.isInteger())
5088     return "r";
5089   if (ConstraintVT.isFloatingPoint())
5090     return "f"; // works for many targets
5091   return nullptr;
5092 }
5093 
5094 SDValue TargetLowering::LowerAsmOutputForConstraint(
5095     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5096     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5097   return SDValue();
5098 }
5099 
5100 /// Lower the specified operand into the Ops vector.
5101 /// If it is invalid, don't add anything to Ops.
5102 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5103                                                   std::string &Constraint,
5104                                                   std::vector<SDValue> &Ops,
5105                                                   SelectionDAG &DAG) const {
5106 
5107   if (Constraint.length() > 1) return;
5108 
5109   char ConstraintLetter = Constraint[0];
5110   switch (ConstraintLetter) {
5111   default: break;
5112   case 'X':    // Allows any operand
5113   case 'i':    // Simple Integer or Relocatable Constant
5114   case 'n':    // Simple Integer
5115   case 's': {  // Relocatable Constant
5116 
5117     ConstantSDNode *C;
5118     uint64_t Offset = 0;
5119 
5120     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5121     // etc., since getelementpointer is variadic. We can't use
5122     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5123     // while in this case the GA may be furthest from the root node which is
5124     // likely an ISD::ADD.
5125     while (true) {
5126       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5127         // gcc prints these as sign extended.  Sign extend value to 64 bits
5128         // now; without this it would get ZExt'd later in
5129         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5130         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5131         BooleanContent BCont = getBooleanContents(MVT::i64);
5132         ISD::NodeType ExtOpc =
5133             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5134         int64_t ExtVal =
5135             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5136         Ops.push_back(
5137             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5138         return;
5139       }
5140       if (ConstraintLetter != 'n') {
5141         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5142           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5143                                                    GA->getValueType(0),
5144                                                    Offset + GA->getOffset()));
5145           return;
5146         }
5147         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5148           Ops.push_back(DAG.getTargetBlockAddress(
5149               BA->getBlockAddress(), BA->getValueType(0),
5150               Offset + BA->getOffset(), BA->getTargetFlags()));
5151           return;
5152         }
5153         if (isa<BasicBlockSDNode>(Op)) {
5154           Ops.push_back(Op);
5155           return;
5156         }
5157       }
5158       const unsigned OpCode = Op.getOpcode();
5159       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5160         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5161           Op = Op.getOperand(1);
5162         // Subtraction is not commutative.
5163         else if (OpCode == ISD::ADD &&
5164                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5165           Op = Op.getOperand(0);
5166         else
5167           return;
5168         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5169         continue;
5170       }
5171       return;
5172     }
5173     break;
5174   }
5175   }
5176 }
5177 
5178 std::pair<unsigned, const TargetRegisterClass *>
5179 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5180                                              StringRef Constraint,
5181                                              MVT VT) const {
5182   if (Constraint.empty() || Constraint[0] != '{')
5183     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5184   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5185 
5186   // Remove the braces from around the name.
5187   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5188 
5189   std::pair<unsigned, const TargetRegisterClass *> R =
5190       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5191 
5192   // Figure out which register class contains this reg.
5193   for (const TargetRegisterClass *RC : RI->regclasses()) {
5194     // If none of the value types for this register class are valid, we
5195     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5196     if (!isLegalRC(*RI, *RC))
5197       continue;
5198 
5199     for (const MCPhysReg &PR : *RC) {
5200       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5201         std::pair<unsigned, const TargetRegisterClass *> S =
5202             std::make_pair(PR, RC);
5203 
5204         // If this register class has the requested value type, return it,
5205         // otherwise keep searching and return the first class found
5206         // if no other is found which explicitly has the requested type.
5207         if (RI->isTypeLegalForClass(*RC, VT))
5208           return S;
5209         if (!R.second)
5210           R = S;
5211       }
5212     }
5213   }
5214 
5215   return R;
5216 }
5217 
5218 //===----------------------------------------------------------------------===//
5219 // Constraint Selection.
5220 
5221 /// Return true of this is an input operand that is a matching constraint like
5222 /// "4".
5223 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5224   assert(!ConstraintCode.empty() && "No known constraint!");
5225   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5226 }
5227 
5228 /// If this is an input matching constraint, this method returns the output
5229 /// operand it matches.
5230 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5231   assert(!ConstraintCode.empty() && "No known constraint!");
5232   return atoi(ConstraintCode.c_str());
5233 }
5234 
5235 /// Split up the constraint string from the inline assembly value into the
5236 /// specific constraints and their prefixes, and also tie in the associated
5237 /// operand values.
5238 /// If this returns an empty vector, and if the constraint string itself
5239 /// isn't empty, there was an error parsing.
5240 TargetLowering::AsmOperandInfoVector
5241 TargetLowering::ParseConstraints(const DataLayout &DL,
5242                                  const TargetRegisterInfo *TRI,
5243                                  const CallBase &Call) const {
5244   /// Information about all of the constraints.
5245   AsmOperandInfoVector ConstraintOperands;
5246   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5247   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5248 
5249   // Do a prepass over the constraints, canonicalizing them, and building up the
5250   // ConstraintOperands list.
5251   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5252   unsigned ResNo = 0; // ResNo - The result number of the next output.
5253   unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number.
5254 
5255   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5256     ConstraintOperands.emplace_back(std::move(CI));
5257     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5258 
5259     // Update multiple alternative constraint count.
5260     if (OpInfo.multipleAlternatives.size() > maCount)
5261       maCount = OpInfo.multipleAlternatives.size();
5262 
5263     OpInfo.ConstraintVT = MVT::Other;
5264 
5265     // Compute the value type for each operand.
5266     switch (OpInfo.Type) {
5267     case InlineAsm::isOutput:
5268       // Indirect outputs just consume an argument.
5269       if (OpInfo.isIndirect) {
5270         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5271         break;
5272       }
5273 
5274       // The return value of the call is this value.  As such, there is no
5275       // corresponding argument.
5276       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5277       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5278         OpInfo.ConstraintVT =
5279             getSimpleValueType(DL, STy->getElementType(ResNo));
5280       } else {
5281         assert(ResNo == 0 && "Asm only has one result!");
5282         OpInfo.ConstraintVT =
5283             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5284       }
5285       ++ResNo;
5286       break;
5287     case InlineAsm::isInput:
5288       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5289       break;
5290     case InlineAsm::isLabel:
5291       OpInfo.CallOperandVal =
5292           cast<CallBrInst>(&Call)->getBlockAddressForIndirectDest(LabelNo);
5293       OpInfo.ConstraintVT =
5294           getAsmOperandValueType(DL, OpInfo.CallOperandVal->getType())
5295               .getSimpleVT();
5296       ++LabelNo;
5297       continue;
5298     case InlineAsm::isClobber:
5299       // Nothing to do.
5300       break;
5301     }
5302 
5303     if (OpInfo.CallOperandVal) {
5304       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5305       if (OpInfo.isIndirect) {
5306         OpTy = Call.getParamElementType(ArgNo);
5307         assert(OpTy && "Indirect operand must have elementtype attribute");
5308       }
5309 
5310       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5311       if (StructType *STy = dyn_cast<StructType>(OpTy))
5312         if (STy->getNumElements() == 1)
5313           OpTy = STy->getElementType(0);
5314 
5315       // If OpTy is not a single value, it may be a struct/union that we
5316       // can tile with integers.
5317       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5318         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5319         switch (BitSize) {
5320         default: break;
5321         case 1:
5322         case 8:
5323         case 16:
5324         case 32:
5325         case 64:
5326         case 128:
5327           OpTy = IntegerType::get(OpTy->getContext(), BitSize);
5328           break;
5329         }
5330       }
5331 
5332       EVT VT = getAsmOperandValueType(DL, OpTy, true);
5333       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
5334       ArgNo++;
5335     }
5336   }
5337 
5338   // If we have multiple alternative constraints, select the best alternative.
5339   if (!ConstraintOperands.empty()) {
5340     if (maCount) {
5341       unsigned bestMAIndex = 0;
5342       int bestWeight = -1;
5343       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5344       int weight = -1;
5345       unsigned maIndex;
5346       // Compute the sums of the weights for each alternative, keeping track
5347       // of the best (highest weight) one so far.
5348       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5349         int weightSum = 0;
5350         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5351              cIndex != eIndex; ++cIndex) {
5352           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5353           if (OpInfo.Type == InlineAsm::isClobber)
5354             continue;
5355 
5356           // If this is an output operand with a matching input operand,
5357           // look up the matching input. If their types mismatch, e.g. one
5358           // is an integer, the other is floating point, or their sizes are
5359           // different, flag it as an maCantMatch.
5360           if (OpInfo.hasMatchingInput()) {
5361             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5362             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5363               if ((OpInfo.ConstraintVT.isInteger() !=
5364                    Input.ConstraintVT.isInteger()) ||
5365                   (OpInfo.ConstraintVT.getSizeInBits() !=
5366                    Input.ConstraintVT.getSizeInBits())) {
5367                 weightSum = -1; // Can't match.
5368                 break;
5369               }
5370             }
5371           }
5372           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5373           if (weight == -1) {
5374             weightSum = -1;
5375             break;
5376           }
5377           weightSum += weight;
5378         }
5379         // Update best.
5380         if (weightSum > bestWeight) {
5381           bestWeight = weightSum;
5382           bestMAIndex = maIndex;
5383         }
5384       }
5385 
5386       // Now select chosen alternative in each constraint.
5387       for (AsmOperandInfo &cInfo : ConstraintOperands)
5388         if (cInfo.Type != InlineAsm::isClobber)
5389           cInfo.selectAlternative(bestMAIndex);
5390     }
5391   }
5392 
5393   // Check and hook up tied operands, choose constraint code to use.
5394   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5395        cIndex != eIndex; ++cIndex) {
5396     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5397 
5398     // If this is an output operand with a matching input operand, look up the
5399     // matching input. If their types mismatch, e.g. one is an integer, the
5400     // other is floating point, or their sizes are different, flag it as an
5401     // error.
5402     if (OpInfo.hasMatchingInput()) {
5403       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5404 
5405       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5406         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5407             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5408                                          OpInfo.ConstraintVT);
5409         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5410             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5411                                          Input.ConstraintVT);
5412         if ((OpInfo.ConstraintVT.isInteger() !=
5413              Input.ConstraintVT.isInteger()) ||
5414             (MatchRC.second != InputRC.second)) {
5415           report_fatal_error("Unsupported asm: input constraint"
5416                              " with a matching output constraint of"
5417                              " incompatible type!");
5418         }
5419       }
5420     }
5421   }
5422 
5423   return ConstraintOperands;
5424 }
5425 
5426 /// Return an integer indicating how general CT is.
5427 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5428   switch (CT) {
5429   case TargetLowering::C_Immediate:
5430   case TargetLowering::C_Other:
5431   case TargetLowering::C_Unknown:
5432     return 0;
5433   case TargetLowering::C_Register:
5434     return 1;
5435   case TargetLowering::C_RegisterClass:
5436     return 2;
5437   case TargetLowering::C_Memory:
5438   case TargetLowering::C_Address:
5439     return 3;
5440   }
5441   llvm_unreachable("Invalid constraint type");
5442 }
5443 
5444 /// Examine constraint type and operand type and determine a weight value.
5445 /// This object must already have been set up with the operand type
5446 /// and the current alternative constraint selected.
5447 TargetLowering::ConstraintWeight
5448   TargetLowering::getMultipleConstraintMatchWeight(
5449     AsmOperandInfo &info, int maIndex) const {
5450   InlineAsm::ConstraintCodeVector *rCodes;
5451   if (maIndex >= (int)info.multipleAlternatives.size())
5452     rCodes = &info.Codes;
5453   else
5454     rCodes = &info.multipleAlternatives[maIndex].Codes;
5455   ConstraintWeight BestWeight = CW_Invalid;
5456 
5457   // Loop over the options, keeping track of the most general one.
5458   for (const std::string &rCode : *rCodes) {
5459     ConstraintWeight weight =
5460         getSingleConstraintMatchWeight(info, rCode.c_str());
5461     if (weight > BestWeight)
5462       BestWeight = weight;
5463   }
5464 
5465   return BestWeight;
5466 }
5467 
5468 /// Examine constraint type and operand type and determine a weight value.
5469 /// This object must already have been set up with the operand type
5470 /// and the current alternative constraint selected.
5471 TargetLowering::ConstraintWeight
5472   TargetLowering::getSingleConstraintMatchWeight(
5473     AsmOperandInfo &info, const char *constraint) const {
5474   ConstraintWeight weight = CW_Invalid;
5475   Value *CallOperandVal = info.CallOperandVal;
5476     // If we don't have a value, we can't do a match,
5477     // but allow it at the lowest weight.
5478   if (!CallOperandVal)
5479     return CW_Default;
5480   // Look at the constraint type.
5481   switch (*constraint) {
5482     case 'i': // immediate integer.
5483     case 'n': // immediate integer with a known value.
5484       if (isa<ConstantInt>(CallOperandVal))
5485         weight = CW_Constant;
5486       break;
5487     case 's': // non-explicit intregal immediate.
5488       if (isa<GlobalValue>(CallOperandVal))
5489         weight = CW_Constant;
5490       break;
5491     case 'E': // immediate float if host format.
5492     case 'F': // immediate float.
5493       if (isa<ConstantFP>(CallOperandVal))
5494         weight = CW_Constant;
5495       break;
5496     case '<': // memory operand with autodecrement.
5497     case '>': // memory operand with autoincrement.
5498     case 'm': // memory operand.
5499     case 'o': // offsettable memory operand
5500     case 'V': // non-offsettable memory operand
5501       weight = CW_Memory;
5502       break;
5503     case 'r': // general register.
5504     case 'g': // general register, memory operand or immediate integer.
5505               // note: Clang converts "g" to "imr".
5506       if (CallOperandVal->getType()->isIntegerTy())
5507         weight = CW_Register;
5508       break;
5509     case 'X': // any operand.
5510   default:
5511     weight = CW_Default;
5512     break;
5513   }
5514   return weight;
5515 }
5516 
5517 /// If there are multiple different constraints that we could pick for this
5518 /// operand (e.g. "imr") try to pick the 'best' one.
5519 /// This is somewhat tricky: constraints fall into four classes:
5520 ///    Other         -> immediates and magic values
5521 ///    Register      -> one specific register
5522 ///    RegisterClass -> a group of regs
5523 ///    Memory        -> memory
5524 /// Ideally, we would pick the most specific constraint possible: if we have
5525 /// something that fits into a register, we would pick it.  The problem here
5526 /// is that if we have something that could either be in a register or in
5527 /// memory that use of the register could cause selection of *other*
5528 /// operands to fail: they might only succeed if we pick memory.  Because of
5529 /// this the heuristic we use is:
5530 ///
5531 ///  1) If there is an 'other' constraint, and if the operand is valid for
5532 ///     that constraint, use it.  This makes us take advantage of 'i'
5533 ///     constraints when available.
5534 ///  2) Otherwise, pick the most general constraint present.  This prefers
5535 ///     'm' over 'r', for example.
5536 ///
5537 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5538                              const TargetLowering &TLI,
5539                              SDValue Op, SelectionDAG *DAG) {
5540   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5541   unsigned BestIdx = 0;
5542   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5543   int BestGenerality = -1;
5544 
5545   // Loop over the options, keeping track of the most general one.
5546   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5547     TargetLowering::ConstraintType CType =
5548       TLI.getConstraintType(OpInfo.Codes[i]);
5549 
5550     // Indirect 'other' or 'immediate' constraints are not allowed.
5551     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5552                                CType == TargetLowering::C_Register ||
5553                                CType == TargetLowering::C_RegisterClass))
5554       continue;
5555 
5556     // If this is an 'other' or 'immediate' constraint, see if the operand is
5557     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5558     // the operand is an integer in the range [0..31] we want to use I (saving a
5559     // load of a register), otherwise we must use 'r'.
5560     if ((CType == TargetLowering::C_Other ||
5561          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5562       assert(OpInfo.Codes[i].size() == 1 &&
5563              "Unhandled multi-letter 'other' constraint");
5564       std::vector<SDValue> ResultOps;
5565       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5566                                        ResultOps, *DAG);
5567       if (!ResultOps.empty()) {
5568         BestType = CType;
5569         BestIdx = i;
5570         break;
5571       }
5572     }
5573 
5574     // Things with matching constraints can only be registers, per gcc
5575     // documentation.  This mainly affects "g" constraints.
5576     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5577       continue;
5578 
5579     // This constraint letter is more general than the previous one, use it.
5580     int Generality = getConstraintGenerality(CType);
5581     if (Generality > BestGenerality) {
5582       BestType = CType;
5583       BestIdx = i;
5584       BestGenerality = Generality;
5585     }
5586   }
5587 
5588   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5589   OpInfo.ConstraintType = BestType;
5590 }
5591 
5592 /// Determines the constraint code and constraint type to use for the specific
5593 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5594 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5595                                             SDValue Op,
5596                                             SelectionDAG *DAG) const {
5597   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5598 
5599   // Single-letter constraints ('r') are very common.
5600   if (OpInfo.Codes.size() == 1) {
5601     OpInfo.ConstraintCode = OpInfo.Codes[0];
5602     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5603   } else {
5604     ChooseConstraint(OpInfo, *this, Op, DAG);
5605   }
5606 
5607   // 'X' matches anything.
5608   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5609     // Constants are handled elsewhere.  For Functions, the type here is the
5610     // type of the result, which is not what we want to look at; leave them
5611     // alone.
5612     Value *v = OpInfo.CallOperandVal;
5613     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5614       return;
5615     }
5616 
5617     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5618       OpInfo.ConstraintCode = "i";
5619       return;
5620     }
5621 
5622     // Otherwise, try to resolve it to something we know about by looking at
5623     // the actual operand type.
5624     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5625       OpInfo.ConstraintCode = Repl;
5626       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5627     }
5628   }
5629 }
5630 
5631 /// Given an exact SDIV by a constant, create a multiplication
5632 /// with the multiplicative inverse of the constant.
5633 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5634                               const SDLoc &dl, SelectionDAG &DAG,
5635                               SmallVectorImpl<SDNode *> &Created) {
5636   SDValue Op0 = N->getOperand(0);
5637   SDValue Op1 = N->getOperand(1);
5638   EVT VT = N->getValueType(0);
5639   EVT SVT = VT.getScalarType();
5640   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5641   EVT ShSVT = ShVT.getScalarType();
5642 
5643   bool UseSRA = false;
5644   SmallVector<SDValue, 16> Shifts, Factors;
5645 
5646   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5647     if (C->isZero())
5648       return false;
5649     APInt Divisor = C->getAPIntValue();
5650     unsigned Shift = Divisor.countTrailingZeros();
5651     if (Shift) {
5652       Divisor.ashrInPlace(Shift);
5653       UseSRA = true;
5654     }
5655     // Calculate the multiplicative inverse, using Newton's method.
5656     APInt t;
5657     APInt Factor = Divisor;
5658     while ((t = Divisor * Factor) != 1)
5659       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5660     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5661     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5662     return true;
5663   };
5664 
5665   // Collect all magic values from the build vector.
5666   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5667     return SDValue();
5668 
5669   SDValue Shift, Factor;
5670   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5671     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5672     Factor = DAG.getBuildVector(VT, dl, Factors);
5673   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5674     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5675            "Expected matchUnaryPredicate to return one element for scalable "
5676            "vectors");
5677     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5678     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5679   } else {
5680     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5681     Shift = Shifts[0];
5682     Factor = Factors[0];
5683   }
5684 
5685   SDValue Res = Op0;
5686 
5687   // Shift the value upfront if it is even, so the LSB is one.
5688   if (UseSRA) {
5689     // TODO: For UDIV use SRL instead of SRA.
5690     SDNodeFlags Flags;
5691     Flags.setExact(true);
5692     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5693     Created.push_back(Res.getNode());
5694   }
5695 
5696   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5697 }
5698 
5699 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5700                               SelectionDAG &DAG,
5701                               SmallVectorImpl<SDNode *> &Created) const {
5702   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5704   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5705     return SDValue(N, 0); // Lower SDIV as SDIV
5706   return SDValue();
5707 }
5708 
5709 SDValue
5710 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5711                               SelectionDAG &DAG,
5712                               SmallVectorImpl<SDNode *> &Created) const {
5713   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5715   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5716     return SDValue(N, 0); // Lower SREM as SREM
5717   return SDValue();
5718 }
5719 
5720 /// Given an ISD::SDIV node expressing a divide by constant,
5721 /// return a DAG expression to select that will generate the same value by
5722 /// multiplying by a magic number.
5723 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5724 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5725                                   bool IsAfterLegalization,
5726                                   SmallVectorImpl<SDNode *> &Created) const {
5727   SDLoc dl(N);
5728   EVT VT = N->getValueType(0);
5729   EVT SVT = VT.getScalarType();
5730   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5731   EVT ShSVT = ShVT.getScalarType();
5732   unsigned EltBits = VT.getScalarSizeInBits();
5733   EVT MulVT;
5734 
5735   // Check to see if we can do this.
5736   // FIXME: We should be more aggressive here.
5737   if (!isTypeLegal(VT)) {
5738     // Limit this to simple scalars for now.
5739     if (VT.isVector() || !VT.isSimple())
5740       return SDValue();
5741 
5742     // If this type will be promoted to a large enough type with a legal
5743     // multiply operation, we can go ahead and do this transform.
5744     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5745       return SDValue();
5746 
5747     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5748     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5749         !isOperationLegal(ISD::MUL, MulVT))
5750       return SDValue();
5751   }
5752 
5753   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5754   if (N->getFlags().hasExact())
5755     return BuildExactSDIV(*this, N, dl, DAG, Created);
5756 
5757   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5758 
5759   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5760     if (C->isZero())
5761       return false;
5762 
5763     const APInt &Divisor = C->getAPIntValue();
5764     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5765     int NumeratorFactor = 0;
5766     int ShiftMask = -1;
5767 
5768     if (Divisor.isOne() || Divisor.isAllOnes()) {
5769       // If d is +1/-1, we just multiply the numerator by +1/-1.
5770       NumeratorFactor = Divisor.getSExtValue();
5771       magics.Magic = 0;
5772       magics.ShiftAmount = 0;
5773       ShiftMask = 0;
5774     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5775       // If d > 0 and m < 0, add the numerator.
5776       NumeratorFactor = 1;
5777     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5778       // If d < 0 and m > 0, subtract the numerator.
5779       NumeratorFactor = -1;
5780     }
5781 
5782     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5783     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5784     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5785     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5786     return true;
5787   };
5788 
5789   SDValue N0 = N->getOperand(0);
5790   SDValue N1 = N->getOperand(1);
5791 
5792   // Collect the shifts / magic values from each element.
5793   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5794     return SDValue();
5795 
5796   SDValue MagicFactor, Factor, Shift, ShiftMask;
5797   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5798     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5799     Factor = DAG.getBuildVector(VT, dl, Factors);
5800     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5801     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5802   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5803     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5804            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5805            "Expected matchUnaryPredicate to return one element for scalable "
5806            "vectors");
5807     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5808     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5809     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5810     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5811   } else {
5812     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5813     MagicFactor = MagicFactors[0];
5814     Factor = Factors[0];
5815     Shift = Shifts[0];
5816     ShiftMask = ShiftMasks[0];
5817   }
5818 
5819   // Multiply the numerator (operand 0) by the magic value.
5820   // FIXME: We should support doing a MUL in a wider type.
5821   auto GetMULHS = [&](SDValue X, SDValue Y) {
5822     // If the type isn't legal, use a wider mul of the the type calculated
5823     // earlier.
5824     if (!isTypeLegal(VT)) {
5825       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5826       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5827       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5828       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5829                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5830       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5831     }
5832 
5833     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5834       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5835     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5836       SDValue LoHi =
5837           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5838       return SDValue(LoHi.getNode(), 1);
5839     }
5840     return SDValue();
5841   };
5842 
5843   SDValue Q = GetMULHS(N0, MagicFactor);
5844   if (!Q)
5845     return SDValue();
5846 
5847   Created.push_back(Q.getNode());
5848 
5849   // (Optionally) Add/subtract the numerator using Factor.
5850   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5851   Created.push_back(Factor.getNode());
5852   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5853   Created.push_back(Q.getNode());
5854 
5855   // Shift right algebraic by shift value.
5856   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5857   Created.push_back(Q.getNode());
5858 
5859   // Extract the sign bit, mask it and add it to the quotient.
5860   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5861   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5862   Created.push_back(T.getNode());
5863   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5864   Created.push_back(T.getNode());
5865   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5866 }
5867 
5868 /// Given an ISD::UDIV node expressing a divide by constant,
5869 /// return a DAG expression to select that will generate the same value by
5870 /// multiplying by a magic number.
5871 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5872 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5873                                   bool IsAfterLegalization,
5874                                   SmallVectorImpl<SDNode *> &Created) const {
5875   SDLoc dl(N);
5876   EVT VT = N->getValueType(0);
5877   EVT SVT = VT.getScalarType();
5878   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5879   EVT ShSVT = ShVT.getScalarType();
5880   unsigned EltBits = VT.getScalarSizeInBits();
5881   EVT MulVT;
5882 
5883   // Check to see if we can do this.
5884   // FIXME: We should be more aggressive here.
5885   if (!isTypeLegal(VT)) {
5886     // Limit this to simple scalars for now.
5887     if (VT.isVector() || !VT.isSimple())
5888       return SDValue();
5889 
5890     // If this type will be promoted to a large enough type with a legal
5891     // multiply operation, we can go ahead and do this transform.
5892     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5893       return SDValue();
5894 
5895     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5896     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5897         !isOperationLegal(ISD::MUL, MulVT))
5898       return SDValue();
5899   }
5900 
5901   bool UseNPQ = false;
5902   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5903 
5904   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5905     if (C->isZero())
5906       return false;
5907     // FIXME: We should use a narrower constant when the upper
5908     // bits are known to be zero.
5909     const APInt& Divisor = C->getAPIntValue();
5910     UnsignedDivisionByConstantInfo magics =
5911         UnsignedDivisionByConstantInfo::get(Divisor);
5912     unsigned PreShift = 0, PostShift = 0;
5913 
5914     // If the divisor is even, we can avoid using the expensive fixup by
5915     // shifting the divided value upfront.
5916     if (magics.IsAdd && !Divisor[0]) {
5917       PreShift = Divisor.countTrailingZeros();
5918       // Get magic number for the shifted divisor.
5919       magics =
5920           UnsignedDivisionByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5921       assert(!magics.IsAdd && "Should use cheap fixup now");
5922     }
5923 
5924     unsigned SelNPQ;
5925     if (!magics.IsAdd || Divisor.isOne()) {
5926       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5927              "We shouldn't generate an undefined shift!");
5928       PostShift = magics.ShiftAmount;
5929       SelNPQ = false;
5930     } else {
5931       PostShift = magics.ShiftAmount - 1;
5932       SelNPQ = true;
5933     }
5934 
5935     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5936     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5937     NPQFactors.push_back(
5938         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5939                                : APInt::getZero(EltBits),
5940                         dl, SVT));
5941     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5942     UseNPQ |= SelNPQ;
5943     return true;
5944   };
5945 
5946   SDValue N0 = N->getOperand(0);
5947   SDValue N1 = N->getOperand(1);
5948 
5949   // Collect the shifts/magic values from each element.
5950   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5951     return SDValue();
5952 
5953   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5954   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5955     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5956     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5957     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5958     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5959   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5960     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5961            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5962            "Expected matchUnaryPredicate to return one for scalable vectors");
5963     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5964     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5965     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5966     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5967   } else {
5968     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5969     PreShift = PreShifts[0];
5970     MagicFactor = MagicFactors[0];
5971     PostShift = PostShifts[0];
5972   }
5973 
5974   SDValue Q = N0;
5975   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5976   Created.push_back(Q.getNode());
5977 
5978   // FIXME: We should support doing a MUL in a wider type.
5979   auto GetMULHU = [&](SDValue X, SDValue Y) {
5980     // If the type isn't legal, use a wider mul of the the type calculated
5981     // earlier.
5982     if (!isTypeLegal(VT)) {
5983       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5984       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5985       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5986       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5987                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5988       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5989     }
5990 
5991     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5992       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5993     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5994       SDValue LoHi =
5995           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5996       return SDValue(LoHi.getNode(), 1);
5997     }
5998     return SDValue(); // No mulhu or equivalent
5999   };
6000 
6001   // Multiply the numerator (operand 0) by the magic value.
6002   Q = GetMULHU(Q, MagicFactor);
6003   if (!Q)
6004     return SDValue();
6005 
6006   Created.push_back(Q.getNode());
6007 
6008   if (UseNPQ) {
6009     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
6010     Created.push_back(NPQ.getNode());
6011 
6012     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
6013     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
6014     if (VT.isVector())
6015       NPQ = GetMULHU(NPQ, NPQFactor);
6016     else
6017       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
6018 
6019     Created.push_back(NPQ.getNode());
6020 
6021     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
6022     Created.push_back(Q.getNode());
6023   }
6024 
6025   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
6026   Created.push_back(Q.getNode());
6027 
6028   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6029 
6030   SDValue One = DAG.getConstant(1, dl, VT);
6031   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
6032   return DAG.getSelect(dl, VT, IsOne, N0, Q);
6033 }
6034 
6035 /// If all values in Values that *don't* match the predicate are same 'splat'
6036 /// value, then replace all values with that splat value.
6037 /// Else, if AlternativeReplacement was provided, then replace all values that
6038 /// do match predicate with AlternativeReplacement value.
6039 static void
6040 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
6041                           std::function<bool(SDValue)> Predicate,
6042                           SDValue AlternativeReplacement = SDValue()) {
6043   SDValue Replacement;
6044   // Is there a value for which the Predicate does *NOT* match? What is it?
6045   auto SplatValue = llvm::find_if_not(Values, Predicate);
6046   if (SplatValue != Values.end()) {
6047     // Does Values consist only of SplatValue's and values matching Predicate?
6048     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
6049           return Value == *SplatValue || Predicate(Value);
6050         })) // Then we shall replace values matching predicate with SplatValue.
6051       Replacement = *SplatValue;
6052   }
6053   if (!Replacement) {
6054     // Oops, we did not find the "baseline" splat value.
6055     if (!AlternativeReplacement)
6056       return; // Nothing to do.
6057     // Let's replace with provided value then.
6058     Replacement = AlternativeReplacement;
6059   }
6060   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
6061 }
6062 
6063 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
6064 /// where the divisor is constant and the comparison target is zero,
6065 /// return a DAG expression that will generate the same comparison result
6066 /// using only multiplications, additions and shifts/rotations.
6067 /// Ref: "Hacker's Delight" 10-17.
6068 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
6069                                         SDValue CompTargetNode,
6070                                         ISD::CondCode Cond,
6071                                         DAGCombinerInfo &DCI,
6072                                         const SDLoc &DL) const {
6073   SmallVector<SDNode *, 5> Built;
6074   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6075                                          DCI, DL, Built)) {
6076     for (SDNode *N : Built)
6077       DCI.AddToWorklist(N);
6078     return Folded;
6079   }
6080 
6081   return SDValue();
6082 }
6083 
6084 SDValue
6085 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
6086                                   SDValue CompTargetNode, ISD::CondCode Cond,
6087                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6088                                   SmallVectorImpl<SDNode *> &Created) const {
6089   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
6090   // - D must be constant, with D = D0 * 2^K where D0 is odd
6091   // - P is the multiplicative inverse of D0 modulo 2^W
6092   // - Q = floor(((2^W) - 1) / D)
6093   // where W is the width of the common type of N and D.
6094   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6095          "Only applicable for (in)equality comparisons.");
6096 
6097   SelectionDAG &DAG = DCI.DAG;
6098 
6099   EVT VT = REMNode.getValueType();
6100   EVT SVT = VT.getScalarType();
6101   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6102   EVT ShSVT = ShVT.getScalarType();
6103 
6104   // If MUL is unavailable, we cannot proceed in any case.
6105   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6106     return SDValue();
6107 
6108   bool ComparingWithAllZeros = true;
6109   bool AllComparisonsWithNonZerosAreTautological = true;
6110   bool HadTautologicalLanes = false;
6111   bool AllLanesAreTautological = true;
6112   bool HadEvenDivisor = false;
6113   bool AllDivisorsArePowerOfTwo = true;
6114   bool HadTautologicalInvertedLanes = false;
6115   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6116 
6117   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6118     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6119     if (CDiv->isZero())
6120       return false;
6121 
6122     const APInt &D = CDiv->getAPIntValue();
6123     const APInt &Cmp = CCmp->getAPIntValue();
6124 
6125     ComparingWithAllZeros &= Cmp.isZero();
6126 
6127     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6128     // if C2 is not less than C1, the comparison is always false.
6129     // But we will only be able to produce the comparison that will give the
6130     // opposive tautological answer. So this lane would need to be fixed up.
6131     bool TautologicalInvertedLane = D.ule(Cmp);
6132     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6133 
6134     // If all lanes are tautological (either all divisors are ones, or divisor
6135     // is not greater than the constant we are comparing with),
6136     // we will prefer to avoid the fold.
6137     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6138     HadTautologicalLanes |= TautologicalLane;
6139     AllLanesAreTautological &= TautologicalLane;
6140 
6141     // If we are comparing with non-zero, we need'll need  to subtract said
6142     // comparison value from the LHS. But there is no point in doing that if
6143     // every lane where we are comparing with non-zero is tautological..
6144     if (!Cmp.isZero())
6145       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6146 
6147     // Decompose D into D0 * 2^K
6148     unsigned K = D.countTrailingZeros();
6149     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6150     APInt D0 = D.lshr(K);
6151 
6152     // D is even if it has trailing zeros.
6153     HadEvenDivisor |= (K != 0);
6154     // D is a power-of-two if D0 is one.
6155     // If all divisors are power-of-two, we will prefer to avoid the fold.
6156     AllDivisorsArePowerOfTwo &= D0.isOne();
6157 
6158     // P = inv(D0, 2^W)
6159     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6160     unsigned W = D.getBitWidth();
6161     APInt P = D0.zext(W + 1)
6162                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6163                   .trunc(W);
6164     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6165     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6166 
6167     // Q = floor((2^W - 1) u/ D)
6168     // R = ((2^W - 1) u% D)
6169     APInt Q, R;
6170     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6171 
6172     // If we are comparing with zero, then that comparison constant is okay,
6173     // else it may need to be one less than that.
6174     if (Cmp.ugt(R))
6175       Q -= 1;
6176 
6177     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6178            "We are expecting that K is always less than all-ones for ShSVT");
6179 
6180     // If the lane is tautological the result can be constant-folded.
6181     if (TautologicalLane) {
6182       // Set P and K amount to a bogus values so we can try to splat them.
6183       P = 0;
6184       K = -1;
6185       // And ensure that comparison constant is tautological,
6186       // it will always compare true/false.
6187       Q = -1;
6188     }
6189 
6190     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6191     KAmts.push_back(
6192         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6193     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6194     return true;
6195   };
6196 
6197   SDValue N = REMNode.getOperand(0);
6198   SDValue D = REMNode.getOperand(1);
6199 
6200   // Collect the values from each element.
6201   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6202     return SDValue();
6203 
6204   // If all lanes are tautological, the result can be constant-folded.
6205   if (AllLanesAreTautological)
6206     return SDValue();
6207 
6208   // If this is a urem by a powers-of-two, avoid the fold since it can be
6209   // best implemented as a bit test.
6210   if (AllDivisorsArePowerOfTwo)
6211     return SDValue();
6212 
6213   SDValue PVal, KVal, QVal;
6214   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6215     if (HadTautologicalLanes) {
6216       // Try to turn PAmts into a splat, since we don't care about the values
6217       // that are currently '0'. If we can't, just keep '0'`s.
6218       turnVectorIntoSplatVector(PAmts, isNullConstant);
6219       // Try to turn KAmts into a splat, since we don't care about the values
6220       // that are currently '-1'. If we can't, change them to '0'`s.
6221       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6222                                 DAG.getConstant(0, DL, ShSVT));
6223     }
6224 
6225     PVal = DAG.getBuildVector(VT, DL, PAmts);
6226     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6227     QVal = DAG.getBuildVector(VT, DL, QAmts);
6228   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6229     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6230            "Expected matchBinaryPredicate to return one element for "
6231            "SPLAT_VECTORs");
6232     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6233     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6234     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6235   } else {
6236     PVal = PAmts[0];
6237     KVal = KAmts[0];
6238     QVal = QAmts[0];
6239   }
6240 
6241   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6242     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6243       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6244     assert(CompTargetNode.getValueType() == N.getValueType() &&
6245            "Expecting that the types on LHS and RHS of comparisons match.");
6246     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6247   }
6248 
6249   // (mul N, P)
6250   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6251   Created.push_back(Op0.getNode());
6252 
6253   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6254   // divisors as a performance improvement, since rotating by 0 is a no-op.
6255   if (HadEvenDivisor) {
6256     // We need ROTR to do this.
6257     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6258       return SDValue();
6259     // UREM: (rotr (mul N, P), K)
6260     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6261     Created.push_back(Op0.getNode());
6262   }
6263 
6264   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6265   SDValue NewCC =
6266       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6267                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6268   if (!HadTautologicalInvertedLanes)
6269     return NewCC;
6270 
6271   // If any lanes previously compared always-false, the NewCC will give
6272   // always-true result for them, so we need to fixup those lanes.
6273   // Or the other way around for inequality predicate.
6274   assert(VT.isVector() && "Can/should only get here for vectors.");
6275   Created.push_back(NewCC.getNode());
6276 
6277   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6278   // if C2 is not less than C1, the comparison is always false.
6279   // But we have produced the comparison that will give the
6280   // opposive tautological answer. So these lanes would need to be fixed up.
6281   SDValue TautologicalInvertedChannels =
6282       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6283   Created.push_back(TautologicalInvertedChannels.getNode());
6284 
6285   // NOTE: we avoid letting illegal types through even if we're before legalize
6286   // ops – legalization has a hard time producing good code for this.
6287   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6288     // If we have a vector select, let's replace the comparison results in the
6289     // affected lanes with the correct tautological result.
6290     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6291                                               DL, SETCCVT, SETCCVT);
6292     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6293                        Replacement, NewCC);
6294   }
6295 
6296   // Else, we can just invert the comparison result in the appropriate lanes.
6297   //
6298   // NOTE: see the note above VSELECT above.
6299   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6300     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6301                        TautologicalInvertedChannels);
6302 
6303   return SDValue(); // Don't know how to lower.
6304 }
6305 
6306 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6307 /// where the divisor is constant and the comparison target is zero,
6308 /// return a DAG expression that will generate the same comparison result
6309 /// using only multiplications, additions and shifts/rotations.
6310 /// Ref: "Hacker's Delight" 10-17.
6311 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6312                                         SDValue CompTargetNode,
6313                                         ISD::CondCode Cond,
6314                                         DAGCombinerInfo &DCI,
6315                                         const SDLoc &DL) const {
6316   SmallVector<SDNode *, 7> Built;
6317   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6318                                          DCI, DL, Built)) {
6319     assert(Built.size() <= 7 && "Max size prediction failed.");
6320     for (SDNode *N : Built)
6321       DCI.AddToWorklist(N);
6322     return Folded;
6323   }
6324 
6325   return SDValue();
6326 }
6327 
6328 SDValue
6329 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6330                                   SDValue CompTargetNode, ISD::CondCode Cond,
6331                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6332                                   SmallVectorImpl<SDNode *> &Created) const {
6333   // Fold:
6334   //   (seteq/ne (srem N, D), 0)
6335   // To:
6336   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6337   //
6338   // - D must be constant, with D = D0 * 2^K where D0 is odd
6339   // - P is the multiplicative inverse of D0 modulo 2^W
6340   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6341   // - Q = floor((2 * A) / (2^K))
6342   // where W is the width of the common type of N and D.
6343   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6344          "Only applicable for (in)equality comparisons.");
6345 
6346   SelectionDAG &DAG = DCI.DAG;
6347 
6348   EVT VT = REMNode.getValueType();
6349   EVT SVT = VT.getScalarType();
6350   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6351   EVT ShSVT = ShVT.getScalarType();
6352 
6353   // If we are after ops legalization, and MUL is unavailable, we can not
6354   // proceed.
6355   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6356     return SDValue();
6357 
6358   // TODO: Could support comparing with non-zero too.
6359   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6360   if (!CompTarget || !CompTarget->isZero())
6361     return SDValue();
6362 
6363   bool HadIntMinDivisor = false;
6364   bool HadOneDivisor = false;
6365   bool AllDivisorsAreOnes = true;
6366   bool HadEvenDivisor = false;
6367   bool NeedToApplyOffset = false;
6368   bool AllDivisorsArePowerOfTwo = true;
6369   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6370 
6371   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6372     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6373     if (C->isZero())
6374       return false;
6375 
6376     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6377 
6378     // WARNING: this fold is only valid for positive divisors!
6379     APInt D = C->getAPIntValue();
6380     if (D.isNegative())
6381       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6382 
6383     HadIntMinDivisor |= D.isMinSignedValue();
6384 
6385     // If all divisors are ones, we will prefer to avoid the fold.
6386     HadOneDivisor |= D.isOne();
6387     AllDivisorsAreOnes &= D.isOne();
6388 
6389     // Decompose D into D0 * 2^K
6390     unsigned K = D.countTrailingZeros();
6391     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6392     APInt D0 = D.lshr(K);
6393 
6394     if (!D.isMinSignedValue()) {
6395       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6396       // we don't care about this lane in this fold, we'll special-handle it.
6397       HadEvenDivisor |= (K != 0);
6398     }
6399 
6400     // D is a power-of-two if D0 is one. This includes INT_MIN.
6401     // If all divisors are power-of-two, we will prefer to avoid the fold.
6402     AllDivisorsArePowerOfTwo &= D0.isOne();
6403 
6404     // P = inv(D0, 2^W)
6405     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6406     unsigned W = D.getBitWidth();
6407     APInt P = D0.zext(W + 1)
6408                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6409                   .trunc(W);
6410     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6411     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6412 
6413     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6414     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6415     A.clearLowBits(K);
6416 
6417     if (!D.isMinSignedValue()) {
6418       // If divisor INT_MIN, then we don't care about this lane in this fold,
6419       // we'll special-handle it.
6420       NeedToApplyOffset |= A != 0;
6421     }
6422 
6423     // Q = floor((2 * A) / (2^K))
6424     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6425 
6426     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6427            "We are expecting that A is always less than all-ones for SVT");
6428     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6429            "We are expecting that K is always less than all-ones for ShSVT");
6430 
6431     // If the divisor is 1 the result can be constant-folded. Likewise, we
6432     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6433     if (D.isOne()) {
6434       // Set P, A and K to a bogus values so we can try to splat them.
6435       P = 0;
6436       A = -1;
6437       K = -1;
6438 
6439       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6440       Q = -1;
6441     }
6442 
6443     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6444     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6445     KAmts.push_back(
6446         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6447     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6448     return true;
6449   };
6450 
6451   SDValue N = REMNode.getOperand(0);
6452   SDValue D = REMNode.getOperand(1);
6453 
6454   // Collect the values from each element.
6455   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6456     return SDValue();
6457 
6458   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6459   if (AllDivisorsAreOnes)
6460     return SDValue();
6461 
6462   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6463   // since it can be best implemented as a bit test.
6464   if (AllDivisorsArePowerOfTwo)
6465     return SDValue();
6466 
6467   SDValue PVal, AVal, KVal, QVal;
6468   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6469     if (HadOneDivisor) {
6470       // Try to turn PAmts into a splat, since we don't care about the values
6471       // that are currently '0'. If we can't, just keep '0'`s.
6472       turnVectorIntoSplatVector(PAmts, isNullConstant);
6473       // Try to turn AAmts into a splat, since we don't care about the
6474       // values that are currently '-1'. If we can't, change them to '0'`s.
6475       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6476                                 DAG.getConstant(0, DL, SVT));
6477       // Try to turn KAmts into a splat, since we don't care about the values
6478       // that are currently '-1'. If we can't, change them to '0'`s.
6479       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6480                                 DAG.getConstant(0, DL, ShSVT));
6481     }
6482 
6483     PVal = DAG.getBuildVector(VT, DL, PAmts);
6484     AVal = DAG.getBuildVector(VT, DL, AAmts);
6485     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6486     QVal = DAG.getBuildVector(VT, DL, QAmts);
6487   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6488     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6489            QAmts.size() == 1 &&
6490            "Expected matchUnaryPredicate to return one element for scalable "
6491            "vectors");
6492     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6493     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6494     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6495     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6496   } else {
6497     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6498     PVal = PAmts[0];
6499     AVal = AAmts[0];
6500     KVal = KAmts[0];
6501     QVal = QAmts[0];
6502   }
6503 
6504   // (mul N, P)
6505   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6506   Created.push_back(Op0.getNode());
6507 
6508   if (NeedToApplyOffset) {
6509     // We need ADD to do this.
6510     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6511       return SDValue();
6512 
6513     // (add (mul N, P), A)
6514     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6515     Created.push_back(Op0.getNode());
6516   }
6517 
6518   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6519   // divisors as a performance improvement, since rotating by 0 is a no-op.
6520   if (HadEvenDivisor) {
6521     // We need ROTR to do this.
6522     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6523       return SDValue();
6524     // SREM: (rotr (add (mul N, P), A), K)
6525     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6526     Created.push_back(Op0.getNode());
6527   }
6528 
6529   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6530   SDValue Fold =
6531       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6532                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6533 
6534   // If we didn't have lanes with INT_MIN divisor, then we're done.
6535   if (!HadIntMinDivisor)
6536     return Fold;
6537 
6538   // That fold is only valid for positive divisors. Which effectively means,
6539   // it is invalid for INT_MIN divisors. So if we have such a lane,
6540   // we must fix-up results for said lanes.
6541   assert(VT.isVector() && "Can/should only get here for vectors.");
6542 
6543   // NOTE: we avoid letting illegal types through even if we're before legalize
6544   // ops – legalization has a hard time producing good code for the code that
6545   // follows.
6546   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6547       !isOperationLegalOrCustom(ISD::AND, VT) ||
6548       !isOperationLegalOrCustom(Cond, VT) ||
6549       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6550     return SDValue();
6551 
6552   Created.push_back(Fold.getNode());
6553 
6554   SDValue IntMin = DAG.getConstant(
6555       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6556   SDValue IntMax = DAG.getConstant(
6557       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6558   SDValue Zero =
6559       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6560 
6561   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6562   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6563   Created.push_back(DivisorIsIntMin.getNode());
6564 
6565   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6566   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6567   Created.push_back(Masked.getNode());
6568   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6569   Created.push_back(MaskedIsZero.getNode());
6570 
6571   // To produce final result we need to blend 2 vectors: 'SetCC' and
6572   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6573   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6574   // constant-folded, select can get lowered to a shuffle with constant mask.
6575   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6576                                 MaskedIsZero, Fold);
6577 
6578   return Blended;
6579 }
6580 
6581 bool TargetLowering::
6582 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6583   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6584     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6585                                 "be a constant integer");
6586     return true;
6587   }
6588 
6589   return false;
6590 }
6591 
6592 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6593                                          const DenormalMode &Mode) const {
6594   SDLoc DL(Op);
6595   EVT VT = Op.getValueType();
6596   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6597   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6598   // Testing it with denormal inputs to avoid wrong estimate.
6599   if (Mode.Input == DenormalMode::IEEE) {
6600     // This is specifically a check for the handling of denormal inputs,
6601     // not the result.
6602 
6603     // Test = fabs(X) < SmallestNormal
6604     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6605     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6606     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6607     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6608     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6609   }
6610   // Test = X == 0.0
6611   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6612 }
6613 
6614 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6615                                              bool LegalOps, bool OptForSize,
6616                                              NegatibleCost &Cost,
6617                                              unsigned Depth) const {
6618   // fneg is removable even if it has multiple uses.
6619   if (Op.getOpcode() == ISD::FNEG) {
6620     Cost = NegatibleCost::Cheaper;
6621     return Op.getOperand(0);
6622   }
6623 
6624   // Don't recurse exponentially.
6625   if (Depth > SelectionDAG::MaxRecursionDepth)
6626     return SDValue();
6627 
6628   // Pre-increment recursion depth for use in recursive calls.
6629   ++Depth;
6630   const SDNodeFlags Flags = Op->getFlags();
6631   const TargetOptions &Options = DAG.getTarget().Options;
6632   EVT VT = Op.getValueType();
6633   unsigned Opcode = Op.getOpcode();
6634 
6635   // Don't allow anything with multiple uses unless we know it is free.
6636   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6637     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6638                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6639     if (!IsFreeExtend)
6640       return SDValue();
6641   }
6642 
6643   auto RemoveDeadNode = [&](SDValue N) {
6644     if (N && N.getNode()->use_empty())
6645       DAG.RemoveDeadNode(N.getNode());
6646   };
6647 
6648   SDLoc DL(Op);
6649 
6650   // Because getNegatedExpression can delete nodes we need a handle to keep
6651   // temporary nodes alive in case the recursion manages to create an identical
6652   // node.
6653   std::list<HandleSDNode> Handles;
6654 
6655   switch (Opcode) {
6656   case ISD::ConstantFP: {
6657     // Don't invert constant FP values after legalization unless the target says
6658     // the negated constant is legal.
6659     bool IsOpLegal =
6660         isOperationLegal(ISD::ConstantFP, VT) ||
6661         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6662                      OptForSize);
6663 
6664     if (LegalOps && !IsOpLegal)
6665       break;
6666 
6667     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6668     V.changeSign();
6669     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6670 
6671     // If we already have the use of the negated floating constant, it is free
6672     // to negate it even it has multiple uses.
6673     if (!Op.hasOneUse() && CFP.use_empty())
6674       break;
6675     Cost = NegatibleCost::Neutral;
6676     return CFP;
6677   }
6678   case ISD::BUILD_VECTOR: {
6679     // Only permit BUILD_VECTOR of constants.
6680     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6681           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6682         }))
6683       break;
6684 
6685     bool IsOpLegal =
6686         (isOperationLegal(ISD::ConstantFP, VT) &&
6687          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6688         llvm::all_of(Op->op_values(), [&](SDValue N) {
6689           return N.isUndef() ||
6690                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6691                               OptForSize);
6692         });
6693 
6694     if (LegalOps && !IsOpLegal)
6695       break;
6696 
6697     SmallVector<SDValue, 4> Ops;
6698     for (SDValue C : Op->op_values()) {
6699       if (C.isUndef()) {
6700         Ops.push_back(C);
6701         continue;
6702       }
6703       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6704       V.changeSign();
6705       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6706     }
6707     Cost = NegatibleCost::Neutral;
6708     return DAG.getBuildVector(VT, DL, Ops);
6709   }
6710   case ISD::FADD: {
6711     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6712       break;
6713 
6714     // After operation legalization, it might not be legal to create new FSUBs.
6715     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6716       break;
6717     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6718 
6719     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6720     NegatibleCost CostX = NegatibleCost::Expensive;
6721     SDValue NegX =
6722         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6723     // Prevent this node from being deleted by the next call.
6724     if (NegX)
6725       Handles.emplace_back(NegX);
6726 
6727     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6728     NegatibleCost CostY = NegatibleCost::Expensive;
6729     SDValue NegY =
6730         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6731 
6732     // We're done with the handles.
6733     Handles.clear();
6734 
6735     // Negate the X if its cost is less or equal than Y.
6736     if (NegX && (CostX <= CostY)) {
6737       Cost = CostX;
6738       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6739       if (NegY != N)
6740         RemoveDeadNode(NegY);
6741       return N;
6742     }
6743 
6744     // Negate the Y if it is not expensive.
6745     if (NegY) {
6746       Cost = CostY;
6747       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6748       if (NegX != N)
6749         RemoveDeadNode(NegX);
6750       return N;
6751     }
6752     break;
6753   }
6754   case ISD::FSUB: {
6755     // We can't turn -(A-B) into B-A when we honor signed zeros.
6756     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6757       break;
6758 
6759     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6760     // fold (fneg (fsub 0, Y)) -> Y
6761     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6762       if (C->isZero()) {
6763         Cost = NegatibleCost::Cheaper;
6764         return Y;
6765       }
6766 
6767     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6768     Cost = NegatibleCost::Neutral;
6769     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6770   }
6771   case ISD::FMUL:
6772   case ISD::FDIV: {
6773     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6774 
6775     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6776     NegatibleCost CostX = NegatibleCost::Expensive;
6777     SDValue NegX =
6778         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6779     // Prevent this node from being deleted by the next call.
6780     if (NegX)
6781       Handles.emplace_back(NegX);
6782 
6783     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6784     NegatibleCost CostY = NegatibleCost::Expensive;
6785     SDValue NegY =
6786         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6787 
6788     // We're done with the handles.
6789     Handles.clear();
6790 
6791     // Negate the X if its cost is less or equal than Y.
6792     if (NegX && (CostX <= CostY)) {
6793       Cost = CostX;
6794       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6795       if (NegY != N)
6796         RemoveDeadNode(NegY);
6797       return N;
6798     }
6799 
6800     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6801     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6802       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6803         break;
6804 
6805     // Negate the Y if it is not expensive.
6806     if (NegY) {
6807       Cost = CostY;
6808       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6809       if (NegX != N)
6810         RemoveDeadNode(NegX);
6811       return N;
6812     }
6813     break;
6814   }
6815   case ISD::FMA:
6816   case ISD::FMAD: {
6817     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6818       break;
6819 
6820     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6821     NegatibleCost CostZ = NegatibleCost::Expensive;
6822     SDValue NegZ =
6823         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6824     // Give up if fail to negate the Z.
6825     if (!NegZ)
6826       break;
6827 
6828     // Prevent this node from being deleted by the next two calls.
6829     Handles.emplace_back(NegZ);
6830 
6831     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6832     NegatibleCost CostX = NegatibleCost::Expensive;
6833     SDValue NegX =
6834         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6835     // Prevent this node from being deleted by the next call.
6836     if (NegX)
6837       Handles.emplace_back(NegX);
6838 
6839     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6840     NegatibleCost CostY = NegatibleCost::Expensive;
6841     SDValue NegY =
6842         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6843 
6844     // We're done with the handles.
6845     Handles.clear();
6846 
6847     // Negate the X if its cost is less or equal than Y.
6848     if (NegX && (CostX <= CostY)) {
6849       Cost = std::min(CostX, CostZ);
6850       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6851       if (NegY != N)
6852         RemoveDeadNode(NegY);
6853       return N;
6854     }
6855 
6856     // Negate the Y if it is not expensive.
6857     if (NegY) {
6858       Cost = std::min(CostY, CostZ);
6859       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6860       if (NegX != N)
6861         RemoveDeadNode(NegX);
6862       return N;
6863     }
6864     break;
6865   }
6866 
6867   case ISD::FP_EXTEND:
6868   case ISD::FSIN:
6869     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6870                                             OptForSize, Cost, Depth))
6871       return DAG.getNode(Opcode, DL, VT, NegV);
6872     break;
6873   case ISD::FP_ROUND:
6874     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6875                                             OptForSize, Cost, Depth))
6876       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6877     break;
6878   }
6879 
6880   return SDValue();
6881 }
6882 
6883 //===----------------------------------------------------------------------===//
6884 // Legalization Utilities
6885 //===----------------------------------------------------------------------===//
6886 
6887 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6888                                     SDValue LHS, SDValue RHS,
6889                                     SmallVectorImpl<SDValue> &Result,
6890                                     EVT HiLoVT, SelectionDAG &DAG,
6891                                     MulExpansionKind Kind, SDValue LL,
6892                                     SDValue LH, SDValue RL, SDValue RH) const {
6893   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6894          Opcode == ISD::SMUL_LOHI);
6895 
6896   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6897                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6898   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6899                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6900   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6901                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6902   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6903                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6904 
6905   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6906     return false;
6907 
6908   unsigned OuterBitSize = VT.getScalarSizeInBits();
6909   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6910 
6911   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6912   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6913          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6914 
6915   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6916   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6917                           bool Signed) -> bool {
6918     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6919       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6920       Hi = SDValue(Lo.getNode(), 1);
6921       return true;
6922     }
6923     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6924       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6925       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6926       return true;
6927     }
6928     return false;
6929   };
6930 
6931   SDValue Lo, Hi;
6932 
6933   if (!LL.getNode() && !RL.getNode() &&
6934       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6935     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6936     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6937   }
6938 
6939   if (!LL.getNode())
6940     return false;
6941 
6942   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6943   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6944       DAG.MaskedValueIsZero(RHS, HighMask)) {
6945     // The inputs are both zero-extended.
6946     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6947       Result.push_back(Lo);
6948       Result.push_back(Hi);
6949       if (Opcode != ISD::MUL) {
6950         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6951         Result.push_back(Zero);
6952         Result.push_back(Zero);
6953       }
6954       return true;
6955     }
6956   }
6957 
6958   if (!VT.isVector() && Opcode == ISD::MUL &&
6959       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6960       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6961     // The input values are both sign-extended.
6962     // TODO non-MUL case?
6963     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6964       Result.push_back(Lo);
6965       Result.push_back(Hi);
6966       return true;
6967     }
6968   }
6969 
6970   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6971   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6972   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6973 
6974   if (!LH.getNode() && !RH.getNode() &&
6975       isOperationLegalOrCustom(ISD::SRL, VT) &&
6976       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6977     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6978     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6979     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6980     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6981   }
6982 
6983   if (!LH.getNode())
6984     return false;
6985 
6986   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6987     return false;
6988 
6989   Result.push_back(Lo);
6990 
6991   if (Opcode == ISD::MUL) {
6992     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6993     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6994     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6995     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6996     Result.push_back(Hi);
6997     return true;
6998   }
6999 
7000   // Compute the full width result.
7001   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
7002     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
7003     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7004     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
7005     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
7006   };
7007 
7008   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
7009   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
7010     return false;
7011 
7012   // This is effectively the add part of a multiply-add of half-sized operands,
7013   // so it cannot overflow.
7014   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7015 
7016   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
7017     return false;
7018 
7019   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
7020   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7021 
7022   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
7023                   isOperationLegalOrCustom(ISD::ADDE, VT));
7024   if (UseGlue)
7025     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
7026                        Merge(Lo, Hi));
7027   else
7028     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
7029                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
7030 
7031   SDValue Carry = Next.getValue(1);
7032   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7033   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7034 
7035   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
7036     return false;
7037 
7038   if (UseGlue)
7039     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
7040                      Carry);
7041   else
7042     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
7043                      Zero, Carry);
7044 
7045   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
7046 
7047   if (Opcode == ISD::SMUL_LOHI) {
7048     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7049                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
7050     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
7051 
7052     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
7053                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
7054     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
7055   }
7056 
7057   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7058   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
7059   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
7060   return true;
7061 }
7062 
7063 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
7064                                SelectionDAG &DAG, MulExpansionKind Kind,
7065                                SDValue LL, SDValue LH, SDValue RL,
7066                                SDValue RH) const {
7067   SmallVector<SDValue, 2> Result;
7068   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
7069                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
7070                            DAG, Kind, LL, LH, RL, RH);
7071   if (Ok) {
7072     assert(Result.size() == 2);
7073     Lo = Result[0];
7074     Hi = Result[1];
7075   }
7076   return Ok;
7077 }
7078 
7079 // Check that (every element of) Z is undef or not an exact multiple of BW.
7080 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
7081   return ISD::matchUnaryPredicate(
7082       Z,
7083       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
7084       true);
7085 }
7086 
7087 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
7088                                           SelectionDAG &DAG) const {
7089   EVT VT = Node->getValueType(0);
7090 
7091   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7092                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7093                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7094                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7095     return SDValue();
7096 
7097   SDValue X = Node->getOperand(0);
7098   SDValue Y = Node->getOperand(1);
7099   SDValue Z = Node->getOperand(2);
7100 
7101   unsigned BW = VT.getScalarSizeInBits();
7102   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7103   SDLoc DL(SDValue(Node, 0));
7104 
7105   EVT ShVT = Z.getValueType();
7106 
7107   // If a funnel shift in the other direction is more supported, use it.
7108   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7109   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7110       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7111     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7112       // fshl X, Y, Z -> fshr X, Y, -Z
7113       // fshr X, Y, Z -> fshl X, Y, -Z
7114       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7115       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7116     } else {
7117       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7118       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7119       SDValue One = DAG.getConstant(1, DL, ShVT);
7120       if (IsFSHL) {
7121         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7122         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7123       } else {
7124         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7125         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7126       }
7127       Z = DAG.getNOT(DL, Z, ShVT);
7128     }
7129     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7130   }
7131 
7132   SDValue ShX, ShY;
7133   SDValue ShAmt, InvShAmt;
7134   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7135     // fshl: X << C | Y >> (BW - C)
7136     // fshr: X << (BW - C) | Y >> C
7137     // where C = Z % BW is not zero
7138     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7139     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7140     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7141     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7142     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7143   } else {
7144     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7145     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7146     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7147     if (isPowerOf2_32(BW)) {
7148       // Z % BW -> Z & (BW - 1)
7149       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7150       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7151       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7152     } else {
7153       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7154       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7155       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7156     }
7157 
7158     SDValue One = DAG.getConstant(1, DL, ShVT);
7159     if (IsFSHL) {
7160       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7161       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7162       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7163     } else {
7164       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7165       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7166       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7167     }
7168   }
7169   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7170 }
7171 
7172 // TODO: Merge with expandFunnelShift.
7173 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7174                                   SelectionDAG &DAG) const {
7175   EVT VT = Node->getValueType(0);
7176   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7177   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7178   SDValue Op0 = Node->getOperand(0);
7179   SDValue Op1 = Node->getOperand(1);
7180   SDLoc DL(SDValue(Node, 0));
7181 
7182   EVT ShVT = Op1.getValueType();
7183   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7184 
7185   // If a rotate in the other direction is more supported, use it.
7186   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7187   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7188       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7189     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7190     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7191   }
7192 
7193   if (!AllowVectorOps && VT.isVector() &&
7194       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7195        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7196        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7197        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7198        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7199     return SDValue();
7200 
7201   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7202   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7203   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7204   SDValue ShVal;
7205   SDValue HsVal;
7206   if (isPowerOf2_32(EltSizeInBits)) {
7207     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7208     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7209     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7210     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7211     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7212     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7213     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7214   } else {
7215     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7216     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7217     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7218     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7219     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7220     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7221     SDValue One = DAG.getConstant(1, DL, ShVT);
7222     HsVal =
7223         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7224   }
7225   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7226 }
7227 
7228 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7229                                       SelectionDAG &DAG) const {
7230   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7231   EVT VT = Node->getValueType(0);
7232   unsigned VTBits = VT.getScalarSizeInBits();
7233   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7234 
7235   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7236   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7237   SDValue ShOpLo = Node->getOperand(0);
7238   SDValue ShOpHi = Node->getOperand(1);
7239   SDValue ShAmt = Node->getOperand(2);
7240   EVT ShAmtVT = ShAmt.getValueType();
7241   EVT ShAmtCCVT =
7242       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7243   SDLoc dl(Node);
7244 
7245   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7246   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7247   // away during isel.
7248   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7249                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7250   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7251                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7252                        : DAG.getConstant(0, dl, VT);
7253 
7254   SDValue Tmp2, Tmp3;
7255   if (IsSHL) {
7256     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7257     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7258   } else {
7259     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7260     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7261   }
7262 
7263   // If the shift amount is larger or equal than the width of a part we don't
7264   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7265   // values for large shift amounts.
7266   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7267                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7268   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7269                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7270 
7271   if (IsSHL) {
7272     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7273     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7274   } else {
7275     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7276     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7277   }
7278 }
7279 
7280 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7281                                       SelectionDAG &DAG) const {
7282   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7283   SDValue Src = Node->getOperand(OpNo);
7284   EVT SrcVT = Src.getValueType();
7285   EVT DstVT = Node->getValueType(0);
7286   SDLoc dl(SDValue(Node, 0));
7287 
7288   // FIXME: Only f32 to i64 conversions are supported.
7289   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7290     return false;
7291 
7292   if (Node->isStrictFPOpcode())
7293     // When a NaN is converted to an integer a trap is allowed. We can't
7294     // use this expansion here because it would eliminate that trap. Other
7295     // traps are also allowed and cannot be eliminated. See
7296     // IEEE 754-2008 sec 5.8.
7297     return false;
7298 
7299   // Expand f32 -> i64 conversion
7300   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7301   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7302   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7303   EVT IntVT = SrcVT.changeTypeToInteger();
7304   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7305 
7306   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7307   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7308   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7309   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7310   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7311   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7312 
7313   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7314 
7315   SDValue ExponentBits = DAG.getNode(
7316       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7317       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7318   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7319 
7320   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7321                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7322                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7323   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7324 
7325   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7326                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7327                           DAG.getConstant(0x00800000, dl, IntVT));
7328 
7329   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7330 
7331   R = DAG.getSelectCC(
7332       dl, Exponent, ExponentLoBit,
7333       DAG.getNode(ISD::SHL, dl, DstVT, R,
7334                   DAG.getZExtOrTrunc(
7335                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7336                       dl, IntShVT)),
7337       DAG.getNode(ISD::SRL, dl, DstVT, R,
7338                   DAG.getZExtOrTrunc(
7339                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7340                       dl, IntShVT)),
7341       ISD::SETGT);
7342 
7343   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7344                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7345 
7346   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7347                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7348   return true;
7349 }
7350 
7351 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7352                                       SDValue &Chain,
7353                                       SelectionDAG &DAG) const {
7354   SDLoc dl(SDValue(Node, 0));
7355   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7356   SDValue Src = Node->getOperand(OpNo);
7357 
7358   EVT SrcVT = Src.getValueType();
7359   EVT DstVT = Node->getValueType(0);
7360   EVT SetCCVT =
7361       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7362   EVT DstSetCCVT =
7363       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7364 
7365   // Only expand vector types if we have the appropriate vector bit operations.
7366   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7367                                                    ISD::FP_TO_SINT;
7368   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7369                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7370     return false;
7371 
7372   // If the maximum float value is smaller then the signed integer range,
7373   // the destination signmask can't be represented by the float, so we can
7374   // just use FP_TO_SINT directly.
7375   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7376   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7377   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7378   if (APFloat::opOverflow &
7379       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7380     if (Node->isStrictFPOpcode()) {
7381       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7382                            { Node->getOperand(0), Src });
7383       Chain = Result.getValue(1);
7384     } else
7385       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7386     return true;
7387   }
7388 
7389   // Don't expand it if there isn't cheap fsub instruction.
7390   if (!isOperationLegalOrCustom(
7391           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7392     return false;
7393 
7394   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7395   SDValue Sel;
7396 
7397   if (Node->isStrictFPOpcode()) {
7398     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7399                        Node->getOperand(0), /*IsSignaling*/ true);
7400     Chain = Sel.getValue(1);
7401   } else {
7402     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7403   }
7404 
7405   bool Strict = Node->isStrictFPOpcode() ||
7406                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7407 
7408   if (Strict) {
7409     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7410     // signmask then offset (the result of which should be fully representable).
7411     // Sel = Src < 0x8000000000000000
7412     // FltOfs = select Sel, 0, 0x8000000000000000
7413     // IntOfs = select Sel, 0, 0x8000000000000000
7414     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7415 
7416     // TODO: Should any fast-math-flags be set for the FSUB?
7417     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7418                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7419     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7420     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7421                                    DAG.getConstant(0, dl, DstVT),
7422                                    DAG.getConstant(SignMask, dl, DstVT));
7423     SDValue SInt;
7424     if (Node->isStrictFPOpcode()) {
7425       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7426                                 { Chain, Src, FltOfs });
7427       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7428                          { Val.getValue(1), Val });
7429       Chain = SInt.getValue(1);
7430     } else {
7431       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7432       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7433     }
7434     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7435   } else {
7436     // Expand based on maximum range of FP_TO_SINT:
7437     // True = fp_to_sint(Src)
7438     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7439     // Result = select (Src < 0x8000000000000000), True, False
7440 
7441     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7442     // TODO: Should any fast-math-flags be set for the FSUB?
7443     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7444                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7445     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7446                         DAG.getConstant(SignMask, dl, DstVT));
7447     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7448     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7449   }
7450   return true;
7451 }
7452 
7453 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7454                                       SDValue &Chain,
7455                                       SelectionDAG &DAG) const {
7456   // This transform is not correct for converting 0 when rounding mode is set
7457   // to round toward negative infinity which will produce -0.0. So disable under
7458   // strictfp.
7459   if (Node->isStrictFPOpcode())
7460     return false;
7461 
7462   SDValue Src = Node->getOperand(0);
7463   EVT SrcVT = Src.getValueType();
7464   EVT DstVT = Node->getValueType(0);
7465 
7466   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7467     return false;
7468 
7469   // Only expand vector types if we have the appropriate vector bit operations.
7470   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7471                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7472                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7473                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7474                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7475     return false;
7476 
7477   SDLoc dl(SDValue(Node, 0));
7478   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7479 
7480   // Implementation of unsigned i64 to f64 following the algorithm in
7481   // __floatundidf in compiler_rt.  This implementation performs rounding
7482   // correctly in all rounding modes with the exception of converting 0
7483   // when rounding toward negative infinity. In that case the fsub will produce
7484   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7485   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7486   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7487       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7488   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7489   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7490   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7491 
7492   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7493   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7494   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7495   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7496   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7497   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7498   SDValue HiSub =
7499       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7500   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7501   return true;
7502 }
7503 
7504 SDValue
7505 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7506                                                SelectionDAG &DAG) const {
7507   unsigned Opcode = Node->getOpcode();
7508   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7509           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7510          "Wrong opcode");
7511 
7512   if (Node->getFlags().hasNoNaNs()) {
7513     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7514     SDValue Op1 = Node->getOperand(0);
7515     SDValue Op2 = Node->getOperand(1);
7516     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7517     // Copy FMF flags, but always set the no-signed-zeros flag
7518     // as this is implied by the FMINNUM/FMAXNUM semantics.
7519     SDNodeFlags Flags = Node->getFlags();
7520     Flags.setNoSignedZeros(true);
7521     SelCC->setFlags(Flags);
7522     return SelCC;
7523   }
7524 
7525   return SDValue();
7526 }
7527 
7528 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7529                                               SelectionDAG &DAG) const {
7530   SDLoc dl(Node);
7531   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7532     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7533   EVT VT = Node->getValueType(0);
7534 
7535   if (VT.isScalableVector())
7536     report_fatal_error(
7537         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7538 
7539   if (isOperationLegalOrCustom(NewOp, VT)) {
7540     SDValue Quiet0 = Node->getOperand(0);
7541     SDValue Quiet1 = Node->getOperand(1);
7542 
7543     if (!Node->getFlags().hasNoNaNs()) {
7544       // Insert canonicalizes if it's possible we need to quiet to get correct
7545       // sNaN behavior.
7546       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7547         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7548                              Node->getFlags());
7549       }
7550       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7551         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7552                              Node->getFlags());
7553       }
7554     }
7555 
7556     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7557   }
7558 
7559   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7560   // instead if there are no NaNs.
7561   if (Node->getFlags().hasNoNaNs()) {
7562     unsigned IEEE2018Op =
7563         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7564     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7565       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7566                          Node->getOperand(1), Node->getFlags());
7567     }
7568   }
7569 
7570   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7571     return SelCC;
7572 
7573   return SDValue();
7574 }
7575 
7576 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7577                                          unsigned Test, SDNodeFlags Flags,
7578                                          const SDLoc &DL,
7579                                          SelectionDAG &DAG) const {
7580   EVT OperandVT = Op.getValueType();
7581   assert(OperandVT.isFloatingPoint());
7582 
7583   // Degenerated cases.
7584   if (Test == 0)
7585     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7586   if ((Test & fcAllFlags) == fcAllFlags)
7587     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7588 
7589   // PPC double double is a pair of doubles, of which the higher part determines
7590   // the value class.
7591   if (OperandVT == MVT::ppcf128) {
7592     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7593                      DAG.getConstant(1, DL, MVT::i32));
7594     OperandVT = MVT::f64;
7595   }
7596 
7597   // Some checks may be represented as inversion of simpler check, for example
7598   // "inf|normal|subnormal|zero" => !"nan".
7599   bool IsInverted = false;
7600   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7601     IsInverted = true;
7602     Test = InvertedCheck;
7603   }
7604 
7605   // Floating-point type properties.
7606   EVT ScalarFloatVT = OperandVT.getScalarType();
7607   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7608   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7609   bool IsF80 = (ScalarFloatVT == MVT::f80);
7610 
7611   // Some checks can be implemented using float comparisons, if floating point
7612   // exceptions are ignored.
7613   if (Flags.hasNoFPExcept() &&
7614       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7615     if (Test == fcZero)
7616       return DAG.getSetCC(DL, ResultVT, Op,
7617                           DAG.getConstantFP(0.0, DL, OperandVT),
7618                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7619     if (Test == fcNan)
7620       return DAG.getSetCC(DL, ResultVT, Op, Op,
7621                           IsInverted ? ISD::SETO : ISD::SETUO);
7622   }
7623 
7624   // In the general case use integer operations.
7625   unsigned BitSize = OperandVT.getScalarSizeInBits();
7626   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7627   if (OperandVT.isVector())
7628     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7629                              OperandVT.getVectorElementCount());
7630   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7631 
7632   // Various masks.
7633   APInt SignBit = APInt::getSignMask(BitSize);
7634   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7635   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7636   const unsigned ExplicitIntBitInF80 = 63;
7637   APInt ExpMask = Inf;
7638   if (IsF80)
7639     ExpMask.clearBit(ExplicitIntBitInF80);
7640   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7641   APInt QNaNBitMask =
7642       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7643   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7644 
7645   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7646   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7647   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7648   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7649   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7650   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7651 
7652   SDValue Res;
7653   const auto appendResult = [&](SDValue PartialRes) {
7654     if (PartialRes) {
7655       if (Res)
7656         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7657       else
7658         Res = PartialRes;
7659     }
7660   };
7661 
7662   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7663   const auto getIntBitIsSet = [&]() -> SDValue {
7664     if (!IntBitIsSetV) {
7665       APInt IntBitMask(BitSize, 0);
7666       IntBitMask.setBit(ExplicitIntBitInF80);
7667       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7668       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7669       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7670     }
7671     return IntBitIsSetV;
7672   };
7673 
7674   // Split the value into sign bit and absolute value.
7675   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7676   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7677                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7678 
7679   // Tests that involve more than one class should be processed first.
7680   SDValue PartialRes;
7681 
7682   if (IsF80)
7683     ; // Detect finite numbers of f80 by checking individual classes because
7684       // they have different settings of the explicit integer bit.
7685   else if ((Test & fcFinite) == fcFinite) {
7686     // finite(V) ==> abs(V) < exp_mask
7687     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7688     Test &= ~fcFinite;
7689   } else if ((Test & fcFinite) == fcPosFinite) {
7690     // finite(V) && V > 0 ==> V < exp_mask
7691     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7692     Test &= ~fcPosFinite;
7693   } else if ((Test & fcFinite) == fcNegFinite) {
7694     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7695     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7696     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7697     Test &= ~fcNegFinite;
7698   }
7699   appendResult(PartialRes);
7700 
7701   // Check for individual classes.
7702 
7703   if (unsigned PartialCheck = Test & fcZero) {
7704     if (PartialCheck == fcPosZero)
7705       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7706     else if (PartialCheck == fcZero)
7707       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7708     else // ISD::fcNegZero
7709       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7710     appendResult(PartialRes);
7711   }
7712 
7713   if (unsigned PartialCheck = Test & fcInf) {
7714     if (PartialCheck == fcPosInf)
7715       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7716     else if (PartialCheck == fcInf)
7717       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7718     else { // ISD::fcNegInf
7719       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7720       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7721       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7722     }
7723     appendResult(PartialRes);
7724   }
7725 
7726   if (unsigned PartialCheck = Test & fcNan) {
7727     APInt InfWithQnanBit = Inf | QNaNBitMask;
7728     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7729     if (PartialCheck == fcNan) {
7730       // isnan(V) ==> abs(V) > int(inf)
7731       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7732       if (IsF80) {
7733         // Recognize unsupported values as NaNs for compatibility with glibc.
7734         // In them (exp(V)==0) == int_bit.
7735         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7736         SDValue ExpIsZero =
7737             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7738         SDValue IsPseudo =
7739             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7740         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7741       }
7742     } else if (PartialCheck == fcQNan) {
7743       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7744       PartialRes =
7745           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7746     } else { // ISD::fcSNan
7747       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7748       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7749       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7750       SDValue IsNotQnan =
7751           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7752       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7753     }
7754     appendResult(PartialRes);
7755   }
7756 
7757   if (unsigned PartialCheck = Test & fcSubnormal) {
7758     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7759     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7760     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7761     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7762     SDValue VMinusOneV =
7763         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7764     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7765     if (PartialCheck == fcNegSubnormal)
7766       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7767     appendResult(PartialRes);
7768   }
7769 
7770   if (unsigned PartialCheck = Test & fcNormal) {
7771     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7772     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7773     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7774     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7775     APInt ExpLimit = ExpMask - ExpLSB;
7776     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7777     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7778     if (PartialCheck == fcNegNormal)
7779       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7780     else if (PartialCheck == fcPosNormal) {
7781       SDValue PosSignV =
7782           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7783       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7784     }
7785     if (IsF80)
7786       PartialRes =
7787           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7788     appendResult(PartialRes);
7789   }
7790 
7791   if (!Res)
7792     return DAG.getConstant(IsInverted, DL, ResultVT);
7793   if (IsInverted)
7794     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7795   return Res;
7796 }
7797 
7798 // Only expand vector types if we have the appropriate vector bit operations.
7799 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7800   assert(VT.isVector() && "Expected vector type");
7801   unsigned Len = VT.getScalarSizeInBits();
7802   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7803          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7804          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7805          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7806          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7807 }
7808 
7809 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7810   SDLoc dl(Node);
7811   EVT VT = Node->getValueType(0);
7812   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7813   SDValue Op = Node->getOperand(0);
7814   unsigned Len = VT.getScalarSizeInBits();
7815   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7816 
7817   // TODO: Add support for irregular type lengths.
7818   if (!(Len <= 128 && Len % 8 == 0))
7819     return SDValue();
7820 
7821   // Only expand vector types if we have the appropriate vector bit operations.
7822   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7823     return SDValue();
7824 
7825   // This is the "best" algorithm from
7826   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7827   SDValue Mask55 =
7828       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7829   SDValue Mask33 =
7830       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7831   SDValue Mask0F =
7832       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7833 
7834   // v = v - ((v >> 1) & 0x55555555...)
7835   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7836                    DAG.getNode(ISD::AND, dl, VT,
7837                                DAG.getNode(ISD::SRL, dl, VT, Op,
7838                                            DAG.getConstant(1, dl, ShVT)),
7839                                Mask55));
7840   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7841   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7842                    DAG.getNode(ISD::AND, dl, VT,
7843                                DAG.getNode(ISD::SRL, dl, VT, Op,
7844                                            DAG.getConstant(2, dl, ShVT)),
7845                                Mask33));
7846   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7847   Op = DAG.getNode(ISD::AND, dl, VT,
7848                    DAG.getNode(ISD::ADD, dl, VT, Op,
7849                                DAG.getNode(ISD::SRL, dl, VT, Op,
7850                                            DAG.getConstant(4, dl, ShVT))),
7851                    Mask0F);
7852 
7853   if (Len <= 8)
7854     return Op;
7855 
7856   // Avoid the multiply if we only have 2 bytes to add.
7857   // TODO: Only doing this for scalars because vectors weren't as obviously
7858   // improved.
7859   if (Len == 16 && !VT.isVector()) {
7860     // v = (v + (v >> 8)) & 0x00FF;
7861     return DAG.getNode(ISD::AND, dl, VT,
7862                      DAG.getNode(ISD::ADD, dl, VT, Op,
7863                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7864                                              DAG.getConstant(8, dl, ShVT))),
7865                      DAG.getConstant(0xFF, dl, VT));
7866   }
7867 
7868   // v = (v * 0x01010101...) >> (Len - 8)
7869   SDValue Mask01 =
7870       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7871   return DAG.getNode(ISD::SRL, dl, VT,
7872                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7873                      DAG.getConstant(Len - 8, dl, ShVT));
7874 }
7875 
7876 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7877   SDLoc dl(Node);
7878   EVT VT = Node->getValueType(0);
7879   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7880   SDValue Op = Node->getOperand(0);
7881   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7882 
7883   // If the non-ZERO_UNDEF version is supported we can use that instead.
7884   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7885       isOperationLegalOrCustom(ISD::CTLZ, VT))
7886     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7887 
7888   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7889   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7890     EVT SetCCVT =
7891         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7892     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7893     SDValue Zero = DAG.getConstant(0, dl, VT);
7894     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7895     return DAG.getSelect(dl, VT, SrcIsZero,
7896                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7897   }
7898 
7899   // Only expand vector types if we have the appropriate vector bit operations.
7900   // This includes the operations needed to expand CTPOP if it isn't supported.
7901   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7902                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7903                          !canExpandVectorCTPOP(*this, VT)) ||
7904                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7905                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7906     return SDValue();
7907 
7908   // for now, we do this:
7909   // x = x | (x >> 1);
7910   // x = x | (x >> 2);
7911   // ...
7912   // x = x | (x >>16);
7913   // x = x | (x >>32); // for 64-bit input
7914   // return popcount(~x);
7915   //
7916   // Ref: "Hacker's Delight" by Henry Warren
7917   for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
7918     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7919     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7920                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7921   }
7922   Op = DAG.getNOT(dl, Op, VT);
7923   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7924 }
7925 
7926 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7927   SDLoc dl(Node);
7928   EVT VT = Node->getValueType(0);
7929   SDValue Op = Node->getOperand(0);
7930   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7931 
7932   // If the non-ZERO_UNDEF version is supported we can use that instead.
7933   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7934       isOperationLegalOrCustom(ISD::CTTZ, VT))
7935     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7936 
7937   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7938   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7939     EVT SetCCVT =
7940         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7941     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7942     SDValue Zero = DAG.getConstant(0, dl, VT);
7943     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7944     return DAG.getSelect(dl, VT, SrcIsZero,
7945                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7946   }
7947 
7948   // Only expand vector types if we have the appropriate vector bit operations.
7949   // This includes the operations needed to expand CTPOP if it isn't supported.
7950   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7951                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7952                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7953                          !canExpandVectorCTPOP(*this, VT)) ||
7954                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7955                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7956                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7957     return SDValue();
7958 
7959   // for now, we use: { return popcount(~x & (x - 1)); }
7960   // unless the target has ctlz but not ctpop, in which case we use:
7961   // { return 32 - nlz(~x & (x-1)); }
7962   // Ref: "Hacker's Delight" by Henry Warren
7963   SDValue Tmp = DAG.getNode(
7964       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7965       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7966 
7967   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7968   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7969     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7970                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7971   }
7972 
7973   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7974 }
7975 
7976 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7977                                   bool IsNegative) const {
7978   SDLoc dl(N);
7979   EVT VT = N->getValueType(0);
7980   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7981   SDValue Op = N->getOperand(0);
7982 
7983   // abs(x) -> smax(x,sub(0,x))
7984   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7985       isOperationLegal(ISD::SMAX, VT)) {
7986     SDValue Zero = DAG.getConstant(0, dl, VT);
7987     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7988                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7989   }
7990 
7991   // abs(x) -> umin(x,sub(0,x))
7992   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7993       isOperationLegal(ISD::UMIN, VT)) {
7994     SDValue Zero = DAG.getConstant(0, dl, VT);
7995     Op = DAG.getFreeze(Op);
7996     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7997                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7998   }
7999 
8000   // 0 - abs(x) -> smin(x, sub(0,x))
8001   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
8002       isOperationLegal(ISD::SMIN, VT)) {
8003     Op = DAG.getFreeze(Op);
8004     SDValue Zero = DAG.getConstant(0, dl, VT);
8005     return DAG.getNode(ISD::SMIN, dl, VT, Op,
8006                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
8007   }
8008 
8009   // Only expand vector types if we have the appropriate vector operations.
8010   if (VT.isVector() &&
8011       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
8012        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
8013        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
8014        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
8015     return SDValue();
8016 
8017   Op = DAG.getFreeze(Op);
8018   SDValue Shift =
8019       DAG.getNode(ISD::SRA, dl, VT, Op,
8020                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
8021   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
8022 
8023   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
8024   if (!IsNegative)
8025     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
8026 
8027   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
8028   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
8029 }
8030 
8031 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
8032   SDLoc dl(N);
8033   EVT VT = N->getValueType(0);
8034   SDValue Op = N->getOperand(0);
8035 
8036   if (!VT.isSimple())
8037     return SDValue();
8038 
8039   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8040   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
8041   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
8042   default:
8043     return SDValue();
8044   case MVT::i16:
8045     // Use a rotate by 8. This can be further expanded if necessary.
8046     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8047   case MVT::i32:
8048     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8049     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8050     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8051     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8052     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8053                        DAG.getConstant(0xFF0000, dl, VT));
8054     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
8055     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8056     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8057     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8058   case MVT::i64:
8059     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8060     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8061     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8062     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8063     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
8064     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
8065     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
8066     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
8067     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
8068                        DAG.getConstant(255ULL<<48, dl, VT));
8069     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
8070                        DAG.getConstant(255ULL<<40, dl, VT));
8071     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
8072                        DAG.getConstant(255ULL<<32, dl, VT));
8073     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
8074                        DAG.getConstant(255ULL<<24, dl, VT));
8075     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
8076                        DAG.getConstant(255ULL<<16, dl, VT));
8077     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
8078                        DAG.getConstant(255ULL<<8 , dl, VT));
8079     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
8080     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
8081     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
8082     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
8083     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
8084     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
8085     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
8086   }
8087 }
8088 
8089 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
8090   SDLoc dl(N);
8091   EVT VT = N->getValueType(0);
8092   SDValue Op = N->getOperand(0);
8093   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
8094   unsigned Sz = VT.getScalarSizeInBits();
8095 
8096   SDValue Tmp, Tmp2, Tmp3;
8097 
8098   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8099   // and finally the i1 pairs.
8100   // TODO: We can easily support i4/i2 legal types if any target ever does.
8101   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8102     // Create the masks - repeating the pattern every byte.
8103     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8104     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8105     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8106 
8107     // BSWAP if the type is wider than a single byte.
8108     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8109 
8110     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8111     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8112     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8113     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8114     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8115     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8116 
8117     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8118     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8119     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8120     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8121     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8122     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8123 
8124     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8125     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8126     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8127     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8128     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8129     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8130     return Tmp;
8131   }
8132 
8133   Tmp = DAG.getConstant(0, dl, VT);
8134   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8135     if (I < J)
8136       Tmp2 =
8137           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8138     else
8139       Tmp2 =
8140           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8141 
8142     APInt Shift(Sz, 1);
8143     Shift <<= J;
8144     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8145     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8146   }
8147 
8148   return Tmp;
8149 }
8150 
8151 std::pair<SDValue, SDValue>
8152 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8153                                     SelectionDAG &DAG) const {
8154   SDLoc SL(LD);
8155   SDValue Chain = LD->getChain();
8156   SDValue BasePTR = LD->getBasePtr();
8157   EVT SrcVT = LD->getMemoryVT();
8158   EVT DstVT = LD->getValueType(0);
8159   ISD::LoadExtType ExtType = LD->getExtensionType();
8160 
8161   if (SrcVT.isScalableVector())
8162     report_fatal_error("Cannot scalarize scalable vector loads");
8163 
8164   unsigned NumElem = SrcVT.getVectorNumElements();
8165 
8166   EVT SrcEltVT = SrcVT.getScalarType();
8167   EVT DstEltVT = DstVT.getScalarType();
8168 
8169   // A vector must always be stored in memory as-is, i.e. without any padding
8170   // between the elements, since various code depend on it, e.g. in the
8171   // handling of a bitcast of a vector type to int, which may be done with a
8172   // vector store followed by an integer load. A vector that does not have
8173   // elements that are byte-sized must therefore be stored as an integer
8174   // built out of the extracted vector elements.
8175   if (!SrcEltVT.isByteSized()) {
8176     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8177     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8178 
8179     unsigned NumSrcBits = SrcVT.getSizeInBits();
8180     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8181 
8182     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8183     SDValue SrcEltBitMask = DAG.getConstant(
8184         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8185 
8186     // Load the whole vector and avoid masking off the top bits as it makes
8187     // the codegen worse.
8188     SDValue Load =
8189         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8190                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8191                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8192 
8193     SmallVector<SDValue, 8> Vals;
8194     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8195       unsigned ShiftIntoIdx =
8196           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8197       SDValue ShiftAmount =
8198           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8199                                      LoadVT, SL, /*LegalTypes=*/false);
8200       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8201       SDValue Elt =
8202           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8203       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8204 
8205       if (ExtType != ISD::NON_EXTLOAD) {
8206         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8207         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8208       }
8209 
8210       Vals.push_back(Scalar);
8211     }
8212 
8213     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8214     return std::make_pair(Value, Load.getValue(1));
8215   }
8216 
8217   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8218   assert(SrcEltVT.isByteSized());
8219 
8220   SmallVector<SDValue, 8> Vals;
8221   SmallVector<SDValue, 8> LoadChains;
8222 
8223   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8224     SDValue ScalarLoad =
8225         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8226                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8227                        SrcEltVT, LD->getOriginalAlign(),
8228                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8229 
8230     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8231 
8232     Vals.push_back(ScalarLoad.getValue(0));
8233     LoadChains.push_back(ScalarLoad.getValue(1));
8234   }
8235 
8236   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8237   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8238 
8239   return std::make_pair(Value, NewChain);
8240 }
8241 
8242 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8243                                              SelectionDAG &DAG) const {
8244   SDLoc SL(ST);
8245 
8246   SDValue Chain = ST->getChain();
8247   SDValue BasePtr = ST->getBasePtr();
8248   SDValue Value = ST->getValue();
8249   EVT StVT = ST->getMemoryVT();
8250 
8251   if (StVT.isScalableVector())
8252     report_fatal_error("Cannot scalarize scalable vector stores");
8253 
8254   // The type of the data we want to save
8255   EVT RegVT = Value.getValueType();
8256   EVT RegSclVT = RegVT.getScalarType();
8257 
8258   // The type of data as saved in memory.
8259   EVT MemSclVT = StVT.getScalarType();
8260 
8261   unsigned NumElem = StVT.getVectorNumElements();
8262 
8263   // A vector must always be stored in memory as-is, i.e. without any padding
8264   // between the elements, since various code depend on it, e.g. in the
8265   // handling of a bitcast of a vector type to int, which may be done with a
8266   // vector store followed by an integer load. A vector that does not have
8267   // elements that are byte-sized must therefore be stored as an integer
8268   // built out of the extracted vector elements.
8269   if (!MemSclVT.isByteSized()) {
8270     unsigned NumBits = StVT.getSizeInBits();
8271     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8272 
8273     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8274 
8275     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8276       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8277                                 DAG.getVectorIdxConstant(Idx, SL));
8278       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8279       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8280       unsigned ShiftIntoIdx =
8281           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8282       SDValue ShiftAmount =
8283           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8284       SDValue ShiftedElt =
8285           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8286       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8287     }
8288 
8289     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8290                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8291                         ST->getAAInfo());
8292   }
8293 
8294   // Store Stride in bytes
8295   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8296   assert(Stride && "Zero stride!");
8297   // Extract each of the elements from the original vector and save them into
8298   // memory individually.
8299   SmallVector<SDValue, 8> Stores;
8300   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8301     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8302                               DAG.getVectorIdxConstant(Idx, SL));
8303 
8304     SDValue Ptr =
8305         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8306 
8307     // This scalar TruncStore may be illegal, but we legalize it later.
8308     SDValue Store = DAG.getTruncStore(
8309         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8310         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8311         ST->getAAInfo());
8312 
8313     Stores.push_back(Store);
8314   }
8315 
8316   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8317 }
8318 
8319 std::pair<SDValue, SDValue>
8320 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8321   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8322          "unaligned indexed loads not implemented!");
8323   SDValue Chain = LD->getChain();
8324   SDValue Ptr = LD->getBasePtr();
8325   EVT VT = LD->getValueType(0);
8326   EVT LoadedVT = LD->getMemoryVT();
8327   SDLoc dl(LD);
8328   auto &MF = DAG.getMachineFunction();
8329 
8330   if (VT.isFloatingPoint() || VT.isVector()) {
8331     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8332     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8333       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8334           LoadedVT.isVector()) {
8335         // Scalarize the load and let the individual components be handled.
8336         return scalarizeVectorLoad(LD, DAG);
8337       }
8338 
8339       // Expand to a (misaligned) integer load of the same size,
8340       // then bitconvert to floating point or vector.
8341       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8342                                     LD->getMemOperand());
8343       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8344       if (LoadedVT != VT)
8345         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8346                              ISD::ANY_EXTEND, dl, VT, Result);
8347 
8348       return std::make_pair(Result, newLoad.getValue(1));
8349     }
8350 
8351     // Copy the value to a (aligned) stack slot using (unaligned) integer
8352     // loads and stores, then do a (aligned) load from the stack slot.
8353     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8354     unsigned LoadedBytes = LoadedVT.getStoreSize();
8355     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8356     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8357 
8358     // Make sure the stack slot is also aligned for the register type.
8359     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8360     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8361     SmallVector<SDValue, 8> Stores;
8362     SDValue StackPtr = StackBase;
8363     unsigned Offset = 0;
8364 
8365     EVT PtrVT = Ptr.getValueType();
8366     EVT StackPtrVT = StackPtr.getValueType();
8367 
8368     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8369     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8370 
8371     // Do all but one copies using the full register width.
8372     for (unsigned i = 1; i < NumRegs; i++) {
8373       // Load one integer register's worth from the original location.
8374       SDValue Load = DAG.getLoad(
8375           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8376           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8377           LD->getAAInfo());
8378       // Follow the load with a store to the stack slot.  Remember the store.
8379       Stores.push_back(DAG.getStore(
8380           Load.getValue(1), dl, Load, StackPtr,
8381           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8382       // Increment the pointers.
8383       Offset += RegBytes;
8384 
8385       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8386       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8387     }
8388 
8389     // The last copy may be partial.  Do an extending load.
8390     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8391                                   8 * (LoadedBytes - Offset));
8392     SDValue Load =
8393         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8394                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8395                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8396                        LD->getAAInfo());
8397     // Follow the load with a store to the stack slot.  Remember the store.
8398     // On big-endian machines this requires a truncating store to ensure
8399     // that the bits end up in the right place.
8400     Stores.push_back(DAG.getTruncStore(
8401         Load.getValue(1), dl, Load, StackPtr,
8402         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8403 
8404     // The order of the stores doesn't matter - say it with a TokenFactor.
8405     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8406 
8407     // Finally, perform the original load only redirected to the stack slot.
8408     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8409                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8410                           LoadedVT);
8411 
8412     // Callers expect a MERGE_VALUES node.
8413     return std::make_pair(Load, TF);
8414   }
8415 
8416   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8417          "Unaligned load of unsupported type.");
8418 
8419   // Compute the new VT that is half the size of the old one.  This is an
8420   // integer MVT.
8421   unsigned NumBits = LoadedVT.getSizeInBits();
8422   EVT NewLoadedVT;
8423   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8424   NumBits >>= 1;
8425 
8426   Align Alignment = LD->getOriginalAlign();
8427   unsigned IncrementSize = NumBits / 8;
8428   ISD::LoadExtType HiExtType = LD->getExtensionType();
8429 
8430   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8431   if (HiExtType == ISD::NON_EXTLOAD)
8432     HiExtType = ISD::ZEXTLOAD;
8433 
8434   // Load the value in two parts
8435   SDValue Lo, Hi;
8436   if (DAG.getDataLayout().isLittleEndian()) {
8437     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8438                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8439                         LD->getAAInfo());
8440 
8441     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8442     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8443                         LD->getPointerInfo().getWithOffset(IncrementSize),
8444                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8445                         LD->getAAInfo());
8446   } else {
8447     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8448                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8449                         LD->getAAInfo());
8450 
8451     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8452     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8453                         LD->getPointerInfo().getWithOffset(IncrementSize),
8454                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8455                         LD->getAAInfo());
8456   }
8457 
8458   // aggregate the two parts
8459   SDValue ShiftAmount =
8460       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8461                                                     DAG.getDataLayout()));
8462   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8463   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8464 
8465   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8466                              Hi.getValue(1));
8467 
8468   return std::make_pair(Result, TF);
8469 }
8470 
8471 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8472                                              SelectionDAG &DAG) const {
8473   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8474          "unaligned indexed stores not implemented!");
8475   SDValue Chain = ST->getChain();
8476   SDValue Ptr = ST->getBasePtr();
8477   SDValue Val = ST->getValue();
8478   EVT VT = Val.getValueType();
8479   Align Alignment = ST->getOriginalAlign();
8480   auto &MF = DAG.getMachineFunction();
8481   EVT StoreMemVT = ST->getMemoryVT();
8482 
8483   SDLoc dl(ST);
8484   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8485     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8486     if (isTypeLegal(intVT)) {
8487       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8488           StoreMemVT.isVector()) {
8489         // Scalarize the store and let the individual components be handled.
8490         SDValue Result = scalarizeVectorStore(ST, DAG);
8491         return Result;
8492       }
8493       // Expand to a bitconvert of the value to the integer type of the
8494       // same size, then a (misaligned) int store.
8495       // FIXME: Does not handle truncating floating point stores!
8496       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8497       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8498                             Alignment, ST->getMemOperand()->getFlags());
8499       return Result;
8500     }
8501     // Do a (aligned) store to a stack slot, then copy from the stack slot
8502     // to the final destination using (unaligned) integer loads and stores.
8503     MVT RegVT = getRegisterType(
8504         *DAG.getContext(),
8505         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8506     EVT PtrVT = Ptr.getValueType();
8507     unsigned StoredBytes = StoreMemVT.getStoreSize();
8508     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8509     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8510 
8511     // Make sure the stack slot is also aligned for the register type.
8512     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8513     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8514 
8515     // Perform the original store, only redirected to the stack slot.
8516     SDValue Store = DAG.getTruncStore(
8517         Chain, dl, Val, StackPtr,
8518         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8519 
8520     EVT StackPtrVT = StackPtr.getValueType();
8521 
8522     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8523     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8524     SmallVector<SDValue, 8> Stores;
8525     unsigned Offset = 0;
8526 
8527     // Do all but one copies using the full register width.
8528     for (unsigned i = 1; i < NumRegs; i++) {
8529       // Load one integer register's worth from the stack slot.
8530       SDValue Load = DAG.getLoad(
8531           RegVT, dl, Store, StackPtr,
8532           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8533       // Store it to the final location.  Remember the store.
8534       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8535                                     ST->getPointerInfo().getWithOffset(Offset),
8536                                     ST->getOriginalAlign(),
8537                                     ST->getMemOperand()->getFlags()));
8538       // Increment the pointers.
8539       Offset += RegBytes;
8540       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8541       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8542     }
8543 
8544     // The last store may be partial.  Do a truncating store.  On big-endian
8545     // machines this requires an extending load from the stack slot to ensure
8546     // that the bits are in the right place.
8547     EVT LoadMemVT =
8548         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8549 
8550     // Load from the stack slot.
8551     SDValue Load = DAG.getExtLoad(
8552         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8553         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8554 
8555     Stores.push_back(
8556         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8557                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8558                           ST->getOriginalAlign(),
8559                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8560     // The order of the stores doesn't matter - say it with a TokenFactor.
8561     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8562     return Result;
8563   }
8564 
8565   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8566          "Unaligned store of unknown type.");
8567   // Get the half-size VT
8568   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8569   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8570   unsigned IncrementSize = NumBits / 8;
8571 
8572   // Divide the stored value in two parts.
8573   SDValue ShiftAmount = DAG.getConstant(
8574       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8575   SDValue Lo = Val;
8576   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8577 
8578   // Store the two parts
8579   SDValue Store1, Store2;
8580   Store1 = DAG.getTruncStore(Chain, dl,
8581                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8582                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8583                              ST->getMemOperand()->getFlags());
8584 
8585   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8586   Store2 = DAG.getTruncStore(
8587       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8588       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8589       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8590 
8591   SDValue Result =
8592       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8593   return Result;
8594 }
8595 
8596 SDValue
8597 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8598                                        const SDLoc &DL, EVT DataVT,
8599                                        SelectionDAG &DAG,
8600                                        bool IsCompressedMemory) const {
8601   SDValue Increment;
8602   EVT AddrVT = Addr.getValueType();
8603   EVT MaskVT = Mask.getValueType();
8604   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8605          "Incompatible types of Data and Mask");
8606   if (IsCompressedMemory) {
8607     if (DataVT.isScalableVector())
8608       report_fatal_error(
8609           "Cannot currently handle compressed memory with scalable vectors");
8610     // Incrementing the pointer according to number of '1's in the mask.
8611     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8612     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8613     if (MaskIntVT.getSizeInBits() < 32) {
8614       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8615       MaskIntVT = MVT::i32;
8616     }
8617 
8618     // Count '1's with POPCNT.
8619     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8620     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8621     // Scale is an element size in bytes.
8622     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8623                                     AddrVT);
8624     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8625   } else if (DataVT.isScalableVector()) {
8626     Increment = DAG.getVScale(DL, AddrVT,
8627                               APInt(AddrVT.getFixedSizeInBits(),
8628                                     DataVT.getStoreSize().getKnownMinSize()));
8629   } else
8630     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8631 
8632   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8633 }
8634 
8635 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8636                                        EVT VecVT, const SDLoc &dl,
8637                                        ElementCount SubEC) {
8638   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8639          "Cannot index a scalable vector within a fixed-width vector");
8640 
8641   unsigned NElts = VecVT.getVectorMinNumElements();
8642   unsigned NumSubElts = SubEC.getKnownMinValue();
8643   EVT IdxVT = Idx.getValueType();
8644 
8645   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8646     // If this is a constant index and we know the value plus the number of the
8647     // elements in the subvector minus one is less than the minimum number of
8648     // elements then it's safe to return Idx.
8649     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8650       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8651         return Idx;
8652     SDValue VS =
8653         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8654     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8655     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8656                               DAG.getConstant(NumSubElts, dl, IdxVT));
8657     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8658   }
8659   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8660     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8661     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8662                        DAG.getConstant(Imm, dl, IdxVT));
8663   }
8664   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8665   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8666                      DAG.getConstant(MaxIndex, dl, IdxVT));
8667 }
8668 
8669 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8670                                                 SDValue VecPtr, EVT VecVT,
8671                                                 SDValue Index) const {
8672   return getVectorSubVecPointer(
8673       DAG, VecPtr, VecVT,
8674       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8675       Index);
8676 }
8677 
8678 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8679                                                SDValue VecPtr, EVT VecVT,
8680                                                EVT SubVecVT,
8681                                                SDValue Index) const {
8682   SDLoc dl(Index);
8683   // Make sure the index type is big enough to compute in.
8684   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8685 
8686   EVT EltVT = VecVT.getVectorElementType();
8687 
8688   // Calculate the element offset and add it to the pointer.
8689   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8690   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8691          "Converting bits to bytes lost precision");
8692   assert(SubVecVT.getVectorElementType() == EltVT &&
8693          "Sub-vector must be a vector with matching element type");
8694   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8695                                   SubVecVT.getVectorElementCount());
8696 
8697   EVT IdxVT = Index.getValueType();
8698   if (SubVecVT.isScalableVector())
8699     Index =
8700         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8701                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8702 
8703   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8704                       DAG.getConstant(EltSize, dl, IdxVT));
8705   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8706 }
8707 
8708 //===----------------------------------------------------------------------===//
8709 // Implementation of Emulated TLS Model
8710 //===----------------------------------------------------------------------===//
8711 
8712 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8713                                                 SelectionDAG &DAG) const {
8714   // Access to address of TLS varialbe xyz is lowered to a function call:
8715   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8716   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8717   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8718   SDLoc dl(GA);
8719 
8720   ArgListTy Args;
8721   ArgListEntry Entry;
8722   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8723   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8724   StringRef EmuTlsVarName(NameString);
8725   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8726   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8727   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8728   Entry.Ty = VoidPtrType;
8729   Args.push_back(Entry);
8730 
8731   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8732 
8733   TargetLowering::CallLoweringInfo CLI(DAG);
8734   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8735   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8736   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8737 
8738   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8739   // At last for X86 targets, maybe good for other targets too?
8740   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8741   MFI.setAdjustsStack(true); // Is this only for X86 target?
8742   MFI.setHasCalls(true);
8743 
8744   assert((GA->getOffset() == 0) &&
8745          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8746   return CallResult.first;
8747 }
8748 
8749 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8750                                                 SelectionDAG &DAG) const {
8751   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8752   if (!isCtlzFast())
8753     return SDValue();
8754   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8755   SDLoc dl(Op);
8756   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8757     if (C->isZero() && CC == ISD::SETEQ) {
8758       EVT VT = Op.getOperand(0).getValueType();
8759       SDValue Zext = Op.getOperand(0);
8760       if (VT.bitsLT(MVT::i32)) {
8761         VT = MVT::i32;
8762         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8763       }
8764       unsigned Log2b = Log2_32(VT.getSizeInBits());
8765       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8766       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8767                                 DAG.getConstant(Log2b, dl, MVT::i32));
8768       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8769     }
8770   }
8771   return SDValue();
8772 }
8773 
8774 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8775   SDValue Op0 = Node->getOperand(0);
8776   SDValue Op1 = Node->getOperand(1);
8777   EVT VT = Op0.getValueType();
8778   unsigned Opcode = Node->getOpcode();
8779   SDLoc DL(Node);
8780 
8781   // umin(x,y) -> sub(x,usubsat(x,y))
8782   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8783       isOperationLegal(ISD::USUBSAT, VT)) {
8784     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8785                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8786   }
8787 
8788   // umax(x,y) -> add(x,usubsat(y,x))
8789   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8790       isOperationLegal(ISD::USUBSAT, VT)) {
8791     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8792                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8793   }
8794 
8795   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8796   ISD::CondCode CC;
8797   switch (Opcode) {
8798   default: llvm_unreachable("How did we get here?");
8799   case ISD::SMAX: CC = ISD::SETGT; break;
8800   case ISD::SMIN: CC = ISD::SETLT; break;
8801   case ISD::UMAX: CC = ISD::SETUGT; break;
8802   case ISD::UMIN: CC = ISD::SETULT; break;
8803   }
8804 
8805   // FIXME: Should really try to split the vector in case it's legal on a
8806   // subvector.
8807   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8808     return DAG.UnrollVectorOp(Node);
8809 
8810   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8811   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8812   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8813 }
8814 
8815 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8816   unsigned Opcode = Node->getOpcode();
8817   SDValue LHS = Node->getOperand(0);
8818   SDValue RHS = Node->getOperand(1);
8819   EVT VT = LHS.getValueType();
8820   SDLoc dl(Node);
8821 
8822   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8823   assert(VT.isInteger() && "Expected operands to be integers");
8824 
8825   // usub.sat(a, b) -> umax(a, b) - b
8826   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8827     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8828     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8829   }
8830 
8831   // uadd.sat(a, b) -> umin(a, ~b) + b
8832   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8833     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8834     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8835     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8836   }
8837 
8838   unsigned OverflowOp;
8839   switch (Opcode) {
8840   case ISD::SADDSAT:
8841     OverflowOp = ISD::SADDO;
8842     break;
8843   case ISD::UADDSAT:
8844     OverflowOp = ISD::UADDO;
8845     break;
8846   case ISD::SSUBSAT:
8847     OverflowOp = ISD::SSUBO;
8848     break;
8849   case ISD::USUBSAT:
8850     OverflowOp = ISD::USUBO;
8851     break;
8852   default:
8853     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8854                      "addition or subtraction node.");
8855   }
8856 
8857   // FIXME: Should really try to split the vector in case it's legal on a
8858   // subvector.
8859   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8860     return DAG.UnrollVectorOp(Node);
8861 
8862   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8863   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8864   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8865   SDValue SumDiff = Result.getValue(0);
8866   SDValue Overflow = Result.getValue(1);
8867   SDValue Zero = DAG.getConstant(0, dl, VT);
8868   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8869 
8870   if (Opcode == ISD::UADDSAT) {
8871     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8872       // (LHS + RHS) | OverflowMask
8873       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8874       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8875     }
8876     // Overflow ? 0xffff.... : (LHS + RHS)
8877     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8878   }
8879 
8880   if (Opcode == ISD::USUBSAT) {
8881     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8882       // (LHS - RHS) & ~OverflowMask
8883       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8884       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8885       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8886     }
8887     // Overflow ? 0 : (LHS - RHS)
8888     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8889   }
8890 
8891   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8892   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8893   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8894   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8895                               DAG.getConstant(BitWidth - 1, dl, VT));
8896   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8897   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8898 }
8899 
8900 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8901   unsigned Opcode = Node->getOpcode();
8902   bool IsSigned = Opcode == ISD::SSHLSAT;
8903   SDValue LHS = Node->getOperand(0);
8904   SDValue RHS = Node->getOperand(1);
8905   EVT VT = LHS.getValueType();
8906   SDLoc dl(Node);
8907 
8908   assert((Node->getOpcode() == ISD::SSHLSAT ||
8909           Node->getOpcode() == ISD::USHLSAT) &&
8910           "Expected a SHLSAT opcode");
8911   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8912   assert(VT.isInteger() && "Expected operands to be integers");
8913 
8914   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8915 
8916   unsigned BW = VT.getScalarSizeInBits();
8917   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8918   SDValue Orig =
8919       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8920 
8921   SDValue SatVal;
8922   if (IsSigned) {
8923     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8924     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8925     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8926                              SatMin, SatMax, ISD::SETLT);
8927   } else {
8928     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8929   }
8930   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8931 
8932   return Result;
8933 }
8934 
8935 SDValue
8936 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8937   assert((Node->getOpcode() == ISD::SMULFIX ||
8938           Node->getOpcode() == ISD::UMULFIX ||
8939           Node->getOpcode() == ISD::SMULFIXSAT ||
8940           Node->getOpcode() == ISD::UMULFIXSAT) &&
8941          "Expected a fixed point multiplication opcode");
8942 
8943   SDLoc dl(Node);
8944   SDValue LHS = Node->getOperand(0);
8945   SDValue RHS = Node->getOperand(1);
8946   EVT VT = LHS.getValueType();
8947   unsigned Scale = Node->getConstantOperandVal(2);
8948   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8949                      Node->getOpcode() == ISD::UMULFIXSAT);
8950   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8951                  Node->getOpcode() == ISD::SMULFIXSAT);
8952   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8953   unsigned VTSize = VT.getScalarSizeInBits();
8954 
8955   if (!Scale) {
8956     // [us]mul.fix(a, b, 0) -> mul(a, b)
8957     if (!Saturating) {
8958       if (isOperationLegalOrCustom(ISD::MUL, VT))
8959         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8960     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8961       SDValue Result =
8962           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8963       SDValue Product = Result.getValue(0);
8964       SDValue Overflow = Result.getValue(1);
8965       SDValue Zero = DAG.getConstant(0, dl, VT);
8966 
8967       APInt MinVal = APInt::getSignedMinValue(VTSize);
8968       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8969       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8970       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8971       // Xor the inputs, if resulting sign bit is 0 the product will be
8972       // positive, else negative.
8973       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8974       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8975       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8976       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8977     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8978       SDValue Result =
8979           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8980       SDValue Product = Result.getValue(0);
8981       SDValue Overflow = Result.getValue(1);
8982 
8983       APInt MaxVal = APInt::getMaxValue(VTSize);
8984       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8985       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8986     }
8987   }
8988 
8989   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8990          "Expected scale to be less than the number of bits if signed or at "
8991          "most the number of bits if unsigned.");
8992   assert(LHS.getValueType() == RHS.getValueType() &&
8993          "Expected both operands to be the same type");
8994 
8995   // Get the upper and lower bits of the result.
8996   SDValue Lo, Hi;
8997   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8998   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8999   if (isOperationLegalOrCustom(LoHiOp, VT)) {
9000     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
9001     Lo = Result.getValue(0);
9002     Hi = Result.getValue(1);
9003   } else if (isOperationLegalOrCustom(HiOp, VT)) {
9004     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9005     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
9006   } else if (VT.isVector()) {
9007     return SDValue();
9008   } else {
9009     report_fatal_error("Unable to expand fixed point multiplication.");
9010   }
9011 
9012   if (Scale == VTSize)
9013     // Result is just the top half since we'd be shifting by the width of the
9014     // operand. Overflow impossible so this works for both UMULFIX and
9015     // UMULFIXSAT.
9016     return Hi;
9017 
9018   // The result will need to be shifted right by the scale since both operands
9019   // are scaled. The result is given to us in 2 halves, so we only want part of
9020   // both in the result.
9021   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9022   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
9023                                DAG.getConstant(Scale, dl, ShiftTy));
9024   if (!Saturating)
9025     return Result;
9026 
9027   if (!Signed) {
9028     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
9029     // widened multiplication) aren't all zeroes.
9030 
9031     // Saturate to max if ((Hi >> Scale) != 0),
9032     // which is the same as if (Hi > ((1 << Scale) - 1))
9033     APInt MaxVal = APInt::getMaxValue(VTSize);
9034     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
9035                                       dl, VT);
9036     Result = DAG.getSelectCC(dl, Hi, LowMask,
9037                              DAG.getConstant(MaxVal, dl, VT), Result,
9038                              ISD::SETUGT);
9039 
9040     return Result;
9041   }
9042 
9043   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
9044   // widened multiplication) aren't all ones or all zeroes.
9045 
9046   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
9047   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
9048 
9049   if (Scale == 0) {
9050     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
9051                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
9052     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
9053     // Saturated to SatMin if wide product is negative, and SatMax if wide
9054     // product is positive ...
9055     SDValue Zero = DAG.getConstant(0, dl, VT);
9056     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
9057                                                ISD::SETLT);
9058     // ... but only if we overflowed.
9059     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
9060   }
9061 
9062   //  We handled Scale==0 above so all the bits to examine is in Hi.
9063 
9064   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
9065   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
9066   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
9067                                     dl, VT);
9068   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
9069   // Saturate to min if (Hi >> (Scale - 1)) < -1),
9070   // which is the same as if (HI < (-1 << (Scale - 1))
9071   SDValue HighMask =
9072       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
9073                       dl, VT);
9074   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
9075   return Result;
9076 }
9077 
9078 SDValue
9079 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
9080                                     SDValue LHS, SDValue RHS,
9081                                     unsigned Scale, SelectionDAG &DAG) const {
9082   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
9083           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
9084          "Expected a fixed point division opcode");
9085 
9086   EVT VT = LHS.getValueType();
9087   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
9088   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
9089   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9090 
9091   // If there is enough room in the type to upscale the LHS or downscale the
9092   // RHS before the division, we can perform it in this type without having to
9093   // resize. For signed operations, the LHS headroom is the number of
9094   // redundant sign bits, and for unsigned ones it is the number of zeroes.
9095   // The headroom for the RHS is the number of trailing zeroes.
9096   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9097                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9098   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9099 
9100   // For signed saturating operations, we need to be able to detect true integer
9101   // division overflow; that is, when you have MIN / -EPS. However, this
9102   // is undefined behavior and if we emit divisions that could take such
9103   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9104   // example).
9105   // Avoid this by requiring an extra bit so that we never get this case.
9106   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9107   // signed saturating division, we need to emit a whopping 32-bit division.
9108   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9109     return SDValue();
9110 
9111   unsigned LHSShift = std::min(LHSLead, Scale);
9112   unsigned RHSShift = Scale - LHSShift;
9113 
9114   // At this point, we know that if we shift the LHS up by LHSShift and the
9115   // RHS down by RHSShift, we can emit a regular division with a final scaling
9116   // factor of Scale.
9117 
9118   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9119   if (LHSShift)
9120     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9121                       DAG.getConstant(LHSShift, dl, ShiftTy));
9122   if (RHSShift)
9123     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9124                       DAG.getConstant(RHSShift, dl, ShiftTy));
9125 
9126   SDValue Quot;
9127   if (Signed) {
9128     // For signed operations, if the resulting quotient is negative and the
9129     // remainder is nonzero, subtract 1 from the quotient to round towards
9130     // negative infinity.
9131     SDValue Rem;
9132     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9133     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9134     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9135     if (isTypeLegal(VT) &&
9136         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9137       Quot = DAG.getNode(ISD::SDIVREM, dl,
9138                          DAG.getVTList(VT, VT),
9139                          LHS, RHS);
9140       Rem = Quot.getValue(1);
9141       Quot = Quot.getValue(0);
9142     } else {
9143       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9144                          LHS, RHS);
9145       Rem = DAG.getNode(ISD::SREM, dl, VT,
9146                         LHS, RHS);
9147     }
9148     SDValue Zero = DAG.getConstant(0, dl, VT);
9149     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9150     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9151     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9152     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9153     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9154                                DAG.getConstant(1, dl, VT));
9155     Quot = DAG.getSelect(dl, VT,
9156                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9157                          Sub1, Quot);
9158   } else
9159     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9160                        LHS, RHS);
9161 
9162   return Quot;
9163 }
9164 
9165 void TargetLowering::expandUADDSUBO(
9166     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9167   SDLoc dl(Node);
9168   SDValue LHS = Node->getOperand(0);
9169   SDValue RHS = Node->getOperand(1);
9170   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9171 
9172   // If ADD/SUBCARRY is legal, use that instead.
9173   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9174   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9175     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9176     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9177                                     { LHS, RHS, CarryIn });
9178     Result = SDValue(NodeCarry.getNode(), 0);
9179     Overflow = SDValue(NodeCarry.getNode(), 1);
9180     return;
9181   }
9182 
9183   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9184                             LHS.getValueType(), LHS, RHS);
9185 
9186   EVT ResultType = Node->getValueType(1);
9187   EVT SetCCType = getSetCCResultType(
9188       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9189   SDValue SetCC;
9190   if (IsAdd && isOneConstant(RHS)) {
9191     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9192     // the live range of X. We assume comparing with 0 is cheap.
9193     // The general case (X + C) < C is not necessarily beneficial. Although we
9194     // reduce the live range of X, we may introduce the materialization of
9195     // constant C.
9196     SetCC =
9197         DAG.getSetCC(dl, SetCCType, Result,
9198                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9199   } else {
9200     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9201     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9202   }
9203   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9204 }
9205 
9206 void TargetLowering::expandSADDSUBO(
9207     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9208   SDLoc dl(Node);
9209   SDValue LHS = Node->getOperand(0);
9210   SDValue RHS = Node->getOperand(1);
9211   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9212 
9213   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9214                             LHS.getValueType(), LHS, RHS);
9215 
9216   EVT ResultType = Node->getValueType(1);
9217   EVT OType = getSetCCResultType(
9218       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9219 
9220   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9221   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9222   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9223     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9224     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9225     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9226     return;
9227   }
9228 
9229   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9230 
9231   // For an addition, the result should be less than one of the operands (LHS)
9232   // if and only if the other operand (RHS) is negative, otherwise there will
9233   // be overflow.
9234   // For a subtraction, the result should be less than one of the operands
9235   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9236   // otherwise there will be overflow.
9237   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9238   SDValue ConditionRHS =
9239       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9240 
9241   Overflow = DAG.getBoolExtOrTrunc(
9242       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9243       ResultType, ResultType);
9244 }
9245 
9246 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9247                                 SDValue &Overflow, SelectionDAG &DAG) const {
9248   SDLoc dl(Node);
9249   EVT VT = Node->getValueType(0);
9250   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9251   SDValue LHS = Node->getOperand(0);
9252   SDValue RHS = Node->getOperand(1);
9253   bool isSigned = Node->getOpcode() == ISD::SMULO;
9254 
9255   // For power-of-two multiplications we can use a simpler shift expansion.
9256   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9257     const APInt &C = RHSC->getAPIntValue();
9258     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9259     if (C.isPowerOf2()) {
9260       // smulo(x, signed_min) is same as umulo(x, signed_min).
9261       bool UseArithShift = isSigned && !C.isMinSignedValue();
9262       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9263       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9264       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9265       Overflow = DAG.getSetCC(dl, SetCCVT,
9266           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9267                       dl, VT, Result, ShiftAmt),
9268           LHS, ISD::SETNE);
9269       return true;
9270     }
9271   }
9272 
9273   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9274   if (VT.isVector())
9275     WideVT =
9276         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9277 
9278   SDValue BottomHalf;
9279   SDValue TopHalf;
9280   static const unsigned Ops[2][3] =
9281       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9282         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9283   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9284     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9285     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9286   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9287     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9288                              RHS);
9289     TopHalf = BottomHalf.getValue(1);
9290   } else if (isTypeLegal(WideVT)) {
9291     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9292     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9293     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9294     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9295     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9296         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9297     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9298                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9299   } else {
9300     if (VT.isVector())
9301       return false;
9302 
9303     // We can fall back to a libcall with an illegal type for the MUL if we
9304     // have a libcall big enough.
9305     // Also, we can fall back to a division in some cases, but that's a big
9306     // performance hit in the general case.
9307     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9308     if (WideVT == MVT::i16)
9309       LC = RTLIB::MUL_I16;
9310     else if (WideVT == MVT::i32)
9311       LC = RTLIB::MUL_I32;
9312     else if (WideVT == MVT::i64)
9313       LC = RTLIB::MUL_I64;
9314     else if (WideVT == MVT::i128)
9315       LC = RTLIB::MUL_I128;
9316     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9317 
9318     SDValue HiLHS;
9319     SDValue HiRHS;
9320     if (isSigned) {
9321       // The high part is obtained by SRA'ing all but one of the bits of low
9322       // part.
9323       unsigned LoSize = VT.getFixedSizeInBits();
9324       HiLHS =
9325           DAG.getNode(ISD::SRA, dl, VT, LHS,
9326                       DAG.getConstant(LoSize - 1, dl,
9327                                       getPointerTy(DAG.getDataLayout())));
9328       HiRHS =
9329           DAG.getNode(ISD::SRA, dl, VT, RHS,
9330                       DAG.getConstant(LoSize - 1, dl,
9331                                       getPointerTy(DAG.getDataLayout())));
9332     } else {
9333         HiLHS = DAG.getConstant(0, dl, VT);
9334         HiRHS = DAG.getConstant(0, dl, VT);
9335     }
9336 
9337     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9338     // pre-lowered to the correct types. This all depends upon WideVT not
9339     // being a legal type for the architecture and thus has to be split to
9340     // two arguments.
9341     SDValue Ret;
9342     TargetLowering::MakeLibCallOptions CallOptions;
9343     CallOptions.setSExt(isSigned);
9344     CallOptions.setIsPostTypeLegalization(true);
9345     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9346       // Halves of WideVT are packed into registers in different order
9347       // depending on platform endianness. This is usually handled by
9348       // the C calling convention, but we can't defer to it in
9349       // the legalizer.
9350       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9351       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9352     } else {
9353       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9354       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9355     }
9356     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9357            "Ret value is a collection of constituent nodes holding result.");
9358     if (DAG.getDataLayout().isLittleEndian()) {
9359       // Same as above.
9360       BottomHalf = Ret.getOperand(0);
9361       TopHalf = Ret.getOperand(1);
9362     } else {
9363       BottomHalf = Ret.getOperand(1);
9364       TopHalf = Ret.getOperand(0);
9365     }
9366   }
9367 
9368   Result = BottomHalf;
9369   if (isSigned) {
9370     SDValue ShiftAmt = DAG.getConstant(
9371         VT.getScalarSizeInBits() - 1, dl,
9372         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9373     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9374     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9375   } else {
9376     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9377                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9378   }
9379 
9380   // Truncate the result if SetCC returns a larger type than needed.
9381   EVT RType = Node->getValueType(1);
9382   if (RType.bitsLT(Overflow.getValueType()))
9383     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9384 
9385   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9386          "Unexpected result type for S/UMULO legalization");
9387   return true;
9388 }
9389 
9390 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9391   SDLoc dl(Node);
9392   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9393   SDValue Op = Node->getOperand(0);
9394   EVT VT = Op.getValueType();
9395 
9396   if (VT.isScalableVector())
9397     report_fatal_error(
9398         "Expanding reductions for scalable vectors is undefined.");
9399 
9400   // Try to use a shuffle reduction for power of two vectors.
9401   if (VT.isPow2VectorType()) {
9402     while (VT.getVectorNumElements() > 1) {
9403       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9404       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9405         break;
9406 
9407       SDValue Lo, Hi;
9408       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9409       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9410       VT = HalfVT;
9411     }
9412   }
9413 
9414   EVT EltVT = VT.getVectorElementType();
9415   unsigned NumElts = VT.getVectorNumElements();
9416 
9417   SmallVector<SDValue, 8> Ops;
9418   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9419 
9420   SDValue Res = Ops[0];
9421   for (unsigned i = 1; i < NumElts; i++)
9422     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9423 
9424   // Result type may be wider than element type.
9425   if (EltVT != Node->getValueType(0))
9426     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9427   return Res;
9428 }
9429 
9430 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9431   SDLoc dl(Node);
9432   SDValue AccOp = Node->getOperand(0);
9433   SDValue VecOp = Node->getOperand(1);
9434   SDNodeFlags Flags = Node->getFlags();
9435 
9436   EVT VT = VecOp.getValueType();
9437   EVT EltVT = VT.getVectorElementType();
9438 
9439   if (VT.isScalableVector())
9440     report_fatal_error(
9441         "Expanding reductions for scalable vectors is undefined.");
9442 
9443   unsigned NumElts = VT.getVectorNumElements();
9444 
9445   SmallVector<SDValue, 8> Ops;
9446   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9447 
9448   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9449 
9450   SDValue Res = AccOp;
9451   for (unsigned i = 0; i < NumElts; i++)
9452     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9453 
9454   return Res;
9455 }
9456 
9457 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9458                                SelectionDAG &DAG) const {
9459   EVT VT = Node->getValueType(0);
9460   SDLoc dl(Node);
9461   bool isSigned = Node->getOpcode() == ISD::SREM;
9462   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9463   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9464   SDValue Dividend = Node->getOperand(0);
9465   SDValue Divisor = Node->getOperand(1);
9466   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9467     SDVTList VTs = DAG.getVTList(VT, VT);
9468     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9469     return true;
9470   }
9471   if (isOperationLegalOrCustom(DivOpc, VT)) {
9472     // X % Y -> X-X/Y*Y
9473     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9474     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9475     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9476     return true;
9477   }
9478   return false;
9479 }
9480 
9481 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9482                                             SelectionDAG &DAG) const {
9483   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9484   SDLoc dl(SDValue(Node, 0));
9485   SDValue Src = Node->getOperand(0);
9486 
9487   // DstVT is the result type, while SatVT is the size to which we saturate
9488   EVT SrcVT = Src.getValueType();
9489   EVT DstVT = Node->getValueType(0);
9490 
9491   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9492   unsigned SatWidth = SatVT.getScalarSizeInBits();
9493   unsigned DstWidth = DstVT.getScalarSizeInBits();
9494   assert(SatWidth <= DstWidth &&
9495          "Expected saturation width smaller than result width");
9496 
9497   // Determine minimum and maximum integer values and their corresponding
9498   // floating-point values.
9499   APInt MinInt, MaxInt;
9500   if (IsSigned) {
9501     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9502     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9503   } else {
9504     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9505     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9506   }
9507 
9508   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9509   // libcall emission cannot handle this. Large result types will fail.
9510   if (SrcVT == MVT::f16) {
9511     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9512     SrcVT = Src.getValueType();
9513   }
9514 
9515   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9516   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9517 
9518   APFloat::opStatus MinStatus =
9519       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9520   APFloat::opStatus MaxStatus =
9521       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9522   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9523                              !(MaxStatus & APFloat::opStatus::opInexact);
9524 
9525   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9526   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9527 
9528   // If the integer bounds are exactly representable as floats and min/max are
9529   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9530   // of comparisons and selects.
9531   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9532                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9533   if (AreExactFloatBounds && MinMaxLegal) {
9534     SDValue Clamped = Src;
9535 
9536     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9537     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9538     // Clamp by MaxFloat from above. NaN cannot occur.
9539     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9540     // Convert clamped value to integer.
9541     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9542                                   dl, DstVT, Clamped);
9543 
9544     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9545     // which will cast to zero.
9546     if (!IsSigned)
9547       return FpToInt;
9548 
9549     // Otherwise, select 0 if Src is NaN.
9550     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9551     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9552                            ISD::CondCode::SETUO);
9553   }
9554 
9555   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9556   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9557 
9558   // Result of direct conversion. The assumption here is that the operation is
9559   // non-trapping and it's fine to apply it to an out-of-range value if we
9560   // select it away later.
9561   SDValue FpToInt =
9562       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9563 
9564   SDValue Select = FpToInt;
9565 
9566   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9567   // MinInt if Src is NaN.
9568   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9569                            ISD::CondCode::SETULT);
9570   // If Src OGT MaxFloat, select MaxInt.
9571   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9572                            ISD::CondCode::SETOGT);
9573 
9574   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9575   // is already zero.
9576   if (!IsSigned)
9577     return Select;
9578 
9579   // Otherwise, select 0 if Src is NaN.
9580   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9581   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9582 }
9583 
9584 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9585                                            SelectionDAG &DAG) const {
9586   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9587   assert(Node->getValueType(0).isScalableVector() &&
9588          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9589 
9590   EVT VT = Node->getValueType(0);
9591   SDValue V1 = Node->getOperand(0);
9592   SDValue V2 = Node->getOperand(1);
9593   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9594   SDLoc DL(Node);
9595 
9596   // Expand through memory thusly:
9597   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9598   //  Store V1, Ptr
9599   //  Store V2, Ptr + sizeof(V1)
9600   //  If (Imm < 0)
9601   //    TrailingElts = -Imm
9602   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9603   //  else
9604   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9605   //  Res = Load Ptr
9606 
9607   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9608 
9609   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9610                                VT.getVectorElementCount() * 2);
9611   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9612   EVT PtrVT = StackPtr.getValueType();
9613   auto &MF = DAG.getMachineFunction();
9614   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9615   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9616 
9617   // Store the lo part of CONCAT_VECTORS(V1, V2)
9618   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9619   // Store the hi part of CONCAT_VECTORS(V1, V2)
9620   SDValue OffsetToV2 = DAG.getVScale(
9621       DL, PtrVT,
9622       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9623   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9624   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9625 
9626   if (Imm >= 0) {
9627     // Load back the required element. getVectorElementPointer takes care of
9628     // clamping the index if it's out-of-bounds.
9629     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9630     // Load the spliced result
9631     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9632                        MachinePointerInfo::getUnknownStack(MF));
9633   }
9634 
9635   uint64_t TrailingElts = -Imm;
9636 
9637   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9638   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9639   SDValue TrailingBytes =
9640       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9641 
9642   if (TrailingElts > VT.getVectorMinNumElements()) {
9643     SDValue VLBytes = DAG.getVScale(
9644         DL, PtrVT,
9645         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9646     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9647   }
9648 
9649   // Calculate the start address of the spliced result.
9650   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9651 
9652   // Load the spliced result
9653   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9654                      MachinePointerInfo::getUnknownStack(MF));
9655 }
9656 
9657 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9658                                            SDValue &LHS, SDValue &RHS,
9659                                            SDValue &CC, SDValue Mask,
9660                                            SDValue EVL, bool &NeedInvert,
9661                                            const SDLoc &dl, SDValue &Chain,
9662                                            bool IsSignaling) const {
9663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9664   MVT OpVT = LHS.getSimpleValueType();
9665   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9666   NeedInvert = false;
9667   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9668   bool IsNonVP = !EVL;
9669   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9670   default:
9671     llvm_unreachable("Unknown condition code action!");
9672   case TargetLowering::Legal:
9673     // Nothing to do.
9674     break;
9675   case TargetLowering::Expand: {
9676     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9677     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9678       std::swap(LHS, RHS);
9679       CC = DAG.getCondCode(InvCC);
9680       return true;
9681     }
9682     // Swapping operands didn't work. Try inverting the condition.
9683     bool NeedSwap = false;
9684     InvCC = getSetCCInverse(CCCode, OpVT);
9685     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9686       // If inverting the condition is not enough, try swapping operands
9687       // on top of it.
9688       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9689       NeedSwap = true;
9690     }
9691     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9692       CC = DAG.getCondCode(InvCC);
9693       NeedInvert = true;
9694       if (NeedSwap)
9695         std::swap(LHS, RHS);
9696       return true;
9697     }
9698 
9699     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9700     unsigned Opc = 0;
9701     switch (CCCode) {
9702     default:
9703       llvm_unreachable("Don't know how to expand this condition!");
9704     case ISD::SETUO:
9705       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9706         CC1 = ISD::SETUNE;
9707         CC2 = ISD::SETUNE;
9708         Opc = ISD::OR;
9709         break;
9710       }
9711       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9712              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9713       NeedInvert = true;
9714       LLVM_FALLTHROUGH;
9715     case ISD::SETO:
9716       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9717              "If SETO is expanded, SETOEQ must be legal!");
9718       CC1 = ISD::SETOEQ;
9719       CC2 = ISD::SETOEQ;
9720       Opc = ISD::AND;
9721       break;
9722     case ISD::SETONE:
9723     case ISD::SETUEQ:
9724       // If the SETUO or SETO CC isn't legal, we might be able to use
9725       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9726       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9727       // the operands.
9728       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9729       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9730           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9731            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9732         CC1 = ISD::SETOGT;
9733         CC2 = ISD::SETOLT;
9734         Opc = ISD::OR;
9735         NeedInvert = ((unsigned)CCCode & 0x8U);
9736         break;
9737       }
9738       LLVM_FALLTHROUGH;
9739     case ISD::SETOEQ:
9740     case ISD::SETOGT:
9741     case ISD::SETOGE:
9742     case ISD::SETOLT:
9743     case ISD::SETOLE:
9744     case ISD::SETUNE:
9745     case ISD::SETUGT:
9746     case ISD::SETUGE:
9747     case ISD::SETULT:
9748     case ISD::SETULE:
9749       // If we are floating point, assign and break, otherwise fall through.
9750       if (!OpVT.isInteger()) {
9751         // We can use the 4th bit to tell if we are the unordered
9752         // or ordered version of the opcode.
9753         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9754         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9755         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9756         break;
9757       }
9758       // Fallthrough if we are unsigned integer.
9759       LLVM_FALLTHROUGH;
9760     case ISD::SETLE:
9761     case ISD::SETGT:
9762     case ISD::SETGE:
9763     case ISD::SETLT:
9764     case ISD::SETNE:
9765     case ISD::SETEQ:
9766       // If all combinations of inverting the condition and swapping operands
9767       // didn't work then we have no means to expand the condition.
9768       llvm_unreachable("Don't know how to expand this condition!");
9769     }
9770 
9771     SDValue SetCC1, SetCC2;
9772     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9773       // If we aren't the ordered or unorder operation,
9774       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9775       if (IsNonVP) {
9776         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9777         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9778       } else {
9779         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9780         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9781       }
9782     } else {
9783       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9784       if (IsNonVP) {
9785         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9786         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9787       } else {
9788         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9789         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9790       }
9791     }
9792     if (Chain)
9793       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9794                           SetCC2.getValue(1));
9795     if (IsNonVP)
9796       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9797     else {
9798       // Transform the binary opcode to the VP equivalent.
9799       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9800       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9801       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9802     }
9803     RHS = SDValue();
9804     CC = SDValue();
9805     return true;
9806   }
9807   }
9808   return false;
9809 }
9810