1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 bool IsLE = DAG.getDataLayout().isLittleEndian(); 649 unsigned NumElts = DemandedElts.getBitWidth(); 650 unsigned BitWidth = DemandedBits.getBitWidth(); 651 KnownBits LHSKnown, RHSKnown; 652 switch (Op.getOpcode()) { 653 case ISD::BITCAST: { 654 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 655 EVT SrcVT = Src.getValueType(); 656 EVT DstVT = Op.getValueType(); 657 if (SrcVT == DstVT) 658 return Src; 659 660 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 661 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 662 if (NumSrcEltBits == NumDstEltBits) 663 if (SDValue V = SimplifyMultipleUseDemandedBits( 664 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 665 return DAG.getBitcast(DstVT, V); 666 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 674 unsigned BitOffset = EltOffset * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (IsLE && DemandedElts == 1 && 805 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 SDValue Vec = Op.getOperand(0); 823 SDValue Sub = Op.getOperand(1); 824 uint64_t Idx = Op.getConstantOperandVal(2); 825 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 826 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 827 // If we don't demand the inserted subvector, return the base vector. 828 if (DemandedSubElts == 0) 829 return Vec; 830 // If this simply widens the lowest subvector, see if we can do it earlier. 831 if (Idx == 0 && Vec.isUndef()) { 832 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 833 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 834 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 835 Op.getOperand(0), NewSub, Op.getOperand(2)); 836 } 837 break; 838 } 839 case ISD::VECTOR_SHUFFLE: { 840 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 841 842 // If all the demanded elts are from one operand and are inline, 843 // then we can use the operand directly. 844 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 845 for (unsigned i = 0; i != NumElts; ++i) { 846 int M = ShuffleMask[i]; 847 if (M < 0 || !DemandedElts[i]) 848 continue; 849 AllUndef = false; 850 IdentityLHS &= (M == (int)i); 851 IdentityRHS &= ((M - NumElts) == i); 852 } 853 854 if (AllUndef) 855 return DAG.getUNDEF(Op.getValueType()); 856 if (IdentityLHS) 857 return Op.getOperand(0); 858 if (IdentityRHS) 859 return Op.getOperand(1); 860 break; 861 } 862 default: 863 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 864 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 865 Op, DemandedBits, DemandedElts, DAG, Depth)) 866 return V; 867 break; 868 } 869 return SDValue(); 870 } 871 872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 873 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 874 unsigned Depth) const { 875 EVT VT = Op.getValueType(); 876 APInt DemandedElts = VT.isVector() 877 ? APInt::getAllOnes(VT.getVectorNumElements()) 878 : APInt(1, 1); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 884 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 885 unsigned Depth) const { 886 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 887 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 888 Depth); 889 } 890 891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 892 /// result of Op are ever used downstream. If we can use this information to 893 /// simplify Op, create a new simplified DAG node and return true, returning the 894 /// original and new nodes in Old and New. Otherwise, analyze the expression and 895 /// return a mask of Known bits for the expression (used to simplify the 896 /// caller). The Known bits may only be accurate for those bits in the 897 /// OriginalDemandedBits and OriginalDemandedElts. 898 bool TargetLowering::SimplifyDemandedBits( 899 SDValue Op, const APInt &OriginalDemandedBits, 900 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 901 unsigned Depth, bool AssumeSingleUse) const { 902 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 903 assert(Op.getScalarValueSizeInBits() == BitWidth && 904 "Mask size mismatches value type size!"); 905 906 // Don't know anything. 907 Known = KnownBits(BitWidth); 908 909 // TODO: We can probably do more work on calculating the known bits and 910 // simplifying the operations for scalable vectors, but for now we just 911 // bail out. 912 if (Op.getValueType().isScalableVector()) 913 return false; 914 915 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1729 1730 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1731 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1735 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1736 unsigned RevAmt = BitWidth - Amt; 1737 1738 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1739 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1740 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1741 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 1745 // rot*(x, 0) --> x 1746 if (Amt == 0) 1747 return TLO.CombineTo(Op, Op0); 1748 1749 // See if we don't demand either half of the rotated bits. 1750 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1751 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1752 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1753 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1754 } 1755 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1756 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1757 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1758 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1759 } 1760 } 1761 1762 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1763 if (isPowerOf2_32(BitWidth)) { 1764 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1765 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1766 Depth + 1)) 1767 return true; 1768 } 1769 break; 1770 } 1771 case ISD::UMIN: { 1772 // Check if one arg is always less than (or equal) to the other arg. 1773 SDValue Op0 = Op.getOperand(0); 1774 SDValue Op1 = Op.getOperand(1); 1775 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1776 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1777 Known = KnownBits::umin(Known0, Known1); 1778 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1779 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1780 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1781 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1782 break; 1783 } 1784 case ISD::UMAX: { 1785 // Check if one arg is always greater than (or equal) to the other arg. 1786 SDValue Op0 = Op.getOperand(0); 1787 SDValue Op1 = Op.getOperand(1); 1788 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1789 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1790 Known = KnownBits::umax(Known0, Known1); 1791 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1792 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1793 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1794 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1795 break; 1796 } 1797 case ISD::BITREVERSE: { 1798 SDValue Src = Op.getOperand(0); 1799 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1800 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1801 Depth + 1)) 1802 return true; 1803 Known.One = Known2.One.reverseBits(); 1804 Known.Zero = Known2.Zero.reverseBits(); 1805 break; 1806 } 1807 case ISD::BSWAP: { 1808 SDValue Src = Op.getOperand(0); 1809 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1810 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1811 Depth + 1)) 1812 return true; 1813 Known.One = Known2.One.byteSwap(); 1814 Known.Zero = Known2.Zero.byteSwap(); 1815 break; 1816 } 1817 case ISD::CTPOP: { 1818 // If only 1 bit is demanded, replace with PARITY as long as we're before 1819 // op legalization. 1820 // FIXME: Limit to scalars for now. 1821 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1822 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1823 Op.getOperand(0))); 1824 1825 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1826 break; 1827 } 1828 case ISD::SIGN_EXTEND_INREG: { 1829 SDValue Op0 = Op.getOperand(0); 1830 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1831 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1832 1833 // If we only care about the highest bit, don't bother shifting right. 1834 if (DemandedBits.isSignMask()) { 1835 unsigned MinSignedBits = 1836 TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1); 1837 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1838 // However if the input is already sign extended we expect the sign 1839 // extension to be dropped altogether later and do not simplify. 1840 if (!AlreadySignExtended) { 1841 // Compute the correct shift amount type, which must be getShiftAmountTy 1842 // for scalar types after legalization. 1843 EVT ShiftAmtTy = VT; 1844 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1845 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1846 1847 SDValue ShiftAmt = 1848 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1849 return TLO.CombineTo(Op, 1850 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1851 } 1852 } 1853 1854 // If none of the extended bits are demanded, eliminate the sextinreg. 1855 if (DemandedBits.getActiveBits() <= ExVTBits) 1856 return TLO.CombineTo(Op, Op0); 1857 1858 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1859 1860 // Since the sign extended bits are demanded, we know that the sign 1861 // bit is demanded. 1862 InputDemandedBits.setBit(ExVTBits - 1); 1863 1864 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1865 return true; 1866 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1867 1868 // If the sign bit of the input is known set or clear, then we know the 1869 // top bits of the result. 1870 1871 // If the input sign bit is known zero, convert this into a zero extension. 1872 if (Known.Zero[ExVTBits - 1]) 1873 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1874 1875 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1876 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1877 Known.One.setBitsFrom(ExVTBits); 1878 Known.Zero &= Mask; 1879 } else { // Input sign bit unknown 1880 Known.Zero &= Mask; 1881 Known.One &= Mask; 1882 } 1883 break; 1884 } 1885 case ISD::BUILD_PAIR: { 1886 EVT HalfVT = Op.getOperand(0).getValueType(); 1887 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1888 1889 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1890 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1891 1892 KnownBits KnownLo, KnownHi; 1893 1894 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1895 return true; 1896 1897 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1898 return true; 1899 1900 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1901 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1902 1903 Known.One = KnownLo.One.zext(BitWidth) | 1904 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1905 break; 1906 } 1907 case ISD::ZERO_EXTEND: 1908 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1909 SDValue Src = Op.getOperand(0); 1910 EVT SrcVT = Src.getValueType(); 1911 unsigned InBits = SrcVT.getScalarSizeInBits(); 1912 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1913 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1914 1915 // If none of the top bits are demanded, convert this into an any_extend. 1916 if (DemandedBits.getActiveBits() <= InBits) { 1917 // If we only need the non-extended bits of the bottom element 1918 // then we can just bitcast to the result. 1919 if (IsLE && IsVecInReg && DemandedElts == 1 && 1920 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1921 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1922 1923 unsigned Opc = 1924 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1925 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1926 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1927 } 1928 1929 APInt InDemandedBits = DemandedBits.trunc(InBits); 1930 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1931 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1932 Depth + 1)) 1933 return true; 1934 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1935 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1936 Known = Known.zext(BitWidth); 1937 1938 // Attempt to avoid multi-use ops if we don't need anything from them. 1939 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1940 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1941 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1942 break; 1943 } 1944 case ISD::SIGN_EXTEND: 1945 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1946 SDValue Src = Op.getOperand(0); 1947 EVT SrcVT = Src.getValueType(); 1948 unsigned InBits = SrcVT.getScalarSizeInBits(); 1949 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1950 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1951 1952 // If none of the top bits are demanded, convert this into an any_extend. 1953 if (DemandedBits.getActiveBits() <= InBits) { 1954 // If we only need the non-extended bits of the bottom element 1955 // then we can just bitcast to the result. 1956 if (IsLE && IsVecInReg && DemandedElts == 1 && 1957 VT.getSizeInBits() == SrcVT.getSizeInBits()) 1958 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1959 1960 unsigned Opc = 1961 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1962 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1963 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1964 } 1965 1966 APInt InDemandedBits = DemandedBits.trunc(InBits); 1967 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1968 1969 // Since some of the sign extended bits are demanded, we know that the sign 1970 // bit is demanded. 1971 InDemandedBits.setBit(InBits - 1); 1972 1973 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1974 Depth + 1)) 1975 return true; 1976 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1977 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1978 1979 // If the sign bit is known one, the top bits match. 1980 Known = Known.sext(BitWidth); 1981 1982 // If the sign bit is known zero, convert this to a zero extend. 1983 if (Known.isNonNegative()) { 1984 unsigned Opc = 1985 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1986 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1987 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1988 } 1989 1990 // Attempt to avoid multi-use ops if we don't need anything from them. 1991 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1992 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1993 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1994 break; 1995 } 1996 case ISD::ANY_EXTEND: 1997 case ISD::ANY_EXTEND_VECTOR_INREG: { 1998 SDValue Src = Op.getOperand(0); 1999 EVT SrcVT = Src.getValueType(); 2000 unsigned InBits = SrcVT.getScalarSizeInBits(); 2001 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2002 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2003 2004 // If we only need the bottom element then we can just bitcast. 2005 // TODO: Handle ANY_EXTEND? 2006 if (IsLE && IsVecInReg && DemandedElts == 1 && 2007 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2008 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2009 2010 APInt InDemandedBits = DemandedBits.trunc(InBits); 2011 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2012 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2013 Depth + 1)) 2014 return true; 2015 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2016 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2017 Known = Known.anyext(BitWidth); 2018 2019 // Attempt to avoid multi-use ops if we don't need anything from them. 2020 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2021 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2022 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2023 break; 2024 } 2025 case ISD::TRUNCATE: { 2026 SDValue Src = Op.getOperand(0); 2027 2028 // Simplify the input, using demanded bit information, and compute the known 2029 // zero/one bits live out. 2030 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2031 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2032 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2033 Depth + 1)) 2034 return true; 2035 Known = Known.trunc(BitWidth); 2036 2037 // Attempt to avoid multi-use ops if we don't need anything from them. 2038 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2039 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2040 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2041 2042 // If the input is only used by this truncate, see if we can shrink it based 2043 // on the known demanded bits. 2044 if (Src.getNode()->hasOneUse()) { 2045 switch (Src.getOpcode()) { 2046 default: 2047 break; 2048 case ISD::SRL: 2049 // Shrink SRL by a constant if none of the high bits shifted in are 2050 // demanded. 2051 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2052 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2053 // undesirable. 2054 break; 2055 2056 const APInt *ShAmtC = 2057 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2058 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2059 break; 2060 uint64_t ShVal = ShAmtC->getZExtValue(); 2061 2062 APInt HighBits = 2063 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2064 HighBits.lshrInPlace(ShVal); 2065 HighBits = HighBits.trunc(BitWidth); 2066 2067 if (!(HighBits & DemandedBits)) { 2068 // None of the shifted in bits are needed. Add a truncate of the 2069 // shift input, then shift it. 2070 SDValue NewShAmt = TLO.DAG.getConstant( 2071 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2072 SDValue NewTrunc = 2073 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2074 return TLO.CombineTo( 2075 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2076 } 2077 break; 2078 } 2079 } 2080 2081 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2082 break; 2083 } 2084 case ISD::AssertZext: { 2085 // AssertZext demands all of the high bits, plus any of the low bits 2086 // demanded by its users. 2087 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2088 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2089 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2090 TLO, Depth + 1)) 2091 return true; 2092 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2093 2094 Known.Zero |= ~InMask; 2095 break; 2096 } 2097 case ISD::EXTRACT_VECTOR_ELT: { 2098 SDValue Src = Op.getOperand(0); 2099 SDValue Idx = Op.getOperand(1); 2100 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2101 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2102 2103 if (SrcEltCnt.isScalable()) 2104 return false; 2105 2106 // Demand the bits from every vector element without a constant index. 2107 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2108 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2109 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2110 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2111 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2112 2113 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2114 // anything about the extended bits. 2115 APInt DemandedSrcBits = DemandedBits; 2116 if (BitWidth > EltBitWidth) 2117 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2118 2119 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2120 Depth + 1)) 2121 return true; 2122 2123 // Attempt to avoid multi-use ops if we don't need anything from them. 2124 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2125 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2126 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2127 SDValue NewOp = 2128 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2129 return TLO.CombineTo(Op, NewOp); 2130 } 2131 } 2132 2133 Known = Known2; 2134 if (BitWidth > EltBitWidth) 2135 Known = Known.anyext(BitWidth); 2136 break; 2137 } 2138 case ISD::BITCAST: { 2139 SDValue Src = Op.getOperand(0); 2140 EVT SrcVT = Src.getValueType(); 2141 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2142 2143 // If this is an FP->Int bitcast and if the sign bit is the only 2144 // thing demanded, turn this into a FGETSIGN. 2145 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2146 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2147 SrcVT.isFloatingPoint()) { 2148 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2149 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2150 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2151 SrcVT != MVT::f128) { 2152 // Cannot eliminate/lower SHL for f128 yet. 2153 EVT Ty = OpVTLegal ? VT : MVT::i32; 2154 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2155 // place. We expect the SHL to be eliminated by other optimizations. 2156 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2157 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2158 if (!OpVTLegal && OpVTSizeInBits > 32) 2159 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2160 unsigned ShVal = Op.getValueSizeInBits() - 1; 2161 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2162 return TLO.CombineTo(Op, 2163 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2164 } 2165 } 2166 2167 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2168 // Demand the elt/bit if any of the original elts/bits are demanded. 2169 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2170 unsigned Scale = BitWidth / NumSrcEltBits; 2171 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2172 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2173 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2174 for (unsigned i = 0; i != Scale; ++i) { 2175 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2176 unsigned BitOffset = EltOffset * NumSrcEltBits; 2177 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2178 if (!Sub.isZero()) { 2179 DemandedSrcBits |= Sub; 2180 for (unsigned j = 0; j != NumElts; ++j) 2181 if (DemandedElts[j]) 2182 DemandedSrcElts.setBit((j * Scale) + i); 2183 } 2184 } 2185 2186 APInt KnownSrcUndef, KnownSrcZero; 2187 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2188 KnownSrcZero, TLO, Depth + 1)) 2189 return true; 2190 2191 KnownBits KnownSrcBits; 2192 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2193 KnownSrcBits, TLO, Depth + 1)) 2194 return true; 2195 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2196 // TODO - bigendian once we have test coverage. 2197 unsigned Scale = NumSrcEltBits / BitWidth; 2198 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2199 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2200 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2201 for (unsigned i = 0; i != NumElts; ++i) 2202 if (DemandedElts[i]) { 2203 unsigned Offset = (i % Scale) * BitWidth; 2204 DemandedSrcBits.insertBits(DemandedBits, Offset); 2205 DemandedSrcElts.setBit(i / Scale); 2206 } 2207 2208 if (SrcVT.isVector()) { 2209 APInt KnownSrcUndef, KnownSrcZero; 2210 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2211 KnownSrcZero, TLO, Depth + 1)) 2212 return true; 2213 } 2214 2215 KnownBits KnownSrcBits; 2216 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2217 KnownSrcBits, TLO, Depth + 1)) 2218 return true; 2219 } 2220 2221 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2222 // recursive call where Known may be useful to the caller. 2223 if (Depth > 0) { 2224 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2225 return false; 2226 } 2227 break; 2228 } 2229 case ISD::ADD: 2230 case ISD::MUL: 2231 case ISD::SUB: { 2232 // Add, Sub, and Mul don't demand any bits in positions beyond that 2233 // of the highest bit demanded of them. 2234 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2235 SDNodeFlags Flags = Op.getNode()->getFlags(); 2236 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2237 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2238 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2239 Depth + 1) || 2240 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2241 Depth + 1) || 2242 // See if the operation should be performed at a smaller bit width. 2243 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2244 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2245 // Disable the nsw and nuw flags. We can no longer guarantee that we 2246 // won't wrap after simplification. 2247 Flags.setNoSignedWrap(false); 2248 Flags.setNoUnsignedWrap(false); 2249 SDValue NewOp = 2250 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2251 return TLO.CombineTo(Op, NewOp); 2252 } 2253 return true; 2254 } 2255 2256 // Attempt to avoid multi-use ops if we don't need anything from them. 2257 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2258 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2259 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2260 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2261 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2262 if (DemandedOp0 || DemandedOp1) { 2263 Flags.setNoSignedWrap(false); 2264 Flags.setNoUnsignedWrap(false); 2265 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2266 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2267 SDValue NewOp = 2268 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2269 return TLO.CombineTo(Op, NewOp); 2270 } 2271 } 2272 2273 // If we have a constant operand, we may be able to turn it into -1 if we 2274 // do not demand the high bits. This can make the constant smaller to 2275 // encode, allow more general folding, or match specialized instruction 2276 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2277 // is probably not useful (and could be detrimental). 2278 ConstantSDNode *C = isConstOrConstSplat(Op1); 2279 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2280 if (C && !C->isAllOnes() && !C->isOne() && 2281 (C->getAPIntValue() | HighMask).isAllOnes()) { 2282 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2283 // Disable the nsw and nuw flags. We can no longer guarantee that we 2284 // won't wrap after simplification. 2285 Flags.setNoSignedWrap(false); 2286 Flags.setNoUnsignedWrap(false); 2287 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2288 return TLO.CombineTo(Op, NewOp); 2289 } 2290 2291 LLVM_FALLTHROUGH; 2292 } 2293 default: 2294 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2295 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2296 Known, TLO, Depth)) 2297 return true; 2298 break; 2299 } 2300 2301 // Just use computeKnownBits to compute output bits. 2302 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2303 break; 2304 } 2305 2306 // If we know the value of all of the demanded bits, return this as a 2307 // constant. 2308 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2309 // Avoid folding to a constant if any OpaqueConstant is involved. 2310 const SDNode *N = Op.getNode(); 2311 for (SDNode *Op : 2312 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2313 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2314 if (C->isOpaque()) 2315 return false; 2316 } 2317 if (VT.isInteger()) 2318 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2319 if (VT.isFloatingPoint()) 2320 return TLO.CombineTo( 2321 Op, 2322 TLO.DAG.getConstantFP( 2323 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2324 } 2325 2326 return false; 2327 } 2328 2329 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2330 const APInt &DemandedElts, 2331 APInt &KnownUndef, 2332 APInt &KnownZero, 2333 DAGCombinerInfo &DCI) const { 2334 SelectionDAG &DAG = DCI.DAG; 2335 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2336 !DCI.isBeforeLegalizeOps()); 2337 2338 bool Simplified = 2339 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2340 if (Simplified) { 2341 DCI.AddToWorklist(Op.getNode()); 2342 DCI.CommitTargetLoweringOpt(TLO); 2343 } 2344 2345 return Simplified; 2346 } 2347 2348 /// Given a vector binary operation and known undefined elements for each input 2349 /// operand, compute whether each element of the output is undefined. 2350 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2351 const APInt &UndefOp0, 2352 const APInt &UndefOp1) { 2353 EVT VT = BO.getValueType(); 2354 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2355 "Vector binop only"); 2356 2357 EVT EltVT = VT.getVectorElementType(); 2358 unsigned NumElts = VT.getVectorNumElements(); 2359 assert(UndefOp0.getBitWidth() == NumElts && 2360 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2361 2362 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2363 const APInt &UndefVals) { 2364 if (UndefVals[Index]) 2365 return DAG.getUNDEF(EltVT); 2366 2367 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2368 // Try hard to make sure that the getNode() call is not creating temporary 2369 // nodes. Ignore opaque integers because they do not constant fold. 2370 SDValue Elt = BV->getOperand(Index); 2371 auto *C = dyn_cast<ConstantSDNode>(Elt); 2372 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2373 return Elt; 2374 } 2375 2376 return SDValue(); 2377 }; 2378 2379 APInt KnownUndef = APInt::getZero(NumElts); 2380 for (unsigned i = 0; i != NumElts; ++i) { 2381 // If both inputs for this element are either constant or undef and match 2382 // the element type, compute the constant/undef result for this element of 2383 // the vector. 2384 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2385 // not handle FP constants. The code within getNode() should be refactored 2386 // to avoid the danger of creating a bogus temporary node here. 2387 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2388 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2389 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2390 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2391 KnownUndef.setBit(i); 2392 } 2393 return KnownUndef; 2394 } 2395 2396 bool TargetLowering::SimplifyDemandedVectorElts( 2397 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2398 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2399 bool AssumeSingleUse) const { 2400 EVT VT = Op.getValueType(); 2401 unsigned Opcode = Op.getOpcode(); 2402 APInt DemandedElts = OriginalDemandedElts; 2403 unsigned NumElts = DemandedElts.getBitWidth(); 2404 assert(VT.isVector() && "Expected vector op"); 2405 2406 KnownUndef = KnownZero = APInt::getZero(NumElts); 2407 2408 // TODO: For now we assume we know nothing about scalable vectors. 2409 if (VT.isScalableVector()) 2410 return false; 2411 2412 assert(VT.getVectorNumElements() == NumElts && 2413 "Mask size mismatches value type element count!"); 2414 2415 // Undef operand. 2416 if (Op.isUndef()) { 2417 KnownUndef.setAllBits(); 2418 return false; 2419 } 2420 2421 // If Op has other users, assume that all elements are needed. 2422 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2423 DemandedElts.setAllBits(); 2424 2425 // Not demanding any elements from Op. 2426 if (DemandedElts == 0) { 2427 KnownUndef.setAllBits(); 2428 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2429 } 2430 2431 // Limit search depth. 2432 if (Depth >= SelectionDAG::MaxRecursionDepth) 2433 return false; 2434 2435 SDLoc DL(Op); 2436 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2437 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2438 2439 // Helper for demanding the specified elements and all the bits of both binary 2440 // operands. 2441 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2442 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2443 TLO.DAG, Depth + 1); 2444 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2445 TLO.DAG, Depth + 1); 2446 if (NewOp0 || NewOp1) { 2447 SDValue NewOp = TLO.DAG.getNode( 2448 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2449 return TLO.CombineTo(Op, NewOp); 2450 } 2451 return false; 2452 }; 2453 2454 switch (Opcode) { 2455 case ISD::SCALAR_TO_VECTOR: { 2456 if (!DemandedElts[0]) { 2457 KnownUndef.setAllBits(); 2458 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2459 } 2460 SDValue ScalarSrc = Op.getOperand(0); 2461 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2462 SDValue Src = ScalarSrc.getOperand(0); 2463 SDValue Idx = ScalarSrc.getOperand(1); 2464 EVT SrcVT = Src.getValueType(); 2465 2466 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2467 2468 if (SrcEltCnt.isScalable()) 2469 return false; 2470 2471 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2472 if (isNullConstant(Idx)) { 2473 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2474 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2475 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2476 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2477 TLO, Depth + 1)) 2478 return true; 2479 } 2480 } 2481 KnownUndef.setHighBits(NumElts - 1); 2482 break; 2483 } 2484 case ISD::BITCAST: { 2485 SDValue Src = Op.getOperand(0); 2486 EVT SrcVT = Src.getValueType(); 2487 2488 // We only handle vectors here. 2489 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2490 if (!SrcVT.isVector()) 2491 break; 2492 2493 // Fast handling of 'identity' bitcasts. 2494 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2495 if (NumSrcElts == NumElts) 2496 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2497 KnownZero, TLO, Depth + 1); 2498 2499 APInt SrcDemandedElts, SrcZero, SrcUndef; 2500 2501 // Bitcast from 'large element' src vector to 'small element' vector, we 2502 // must demand a source element if any DemandedElt maps to it. 2503 if ((NumElts % NumSrcElts) == 0) { 2504 unsigned Scale = NumElts / NumSrcElts; 2505 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2506 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2507 TLO, Depth + 1)) 2508 return true; 2509 2510 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2511 // of the large element. 2512 // TODO - bigendian once we have test coverage. 2513 if (IsLE) { 2514 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2515 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2516 for (unsigned i = 0; i != NumElts; ++i) 2517 if (DemandedElts[i]) { 2518 unsigned Ofs = (i % Scale) * EltSizeInBits; 2519 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2520 } 2521 2522 KnownBits Known; 2523 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2524 TLO, Depth + 1)) 2525 return true; 2526 } 2527 2528 // If the src element is zero/undef then all the output elements will be - 2529 // only demanded elements are guaranteed to be correct. 2530 for (unsigned i = 0; i != NumSrcElts; ++i) { 2531 if (SrcDemandedElts[i]) { 2532 if (SrcZero[i]) 2533 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2534 if (SrcUndef[i]) 2535 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2536 } 2537 } 2538 } 2539 2540 // Bitcast from 'small element' src vector to 'large element' vector, we 2541 // demand all smaller source elements covered by the larger demanded element 2542 // of this vector. 2543 if ((NumSrcElts % NumElts) == 0) { 2544 unsigned Scale = NumSrcElts / NumElts; 2545 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2546 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2547 TLO, Depth + 1)) 2548 return true; 2549 2550 // If all the src elements covering an output element are zero/undef, then 2551 // the output element will be as well, assuming it was demanded. 2552 for (unsigned i = 0; i != NumElts; ++i) { 2553 if (DemandedElts[i]) { 2554 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2555 KnownZero.setBit(i); 2556 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2557 KnownUndef.setBit(i); 2558 } 2559 } 2560 } 2561 break; 2562 } 2563 case ISD::BUILD_VECTOR: { 2564 // Check all elements and simplify any unused elements with UNDEF. 2565 if (!DemandedElts.isAllOnes()) { 2566 // Don't simplify BROADCASTS. 2567 if (llvm::any_of(Op->op_values(), 2568 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2569 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2570 bool Updated = false; 2571 for (unsigned i = 0; i != NumElts; ++i) { 2572 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2573 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2574 KnownUndef.setBit(i); 2575 Updated = true; 2576 } 2577 } 2578 if (Updated) 2579 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2580 } 2581 } 2582 for (unsigned i = 0; i != NumElts; ++i) { 2583 SDValue SrcOp = Op.getOperand(i); 2584 if (SrcOp.isUndef()) { 2585 KnownUndef.setBit(i); 2586 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2587 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2588 KnownZero.setBit(i); 2589 } 2590 } 2591 break; 2592 } 2593 case ISD::CONCAT_VECTORS: { 2594 EVT SubVT = Op.getOperand(0).getValueType(); 2595 unsigned NumSubVecs = Op.getNumOperands(); 2596 unsigned NumSubElts = SubVT.getVectorNumElements(); 2597 for (unsigned i = 0; i != NumSubVecs; ++i) { 2598 SDValue SubOp = Op.getOperand(i); 2599 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2600 APInt SubUndef, SubZero; 2601 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2602 Depth + 1)) 2603 return true; 2604 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2605 KnownZero.insertBits(SubZero, i * NumSubElts); 2606 } 2607 break; 2608 } 2609 case ISD::INSERT_SUBVECTOR: { 2610 // Demand any elements from the subvector and the remainder from the src its 2611 // inserted into. 2612 SDValue Src = Op.getOperand(0); 2613 SDValue Sub = Op.getOperand(1); 2614 uint64_t Idx = Op.getConstantOperandVal(2); 2615 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2616 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2617 APInt DemandedSrcElts = DemandedElts; 2618 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2619 2620 APInt SubUndef, SubZero; 2621 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2622 Depth + 1)) 2623 return true; 2624 2625 // If none of the src operand elements are demanded, replace it with undef. 2626 if (!DemandedSrcElts && !Src.isUndef()) 2627 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2628 TLO.DAG.getUNDEF(VT), Sub, 2629 Op.getOperand(2))); 2630 2631 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2632 TLO, Depth + 1)) 2633 return true; 2634 KnownUndef.insertBits(SubUndef, Idx); 2635 KnownZero.insertBits(SubZero, Idx); 2636 2637 // Attempt to avoid multi-use ops if we don't need anything from them. 2638 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2639 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2640 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2641 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2642 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2643 if (NewSrc || NewSub) { 2644 NewSrc = NewSrc ? NewSrc : Src; 2645 NewSub = NewSub ? NewSub : Sub; 2646 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2647 NewSub, Op.getOperand(2)); 2648 return TLO.CombineTo(Op, NewOp); 2649 } 2650 } 2651 break; 2652 } 2653 case ISD::EXTRACT_SUBVECTOR: { 2654 // Offset the demanded elts by the subvector index. 2655 SDValue Src = Op.getOperand(0); 2656 if (Src.getValueType().isScalableVector()) 2657 break; 2658 uint64_t Idx = Op.getConstantOperandVal(1); 2659 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2660 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2661 2662 APInt SrcUndef, SrcZero; 2663 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2664 Depth + 1)) 2665 return true; 2666 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2667 KnownZero = SrcZero.extractBits(NumElts, Idx); 2668 2669 // Attempt to avoid multi-use ops if we don't need anything from them. 2670 if (!DemandedElts.isAllOnes()) { 2671 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2672 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2673 if (NewSrc) { 2674 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2675 Op.getOperand(1)); 2676 return TLO.CombineTo(Op, NewOp); 2677 } 2678 } 2679 break; 2680 } 2681 case ISD::INSERT_VECTOR_ELT: { 2682 SDValue Vec = Op.getOperand(0); 2683 SDValue Scl = Op.getOperand(1); 2684 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2685 2686 // For a legal, constant insertion index, if we don't need this insertion 2687 // then strip it, else remove it from the demanded elts. 2688 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2689 unsigned Idx = CIdx->getZExtValue(); 2690 if (!DemandedElts[Idx]) 2691 return TLO.CombineTo(Op, Vec); 2692 2693 APInt DemandedVecElts(DemandedElts); 2694 DemandedVecElts.clearBit(Idx); 2695 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2696 KnownZero, TLO, Depth + 1)) 2697 return true; 2698 2699 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2700 2701 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2702 break; 2703 } 2704 2705 APInt VecUndef, VecZero; 2706 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2707 Depth + 1)) 2708 return true; 2709 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2710 break; 2711 } 2712 case ISD::VSELECT: { 2713 // Try to transform the select condition based on the current demanded 2714 // elements. 2715 // TODO: If a condition element is undef, we can choose from one arm of the 2716 // select (and if one arm is undef, then we can propagate that to the 2717 // result). 2718 // TODO - add support for constant vselect masks (see IR version of this). 2719 APInt UnusedUndef, UnusedZero; 2720 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2721 UnusedZero, TLO, Depth + 1)) 2722 return true; 2723 2724 // See if we can simplify either vselect operand. 2725 APInt DemandedLHS(DemandedElts); 2726 APInt DemandedRHS(DemandedElts); 2727 APInt UndefLHS, ZeroLHS; 2728 APInt UndefRHS, ZeroRHS; 2729 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2730 ZeroLHS, TLO, Depth + 1)) 2731 return true; 2732 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2733 ZeroRHS, TLO, Depth + 1)) 2734 return true; 2735 2736 KnownUndef = UndefLHS & UndefRHS; 2737 KnownZero = ZeroLHS & ZeroRHS; 2738 break; 2739 } 2740 case ISD::VECTOR_SHUFFLE: { 2741 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2742 2743 // Collect demanded elements from shuffle operands.. 2744 APInt DemandedLHS(NumElts, 0); 2745 APInt DemandedRHS(NumElts, 0); 2746 for (unsigned i = 0; i != NumElts; ++i) { 2747 int M = ShuffleMask[i]; 2748 if (M < 0 || !DemandedElts[i]) 2749 continue; 2750 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2751 if (M < (int)NumElts) 2752 DemandedLHS.setBit(M); 2753 else 2754 DemandedRHS.setBit(M - NumElts); 2755 } 2756 2757 // See if we can simplify either shuffle operand. 2758 APInt UndefLHS, ZeroLHS; 2759 APInt UndefRHS, ZeroRHS; 2760 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2761 ZeroLHS, TLO, Depth + 1)) 2762 return true; 2763 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2764 ZeroRHS, TLO, Depth + 1)) 2765 return true; 2766 2767 // Simplify mask using undef elements from LHS/RHS. 2768 bool Updated = false; 2769 bool IdentityLHS = true, IdentityRHS = true; 2770 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2771 for (unsigned i = 0; i != NumElts; ++i) { 2772 int &M = NewMask[i]; 2773 if (M < 0) 2774 continue; 2775 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2776 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2777 Updated = true; 2778 M = -1; 2779 } 2780 IdentityLHS &= (M < 0) || (M == (int)i); 2781 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2782 } 2783 2784 // Update legal shuffle masks based on demanded elements if it won't reduce 2785 // to Identity which can cause premature removal of the shuffle mask. 2786 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2787 SDValue LegalShuffle = 2788 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2789 NewMask, TLO.DAG); 2790 if (LegalShuffle) 2791 return TLO.CombineTo(Op, LegalShuffle); 2792 } 2793 2794 // Propagate undef/zero elements from LHS/RHS. 2795 for (unsigned i = 0; i != NumElts; ++i) { 2796 int M = ShuffleMask[i]; 2797 if (M < 0) { 2798 KnownUndef.setBit(i); 2799 } else if (M < (int)NumElts) { 2800 if (UndefLHS[M]) 2801 KnownUndef.setBit(i); 2802 if (ZeroLHS[M]) 2803 KnownZero.setBit(i); 2804 } else { 2805 if (UndefRHS[M - NumElts]) 2806 KnownUndef.setBit(i); 2807 if (ZeroRHS[M - NumElts]) 2808 KnownZero.setBit(i); 2809 } 2810 } 2811 break; 2812 } 2813 case ISD::ANY_EXTEND_VECTOR_INREG: 2814 case ISD::SIGN_EXTEND_VECTOR_INREG: 2815 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2816 APInt SrcUndef, SrcZero; 2817 SDValue Src = Op.getOperand(0); 2818 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2819 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2820 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2821 Depth + 1)) 2822 return true; 2823 KnownZero = SrcZero.zextOrTrunc(NumElts); 2824 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2825 2826 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2827 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2828 DemandedSrcElts == 1) { 2829 // aext - if we just need the bottom element then we can bitcast. 2830 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2831 } 2832 2833 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2834 // zext(undef) upper bits are guaranteed to be zero. 2835 if (DemandedElts.isSubsetOf(KnownUndef)) 2836 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2837 KnownUndef.clearAllBits(); 2838 2839 // zext - if we just need the bottom element then we can mask: 2840 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2841 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 2842 Op->isOnlyUserOf(Src.getNode()) && 2843 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2844 SDLoc DL(Op); 2845 EVT SrcVT = Src.getValueType(); 2846 EVT SrcSVT = SrcVT.getScalarType(); 2847 SmallVector<SDValue> MaskElts; 2848 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2849 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2850 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2851 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2852 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2853 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2854 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2855 } 2856 } 2857 } 2858 break; 2859 } 2860 2861 // TODO: There are more binop opcodes that could be handled here - MIN, 2862 // MAX, saturated math, etc. 2863 case ISD::ADD: { 2864 SDValue Op0 = Op.getOperand(0); 2865 SDValue Op1 = Op.getOperand(1); 2866 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 2867 APInt UndefLHS, ZeroLHS; 2868 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2869 Depth + 1, /*AssumeSingleUse*/ true)) 2870 return true; 2871 } 2872 LLVM_FALLTHROUGH; 2873 } 2874 case ISD::OR: 2875 case ISD::XOR: 2876 case ISD::SUB: 2877 case ISD::FADD: 2878 case ISD::FSUB: 2879 case ISD::FMUL: 2880 case ISD::FDIV: 2881 case ISD::FREM: { 2882 SDValue Op0 = Op.getOperand(0); 2883 SDValue Op1 = Op.getOperand(1); 2884 2885 APInt UndefRHS, ZeroRHS; 2886 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2887 Depth + 1)) 2888 return true; 2889 APInt UndefLHS, ZeroLHS; 2890 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2891 Depth + 1)) 2892 return true; 2893 2894 KnownZero = ZeroLHS & ZeroRHS; 2895 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2896 2897 // Attempt to avoid multi-use ops if we don't need anything from them. 2898 // TODO - use KnownUndef to relax the demandedelts? 2899 if (!DemandedElts.isAllOnes()) 2900 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2901 return true; 2902 break; 2903 } 2904 case ISD::SHL: 2905 case ISD::SRL: 2906 case ISD::SRA: 2907 case ISD::ROTL: 2908 case ISD::ROTR: { 2909 SDValue Op0 = Op.getOperand(0); 2910 SDValue Op1 = Op.getOperand(1); 2911 2912 APInt UndefRHS, ZeroRHS; 2913 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2914 Depth + 1)) 2915 return true; 2916 APInt UndefLHS, ZeroLHS; 2917 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2918 Depth + 1)) 2919 return true; 2920 2921 KnownZero = ZeroLHS; 2922 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2923 2924 // Attempt to avoid multi-use ops if we don't need anything from them. 2925 // TODO - use KnownUndef to relax the demandedelts? 2926 if (!DemandedElts.isAllOnes()) 2927 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2928 return true; 2929 break; 2930 } 2931 case ISD::MUL: 2932 case ISD::AND: { 2933 SDValue Op0 = Op.getOperand(0); 2934 SDValue Op1 = Op.getOperand(1); 2935 2936 APInt SrcUndef, SrcZero; 2937 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2938 Depth + 1)) 2939 return true; 2940 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2941 TLO, Depth + 1)) 2942 return true; 2943 2944 // If either side has a zero element, then the result element is zero, even 2945 // if the other is an UNDEF. 2946 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2947 // and then handle 'and' nodes with the rest of the binop opcodes. 2948 KnownZero |= SrcZero; 2949 KnownUndef &= SrcUndef; 2950 KnownUndef &= ~KnownZero; 2951 2952 // Attempt to avoid multi-use ops if we don't need anything from them. 2953 // TODO - use KnownUndef to relax the demandedelts? 2954 if (!DemandedElts.isAllOnes()) 2955 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2956 return true; 2957 break; 2958 } 2959 case ISD::TRUNCATE: 2960 case ISD::SIGN_EXTEND: 2961 case ISD::ZERO_EXTEND: 2962 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2963 KnownZero, TLO, Depth + 1)) 2964 return true; 2965 2966 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2967 // zext(undef) upper bits are guaranteed to be zero. 2968 if (DemandedElts.isSubsetOf(KnownUndef)) 2969 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2970 KnownUndef.clearAllBits(); 2971 } 2972 break; 2973 default: { 2974 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2975 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2976 KnownZero, TLO, Depth)) 2977 return true; 2978 } else { 2979 KnownBits Known; 2980 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 2981 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2982 TLO, Depth, AssumeSingleUse)) 2983 return true; 2984 } 2985 break; 2986 } 2987 } 2988 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2989 2990 // Constant fold all undef cases. 2991 // TODO: Handle zero cases as well. 2992 if (DemandedElts.isSubsetOf(KnownUndef)) 2993 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2994 2995 return false; 2996 } 2997 2998 /// Determine which of the bits specified in Mask are known to be either zero or 2999 /// one and return them in the Known. 3000 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3001 KnownBits &Known, 3002 const APInt &DemandedElts, 3003 const SelectionDAG &DAG, 3004 unsigned Depth) const { 3005 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3006 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3007 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3008 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3009 "Should use MaskedValueIsZero if you don't know whether Op" 3010 " is a target node!"); 3011 Known.resetAll(); 3012 } 3013 3014 void TargetLowering::computeKnownBitsForTargetInstr( 3015 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3016 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3017 unsigned Depth) const { 3018 Known.resetAll(); 3019 } 3020 3021 void TargetLowering::computeKnownBitsForFrameIndex( 3022 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3023 // The low bits are known zero if the pointer is aligned. 3024 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3025 } 3026 3027 Align TargetLowering::computeKnownAlignForTargetInstr( 3028 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3029 unsigned Depth) const { 3030 return Align(1); 3031 } 3032 3033 /// This method can be implemented by targets that want to expose additional 3034 /// information about sign bits to the DAG Combiner. 3035 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3036 const APInt &, 3037 const SelectionDAG &, 3038 unsigned Depth) const { 3039 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3040 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3041 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3042 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3043 "Should use ComputeNumSignBits if you don't know whether Op" 3044 " is a target node!"); 3045 return 1; 3046 } 3047 3048 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3049 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3050 const MachineRegisterInfo &MRI, unsigned Depth) const { 3051 return 1; 3052 } 3053 3054 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3055 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3056 TargetLoweringOpt &TLO, unsigned Depth) const { 3057 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3058 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3059 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3060 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3061 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3062 " is a target node!"); 3063 return false; 3064 } 3065 3066 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3067 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3068 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3069 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3070 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3071 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3072 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3073 "Should use SimplifyDemandedBits if you don't know whether Op" 3074 " is a target node!"); 3075 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3076 return false; 3077 } 3078 3079 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3080 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3081 SelectionDAG &DAG, unsigned Depth) const { 3082 assert( 3083 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3084 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3085 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3086 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3087 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3088 " is a target node!"); 3089 return SDValue(); 3090 } 3091 3092 SDValue 3093 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3094 SDValue N1, MutableArrayRef<int> Mask, 3095 SelectionDAG &DAG) const { 3096 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3097 if (!LegalMask) { 3098 std::swap(N0, N1); 3099 ShuffleVectorSDNode::commuteMask(Mask); 3100 LegalMask = isShuffleMaskLegal(Mask, VT); 3101 } 3102 3103 if (!LegalMask) 3104 return SDValue(); 3105 3106 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3107 } 3108 3109 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3110 return nullptr; 3111 } 3112 3113 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3114 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3115 bool PoisonOnly, unsigned Depth) const { 3116 assert( 3117 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3118 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3119 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3120 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3121 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3122 " is a target node!"); 3123 return false; 3124 } 3125 3126 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3127 const SelectionDAG &DAG, 3128 bool SNaN, 3129 unsigned Depth) const { 3130 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3131 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3132 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3133 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3134 "Should use isKnownNeverNaN if you don't know whether Op" 3135 " is a target node!"); 3136 return false; 3137 } 3138 3139 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3140 const APInt &DemandedElts, 3141 APInt &UndefElts, 3142 unsigned Depth) const { 3143 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3144 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3145 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3146 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3147 "Should use isSplatValue if you don't know whether Op" 3148 " is a target node!"); 3149 return false; 3150 } 3151 3152 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3153 // work with truncating build vectors and vectors with elements of less than 3154 // 8 bits. 3155 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3156 if (!N) 3157 return false; 3158 3159 APInt CVal; 3160 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3161 CVal = CN->getAPIntValue(); 3162 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3163 auto *CN = BV->getConstantSplatNode(); 3164 if (!CN) 3165 return false; 3166 3167 // If this is a truncating build vector, truncate the splat value. 3168 // Otherwise, we may fail to match the expected values below. 3169 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3170 CVal = CN->getAPIntValue(); 3171 if (BVEltWidth < CVal.getBitWidth()) 3172 CVal = CVal.trunc(BVEltWidth); 3173 } else { 3174 return false; 3175 } 3176 3177 switch (getBooleanContents(N->getValueType(0))) { 3178 case UndefinedBooleanContent: 3179 return CVal[0]; 3180 case ZeroOrOneBooleanContent: 3181 return CVal.isOne(); 3182 case ZeroOrNegativeOneBooleanContent: 3183 return CVal.isAllOnes(); 3184 } 3185 3186 llvm_unreachable("Invalid boolean contents"); 3187 } 3188 3189 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3190 if (!N) 3191 return false; 3192 3193 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3194 if (!CN) { 3195 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3196 if (!BV) 3197 return false; 3198 3199 // Only interested in constant splats, we don't care about undef 3200 // elements in identifying boolean constants and getConstantSplatNode 3201 // returns NULL if all ops are undef; 3202 CN = BV->getConstantSplatNode(); 3203 if (!CN) 3204 return false; 3205 } 3206 3207 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3208 return !CN->getAPIntValue()[0]; 3209 3210 return CN->isZero(); 3211 } 3212 3213 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3214 bool SExt) const { 3215 if (VT == MVT::i1) 3216 return N->isOne(); 3217 3218 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3219 switch (Cnt) { 3220 case TargetLowering::ZeroOrOneBooleanContent: 3221 // An extended value of 1 is always true, unless its original type is i1, 3222 // in which case it will be sign extended to -1. 3223 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3224 case TargetLowering::UndefinedBooleanContent: 3225 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3226 return N->isAllOnes() && SExt; 3227 } 3228 llvm_unreachable("Unexpected enumeration."); 3229 } 3230 3231 /// This helper function of SimplifySetCC tries to optimize the comparison when 3232 /// either operand of the SetCC node is a bitwise-and instruction. 3233 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3234 ISD::CondCode Cond, const SDLoc &DL, 3235 DAGCombinerInfo &DCI) const { 3236 // Match these patterns in any of their permutations: 3237 // (X & Y) == Y 3238 // (X & Y) != Y 3239 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3240 std::swap(N0, N1); 3241 3242 EVT OpVT = N0.getValueType(); 3243 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3244 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3245 return SDValue(); 3246 3247 SDValue X, Y; 3248 if (N0.getOperand(0) == N1) { 3249 X = N0.getOperand(1); 3250 Y = N0.getOperand(0); 3251 } else if (N0.getOperand(1) == N1) { 3252 X = N0.getOperand(0); 3253 Y = N0.getOperand(1); 3254 } else { 3255 return SDValue(); 3256 } 3257 3258 SelectionDAG &DAG = DCI.DAG; 3259 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3260 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3261 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3262 // Note that where Y is variable and is known to have at most one bit set 3263 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3264 // equivalent when Y == 0. 3265 assert(OpVT.isInteger()); 3266 Cond = ISD::getSetCCInverse(Cond, OpVT); 3267 if (DCI.isBeforeLegalizeOps() || 3268 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3269 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3270 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3271 // If the target supports an 'and-not' or 'and-complement' logic operation, 3272 // try to use that to make a comparison operation more efficient. 3273 // But don't do this transform if the mask is a single bit because there are 3274 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3275 // 'rlwinm' on PPC). 3276 3277 // Bail out if the compare operand that we want to turn into a zero is 3278 // already a zero (otherwise, infinite loop). 3279 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3280 if (YConst && YConst->isZero()) 3281 return SDValue(); 3282 3283 // Transform this into: ~X & Y == 0. 3284 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3285 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3286 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3287 } 3288 3289 return SDValue(); 3290 } 3291 3292 /// There are multiple IR patterns that could be checking whether certain 3293 /// truncation of a signed number would be lossy or not. The pattern which is 3294 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3295 /// We are looking for the following pattern: (KeptBits is a constant) 3296 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3297 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3298 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3299 /// We will unfold it into the natural trunc+sext pattern: 3300 /// ((%x << C) a>> C) dstcond %x 3301 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3302 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3303 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3304 const SDLoc &DL) const { 3305 // We must be comparing with a constant. 3306 ConstantSDNode *C1; 3307 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3308 return SDValue(); 3309 3310 // N0 should be: add %x, (1 << (KeptBits-1)) 3311 if (N0->getOpcode() != ISD::ADD) 3312 return SDValue(); 3313 3314 // And we must be 'add'ing a constant. 3315 ConstantSDNode *C01; 3316 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3317 return SDValue(); 3318 3319 SDValue X = N0->getOperand(0); 3320 EVT XVT = X.getValueType(); 3321 3322 // Validate constants ... 3323 3324 APInt I1 = C1->getAPIntValue(); 3325 3326 ISD::CondCode NewCond; 3327 if (Cond == ISD::CondCode::SETULT) { 3328 NewCond = ISD::CondCode::SETEQ; 3329 } else if (Cond == ISD::CondCode::SETULE) { 3330 NewCond = ISD::CondCode::SETEQ; 3331 // But need to 'canonicalize' the constant. 3332 I1 += 1; 3333 } else if (Cond == ISD::CondCode::SETUGT) { 3334 NewCond = ISD::CondCode::SETNE; 3335 // But need to 'canonicalize' the constant. 3336 I1 += 1; 3337 } else if (Cond == ISD::CondCode::SETUGE) { 3338 NewCond = ISD::CondCode::SETNE; 3339 } else 3340 return SDValue(); 3341 3342 APInt I01 = C01->getAPIntValue(); 3343 3344 auto checkConstants = [&I1, &I01]() -> bool { 3345 // Both of them must be power-of-two, and the constant from setcc is bigger. 3346 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3347 }; 3348 3349 if (checkConstants()) { 3350 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3351 } else { 3352 // What if we invert constants? (and the target predicate) 3353 I1.negate(); 3354 I01.negate(); 3355 assert(XVT.isInteger()); 3356 NewCond = getSetCCInverse(NewCond, XVT); 3357 if (!checkConstants()) 3358 return SDValue(); 3359 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3360 } 3361 3362 // They are power-of-two, so which bit is set? 3363 const unsigned KeptBits = I1.logBase2(); 3364 const unsigned KeptBitsMinusOne = I01.logBase2(); 3365 3366 // Magic! 3367 if (KeptBits != (KeptBitsMinusOne + 1)) 3368 return SDValue(); 3369 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3370 3371 // We don't want to do this in every single case. 3372 SelectionDAG &DAG = DCI.DAG; 3373 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3374 XVT, KeptBits)) 3375 return SDValue(); 3376 3377 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3378 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3379 3380 // Unfold into: ((%x << C) a>> C) cond %x 3381 // Where 'cond' will be either 'eq' or 'ne'. 3382 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3383 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3384 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3385 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3386 3387 return T2; 3388 } 3389 3390 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3391 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3392 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3393 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3394 assert(isConstOrConstSplat(N1C) && 3395 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3396 "Should be a comparison with 0."); 3397 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3398 "Valid only for [in]equality comparisons."); 3399 3400 unsigned NewShiftOpcode; 3401 SDValue X, C, Y; 3402 3403 SelectionDAG &DAG = DCI.DAG; 3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3405 3406 // Look for '(C l>>/<< Y)'. 3407 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3408 // The shift should be one-use. 3409 if (!V.hasOneUse()) 3410 return false; 3411 unsigned OldShiftOpcode = V.getOpcode(); 3412 switch (OldShiftOpcode) { 3413 case ISD::SHL: 3414 NewShiftOpcode = ISD::SRL; 3415 break; 3416 case ISD::SRL: 3417 NewShiftOpcode = ISD::SHL; 3418 break; 3419 default: 3420 return false; // must be a logical shift. 3421 } 3422 // We should be shifting a constant. 3423 // FIXME: best to use isConstantOrConstantVector(). 3424 C = V.getOperand(0); 3425 ConstantSDNode *CC = 3426 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3427 if (!CC) 3428 return false; 3429 Y = V.getOperand(1); 3430 3431 ConstantSDNode *XC = 3432 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3433 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3434 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3435 }; 3436 3437 // LHS of comparison should be an one-use 'and'. 3438 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3439 return SDValue(); 3440 3441 X = N0.getOperand(0); 3442 SDValue Mask = N0.getOperand(1); 3443 3444 // 'and' is commutative! 3445 if (!Match(Mask)) { 3446 std::swap(X, Mask); 3447 if (!Match(Mask)) 3448 return SDValue(); 3449 } 3450 3451 EVT VT = X.getValueType(); 3452 3453 // Produce: 3454 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3455 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3456 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3457 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3458 return T2; 3459 } 3460 3461 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3462 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3463 /// handle the commuted versions of these patterns. 3464 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3465 ISD::CondCode Cond, const SDLoc &DL, 3466 DAGCombinerInfo &DCI) const { 3467 unsigned BOpcode = N0.getOpcode(); 3468 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3469 "Unexpected binop"); 3470 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3471 3472 // (X + Y) == X --> Y == 0 3473 // (X - Y) == X --> Y == 0 3474 // (X ^ Y) == X --> Y == 0 3475 SelectionDAG &DAG = DCI.DAG; 3476 EVT OpVT = N0.getValueType(); 3477 SDValue X = N0.getOperand(0); 3478 SDValue Y = N0.getOperand(1); 3479 if (X == N1) 3480 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3481 3482 if (Y != N1) 3483 return SDValue(); 3484 3485 // (X + Y) == Y --> X == 0 3486 // (X ^ Y) == Y --> X == 0 3487 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3488 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3489 3490 // The shift would not be valid if the operands are boolean (i1). 3491 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3492 return SDValue(); 3493 3494 // (X - Y) == Y --> X == Y << 1 3495 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3496 !DCI.isBeforeLegalize()); 3497 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3498 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3499 if (!DCI.isCalledByLegalizer()) 3500 DCI.AddToWorklist(YShl1.getNode()); 3501 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3502 } 3503 3504 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3505 SDValue N0, const APInt &C1, 3506 ISD::CondCode Cond, const SDLoc &dl, 3507 SelectionDAG &DAG) { 3508 // Look through truncs that don't change the value of a ctpop. 3509 // FIXME: Add vector support? Need to be careful with setcc result type below. 3510 SDValue CTPOP = N0; 3511 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3512 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3513 CTPOP = N0.getOperand(0); 3514 3515 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3516 return SDValue(); 3517 3518 EVT CTVT = CTPOP.getValueType(); 3519 SDValue CTOp = CTPOP.getOperand(0); 3520 3521 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3522 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3523 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3524 return SDValue(); 3525 3526 // (ctpop x) u< 2 -> (x & x-1) == 0 3527 // (ctpop x) u> 1 -> (x & x-1) != 0 3528 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3529 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3530 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3531 return SDValue(); 3532 if (C1 == 0 && (Cond == ISD::SETULT)) 3533 return SDValue(); // This is handled elsewhere. 3534 3535 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3536 3537 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3538 SDValue Result = CTOp; 3539 for (unsigned i = 0; i < Passes; i++) { 3540 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3541 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3542 } 3543 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3544 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3545 } 3546 3547 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3548 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3549 // For scalars, keep CTPOP if it is legal or custom. 3550 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3551 return SDValue(); 3552 // This is based on X86's custom lowering for CTPOP which produces more 3553 // instructions than the expansion here. 3554 3555 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3556 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3557 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3558 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3559 assert(CTVT.isInteger()); 3560 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3561 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3562 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3563 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3564 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3565 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3566 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3567 } 3568 3569 return SDValue(); 3570 } 3571 3572 /// Try to simplify a setcc built with the specified operands and cc. If it is 3573 /// unable to simplify it, return a null SDValue. 3574 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3575 ISD::CondCode Cond, bool foldBooleans, 3576 DAGCombinerInfo &DCI, 3577 const SDLoc &dl) const { 3578 SelectionDAG &DAG = DCI.DAG; 3579 const DataLayout &Layout = DAG.getDataLayout(); 3580 EVT OpVT = N0.getValueType(); 3581 3582 // Constant fold or commute setcc. 3583 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3584 return Fold; 3585 3586 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3587 // TODO: Handle non-splat vector constants. All undef causes trouble. 3588 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3589 // infinite loop here when we encounter one. 3590 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3591 if (isConstOrConstSplat(N0) && 3592 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3593 (DCI.isBeforeLegalizeOps() || 3594 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3595 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3596 3597 // If we have a subtract with the same 2 non-constant operands as this setcc 3598 // -- but in reverse order -- then try to commute the operands of this setcc 3599 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3600 // instruction on some targets. 3601 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3602 (DCI.isBeforeLegalizeOps() || 3603 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3604 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3605 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3606 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3607 3608 if (auto *N1C = isConstOrConstSplat(N1)) { 3609 const APInt &C1 = N1C->getAPIntValue(); 3610 3611 // Optimize some CTPOP cases. 3612 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3613 return V; 3614 3615 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3616 // equality comparison, then we're just comparing whether X itself is 3617 // zero. 3618 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3619 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3620 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3621 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3622 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3623 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3624 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3625 // (srl (ctlz x), 5) == 0 -> X != 0 3626 // (srl (ctlz x), 5) != 1 -> X != 0 3627 Cond = ISD::SETNE; 3628 } else { 3629 // (srl (ctlz x), 5) != 0 -> X == 0 3630 // (srl (ctlz x), 5) == 1 -> X == 0 3631 Cond = ISD::SETEQ; 3632 } 3633 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3634 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3635 Cond); 3636 } 3637 } 3638 } 3639 } 3640 3641 // FIXME: Support vectors. 3642 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3643 const APInt &C1 = N1C->getAPIntValue(); 3644 3645 // (zext x) == C --> x == (trunc C) 3646 // (sext x) == C --> x == (trunc C) 3647 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3648 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3649 unsigned MinBits = N0.getValueSizeInBits(); 3650 SDValue PreExt; 3651 bool Signed = false; 3652 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3653 // ZExt 3654 MinBits = N0->getOperand(0).getValueSizeInBits(); 3655 PreExt = N0->getOperand(0); 3656 } else if (N0->getOpcode() == ISD::AND) { 3657 // DAGCombine turns costly ZExts into ANDs 3658 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3659 if ((C->getAPIntValue()+1).isPowerOf2()) { 3660 MinBits = C->getAPIntValue().countTrailingOnes(); 3661 PreExt = N0->getOperand(0); 3662 } 3663 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3664 // SExt 3665 MinBits = N0->getOperand(0).getValueSizeInBits(); 3666 PreExt = N0->getOperand(0); 3667 Signed = true; 3668 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3669 // ZEXTLOAD / SEXTLOAD 3670 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3671 MinBits = LN0->getMemoryVT().getSizeInBits(); 3672 PreExt = N0; 3673 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3674 Signed = true; 3675 MinBits = LN0->getMemoryVT().getSizeInBits(); 3676 PreExt = N0; 3677 } 3678 } 3679 3680 // Figure out how many bits we need to preserve this constant. 3681 unsigned ReqdBits = Signed ? 3682 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3683 C1.getActiveBits(); 3684 3685 // Make sure we're not losing bits from the constant. 3686 if (MinBits > 0 && 3687 MinBits < C1.getBitWidth() && 3688 MinBits >= ReqdBits) { 3689 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3690 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3691 // Will get folded away. 3692 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3693 if (MinBits == 1 && C1 == 1) 3694 // Invert the condition. 3695 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3696 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3697 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3698 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3699 } 3700 3701 // If truncating the setcc operands is not desirable, we can still 3702 // simplify the expression in some cases: 3703 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3704 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3705 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3706 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3707 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3708 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3709 SDValue TopSetCC = N0->getOperand(0); 3710 unsigned N0Opc = N0->getOpcode(); 3711 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3712 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3713 TopSetCC.getOpcode() == ISD::SETCC && 3714 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3715 (isConstFalseVal(N1C) || 3716 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3717 3718 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3719 (!N1C->isZero() && Cond == ISD::SETNE); 3720 3721 if (!Inverse) 3722 return TopSetCC; 3723 3724 ISD::CondCode InvCond = ISD::getSetCCInverse( 3725 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3726 TopSetCC.getOperand(0).getValueType()); 3727 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3728 TopSetCC.getOperand(1), 3729 InvCond); 3730 } 3731 } 3732 } 3733 3734 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3735 // equality or unsigned, and all 1 bits of the const are in the same 3736 // partial word, see if we can shorten the load. 3737 if (DCI.isBeforeLegalize() && 3738 !ISD::isSignedIntSetCC(Cond) && 3739 N0.getOpcode() == ISD::AND && C1 == 0 && 3740 N0.getNode()->hasOneUse() && 3741 isa<LoadSDNode>(N0.getOperand(0)) && 3742 N0.getOperand(0).getNode()->hasOneUse() && 3743 isa<ConstantSDNode>(N0.getOperand(1))) { 3744 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3745 APInt bestMask; 3746 unsigned bestWidth = 0, bestOffset = 0; 3747 if (Lod->isSimple() && Lod->isUnindexed()) { 3748 unsigned origWidth = N0.getValueSizeInBits(); 3749 unsigned maskWidth = origWidth; 3750 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3751 // 8 bits, but have to be careful... 3752 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3753 origWidth = Lod->getMemoryVT().getSizeInBits(); 3754 const APInt &Mask = N0.getConstantOperandAPInt(1); 3755 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3756 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3757 for (unsigned offset=0; offset<origWidth/width; offset++) { 3758 if (Mask.isSubsetOf(newMask)) { 3759 if (Layout.isLittleEndian()) 3760 bestOffset = (uint64_t)offset * (width/8); 3761 else 3762 bestOffset = (origWidth/width - offset - 1) * (width/8); 3763 bestMask = Mask.lshr(offset * (width/8) * 8); 3764 bestWidth = width; 3765 break; 3766 } 3767 newMask <<= width; 3768 } 3769 } 3770 } 3771 if (bestWidth) { 3772 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3773 if (newVT.isRound() && 3774 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3775 SDValue Ptr = Lod->getBasePtr(); 3776 if (bestOffset != 0) 3777 Ptr = 3778 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3779 SDValue NewLoad = 3780 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3781 Lod->getPointerInfo().getWithOffset(bestOffset), 3782 Lod->getOriginalAlign()); 3783 return DAG.getSetCC(dl, VT, 3784 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3785 DAG.getConstant(bestMask.trunc(bestWidth), 3786 dl, newVT)), 3787 DAG.getConstant(0LL, dl, newVT), Cond); 3788 } 3789 } 3790 } 3791 3792 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3793 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3794 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3795 3796 // If the comparison constant has bits in the upper part, the 3797 // zero-extended value could never match. 3798 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3799 C1.getBitWidth() - InSize))) { 3800 switch (Cond) { 3801 case ISD::SETUGT: 3802 case ISD::SETUGE: 3803 case ISD::SETEQ: 3804 return DAG.getConstant(0, dl, VT); 3805 case ISD::SETULT: 3806 case ISD::SETULE: 3807 case ISD::SETNE: 3808 return DAG.getConstant(1, dl, VT); 3809 case ISD::SETGT: 3810 case ISD::SETGE: 3811 // True if the sign bit of C1 is set. 3812 return DAG.getConstant(C1.isNegative(), dl, VT); 3813 case ISD::SETLT: 3814 case ISD::SETLE: 3815 // True if the sign bit of C1 isn't set. 3816 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3817 default: 3818 break; 3819 } 3820 } 3821 3822 // Otherwise, we can perform the comparison with the low bits. 3823 switch (Cond) { 3824 case ISD::SETEQ: 3825 case ISD::SETNE: 3826 case ISD::SETUGT: 3827 case ISD::SETUGE: 3828 case ISD::SETULT: 3829 case ISD::SETULE: { 3830 EVT newVT = N0.getOperand(0).getValueType(); 3831 if (DCI.isBeforeLegalizeOps() || 3832 (isOperationLegal(ISD::SETCC, newVT) && 3833 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3834 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3835 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3836 3837 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3838 NewConst, Cond); 3839 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3840 } 3841 break; 3842 } 3843 default: 3844 break; // todo, be more careful with signed comparisons 3845 } 3846 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3847 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3848 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3849 OpVT)) { 3850 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3851 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3852 EVT ExtDstTy = N0.getValueType(); 3853 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3854 3855 // If the constant doesn't fit into the number of bits for the source of 3856 // the sign extension, it is impossible for both sides to be equal. 3857 if (C1.getMinSignedBits() > ExtSrcTyBits) 3858 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3859 3860 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3861 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3862 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3863 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3864 DAG.getConstant(Imm, dl, ExtDstTy)); 3865 if (!DCI.isCalledByLegalizer()) 3866 DCI.AddToWorklist(ZextOp.getNode()); 3867 // Otherwise, make this a use of a zext. 3868 return DAG.getSetCC(dl, VT, ZextOp, 3869 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3870 } else if ((N1C->isZero() || N1C->isOne()) && 3871 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3872 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3873 if (N0.getOpcode() == ISD::SETCC && 3874 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3875 (N0.getValueType() == MVT::i1 || 3876 getBooleanContents(N0.getOperand(0).getValueType()) == 3877 ZeroOrOneBooleanContent)) { 3878 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3879 if (TrueWhenTrue) 3880 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3881 // Invert the condition. 3882 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3883 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3884 if (DCI.isBeforeLegalizeOps() || 3885 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3886 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3887 } 3888 3889 if ((N0.getOpcode() == ISD::XOR || 3890 (N0.getOpcode() == ISD::AND && 3891 N0.getOperand(0).getOpcode() == ISD::XOR && 3892 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3893 isOneConstant(N0.getOperand(1))) { 3894 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3895 // can only do this if the top bits are known zero. 3896 unsigned BitWidth = N0.getValueSizeInBits(); 3897 if (DAG.MaskedValueIsZero(N0, 3898 APInt::getHighBitsSet(BitWidth, 3899 BitWidth-1))) { 3900 // Okay, get the un-inverted input value. 3901 SDValue Val; 3902 if (N0.getOpcode() == ISD::XOR) { 3903 Val = N0.getOperand(0); 3904 } else { 3905 assert(N0.getOpcode() == ISD::AND && 3906 N0.getOperand(0).getOpcode() == ISD::XOR); 3907 // ((X^1)&1)^1 -> X & 1 3908 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3909 N0.getOperand(0).getOperand(0), 3910 N0.getOperand(1)); 3911 } 3912 3913 return DAG.getSetCC(dl, VT, Val, N1, 3914 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3915 } 3916 } else if (N1C->isOne()) { 3917 SDValue Op0 = N0; 3918 if (Op0.getOpcode() == ISD::TRUNCATE) 3919 Op0 = Op0.getOperand(0); 3920 3921 if ((Op0.getOpcode() == ISD::XOR) && 3922 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3923 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3924 SDValue XorLHS = Op0.getOperand(0); 3925 SDValue XorRHS = Op0.getOperand(1); 3926 // Ensure that the input setccs return an i1 type or 0/1 value. 3927 if (Op0.getValueType() == MVT::i1 || 3928 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3929 ZeroOrOneBooleanContent && 3930 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3931 ZeroOrOneBooleanContent)) { 3932 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3933 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3934 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3935 } 3936 } 3937 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3938 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3939 if (Op0.getValueType().bitsGT(VT)) 3940 Op0 = DAG.getNode(ISD::AND, dl, VT, 3941 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3942 DAG.getConstant(1, dl, VT)); 3943 else if (Op0.getValueType().bitsLT(VT)) 3944 Op0 = DAG.getNode(ISD::AND, dl, VT, 3945 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3946 DAG.getConstant(1, dl, VT)); 3947 3948 return DAG.getSetCC(dl, VT, Op0, 3949 DAG.getConstant(0, dl, Op0.getValueType()), 3950 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3951 } 3952 if (Op0.getOpcode() == ISD::AssertZext && 3953 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3954 return DAG.getSetCC(dl, VT, Op0, 3955 DAG.getConstant(0, dl, Op0.getValueType()), 3956 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3957 } 3958 } 3959 3960 // Given: 3961 // icmp eq/ne (urem %x, %y), 0 3962 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3963 // icmp eq/ne %x, 0 3964 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3965 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3966 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3967 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3968 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3969 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3970 } 3971 3972 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3973 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3974 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3975 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3976 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3977 N1C && N1C->isAllOnes()) { 3978 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3979 DAG.getConstant(0, dl, OpVT), 3980 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3981 } 3982 3983 if (SDValue V = 3984 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3985 return V; 3986 } 3987 3988 // These simplifications apply to splat vectors as well. 3989 // TODO: Handle more splat vector cases. 3990 if (auto *N1C = isConstOrConstSplat(N1)) { 3991 const APInt &C1 = N1C->getAPIntValue(); 3992 3993 APInt MinVal, MaxVal; 3994 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3995 if (ISD::isSignedIntSetCC(Cond)) { 3996 MinVal = APInt::getSignedMinValue(OperandBitSize); 3997 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3998 } else { 3999 MinVal = APInt::getMinValue(OperandBitSize); 4000 MaxVal = APInt::getMaxValue(OperandBitSize); 4001 } 4002 4003 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4004 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4005 // X >= MIN --> true 4006 if (C1 == MinVal) 4007 return DAG.getBoolConstant(true, dl, VT, OpVT); 4008 4009 if (!VT.isVector()) { // TODO: Support this for vectors. 4010 // X >= C0 --> X > (C0 - 1) 4011 APInt C = C1 - 1; 4012 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4013 if ((DCI.isBeforeLegalizeOps() || 4014 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4015 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4016 isLegalICmpImmediate(C.getSExtValue())))) { 4017 return DAG.getSetCC(dl, VT, N0, 4018 DAG.getConstant(C, dl, N1.getValueType()), 4019 NewCC); 4020 } 4021 } 4022 } 4023 4024 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4025 // X <= MAX --> true 4026 if (C1 == MaxVal) 4027 return DAG.getBoolConstant(true, dl, VT, OpVT); 4028 4029 // X <= C0 --> X < (C0 + 1) 4030 if (!VT.isVector()) { // TODO: Support this for vectors. 4031 APInt C = C1 + 1; 4032 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4033 if ((DCI.isBeforeLegalizeOps() || 4034 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4035 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4036 isLegalICmpImmediate(C.getSExtValue())))) { 4037 return DAG.getSetCC(dl, VT, N0, 4038 DAG.getConstant(C, dl, N1.getValueType()), 4039 NewCC); 4040 } 4041 } 4042 } 4043 4044 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4045 if (C1 == MinVal) 4046 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4047 4048 // TODO: Support this for vectors after legalize ops. 4049 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4050 // Canonicalize setlt X, Max --> setne X, Max 4051 if (C1 == MaxVal) 4052 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4053 4054 // If we have setult X, 1, turn it into seteq X, 0 4055 if (C1 == MinVal+1) 4056 return DAG.getSetCC(dl, VT, N0, 4057 DAG.getConstant(MinVal, dl, N0.getValueType()), 4058 ISD::SETEQ); 4059 } 4060 } 4061 4062 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4063 if (C1 == MaxVal) 4064 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4065 4066 // TODO: Support this for vectors after legalize ops. 4067 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4068 // Canonicalize setgt X, Min --> setne X, Min 4069 if (C1 == MinVal) 4070 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4071 4072 // If we have setugt X, Max-1, turn it into seteq X, Max 4073 if (C1 == MaxVal-1) 4074 return DAG.getSetCC(dl, VT, N0, 4075 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4076 ISD::SETEQ); 4077 } 4078 } 4079 4080 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4081 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4082 if (C1.isZero()) 4083 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4084 VT, N0, N1, Cond, DCI, dl)) 4085 return CC; 4086 4087 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4088 // For example, when high 32-bits of i64 X are known clear: 4089 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4090 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4091 bool CmpZero = N1C->getAPIntValue().isZero(); 4092 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4093 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4094 // Match or(lo,shl(hi,bw/2)) pattern. 4095 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4096 unsigned EltBits = V.getScalarValueSizeInBits(); 4097 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4098 return false; 4099 SDValue LHS = V.getOperand(0); 4100 SDValue RHS = V.getOperand(1); 4101 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4102 // Unshifted element must have zero upperbits. 4103 if (RHS.getOpcode() == ISD::SHL && 4104 isa<ConstantSDNode>(RHS.getOperand(1)) && 4105 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4106 DAG.MaskedValueIsZero(LHS, HiBits)) { 4107 Lo = LHS; 4108 Hi = RHS.getOperand(0); 4109 return true; 4110 } 4111 if (LHS.getOpcode() == ISD::SHL && 4112 isa<ConstantSDNode>(LHS.getOperand(1)) && 4113 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4114 DAG.MaskedValueIsZero(RHS, HiBits)) { 4115 Lo = RHS; 4116 Hi = LHS.getOperand(0); 4117 return true; 4118 } 4119 return false; 4120 }; 4121 4122 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4123 unsigned EltBits = N0.getScalarValueSizeInBits(); 4124 unsigned HalfBits = EltBits / 2; 4125 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4126 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4127 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4128 SDValue NewN0 = 4129 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4130 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4131 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4132 }; 4133 4134 SDValue Lo, Hi; 4135 if (IsConcat(N0, Lo, Hi)) 4136 return MergeConcat(Lo, Hi); 4137 4138 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4139 SDValue Lo0, Lo1, Hi0, Hi1; 4140 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4141 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4142 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4143 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4144 } 4145 } 4146 } 4147 } 4148 4149 // If we have "setcc X, C0", check to see if we can shrink the immediate 4150 // by changing cc. 4151 // TODO: Support this for vectors after legalize ops. 4152 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4153 // SETUGT X, SINTMAX -> SETLT X, 0 4154 // SETUGE X, SINTMIN -> SETLT X, 0 4155 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4156 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4157 return DAG.getSetCC(dl, VT, N0, 4158 DAG.getConstant(0, dl, N1.getValueType()), 4159 ISD::SETLT); 4160 4161 // SETULT X, SINTMIN -> SETGT X, -1 4162 // SETULE X, SINTMAX -> SETGT X, -1 4163 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4164 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4165 return DAG.getSetCC(dl, VT, N0, 4166 DAG.getAllOnesConstant(dl, N1.getValueType()), 4167 ISD::SETGT); 4168 } 4169 } 4170 4171 // Back to non-vector simplifications. 4172 // TODO: Can we do these for vector splats? 4173 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4175 const APInt &C1 = N1C->getAPIntValue(); 4176 EVT ShValTy = N0.getValueType(); 4177 4178 // Fold bit comparisons when we can. This will result in an 4179 // incorrect value when boolean false is negative one, unless 4180 // the bitsize is 1 in which case the false value is the same 4181 // in practice regardless of the representation. 4182 if ((VT.getSizeInBits() == 1 || 4183 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4184 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4185 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4186 N0.getOpcode() == ISD::AND) { 4187 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4188 EVT ShiftTy = 4189 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4190 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4191 // Perform the xform if the AND RHS is a single bit. 4192 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4193 if (AndRHS->getAPIntValue().isPowerOf2() && 4194 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4195 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4196 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4197 DAG.getConstant(ShCt, dl, ShiftTy))); 4198 } 4199 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4200 // (X & 8) == 8 --> (X & 8) >> 3 4201 // Perform the xform if C1 is a single bit. 4202 unsigned ShCt = C1.logBase2(); 4203 if (C1.isPowerOf2() && 4204 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4205 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4206 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4207 DAG.getConstant(ShCt, dl, ShiftTy))); 4208 } 4209 } 4210 } 4211 } 4212 4213 if (C1.getMinSignedBits() <= 64 && 4214 !isLegalICmpImmediate(C1.getSExtValue())) { 4215 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4216 // (X & -256) == 256 -> (X >> 8) == 1 4217 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4218 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4219 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4220 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4221 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4222 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4223 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4224 SDValue Shift = 4225 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4226 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4227 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4228 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4229 } 4230 } 4231 } 4232 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4233 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4234 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4235 // X < 0x100000000 -> (X >> 32) < 1 4236 // X >= 0x100000000 -> (X >> 32) >= 1 4237 // X <= 0x0ffffffff -> (X >> 32) < 1 4238 // X > 0x0ffffffff -> (X >> 32) >= 1 4239 unsigned ShiftBits; 4240 APInt NewC = C1; 4241 ISD::CondCode NewCond = Cond; 4242 if (AdjOne) { 4243 ShiftBits = C1.countTrailingOnes(); 4244 NewC = NewC + 1; 4245 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4246 } else { 4247 ShiftBits = C1.countTrailingZeros(); 4248 } 4249 NewC.lshrInPlace(ShiftBits); 4250 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4251 isLegalICmpImmediate(NewC.getSExtValue()) && 4252 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4253 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4254 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4255 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4256 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4257 } 4258 } 4259 } 4260 } 4261 4262 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4263 auto *CFP = cast<ConstantFPSDNode>(N1); 4264 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4265 4266 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4267 // constant if knowing that the operand is non-nan is enough. We prefer to 4268 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4269 // materialize 0.0. 4270 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4271 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4272 4273 // setcc (fneg x), C -> setcc swap(pred) x, -C 4274 if (N0.getOpcode() == ISD::FNEG) { 4275 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4276 if (DCI.isBeforeLegalizeOps() || 4277 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4278 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4279 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4280 } 4281 } 4282 4283 // If the condition is not legal, see if we can find an equivalent one 4284 // which is legal. 4285 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4286 // If the comparison was an awkward floating-point == or != and one of 4287 // the comparison operands is infinity or negative infinity, convert the 4288 // condition to a less-awkward <= or >=. 4289 if (CFP->getValueAPF().isInfinity()) { 4290 bool IsNegInf = CFP->getValueAPF().isNegative(); 4291 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4292 switch (Cond) { 4293 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4294 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4295 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4296 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4297 default: break; 4298 } 4299 if (NewCond != ISD::SETCC_INVALID && 4300 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4301 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4302 } 4303 } 4304 } 4305 4306 if (N0 == N1) { 4307 // The sext(setcc()) => setcc() optimization relies on the appropriate 4308 // constant being emitted. 4309 assert(!N0.getValueType().isInteger() && 4310 "Integer types should be handled by FoldSetCC"); 4311 4312 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4313 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4314 if (UOF == 2) // FP operators that are undefined on NaNs. 4315 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4316 if (UOF == unsigned(EqTrue)) 4317 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4318 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4319 // if it is not already. 4320 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4321 if (NewCond != Cond && 4322 (DCI.isBeforeLegalizeOps() || 4323 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4324 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4325 } 4326 4327 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4328 N0.getValueType().isInteger()) { 4329 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4330 N0.getOpcode() == ISD::XOR) { 4331 // Simplify (X+Y) == (X+Z) --> Y == Z 4332 if (N0.getOpcode() == N1.getOpcode()) { 4333 if (N0.getOperand(0) == N1.getOperand(0)) 4334 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4335 if (N0.getOperand(1) == N1.getOperand(1)) 4336 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4337 if (isCommutativeBinOp(N0.getOpcode())) { 4338 // If X op Y == Y op X, try other combinations. 4339 if (N0.getOperand(0) == N1.getOperand(1)) 4340 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4341 Cond); 4342 if (N0.getOperand(1) == N1.getOperand(0)) 4343 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4344 Cond); 4345 } 4346 } 4347 4348 // If RHS is a legal immediate value for a compare instruction, we need 4349 // to be careful about increasing register pressure needlessly. 4350 bool LegalRHSImm = false; 4351 4352 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4353 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4354 // Turn (X+C1) == C2 --> X == C2-C1 4355 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4356 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4357 DAG.getConstant(RHSC->getAPIntValue()- 4358 LHSR->getAPIntValue(), 4359 dl, N0.getValueType()), Cond); 4360 } 4361 4362 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4363 if (N0.getOpcode() == ISD::XOR) 4364 // If we know that all of the inverted bits are zero, don't bother 4365 // performing the inversion. 4366 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4367 return 4368 DAG.getSetCC(dl, VT, N0.getOperand(0), 4369 DAG.getConstant(LHSR->getAPIntValue() ^ 4370 RHSC->getAPIntValue(), 4371 dl, N0.getValueType()), 4372 Cond); 4373 } 4374 4375 // Turn (C1-X) == C2 --> X == C1-C2 4376 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4377 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4378 return 4379 DAG.getSetCC(dl, VT, N0.getOperand(1), 4380 DAG.getConstant(SUBC->getAPIntValue() - 4381 RHSC->getAPIntValue(), 4382 dl, N0.getValueType()), 4383 Cond); 4384 } 4385 } 4386 4387 // Could RHSC fold directly into a compare? 4388 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4389 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4390 } 4391 4392 // (X+Y) == X --> Y == 0 and similar folds. 4393 // Don't do this if X is an immediate that can fold into a cmp 4394 // instruction and X+Y has other uses. It could be an induction variable 4395 // chain, and the transform would increase register pressure. 4396 if (!LegalRHSImm || N0.hasOneUse()) 4397 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4398 return V; 4399 } 4400 4401 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4402 N1.getOpcode() == ISD::XOR) 4403 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4404 return V; 4405 4406 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4407 return V; 4408 } 4409 4410 // Fold remainder of division by a constant. 4411 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4412 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4413 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4414 4415 // When division is cheap or optimizing for minimum size, 4416 // fall through to DIVREM creation by skipping this fold. 4417 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4418 if (N0.getOpcode() == ISD::UREM) { 4419 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4420 return Folded; 4421 } else if (N0.getOpcode() == ISD::SREM) { 4422 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4423 return Folded; 4424 } 4425 } 4426 } 4427 4428 // Fold away ALL boolean setcc's. 4429 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4430 SDValue Temp; 4431 switch (Cond) { 4432 default: llvm_unreachable("Unknown integer setcc!"); 4433 case ISD::SETEQ: // X == Y -> ~(X^Y) 4434 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4435 N0 = DAG.getNOT(dl, Temp, OpVT); 4436 if (!DCI.isCalledByLegalizer()) 4437 DCI.AddToWorklist(Temp.getNode()); 4438 break; 4439 case ISD::SETNE: // X != Y --> (X^Y) 4440 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4441 break; 4442 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4443 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4444 Temp = DAG.getNOT(dl, N0, OpVT); 4445 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4446 if (!DCI.isCalledByLegalizer()) 4447 DCI.AddToWorklist(Temp.getNode()); 4448 break; 4449 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4450 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4451 Temp = DAG.getNOT(dl, N1, OpVT); 4452 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4453 if (!DCI.isCalledByLegalizer()) 4454 DCI.AddToWorklist(Temp.getNode()); 4455 break; 4456 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4457 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4458 Temp = DAG.getNOT(dl, N0, OpVT); 4459 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4460 if (!DCI.isCalledByLegalizer()) 4461 DCI.AddToWorklist(Temp.getNode()); 4462 break; 4463 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4464 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4465 Temp = DAG.getNOT(dl, N1, OpVT); 4466 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4467 break; 4468 } 4469 if (VT.getScalarType() != MVT::i1) { 4470 if (!DCI.isCalledByLegalizer()) 4471 DCI.AddToWorklist(N0.getNode()); 4472 // FIXME: If running after legalize, we probably can't do this. 4473 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4474 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4475 } 4476 return N0; 4477 } 4478 4479 // Could not fold it. 4480 return SDValue(); 4481 } 4482 4483 /// Returns true (and the GlobalValue and the offset) if the node is a 4484 /// GlobalAddress + offset. 4485 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4486 int64_t &Offset) const { 4487 4488 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4489 4490 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4491 GA = GASD->getGlobal(); 4492 Offset += GASD->getOffset(); 4493 return true; 4494 } 4495 4496 if (N->getOpcode() == ISD::ADD) { 4497 SDValue N1 = N->getOperand(0); 4498 SDValue N2 = N->getOperand(1); 4499 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4500 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4501 Offset += V->getSExtValue(); 4502 return true; 4503 } 4504 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4505 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4506 Offset += V->getSExtValue(); 4507 return true; 4508 } 4509 } 4510 } 4511 4512 return false; 4513 } 4514 4515 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4516 DAGCombinerInfo &DCI) const { 4517 // Default implementation: no optimization. 4518 return SDValue(); 4519 } 4520 4521 //===----------------------------------------------------------------------===// 4522 // Inline Assembler Implementation Methods 4523 //===----------------------------------------------------------------------===// 4524 4525 TargetLowering::ConstraintType 4526 TargetLowering::getConstraintType(StringRef Constraint) const { 4527 unsigned S = Constraint.size(); 4528 4529 if (S == 1) { 4530 switch (Constraint[0]) { 4531 default: break; 4532 case 'r': 4533 return C_RegisterClass; 4534 case 'm': // memory 4535 case 'o': // offsetable 4536 case 'V': // not offsetable 4537 return C_Memory; 4538 case 'n': // Simple Integer 4539 case 'E': // Floating Point Constant 4540 case 'F': // Floating Point Constant 4541 return C_Immediate; 4542 case 'i': // Simple Integer or Relocatable Constant 4543 case 's': // Relocatable Constant 4544 case 'p': // Address. 4545 case 'X': // Allow ANY value. 4546 case 'I': // Target registers. 4547 case 'J': 4548 case 'K': 4549 case 'L': 4550 case 'M': 4551 case 'N': 4552 case 'O': 4553 case 'P': 4554 case '<': 4555 case '>': 4556 return C_Other; 4557 } 4558 } 4559 4560 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4561 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4562 return C_Memory; 4563 return C_Register; 4564 } 4565 return C_Unknown; 4566 } 4567 4568 /// Try to replace an X constraint, which matches anything, with another that 4569 /// has more specific requirements based on the type of the corresponding 4570 /// operand. 4571 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4572 if (ConstraintVT.isInteger()) 4573 return "r"; 4574 if (ConstraintVT.isFloatingPoint()) 4575 return "f"; // works for many targets 4576 return nullptr; 4577 } 4578 4579 SDValue TargetLowering::LowerAsmOutputForConstraint( 4580 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4581 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4582 return SDValue(); 4583 } 4584 4585 /// Lower the specified operand into the Ops vector. 4586 /// If it is invalid, don't add anything to Ops. 4587 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4588 std::string &Constraint, 4589 std::vector<SDValue> &Ops, 4590 SelectionDAG &DAG) const { 4591 4592 if (Constraint.length() > 1) return; 4593 4594 char ConstraintLetter = Constraint[0]; 4595 switch (ConstraintLetter) { 4596 default: break; 4597 case 'X': // Allows any operand; labels (basic block) use this. 4598 if (Op.getOpcode() == ISD::BasicBlock || 4599 Op.getOpcode() == ISD::TargetBlockAddress) { 4600 Ops.push_back(Op); 4601 return; 4602 } 4603 LLVM_FALLTHROUGH; 4604 case 'i': // Simple Integer or Relocatable Constant 4605 case 'n': // Simple Integer 4606 case 's': { // Relocatable Constant 4607 4608 GlobalAddressSDNode *GA; 4609 ConstantSDNode *C; 4610 BlockAddressSDNode *BA; 4611 uint64_t Offset = 0; 4612 4613 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4614 // etc., since getelementpointer is variadic. We can't use 4615 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4616 // while in this case the GA may be furthest from the root node which is 4617 // likely an ISD::ADD. 4618 while (1) { 4619 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4620 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4621 GA->getValueType(0), 4622 Offset + GA->getOffset())); 4623 return; 4624 } 4625 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4626 // gcc prints these as sign extended. Sign extend value to 64 bits 4627 // now; without this it would get ZExt'd later in 4628 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4629 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4630 BooleanContent BCont = getBooleanContents(MVT::i64); 4631 ISD::NodeType ExtOpc = 4632 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4633 int64_t ExtVal = 4634 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4635 Ops.push_back( 4636 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4637 return; 4638 } 4639 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4640 Ops.push_back(DAG.getTargetBlockAddress( 4641 BA->getBlockAddress(), BA->getValueType(0), 4642 Offset + BA->getOffset(), BA->getTargetFlags())); 4643 return; 4644 } 4645 const unsigned OpCode = Op.getOpcode(); 4646 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4647 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4648 Op = Op.getOperand(1); 4649 // Subtraction is not commutative. 4650 else if (OpCode == ISD::ADD && 4651 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4652 Op = Op.getOperand(0); 4653 else 4654 return; 4655 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4656 continue; 4657 } 4658 return; 4659 } 4660 break; 4661 } 4662 } 4663 } 4664 4665 std::pair<unsigned, const TargetRegisterClass *> 4666 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4667 StringRef Constraint, 4668 MVT VT) const { 4669 if (Constraint.empty() || Constraint[0] != '{') 4670 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4671 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4672 4673 // Remove the braces from around the name. 4674 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4675 4676 std::pair<unsigned, const TargetRegisterClass *> R = 4677 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4678 4679 // Figure out which register class contains this reg. 4680 for (const TargetRegisterClass *RC : RI->regclasses()) { 4681 // If none of the value types for this register class are valid, we 4682 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4683 if (!isLegalRC(*RI, *RC)) 4684 continue; 4685 4686 for (const MCPhysReg &PR : *RC) { 4687 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4688 std::pair<unsigned, const TargetRegisterClass *> S = 4689 std::make_pair(PR, RC); 4690 4691 // If this register class has the requested value type, return it, 4692 // otherwise keep searching and return the first class found 4693 // if no other is found which explicitly has the requested type. 4694 if (RI->isTypeLegalForClass(*RC, VT)) 4695 return S; 4696 if (!R.second) 4697 R = S; 4698 } 4699 } 4700 } 4701 4702 return R; 4703 } 4704 4705 //===----------------------------------------------------------------------===// 4706 // Constraint Selection. 4707 4708 /// Return true of this is an input operand that is a matching constraint like 4709 /// "4". 4710 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4711 assert(!ConstraintCode.empty() && "No known constraint!"); 4712 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4713 } 4714 4715 /// If this is an input matching constraint, this method returns the output 4716 /// operand it matches. 4717 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4718 assert(!ConstraintCode.empty() && "No known constraint!"); 4719 return atoi(ConstraintCode.c_str()); 4720 } 4721 4722 /// Split up the constraint string from the inline assembly value into the 4723 /// specific constraints and their prefixes, and also tie in the associated 4724 /// operand values. 4725 /// If this returns an empty vector, and if the constraint string itself 4726 /// isn't empty, there was an error parsing. 4727 TargetLowering::AsmOperandInfoVector 4728 TargetLowering::ParseConstraints(const DataLayout &DL, 4729 const TargetRegisterInfo *TRI, 4730 const CallBase &Call) const { 4731 /// Information about all of the constraints. 4732 AsmOperandInfoVector ConstraintOperands; 4733 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4734 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4735 4736 // Do a prepass over the constraints, canonicalizing them, and building up the 4737 // ConstraintOperands list. 4738 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4739 unsigned ResNo = 0; // ResNo - The result number of the next output. 4740 4741 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4742 ConstraintOperands.emplace_back(std::move(CI)); 4743 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4744 4745 // Update multiple alternative constraint count. 4746 if (OpInfo.multipleAlternatives.size() > maCount) 4747 maCount = OpInfo.multipleAlternatives.size(); 4748 4749 OpInfo.ConstraintVT = MVT::Other; 4750 4751 // Compute the value type for each operand. 4752 switch (OpInfo.Type) { 4753 case InlineAsm::isOutput: 4754 // Indirect outputs just consume an argument. 4755 if (OpInfo.isIndirect) { 4756 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4757 break; 4758 } 4759 4760 // The return value of the call is this value. As such, there is no 4761 // corresponding argument. 4762 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4763 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4764 OpInfo.ConstraintVT = 4765 getSimpleValueType(DL, STy->getElementType(ResNo)); 4766 } else { 4767 assert(ResNo == 0 && "Asm only has one result!"); 4768 OpInfo.ConstraintVT = 4769 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4770 } 4771 ++ResNo; 4772 break; 4773 case InlineAsm::isInput: 4774 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4775 break; 4776 case InlineAsm::isClobber: 4777 // Nothing to do. 4778 break; 4779 } 4780 4781 if (OpInfo.CallOperandVal) { 4782 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4783 if (OpInfo.isIndirect) { 4784 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4785 if (!PtrTy) 4786 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4787 OpTy = PtrTy->getElementType(); 4788 } 4789 4790 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4791 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4792 if (STy->getNumElements() == 1) 4793 OpTy = STy->getElementType(0); 4794 4795 // If OpTy is not a single value, it may be a struct/union that we 4796 // can tile with integers. 4797 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4798 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4799 switch (BitSize) { 4800 default: break; 4801 case 1: 4802 case 8: 4803 case 16: 4804 case 32: 4805 case 64: 4806 case 128: 4807 OpInfo.ConstraintVT = 4808 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4809 break; 4810 } 4811 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4812 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4813 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4814 } else { 4815 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4816 } 4817 } 4818 } 4819 4820 // If we have multiple alternative constraints, select the best alternative. 4821 if (!ConstraintOperands.empty()) { 4822 if (maCount) { 4823 unsigned bestMAIndex = 0; 4824 int bestWeight = -1; 4825 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4826 int weight = -1; 4827 unsigned maIndex; 4828 // Compute the sums of the weights for each alternative, keeping track 4829 // of the best (highest weight) one so far. 4830 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4831 int weightSum = 0; 4832 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4833 cIndex != eIndex; ++cIndex) { 4834 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4835 if (OpInfo.Type == InlineAsm::isClobber) 4836 continue; 4837 4838 // If this is an output operand with a matching input operand, 4839 // look up the matching input. If their types mismatch, e.g. one 4840 // is an integer, the other is floating point, or their sizes are 4841 // different, flag it as an maCantMatch. 4842 if (OpInfo.hasMatchingInput()) { 4843 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4844 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4845 if ((OpInfo.ConstraintVT.isInteger() != 4846 Input.ConstraintVT.isInteger()) || 4847 (OpInfo.ConstraintVT.getSizeInBits() != 4848 Input.ConstraintVT.getSizeInBits())) { 4849 weightSum = -1; // Can't match. 4850 break; 4851 } 4852 } 4853 } 4854 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4855 if (weight == -1) { 4856 weightSum = -1; 4857 break; 4858 } 4859 weightSum += weight; 4860 } 4861 // Update best. 4862 if (weightSum > bestWeight) { 4863 bestWeight = weightSum; 4864 bestMAIndex = maIndex; 4865 } 4866 } 4867 4868 // Now select chosen alternative in each constraint. 4869 for (AsmOperandInfo &cInfo : ConstraintOperands) 4870 if (cInfo.Type != InlineAsm::isClobber) 4871 cInfo.selectAlternative(bestMAIndex); 4872 } 4873 } 4874 4875 // Check and hook up tied operands, choose constraint code to use. 4876 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4877 cIndex != eIndex; ++cIndex) { 4878 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4879 4880 // If this is an output operand with a matching input operand, look up the 4881 // matching input. If their types mismatch, e.g. one is an integer, the 4882 // other is floating point, or their sizes are different, flag it as an 4883 // error. 4884 if (OpInfo.hasMatchingInput()) { 4885 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4886 4887 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4888 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4889 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4890 OpInfo.ConstraintVT); 4891 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4892 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4893 Input.ConstraintVT); 4894 if ((OpInfo.ConstraintVT.isInteger() != 4895 Input.ConstraintVT.isInteger()) || 4896 (MatchRC.second != InputRC.second)) { 4897 report_fatal_error("Unsupported asm: input constraint" 4898 " with a matching output constraint of" 4899 " incompatible type!"); 4900 } 4901 } 4902 } 4903 } 4904 4905 return ConstraintOperands; 4906 } 4907 4908 /// Return an integer indicating how general CT is. 4909 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4910 switch (CT) { 4911 case TargetLowering::C_Immediate: 4912 case TargetLowering::C_Other: 4913 case TargetLowering::C_Unknown: 4914 return 0; 4915 case TargetLowering::C_Register: 4916 return 1; 4917 case TargetLowering::C_RegisterClass: 4918 return 2; 4919 case TargetLowering::C_Memory: 4920 return 3; 4921 } 4922 llvm_unreachable("Invalid constraint type"); 4923 } 4924 4925 /// Examine constraint type and operand type and determine a weight value. 4926 /// This object must already have been set up with the operand type 4927 /// and the current alternative constraint selected. 4928 TargetLowering::ConstraintWeight 4929 TargetLowering::getMultipleConstraintMatchWeight( 4930 AsmOperandInfo &info, int maIndex) const { 4931 InlineAsm::ConstraintCodeVector *rCodes; 4932 if (maIndex >= (int)info.multipleAlternatives.size()) 4933 rCodes = &info.Codes; 4934 else 4935 rCodes = &info.multipleAlternatives[maIndex].Codes; 4936 ConstraintWeight BestWeight = CW_Invalid; 4937 4938 // Loop over the options, keeping track of the most general one. 4939 for (const std::string &rCode : *rCodes) { 4940 ConstraintWeight weight = 4941 getSingleConstraintMatchWeight(info, rCode.c_str()); 4942 if (weight > BestWeight) 4943 BestWeight = weight; 4944 } 4945 4946 return BestWeight; 4947 } 4948 4949 /// Examine constraint type and operand type and determine a weight value. 4950 /// This object must already have been set up with the operand type 4951 /// and the current alternative constraint selected. 4952 TargetLowering::ConstraintWeight 4953 TargetLowering::getSingleConstraintMatchWeight( 4954 AsmOperandInfo &info, const char *constraint) const { 4955 ConstraintWeight weight = CW_Invalid; 4956 Value *CallOperandVal = info.CallOperandVal; 4957 // If we don't have a value, we can't do a match, 4958 // but allow it at the lowest weight. 4959 if (!CallOperandVal) 4960 return CW_Default; 4961 // Look at the constraint type. 4962 switch (*constraint) { 4963 case 'i': // immediate integer. 4964 case 'n': // immediate integer with a known value. 4965 if (isa<ConstantInt>(CallOperandVal)) 4966 weight = CW_Constant; 4967 break; 4968 case 's': // non-explicit intregal immediate. 4969 if (isa<GlobalValue>(CallOperandVal)) 4970 weight = CW_Constant; 4971 break; 4972 case 'E': // immediate float if host format. 4973 case 'F': // immediate float. 4974 if (isa<ConstantFP>(CallOperandVal)) 4975 weight = CW_Constant; 4976 break; 4977 case '<': // memory operand with autodecrement. 4978 case '>': // memory operand with autoincrement. 4979 case 'm': // memory operand. 4980 case 'o': // offsettable memory operand 4981 case 'V': // non-offsettable memory operand 4982 weight = CW_Memory; 4983 break; 4984 case 'r': // general register. 4985 case 'g': // general register, memory operand or immediate integer. 4986 // note: Clang converts "g" to "imr". 4987 if (CallOperandVal->getType()->isIntegerTy()) 4988 weight = CW_Register; 4989 break; 4990 case 'X': // any operand. 4991 default: 4992 weight = CW_Default; 4993 break; 4994 } 4995 return weight; 4996 } 4997 4998 /// If there are multiple different constraints that we could pick for this 4999 /// operand (e.g. "imr") try to pick the 'best' one. 5000 /// This is somewhat tricky: constraints fall into four classes: 5001 /// Other -> immediates and magic values 5002 /// Register -> one specific register 5003 /// RegisterClass -> a group of regs 5004 /// Memory -> memory 5005 /// Ideally, we would pick the most specific constraint possible: if we have 5006 /// something that fits into a register, we would pick it. The problem here 5007 /// is that if we have something that could either be in a register or in 5008 /// memory that use of the register could cause selection of *other* 5009 /// operands to fail: they might only succeed if we pick memory. Because of 5010 /// this the heuristic we use is: 5011 /// 5012 /// 1) If there is an 'other' constraint, and if the operand is valid for 5013 /// that constraint, use it. This makes us take advantage of 'i' 5014 /// constraints when available. 5015 /// 2) Otherwise, pick the most general constraint present. This prefers 5016 /// 'm' over 'r', for example. 5017 /// 5018 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5019 const TargetLowering &TLI, 5020 SDValue Op, SelectionDAG *DAG) { 5021 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5022 unsigned BestIdx = 0; 5023 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5024 int BestGenerality = -1; 5025 5026 // Loop over the options, keeping track of the most general one. 5027 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5028 TargetLowering::ConstraintType CType = 5029 TLI.getConstraintType(OpInfo.Codes[i]); 5030 5031 // Indirect 'other' or 'immediate' constraints are not allowed. 5032 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5033 CType == TargetLowering::C_Register || 5034 CType == TargetLowering::C_RegisterClass)) 5035 continue; 5036 5037 // If this is an 'other' or 'immediate' constraint, see if the operand is 5038 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5039 // the operand is an integer in the range [0..31] we want to use I (saving a 5040 // load of a register), otherwise we must use 'r'. 5041 if ((CType == TargetLowering::C_Other || 5042 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5043 assert(OpInfo.Codes[i].size() == 1 && 5044 "Unhandled multi-letter 'other' constraint"); 5045 std::vector<SDValue> ResultOps; 5046 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5047 ResultOps, *DAG); 5048 if (!ResultOps.empty()) { 5049 BestType = CType; 5050 BestIdx = i; 5051 break; 5052 } 5053 } 5054 5055 // Things with matching constraints can only be registers, per gcc 5056 // documentation. This mainly affects "g" constraints. 5057 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5058 continue; 5059 5060 // This constraint letter is more general than the previous one, use it. 5061 int Generality = getConstraintGenerality(CType); 5062 if (Generality > BestGenerality) { 5063 BestType = CType; 5064 BestIdx = i; 5065 BestGenerality = Generality; 5066 } 5067 } 5068 5069 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5070 OpInfo.ConstraintType = BestType; 5071 } 5072 5073 /// Determines the constraint code and constraint type to use for the specific 5074 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5075 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5076 SDValue Op, 5077 SelectionDAG *DAG) const { 5078 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5079 5080 // Single-letter constraints ('r') are very common. 5081 if (OpInfo.Codes.size() == 1) { 5082 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5083 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5084 } else { 5085 ChooseConstraint(OpInfo, *this, Op, DAG); 5086 } 5087 5088 // 'X' matches anything. 5089 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5090 // Labels and constants are handled elsewhere ('X' is the only thing 5091 // that matches labels). For Functions, the type here is the type of 5092 // the result, which is not what we want to look at; leave them alone. 5093 Value *v = OpInfo.CallOperandVal; 5094 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5095 OpInfo.CallOperandVal = v; 5096 return; 5097 } 5098 5099 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5100 return; 5101 5102 // Otherwise, try to resolve it to something we know about by looking at 5103 // the actual operand type. 5104 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5105 OpInfo.ConstraintCode = Repl; 5106 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5107 } 5108 } 5109 } 5110 5111 /// Given an exact SDIV by a constant, create a multiplication 5112 /// with the multiplicative inverse of the constant. 5113 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5114 const SDLoc &dl, SelectionDAG &DAG, 5115 SmallVectorImpl<SDNode *> &Created) { 5116 SDValue Op0 = N->getOperand(0); 5117 SDValue Op1 = N->getOperand(1); 5118 EVT VT = N->getValueType(0); 5119 EVT SVT = VT.getScalarType(); 5120 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5121 EVT ShSVT = ShVT.getScalarType(); 5122 5123 bool UseSRA = false; 5124 SmallVector<SDValue, 16> Shifts, Factors; 5125 5126 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5127 if (C->isZero()) 5128 return false; 5129 APInt Divisor = C->getAPIntValue(); 5130 unsigned Shift = Divisor.countTrailingZeros(); 5131 if (Shift) { 5132 Divisor.ashrInPlace(Shift); 5133 UseSRA = true; 5134 } 5135 // Calculate the multiplicative inverse, using Newton's method. 5136 APInt t; 5137 APInt Factor = Divisor; 5138 while ((t = Divisor * Factor) != 1) 5139 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5140 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5141 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5142 return true; 5143 }; 5144 5145 // Collect all magic values from the build vector. 5146 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5147 return SDValue(); 5148 5149 SDValue Shift, Factor; 5150 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5151 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5152 Factor = DAG.getBuildVector(VT, dl, Factors); 5153 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5154 assert(Shifts.size() == 1 && Factors.size() == 1 && 5155 "Expected matchUnaryPredicate to return one element for scalable " 5156 "vectors"); 5157 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5158 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5159 } else { 5160 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5161 Shift = Shifts[0]; 5162 Factor = Factors[0]; 5163 } 5164 5165 SDValue Res = Op0; 5166 5167 // Shift the value upfront if it is even, so the LSB is one. 5168 if (UseSRA) { 5169 // TODO: For UDIV use SRL instead of SRA. 5170 SDNodeFlags Flags; 5171 Flags.setExact(true); 5172 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5173 Created.push_back(Res.getNode()); 5174 } 5175 5176 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5177 } 5178 5179 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5180 SelectionDAG &DAG, 5181 SmallVectorImpl<SDNode *> &Created) const { 5182 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5184 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5185 return SDValue(N, 0); // Lower SDIV as SDIV 5186 return SDValue(); 5187 } 5188 5189 /// Given an ISD::SDIV node expressing a divide by constant, 5190 /// return a DAG expression to select that will generate the same value by 5191 /// multiplying by a magic number. 5192 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5193 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5194 bool IsAfterLegalization, 5195 SmallVectorImpl<SDNode *> &Created) const { 5196 SDLoc dl(N); 5197 EVT VT = N->getValueType(0); 5198 EVT SVT = VT.getScalarType(); 5199 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5200 EVT ShSVT = ShVT.getScalarType(); 5201 unsigned EltBits = VT.getScalarSizeInBits(); 5202 EVT MulVT; 5203 5204 // Check to see if we can do this. 5205 // FIXME: We should be more aggressive here. 5206 if (!isTypeLegal(VT)) { 5207 // Limit this to simple scalars for now. 5208 if (VT.isVector() || !VT.isSimple()) 5209 return SDValue(); 5210 5211 // If this type will be promoted to a large enough type with a legal 5212 // multiply operation, we can go ahead and do this transform. 5213 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5214 return SDValue(); 5215 5216 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5217 if (MulVT.getSizeInBits() < (2 * EltBits) || 5218 !isOperationLegal(ISD::MUL, MulVT)) 5219 return SDValue(); 5220 } 5221 5222 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5223 if (N->getFlags().hasExact()) 5224 return BuildExactSDIV(*this, N, dl, DAG, Created); 5225 5226 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5227 5228 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5229 if (C->isZero()) 5230 return false; 5231 5232 const APInt &Divisor = C->getAPIntValue(); 5233 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5234 int NumeratorFactor = 0; 5235 int ShiftMask = -1; 5236 5237 if (Divisor.isOne() || Divisor.isAllOnes()) { 5238 // If d is +1/-1, we just multiply the numerator by +1/-1. 5239 NumeratorFactor = Divisor.getSExtValue(); 5240 magics.Magic = 0; 5241 magics.ShiftAmount = 0; 5242 ShiftMask = 0; 5243 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5244 // If d > 0 and m < 0, add the numerator. 5245 NumeratorFactor = 1; 5246 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5247 // If d < 0 and m > 0, subtract the numerator. 5248 NumeratorFactor = -1; 5249 } 5250 5251 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5252 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5253 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5254 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5255 return true; 5256 }; 5257 5258 SDValue N0 = N->getOperand(0); 5259 SDValue N1 = N->getOperand(1); 5260 5261 // Collect the shifts / magic values from each element. 5262 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5263 return SDValue(); 5264 5265 SDValue MagicFactor, Factor, Shift, ShiftMask; 5266 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5267 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5268 Factor = DAG.getBuildVector(VT, dl, Factors); 5269 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5270 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5271 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5272 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5273 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5274 "Expected matchUnaryPredicate to return one element for scalable " 5275 "vectors"); 5276 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5277 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5278 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5279 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5280 } else { 5281 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5282 MagicFactor = MagicFactors[0]; 5283 Factor = Factors[0]; 5284 Shift = Shifts[0]; 5285 ShiftMask = ShiftMasks[0]; 5286 } 5287 5288 // Multiply the numerator (operand 0) by the magic value. 5289 // FIXME: We should support doing a MUL in a wider type. 5290 auto GetMULHS = [&](SDValue X, SDValue Y) { 5291 // If the type isn't legal, use a wider mul of the the type calculated 5292 // earlier. 5293 if (!isTypeLegal(VT)) { 5294 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5295 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5296 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5297 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5298 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5299 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5300 } 5301 5302 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5303 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5304 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5305 SDValue LoHi = 5306 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5307 return SDValue(LoHi.getNode(), 1); 5308 } 5309 return SDValue(); 5310 }; 5311 5312 SDValue Q = GetMULHS(N0, MagicFactor); 5313 if (!Q) 5314 return SDValue(); 5315 5316 Created.push_back(Q.getNode()); 5317 5318 // (Optionally) Add/subtract the numerator using Factor. 5319 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5320 Created.push_back(Factor.getNode()); 5321 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5322 Created.push_back(Q.getNode()); 5323 5324 // Shift right algebraic by shift value. 5325 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5326 Created.push_back(Q.getNode()); 5327 5328 // Extract the sign bit, mask it and add it to the quotient. 5329 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5330 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5331 Created.push_back(T.getNode()); 5332 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5333 Created.push_back(T.getNode()); 5334 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5335 } 5336 5337 /// Given an ISD::UDIV node expressing a divide by constant, 5338 /// return a DAG expression to select that will generate the same value by 5339 /// multiplying by a magic number. 5340 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5341 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5342 bool IsAfterLegalization, 5343 SmallVectorImpl<SDNode *> &Created) const { 5344 SDLoc dl(N); 5345 EVT VT = N->getValueType(0); 5346 EVT SVT = VT.getScalarType(); 5347 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5348 EVT ShSVT = ShVT.getScalarType(); 5349 unsigned EltBits = VT.getScalarSizeInBits(); 5350 EVT MulVT; 5351 5352 // Check to see if we can do this. 5353 // FIXME: We should be more aggressive here. 5354 if (!isTypeLegal(VT)) { 5355 // Limit this to simple scalars for now. 5356 if (VT.isVector() || !VT.isSimple()) 5357 return SDValue(); 5358 5359 // If this type will be promoted to a large enough type with a legal 5360 // multiply operation, we can go ahead and do this transform. 5361 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5362 return SDValue(); 5363 5364 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5365 if (MulVT.getSizeInBits() < (2 * EltBits) || 5366 !isOperationLegal(ISD::MUL, MulVT)) 5367 return SDValue(); 5368 } 5369 5370 bool UseNPQ = false; 5371 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5372 5373 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5374 if (C->isZero()) 5375 return false; 5376 // FIXME: We should use a narrower constant when the upper 5377 // bits are known to be zero. 5378 const APInt& Divisor = C->getAPIntValue(); 5379 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5380 unsigned PreShift = 0, PostShift = 0; 5381 5382 // If the divisor is even, we can avoid using the expensive fixup by 5383 // shifting the divided value upfront. 5384 if (magics.IsAdd != 0 && !Divisor[0]) { 5385 PreShift = Divisor.countTrailingZeros(); 5386 // Get magic number for the shifted divisor. 5387 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5388 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5389 } 5390 5391 APInt Magic = magics.Magic; 5392 5393 unsigned SelNPQ; 5394 if (magics.IsAdd == 0 || Divisor.isOne()) { 5395 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5396 "We shouldn't generate an undefined shift!"); 5397 PostShift = magics.ShiftAmount; 5398 SelNPQ = false; 5399 } else { 5400 PostShift = magics.ShiftAmount - 1; 5401 SelNPQ = true; 5402 } 5403 5404 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5405 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5406 NPQFactors.push_back( 5407 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5408 : APInt::getZero(EltBits), 5409 dl, SVT)); 5410 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5411 UseNPQ |= SelNPQ; 5412 return true; 5413 }; 5414 5415 SDValue N0 = N->getOperand(0); 5416 SDValue N1 = N->getOperand(1); 5417 5418 // Collect the shifts/magic values from each element. 5419 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5420 return SDValue(); 5421 5422 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5423 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5424 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5425 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5426 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5427 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5428 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5429 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5430 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5431 "Expected matchUnaryPredicate to return one for scalable vectors"); 5432 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5433 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5434 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5435 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5436 } else { 5437 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5438 PreShift = PreShifts[0]; 5439 MagicFactor = MagicFactors[0]; 5440 PostShift = PostShifts[0]; 5441 } 5442 5443 SDValue Q = N0; 5444 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5445 Created.push_back(Q.getNode()); 5446 5447 // FIXME: We should support doing a MUL in a wider type. 5448 auto GetMULHU = [&](SDValue X, SDValue Y) { 5449 // If the type isn't legal, use a wider mul of the the type calculated 5450 // earlier. 5451 if (!isTypeLegal(VT)) { 5452 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5453 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5454 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5455 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5456 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5457 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5458 } 5459 5460 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5461 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5462 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5463 SDValue LoHi = 5464 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5465 return SDValue(LoHi.getNode(), 1); 5466 } 5467 return SDValue(); // No mulhu or equivalent 5468 }; 5469 5470 // Multiply the numerator (operand 0) by the magic value. 5471 Q = GetMULHU(Q, MagicFactor); 5472 if (!Q) 5473 return SDValue(); 5474 5475 Created.push_back(Q.getNode()); 5476 5477 if (UseNPQ) { 5478 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5479 Created.push_back(NPQ.getNode()); 5480 5481 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5482 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5483 if (VT.isVector()) 5484 NPQ = GetMULHU(NPQ, NPQFactor); 5485 else 5486 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5487 5488 Created.push_back(NPQ.getNode()); 5489 5490 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5491 Created.push_back(Q.getNode()); 5492 } 5493 5494 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5495 Created.push_back(Q.getNode()); 5496 5497 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5498 5499 SDValue One = DAG.getConstant(1, dl, VT); 5500 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5501 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5502 } 5503 5504 /// If all values in Values that *don't* match the predicate are same 'splat' 5505 /// value, then replace all values with that splat value. 5506 /// Else, if AlternativeReplacement was provided, then replace all values that 5507 /// do match predicate with AlternativeReplacement value. 5508 static void 5509 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5510 std::function<bool(SDValue)> Predicate, 5511 SDValue AlternativeReplacement = SDValue()) { 5512 SDValue Replacement; 5513 // Is there a value for which the Predicate does *NOT* match? What is it? 5514 auto SplatValue = llvm::find_if_not(Values, Predicate); 5515 if (SplatValue != Values.end()) { 5516 // Does Values consist only of SplatValue's and values matching Predicate? 5517 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5518 return Value == *SplatValue || Predicate(Value); 5519 })) // Then we shall replace values matching predicate with SplatValue. 5520 Replacement = *SplatValue; 5521 } 5522 if (!Replacement) { 5523 // Oops, we did not find the "baseline" splat value. 5524 if (!AlternativeReplacement) 5525 return; // Nothing to do. 5526 // Let's replace with provided value then. 5527 Replacement = AlternativeReplacement; 5528 } 5529 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5530 } 5531 5532 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5533 /// where the divisor is constant and the comparison target is zero, 5534 /// return a DAG expression that will generate the same comparison result 5535 /// using only multiplications, additions and shifts/rotations. 5536 /// Ref: "Hacker's Delight" 10-17. 5537 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5538 SDValue CompTargetNode, 5539 ISD::CondCode Cond, 5540 DAGCombinerInfo &DCI, 5541 const SDLoc &DL) const { 5542 SmallVector<SDNode *, 5> Built; 5543 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5544 DCI, DL, Built)) { 5545 for (SDNode *N : Built) 5546 DCI.AddToWorklist(N); 5547 return Folded; 5548 } 5549 5550 return SDValue(); 5551 } 5552 5553 SDValue 5554 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5555 SDValue CompTargetNode, ISD::CondCode Cond, 5556 DAGCombinerInfo &DCI, const SDLoc &DL, 5557 SmallVectorImpl<SDNode *> &Created) const { 5558 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5559 // - D must be constant, with D = D0 * 2^K where D0 is odd 5560 // - P is the multiplicative inverse of D0 modulo 2^W 5561 // - Q = floor(((2^W) - 1) / D) 5562 // where W is the width of the common type of N and D. 5563 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5564 "Only applicable for (in)equality comparisons."); 5565 5566 SelectionDAG &DAG = DCI.DAG; 5567 5568 EVT VT = REMNode.getValueType(); 5569 EVT SVT = VT.getScalarType(); 5570 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5571 EVT ShSVT = ShVT.getScalarType(); 5572 5573 // If MUL is unavailable, we cannot proceed in any case. 5574 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5575 return SDValue(); 5576 5577 bool ComparingWithAllZeros = true; 5578 bool AllComparisonsWithNonZerosAreTautological = true; 5579 bool HadTautologicalLanes = false; 5580 bool AllLanesAreTautological = true; 5581 bool HadEvenDivisor = false; 5582 bool AllDivisorsArePowerOfTwo = true; 5583 bool HadTautologicalInvertedLanes = false; 5584 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5585 5586 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5587 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5588 if (CDiv->isZero()) 5589 return false; 5590 5591 const APInt &D = CDiv->getAPIntValue(); 5592 const APInt &Cmp = CCmp->getAPIntValue(); 5593 5594 ComparingWithAllZeros &= Cmp.isZero(); 5595 5596 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5597 // if C2 is not less than C1, the comparison is always false. 5598 // But we will only be able to produce the comparison that will give the 5599 // opposive tautological answer. So this lane would need to be fixed up. 5600 bool TautologicalInvertedLane = D.ule(Cmp); 5601 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5602 5603 // If all lanes are tautological (either all divisors are ones, or divisor 5604 // is not greater than the constant we are comparing with), 5605 // we will prefer to avoid the fold. 5606 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5607 HadTautologicalLanes |= TautologicalLane; 5608 AllLanesAreTautological &= TautologicalLane; 5609 5610 // If we are comparing with non-zero, we need'll need to subtract said 5611 // comparison value from the LHS. But there is no point in doing that if 5612 // every lane where we are comparing with non-zero is tautological.. 5613 if (!Cmp.isZero()) 5614 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5615 5616 // Decompose D into D0 * 2^K 5617 unsigned K = D.countTrailingZeros(); 5618 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5619 APInt D0 = D.lshr(K); 5620 5621 // D is even if it has trailing zeros. 5622 HadEvenDivisor |= (K != 0); 5623 // D is a power-of-two if D0 is one. 5624 // If all divisors are power-of-two, we will prefer to avoid the fold. 5625 AllDivisorsArePowerOfTwo &= D0.isOne(); 5626 5627 // P = inv(D0, 2^W) 5628 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5629 unsigned W = D.getBitWidth(); 5630 APInt P = D0.zext(W + 1) 5631 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5632 .trunc(W); 5633 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5634 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5635 5636 // Q = floor((2^W - 1) u/ D) 5637 // R = ((2^W - 1) u% D) 5638 APInt Q, R; 5639 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5640 5641 // If we are comparing with zero, then that comparison constant is okay, 5642 // else it may need to be one less than that. 5643 if (Cmp.ugt(R)) 5644 Q -= 1; 5645 5646 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5647 "We are expecting that K is always less than all-ones for ShSVT"); 5648 5649 // If the lane is tautological the result can be constant-folded. 5650 if (TautologicalLane) { 5651 // Set P and K amount to a bogus values so we can try to splat them. 5652 P = 0; 5653 K = -1; 5654 // And ensure that comparison constant is tautological, 5655 // it will always compare true/false. 5656 Q = -1; 5657 } 5658 5659 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5660 KAmts.push_back( 5661 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5662 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5663 return true; 5664 }; 5665 5666 SDValue N = REMNode.getOperand(0); 5667 SDValue D = REMNode.getOperand(1); 5668 5669 // Collect the values from each element. 5670 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5671 return SDValue(); 5672 5673 // If all lanes are tautological, the result can be constant-folded. 5674 if (AllLanesAreTautological) 5675 return SDValue(); 5676 5677 // If this is a urem by a powers-of-two, avoid the fold since it can be 5678 // best implemented as a bit test. 5679 if (AllDivisorsArePowerOfTwo) 5680 return SDValue(); 5681 5682 SDValue PVal, KVal, QVal; 5683 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5684 if (HadTautologicalLanes) { 5685 // Try to turn PAmts into a splat, since we don't care about the values 5686 // that are currently '0'. If we can't, just keep '0'`s. 5687 turnVectorIntoSplatVector(PAmts, isNullConstant); 5688 // Try to turn KAmts into a splat, since we don't care about the values 5689 // that are currently '-1'. If we can't, change them to '0'`s. 5690 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5691 DAG.getConstant(0, DL, ShSVT)); 5692 } 5693 5694 PVal = DAG.getBuildVector(VT, DL, PAmts); 5695 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5696 QVal = DAG.getBuildVector(VT, DL, QAmts); 5697 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5698 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5699 "Expected matchBinaryPredicate to return one element for " 5700 "SPLAT_VECTORs"); 5701 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5702 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5703 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5704 } else { 5705 PVal = PAmts[0]; 5706 KVal = KAmts[0]; 5707 QVal = QAmts[0]; 5708 } 5709 5710 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5711 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5712 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5713 assert(CompTargetNode.getValueType() == N.getValueType() && 5714 "Expecting that the types on LHS and RHS of comparisons match."); 5715 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5716 } 5717 5718 // (mul N, P) 5719 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5720 Created.push_back(Op0.getNode()); 5721 5722 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5723 // divisors as a performance improvement, since rotating by 0 is a no-op. 5724 if (HadEvenDivisor) { 5725 // We need ROTR to do this. 5726 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5727 return SDValue(); 5728 // UREM: (rotr (mul N, P), K) 5729 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5730 Created.push_back(Op0.getNode()); 5731 } 5732 5733 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5734 SDValue NewCC = 5735 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5736 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5737 if (!HadTautologicalInvertedLanes) 5738 return NewCC; 5739 5740 // If any lanes previously compared always-false, the NewCC will give 5741 // always-true result for them, so we need to fixup those lanes. 5742 // Or the other way around for inequality predicate. 5743 assert(VT.isVector() && "Can/should only get here for vectors."); 5744 Created.push_back(NewCC.getNode()); 5745 5746 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5747 // if C2 is not less than C1, the comparison is always false. 5748 // But we have produced the comparison that will give the 5749 // opposive tautological answer. So these lanes would need to be fixed up. 5750 SDValue TautologicalInvertedChannels = 5751 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5752 Created.push_back(TautologicalInvertedChannels.getNode()); 5753 5754 // NOTE: we avoid letting illegal types through even if we're before legalize 5755 // ops – legalization has a hard time producing good code for this. 5756 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5757 // If we have a vector select, let's replace the comparison results in the 5758 // affected lanes with the correct tautological result. 5759 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5760 DL, SETCCVT, SETCCVT); 5761 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5762 Replacement, NewCC); 5763 } 5764 5765 // Else, we can just invert the comparison result in the appropriate lanes. 5766 // 5767 // NOTE: see the note above VSELECT above. 5768 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5769 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5770 TautologicalInvertedChannels); 5771 5772 return SDValue(); // Don't know how to lower. 5773 } 5774 5775 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5776 /// where the divisor is constant and the comparison target is zero, 5777 /// return a DAG expression that will generate the same comparison result 5778 /// using only multiplications, additions and shifts/rotations. 5779 /// Ref: "Hacker's Delight" 10-17. 5780 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5781 SDValue CompTargetNode, 5782 ISD::CondCode Cond, 5783 DAGCombinerInfo &DCI, 5784 const SDLoc &DL) const { 5785 SmallVector<SDNode *, 7> Built; 5786 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5787 DCI, DL, Built)) { 5788 assert(Built.size() <= 7 && "Max size prediction failed."); 5789 for (SDNode *N : Built) 5790 DCI.AddToWorklist(N); 5791 return Folded; 5792 } 5793 5794 return SDValue(); 5795 } 5796 5797 SDValue 5798 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5799 SDValue CompTargetNode, ISD::CondCode Cond, 5800 DAGCombinerInfo &DCI, const SDLoc &DL, 5801 SmallVectorImpl<SDNode *> &Created) const { 5802 // Fold: 5803 // (seteq/ne (srem N, D), 0) 5804 // To: 5805 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5806 // 5807 // - D must be constant, with D = D0 * 2^K where D0 is odd 5808 // - P is the multiplicative inverse of D0 modulo 2^W 5809 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5810 // - Q = floor((2 * A) / (2^K)) 5811 // where W is the width of the common type of N and D. 5812 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5813 "Only applicable for (in)equality comparisons."); 5814 5815 SelectionDAG &DAG = DCI.DAG; 5816 5817 EVT VT = REMNode.getValueType(); 5818 EVT SVT = VT.getScalarType(); 5819 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5820 EVT ShSVT = ShVT.getScalarType(); 5821 5822 // If we are after ops legalization, and MUL is unavailable, we can not 5823 // proceed. 5824 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5825 return SDValue(); 5826 5827 // TODO: Could support comparing with non-zero too. 5828 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5829 if (!CompTarget || !CompTarget->isZero()) 5830 return SDValue(); 5831 5832 bool HadIntMinDivisor = false; 5833 bool HadOneDivisor = false; 5834 bool AllDivisorsAreOnes = true; 5835 bool HadEvenDivisor = false; 5836 bool NeedToApplyOffset = false; 5837 bool AllDivisorsArePowerOfTwo = true; 5838 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5839 5840 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5841 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5842 if (C->isZero()) 5843 return false; 5844 5845 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5846 5847 // WARNING: this fold is only valid for positive divisors! 5848 APInt D = C->getAPIntValue(); 5849 if (D.isNegative()) 5850 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5851 5852 HadIntMinDivisor |= D.isMinSignedValue(); 5853 5854 // If all divisors are ones, we will prefer to avoid the fold. 5855 HadOneDivisor |= D.isOne(); 5856 AllDivisorsAreOnes &= D.isOne(); 5857 5858 // Decompose D into D0 * 2^K 5859 unsigned K = D.countTrailingZeros(); 5860 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5861 APInt D0 = D.lshr(K); 5862 5863 if (!D.isMinSignedValue()) { 5864 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5865 // we don't care about this lane in this fold, we'll special-handle it. 5866 HadEvenDivisor |= (K != 0); 5867 } 5868 5869 // D is a power-of-two if D0 is one. This includes INT_MIN. 5870 // If all divisors are power-of-two, we will prefer to avoid the fold. 5871 AllDivisorsArePowerOfTwo &= D0.isOne(); 5872 5873 // P = inv(D0, 2^W) 5874 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5875 unsigned W = D.getBitWidth(); 5876 APInt P = D0.zext(W + 1) 5877 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5878 .trunc(W); 5879 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5880 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5881 5882 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5883 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5884 A.clearLowBits(K); 5885 5886 if (!D.isMinSignedValue()) { 5887 // If divisor INT_MIN, then we don't care about this lane in this fold, 5888 // we'll special-handle it. 5889 NeedToApplyOffset |= A != 0; 5890 } 5891 5892 // Q = floor((2 * A) / (2^K)) 5893 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5894 5895 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5896 "We are expecting that A is always less than all-ones for SVT"); 5897 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5898 "We are expecting that K is always less than all-ones for ShSVT"); 5899 5900 // If the divisor is 1 the result can be constant-folded. Likewise, we 5901 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5902 if (D.isOne()) { 5903 // Set P, A and K to a bogus values so we can try to splat them. 5904 P = 0; 5905 A = -1; 5906 K = -1; 5907 5908 // x ?% 1 == 0 <--> true <--> x u<= -1 5909 Q = -1; 5910 } 5911 5912 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5913 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5914 KAmts.push_back( 5915 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5916 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5917 return true; 5918 }; 5919 5920 SDValue N = REMNode.getOperand(0); 5921 SDValue D = REMNode.getOperand(1); 5922 5923 // Collect the values from each element. 5924 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5925 return SDValue(); 5926 5927 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5928 if (AllDivisorsAreOnes) 5929 return SDValue(); 5930 5931 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5932 // since it can be best implemented as a bit test. 5933 if (AllDivisorsArePowerOfTwo) 5934 return SDValue(); 5935 5936 SDValue PVal, AVal, KVal, QVal; 5937 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5938 if (HadOneDivisor) { 5939 // Try to turn PAmts into a splat, since we don't care about the values 5940 // that are currently '0'. If we can't, just keep '0'`s. 5941 turnVectorIntoSplatVector(PAmts, isNullConstant); 5942 // Try to turn AAmts into a splat, since we don't care about the 5943 // values that are currently '-1'. If we can't, change them to '0'`s. 5944 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5945 DAG.getConstant(0, DL, SVT)); 5946 // Try to turn KAmts into a splat, since we don't care about the values 5947 // that are currently '-1'. If we can't, change them to '0'`s. 5948 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5949 DAG.getConstant(0, DL, ShSVT)); 5950 } 5951 5952 PVal = DAG.getBuildVector(VT, DL, PAmts); 5953 AVal = DAG.getBuildVector(VT, DL, AAmts); 5954 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5955 QVal = DAG.getBuildVector(VT, DL, QAmts); 5956 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5957 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5958 QAmts.size() == 1 && 5959 "Expected matchUnaryPredicate to return one element for scalable " 5960 "vectors"); 5961 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5962 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5963 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5964 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5965 } else { 5966 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5967 PVal = PAmts[0]; 5968 AVal = AAmts[0]; 5969 KVal = KAmts[0]; 5970 QVal = QAmts[0]; 5971 } 5972 5973 // (mul N, P) 5974 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5975 Created.push_back(Op0.getNode()); 5976 5977 if (NeedToApplyOffset) { 5978 // We need ADD to do this. 5979 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5980 return SDValue(); 5981 5982 // (add (mul N, P), A) 5983 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5984 Created.push_back(Op0.getNode()); 5985 } 5986 5987 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5988 // divisors as a performance improvement, since rotating by 0 is a no-op. 5989 if (HadEvenDivisor) { 5990 // We need ROTR to do this. 5991 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5992 return SDValue(); 5993 // SREM: (rotr (add (mul N, P), A), K) 5994 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5995 Created.push_back(Op0.getNode()); 5996 } 5997 5998 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5999 SDValue Fold = 6000 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6001 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6002 6003 // If we didn't have lanes with INT_MIN divisor, then we're done. 6004 if (!HadIntMinDivisor) 6005 return Fold; 6006 6007 // That fold is only valid for positive divisors. Which effectively means, 6008 // it is invalid for INT_MIN divisors. So if we have such a lane, 6009 // we must fix-up results for said lanes. 6010 assert(VT.isVector() && "Can/should only get here for vectors."); 6011 6012 // NOTE: we avoid letting illegal types through even if we're before legalize 6013 // ops – legalization has a hard time producing good code for the code that 6014 // follows. 6015 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6016 !isOperationLegalOrCustom(ISD::AND, VT) || 6017 !isOperationLegalOrCustom(Cond, VT) || 6018 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6019 return SDValue(); 6020 6021 Created.push_back(Fold.getNode()); 6022 6023 SDValue IntMin = DAG.getConstant( 6024 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6025 SDValue IntMax = DAG.getConstant( 6026 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6027 SDValue Zero = 6028 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6029 6030 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6031 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6032 Created.push_back(DivisorIsIntMin.getNode()); 6033 6034 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6035 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6036 Created.push_back(Masked.getNode()); 6037 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6038 Created.push_back(MaskedIsZero.getNode()); 6039 6040 // To produce final result we need to blend 2 vectors: 'SetCC' and 6041 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6042 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6043 // constant-folded, select can get lowered to a shuffle with constant mask. 6044 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6045 MaskedIsZero, Fold); 6046 6047 return Blended; 6048 } 6049 6050 bool TargetLowering:: 6051 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6052 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6053 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6054 "be a constant integer"); 6055 return true; 6056 } 6057 6058 return false; 6059 } 6060 6061 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6062 const DenormalMode &Mode) const { 6063 SDLoc DL(Op); 6064 EVT VT = Op.getValueType(); 6065 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6066 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6067 // Testing it with denormal inputs to avoid wrong estimate. 6068 if (Mode.Input == DenormalMode::IEEE) { 6069 // This is specifically a check for the handling of denormal inputs, 6070 // not the result. 6071 6072 // Test = fabs(X) < SmallestNormal 6073 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6074 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6075 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6076 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6077 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6078 } 6079 // Test = X == 0.0 6080 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6081 } 6082 6083 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6084 bool LegalOps, bool OptForSize, 6085 NegatibleCost &Cost, 6086 unsigned Depth) const { 6087 // fneg is removable even if it has multiple uses. 6088 if (Op.getOpcode() == ISD::FNEG) { 6089 Cost = NegatibleCost::Cheaper; 6090 return Op.getOperand(0); 6091 } 6092 6093 // Don't recurse exponentially. 6094 if (Depth > SelectionDAG::MaxRecursionDepth) 6095 return SDValue(); 6096 6097 // Pre-increment recursion depth for use in recursive calls. 6098 ++Depth; 6099 const SDNodeFlags Flags = Op->getFlags(); 6100 const TargetOptions &Options = DAG.getTarget().Options; 6101 EVT VT = Op.getValueType(); 6102 unsigned Opcode = Op.getOpcode(); 6103 6104 // Don't allow anything with multiple uses unless we know it is free. 6105 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6106 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6107 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6108 if (!IsFreeExtend) 6109 return SDValue(); 6110 } 6111 6112 auto RemoveDeadNode = [&](SDValue N) { 6113 if (N && N.getNode()->use_empty()) 6114 DAG.RemoveDeadNode(N.getNode()); 6115 }; 6116 6117 SDLoc DL(Op); 6118 6119 // Because getNegatedExpression can delete nodes we need a handle to keep 6120 // temporary nodes alive in case the recursion manages to create an identical 6121 // node. 6122 std::list<HandleSDNode> Handles; 6123 6124 switch (Opcode) { 6125 case ISD::ConstantFP: { 6126 // Don't invert constant FP values after legalization unless the target says 6127 // the negated constant is legal. 6128 bool IsOpLegal = 6129 isOperationLegal(ISD::ConstantFP, VT) || 6130 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6131 OptForSize); 6132 6133 if (LegalOps && !IsOpLegal) 6134 break; 6135 6136 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6137 V.changeSign(); 6138 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6139 6140 // If we already have the use of the negated floating constant, it is free 6141 // to negate it even it has multiple uses. 6142 if (!Op.hasOneUse() && CFP.use_empty()) 6143 break; 6144 Cost = NegatibleCost::Neutral; 6145 return CFP; 6146 } 6147 case ISD::BUILD_VECTOR: { 6148 // Only permit BUILD_VECTOR of constants. 6149 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6150 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6151 })) 6152 break; 6153 6154 bool IsOpLegal = 6155 (isOperationLegal(ISD::ConstantFP, VT) && 6156 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6157 llvm::all_of(Op->op_values(), [&](SDValue N) { 6158 return N.isUndef() || 6159 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6160 OptForSize); 6161 }); 6162 6163 if (LegalOps && !IsOpLegal) 6164 break; 6165 6166 SmallVector<SDValue, 4> Ops; 6167 for (SDValue C : Op->op_values()) { 6168 if (C.isUndef()) { 6169 Ops.push_back(C); 6170 continue; 6171 } 6172 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6173 V.changeSign(); 6174 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6175 } 6176 Cost = NegatibleCost::Neutral; 6177 return DAG.getBuildVector(VT, DL, Ops); 6178 } 6179 case ISD::FADD: { 6180 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6181 break; 6182 6183 // After operation legalization, it might not be legal to create new FSUBs. 6184 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6185 break; 6186 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6187 6188 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6189 NegatibleCost CostX = NegatibleCost::Expensive; 6190 SDValue NegX = 6191 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6192 // Prevent this node from being deleted by the next call. 6193 if (NegX) 6194 Handles.emplace_back(NegX); 6195 6196 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6197 NegatibleCost CostY = NegatibleCost::Expensive; 6198 SDValue NegY = 6199 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6200 6201 // We're done with the handles. 6202 Handles.clear(); 6203 6204 // Negate the X if its cost is less or equal than Y. 6205 if (NegX && (CostX <= CostY)) { 6206 Cost = CostX; 6207 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6208 if (NegY != N) 6209 RemoveDeadNode(NegY); 6210 return N; 6211 } 6212 6213 // Negate the Y if it is not expensive. 6214 if (NegY) { 6215 Cost = CostY; 6216 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6217 if (NegX != N) 6218 RemoveDeadNode(NegX); 6219 return N; 6220 } 6221 break; 6222 } 6223 case ISD::FSUB: { 6224 // We can't turn -(A-B) into B-A when we honor signed zeros. 6225 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6226 break; 6227 6228 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6229 // fold (fneg (fsub 0, Y)) -> Y 6230 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6231 if (C->isZero()) { 6232 Cost = NegatibleCost::Cheaper; 6233 return Y; 6234 } 6235 6236 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6237 Cost = NegatibleCost::Neutral; 6238 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6239 } 6240 case ISD::FMUL: 6241 case ISD::FDIV: { 6242 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6243 6244 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6245 NegatibleCost CostX = NegatibleCost::Expensive; 6246 SDValue NegX = 6247 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6248 // Prevent this node from being deleted by the next call. 6249 if (NegX) 6250 Handles.emplace_back(NegX); 6251 6252 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6253 NegatibleCost CostY = NegatibleCost::Expensive; 6254 SDValue NegY = 6255 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6256 6257 // We're done with the handles. 6258 Handles.clear(); 6259 6260 // Negate the X if its cost is less or equal than Y. 6261 if (NegX && (CostX <= CostY)) { 6262 Cost = CostX; 6263 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6264 if (NegY != N) 6265 RemoveDeadNode(NegY); 6266 return N; 6267 } 6268 6269 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6270 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6271 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6272 break; 6273 6274 // Negate the Y if it is not expensive. 6275 if (NegY) { 6276 Cost = CostY; 6277 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6278 if (NegX != N) 6279 RemoveDeadNode(NegX); 6280 return N; 6281 } 6282 break; 6283 } 6284 case ISD::FMA: 6285 case ISD::FMAD: { 6286 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6287 break; 6288 6289 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6290 NegatibleCost CostZ = NegatibleCost::Expensive; 6291 SDValue NegZ = 6292 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6293 // Give up if fail to negate the Z. 6294 if (!NegZ) 6295 break; 6296 6297 // Prevent this node from being deleted by the next two calls. 6298 Handles.emplace_back(NegZ); 6299 6300 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6301 NegatibleCost CostX = NegatibleCost::Expensive; 6302 SDValue NegX = 6303 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6304 // Prevent this node from being deleted by the next call. 6305 if (NegX) 6306 Handles.emplace_back(NegX); 6307 6308 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6309 NegatibleCost CostY = NegatibleCost::Expensive; 6310 SDValue NegY = 6311 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6312 6313 // We're done with the handles. 6314 Handles.clear(); 6315 6316 // Negate the X if its cost is less or equal than Y. 6317 if (NegX && (CostX <= CostY)) { 6318 Cost = std::min(CostX, CostZ); 6319 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6320 if (NegY != N) 6321 RemoveDeadNode(NegY); 6322 return N; 6323 } 6324 6325 // Negate the Y if it is not expensive. 6326 if (NegY) { 6327 Cost = std::min(CostY, CostZ); 6328 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6329 if (NegX != N) 6330 RemoveDeadNode(NegX); 6331 return N; 6332 } 6333 break; 6334 } 6335 6336 case ISD::FP_EXTEND: 6337 case ISD::FSIN: 6338 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6339 OptForSize, Cost, Depth)) 6340 return DAG.getNode(Opcode, DL, VT, NegV); 6341 break; 6342 case ISD::FP_ROUND: 6343 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6344 OptForSize, Cost, Depth)) 6345 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6346 break; 6347 } 6348 6349 return SDValue(); 6350 } 6351 6352 //===----------------------------------------------------------------------===// 6353 // Legalization Utilities 6354 //===----------------------------------------------------------------------===// 6355 6356 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6357 SDValue LHS, SDValue RHS, 6358 SmallVectorImpl<SDValue> &Result, 6359 EVT HiLoVT, SelectionDAG &DAG, 6360 MulExpansionKind Kind, SDValue LL, 6361 SDValue LH, SDValue RL, SDValue RH) const { 6362 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6363 Opcode == ISD::SMUL_LOHI); 6364 6365 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6366 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6367 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6368 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6369 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6370 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6371 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6372 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6373 6374 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6375 return false; 6376 6377 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6378 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6379 6380 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6381 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6382 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6383 6384 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6385 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6386 bool Signed) -> bool { 6387 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6388 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6389 Hi = SDValue(Lo.getNode(), 1); 6390 return true; 6391 } 6392 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6393 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6394 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6395 return true; 6396 } 6397 return false; 6398 }; 6399 6400 SDValue Lo, Hi; 6401 6402 if (!LL.getNode() && !RL.getNode() && 6403 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6404 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6405 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6406 } 6407 6408 if (!LL.getNode()) 6409 return false; 6410 6411 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6412 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6413 DAG.MaskedValueIsZero(RHS, HighMask)) { 6414 // The inputs are both zero-extended. 6415 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6416 Result.push_back(Lo); 6417 Result.push_back(Hi); 6418 if (Opcode != ISD::MUL) { 6419 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6420 Result.push_back(Zero); 6421 Result.push_back(Zero); 6422 } 6423 return true; 6424 } 6425 } 6426 6427 if (!VT.isVector() && Opcode == ISD::MUL && 6428 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6429 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6430 // The input values are both sign-extended. 6431 // TODO non-MUL case? 6432 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6433 Result.push_back(Lo); 6434 Result.push_back(Hi); 6435 return true; 6436 } 6437 } 6438 6439 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6440 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6441 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6442 // FIXME getShiftAmountTy does not always return a sensible result when VT 6443 // is an illegal type, and so the type may be too small to fit the shift 6444 // amount. Override it with i32. The shift will have to be legalized. 6445 ShiftAmountTy = MVT::i32; 6446 } 6447 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6448 6449 if (!LH.getNode() && !RH.getNode() && 6450 isOperationLegalOrCustom(ISD::SRL, VT) && 6451 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6452 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6453 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6454 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6455 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6456 } 6457 6458 if (!LH.getNode()) 6459 return false; 6460 6461 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6462 return false; 6463 6464 Result.push_back(Lo); 6465 6466 if (Opcode == ISD::MUL) { 6467 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6468 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6469 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6470 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6471 Result.push_back(Hi); 6472 return true; 6473 } 6474 6475 // Compute the full width result. 6476 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6477 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6478 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6479 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6480 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6481 }; 6482 6483 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6484 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6485 return false; 6486 6487 // This is effectively the add part of a multiply-add of half-sized operands, 6488 // so it cannot overflow. 6489 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6490 6491 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6492 return false; 6493 6494 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6495 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6496 6497 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6498 isOperationLegalOrCustom(ISD::ADDE, VT)); 6499 if (UseGlue) 6500 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6501 Merge(Lo, Hi)); 6502 else 6503 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6504 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6505 6506 SDValue Carry = Next.getValue(1); 6507 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6508 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6509 6510 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6511 return false; 6512 6513 if (UseGlue) 6514 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6515 Carry); 6516 else 6517 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6518 Zero, Carry); 6519 6520 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6521 6522 if (Opcode == ISD::SMUL_LOHI) { 6523 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6524 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6525 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6526 6527 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6528 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6529 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6530 } 6531 6532 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6533 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6534 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6535 return true; 6536 } 6537 6538 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6539 SelectionDAG &DAG, MulExpansionKind Kind, 6540 SDValue LL, SDValue LH, SDValue RL, 6541 SDValue RH) const { 6542 SmallVector<SDValue, 2> Result; 6543 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6544 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6545 DAG, Kind, LL, LH, RL, RH); 6546 if (Ok) { 6547 assert(Result.size() == 2); 6548 Lo = Result[0]; 6549 Hi = Result[1]; 6550 } 6551 return Ok; 6552 } 6553 6554 // Check that (every element of) Z is undef or not an exact multiple of BW. 6555 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6556 return ISD::matchUnaryPredicate( 6557 Z, 6558 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6559 true); 6560 } 6561 6562 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6563 SelectionDAG &DAG) const { 6564 EVT VT = Node->getValueType(0); 6565 6566 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6567 !isOperationLegalOrCustom(ISD::SRL, VT) || 6568 !isOperationLegalOrCustom(ISD::SUB, VT) || 6569 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6570 return SDValue(); 6571 6572 SDValue X = Node->getOperand(0); 6573 SDValue Y = Node->getOperand(1); 6574 SDValue Z = Node->getOperand(2); 6575 6576 unsigned BW = VT.getScalarSizeInBits(); 6577 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6578 SDLoc DL(SDValue(Node, 0)); 6579 6580 EVT ShVT = Z.getValueType(); 6581 6582 // If a funnel shift in the other direction is more supported, use it. 6583 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6584 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6585 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6586 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6587 // fshl X, Y, Z -> fshr X, Y, -Z 6588 // fshr X, Y, Z -> fshl X, Y, -Z 6589 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6590 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6591 } else { 6592 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6593 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6594 SDValue One = DAG.getConstant(1, DL, ShVT); 6595 if (IsFSHL) { 6596 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6597 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6598 } else { 6599 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6600 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6601 } 6602 Z = DAG.getNOT(DL, Z, ShVT); 6603 } 6604 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6605 } 6606 6607 SDValue ShX, ShY; 6608 SDValue ShAmt, InvShAmt; 6609 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6610 // fshl: X << C | Y >> (BW - C) 6611 // fshr: X << (BW - C) | Y >> C 6612 // where C = Z % BW is not zero 6613 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6614 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6615 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6616 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6617 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6618 } else { 6619 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6620 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6621 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6622 if (isPowerOf2_32(BW)) { 6623 // Z % BW -> Z & (BW - 1) 6624 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6625 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6626 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6627 } else { 6628 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6629 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6630 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6631 } 6632 6633 SDValue One = DAG.getConstant(1, DL, ShVT); 6634 if (IsFSHL) { 6635 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6636 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6637 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6638 } else { 6639 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6640 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6641 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6642 } 6643 } 6644 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6645 } 6646 6647 // TODO: Merge with expandFunnelShift. 6648 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6649 SelectionDAG &DAG) const { 6650 EVT VT = Node->getValueType(0); 6651 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6652 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6653 SDValue Op0 = Node->getOperand(0); 6654 SDValue Op1 = Node->getOperand(1); 6655 SDLoc DL(SDValue(Node, 0)); 6656 6657 EVT ShVT = Op1.getValueType(); 6658 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6659 6660 // If a rotate in the other direction is supported, use it. 6661 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6662 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6663 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6664 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6665 } 6666 6667 if (!AllowVectorOps && VT.isVector() && 6668 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6669 !isOperationLegalOrCustom(ISD::SRL, VT) || 6670 !isOperationLegalOrCustom(ISD::SUB, VT) || 6671 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6672 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6673 return SDValue(); 6674 6675 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6676 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6677 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6678 SDValue ShVal; 6679 SDValue HsVal; 6680 if (isPowerOf2_32(EltSizeInBits)) { 6681 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6682 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6683 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6684 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6685 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6686 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6687 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6688 } else { 6689 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6690 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6691 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6692 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6693 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6694 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6695 SDValue One = DAG.getConstant(1, DL, ShVT); 6696 HsVal = 6697 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6698 } 6699 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6700 } 6701 6702 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6703 SelectionDAG &DAG) const { 6704 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6705 EVT VT = Node->getValueType(0); 6706 unsigned VTBits = VT.getScalarSizeInBits(); 6707 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6708 6709 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6710 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6711 SDValue ShOpLo = Node->getOperand(0); 6712 SDValue ShOpHi = Node->getOperand(1); 6713 SDValue ShAmt = Node->getOperand(2); 6714 EVT ShAmtVT = ShAmt.getValueType(); 6715 EVT ShAmtCCVT = 6716 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6717 SDLoc dl(Node); 6718 6719 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6720 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6721 // away during isel. 6722 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6723 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6724 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6725 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6726 : DAG.getConstant(0, dl, VT); 6727 6728 SDValue Tmp2, Tmp3; 6729 if (IsSHL) { 6730 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6731 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6732 } else { 6733 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6734 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6735 } 6736 6737 // If the shift amount is larger or equal than the width of a part we don't 6738 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6739 // values for large shift amounts. 6740 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6741 DAG.getConstant(VTBits, dl, ShAmtVT)); 6742 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6743 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6744 6745 if (IsSHL) { 6746 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6747 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6748 } else { 6749 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6750 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6751 } 6752 } 6753 6754 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6755 SelectionDAG &DAG) const { 6756 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6757 SDValue Src = Node->getOperand(OpNo); 6758 EVT SrcVT = Src.getValueType(); 6759 EVT DstVT = Node->getValueType(0); 6760 SDLoc dl(SDValue(Node, 0)); 6761 6762 // FIXME: Only f32 to i64 conversions are supported. 6763 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6764 return false; 6765 6766 if (Node->isStrictFPOpcode()) 6767 // When a NaN is converted to an integer a trap is allowed. We can't 6768 // use this expansion here because it would eliminate that trap. Other 6769 // traps are also allowed and cannot be eliminated. See 6770 // IEEE 754-2008 sec 5.8. 6771 return false; 6772 6773 // Expand f32 -> i64 conversion 6774 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6775 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6776 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6777 EVT IntVT = SrcVT.changeTypeToInteger(); 6778 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6779 6780 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6781 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6782 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6783 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6784 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6785 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6786 6787 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6788 6789 SDValue ExponentBits = DAG.getNode( 6790 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6791 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6792 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6793 6794 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6795 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6796 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6797 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6798 6799 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6800 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6801 DAG.getConstant(0x00800000, dl, IntVT)); 6802 6803 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6804 6805 R = DAG.getSelectCC( 6806 dl, Exponent, ExponentLoBit, 6807 DAG.getNode(ISD::SHL, dl, DstVT, R, 6808 DAG.getZExtOrTrunc( 6809 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6810 dl, IntShVT)), 6811 DAG.getNode(ISD::SRL, dl, DstVT, R, 6812 DAG.getZExtOrTrunc( 6813 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6814 dl, IntShVT)), 6815 ISD::SETGT); 6816 6817 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6818 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6819 6820 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6821 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6822 return true; 6823 } 6824 6825 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6826 SDValue &Chain, 6827 SelectionDAG &DAG) const { 6828 SDLoc dl(SDValue(Node, 0)); 6829 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6830 SDValue Src = Node->getOperand(OpNo); 6831 6832 EVT SrcVT = Src.getValueType(); 6833 EVT DstVT = Node->getValueType(0); 6834 EVT SetCCVT = 6835 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6836 EVT DstSetCCVT = 6837 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6838 6839 // Only expand vector types if we have the appropriate vector bit operations. 6840 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6841 ISD::FP_TO_SINT; 6842 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6843 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6844 return false; 6845 6846 // If the maximum float value is smaller then the signed integer range, 6847 // the destination signmask can't be represented by the float, so we can 6848 // just use FP_TO_SINT directly. 6849 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6850 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6851 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6852 if (APFloat::opOverflow & 6853 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6854 if (Node->isStrictFPOpcode()) { 6855 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6856 { Node->getOperand(0), Src }); 6857 Chain = Result.getValue(1); 6858 } else 6859 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6860 return true; 6861 } 6862 6863 // Don't expand it if there isn't cheap fsub instruction. 6864 if (!isOperationLegalOrCustom( 6865 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6866 return false; 6867 6868 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6869 SDValue Sel; 6870 6871 if (Node->isStrictFPOpcode()) { 6872 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6873 Node->getOperand(0), /*IsSignaling*/ true); 6874 Chain = Sel.getValue(1); 6875 } else { 6876 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6877 } 6878 6879 bool Strict = Node->isStrictFPOpcode() || 6880 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6881 6882 if (Strict) { 6883 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6884 // signmask then offset (the result of which should be fully representable). 6885 // Sel = Src < 0x8000000000000000 6886 // FltOfs = select Sel, 0, 0x8000000000000000 6887 // IntOfs = select Sel, 0, 0x8000000000000000 6888 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6889 6890 // TODO: Should any fast-math-flags be set for the FSUB? 6891 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6892 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6893 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6894 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6895 DAG.getConstant(0, dl, DstVT), 6896 DAG.getConstant(SignMask, dl, DstVT)); 6897 SDValue SInt; 6898 if (Node->isStrictFPOpcode()) { 6899 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6900 { Chain, Src, FltOfs }); 6901 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6902 { Val.getValue(1), Val }); 6903 Chain = SInt.getValue(1); 6904 } else { 6905 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6906 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6907 } 6908 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6909 } else { 6910 // Expand based on maximum range of FP_TO_SINT: 6911 // True = fp_to_sint(Src) 6912 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6913 // Result = select (Src < 0x8000000000000000), True, False 6914 6915 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6916 // TODO: Should any fast-math-flags be set for the FSUB? 6917 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6918 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6919 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6920 DAG.getConstant(SignMask, dl, DstVT)); 6921 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6922 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6923 } 6924 return true; 6925 } 6926 6927 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6928 SDValue &Chain, 6929 SelectionDAG &DAG) const { 6930 // This transform is not correct for converting 0 when rounding mode is set 6931 // to round toward negative infinity which will produce -0.0. So disable under 6932 // strictfp. 6933 if (Node->isStrictFPOpcode()) 6934 return false; 6935 6936 SDValue Src = Node->getOperand(0); 6937 EVT SrcVT = Src.getValueType(); 6938 EVT DstVT = Node->getValueType(0); 6939 6940 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6941 return false; 6942 6943 // Only expand vector types if we have the appropriate vector bit operations. 6944 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6945 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6946 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6947 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6948 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6949 return false; 6950 6951 SDLoc dl(SDValue(Node, 0)); 6952 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6953 6954 // Implementation of unsigned i64 to f64 following the algorithm in 6955 // __floatundidf in compiler_rt. This implementation performs rounding 6956 // correctly in all rounding modes with the exception of converting 0 6957 // when rounding toward negative infinity. In that case the fsub will produce 6958 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6959 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6960 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6961 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6962 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6963 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6964 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6965 6966 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6967 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6968 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6969 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6970 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6971 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6972 SDValue HiSub = 6973 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6974 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6975 return true; 6976 } 6977 6978 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6979 SelectionDAG &DAG) const { 6980 SDLoc dl(Node); 6981 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6982 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6983 EVT VT = Node->getValueType(0); 6984 6985 if (VT.isScalableVector()) 6986 report_fatal_error( 6987 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6988 6989 if (isOperationLegalOrCustom(NewOp, VT)) { 6990 SDValue Quiet0 = Node->getOperand(0); 6991 SDValue Quiet1 = Node->getOperand(1); 6992 6993 if (!Node->getFlags().hasNoNaNs()) { 6994 // Insert canonicalizes if it's possible we need to quiet to get correct 6995 // sNaN behavior. 6996 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6997 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6998 Node->getFlags()); 6999 } 7000 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7001 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7002 Node->getFlags()); 7003 } 7004 } 7005 7006 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7007 } 7008 7009 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7010 // instead if there are no NaNs. 7011 if (Node->getFlags().hasNoNaNs()) { 7012 unsigned IEEE2018Op = 7013 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7014 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7015 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7016 Node->getOperand(1), Node->getFlags()); 7017 } 7018 } 7019 7020 // If none of the above worked, but there are no NaNs, then expand to 7021 // a compare/select sequence. This is required for correctness since 7022 // InstCombine might have canonicalized a fcmp+select sequence to a 7023 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7024 // expansion to libcall, we might introduce a link-time dependency 7025 // on libm into a file that originally did not have one. 7026 if (Node->getFlags().hasNoNaNs()) { 7027 ISD::CondCode Pred = 7028 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7029 SDValue Op1 = Node->getOperand(0); 7030 SDValue Op2 = Node->getOperand(1); 7031 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7032 // Copy FMF flags, but always set the no-signed-zeros flag 7033 // as this is implied by the FMINNUM/FMAXNUM semantics. 7034 SDNodeFlags Flags = Node->getFlags(); 7035 Flags.setNoSignedZeros(true); 7036 SelCC->setFlags(Flags); 7037 return SelCC; 7038 } 7039 7040 return SDValue(); 7041 } 7042 7043 // Only expand vector types if we have the appropriate vector bit operations. 7044 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7045 assert(VT.isVector() && "Expected vector type"); 7046 unsigned Len = VT.getScalarSizeInBits(); 7047 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7048 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7049 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7050 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7051 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7052 } 7053 7054 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7055 SDLoc dl(Node); 7056 EVT VT = Node->getValueType(0); 7057 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7058 SDValue Op = Node->getOperand(0); 7059 unsigned Len = VT.getScalarSizeInBits(); 7060 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7061 7062 // TODO: Add support for irregular type lengths. 7063 if (!(Len <= 128 && Len % 8 == 0)) 7064 return SDValue(); 7065 7066 // Only expand vector types if we have the appropriate vector bit operations. 7067 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7068 return SDValue(); 7069 7070 // This is the "best" algorithm from 7071 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7072 SDValue Mask55 = 7073 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7074 SDValue Mask33 = 7075 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7076 SDValue Mask0F = 7077 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7078 SDValue Mask01 = 7079 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7080 7081 // v = v - ((v >> 1) & 0x55555555...) 7082 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7083 DAG.getNode(ISD::AND, dl, VT, 7084 DAG.getNode(ISD::SRL, dl, VT, Op, 7085 DAG.getConstant(1, dl, ShVT)), 7086 Mask55)); 7087 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7088 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7089 DAG.getNode(ISD::AND, dl, VT, 7090 DAG.getNode(ISD::SRL, dl, VT, Op, 7091 DAG.getConstant(2, dl, ShVT)), 7092 Mask33)); 7093 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7094 Op = DAG.getNode(ISD::AND, dl, VT, 7095 DAG.getNode(ISD::ADD, dl, VT, Op, 7096 DAG.getNode(ISD::SRL, dl, VT, Op, 7097 DAG.getConstant(4, dl, ShVT))), 7098 Mask0F); 7099 // v = (v * 0x01010101...) >> (Len - 8) 7100 if (Len > 8) 7101 Op = 7102 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7103 DAG.getConstant(Len - 8, dl, ShVT)); 7104 7105 return Op; 7106 } 7107 7108 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7109 SDLoc dl(Node); 7110 EVT VT = Node->getValueType(0); 7111 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7112 SDValue Op = Node->getOperand(0); 7113 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7114 7115 // If the non-ZERO_UNDEF version is supported we can use that instead. 7116 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7117 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7118 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7119 7120 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7121 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7122 EVT SetCCVT = 7123 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7124 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7125 SDValue Zero = DAG.getConstant(0, dl, VT); 7126 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7127 return DAG.getSelect(dl, VT, SrcIsZero, 7128 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7129 } 7130 7131 // Only expand vector types if we have the appropriate vector bit operations. 7132 // This includes the operations needed to expand CTPOP if it isn't supported. 7133 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7134 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7135 !canExpandVectorCTPOP(*this, VT)) || 7136 !isOperationLegalOrCustom(ISD::SRL, VT) || 7137 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7138 return SDValue(); 7139 7140 // for now, we do this: 7141 // x = x | (x >> 1); 7142 // x = x | (x >> 2); 7143 // ... 7144 // x = x | (x >>16); 7145 // x = x | (x >>32); // for 64-bit input 7146 // return popcount(~x); 7147 // 7148 // Ref: "Hacker's Delight" by Henry Warren 7149 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7150 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7151 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7152 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7153 } 7154 Op = DAG.getNOT(dl, Op, VT); 7155 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7156 } 7157 7158 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7159 SDLoc dl(Node); 7160 EVT VT = Node->getValueType(0); 7161 SDValue Op = Node->getOperand(0); 7162 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7163 7164 // If the non-ZERO_UNDEF version is supported we can use that instead. 7165 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7166 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7167 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7168 7169 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7170 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7171 EVT SetCCVT = 7172 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7173 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7174 SDValue Zero = DAG.getConstant(0, dl, VT); 7175 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7176 return DAG.getSelect(dl, VT, SrcIsZero, 7177 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7178 } 7179 7180 // Only expand vector types if we have the appropriate vector bit operations. 7181 // This includes the operations needed to expand CTPOP if it isn't supported. 7182 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7183 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7184 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7185 !canExpandVectorCTPOP(*this, VT)) || 7186 !isOperationLegalOrCustom(ISD::SUB, VT) || 7187 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7188 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7189 return SDValue(); 7190 7191 // for now, we use: { return popcount(~x & (x - 1)); } 7192 // unless the target has ctlz but not ctpop, in which case we use: 7193 // { return 32 - nlz(~x & (x-1)); } 7194 // Ref: "Hacker's Delight" by Henry Warren 7195 SDValue Tmp = DAG.getNode( 7196 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7197 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7198 7199 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7200 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7201 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7202 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7203 } 7204 7205 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7206 } 7207 7208 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7209 bool IsNegative) const { 7210 SDLoc dl(N); 7211 EVT VT = N->getValueType(0); 7212 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7213 SDValue Op = N->getOperand(0); 7214 7215 // abs(x) -> smax(x,sub(0,x)) 7216 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7217 isOperationLegal(ISD::SMAX, VT)) { 7218 SDValue Zero = DAG.getConstant(0, dl, VT); 7219 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7220 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7221 } 7222 7223 // abs(x) -> umin(x,sub(0,x)) 7224 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7225 isOperationLegal(ISD::UMIN, VT)) { 7226 SDValue Zero = DAG.getConstant(0, dl, VT); 7227 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7228 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7229 } 7230 7231 // 0 - abs(x) -> smin(x, sub(0,x)) 7232 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7233 isOperationLegal(ISD::SMIN, VT)) { 7234 SDValue Zero = DAG.getConstant(0, dl, VT); 7235 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7236 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7237 } 7238 7239 // Only expand vector types if we have the appropriate vector operations. 7240 if (VT.isVector() && 7241 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7242 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7243 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7244 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7245 return SDValue(); 7246 7247 SDValue Shift = 7248 DAG.getNode(ISD::SRA, dl, VT, Op, 7249 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7250 if (!IsNegative) { 7251 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7252 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7253 } 7254 7255 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7256 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7257 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7258 } 7259 7260 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7261 SDLoc dl(N); 7262 EVT VT = N->getValueType(0); 7263 SDValue Op = N->getOperand(0); 7264 7265 if (!VT.isSimple()) 7266 return SDValue(); 7267 7268 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7269 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7270 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7271 default: 7272 return SDValue(); 7273 case MVT::i16: 7274 // Use a rotate by 8. This can be further expanded if necessary. 7275 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7276 case MVT::i32: 7277 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7278 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7279 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7280 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7281 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7282 DAG.getConstant(0xFF0000, dl, VT)); 7283 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7284 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7285 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7286 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7287 case MVT::i64: 7288 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7289 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7290 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7291 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7292 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7293 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7294 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7295 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7296 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7297 DAG.getConstant(255ULL<<48, dl, VT)); 7298 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7299 DAG.getConstant(255ULL<<40, dl, VT)); 7300 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7301 DAG.getConstant(255ULL<<32, dl, VT)); 7302 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7303 DAG.getConstant(255ULL<<24, dl, VT)); 7304 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7305 DAG.getConstant(255ULL<<16, dl, VT)); 7306 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7307 DAG.getConstant(255ULL<<8 , dl, VT)); 7308 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7309 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7310 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7311 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7312 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7313 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7314 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7315 } 7316 } 7317 7318 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7319 SDLoc dl(N); 7320 EVT VT = N->getValueType(0); 7321 SDValue Op = N->getOperand(0); 7322 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7323 unsigned Sz = VT.getScalarSizeInBits(); 7324 7325 SDValue Tmp, Tmp2, Tmp3; 7326 7327 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7328 // and finally the i1 pairs. 7329 // TODO: We can easily support i4/i2 legal types if any target ever does. 7330 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7331 // Create the masks - repeating the pattern every byte. 7332 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7333 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7334 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7335 7336 // BSWAP if the type is wider than a single byte. 7337 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7338 7339 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7340 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7341 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7342 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7343 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7344 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7345 7346 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7347 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7348 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7349 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7350 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7351 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7352 7353 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7354 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7355 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7356 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7357 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7358 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7359 return Tmp; 7360 } 7361 7362 Tmp = DAG.getConstant(0, dl, VT); 7363 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7364 if (I < J) 7365 Tmp2 = 7366 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7367 else 7368 Tmp2 = 7369 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7370 7371 APInt Shift(Sz, 1); 7372 Shift <<= J; 7373 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7374 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7375 } 7376 7377 return Tmp; 7378 } 7379 7380 std::pair<SDValue, SDValue> 7381 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7382 SelectionDAG &DAG) const { 7383 SDLoc SL(LD); 7384 SDValue Chain = LD->getChain(); 7385 SDValue BasePTR = LD->getBasePtr(); 7386 EVT SrcVT = LD->getMemoryVT(); 7387 EVT DstVT = LD->getValueType(0); 7388 ISD::LoadExtType ExtType = LD->getExtensionType(); 7389 7390 if (SrcVT.isScalableVector()) 7391 report_fatal_error("Cannot scalarize scalable vector loads"); 7392 7393 unsigned NumElem = SrcVT.getVectorNumElements(); 7394 7395 EVT SrcEltVT = SrcVT.getScalarType(); 7396 EVT DstEltVT = DstVT.getScalarType(); 7397 7398 // A vector must always be stored in memory as-is, i.e. without any padding 7399 // between the elements, since various code depend on it, e.g. in the 7400 // handling of a bitcast of a vector type to int, which may be done with a 7401 // vector store followed by an integer load. A vector that does not have 7402 // elements that are byte-sized must therefore be stored as an integer 7403 // built out of the extracted vector elements. 7404 if (!SrcEltVT.isByteSized()) { 7405 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7406 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7407 7408 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7409 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7410 7411 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7412 SDValue SrcEltBitMask = DAG.getConstant( 7413 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7414 7415 // Load the whole vector and avoid masking off the top bits as it makes 7416 // the codegen worse. 7417 SDValue Load = 7418 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7419 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7420 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7421 7422 SmallVector<SDValue, 8> Vals; 7423 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7424 unsigned ShiftIntoIdx = 7425 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7426 SDValue ShiftAmount = 7427 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7428 LoadVT, SL, /*LegalTypes=*/false); 7429 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7430 SDValue Elt = 7431 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7432 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7433 7434 if (ExtType != ISD::NON_EXTLOAD) { 7435 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7436 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7437 } 7438 7439 Vals.push_back(Scalar); 7440 } 7441 7442 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7443 return std::make_pair(Value, Load.getValue(1)); 7444 } 7445 7446 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7447 assert(SrcEltVT.isByteSized()); 7448 7449 SmallVector<SDValue, 8> Vals; 7450 SmallVector<SDValue, 8> LoadChains; 7451 7452 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7453 SDValue ScalarLoad = 7454 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7455 LD->getPointerInfo().getWithOffset(Idx * Stride), 7456 SrcEltVT, LD->getOriginalAlign(), 7457 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7458 7459 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7460 7461 Vals.push_back(ScalarLoad.getValue(0)); 7462 LoadChains.push_back(ScalarLoad.getValue(1)); 7463 } 7464 7465 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7466 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7467 7468 return std::make_pair(Value, NewChain); 7469 } 7470 7471 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7472 SelectionDAG &DAG) const { 7473 SDLoc SL(ST); 7474 7475 SDValue Chain = ST->getChain(); 7476 SDValue BasePtr = ST->getBasePtr(); 7477 SDValue Value = ST->getValue(); 7478 EVT StVT = ST->getMemoryVT(); 7479 7480 if (StVT.isScalableVector()) 7481 report_fatal_error("Cannot scalarize scalable vector stores"); 7482 7483 // The type of the data we want to save 7484 EVT RegVT = Value.getValueType(); 7485 EVT RegSclVT = RegVT.getScalarType(); 7486 7487 // The type of data as saved in memory. 7488 EVT MemSclVT = StVT.getScalarType(); 7489 7490 unsigned NumElem = StVT.getVectorNumElements(); 7491 7492 // A vector must always be stored in memory as-is, i.e. without any padding 7493 // between the elements, since various code depend on it, e.g. in the 7494 // handling of a bitcast of a vector type to int, which may be done with a 7495 // vector store followed by an integer load. A vector that does not have 7496 // elements that are byte-sized must therefore be stored as an integer 7497 // built out of the extracted vector elements. 7498 if (!MemSclVT.isByteSized()) { 7499 unsigned NumBits = StVT.getSizeInBits(); 7500 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7501 7502 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7503 7504 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7505 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7506 DAG.getVectorIdxConstant(Idx, SL)); 7507 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7508 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7509 unsigned ShiftIntoIdx = 7510 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7511 SDValue ShiftAmount = 7512 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7513 SDValue ShiftedElt = 7514 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7515 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7516 } 7517 7518 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7519 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7520 ST->getAAInfo()); 7521 } 7522 7523 // Store Stride in bytes 7524 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7525 assert(Stride && "Zero stride!"); 7526 // Extract each of the elements from the original vector and save them into 7527 // memory individually. 7528 SmallVector<SDValue, 8> Stores; 7529 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7530 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7531 DAG.getVectorIdxConstant(Idx, SL)); 7532 7533 SDValue Ptr = 7534 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7535 7536 // This scalar TruncStore may be illegal, but we legalize it later. 7537 SDValue Store = DAG.getTruncStore( 7538 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7539 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7540 ST->getAAInfo()); 7541 7542 Stores.push_back(Store); 7543 } 7544 7545 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7546 } 7547 7548 std::pair<SDValue, SDValue> 7549 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7550 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7551 "unaligned indexed loads not implemented!"); 7552 SDValue Chain = LD->getChain(); 7553 SDValue Ptr = LD->getBasePtr(); 7554 EVT VT = LD->getValueType(0); 7555 EVT LoadedVT = LD->getMemoryVT(); 7556 SDLoc dl(LD); 7557 auto &MF = DAG.getMachineFunction(); 7558 7559 if (VT.isFloatingPoint() || VT.isVector()) { 7560 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7561 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7562 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7563 LoadedVT.isVector()) { 7564 // Scalarize the load and let the individual components be handled. 7565 return scalarizeVectorLoad(LD, DAG); 7566 } 7567 7568 // Expand to a (misaligned) integer load of the same size, 7569 // then bitconvert to floating point or vector. 7570 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7571 LD->getMemOperand()); 7572 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7573 if (LoadedVT != VT) 7574 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7575 ISD::ANY_EXTEND, dl, VT, Result); 7576 7577 return std::make_pair(Result, newLoad.getValue(1)); 7578 } 7579 7580 // Copy the value to a (aligned) stack slot using (unaligned) integer 7581 // loads and stores, then do a (aligned) load from the stack slot. 7582 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7583 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7584 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7585 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7586 7587 // Make sure the stack slot is also aligned for the register type. 7588 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7589 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7590 SmallVector<SDValue, 8> Stores; 7591 SDValue StackPtr = StackBase; 7592 unsigned Offset = 0; 7593 7594 EVT PtrVT = Ptr.getValueType(); 7595 EVT StackPtrVT = StackPtr.getValueType(); 7596 7597 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7598 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7599 7600 // Do all but one copies using the full register width. 7601 for (unsigned i = 1; i < NumRegs; i++) { 7602 // Load one integer register's worth from the original location. 7603 SDValue Load = DAG.getLoad( 7604 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7605 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7606 LD->getAAInfo()); 7607 // Follow the load with a store to the stack slot. Remember the store. 7608 Stores.push_back(DAG.getStore( 7609 Load.getValue(1), dl, Load, StackPtr, 7610 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7611 // Increment the pointers. 7612 Offset += RegBytes; 7613 7614 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7615 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7616 } 7617 7618 // The last copy may be partial. Do an extending load. 7619 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7620 8 * (LoadedBytes - Offset)); 7621 SDValue Load = 7622 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7623 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7624 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7625 LD->getAAInfo()); 7626 // Follow the load with a store to the stack slot. Remember the store. 7627 // On big-endian machines this requires a truncating store to ensure 7628 // that the bits end up in the right place. 7629 Stores.push_back(DAG.getTruncStore( 7630 Load.getValue(1), dl, Load, StackPtr, 7631 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7632 7633 // The order of the stores doesn't matter - say it with a TokenFactor. 7634 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7635 7636 // Finally, perform the original load only redirected to the stack slot. 7637 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7638 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7639 LoadedVT); 7640 7641 // Callers expect a MERGE_VALUES node. 7642 return std::make_pair(Load, TF); 7643 } 7644 7645 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7646 "Unaligned load of unsupported type."); 7647 7648 // Compute the new VT that is half the size of the old one. This is an 7649 // integer MVT. 7650 unsigned NumBits = LoadedVT.getSizeInBits(); 7651 EVT NewLoadedVT; 7652 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7653 NumBits >>= 1; 7654 7655 Align Alignment = LD->getOriginalAlign(); 7656 unsigned IncrementSize = NumBits / 8; 7657 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7658 7659 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7660 if (HiExtType == ISD::NON_EXTLOAD) 7661 HiExtType = ISD::ZEXTLOAD; 7662 7663 // Load the value in two parts 7664 SDValue Lo, Hi; 7665 if (DAG.getDataLayout().isLittleEndian()) { 7666 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7667 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7668 LD->getAAInfo()); 7669 7670 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7671 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7672 LD->getPointerInfo().getWithOffset(IncrementSize), 7673 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7674 LD->getAAInfo()); 7675 } else { 7676 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7677 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7678 LD->getAAInfo()); 7679 7680 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7681 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7682 LD->getPointerInfo().getWithOffset(IncrementSize), 7683 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7684 LD->getAAInfo()); 7685 } 7686 7687 // aggregate the two parts 7688 SDValue ShiftAmount = 7689 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7690 DAG.getDataLayout())); 7691 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7692 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7693 7694 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7695 Hi.getValue(1)); 7696 7697 return std::make_pair(Result, TF); 7698 } 7699 7700 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7701 SelectionDAG &DAG) const { 7702 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7703 "unaligned indexed stores not implemented!"); 7704 SDValue Chain = ST->getChain(); 7705 SDValue Ptr = ST->getBasePtr(); 7706 SDValue Val = ST->getValue(); 7707 EVT VT = Val.getValueType(); 7708 Align Alignment = ST->getOriginalAlign(); 7709 auto &MF = DAG.getMachineFunction(); 7710 EVT StoreMemVT = ST->getMemoryVT(); 7711 7712 SDLoc dl(ST); 7713 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7714 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7715 if (isTypeLegal(intVT)) { 7716 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7717 StoreMemVT.isVector()) { 7718 // Scalarize the store and let the individual components be handled. 7719 SDValue Result = scalarizeVectorStore(ST, DAG); 7720 return Result; 7721 } 7722 // Expand to a bitconvert of the value to the integer type of the 7723 // same size, then a (misaligned) int store. 7724 // FIXME: Does not handle truncating floating point stores! 7725 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7726 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7727 Alignment, ST->getMemOperand()->getFlags()); 7728 return Result; 7729 } 7730 // Do a (aligned) store to a stack slot, then copy from the stack slot 7731 // to the final destination using (unaligned) integer loads and stores. 7732 MVT RegVT = getRegisterType( 7733 *DAG.getContext(), 7734 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7735 EVT PtrVT = Ptr.getValueType(); 7736 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7737 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7738 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7739 7740 // Make sure the stack slot is also aligned for the register type. 7741 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7742 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7743 7744 // Perform the original store, only redirected to the stack slot. 7745 SDValue Store = DAG.getTruncStore( 7746 Chain, dl, Val, StackPtr, 7747 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7748 7749 EVT StackPtrVT = StackPtr.getValueType(); 7750 7751 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7752 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7753 SmallVector<SDValue, 8> Stores; 7754 unsigned Offset = 0; 7755 7756 // Do all but one copies using the full register width. 7757 for (unsigned i = 1; i < NumRegs; i++) { 7758 // Load one integer register's worth from the stack slot. 7759 SDValue Load = DAG.getLoad( 7760 RegVT, dl, Store, StackPtr, 7761 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7762 // Store it to the final location. Remember the store. 7763 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7764 ST->getPointerInfo().getWithOffset(Offset), 7765 ST->getOriginalAlign(), 7766 ST->getMemOperand()->getFlags())); 7767 // Increment the pointers. 7768 Offset += RegBytes; 7769 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7770 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7771 } 7772 7773 // The last store may be partial. Do a truncating store. On big-endian 7774 // machines this requires an extending load from the stack slot to ensure 7775 // that the bits are in the right place. 7776 EVT LoadMemVT = 7777 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7778 7779 // Load from the stack slot. 7780 SDValue Load = DAG.getExtLoad( 7781 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7782 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7783 7784 Stores.push_back( 7785 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7786 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7787 ST->getOriginalAlign(), 7788 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7789 // The order of the stores doesn't matter - say it with a TokenFactor. 7790 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7791 return Result; 7792 } 7793 7794 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7795 "Unaligned store of unknown type."); 7796 // Get the half-size VT 7797 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7798 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7799 unsigned IncrementSize = NumBits / 8; 7800 7801 // Divide the stored value in two parts. 7802 SDValue ShiftAmount = DAG.getConstant( 7803 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7804 SDValue Lo = Val; 7805 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7806 7807 // Store the two parts 7808 SDValue Store1, Store2; 7809 Store1 = DAG.getTruncStore(Chain, dl, 7810 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7811 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7812 ST->getMemOperand()->getFlags()); 7813 7814 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7815 Store2 = DAG.getTruncStore( 7816 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7817 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7818 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7819 7820 SDValue Result = 7821 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7822 return Result; 7823 } 7824 7825 SDValue 7826 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7827 const SDLoc &DL, EVT DataVT, 7828 SelectionDAG &DAG, 7829 bool IsCompressedMemory) const { 7830 SDValue Increment; 7831 EVT AddrVT = Addr.getValueType(); 7832 EVT MaskVT = Mask.getValueType(); 7833 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7834 "Incompatible types of Data and Mask"); 7835 if (IsCompressedMemory) { 7836 if (DataVT.isScalableVector()) 7837 report_fatal_error( 7838 "Cannot currently handle compressed memory with scalable vectors"); 7839 // Incrementing the pointer according to number of '1's in the mask. 7840 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7841 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7842 if (MaskIntVT.getSizeInBits() < 32) { 7843 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7844 MaskIntVT = MVT::i32; 7845 } 7846 7847 // Count '1's with POPCNT. 7848 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7849 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7850 // Scale is an element size in bytes. 7851 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7852 AddrVT); 7853 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7854 } else if (DataVT.isScalableVector()) { 7855 Increment = DAG.getVScale(DL, AddrVT, 7856 APInt(AddrVT.getFixedSizeInBits(), 7857 DataVT.getStoreSize().getKnownMinSize())); 7858 } else 7859 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7860 7861 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7862 } 7863 7864 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7865 EVT VecVT, const SDLoc &dl, 7866 ElementCount SubEC) { 7867 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7868 "Cannot index a scalable vector within a fixed-width vector"); 7869 7870 unsigned NElts = VecVT.getVectorMinNumElements(); 7871 unsigned NumSubElts = SubEC.getKnownMinValue(); 7872 EVT IdxVT = Idx.getValueType(); 7873 7874 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7875 // If this is a constant index and we know the value plus the number of the 7876 // elements in the subvector minus one is less than the minimum number of 7877 // elements then it's safe to return Idx. 7878 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7879 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7880 return Idx; 7881 SDValue VS = 7882 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7883 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7884 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7885 DAG.getConstant(NumSubElts, dl, IdxVT)); 7886 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7887 } 7888 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7889 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7890 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7891 DAG.getConstant(Imm, dl, IdxVT)); 7892 } 7893 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7894 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7895 DAG.getConstant(MaxIndex, dl, IdxVT)); 7896 } 7897 7898 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7899 SDValue VecPtr, EVT VecVT, 7900 SDValue Index) const { 7901 return getVectorSubVecPointer( 7902 DAG, VecPtr, VecVT, 7903 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7904 Index); 7905 } 7906 7907 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7908 SDValue VecPtr, EVT VecVT, 7909 EVT SubVecVT, 7910 SDValue Index) const { 7911 SDLoc dl(Index); 7912 // Make sure the index type is big enough to compute in. 7913 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7914 7915 EVT EltVT = VecVT.getVectorElementType(); 7916 7917 // Calculate the element offset and add it to the pointer. 7918 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7919 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7920 "Converting bits to bytes lost precision"); 7921 assert(SubVecVT.getVectorElementType() == EltVT && 7922 "Sub-vector must be a vector with matching element type"); 7923 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7924 SubVecVT.getVectorElementCount()); 7925 7926 EVT IdxVT = Index.getValueType(); 7927 if (SubVecVT.isScalableVector()) 7928 Index = 7929 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7930 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7931 7932 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7933 DAG.getConstant(EltSize, dl, IdxVT)); 7934 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7935 } 7936 7937 //===----------------------------------------------------------------------===// 7938 // Implementation of Emulated TLS Model 7939 //===----------------------------------------------------------------------===// 7940 7941 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7942 SelectionDAG &DAG) const { 7943 // Access to address of TLS varialbe xyz is lowered to a function call: 7944 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7945 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7946 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7947 SDLoc dl(GA); 7948 7949 ArgListTy Args; 7950 ArgListEntry Entry; 7951 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7952 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7953 StringRef EmuTlsVarName(NameString); 7954 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7955 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7956 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7957 Entry.Ty = VoidPtrType; 7958 Args.push_back(Entry); 7959 7960 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7961 7962 TargetLowering::CallLoweringInfo CLI(DAG); 7963 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7964 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7965 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7966 7967 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7968 // At last for X86 targets, maybe good for other targets too? 7969 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7970 MFI.setAdjustsStack(true); // Is this only for X86 target? 7971 MFI.setHasCalls(true); 7972 7973 assert((GA->getOffset() == 0) && 7974 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7975 return CallResult.first; 7976 } 7977 7978 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7979 SelectionDAG &DAG) const { 7980 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7981 if (!isCtlzFast()) 7982 return SDValue(); 7983 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7984 SDLoc dl(Op); 7985 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7986 if (C->isZero() && CC == ISD::SETEQ) { 7987 EVT VT = Op.getOperand(0).getValueType(); 7988 SDValue Zext = Op.getOperand(0); 7989 if (VT.bitsLT(MVT::i32)) { 7990 VT = MVT::i32; 7991 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7992 } 7993 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7994 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7995 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7996 DAG.getConstant(Log2b, dl, MVT::i32)); 7997 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7998 } 7999 } 8000 return SDValue(); 8001 } 8002 8003 // Convert redundant addressing modes (e.g. scaling is redundant 8004 // when accessing bytes). 8005 ISD::MemIndexType 8006 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8007 SDValue Offsets) const { 8008 bool IsScaledIndex = 8009 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8010 bool IsSignedIndex = 8011 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8012 8013 // Scaling is unimportant for bytes, canonicalize to unscaled. 8014 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8015 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8016 8017 return IndexType; 8018 } 8019 8020 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8021 SDValue Op0 = Node->getOperand(0); 8022 SDValue Op1 = Node->getOperand(1); 8023 EVT VT = Op0.getValueType(); 8024 unsigned Opcode = Node->getOpcode(); 8025 SDLoc DL(Node); 8026 8027 // umin(x,y) -> sub(x,usubsat(x,y)) 8028 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8029 isOperationLegal(ISD::USUBSAT, VT)) { 8030 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8031 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8032 } 8033 8034 // umax(x,y) -> add(x,usubsat(y,x)) 8035 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8036 isOperationLegal(ISD::USUBSAT, VT)) { 8037 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8038 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8039 } 8040 8041 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8042 ISD::CondCode CC; 8043 switch (Opcode) { 8044 default: llvm_unreachable("How did we get here?"); 8045 case ISD::SMAX: CC = ISD::SETGT; break; 8046 case ISD::SMIN: CC = ISD::SETLT; break; 8047 case ISD::UMAX: CC = ISD::SETUGT; break; 8048 case ISD::UMIN: CC = ISD::SETULT; break; 8049 } 8050 8051 // FIXME: Should really try to split the vector in case it's legal on a 8052 // subvector. 8053 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8054 return DAG.UnrollVectorOp(Node); 8055 8056 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8057 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8058 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8059 } 8060 8061 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8062 unsigned Opcode = Node->getOpcode(); 8063 SDValue LHS = Node->getOperand(0); 8064 SDValue RHS = Node->getOperand(1); 8065 EVT VT = LHS.getValueType(); 8066 SDLoc dl(Node); 8067 8068 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8069 assert(VT.isInteger() && "Expected operands to be integers"); 8070 8071 // usub.sat(a, b) -> umax(a, b) - b 8072 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8073 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8074 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8075 } 8076 8077 // uadd.sat(a, b) -> umin(a, ~b) + b 8078 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8079 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8080 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8081 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8082 } 8083 8084 unsigned OverflowOp; 8085 switch (Opcode) { 8086 case ISD::SADDSAT: 8087 OverflowOp = ISD::SADDO; 8088 break; 8089 case ISD::UADDSAT: 8090 OverflowOp = ISD::UADDO; 8091 break; 8092 case ISD::SSUBSAT: 8093 OverflowOp = ISD::SSUBO; 8094 break; 8095 case ISD::USUBSAT: 8096 OverflowOp = ISD::USUBO; 8097 break; 8098 default: 8099 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8100 "addition or subtraction node."); 8101 } 8102 8103 // FIXME: Should really try to split the vector in case it's legal on a 8104 // subvector. 8105 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8106 return DAG.UnrollVectorOp(Node); 8107 8108 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8109 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8110 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8111 SDValue SumDiff = Result.getValue(0); 8112 SDValue Overflow = Result.getValue(1); 8113 SDValue Zero = DAG.getConstant(0, dl, VT); 8114 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8115 8116 if (Opcode == ISD::UADDSAT) { 8117 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8118 // (LHS + RHS) | OverflowMask 8119 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8120 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8121 } 8122 // Overflow ? 0xffff.... : (LHS + RHS) 8123 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8124 } 8125 8126 if (Opcode == ISD::USUBSAT) { 8127 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8128 // (LHS - RHS) & ~OverflowMask 8129 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8130 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8131 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8132 } 8133 // Overflow ? 0 : (LHS - RHS) 8134 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8135 } 8136 8137 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8138 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8139 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8140 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8141 DAG.getConstant(BitWidth - 1, dl, VT)); 8142 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8143 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8144 } 8145 8146 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8147 unsigned Opcode = Node->getOpcode(); 8148 bool IsSigned = Opcode == ISD::SSHLSAT; 8149 SDValue LHS = Node->getOperand(0); 8150 SDValue RHS = Node->getOperand(1); 8151 EVT VT = LHS.getValueType(); 8152 SDLoc dl(Node); 8153 8154 assert((Node->getOpcode() == ISD::SSHLSAT || 8155 Node->getOpcode() == ISD::USHLSAT) && 8156 "Expected a SHLSAT opcode"); 8157 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8158 assert(VT.isInteger() && "Expected operands to be integers"); 8159 8160 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8161 8162 unsigned BW = VT.getScalarSizeInBits(); 8163 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8164 SDValue Orig = 8165 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8166 8167 SDValue SatVal; 8168 if (IsSigned) { 8169 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8170 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8171 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8172 SatMin, SatMax, ISD::SETLT); 8173 } else { 8174 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8175 } 8176 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8177 8178 return Result; 8179 } 8180 8181 SDValue 8182 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8183 assert((Node->getOpcode() == ISD::SMULFIX || 8184 Node->getOpcode() == ISD::UMULFIX || 8185 Node->getOpcode() == ISD::SMULFIXSAT || 8186 Node->getOpcode() == ISD::UMULFIXSAT) && 8187 "Expected a fixed point multiplication opcode"); 8188 8189 SDLoc dl(Node); 8190 SDValue LHS = Node->getOperand(0); 8191 SDValue RHS = Node->getOperand(1); 8192 EVT VT = LHS.getValueType(); 8193 unsigned Scale = Node->getConstantOperandVal(2); 8194 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8195 Node->getOpcode() == ISD::UMULFIXSAT); 8196 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8197 Node->getOpcode() == ISD::SMULFIXSAT); 8198 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8199 unsigned VTSize = VT.getScalarSizeInBits(); 8200 8201 if (!Scale) { 8202 // [us]mul.fix(a, b, 0) -> mul(a, b) 8203 if (!Saturating) { 8204 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8205 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8206 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8207 SDValue Result = 8208 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8209 SDValue Product = Result.getValue(0); 8210 SDValue Overflow = Result.getValue(1); 8211 SDValue Zero = DAG.getConstant(0, dl, VT); 8212 8213 APInt MinVal = APInt::getSignedMinValue(VTSize); 8214 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8215 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8216 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8217 // Xor the inputs, if resulting sign bit is 0 the product will be 8218 // positive, else negative. 8219 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8220 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8221 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8222 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8223 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8224 SDValue Result = 8225 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8226 SDValue Product = Result.getValue(0); 8227 SDValue Overflow = Result.getValue(1); 8228 8229 APInt MaxVal = APInt::getMaxValue(VTSize); 8230 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8231 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8232 } 8233 } 8234 8235 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8236 "Expected scale to be less than the number of bits if signed or at " 8237 "most the number of bits if unsigned."); 8238 assert(LHS.getValueType() == RHS.getValueType() && 8239 "Expected both operands to be the same type"); 8240 8241 // Get the upper and lower bits of the result. 8242 SDValue Lo, Hi; 8243 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8244 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8245 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8246 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8247 Lo = Result.getValue(0); 8248 Hi = Result.getValue(1); 8249 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8250 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8251 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8252 } else if (VT.isVector()) { 8253 return SDValue(); 8254 } else { 8255 report_fatal_error("Unable to expand fixed point multiplication."); 8256 } 8257 8258 if (Scale == VTSize) 8259 // Result is just the top half since we'd be shifting by the width of the 8260 // operand. Overflow impossible so this works for both UMULFIX and 8261 // UMULFIXSAT. 8262 return Hi; 8263 8264 // The result will need to be shifted right by the scale since both operands 8265 // are scaled. The result is given to us in 2 halves, so we only want part of 8266 // both in the result. 8267 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8268 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8269 DAG.getConstant(Scale, dl, ShiftTy)); 8270 if (!Saturating) 8271 return Result; 8272 8273 if (!Signed) { 8274 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8275 // widened multiplication) aren't all zeroes. 8276 8277 // Saturate to max if ((Hi >> Scale) != 0), 8278 // which is the same as if (Hi > ((1 << Scale) - 1)) 8279 APInt MaxVal = APInt::getMaxValue(VTSize); 8280 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8281 dl, VT); 8282 Result = DAG.getSelectCC(dl, Hi, LowMask, 8283 DAG.getConstant(MaxVal, dl, VT), Result, 8284 ISD::SETUGT); 8285 8286 return Result; 8287 } 8288 8289 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8290 // widened multiplication) aren't all ones or all zeroes. 8291 8292 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8293 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8294 8295 if (Scale == 0) { 8296 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8297 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8298 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8299 // Saturated to SatMin if wide product is negative, and SatMax if wide 8300 // product is positive ... 8301 SDValue Zero = DAG.getConstant(0, dl, VT); 8302 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8303 ISD::SETLT); 8304 // ... but only if we overflowed. 8305 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8306 } 8307 8308 // We handled Scale==0 above so all the bits to examine is in Hi. 8309 8310 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8311 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8312 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8313 dl, VT); 8314 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8315 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8316 // which is the same as if (HI < (-1 << (Scale - 1)) 8317 SDValue HighMask = 8318 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8319 dl, VT); 8320 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8321 return Result; 8322 } 8323 8324 SDValue 8325 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8326 SDValue LHS, SDValue RHS, 8327 unsigned Scale, SelectionDAG &DAG) const { 8328 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8329 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8330 "Expected a fixed point division opcode"); 8331 8332 EVT VT = LHS.getValueType(); 8333 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8334 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8335 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8336 8337 // If there is enough room in the type to upscale the LHS or downscale the 8338 // RHS before the division, we can perform it in this type without having to 8339 // resize. For signed operations, the LHS headroom is the number of 8340 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8341 // The headroom for the RHS is the number of trailing zeroes. 8342 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8343 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8344 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8345 8346 // For signed saturating operations, we need to be able to detect true integer 8347 // division overflow; that is, when you have MIN / -EPS. However, this 8348 // is undefined behavior and if we emit divisions that could take such 8349 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8350 // example). 8351 // Avoid this by requiring an extra bit so that we never get this case. 8352 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8353 // signed saturating division, we need to emit a whopping 32-bit division. 8354 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8355 return SDValue(); 8356 8357 unsigned LHSShift = std::min(LHSLead, Scale); 8358 unsigned RHSShift = Scale - LHSShift; 8359 8360 // At this point, we know that if we shift the LHS up by LHSShift and the 8361 // RHS down by RHSShift, we can emit a regular division with a final scaling 8362 // factor of Scale. 8363 8364 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8365 if (LHSShift) 8366 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8367 DAG.getConstant(LHSShift, dl, ShiftTy)); 8368 if (RHSShift) 8369 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8370 DAG.getConstant(RHSShift, dl, ShiftTy)); 8371 8372 SDValue Quot; 8373 if (Signed) { 8374 // For signed operations, if the resulting quotient is negative and the 8375 // remainder is nonzero, subtract 1 from the quotient to round towards 8376 // negative infinity. 8377 SDValue Rem; 8378 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8379 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8380 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8381 if (isTypeLegal(VT) && 8382 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8383 Quot = DAG.getNode(ISD::SDIVREM, dl, 8384 DAG.getVTList(VT, VT), 8385 LHS, RHS); 8386 Rem = Quot.getValue(1); 8387 Quot = Quot.getValue(0); 8388 } else { 8389 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8390 LHS, RHS); 8391 Rem = DAG.getNode(ISD::SREM, dl, VT, 8392 LHS, RHS); 8393 } 8394 SDValue Zero = DAG.getConstant(0, dl, VT); 8395 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8396 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8397 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8398 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8399 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8400 DAG.getConstant(1, dl, VT)); 8401 Quot = DAG.getSelect(dl, VT, 8402 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8403 Sub1, Quot); 8404 } else 8405 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8406 LHS, RHS); 8407 8408 return Quot; 8409 } 8410 8411 void TargetLowering::expandUADDSUBO( 8412 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8413 SDLoc dl(Node); 8414 SDValue LHS = Node->getOperand(0); 8415 SDValue RHS = Node->getOperand(1); 8416 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8417 8418 // If ADD/SUBCARRY is legal, use that instead. 8419 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8420 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8421 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8422 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8423 { LHS, RHS, CarryIn }); 8424 Result = SDValue(NodeCarry.getNode(), 0); 8425 Overflow = SDValue(NodeCarry.getNode(), 1); 8426 return; 8427 } 8428 8429 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8430 LHS.getValueType(), LHS, RHS); 8431 8432 EVT ResultType = Node->getValueType(1); 8433 EVT SetCCType = getSetCCResultType( 8434 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8435 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8436 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8437 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8438 } 8439 8440 void TargetLowering::expandSADDSUBO( 8441 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8442 SDLoc dl(Node); 8443 SDValue LHS = Node->getOperand(0); 8444 SDValue RHS = Node->getOperand(1); 8445 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8446 8447 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8448 LHS.getValueType(), LHS, RHS); 8449 8450 EVT ResultType = Node->getValueType(1); 8451 EVT OType = getSetCCResultType( 8452 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8453 8454 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8455 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8456 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8457 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8458 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8459 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8460 return; 8461 } 8462 8463 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8464 8465 // For an addition, the result should be less than one of the operands (LHS) 8466 // if and only if the other operand (RHS) is negative, otherwise there will 8467 // be overflow. 8468 // For a subtraction, the result should be less than one of the operands 8469 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8470 // otherwise there will be overflow. 8471 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8472 SDValue ConditionRHS = 8473 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8474 8475 Overflow = DAG.getBoolExtOrTrunc( 8476 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8477 ResultType, ResultType); 8478 } 8479 8480 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8481 SDValue &Overflow, SelectionDAG &DAG) const { 8482 SDLoc dl(Node); 8483 EVT VT = Node->getValueType(0); 8484 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8485 SDValue LHS = Node->getOperand(0); 8486 SDValue RHS = Node->getOperand(1); 8487 bool isSigned = Node->getOpcode() == ISD::SMULO; 8488 8489 // For power-of-two multiplications we can use a simpler shift expansion. 8490 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8491 const APInt &C = RHSC->getAPIntValue(); 8492 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8493 if (C.isPowerOf2()) { 8494 // smulo(x, signed_min) is same as umulo(x, signed_min). 8495 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8496 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8497 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8498 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8499 Overflow = DAG.getSetCC(dl, SetCCVT, 8500 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8501 dl, VT, Result, ShiftAmt), 8502 LHS, ISD::SETNE); 8503 return true; 8504 } 8505 } 8506 8507 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8508 if (VT.isVector()) 8509 WideVT = 8510 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8511 8512 SDValue BottomHalf; 8513 SDValue TopHalf; 8514 static const unsigned Ops[2][3] = 8515 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8516 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8517 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8518 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8519 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8520 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8521 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8522 RHS); 8523 TopHalf = BottomHalf.getValue(1); 8524 } else if (isTypeLegal(WideVT)) { 8525 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8526 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8527 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8528 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8529 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8530 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8531 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8532 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8533 } else { 8534 if (VT.isVector()) 8535 return false; 8536 8537 // We can fall back to a libcall with an illegal type for the MUL if we 8538 // have a libcall big enough. 8539 // Also, we can fall back to a division in some cases, but that's a big 8540 // performance hit in the general case. 8541 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8542 if (WideVT == MVT::i16) 8543 LC = RTLIB::MUL_I16; 8544 else if (WideVT == MVT::i32) 8545 LC = RTLIB::MUL_I32; 8546 else if (WideVT == MVT::i64) 8547 LC = RTLIB::MUL_I64; 8548 else if (WideVT == MVT::i128) 8549 LC = RTLIB::MUL_I128; 8550 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8551 8552 SDValue HiLHS; 8553 SDValue HiRHS; 8554 if (isSigned) { 8555 // The high part is obtained by SRA'ing all but one of the bits of low 8556 // part. 8557 unsigned LoSize = VT.getFixedSizeInBits(); 8558 HiLHS = 8559 DAG.getNode(ISD::SRA, dl, VT, LHS, 8560 DAG.getConstant(LoSize - 1, dl, 8561 getPointerTy(DAG.getDataLayout()))); 8562 HiRHS = 8563 DAG.getNode(ISD::SRA, dl, VT, RHS, 8564 DAG.getConstant(LoSize - 1, dl, 8565 getPointerTy(DAG.getDataLayout()))); 8566 } else { 8567 HiLHS = DAG.getConstant(0, dl, VT); 8568 HiRHS = DAG.getConstant(0, dl, VT); 8569 } 8570 8571 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8572 // pre-lowered to the correct types. This all depends upon WideVT not 8573 // being a legal type for the architecture and thus has to be split to 8574 // two arguments. 8575 SDValue Ret; 8576 TargetLowering::MakeLibCallOptions CallOptions; 8577 CallOptions.setSExt(isSigned); 8578 CallOptions.setIsPostTypeLegalization(true); 8579 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8580 // Halves of WideVT are packed into registers in different order 8581 // depending on platform endianness. This is usually handled by 8582 // the C calling convention, but we can't defer to it in 8583 // the legalizer. 8584 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8585 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8586 } else { 8587 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8588 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8589 } 8590 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8591 "Ret value is a collection of constituent nodes holding result."); 8592 if (DAG.getDataLayout().isLittleEndian()) { 8593 // Same as above. 8594 BottomHalf = Ret.getOperand(0); 8595 TopHalf = Ret.getOperand(1); 8596 } else { 8597 BottomHalf = Ret.getOperand(1); 8598 TopHalf = Ret.getOperand(0); 8599 } 8600 } 8601 8602 Result = BottomHalf; 8603 if (isSigned) { 8604 SDValue ShiftAmt = DAG.getConstant( 8605 VT.getScalarSizeInBits() - 1, dl, 8606 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8607 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8608 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8609 } else { 8610 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8611 DAG.getConstant(0, dl, VT), ISD::SETNE); 8612 } 8613 8614 // Truncate the result if SetCC returns a larger type than needed. 8615 EVT RType = Node->getValueType(1); 8616 if (RType.bitsLT(Overflow.getValueType())) 8617 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8618 8619 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8620 "Unexpected result type for S/UMULO legalization"); 8621 return true; 8622 } 8623 8624 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8625 SDLoc dl(Node); 8626 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8627 SDValue Op = Node->getOperand(0); 8628 EVT VT = Op.getValueType(); 8629 8630 if (VT.isScalableVector()) 8631 report_fatal_error( 8632 "Expanding reductions for scalable vectors is undefined."); 8633 8634 // Try to use a shuffle reduction for power of two vectors. 8635 if (VT.isPow2VectorType()) { 8636 while (VT.getVectorNumElements() > 1) { 8637 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8638 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8639 break; 8640 8641 SDValue Lo, Hi; 8642 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8643 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8644 VT = HalfVT; 8645 } 8646 } 8647 8648 EVT EltVT = VT.getVectorElementType(); 8649 unsigned NumElts = VT.getVectorNumElements(); 8650 8651 SmallVector<SDValue, 8> Ops; 8652 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8653 8654 SDValue Res = Ops[0]; 8655 for (unsigned i = 1; i < NumElts; i++) 8656 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8657 8658 // Result type may be wider than element type. 8659 if (EltVT != Node->getValueType(0)) 8660 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8661 return Res; 8662 } 8663 8664 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8665 SDLoc dl(Node); 8666 SDValue AccOp = Node->getOperand(0); 8667 SDValue VecOp = Node->getOperand(1); 8668 SDNodeFlags Flags = Node->getFlags(); 8669 8670 EVT VT = VecOp.getValueType(); 8671 EVT EltVT = VT.getVectorElementType(); 8672 8673 if (VT.isScalableVector()) 8674 report_fatal_error( 8675 "Expanding reductions for scalable vectors is undefined."); 8676 8677 unsigned NumElts = VT.getVectorNumElements(); 8678 8679 SmallVector<SDValue, 8> Ops; 8680 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8681 8682 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8683 8684 SDValue Res = AccOp; 8685 for (unsigned i = 0; i < NumElts; i++) 8686 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8687 8688 return Res; 8689 } 8690 8691 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8692 SelectionDAG &DAG) const { 8693 EVT VT = Node->getValueType(0); 8694 SDLoc dl(Node); 8695 bool isSigned = Node->getOpcode() == ISD::SREM; 8696 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8697 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8698 SDValue Dividend = Node->getOperand(0); 8699 SDValue Divisor = Node->getOperand(1); 8700 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8701 SDVTList VTs = DAG.getVTList(VT, VT); 8702 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8703 return true; 8704 } 8705 if (isOperationLegalOrCustom(DivOpc, VT)) { 8706 // X % Y -> X-X/Y*Y 8707 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8708 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8709 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8710 return true; 8711 } 8712 return false; 8713 } 8714 8715 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8716 SelectionDAG &DAG) const { 8717 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8718 SDLoc dl(SDValue(Node, 0)); 8719 SDValue Src = Node->getOperand(0); 8720 8721 // DstVT is the result type, while SatVT is the size to which we saturate 8722 EVT SrcVT = Src.getValueType(); 8723 EVT DstVT = Node->getValueType(0); 8724 8725 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8726 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8727 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8728 assert(SatWidth <= DstWidth && 8729 "Expected saturation width smaller than result width"); 8730 8731 // Determine minimum and maximum integer values and their corresponding 8732 // floating-point values. 8733 APInt MinInt, MaxInt; 8734 if (IsSigned) { 8735 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8736 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8737 } else { 8738 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8739 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8740 } 8741 8742 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8743 // libcall emission cannot handle this. Large result types will fail. 8744 if (SrcVT == MVT::f16) { 8745 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8746 SrcVT = Src.getValueType(); 8747 } 8748 8749 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8750 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8751 8752 APFloat::opStatus MinStatus = 8753 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8754 APFloat::opStatus MaxStatus = 8755 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8756 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8757 !(MaxStatus & APFloat::opStatus::opInexact); 8758 8759 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8760 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8761 8762 // If the integer bounds are exactly representable as floats and min/max are 8763 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8764 // of comparisons and selects. 8765 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8766 isOperationLegal(ISD::FMAXNUM, SrcVT); 8767 if (AreExactFloatBounds && MinMaxLegal) { 8768 SDValue Clamped = Src; 8769 8770 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8771 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8772 // Clamp by MaxFloat from above. NaN cannot occur. 8773 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8774 // Convert clamped value to integer. 8775 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8776 dl, DstVT, Clamped); 8777 8778 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8779 // which will cast to zero. 8780 if (!IsSigned) 8781 return FpToInt; 8782 8783 // Otherwise, select 0 if Src is NaN. 8784 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8785 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8786 ISD::CondCode::SETUO); 8787 } 8788 8789 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8790 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8791 8792 // Result of direct conversion. The assumption here is that the operation is 8793 // non-trapping and it's fine to apply it to an out-of-range value if we 8794 // select it away later. 8795 SDValue FpToInt = 8796 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8797 8798 SDValue Select = FpToInt; 8799 8800 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8801 // MinInt if Src is NaN. 8802 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8803 ISD::CondCode::SETULT); 8804 // If Src OGT MaxFloat, select MaxInt. 8805 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8806 ISD::CondCode::SETOGT); 8807 8808 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8809 // is already zero. 8810 if (!IsSigned) 8811 return Select; 8812 8813 // Otherwise, select 0 if Src is NaN. 8814 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8815 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8816 } 8817 8818 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8819 SelectionDAG &DAG) const { 8820 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8821 assert(Node->getValueType(0).isScalableVector() && 8822 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8823 8824 EVT VT = Node->getValueType(0); 8825 SDValue V1 = Node->getOperand(0); 8826 SDValue V2 = Node->getOperand(1); 8827 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8828 SDLoc DL(Node); 8829 8830 // Expand through memory thusly: 8831 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8832 // Store V1, Ptr 8833 // Store V2, Ptr + sizeof(V1) 8834 // If (Imm < 0) 8835 // TrailingElts = -Imm 8836 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8837 // else 8838 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8839 // Res = Load Ptr 8840 8841 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8842 8843 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8844 VT.getVectorElementCount() * 2); 8845 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8846 EVT PtrVT = StackPtr.getValueType(); 8847 auto &MF = DAG.getMachineFunction(); 8848 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8849 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8850 8851 // Store the lo part of CONCAT_VECTORS(V1, V2) 8852 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8853 // Store the hi part of CONCAT_VECTORS(V1, V2) 8854 SDValue OffsetToV2 = DAG.getVScale( 8855 DL, PtrVT, 8856 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8857 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8858 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8859 8860 if (Imm >= 0) { 8861 // Load back the required element. getVectorElementPointer takes care of 8862 // clamping the index if it's out-of-bounds. 8863 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8864 // Load the spliced result 8865 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8866 MachinePointerInfo::getUnknownStack(MF)); 8867 } 8868 8869 uint64_t TrailingElts = -Imm; 8870 8871 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8872 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8873 SDValue TrailingBytes = 8874 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8875 8876 if (TrailingElts > VT.getVectorMinNumElements()) { 8877 SDValue VLBytes = DAG.getVScale( 8878 DL, PtrVT, 8879 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8880 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8881 } 8882 8883 // Calculate the start address of the spliced result. 8884 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8885 8886 // Load the spliced result 8887 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8888 MachinePointerInfo::getUnknownStack(MF)); 8889 } 8890 8891 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8892 SDValue &LHS, SDValue &RHS, 8893 SDValue &CC, bool &NeedInvert, 8894 const SDLoc &dl, SDValue &Chain, 8895 bool IsSignaling) const { 8896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8897 MVT OpVT = LHS.getSimpleValueType(); 8898 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8899 NeedInvert = false; 8900 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8901 default: 8902 llvm_unreachable("Unknown condition code action!"); 8903 case TargetLowering::Legal: 8904 // Nothing to do. 8905 break; 8906 case TargetLowering::Expand: { 8907 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8908 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8909 std::swap(LHS, RHS); 8910 CC = DAG.getCondCode(InvCC); 8911 return true; 8912 } 8913 // Swapping operands didn't work. Try inverting the condition. 8914 bool NeedSwap = false; 8915 InvCC = getSetCCInverse(CCCode, OpVT); 8916 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8917 // If inverting the condition is not enough, try swapping operands 8918 // on top of it. 8919 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8920 NeedSwap = true; 8921 } 8922 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8923 CC = DAG.getCondCode(InvCC); 8924 NeedInvert = true; 8925 if (NeedSwap) 8926 std::swap(LHS, RHS); 8927 return true; 8928 } 8929 8930 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8931 unsigned Opc = 0; 8932 switch (CCCode) { 8933 default: 8934 llvm_unreachable("Don't know how to expand this condition!"); 8935 case ISD::SETUO: 8936 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8937 CC1 = ISD::SETUNE; 8938 CC2 = ISD::SETUNE; 8939 Opc = ISD::OR; 8940 break; 8941 } 8942 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8943 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8944 NeedInvert = true; 8945 LLVM_FALLTHROUGH; 8946 case ISD::SETO: 8947 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8948 "If SETO is expanded, SETOEQ must be legal!"); 8949 CC1 = ISD::SETOEQ; 8950 CC2 = ISD::SETOEQ; 8951 Opc = ISD::AND; 8952 break; 8953 case ISD::SETONE: 8954 case ISD::SETUEQ: 8955 // If the SETUO or SETO CC isn't legal, we might be able to use 8956 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8957 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8958 // the operands. 8959 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8960 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8961 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8962 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8963 CC1 = ISD::SETOGT; 8964 CC2 = ISD::SETOLT; 8965 Opc = ISD::OR; 8966 NeedInvert = ((unsigned)CCCode & 0x8U); 8967 break; 8968 } 8969 LLVM_FALLTHROUGH; 8970 case ISD::SETOEQ: 8971 case ISD::SETOGT: 8972 case ISD::SETOGE: 8973 case ISD::SETOLT: 8974 case ISD::SETOLE: 8975 case ISD::SETUNE: 8976 case ISD::SETUGT: 8977 case ISD::SETUGE: 8978 case ISD::SETULT: 8979 case ISD::SETULE: 8980 // If we are floating point, assign and break, otherwise fall through. 8981 if (!OpVT.isInteger()) { 8982 // We can use the 4th bit to tell if we are the unordered 8983 // or ordered version of the opcode. 8984 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8985 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8986 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8987 break; 8988 } 8989 // Fallthrough if we are unsigned integer. 8990 LLVM_FALLTHROUGH; 8991 case ISD::SETLE: 8992 case ISD::SETGT: 8993 case ISD::SETGE: 8994 case ISD::SETLT: 8995 case ISD::SETNE: 8996 case ISD::SETEQ: 8997 // If all combinations of inverting the condition and swapping operands 8998 // didn't work then we have no means to expand the condition. 8999 llvm_unreachable("Don't know how to expand this condition!"); 9000 } 9001 9002 SDValue SetCC1, SetCC2; 9003 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9004 // If we aren't the ordered or unorder operation, 9005 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9006 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9007 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9008 } else { 9009 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9010 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9011 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9012 } 9013 if (Chain) 9014 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9015 SetCC2.getValue(1)); 9016 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9017 RHS = SDValue(); 9018 CC = SDValue(); 9019 return true; 9020 } 9021 } 9022 return false; 9023 } 9024