1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed, 124 bool isPostTypeLegalization) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setIsPostTypeLegalization(isPostTypeLegalization) 151 .setSExtResult(signExtend) 152 .setZExtResult(!signExtend); 153 return LowerCallTo(CLI); 154 } 155 156 /// Soften the operands of a comparison. This code is shared among BR_CC, 157 /// SELECT_CC, and SETCC handlers. 158 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 159 SDValue &NewLHS, SDValue &NewRHS, 160 ISD::CondCode &CCCode, 161 const SDLoc &dl) const { 162 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 163 && "Unsupported setcc type!"); 164 165 // Expand into one or more soft-fp libcall(s). 166 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 167 bool ShouldInvertCC = false; 168 switch (CCCode) { 169 case ISD::SETEQ: 170 case ISD::SETOEQ: 171 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 172 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 173 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 174 break; 175 case ISD::SETNE: 176 case ISD::SETUNE: 177 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 178 (VT == MVT::f64) ? RTLIB::UNE_F64 : 179 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 180 break; 181 case ISD::SETGE: 182 case ISD::SETOGE: 183 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 184 (VT == MVT::f64) ? RTLIB::OGE_F64 : 185 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 186 break; 187 case ISD::SETLT: 188 case ISD::SETOLT: 189 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 190 (VT == MVT::f64) ? RTLIB::OLT_F64 : 191 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 192 break; 193 case ISD::SETLE: 194 case ISD::SETOLE: 195 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 196 (VT == MVT::f64) ? RTLIB::OLE_F64 : 197 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 198 break; 199 case ISD::SETGT: 200 case ISD::SETOGT: 201 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 202 (VT == MVT::f64) ? RTLIB::OGT_F64 : 203 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 204 break; 205 case ISD::SETUO: 206 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 207 (VT == MVT::f64) ? RTLIB::UO_F64 : 208 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 209 break; 210 case ISD::SETO: 211 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 212 (VT == MVT::f64) ? RTLIB::O_F64 : 213 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 214 break; 215 case ISD::SETONE: 216 // SETONE = SETOLT | SETOGT 217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 218 (VT == MVT::f64) ? RTLIB::OLT_F64 : 219 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 221 (VT == MVT::f64) ? RTLIB::OGT_F64 : 222 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 223 break; 224 case ISD::SETUEQ: 225 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 226 (VT == MVT::f64) ? RTLIB::UO_F64 : 227 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 228 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 229 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 230 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 231 break; 232 default: 233 // Invert CC for unordered comparisons 234 ShouldInvertCC = true; 235 switch (CCCode) { 236 case ISD::SETULT: 237 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 238 (VT == MVT::f64) ? RTLIB::OGE_F64 : 239 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 240 break; 241 case ISD::SETULE: 242 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 243 (VT == MVT::f64) ? RTLIB::OGT_F64 : 244 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 245 break; 246 case ISD::SETUGT: 247 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 248 (VT == MVT::f64) ? RTLIB::OLE_F64 : 249 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 250 break; 251 case ISD::SETUGE: 252 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 253 (VT == MVT::f64) ? RTLIB::OLT_F64 : 254 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 255 break; 256 default: llvm_unreachable("Do not know how to soften this setcc!"); 257 } 258 } 259 260 // Use the target specific return value for comparions lib calls. 261 EVT RetVT = getCmpLibcallReturnType(); 262 SDValue Ops[2] = {NewLHS, NewRHS}; 263 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 264 dl).first; 265 NewRHS = DAG.getConstant(0, dl, RetVT); 266 267 CCCode = getCmpLibcallCC(LC1); 268 if (ShouldInvertCC) 269 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 270 271 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 272 SDValue Tmp = DAG.getNode( 273 ISD::SETCC, dl, 274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 275 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 276 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 277 dl).first; 278 NewLHS = DAG.getNode( 279 ISD::SETCC, dl, 280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 281 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 282 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 283 NewRHS = SDValue(); 284 } 285 } 286 287 /// Return the entry encoding for a jump table in the current function. The 288 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 289 unsigned TargetLowering::getJumpTableEncoding() const { 290 // In non-pic modes, just use the address of a block. 291 if (!isPositionIndependent()) 292 return MachineJumpTableInfo::EK_BlockAddress; 293 294 // In PIC mode, if the target supports a GPRel32 directive, use it. 295 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 296 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 297 298 // Otherwise, use a label difference. 299 return MachineJumpTableInfo::EK_LabelDifference32; 300 } 301 302 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 303 SelectionDAG &DAG) const { 304 // If our PIC model is GP relative, use the global offset table as the base. 305 unsigned JTEncoding = getJumpTableEncoding(); 306 307 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 308 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 309 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 310 311 return Table; 312 } 313 314 /// This returns the relocation base for the given PIC jumptable, the same as 315 /// getPICJumpTableRelocBase, but as an MCExpr. 316 const MCExpr * 317 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 318 unsigned JTI,MCContext &Ctx) const{ 319 // The normal PIC reloc base is the label at the start of the jump table. 320 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 321 } 322 323 bool 324 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 325 const TargetMachine &TM = getTargetMachine(); 326 const GlobalValue *GV = GA->getGlobal(); 327 328 // If the address is not even local to this DSO we will have to load it from 329 // a got and then add the offset. 330 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 331 return false; 332 333 // If the code is position independent we will have to add a base register. 334 if (isPositionIndependent()) 335 return false; 336 337 // Otherwise we can do it. 338 return true; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Optimization Methods 343 //===----------------------------------------------------------------------===// 344 345 /// If the specified instruction has a constant integer operand and there are 346 /// bits set in that constant that are not demanded, then clear those bits and 347 /// return true. 348 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 349 TargetLoweringOpt &TLO) const { 350 SelectionDAG &DAG = TLO.DAG; 351 SDLoc DL(Op); 352 unsigned Opcode = Op.getOpcode(); 353 354 // Do target-specific constant optimization. 355 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 356 return TLO.New.getNode(); 357 358 // FIXME: ISD::SELECT, ISD::SELECT_CC 359 switch (Opcode) { 360 default: 361 break; 362 case ISD::XOR: 363 case ISD::AND: 364 case ISD::OR: { 365 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 366 if (!Op1C) 367 return false; 368 369 // If this is a 'not' op, don't touch it because that's a canonical form. 370 const APInt &C = Op1C->getAPIntValue(); 371 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 372 return false; 373 374 if (!C.isSubsetOf(Demanded)) { 375 EVT VT = Op.getValueType(); 376 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 377 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 378 return TLO.CombineTo(Op, NewOp); 379 } 380 381 break; 382 } 383 } 384 385 return false; 386 } 387 388 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 389 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 390 /// generalized for targets with other types of implicit widening casts. 391 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 392 const APInt &Demanded, 393 TargetLoweringOpt &TLO) const { 394 assert(Op.getNumOperands() == 2 && 395 "ShrinkDemandedOp only supports binary operators!"); 396 assert(Op.getNode()->getNumValues() == 1 && 397 "ShrinkDemandedOp only supports nodes with one result!"); 398 399 SelectionDAG &DAG = TLO.DAG; 400 SDLoc dl(Op); 401 402 // Early return, as this function cannot handle vector types. 403 if (Op.getValueType().isVector()) 404 return false; 405 406 // Don't do this if the node has another user, which may require the 407 // full value. 408 if (!Op.getNode()->hasOneUse()) 409 return false; 410 411 // Search for the smallest integer type with free casts to and from 412 // Op's type. For expedience, just check power-of-2 integer types. 413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 414 unsigned DemandedSize = Demanded.getActiveBits(); 415 unsigned SmallVTBits = DemandedSize; 416 if (!isPowerOf2_32(SmallVTBits)) 417 SmallVTBits = NextPowerOf2(SmallVTBits); 418 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 419 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 420 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 421 TLI.isZExtFree(SmallVT, Op.getValueType())) { 422 // We found a type with free casts. 423 SDValue X = DAG.getNode( 424 Op.getOpcode(), dl, SmallVT, 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 426 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 427 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 428 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 429 return TLO.CombineTo(Op, Z); 430 } 431 } 432 return false; 433 } 434 435 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 436 DAGCombinerInfo &DCI) const { 437 SelectionDAG &DAG = DCI.DAG; 438 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 439 !DCI.isBeforeLegalizeOps()); 440 KnownBits Known; 441 442 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 443 if (Simplified) { 444 DCI.AddToWorklist(Op.getNode()); 445 DCI.CommitTargetLoweringOpt(TLO); 446 } 447 return Simplified; 448 } 449 450 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 451 KnownBits &Known, 452 TargetLoweringOpt &TLO, 453 unsigned Depth, 454 bool AssumeSingleUse) const { 455 EVT VT = Op.getValueType(); 456 APInt DemandedElts = VT.isVector() 457 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 458 : APInt(1, 1); 459 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 460 AssumeSingleUse); 461 } 462 463 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 464 /// result of Op are ever used downstream. If we can use this information to 465 /// simplify Op, create a new simplified DAG node and return true, returning the 466 /// original and new nodes in Old and New. Otherwise, analyze the expression and 467 /// return a mask of Known bits for the expression (used to simplify the 468 /// caller). The Known bits may only be accurate for those bits in the 469 /// OriginalDemandedBits and OriginalDemandedElts. 470 bool TargetLowering::SimplifyDemandedBits( 471 SDValue Op, const APInt &OriginalDemandedBits, 472 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 473 unsigned Depth, bool AssumeSingleUse) const { 474 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 475 assert(Op.getScalarValueSizeInBits() == BitWidth && 476 "Mask size mismatches value type size!"); 477 478 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 479 assert((!Op.getValueType().isVector() || 480 NumElts == Op.getValueType().getVectorNumElements()) && 481 "Unexpected vector size"); 482 483 APInt DemandedBits = OriginalDemandedBits; 484 APInt DemandedElts = OriginalDemandedElts; 485 SDLoc dl(Op); 486 auto &DL = TLO.DAG.getDataLayout(); 487 488 // Don't know anything. 489 Known = KnownBits(BitWidth); 490 491 if (Op.getOpcode() == ISD::Constant) { 492 // We know all of the bits for a constant! 493 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 494 Known.Zero = ~Known.One; 495 return false; 496 } 497 498 // Other users may use these bits. 499 EVT VT = Op.getValueType(); 500 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 501 if (Depth != 0) { 502 // If not at the root, Just compute the Known bits to 503 // simplify things downstream. 504 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 505 return false; 506 } 507 // If this is the root being simplified, allow it to have multiple uses, 508 // just set the DemandedBits/Elts to all bits. 509 DemandedBits = APInt::getAllOnesValue(BitWidth); 510 DemandedElts = APInt::getAllOnesValue(NumElts); 511 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 512 // Not demanding any bits/elts from Op. 513 if (!Op.isUndef()) 514 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 515 return false; 516 } else if (Depth == 6) { // Limit search depth. 517 return false; 518 } 519 520 KnownBits Known2, KnownOut; 521 switch (Op.getOpcode()) { 522 case ISD::BUILD_VECTOR: 523 // Collect the known bits that are shared by every constant vector element. 524 Known.Zero.setAllBits(); Known.One.setAllBits(); 525 for (SDValue SrcOp : Op->ops()) { 526 if (!isa<ConstantSDNode>(SrcOp)) { 527 // We can only handle all constant values - bail out with no known bits. 528 Known = KnownBits(BitWidth); 529 return false; 530 } 531 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 532 Known2.Zero = ~Known2.One; 533 534 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 535 if (Known2.One.getBitWidth() != BitWidth) { 536 assert(Known2.getBitWidth() > BitWidth && 537 "Expected BUILD_VECTOR implicit truncation"); 538 Known2 = Known2.trunc(BitWidth); 539 } 540 541 // Known bits are the values that are shared by every element. 542 // TODO: support per-element known bits. 543 Known.One &= Known2.One; 544 Known.Zero &= Known2.Zero; 545 } 546 return false; // Don't fall through, will infinitely loop. 547 case ISD::CONCAT_VECTORS: { 548 Known.Zero.setAllBits(); 549 Known.One.setAllBits(); 550 EVT SubVT = Op.getOperand(0).getValueType(); 551 unsigned NumSubVecs = Op.getNumOperands(); 552 unsigned NumSubElts = SubVT.getVectorNumElements(); 553 for (unsigned i = 0; i != NumSubVecs; ++i) { 554 APInt DemandedSubElts = 555 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 556 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 557 Known2, TLO, Depth + 1)) 558 return true; 559 // Known bits are shared by every demanded subvector element. 560 if (!!DemandedSubElts) { 561 Known.One &= Known2.One; 562 Known.Zero &= Known2.Zero; 563 } 564 } 565 break; 566 } 567 case ISD::VECTOR_SHUFFLE: { 568 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 569 570 // Collect demanded elements from shuffle operands.. 571 APInt DemandedLHS(NumElts, 0); 572 APInt DemandedRHS(NumElts, 0); 573 for (unsigned i = 0; i != NumElts; ++i) { 574 if (!DemandedElts[i]) 575 continue; 576 int M = ShuffleMask[i]; 577 if (M < 0) { 578 // For UNDEF elements, we don't know anything about the common state of 579 // the shuffle result. 580 DemandedLHS.clearAllBits(); 581 DemandedRHS.clearAllBits(); 582 break; 583 } 584 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 585 if (M < (int)NumElts) 586 DemandedLHS.setBit(M); 587 else 588 DemandedRHS.setBit(M - NumElts); 589 } 590 591 if (!!DemandedLHS || !!DemandedRHS) { 592 Known.Zero.setAllBits(); 593 Known.One.setAllBits(); 594 if (!!DemandedLHS) { 595 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 596 Known2, TLO, Depth + 1)) 597 return true; 598 Known.One &= Known2.One; 599 Known.Zero &= Known2.Zero; 600 } 601 if (!!DemandedRHS) { 602 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 603 Known2, TLO, Depth + 1)) 604 return true; 605 Known.One &= Known2.One; 606 Known.Zero &= Known2.Zero; 607 } 608 } 609 break; 610 } 611 case ISD::AND: { 612 SDValue Op0 = Op.getOperand(0); 613 SDValue Op1 = Op.getOperand(1); 614 615 // If the RHS is a constant, check to see if the LHS would be zero without 616 // using the bits from the RHS. Below, we use knowledge about the RHS to 617 // simplify the LHS, here we're using information from the LHS to simplify 618 // the RHS. 619 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 620 // Do not increment Depth here; that can cause an infinite loop. 621 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 622 // If the LHS already has zeros where RHSC does, this 'and' is dead. 623 if ((LHSKnown.Zero & DemandedBits) == 624 (~RHSC->getAPIntValue() & DemandedBits)) 625 return TLO.CombineTo(Op, Op0); 626 627 // If any of the set bits in the RHS are known zero on the LHS, shrink 628 // the constant. 629 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 630 return true; 631 632 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 633 // constant, but if this 'and' is only clearing bits that were just set by 634 // the xor, then this 'and' can be eliminated by shrinking the mask of 635 // the xor. For example, for a 32-bit X: 636 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 637 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 638 LHSKnown.One == ~RHSC->getAPIntValue()) { 639 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 640 return TLO.CombineTo(Op, Xor); 641 } 642 } 643 644 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 645 Depth + 1)) 646 return true; 647 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 648 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 649 Known2, TLO, Depth + 1)) 650 return true; 651 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 652 653 // If all of the demanded bits are known one on one side, return the other. 654 // These bits cannot contribute to the result of the 'and'. 655 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 656 return TLO.CombineTo(Op, Op0); 657 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 658 return TLO.CombineTo(Op, Op1); 659 // If all of the demanded bits in the inputs are known zeros, return zero. 660 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 661 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 662 // If the RHS is a constant, see if we can simplify it. 663 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 664 return true; 665 // If the operation can be done in a smaller type, do so. 666 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 667 return true; 668 669 // Output known-1 bits are only known if set in both the LHS & RHS. 670 Known.One &= Known2.One; 671 // Output known-0 are known to be clear if zero in either the LHS | RHS. 672 Known.Zero |= Known2.Zero; 673 break; 674 } 675 case ISD::OR: { 676 SDValue Op0 = Op.getOperand(0); 677 SDValue Op1 = Op.getOperand(1); 678 679 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 680 Depth + 1)) 681 return true; 682 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 683 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 684 Known2, TLO, Depth + 1)) 685 return true; 686 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 687 688 // If all of the demanded bits are known zero on one side, return the other. 689 // These bits cannot contribute to the result of the 'or'. 690 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 691 return TLO.CombineTo(Op, Op0); 692 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 693 return TLO.CombineTo(Op, Op1); 694 // If the RHS is a constant, see if we can simplify it. 695 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 696 return true; 697 // If the operation can be done in a smaller type, do so. 698 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 699 return true; 700 701 // Output known-0 bits are only known if clear in both the LHS & RHS. 702 Known.Zero &= Known2.Zero; 703 // Output known-1 are known to be set if set in either the LHS | RHS. 704 Known.One |= Known2.One; 705 break; 706 } 707 case ISD::XOR: { 708 SDValue Op0 = Op.getOperand(0); 709 SDValue Op1 = Op.getOperand(1); 710 711 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 712 Depth + 1)) 713 return true; 714 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 715 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 716 Depth + 1)) 717 return true; 718 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 719 720 // If all of the demanded bits are known zero on one side, return the other. 721 // These bits cannot contribute to the result of the 'xor'. 722 if (DemandedBits.isSubsetOf(Known.Zero)) 723 return TLO.CombineTo(Op, Op0); 724 if (DemandedBits.isSubsetOf(Known2.Zero)) 725 return TLO.CombineTo(Op, Op1); 726 // If the operation can be done in a smaller type, do so. 727 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 728 return true; 729 730 // If all of the unknown bits are known to be zero on one side or the other 731 // (but not both) turn this into an *inclusive* or. 732 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 733 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 734 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 735 736 // Output known-0 bits are known if clear or set in both the LHS & RHS. 737 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 738 // Output known-1 are known to be set if set in only one of the LHS, RHS. 739 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 740 741 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 742 // If one side is a constant, and all of the known set bits on the other 743 // side are also set in the constant, turn this into an AND, as we know 744 // the bits will be cleared. 745 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 746 // NB: it is okay if more bits are known than are requested 747 if (C->getAPIntValue() == Known2.One) { 748 SDValue ANDC = 749 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 750 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 751 } 752 753 // If the RHS is a constant, see if we can change it. Don't alter a -1 754 // constant because that's a 'not' op, and that is better for combining 755 // and codegen. 756 if (!C->isAllOnesValue()) { 757 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 758 // We're flipping all demanded bits. Flip the undemanded bits too. 759 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 760 return TLO.CombineTo(Op, New); 761 } 762 // If we can't turn this into a 'not', try to shrink the constant. 763 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 764 return true; 765 } 766 } 767 768 Known = std::move(KnownOut); 769 break; 770 } 771 case ISD::SELECT: 772 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 773 Depth + 1)) 774 return true; 775 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 776 Depth + 1)) 777 return true; 778 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 779 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 780 781 // If the operands are constants, see if we can simplify them. 782 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 783 return true; 784 785 // Only known if known in both the LHS and RHS. 786 Known.One &= Known2.One; 787 Known.Zero &= Known2.Zero; 788 break; 789 case ISD::SELECT_CC: 790 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 791 Depth + 1)) 792 return true; 793 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 794 Depth + 1)) 795 return true; 796 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 797 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 798 799 // If the operands are constants, see if we can simplify them. 800 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 801 return true; 802 803 // Only known if known in both the LHS and RHS. 804 Known.One &= Known2.One; 805 Known.Zero &= Known2.Zero; 806 break; 807 case ISD::SETCC: { 808 SDValue Op0 = Op.getOperand(0); 809 SDValue Op1 = Op.getOperand(1); 810 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 811 // If (1) we only need the sign-bit, (2) the setcc operands are the same 812 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 813 // -1, we may be able to bypass the setcc. 814 if (DemandedBits.isSignMask() && 815 Op0.getScalarValueSizeInBits() == BitWidth && 816 getBooleanContents(VT) == 817 BooleanContent::ZeroOrNegativeOneBooleanContent) { 818 // If we're testing X < 0, then this compare isn't needed - just use X! 819 // FIXME: We're limiting to integer types here, but this should also work 820 // if we don't care about FP signed-zero. The use of SETLT with FP means 821 // that we don't care about NaNs. 822 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 823 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 824 return TLO.CombineTo(Op, Op0); 825 826 // TODO: Should we check for other forms of sign-bit comparisons? 827 // Examples: X <= -1, X >= 0 828 } 829 if (getBooleanContents(Op0.getValueType()) == 830 TargetLowering::ZeroOrOneBooleanContent && 831 BitWidth > 1) 832 Known.Zero.setBitsFrom(1); 833 break; 834 } 835 case ISD::SHL: { 836 SDValue Op0 = Op.getOperand(0); 837 SDValue Op1 = Op.getOperand(1); 838 839 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 840 // If the shift count is an invalid immediate, don't do anything. 841 if (SA->getAPIntValue().uge(BitWidth)) 842 break; 843 844 unsigned ShAmt = SA->getZExtValue(); 845 846 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 847 // single shift. We can do this if the bottom bits (which are shifted 848 // out) are never demanded. 849 if (Op0.getOpcode() == ISD::SRL) { 850 if (ShAmt && 851 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 852 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 853 if (SA2->getAPIntValue().ult(BitWidth)) { 854 unsigned C1 = SA2->getZExtValue(); 855 unsigned Opc = ISD::SHL; 856 int Diff = ShAmt - C1; 857 if (Diff < 0) { 858 Diff = -Diff; 859 Opc = ISD::SRL; 860 } 861 862 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 863 return TLO.CombineTo( 864 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 865 } 866 } 867 } 868 } 869 870 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 871 Known, TLO, Depth + 1)) 872 return true; 873 874 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 875 // are not demanded. This will likely allow the anyext to be folded away. 876 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 877 SDValue InnerOp = Op0.getOperand(0); 878 EVT InnerVT = InnerOp.getValueType(); 879 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 880 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 881 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 882 EVT ShTy = getShiftAmountTy(InnerVT, DL); 883 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 884 ShTy = InnerVT; 885 SDValue NarrowShl = 886 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 887 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 888 return TLO.CombineTo( 889 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 890 } 891 // Repeat the SHL optimization above in cases where an extension 892 // intervenes: (shl (anyext (shr x, c1)), c2) to 893 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 894 // aren't demanded (as above) and that the shifted upper c1 bits of 895 // x aren't demanded. 896 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 897 InnerOp.hasOneUse()) { 898 if (ConstantSDNode *SA2 = 899 isConstOrConstSplat(InnerOp.getOperand(1))) { 900 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 901 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 902 DemandedBits.getActiveBits() <= 903 (InnerBits - InnerShAmt + ShAmt) && 904 DemandedBits.countTrailingZeros() >= ShAmt) { 905 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 906 Op1.getValueType()); 907 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 908 InnerOp.getOperand(0)); 909 return TLO.CombineTo( 910 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 911 } 912 } 913 } 914 } 915 916 Known.Zero <<= ShAmt; 917 Known.One <<= ShAmt; 918 // low bits known zero. 919 Known.Zero.setLowBits(ShAmt); 920 } 921 break; 922 } 923 case ISD::SRL: { 924 SDValue Op0 = Op.getOperand(0); 925 SDValue Op1 = Op.getOperand(1); 926 927 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 928 // If the shift count is an invalid immediate, don't do anything. 929 if (SA->getAPIntValue().uge(BitWidth)) 930 break; 931 932 unsigned ShAmt = SA->getZExtValue(); 933 APInt InDemandedMask = (DemandedBits << ShAmt); 934 935 // If the shift is exact, then it does demand the low bits (and knows that 936 // they are zero). 937 if (Op->getFlags().hasExact()) 938 InDemandedMask.setLowBits(ShAmt); 939 940 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 941 // single shift. We can do this if the top bits (which are shifted out) 942 // are never demanded. 943 if (Op0.getOpcode() == ISD::SHL) { 944 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 945 if (ShAmt && 946 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 947 if (SA2->getAPIntValue().ult(BitWidth)) { 948 unsigned C1 = SA2->getZExtValue(); 949 unsigned Opc = ISD::SRL; 950 int Diff = ShAmt - C1; 951 if (Diff < 0) { 952 Diff = -Diff; 953 Opc = ISD::SHL; 954 } 955 956 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 957 return TLO.CombineTo( 958 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 959 } 960 } 961 } 962 } 963 964 // Compute the new bits that are at the top now. 965 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 966 Depth + 1)) 967 return true; 968 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 969 Known.Zero.lshrInPlace(ShAmt); 970 Known.One.lshrInPlace(ShAmt); 971 972 Known.Zero.setHighBits(ShAmt); // High bits known zero. 973 } 974 break; 975 } 976 case ISD::SRA: { 977 SDValue Op0 = Op.getOperand(0); 978 SDValue Op1 = Op.getOperand(1); 979 980 // If this is an arithmetic shift right and only the low-bit is set, we can 981 // always convert this into a logical shr, even if the shift amount is 982 // variable. The low bit of the shift cannot be an input sign bit unless 983 // the shift amount is >= the size of the datatype, which is undefined. 984 if (DemandedBits.isOneValue()) 985 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 986 987 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 988 // If the shift count is an invalid immediate, don't do anything. 989 if (SA->getAPIntValue().uge(BitWidth)) 990 break; 991 992 unsigned ShAmt = SA->getZExtValue(); 993 APInt InDemandedMask = (DemandedBits << ShAmt); 994 995 // If the shift is exact, then it does demand the low bits (and knows that 996 // they are zero). 997 if (Op->getFlags().hasExact()) 998 InDemandedMask.setLowBits(ShAmt); 999 1000 // If any of the demanded bits are produced by the sign extension, we also 1001 // demand the input sign bit. 1002 if (DemandedBits.countLeadingZeros() < ShAmt) 1003 InDemandedMask.setSignBit(); 1004 1005 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1006 Depth + 1)) 1007 return true; 1008 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1009 Known.Zero.lshrInPlace(ShAmt); 1010 Known.One.lshrInPlace(ShAmt); 1011 1012 // If the input sign bit is known to be zero, or if none of the top bits 1013 // are demanded, turn this into an unsigned shift right. 1014 if (Known.Zero[BitWidth - ShAmt - 1] || 1015 DemandedBits.countLeadingZeros() >= ShAmt) { 1016 SDNodeFlags Flags; 1017 Flags.setExact(Op->getFlags().hasExact()); 1018 return TLO.CombineTo( 1019 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1020 } 1021 1022 int Log2 = DemandedBits.exactLogBase2(); 1023 if (Log2 >= 0) { 1024 // The bit must come from the sign. 1025 SDValue NewSA = 1026 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1027 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1028 } 1029 1030 if (Known.One[BitWidth - ShAmt - 1]) 1031 // New bits are known one. 1032 Known.One.setHighBits(ShAmt); 1033 } 1034 break; 1035 } 1036 case ISD::FSHL: 1037 case ISD::FSHR: { 1038 SDValue Op0 = Op.getOperand(0); 1039 SDValue Op1 = Op.getOperand(1); 1040 SDValue Op2 = Op.getOperand(2); 1041 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1042 1043 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1044 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1045 1046 // For fshl, 0-shift returns the 1st arg. 1047 // For fshr, 0-shift returns the 2nd arg. 1048 if (Amt == 0) { 1049 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1050 Known, TLO, Depth + 1)) 1051 return true; 1052 break; 1053 } 1054 1055 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1056 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1057 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1058 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1059 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1060 Depth + 1)) 1061 return true; 1062 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1063 Depth + 1)) 1064 return true; 1065 1066 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1067 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1068 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1069 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1070 Known.One |= Known2.One; 1071 Known.Zero |= Known2.Zero; 1072 } 1073 break; 1074 } 1075 case ISD::SIGN_EXTEND_INREG: { 1076 SDValue Op0 = Op.getOperand(0); 1077 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1078 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1079 1080 // If we only care about the highest bit, don't bother shifting right. 1081 if (DemandedBits.isSignMask()) { 1082 bool AlreadySignExtended = 1083 TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; 1084 // However if the input is already sign extended we expect the sign 1085 // extension to be dropped altogether later and do not simplify. 1086 if (!AlreadySignExtended) { 1087 // Compute the correct shift amount type, which must be getShiftAmountTy 1088 // for scalar types after legalization. 1089 EVT ShiftAmtTy = VT; 1090 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1091 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1092 1093 SDValue ShiftAmt = 1094 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1095 return TLO.CombineTo(Op, 1096 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1097 } 1098 } 1099 1100 // If none of the extended bits are demanded, eliminate the sextinreg. 1101 if (DemandedBits.getActiveBits() <= ExVTBits) 1102 return TLO.CombineTo(Op, Op0); 1103 1104 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1105 1106 // Since the sign extended bits are demanded, we know that the sign 1107 // bit is demanded. 1108 InputDemandedBits.setBit(ExVTBits - 1); 1109 1110 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1111 return true; 1112 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1113 1114 // If the sign bit of the input is known set or clear, then we know the 1115 // top bits of the result. 1116 1117 // If the input sign bit is known zero, convert this into a zero extension. 1118 if (Known.Zero[ExVTBits - 1]) 1119 return TLO.CombineTo( 1120 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1121 1122 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1123 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1124 Known.One.setBitsFrom(ExVTBits); 1125 Known.Zero &= Mask; 1126 } else { // Input sign bit unknown 1127 Known.Zero &= Mask; 1128 Known.One &= Mask; 1129 } 1130 break; 1131 } 1132 case ISD::BUILD_PAIR: { 1133 EVT HalfVT = Op.getOperand(0).getValueType(); 1134 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1135 1136 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1137 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1138 1139 KnownBits KnownLo, KnownHi; 1140 1141 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1142 return true; 1143 1144 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1145 return true; 1146 1147 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1148 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1149 1150 Known.One = KnownLo.One.zext(BitWidth) | 1151 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1152 break; 1153 } 1154 case ISD::ZERO_EXTEND: { 1155 SDValue Src = Op.getOperand(0); 1156 unsigned InBits = Src.getScalarValueSizeInBits(); 1157 1158 // If none of the top bits are demanded, convert this into an any_extend. 1159 if (DemandedBits.getActiveBits() <= InBits) 1160 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1161 1162 APInt InDemandedBits = DemandedBits.trunc(InBits); 1163 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1164 return true; 1165 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1166 Known = Known.zext(BitWidth); 1167 Known.Zero.setBitsFrom(InBits); 1168 break; 1169 } 1170 case ISD::SIGN_EXTEND: { 1171 SDValue Src = Op.getOperand(0); 1172 unsigned InBits = Src.getScalarValueSizeInBits(); 1173 1174 // If none of the top bits are demanded, convert this into an any_extend. 1175 if (DemandedBits.getActiveBits() <= InBits) 1176 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1177 1178 // Since some of the sign extended bits are demanded, we know that the sign 1179 // bit is demanded. 1180 APInt InDemandedBits = DemandedBits.trunc(InBits); 1181 InDemandedBits.setBit(InBits - 1); 1182 1183 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1184 return true; 1185 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1186 // If the sign bit is known one, the top bits match. 1187 Known = Known.sext(BitWidth); 1188 1189 // If the sign bit is known zero, convert this to a zero extend. 1190 if (Known.isNonNegative()) 1191 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1192 break; 1193 } 1194 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1195 // TODO - merge this with SIGN_EXTEND above? 1196 SDValue Src = Op.getOperand(0); 1197 unsigned InBits = Src.getScalarValueSizeInBits(); 1198 1199 APInt InDemandedBits = DemandedBits.trunc(InBits); 1200 1201 // If some of the sign extended bits are demanded, we know that the sign 1202 // bit is demanded. 1203 if (InBits < DemandedBits.getActiveBits()) 1204 InDemandedBits.setBit(InBits - 1); 1205 1206 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1207 return true; 1208 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1209 // If the sign bit is known one, the top bits match. 1210 Known = Known.sext(BitWidth); 1211 break; 1212 } 1213 case ISD::ANY_EXTEND: { 1214 SDValue Src = Op.getOperand(0); 1215 unsigned InBits = Src.getScalarValueSizeInBits(); 1216 APInt InDemandedBits = DemandedBits.trunc(InBits); 1217 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1218 return true; 1219 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1220 Known = Known.zext(BitWidth); 1221 break; 1222 } 1223 case ISD::TRUNCATE: { 1224 SDValue Src = Op.getOperand(0); 1225 1226 // Simplify the input, using demanded bit information, and compute the known 1227 // zero/one bits live out. 1228 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1229 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1230 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1231 return true; 1232 Known = Known.trunc(BitWidth); 1233 1234 // If the input is only used by this truncate, see if we can shrink it based 1235 // on the known demanded bits. 1236 if (Src.getNode()->hasOneUse()) { 1237 switch (Src.getOpcode()) { 1238 default: 1239 break; 1240 case ISD::SRL: 1241 // Shrink SRL by a constant if none of the high bits shifted in are 1242 // demanded. 1243 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1244 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1245 // undesirable. 1246 break; 1247 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1248 if (!ShAmt) 1249 break; 1250 SDValue Shift = Src.getOperand(1); 1251 if (TLO.LegalTypes()) { 1252 uint64_t ShVal = ShAmt->getZExtValue(); 1253 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1254 } 1255 1256 if (ShAmt->getZExtValue() < BitWidth) { 1257 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1258 OperandBitWidth - BitWidth); 1259 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1260 HighBits = HighBits.trunc(BitWidth); 1261 1262 if (!(HighBits & DemandedBits)) { 1263 // None of the shifted in bits are needed. Add a truncate of the 1264 // shift input, then shift it. 1265 SDValue NewTrunc = 1266 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1267 return TLO.CombineTo( 1268 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1269 } 1270 } 1271 break; 1272 } 1273 } 1274 1275 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1276 break; 1277 } 1278 case ISD::AssertZext: { 1279 // AssertZext demands all of the high bits, plus any of the low bits 1280 // demanded by its users. 1281 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1282 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1283 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1284 TLO, Depth + 1)) 1285 return true; 1286 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1287 1288 Known.Zero |= ~InMask; 1289 break; 1290 } 1291 case ISD::EXTRACT_VECTOR_ELT: { 1292 SDValue Src = Op.getOperand(0); 1293 SDValue Idx = Op.getOperand(1); 1294 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1295 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1296 1297 // Demand the bits from every vector element without a constant index. 1298 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1299 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1300 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1301 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1302 1303 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1304 // anything about the extended bits. 1305 APInt DemandedSrcBits = DemandedBits; 1306 if (BitWidth > EltBitWidth) 1307 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1308 1309 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1310 Depth + 1)) 1311 return true; 1312 1313 Known = Known2; 1314 if (BitWidth > EltBitWidth) 1315 Known = Known.zext(BitWidth); 1316 break; 1317 } 1318 case ISD::BITCAST: { 1319 SDValue Src = Op.getOperand(0); 1320 EVT SrcVT = Src.getValueType(); 1321 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1322 1323 // If this is an FP->Int bitcast and if the sign bit is the only 1324 // thing demanded, turn this into a FGETSIGN. 1325 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1326 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1327 SrcVT.isFloatingPoint()) { 1328 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1329 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1330 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1331 SrcVT != MVT::f128) { 1332 // Cannot eliminate/lower SHL for f128 yet. 1333 EVT Ty = OpVTLegal ? VT : MVT::i32; 1334 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1335 // place. We expect the SHL to be eliminated by other optimizations. 1336 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1337 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1338 if (!OpVTLegal && OpVTSizeInBits > 32) 1339 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1340 unsigned ShVal = Op.getValueSizeInBits() - 1; 1341 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1342 return TLO.CombineTo(Op, 1343 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1344 } 1345 } 1346 // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by 1347 // demanding the element if any bits from it are demanded. 1348 // TODO - bigendian once we have test coverage. 1349 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1350 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1351 (BitWidth % NumSrcEltBits) == 0 && 1352 TLO.DAG.getDataLayout().isLittleEndian()) { 1353 unsigned Scale = BitWidth / NumSrcEltBits; 1354 auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { 1355 DemandedSubElts = APInt::getNullValue(Scale); 1356 for (unsigned i = 0; i != Scale; ++i) { 1357 unsigned Offset = i * NumSrcEltBits; 1358 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1359 if (!Sub.isNullValue()) 1360 DemandedSubElts.setBit(i); 1361 } 1362 return true; 1363 }; 1364 1365 APInt DemandedSubElts; 1366 if (GetDemandedSubMask(DemandedSubElts)) { 1367 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1368 APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); 1369 1370 APInt KnownUndef, KnownZero; 1371 if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, 1372 TLO, Depth + 1)) 1373 return true; 1374 } 1375 } 1376 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1377 // recursive call where Known may be useful to the caller. 1378 if (Depth > 0) { 1379 Known = TLO.DAG.computeKnownBits(Op, Depth); 1380 return false; 1381 } 1382 break; 1383 } 1384 case ISD::ADD: 1385 case ISD::MUL: 1386 case ISD::SUB: { 1387 // Add, Sub, and Mul don't demand any bits in positions beyond that 1388 // of the highest bit demanded of them. 1389 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1390 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1391 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1392 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1393 Depth + 1) || 1394 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1395 Depth + 1) || 1396 // See if the operation should be performed at a smaller bit width. 1397 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1398 SDNodeFlags Flags = Op.getNode()->getFlags(); 1399 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1400 // Disable the nsw and nuw flags. We can no longer guarantee that we 1401 // won't wrap after simplification. 1402 Flags.setNoSignedWrap(false); 1403 Flags.setNoUnsignedWrap(false); 1404 SDValue NewOp = 1405 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1406 return TLO.CombineTo(Op, NewOp); 1407 } 1408 return true; 1409 } 1410 1411 // If we have a constant operand, we may be able to turn it into -1 if we 1412 // do not demand the high bits. This can make the constant smaller to 1413 // encode, allow more general folding, or match specialized instruction 1414 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1415 // is probably not useful (and could be detrimental). 1416 ConstantSDNode *C = isConstOrConstSplat(Op1); 1417 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1418 if (C && !C->isAllOnesValue() && !C->isOne() && 1419 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1420 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1421 // We can't guarantee that the new math op doesn't wrap, so explicitly 1422 // clear those flags to prevent folding with a potential existing node 1423 // that has those flags set. 1424 SDNodeFlags Flags; 1425 Flags.setNoSignedWrap(false); 1426 Flags.setNoUnsignedWrap(false); 1427 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1428 return TLO.CombineTo(Op, NewOp); 1429 } 1430 1431 LLVM_FALLTHROUGH; 1432 } 1433 default: 1434 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1435 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1436 Known, TLO, Depth)) 1437 return true; 1438 break; 1439 } 1440 1441 // Just use computeKnownBits to compute output bits. 1442 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1443 break; 1444 } 1445 1446 // If we know the value of all of the demanded bits, return this as a 1447 // constant. 1448 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1449 // Avoid folding to a constant if any OpaqueConstant is involved. 1450 const SDNode *N = Op.getNode(); 1451 for (SDNodeIterator I = SDNodeIterator::begin(N), 1452 E = SDNodeIterator::end(N); 1453 I != E; ++I) { 1454 SDNode *Op = *I; 1455 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1456 if (C->isOpaque()) 1457 return false; 1458 } 1459 // TODO: Handle float bits as well. 1460 if (VT.isInteger()) 1461 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1462 } 1463 1464 return false; 1465 } 1466 1467 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1468 const APInt &DemandedElts, 1469 APInt &KnownUndef, 1470 APInt &KnownZero, 1471 DAGCombinerInfo &DCI) const { 1472 SelectionDAG &DAG = DCI.DAG; 1473 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1474 !DCI.isBeforeLegalizeOps()); 1475 1476 bool Simplified = 1477 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1478 if (Simplified) { 1479 DCI.AddToWorklist(Op.getNode()); 1480 DCI.CommitTargetLoweringOpt(TLO); 1481 } 1482 return Simplified; 1483 } 1484 1485 /// Given a vector binary operation and known undefined elements for each input 1486 /// operand, compute whether each element of the output is undefined. 1487 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1488 const APInt &UndefOp0, 1489 const APInt &UndefOp1) { 1490 EVT VT = BO.getValueType(); 1491 assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only"); 1492 1493 EVT EltVT = VT.getVectorElementType(); 1494 unsigned NumElts = VT.getVectorNumElements(); 1495 assert(UndefOp0.getBitWidth() == NumElts && 1496 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1497 1498 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1499 const APInt &UndefVals) { 1500 if (UndefVals[Index]) 1501 return DAG.getUNDEF(EltVT); 1502 1503 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1504 // Try hard to make sure that the getNode() call is not creating temporary 1505 // nodes. Ignore opaque integers because they do not constant fold. 1506 SDValue Elt = BV->getOperand(Index); 1507 auto *C = dyn_cast<ConstantSDNode>(Elt); 1508 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1509 return Elt; 1510 } 1511 1512 return SDValue(); 1513 }; 1514 1515 APInt KnownUndef = APInt::getNullValue(NumElts); 1516 for (unsigned i = 0; i != NumElts; ++i) { 1517 // If both inputs for this element are either constant or undef and match 1518 // the element type, compute the constant/undef result for this element of 1519 // the vector. 1520 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1521 // not handle FP constants. The code within getNode() should be refactored 1522 // to avoid the danger of creating a bogus temporary node here. 1523 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1524 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1525 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1526 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1527 KnownUndef.setBit(i); 1528 } 1529 return KnownUndef; 1530 } 1531 1532 bool TargetLowering::SimplifyDemandedVectorElts( 1533 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1534 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1535 bool AssumeSingleUse) const { 1536 EVT VT = Op.getValueType(); 1537 APInt DemandedElts = DemandedEltMask; 1538 unsigned NumElts = DemandedElts.getBitWidth(); 1539 assert(VT.isVector() && "Expected vector op"); 1540 assert(VT.getVectorNumElements() == NumElts && 1541 "Mask size mismatches value type element count!"); 1542 1543 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1544 1545 // Undef operand. 1546 if (Op.isUndef()) { 1547 KnownUndef.setAllBits(); 1548 return false; 1549 } 1550 1551 // If Op has other users, assume that all elements are needed. 1552 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1553 DemandedElts.setAllBits(); 1554 1555 // Not demanding any elements from Op. 1556 if (DemandedElts == 0) { 1557 KnownUndef.setAllBits(); 1558 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1559 } 1560 1561 // Limit search depth. 1562 if (Depth >= 6) 1563 return false; 1564 1565 SDLoc DL(Op); 1566 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1567 1568 switch (Op.getOpcode()) { 1569 case ISD::SCALAR_TO_VECTOR: { 1570 if (!DemandedElts[0]) { 1571 KnownUndef.setAllBits(); 1572 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1573 } 1574 KnownUndef.setHighBits(NumElts - 1); 1575 break; 1576 } 1577 case ISD::BITCAST: { 1578 SDValue Src = Op.getOperand(0); 1579 EVT SrcVT = Src.getValueType(); 1580 1581 // We only handle vectors here. 1582 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1583 if (!SrcVT.isVector()) 1584 break; 1585 1586 // Fast handling of 'identity' bitcasts. 1587 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1588 if (NumSrcElts == NumElts) 1589 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1590 KnownZero, TLO, Depth + 1); 1591 1592 APInt SrcZero, SrcUndef; 1593 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1594 1595 // Bitcast from 'large element' src vector to 'small element' vector, we 1596 // must demand a source element if any DemandedElt maps to it. 1597 if ((NumElts % NumSrcElts) == 0) { 1598 unsigned Scale = NumElts / NumSrcElts; 1599 for (unsigned i = 0; i != NumElts; ++i) 1600 if (DemandedElts[i]) 1601 SrcDemandedElts.setBit(i / Scale); 1602 1603 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1604 TLO, Depth + 1)) 1605 return true; 1606 1607 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1608 // of the large element. 1609 // TODO - bigendian once we have test coverage. 1610 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1611 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1612 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1613 for (unsigned i = 0; i != NumElts; ++i) 1614 if (DemandedElts[i]) { 1615 unsigned Ofs = (i % Scale) * EltSizeInBits; 1616 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1617 } 1618 1619 KnownBits Known; 1620 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1621 return true; 1622 } 1623 1624 // If the src element is zero/undef then all the output elements will be - 1625 // only demanded elements are guaranteed to be correct. 1626 for (unsigned i = 0; i != NumSrcElts; ++i) { 1627 if (SrcDemandedElts[i]) { 1628 if (SrcZero[i]) 1629 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1630 if (SrcUndef[i]) 1631 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1632 } 1633 } 1634 } 1635 1636 // Bitcast from 'small element' src vector to 'large element' vector, we 1637 // demand all smaller source elements covered by the larger demanded element 1638 // of this vector. 1639 if ((NumSrcElts % NumElts) == 0) { 1640 unsigned Scale = NumSrcElts / NumElts; 1641 for (unsigned i = 0; i != NumElts; ++i) 1642 if (DemandedElts[i]) 1643 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1644 1645 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1646 TLO, Depth + 1)) 1647 return true; 1648 1649 // If all the src elements covering an output element are zero/undef, then 1650 // the output element will be as well, assuming it was demanded. 1651 for (unsigned i = 0; i != NumElts; ++i) { 1652 if (DemandedElts[i]) { 1653 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1654 KnownZero.setBit(i); 1655 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1656 KnownUndef.setBit(i); 1657 } 1658 } 1659 } 1660 break; 1661 } 1662 case ISD::BUILD_VECTOR: { 1663 // Check all elements and simplify any unused elements with UNDEF. 1664 if (!DemandedElts.isAllOnesValue()) { 1665 // Don't simplify BROADCASTS. 1666 if (llvm::any_of(Op->op_values(), 1667 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1668 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1669 bool Updated = false; 1670 for (unsigned i = 0; i != NumElts; ++i) { 1671 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1672 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1673 KnownUndef.setBit(i); 1674 Updated = true; 1675 } 1676 } 1677 if (Updated) 1678 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1679 } 1680 } 1681 for (unsigned i = 0; i != NumElts; ++i) { 1682 SDValue SrcOp = Op.getOperand(i); 1683 if (SrcOp.isUndef()) { 1684 KnownUndef.setBit(i); 1685 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1686 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1687 KnownZero.setBit(i); 1688 } 1689 } 1690 break; 1691 } 1692 case ISD::CONCAT_VECTORS: { 1693 EVT SubVT = Op.getOperand(0).getValueType(); 1694 unsigned NumSubVecs = Op.getNumOperands(); 1695 unsigned NumSubElts = SubVT.getVectorNumElements(); 1696 for (unsigned i = 0; i != NumSubVecs; ++i) { 1697 SDValue SubOp = Op.getOperand(i); 1698 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1699 APInt SubUndef, SubZero; 1700 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1701 Depth + 1)) 1702 return true; 1703 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1704 KnownZero.insertBits(SubZero, i * NumSubElts); 1705 } 1706 break; 1707 } 1708 case ISD::INSERT_SUBVECTOR: { 1709 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1710 break; 1711 SDValue Base = Op.getOperand(0); 1712 SDValue Sub = Op.getOperand(1); 1713 EVT SubVT = Sub.getValueType(); 1714 unsigned NumSubElts = SubVT.getVectorNumElements(); 1715 const APInt &Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1716 if (Idx.ugt(NumElts - NumSubElts)) 1717 break; 1718 unsigned SubIdx = Idx.getZExtValue(); 1719 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1720 APInt SubUndef, SubZero; 1721 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1722 Depth + 1)) 1723 return true; 1724 APInt BaseElts = DemandedElts; 1725 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1726 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1727 Depth + 1)) 1728 return true; 1729 KnownUndef.insertBits(SubUndef, SubIdx); 1730 KnownZero.insertBits(SubZero, SubIdx); 1731 break; 1732 } 1733 case ISD::EXTRACT_SUBVECTOR: { 1734 SDValue Src = Op.getOperand(0); 1735 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1736 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1737 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1738 // Offset the demanded elts by the subvector index. 1739 uint64_t Idx = SubIdx->getZExtValue(); 1740 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1741 APInt SrcUndef, SrcZero; 1742 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1743 Depth + 1)) 1744 return true; 1745 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1746 KnownZero = SrcZero.extractBits(NumElts, Idx); 1747 } 1748 break; 1749 } 1750 case ISD::INSERT_VECTOR_ELT: { 1751 SDValue Vec = Op.getOperand(0); 1752 SDValue Scl = Op.getOperand(1); 1753 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1754 1755 // For a legal, constant insertion index, if we don't need this insertion 1756 // then strip it, else remove it from the demanded elts. 1757 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1758 unsigned Idx = CIdx->getZExtValue(); 1759 if (!DemandedElts[Idx]) 1760 return TLO.CombineTo(Op, Vec); 1761 1762 APInt DemandedVecElts(DemandedElts); 1763 DemandedVecElts.clearBit(Idx); 1764 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1765 KnownZero, TLO, Depth + 1)) 1766 return true; 1767 1768 KnownUndef.clearBit(Idx); 1769 if (Scl.isUndef()) 1770 KnownUndef.setBit(Idx); 1771 1772 KnownZero.clearBit(Idx); 1773 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1774 KnownZero.setBit(Idx); 1775 break; 1776 } 1777 1778 APInt VecUndef, VecZero; 1779 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1780 Depth + 1)) 1781 return true; 1782 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1783 break; 1784 } 1785 case ISD::VSELECT: { 1786 // Try to transform the select condition based on the current demanded 1787 // elements. 1788 // TODO: If a condition element is undef, we can choose from one arm of the 1789 // select (and if one arm is undef, then we can propagate that to the 1790 // result). 1791 // TODO - add support for constant vselect masks (see IR version of this). 1792 APInt UnusedUndef, UnusedZero; 1793 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1794 UnusedZero, TLO, Depth + 1)) 1795 return true; 1796 1797 // See if we can simplify either vselect operand. 1798 APInt DemandedLHS(DemandedElts); 1799 APInt DemandedRHS(DemandedElts); 1800 APInt UndefLHS, ZeroLHS; 1801 APInt UndefRHS, ZeroRHS; 1802 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1803 ZeroLHS, TLO, Depth + 1)) 1804 return true; 1805 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1806 ZeroRHS, TLO, Depth + 1)) 1807 return true; 1808 1809 KnownUndef = UndefLHS & UndefRHS; 1810 KnownZero = ZeroLHS & ZeroRHS; 1811 break; 1812 } 1813 case ISD::VECTOR_SHUFFLE: { 1814 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1815 1816 // Collect demanded elements from shuffle operands.. 1817 APInt DemandedLHS(NumElts, 0); 1818 APInt DemandedRHS(NumElts, 0); 1819 for (unsigned i = 0; i != NumElts; ++i) { 1820 int M = ShuffleMask[i]; 1821 if (M < 0 || !DemandedElts[i]) 1822 continue; 1823 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1824 if (M < (int)NumElts) 1825 DemandedLHS.setBit(M); 1826 else 1827 DemandedRHS.setBit(M - NumElts); 1828 } 1829 1830 // See if we can simplify either shuffle operand. 1831 APInt UndefLHS, ZeroLHS; 1832 APInt UndefRHS, ZeroRHS; 1833 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1834 ZeroLHS, TLO, Depth + 1)) 1835 return true; 1836 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1837 ZeroRHS, TLO, Depth + 1)) 1838 return true; 1839 1840 // Simplify mask using undef elements from LHS/RHS. 1841 bool Updated = false; 1842 bool IdentityLHS = true, IdentityRHS = true; 1843 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1844 for (unsigned i = 0; i != NumElts; ++i) { 1845 int &M = NewMask[i]; 1846 if (M < 0) 1847 continue; 1848 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1849 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1850 Updated = true; 1851 M = -1; 1852 } 1853 IdentityLHS &= (M < 0) || (M == (int)i); 1854 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1855 } 1856 1857 // Update legal shuffle masks based on demanded elements if it won't reduce 1858 // to Identity which can cause premature removal of the shuffle mask. 1859 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1860 isShuffleMaskLegal(NewMask, VT)) 1861 return TLO.CombineTo(Op, 1862 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1863 Op.getOperand(1), NewMask)); 1864 1865 // Propagate undef/zero elements from LHS/RHS. 1866 for (unsigned i = 0; i != NumElts; ++i) { 1867 int M = ShuffleMask[i]; 1868 if (M < 0) { 1869 KnownUndef.setBit(i); 1870 } else if (M < (int)NumElts) { 1871 if (UndefLHS[M]) 1872 KnownUndef.setBit(i); 1873 if (ZeroLHS[M]) 1874 KnownZero.setBit(i); 1875 } else { 1876 if (UndefRHS[M - NumElts]) 1877 KnownUndef.setBit(i); 1878 if (ZeroRHS[M - NumElts]) 1879 KnownZero.setBit(i); 1880 } 1881 } 1882 break; 1883 } 1884 case ISD::SIGN_EXTEND_VECTOR_INREG: 1885 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1886 APInt SrcUndef, SrcZero; 1887 SDValue Src = Op.getOperand(0); 1888 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1889 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 1890 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 1891 Depth + 1)) 1892 return true; 1893 KnownZero = SrcZero.zextOrTrunc(NumElts); 1894 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 1895 1896 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 1897 // zext(undef) upper bits are guaranteed to be zero. 1898 if (DemandedElts.isSubsetOf(KnownUndef)) 1899 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1900 KnownUndef.clearAllBits(); 1901 } 1902 break; 1903 } 1904 1905 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 1906 // MAX, saturated math, etc. 1907 case ISD::OR: 1908 case ISD::XOR: 1909 case ISD::ADD: 1910 case ISD::SUB: 1911 case ISD::FADD: 1912 case ISD::FSUB: 1913 case ISD::FMUL: 1914 case ISD::FDIV: 1915 case ISD::FREM: { 1916 APInt UndefRHS, ZeroRHS; 1917 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 1918 ZeroRHS, TLO, Depth + 1)) 1919 return true; 1920 APInt UndefLHS, ZeroLHS; 1921 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 1922 ZeroLHS, TLO, Depth + 1)) 1923 return true; 1924 1925 KnownZero = ZeroLHS & ZeroRHS; 1926 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 1927 break; 1928 } 1929 case ISD::AND: { 1930 APInt SrcUndef, SrcZero; 1931 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1932 SrcZero, TLO, Depth + 1)) 1933 return true; 1934 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1935 KnownZero, TLO, Depth + 1)) 1936 return true; 1937 1938 // If either side has a zero element, then the result element is zero, even 1939 // if the other is an UNDEF. 1940 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 1941 // and then handle 'and' nodes with the rest of the binop opcodes. 1942 KnownZero |= SrcZero; 1943 KnownUndef &= SrcUndef; 1944 KnownUndef &= ~KnownZero; 1945 break; 1946 } 1947 case ISD::TRUNCATE: 1948 case ISD::SIGN_EXTEND: 1949 case ISD::ZERO_EXTEND: 1950 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1951 KnownZero, TLO, Depth + 1)) 1952 return true; 1953 1954 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 1955 // zext(undef) upper bits are guaranteed to be zero. 1956 if (DemandedElts.isSubsetOf(KnownUndef)) 1957 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1958 KnownUndef.clearAllBits(); 1959 } 1960 break; 1961 default: { 1962 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1963 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1964 KnownZero, TLO, Depth)) 1965 return true; 1966 } else { 1967 KnownBits Known; 1968 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 1969 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 1970 Depth, AssumeSingleUse)) 1971 return true; 1972 } 1973 break; 1974 } 1975 } 1976 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1977 1978 // Constant fold all undef cases. 1979 // TODO: Handle zero cases as well. 1980 if (DemandedElts.isSubsetOf(KnownUndef)) 1981 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1982 1983 return false; 1984 } 1985 1986 /// Determine which of the bits specified in Mask are known to be either zero or 1987 /// one and return them in the Known. 1988 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1989 KnownBits &Known, 1990 const APInt &DemandedElts, 1991 const SelectionDAG &DAG, 1992 unsigned Depth) const { 1993 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1994 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1995 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1996 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1997 "Should use MaskedValueIsZero if you don't know whether Op" 1998 " is a target node!"); 1999 Known.resetAll(); 2000 } 2001 2002 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2003 KnownBits &Known, 2004 const APInt &DemandedElts, 2005 const SelectionDAG &DAG, 2006 unsigned Depth) const { 2007 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2008 2009 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2010 // The low bits are known zero if the pointer is aligned. 2011 Known.Zero.setLowBits(Log2_32(Align)); 2012 } 2013 } 2014 2015 /// This method can be implemented by targets that want to expose additional 2016 /// information about sign bits to the DAG Combiner. 2017 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2018 const APInt &, 2019 const SelectionDAG &, 2020 unsigned Depth) const { 2021 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2022 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2023 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2024 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2025 "Should use ComputeNumSignBits if you don't know whether Op" 2026 " is a target node!"); 2027 return 1; 2028 } 2029 2030 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2031 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2032 TargetLoweringOpt &TLO, unsigned Depth) const { 2033 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2034 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2035 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2036 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2037 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2038 " is a target node!"); 2039 return false; 2040 } 2041 2042 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2043 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2044 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2045 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2046 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2047 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2048 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2049 "Should use SimplifyDemandedBits if you don't know whether Op" 2050 " is a target node!"); 2051 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2052 return false; 2053 } 2054 2055 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2056 const SelectionDAG &DAG, 2057 bool SNaN, 2058 unsigned Depth) const { 2059 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2060 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2061 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2062 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2063 "Should use isKnownNeverNaN if you don't know whether Op" 2064 " is a target node!"); 2065 return false; 2066 } 2067 2068 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2069 // work with truncating build vectors and vectors with elements of less than 2070 // 8 bits. 2071 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2072 if (!N) 2073 return false; 2074 2075 APInt CVal; 2076 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2077 CVal = CN->getAPIntValue(); 2078 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2079 auto *CN = BV->getConstantSplatNode(); 2080 if (!CN) 2081 return false; 2082 2083 // If this is a truncating build vector, truncate the splat value. 2084 // Otherwise, we may fail to match the expected values below. 2085 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2086 CVal = CN->getAPIntValue(); 2087 if (BVEltWidth < CVal.getBitWidth()) 2088 CVal = CVal.trunc(BVEltWidth); 2089 } else { 2090 return false; 2091 } 2092 2093 switch (getBooleanContents(N->getValueType(0))) { 2094 case UndefinedBooleanContent: 2095 return CVal[0]; 2096 case ZeroOrOneBooleanContent: 2097 return CVal.isOneValue(); 2098 case ZeroOrNegativeOneBooleanContent: 2099 return CVal.isAllOnesValue(); 2100 } 2101 2102 llvm_unreachable("Invalid boolean contents"); 2103 } 2104 2105 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2106 if (!N) 2107 return false; 2108 2109 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2110 if (!CN) { 2111 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2112 if (!BV) 2113 return false; 2114 2115 // Only interested in constant splats, we don't care about undef 2116 // elements in identifying boolean constants and getConstantSplatNode 2117 // returns NULL if all ops are undef; 2118 CN = BV->getConstantSplatNode(); 2119 if (!CN) 2120 return false; 2121 } 2122 2123 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2124 return !CN->getAPIntValue()[0]; 2125 2126 return CN->isNullValue(); 2127 } 2128 2129 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2130 bool SExt) const { 2131 if (VT == MVT::i1) 2132 return N->isOne(); 2133 2134 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2135 switch (Cnt) { 2136 case TargetLowering::ZeroOrOneBooleanContent: 2137 // An extended value of 1 is always true, unless its original type is i1, 2138 // in which case it will be sign extended to -1. 2139 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2140 case TargetLowering::UndefinedBooleanContent: 2141 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2142 return N->isAllOnesValue() && SExt; 2143 } 2144 llvm_unreachable("Unexpected enumeration."); 2145 } 2146 2147 /// This helper function of SimplifySetCC tries to optimize the comparison when 2148 /// either operand of the SetCC node is a bitwise-and instruction. 2149 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2150 ISD::CondCode Cond, const SDLoc &DL, 2151 DAGCombinerInfo &DCI) const { 2152 // Match these patterns in any of their permutations: 2153 // (X & Y) == Y 2154 // (X & Y) != Y 2155 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2156 std::swap(N0, N1); 2157 2158 EVT OpVT = N0.getValueType(); 2159 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2160 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2161 return SDValue(); 2162 2163 SDValue X, Y; 2164 if (N0.getOperand(0) == N1) { 2165 X = N0.getOperand(1); 2166 Y = N0.getOperand(0); 2167 } else if (N0.getOperand(1) == N1) { 2168 X = N0.getOperand(0); 2169 Y = N0.getOperand(1); 2170 } else { 2171 return SDValue(); 2172 } 2173 2174 SelectionDAG &DAG = DCI.DAG; 2175 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2176 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2177 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2178 // Note that where Y is variable and is known to have at most one bit set 2179 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2180 // equivalent when Y == 0. 2181 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2182 if (DCI.isBeforeLegalizeOps() || 2183 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2184 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2185 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2186 // If the target supports an 'and-not' or 'and-complement' logic operation, 2187 // try to use that to make a comparison operation more efficient. 2188 // But don't do this transform if the mask is a single bit because there are 2189 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2190 // 'rlwinm' on PPC). 2191 2192 // Bail out if the compare operand that we want to turn into a zero is 2193 // already a zero (otherwise, infinite loop). 2194 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2195 if (YConst && YConst->isNullValue()) 2196 return SDValue(); 2197 2198 // Transform this into: ~X & Y == 0. 2199 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2200 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2201 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2202 } 2203 2204 return SDValue(); 2205 } 2206 2207 /// There are multiple IR patterns that could be checking whether certain 2208 /// truncation of a signed number would be lossy or not. The pattern which is 2209 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2210 /// We are looking for the following pattern: (KeptBits is a constant) 2211 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2212 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2213 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2214 /// We will unfold it into the natural trunc+sext pattern: 2215 /// ((%x << C) a>> C) dstcond %x 2216 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2217 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2218 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2219 const SDLoc &DL) const { 2220 // We must be comparing with a constant. 2221 ConstantSDNode *C1; 2222 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2223 return SDValue(); 2224 2225 // N0 should be: add %x, (1 << (KeptBits-1)) 2226 if (N0->getOpcode() != ISD::ADD) 2227 return SDValue(); 2228 2229 // And we must be 'add'ing a constant. 2230 ConstantSDNode *C01; 2231 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2232 return SDValue(); 2233 2234 SDValue X = N0->getOperand(0); 2235 EVT XVT = X.getValueType(); 2236 2237 // Validate constants ... 2238 2239 APInt I1 = C1->getAPIntValue(); 2240 2241 ISD::CondCode NewCond; 2242 if (Cond == ISD::CondCode::SETULT) { 2243 NewCond = ISD::CondCode::SETEQ; 2244 } else if (Cond == ISD::CondCode::SETULE) { 2245 NewCond = ISD::CondCode::SETEQ; 2246 // But need to 'canonicalize' the constant. 2247 I1 += 1; 2248 } else if (Cond == ISD::CondCode::SETUGT) { 2249 NewCond = ISD::CondCode::SETNE; 2250 // But need to 'canonicalize' the constant. 2251 I1 += 1; 2252 } else if (Cond == ISD::CondCode::SETUGE) { 2253 NewCond = ISD::CondCode::SETNE; 2254 } else 2255 return SDValue(); 2256 2257 APInt I01 = C01->getAPIntValue(); 2258 2259 auto checkConstants = [&I1, &I01]() -> bool { 2260 // Both of them must be power-of-two, and the constant from setcc is bigger. 2261 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2262 }; 2263 2264 if (checkConstants()) { 2265 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2266 } else { 2267 // What if we invert constants? (and the target predicate) 2268 I1.negate(); 2269 I01.negate(); 2270 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2271 if (!checkConstants()) 2272 return SDValue(); 2273 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2274 } 2275 2276 // They are power-of-two, so which bit is set? 2277 const unsigned KeptBits = I1.logBase2(); 2278 const unsigned KeptBitsMinusOne = I01.logBase2(); 2279 2280 // Magic! 2281 if (KeptBits != (KeptBitsMinusOne + 1)) 2282 return SDValue(); 2283 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2284 2285 // We don't want to do this in every single case. 2286 SelectionDAG &DAG = DCI.DAG; 2287 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2288 XVT, KeptBits)) 2289 return SDValue(); 2290 2291 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2292 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2293 2294 // Unfold into: ((%x << C) a>> C) cond %x 2295 // Where 'cond' will be either 'eq' or 'ne'. 2296 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2297 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2298 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2299 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2300 2301 return T2; 2302 } 2303 2304 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2305 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2306 /// handle the commuted versions of these patterns. 2307 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2308 ISD::CondCode Cond, const SDLoc &DL, 2309 DAGCombinerInfo &DCI) const { 2310 unsigned BOpcode = N0.getOpcode(); 2311 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2312 "Unexpected binop"); 2313 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2314 2315 // (X + Y) == X --> Y == 0 2316 // (X - Y) == X --> Y == 0 2317 // (X ^ Y) == X --> Y == 0 2318 SelectionDAG &DAG = DCI.DAG; 2319 EVT OpVT = N0.getValueType(); 2320 SDValue X = N0.getOperand(0); 2321 SDValue Y = N0.getOperand(1); 2322 if (X == N1) 2323 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2324 2325 if (Y != N1) 2326 return SDValue(); 2327 2328 // (X + Y) == Y --> X == 0 2329 // (X ^ Y) == Y --> X == 0 2330 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2331 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2332 2333 // The shift would not be valid if the operands are boolean (i1). 2334 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2335 return SDValue(); 2336 2337 // (X - Y) == Y --> X == Y << 1 2338 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2339 !DCI.isBeforeLegalize()); 2340 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2341 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2342 if (!DCI.isCalledByLegalizer()) 2343 DCI.AddToWorklist(YShl1.getNode()); 2344 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2345 } 2346 2347 /// Try to simplify a setcc built with the specified operands and cc. If it is 2348 /// unable to simplify it, return a null SDValue. 2349 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2350 ISD::CondCode Cond, bool foldBooleans, 2351 DAGCombinerInfo &DCI, 2352 const SDLoc &dl) const { 2353 SelectionDAG &DAG = DCI.DAG; 2354 EVT OpVT = N0.getValueType(); 2355 2356 // These setcc operations always fold. 2357 switch (Cond) { 2358 default: break; 2359 case ISD::SETFALSE: 2360 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 2361 case ISD::SETTRUE: 2362 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 2363 } 2364 2365 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2366 // TODO: Handle non-splat vector constants. All undef causes trouble. 2367 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2368 if (isConstOrConstSplat(N0) && 2369 (DCI.isBeforeLegalizeOps() || 2370 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2371 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2372 2373 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2374 const APInt &C1 = N1C->getAPIntValue(); 2375 2376 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2377 // equality comparison, then we're just comparing whether X itself is 2378 // zero. 2379 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2380 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2381 N0.getOperand(1).getOpcode() == ISD::Constant) { 2382 const APInt &ShAmt 2383 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2384 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2385 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2386 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2387 // (srl (ctlz x), 5) == 0 -> X != 0 2388 // (srl (ctlz x), 5) != 1 -> X != 0 2389 Cond = ISD::SETNE; 2390 } else { 2391 // (srl (ctlz x), 5) != 0 -> X == 0 2392 // (srl (ctlz x), 5) == 1 -> X == 0 2393 Cond = ISD::SETEQ; 2394 } 2395 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2396 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2397 Zero, Cond); 2398 } 2399 } 2400 2401 SDValue CTPOP = N0; 2402 // Look through truncs that don't change the value of a ctpop. 2403 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2404 CTPOP = N0.getOperand(0); 2405 2406 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2407 (N0 == CTPOP || 2408 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2409 EVT CTVT = CTPOP.getValueType(); 2410 SDValue CTOp = CTPOP.getOperand(0); 2411 2412 // (ctpop x) u< 2 -> (x & x-1) == 0 2413 // (ctpop x) u> 1 -> (x & x-1) != 0 2414 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2415 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2416 DAG.getConstant(1, dl, CTVT)); 2417 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2418 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2419 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2420 } 2421 2422 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2423 } 2424 2425 // (zext x) == C --> x == (trunc C) 2426 // (sext x) == C --> x == (trunc C) 2427 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2428 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2429 unsigned MinBits = N0.getValueSizeInBits(); 2430 SDValue PreExt; 2431 bool Signed = false; 2432 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2433 // ZExt 2434 MinBits = N0->getOperand(0).getValueSizeInBits(); 2435 PreExt = N0->getOperand(0); 2436 } else if (N0->getOpcode() == ISD::AND) { 2437 // DAGCombine turns costly ZExts into ANDs 2438 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2439 if ((C->getAPIntValue()+1).isPowerOf2()) { 2440 MinBits = C->getAPIntValue().countTrailingOnes(); 2441 PreExt = N0->getOperand(0); 2442 } 2443 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2444 // SExt 2445 MinBits = N0->getOperand(0).getValueSizeInBits(); 2446 PreExt = N0->getOperand(0); 2447 Signed = true; 2448 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2449 // ZEXTLOAD / SEXTLOAD 2450 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2451 MinBits = LN0->getMemoryVT().getSizeInBits(); 2452 PreExt = N0; 2453 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2454 Signed = true; 2455 MinBits = LN0->getMemoryVT().getSizeInBits(); 2456 PreExt = N0; 2457 } 2458 } 2459 2460 // Figure out how many bits we need to preserve this constant. 2461 unsigned ReqdBits = Signed ? 2462 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2463 C1.getActiveBits(); 2464 2465 // Make sure we're not losing bits from the constant. 2466 if (MinBits > 0 && 2467 MinBits < C1.getBitWidth() && 2468 MinBits >= ReqdBits) { 2469 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2470 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2471 // Will get folded away. 2472 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2473 if (MinBits == 1 && C1 == 1) 2474 // Invert the condition. 2475 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2476 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2477 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2478 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2479 } 2480 2481 // If truncating the setcc operands is not desirable, we can still 2482 // simplify the expression in some cases: 2483 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2484 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2485 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2486 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2487 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2488 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2489 SDValue TopSetCC = N0->getOperand(0); 2490 unsigned N0Opc = N0->getOpcode(); 2491 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2492 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2493 TopSetCC.getOpcode() == ISD::SETCC && 2494 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2495 (isConstFalseVal(N1C) || 2496 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2497 2498 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2499 (!N1C->isNullValue() && Cond == ISD::SETNE); 2500 2501 if (!Inverse) 2502 return TopSetCC; 2503 2504 ISD::CondCode InvCond = ISD::getSetCCInverse( 2505 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2506 TopSetCC.getOperand(0).getValueType().isInteger()); 2507 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2508 TopSetCC.getOperand(1), 2509 InvCond); 2510 } 2511 } 2512 } 2513 2514 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2515 // equality or unsigned, and all 1 bits of the const are in the same 2516 // partial word, see if we can shorten the load. 2517 if (DCI.isBeforeLegalize() && 2518 !ISD::isSignedIntSetCC(Cond) && 2519 N0.getOpcode() == ISD::AND && C1 == 0 && 2520 N0.getNode()->hasOneUse() && 2521 isa<LoadSDNode>(N0.getOperand(0)) && 2522 N0.getOperand(0).getNode()->hasOneUse() && 2523 isa<ConstantSDNode>(N0.getOperand(1))) { 2524 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2525 APInt bestMask; 2526 unsigned bestWidth = 0, bestOffset = 0; 2527 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2528 unsigned origWidth = N0.getValueSizeInBits(); 2529 unsigned maskWidth = origWidth; 2530 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2531 // 8 bits, but have to be careful... 2532 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2533 origWidth = Lod->getMemoryVT().getSizeInBits(); 2534 const APInt &Mask = 2535 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2536 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2537 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2538 for (unsigned offset=0; offset<origWidth/width; offset++) { 2539 if (Mask.isSubsetOf(newMask)) { 2540 if (DAG.getDataLayout().isLittleEndian()) 2541 bestOffset = (uint64_t)offset * (width/8); 2542 else 2543 bestOffset = (origWidth/width - offset - 1) * (width/8); 2544 bestMask = Mask.lshr(offset * (width/8) * 8); 2545 bestWidth = width; 2546 break; 2547 } 2548 newMask <<= width; 2549 } 2550 } 2551 } 2552 if (bestWidth) { 2553 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2554 if (newVT.isRound() && 2555 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2556 EVT PtrType = Lod->getOperand(1).getValueType(); 2557 SDValue Ptr = Lod->getBasePtr(); 2558 if (bestOffset != 0) 2559 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2560 DAG.getConstant(bestOffset, dl, PtrType)); 2561 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2562 SDValue NewLoad = DAG.getLoad( 2563 newVT, dl, Lod->getChain(), Ptr, 2564 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2565 return DAG.getSetCC(dl, VT, 2566 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2567 DAG.getConstant(bestMask.trunc(bestWidth), 2568 dl, newVT)), 2569 DAG.getConstant(0LL, dl, newVT), Cond); 2570 } 2571 } 2572 } 2573 2574 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2575 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2576 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2577 2578 // If the comparison constant has bits in the upper part, the 2579 // zero-extended value could never match. 2580 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2581 C1.getBitWidth() - InSize))) { 2582 switch (Cond) { 2583 case ISD::SETUGT: 2584 case ISD::SETUGE: 2585 case ISD::SETEQ: 2586 return DAG.getConstant(0, dl, VT); 2587 case ISD::SETULT: 2588 case ISD::SETULE: 2589 case ISD::SETNE: 2590 return DAG.getConstant(1, dl, VT); 2591 case ISD::SETGT: 2592 case ISD::SETGE: 2593 // True if the sign bit of C1 is set. 2594 return DAG.getConstant(C1.isNegative(), dl, VT); 2595 case ISD::SETLT: 2596 case ISD::SETLE: 2597 // True if the sign bit of C1 isn't set. 2598 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2599 default: 2600 break; 2601 } 2602 } 2603 2604 // Otherwise, we can perform the comparison with the low bits. 2605 switch (Cond) { 2606 case ISD::SETEQ: 2607 case ISD::SETNE: 2608 case ISD::SETUGT: 2609 case ISD::SETUGE: 2610 case ISD::SETULT: 2611 case ISD::SETULE: { 2612 EVT newVT = N0.getOperand(0).getValueType(); 2613 if (DCI.isBeforeLegalizeOps() || 2614 (isOperationLegal(ISD::SETCC, newVT) && 2615 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2616 EVT NewSetCCVT = 2617 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2618 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2619 2620 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2621 NewConst, Cond); 2622 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2623 } 2624 break; 2625 } 2626 default: 2627 break; // todo, be more careful with signed comparisons 2628 } 2629 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2630 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2631 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2632 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2633 EVT ExtDstTy = N0.getValueType(); 2634 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2635 2636 // If the constant doesn't fit into the number of bits for the source of 2637 // the sign extension, it is impossible for both sides to be equal. 2638 if (C1.getMinSignedBits() > ExtSrcTyBits) 2639 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2640 2641 SDValue ZextOp; 2642 EVT Op0Ty = N0.getOperand(0).getValueType(); 2643 if (Op0Ty == ExtSrcTy) { 2644 ZextOp = N0.getOperand(0); 2645 } else { 2646 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2647 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2648 DAG.getConstant(Imm, dl, Op0Ty)); 2649 } 2650 if (!DCI.isCalledByLegalizer()) 2651 DCI.AddToWorklist(ZextOp.getNode()); 2652 // Otherwise, make this a use of a zext. 2653 return DAG.getSetCC(dl, VT, ZextOp, 2654 DAG.getConstant(C1 & APInt::getLowBitsSet( 2655 ExtDstTyBits, 2656 ExtSrcTyBits), 2657 dl, ExtDstTy), 2658 Cond); 2659 } else if ((N1C->isNullValue() || N1C->isOne()) && 2660 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2661 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2662 if (N0.getOpcode() == ISD::SETCC && 2663 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2664 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2665 if (TrueWhenTrue) 2666 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2667 // Invert the condition. 2668 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2669 CC = ISD::getSetCCInverse(CC, 2670 N0.getOperand(0).getValueType().isInteger()); 2671 if (DCI.isBeforeLegalizeOps() || 2672 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2673 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2674 } 2675 2676 if ((N0.getOpcode() == ISD::XOR || 2677 (N0.getOpcode() == ISD::AND && 2678 N0.getOperand(0).getOpcode() == ISD::XOR && 2679 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2680 isa<ConstantSDNode>(N0.getOperand(1)) && 2681 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2682 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2683 // can only do this if the top bits are known zero. 2684 unsigned BitWidth = N0.getValueSizeInBits(); 2685 if (DAG.MaskedValueIsZero(N0, 2686 APInt::getHighBitsSet(BitWidth, 2687 BitWidth-1))) { 2688 // Okay, get the un-inverted input value. 2689 SDValue Val; 2690 if (N0.getOpcode() == ISD::XOR) { 2691 Val = N0.getOperand(0); 2692 } else { 2693 assert(N0.getOpcode() == ISD::AND && 2694 N0.getOperand(0).getOpcode() == ISD::XOR); 2695 // ((X^1)&1)^1 -> X & 1 2696 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2697 N0.getOperand(0).getOperand(0), 2698 N0.getOperand(1)); 2699 } 2700 2701 return DAG.getSetCC(dl, VT, Val, N1, 2702 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2703 } 2704 } else if (N1C->isOne() && 2705 (VT == MVT::i1 || 2706 getBooleanContents(N0->getValueType(0)) == 2707 ZeroOrOneBooleanContent)) { 2708 SDValue Op0 = N0; 2709 if (Op0.getOpcode() == ISD::TRUNCATE) 2710 Op0 = Op0.getOperand(0); 2711 2712 if ((Op0.getOpcode() == ISD::XOR) && 2713 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2714 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2715 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2716 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2717 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2718 Cond); 2719 } 2720 if (Op0.getOpcode() == ISD::AND && 2721 isa<ConstantSDNode>(Op0.getOperand(1)) && 2722 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2723 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2724 if (Op0.getValueType().bitsGT(VT)) 2725 Op0 = DAG.getNode(ISD::AND, dl, VT, 2726 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2727 DAG.getConstant(1, dl, VT)); 2728 else if (Op0.getValueType().bitsLT(VT)) 2729 Op0 = DAG.getNode(ISD::AND, dl, VT, 2730 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2731 DAG.getConstant(1, dl, VT)); 2732 2733 return DAG.getSetCC(dl, VT, Op0, 2734 DAG.getConstant(0, dl, Op0.getValueType()), 2735 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2736 } 2737 if (Op0.getOpcode() == ISD::AssertZext && 2738 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2739 return DAG.getSetCC(dl, VT, Op0, 2740 DAG.getConstant(0, dl, Op0.getValueType()), 2741 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2742 } 2743 } 2744 2745 if (SDValue V = 2746 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2747 return V; 2748 } 2749 2750 // These simplifications apply to splat vectors as well. 2751 // TODO: Handle more splat vector cases. 2752 if (auto *N1C = isConstOrConstSplat(N1)) { 2753 const APInt &C1 = N1C->getAPIntValue(); 2754 2755 APInt MinVal, MaxVal; 2756 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2757 if (ISD::isSignedIntSetCC(Cond)) { 2758 MinVal = APInt::getSignedMinValue(OperandBitSize); 2759 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2760 } else { 2761 MinVal = APInt::getMinValue(OperandBitSize); 2762 MaxVal = APInt::getMaxValue(OperandBitSize); 2763 } 2764 2765 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2766 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2767 // X >= MIN --> true 2768 if (C1 == MinVal) 2769 return DAG.getBoolConstant(true, dl, VT, OpVT); 2770 2771 if (!VT.isVector()) { // TODO: Support this for vectors. 2772 // X >= C0 --> X > (C0 - 1) 2773 APInt C = C1 - 1; 2774 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2775 if ((DCI.isBeforeLegalizeOps() || 2776 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2777 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2778 isLegalICmpImmediate(C.getSExtValue())))) { 2779 return DAG.getSetCC(dl, VT, N0, 2780 DAG.getConstant(C, dl, N1.getValueType()), 2781 NewCC); 2782 } 2783 } 2784 } 2785 2786 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2787 // X <= MAX --> true 2788 if (C1 == MaxVal) 2789 return DAG.getBoolConstant(true, dl, VT, OpVT); 2790 2791 // X <= C0 --> X < (C0 + 1) 2792 if (!VT.isVector()) { // TODO: Support this for vectors. 2793 APInt C = C1 + 1; 2794 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2795 if ((DCI.isBeforeLegalizeOps() || 2796 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2797 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2798 isLegalICmpImmediate(C.getSExtValue())))) { 2799 return DAG.getSetCC(dl, VT, N0, 2800 DAG.getConstant(C, dl, N1.getValueType()), 2801 NewCC); 2802 } 2803 } 2804 } 2805 2806 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2807 if (C1 == MinVal) 2808 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2809 2810 // TODO: Support this for vectors after legalize ops. 2811 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2812 // Canonicalize setlt X, Max --> setne X, Max 2813 if (C1 == MaxVal) 2814 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2815 2816 // If we have setult X, 1, turn it into seteq X, 0 2817 if (C1 == MinVal+1) 2818 return DAG.getSetCC(dl, VT, N0, 2819 DAG.getConstant(MinVal, dl, N0.getValueType()), 2820 ISD::SETEQ); 2821 } 2822 } 2823 2824 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2825 if (C1 == MaxVal) 2826 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2827 2828 // TODO: Support this for vectors after legalize ops. 2829 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2830 // Canonicalize setgt X, Min --> setne X, Min 2831 if (C1 == MinVal) 2832 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2833 2834 // If we have setugt X, Max-1, turn it into seteq X, Max 2835 if (C1 == MaxVal-1) 2836 return DAG.getSetCC(dl, VT, N0, 2837 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2838 ISD::SETEQ); 2839 } 2840 } 2841 2842 // If we have "setcc X, C0", check to see if we can shrink the immediate 2843 // by changing cc. 2844 // TODO: Support this for vectors after legalize ops. 2845 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2846 // SETUGT X, SINTMAX -> SETLT X, 0 2847 if (Cond == ISD::SETUGT && 2848 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2849 return DAG.getSetCC(dl, VT, N0, 2850 DAG.getConstant(0, dl, N1.getValueType()), 2851 ISD::SETLT); 2852 2853 // SETULT X, SINTMIN -> SETGT X, -1 2854 if (Cond == ISD::SETULT && 2855 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2856 SDValue ConstMinusOne = 2857 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2858 N1.getValueType()); 2859 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2860 } 2861 } 2862 } 2863 2864 // Back to non-vector simplifications. 2865 // TODO: Can we do these for vector splats? 2866 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2867 const APInt &C1 = N1C->getAPIntValue(); 2868 2869 // Fold bit comparisons when we can. 2870 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2871 (VT == N0.getValueType() || 2872 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2873 N0.getOpcode() == ISD::AND) { 2874 auto &DL = DAG.getDataLayout(); 2875 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2876 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2877 !DCI.isBeforeLegalize()); 2878 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2879 // Perform the xform if the AND RHS is a single bit. 2880 if (AndRHS->getAPIntValue().isPowerOf2()) { 2881 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2882 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2883 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2884 ShiftTy))); 2885 } 2886 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2887 // (X & 8) == 8 --> (X & 8) >> 3 2888 // Perform the xform if C1 is a single bit. 2889 if (C1.isPowerOf2()) { 2890 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2891 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2892 DAG.getConstant(C1.logBase2(), dl, 2893 ShiftTy))); 2894 } 2895 } 2896 } 2897 } 2898 2899 if (C1.getMinSignedBits() <= 64 && 2900 !isLegalICmpImmediate(C1.getSExtValue())) { 2901 // (X & -256) == 256 -> (X >> 8) == 1 2902 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2903 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2904 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2905 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2906 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2907 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2908 auto &DL = DAG.getDataLayout(); 2909 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2910 !DCI.isBeforeLegalize()); 2911 EVT CmpTy = N0.getValueType(); 2912 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2913 DAG.getConstant(ShiftBits, dl, 2914 ShiftTy)); 2915 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2916 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2917 } 2918 } 2919 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2920 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2921 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2922 // X < 0x100000000 -> (X >> 32) < 1 2923 // X >= 0x100000000 -> (X >> 32) >= 1 2924 // X <= 0x0ffffffff -> (X >> 32) < 1 2925 // X > 0x0ffffffff -> (X >> 32) >= 1 2926 unsigned ShiftBits; 2927 APInt NewC = C1; 2928 ISD::CondCode NewCond = Cond; 2929 if (AdjOne) { 2930 ShiftBits = C1.countTrailingOnes(); 2931 NewC = NewC + 1; 2932 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2933 } else { 2934 ShiftBits = C1.countTrailingZeros(); 2935 } 2936 NewC.lshrInPlace(ShiftBits); 2937 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2938 isLegalICmpImmediate(NewC.getSExtValue())) { 2939 auto &DL = DAG.getDataLayout(); 2940 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2941 !DCI.isBeforeLegalize()); 2942 EVT CmpTy = N0.getValueType(); 2943 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2944 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2945 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2946 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2947 } 2948 } 2949 } 2950 } 2951 2952 if (isa<ConstantFPSDNode>(N0.getNode())) { 2953 // Constant fold or commute setcc. 2954 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2955 if (O.getNode()) return O; 2956 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2957 // If the RHS of an FP comparison is a constant, simplify it away in 2958 // some cases. 2959 if (CFP->getValueAPF().isNaN()) { 2960 // If an operand is known to be a nan, we can fold it. 2961 switch (ISD::getUnorderedFlavor(Cond)) { 2962 default: llvm_unreachable("Unknown flavor!"); 2963 case 0: // Known false. 2964 return DAG.getBoolConstant(false, dl, VT, OpVT); 2965 case 1: // Known true. 2966 return DAG.getBoolConstant(true, dl, VT, OpVT); 2967 case 2: // Undefined. 2968 return DAG.getUNDEF(VT); 2969 } 2970 } 2971 2972 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2973 // constant if knowing that the operand is non-nan is enough. We prefer to 2974 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2975 // materialize 0.0. 2976 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2977 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2978 2979 // setcc (fneg x), C -> setcc swap(pred) x, -C 2980 if (N0.getOpcode() == ISD::FNEG) { 2981 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2982 if (DCI.isBeforeLegalizeOps() || 2983 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2984 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2985 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2986 } 2987 } 2988 2989 // If the condition is not legal, see if we can find an equivalent one 2990 // which is legal. 2991 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2992 // If the comparison was an awkward floating-point == or != and one of 2993 // the comparison operands is infinity or negative infinity, convert the 2994 // condition to a less-awkward <= or >=. 2995 if (CFP->getValueAPF().isInfinity()) { 2996 if (CFP->getValueAPF().isNegative()) { 2997 if (Cond == ISD::SETOEQ && 2998 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2999 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3000 if (Cond == ISD::SETUEQ && 3001 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3002 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3003 if (Cond == ISD::SETUNE && 3004 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3005 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3006 if (Cond == ISD::SETONE && 3007 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3008 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3009 } else { 3010 if (Cond == ISD::SETOEQ && 3011 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3012 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3013 if (Cond == ISD::SETUEQ && 3014 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3015 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3016 if (Cond == ISD::SETUNE && 3017 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3018 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3019 if (Cond == ISD::SETONE && 3020 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3021 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3022 } 3023 } 3024 } 3025 } 3026 3027 if (N0 == N1) { 3028 // The sext(setcc()) => setcc() optimization relies on the appropriate 3029 // constant being emitted. 3030 3031 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3032 3033 // We can always fold X == X for integer setcc's. 3034 if (N0.getValueType().isInteger()) 3035 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3036 3037 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3038 if (UOF == 2) // FP operators that are undefined on NaNs. 3039 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3040 if (UOF == unsigned(EqTrue)) 3041 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3042 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3043 // if it is not already. 3044 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3045 if (NewCond != Cond && 3046 (DCI.isBeforeLegalizeOps() || 3047 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3048 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3049 } 3050 3051 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3052 N0.getValueType().isInteger()) { 3053 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3054 N0.getOpcode() == ISD::XOR) { 3055 // Simplify (X+Y) == (X+Z) --> Y == Z 3056 if (N0.getOpcode() == N1.getOpcode()) { 3057 if (N0.getOperand(0) == N1.getOperand(0)) 3058 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3059 if (N0.getOperand(1) == N1.getOperand(1)) 3060 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3061 if (isCommutativeBinOp(N0.getOpcode())) { 3062 // If X op Y == Y op X, try other combinations. 3063 if (N0.getOperand(0) == N1.getOperand(1)) 3064 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3065 Cond); 3066 if (N0.getOperand(1) == N1.getOperand(0)) 3067 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3068 Cond); 3069 } 3070 } 3071 3072 // If RHS is a legal immediate value for a compare instruction, we need 3073 // to be careful about increasing register pressure needlessly. 3074 bool LegalRHSImm = false; 3075 3076 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3077 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3078 // Turn (X+C1) == C2 --> X == C2-C1 3079 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3080 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3081 DAG.getConstant(RHSC->getAPIntValue()- 3082 LHSR->getAPIntValue(), 3083 dl, N0.getValueType()), Cond); 3084 } 3085 3086 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3087 if (N0.getOpcode() == ISD::XOR) 3088 // If we know that all of the inverted bits are zero, don't bother 3089 // performing the inversion. 3090 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3091 return 3092 DAG.getSetCC(dl, VT, N0.getOperand(0), 3093 DAG.getConstant(LHSR->getAPIntValue() ^ 3094 RHSC->getAPIntValue(), 3095 dl, N0.getValueType()), 3096 Cond); 3097 } 3098 3099 // Turn (C1-X) == C2 --> X == C1-C2 3100 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3101 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3102 return 3103 DAG.getSetCC(dl, VT, N0.getOperand(1), 3104 DAG.getConstant(SUBC->getAPIntValue() - 3105 RHSC->getAPIntValue(), 3106 dl, N0.getValueType()), 3107 Cond); 3108 } 3109 } 3110 3111 // Could RHSC fold directly into a compare? 3112 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3113 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3114 } 3115 3116 // (X+Y) == X --> Y == 0 and similar folds. 3117 // Don't do this if X is an immediate that can fold into a cmp 3118 // instruction and X+Y has other uses. It could be an induction variable 3119 // chain, and the transform would increase register pressure. 3120 if (!LegalRHSImm || N0.hasOneUse()) 3121 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3122 return V; 3123 } 3124 3125 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3126 N1.getOpcode() == ISD::XOR) 3127 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3128 return V; 3129 3130 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3131 return V; 3132 } 3133 3134 // Fold away ALL boolean setcc's. 3135 SDValue Temp; 3136 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3137 EVT OpVT = N0.getValueType(); 3138 switch (Cond) { 3139 default: llvm_unreachable("Unknown integer setcc!"); 3140 case ISD::SETEQ: // X == Y -> ~(X^Y) 3141 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3142 N0 = DAG.getNOT(dl, Temp, OpVT); 3143 if (!DCI.isCalledByLegalizer()) 3144 DCI.AddToWorklist(Temp.getNode()); 3145 break; 3146 case ISD::SETNE: // X != Y --> (X^Y) 3147 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3148 break; 3149 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3150 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3151 Temp = DAG.getNOT(dl, N0, OpVT); 3152 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3153 if (!DCI.isCalledByLegalizer()) 3154 DCI.AddToWorklist(Temp.getNode()); 3155 break; 3156 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3157 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3158 Temp = DAG.getNOT(dl, N1, OpVT); 3159 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3160 if (!DCI.isCalledByLegalizer()) 3161 DCI.AddToWorklist(Temp.getNode()); 3162 break; 3163 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3164 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3165 Temp = DAG.getNOT(dl, N0, OpVT); 3166 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3167 if (!DCI.isCalledByLegalizer()) 3168 DCI.AddToWorklist(Temp.getNode()); 3169 break; 3170 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3171 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3172 Temp = DAG.getNOT(dl, N1, OpVT); 3173 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3174 break; 3175 } 3176 if (VT.getScalarType() != MVT::i1) { 3177 if (!DCI.isCalledByLegalizer()) 3178 DCI.AddToWorklist(N0.getNode()); 3179 // FIXME: If running after legalize, we probably can't do this. 3180 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3181 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3182 } 3183 return N0; 3184 } 3185 3186 // Could not fold it. 3187 return SDValue(); 3188 } 3189 3190 /// Returns true (and the GlobalValue and the offset) if the node is a 3191 /// GlobalAddress + offset. 3192 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3193 int64_t &Offset) const { 3194 3195 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3196 3197 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3198 GA = GASD->getGlobal(); 3199 Offset += GASD->getOffset(); 3200 return true; 3201 } 3202 3203 if (N->getOpcode() == ISD::ADD) { 3204 SDValue N1 = N->getOperand(0); 3205 SDValue N2 = N->getOperand(1); 3206 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3207 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3208 Offset += V->getSExtValue(); 3209 return true; 3210 } 3211 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3212 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3213 Offset += V->getSExtValue(); 3214 return true; 3215 } 3216 } 3217 } 3218 3219 return false; 3220 } 3221 3222 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3223 DAGCombinerInfo &DCI) const { 3224 // Default implementation: no optimization. 3225 return SDValue(); 3226 } 3227 3228 //===----------------------------------------------------------------------===// 3229 // Inline Assembler Implementation Methods 3230 //===----------------------------------------------------------------------===// 3231 3232 TargetLowering::ConstraintType 3233 TargetLowering::getConstraintType(StringRef Constraint) const { 3234 unsigned S = Constraint.size(); 3235 3236 if (S == 1) { 3237 switch (Constraint[0]) { 3238 default: break; 3239 case 'r': return C_RegisterClass; 3240 case 'm': // memory 3241 case 'o': // offsetable 3242 case 'V': // not offsetable 3243 return C_Memory; 3244 case 'i': // Simple Integer or Relocatable Constant 3245 case 'n': // Simple Integer 3246 case 'E': // Floating Point Constant 3247 case 'F': // Floating Point Constant 3248 case 's': // Relocatable Constant 3249 case 'p': // Address. 3250 case 'X': // Allow ANY value. 3251 case 'I': // Target registers. 3252 case 'J': 3253 case 'K': 3254 case 'L': 3255 case 'M': 3256 case 'N': 3257 case 'O': 3258 case 'P': 3259 case '<': 3260 case '>': 3261 return C_Other; 3262 } 3263 } 3264 3265 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3266 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3267 return C_Memory; 3268 return C_Register; 3269 } 3270 return C_Unknown; 3271 } 3272 3273 /// Try to replace an X constraint, which matches anything, with another that 3274 /// has more specific requirements based on the type of the corresponding 3275 /// operand. 3276 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3277 if (ConstraintVT.isInteger()) 3278 return "r"; 3279 if (ConstraintVT.isFloatingPoint()) 3280 return "f"; // works for many targets 3281 return nullptr; 3282 } 3283 3284 SDValue TargetLowering::LowerAsmOutputForConstraint( 3285 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3286 SelectionDAG &DAG) const { 3287 return SDValue(); 3288 } 3289 3290 /// Lower the specified operand into the Ops vector. 3291 /// If it is invalid, don't add anything to Ops. 3292 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3293 std::string &Constraint, 3294 std::vector<SDValue> &Ops, 3295 SelectionDAG &DAG) const { 3296 3297 if (Constraint.length() > 1) return; 3298 3299 char ConstraintLetter = Constraint[0]; 3300 switch (ConstraintLetter) { 3301 default: break; 3302 case 'X': // Allows any operand; labels (basic block) use this. 3303 if (Op.getOpcode() == ISD::BasicBlock || 3304 Op.getOpcode() == ISD::TargetBlockAddress) { 3305 Ops.push_back(Op); 3306 return; 3307 } 3308 LLVM_FALLTHROUGH; 3309 case 'i': // Simple Integer or Relocatable Constant 3310 case 'n': // Simple Integer 3311 case 's': { // Relocatable Constant 3312 // These operands are interested in values of the form (GV+C), where C may 3313 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3314 // is possible and fine if either GV or C are missing. 3315 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3316 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3317 3318 // If we have "(add GV, C)", pull out GV/C 3319 if (Op.getOpcode() == ISD::ADD) { 3320 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3321 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3322 if (!C || !GA) { 3323 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3324 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3325 } 3326 if (!C || !GA) { 3327 C = nullptr; 3328 GA = nullptr; 3329 } 3330 } 3331 3332 // If we find a valid operand, map to the TargetXXX version so that the 3333 // value itself doesn't get selected. 3334 if (GA) { // Either &GV or &GV+C 3335 if (ConstraintLetter != 'n') { 3336 int64_t Offs = GA->getOffset(); 3337 if (C) Offs += C->getZExtValue(); 3338 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3339 C ? SDLoc(C) : SDLoc(), 3340 Op.getValueType(), Offs)); 3341 } 3342 return; 3343 } 3344 if (C) { // just C, no GV. 3345 // Simple constants are not allowed for 's'. 3346 if (ConstraintLetter != 's') { 3347 // gcc prints these as sign extended. Sign extend value to 64 bits 3348 // now; without this it would get ZExt'd later in 3349 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3350 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3351 SDLoc(C), MVT::i64)); 3352 } 3353 return; 3354 } 3355 break; 3356 } 3357 } 3358 } 3359 3360 std::pair<unsigned, const TargetRegisterClass *> 3361 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3362 StringRef Constraint, 3363 MVT VT) const { 3364 if (Constraint.empty() || Constraint[0] != '{') 3365 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3366 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3367 3368 // Remove the braces from around the name. 3369 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3370 3371 std::pair<unsigned, const TargetRegisterClass *> R = 3372 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3373 3374 // Figure out which register class contains this reg. 3375 for (const TargetRegisterClass *RC : RI->regclasses()) { 3376 // If none of the value types for this register class are valid, we 3377 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3378 if (!isLegalRC(*RI, *RC)) 3379 continue; 3380 3381 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3382 I != E; ++I) { 3383 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3384 std::pair<unsigned, const TargetRegisterClass *> S = 3385 std::make_pair(*I, RC); 3386 3387 // If this register class has the requested value type, return it, 3388 // otherwise keep searching and return the first class found 3389 // if no other is found which explicitly has the requested type. 3390 if (RI->isTypeLegalForClass(*RC, VT)) 3391 return S; 3392 if (!R.second) 3393 R = S; 3394 } 3395 } 3396 } 3397 3398 return R; 3399 } 3400 3401 //===----------------------------------------------------------------------===// 3402 // Constraint Selection. 3403 3404 /// Return true of this is an input operand that is a matching constraint like 3405 /// "4". 3406 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3407 assert(!ConstraintCode.empty() && "No known constraint!"); 3408 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3409 } 3410 3411 /// If this is an input matching constraint, this method returns the output 3412 /// operand it matches. 3413 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3414 assert(!ConstraintCode.empty() && "No known constraint!"); 3415 return atoi(ConstraintCode.c_str()); 3416 } 3417 3418 /// Split up the constraint string from the inline assembly value into the 3419 /// specific constraints and their prefixes, and also tie in the associated 3420 /// operand values. 3421 /// If this returns an empty vector, and if the constraint string itself 3422 /// isn't empty, there was an error parsing. 3423 TargetLowering::AsmOperandInfoVector 3424 TargetLowering::ParseConstraints(const DataLayout &DL, 3425 const TargetRegisterInfo *TRI, 3426 ImmutableCallSite CS) const { 3427 /// Information about all of the constraints. 3428 AsmOperandInfoVector ConstraintOperands; 3429 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3430 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3431 3432 // Do a prepass over the constraints, canonicalizing them, and building up the 3433 // ConstraintOperands list. 3434 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3435 unsigned ResNo = 0; // ResNo - The result number of the next output. 3436 3437 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3438 ConstraintOperands.emplace_back(std::move(CI)); 3439 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3440 3441 // Update multiple alternative constraint count. 3442 if (OpInfo.multipleAlternatives.size() > maCount) 3443 maCount = OpInfo.multipleAlternatives.size(); 3444 3445 OpInfo.ConstraintVT = MVT::Other; 3446 3447 // Compute the value type for each operand. 3448 switch (OpInfo.Type) { 3449 case InlineAsm::isOutput: 3450 // Indirect outputs just consume an argument. 3451 if (OpInfo.isIndirect) { 3452 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3453 break; 3454 } 3455 3456 // The return value of the call is this value. As such, there is no 3457 // corresponding argument. 3458 assert(!CS.getType()->isVoidTy() && 3459 "Bad inline asm!"); 3460 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3461 OpInfo.ConstraintVT = 3462 getSimpleValueType(DL, STy->getElementType(ResNo)); 3463 } else { 3464 assert(ResNo == 0 && "Asm only has one result!"); 3465 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3466 } 3467 ++ResNo; 3468 break; 3469 case InlineAsm::isInput: 3470 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3471 break; 3472 case InlineAsm::isClobber: 3473 // Nothing to do. 3474 break; 3475 } 3476 3477 if (OpInfo.CallOperandVal) { 3478 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3479 if (OpInfo.isIndirect) { 3480 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3481 if (!PtrTy) 3482 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3483 OpTy = PtrTy->getElementType(); 3484 } 3485 3486 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3487 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3488 if (STy->getNumElements() == 1) 3489 OpTy = STy->getElementType(0); 3490 3491 // If OpTy is not a single value, it may be a struct/union that we 3492 // can tile with integers. 3493 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3494 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3495 switch (BitSize) { 3496 default: break; 3497 case 1: 3498 case 8: 3499 case 16: 3500 case 32: 3501 case 64: 3502 case 128: 3503 OpInfo.ConstraintVT = 3504 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3505 break; 3506 } 3507 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3508 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3509 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3510 } else { 3511 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3512 } 3513 } 3514 } 3515 3516 // If we have multiple alternative constraints, select the best alternative. 3517 if (!ConstraintOperands.empty()) { 3518 if (maCount) { 3519 unsigned bestMAIndex = 0; 3520 int bestWeight = -1; 3521 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3522 int weight = -1; 3523 unsigned maIndex; 3524 // Compute the sums of the weights for each alternative, keeping track 3525 // of the best (highest weight) one so far. 3526 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3527 int weightSum = 0; 3528 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3529 cIndex != eIndex; ++cIndex) { 3530 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3531 if (OpInfo.Type == InlineAsm::isClobber) 3532 continue; 3533 3534 // If this is an output operand with a matching input operand, 3535 // look up the matching input. If their types mismatch, e.g. one 3536 // is an integer, the other is floating point, or their sizes are 3537 // different, flag it as an maCantMatch. 3538 if (OpInfo.hasMatchingInput()) { 3539 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3540 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3541 if ((OpInfo.ConstraintVT.isInteger() != 3542 Input.ConstraintVT.isInteger()) || 3543 (OpInfo.ConstraintVT.getSizeInBits() != 3544 Input.ConstraintVT.getSizeInBits())) { 3545 weightSum = -1; // Can't match. 3546 break; 3547 } 3548 } 3549 } 3550 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3551 if (weight == -1) { 3552 weightSum = -1; 3553 break; 3554 } 3555 weightSum += weight; 3556 } 3557 // Update best. 3558 if (weightSum > bestWeight) { 3559 bestWeight = weightSum; 3560 bestMAIndex = maIndex; 3561 } 3562 } 3563 3564 // Now select chosen alternative in each constraint. 3565 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3566 cIndex != eIndex; ++cIndex) { 3567 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3568 if (cInfo.Type == InlineAsm::isClobber) 3569 continue; 3570 cInfo.selectAlternative(bestMAIndex); 3571 } 3572 } 3573 } 3574 3575 // Check and hook up tied operands, choose constraint code to use. 3576 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3577 cIndex != eIndex; ++cIndex) { 3578 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3579 3580 // If this is an output operand with a matching input operand, look up the 3581 // matching input. If their types mismatch, e.g. one is an integer, the 3582 // other is floating point, or their sizes are different, flag it as an 3583 // error. 3584 if (OpInfo.hasMatchingInput()) { 3585 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3586 3587 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3588 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3589 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3590 OpInfo.ConstraintVT); 3591 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3592 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3593 Input.ConstraintVT); 3594 if ((OpInfo.ConstraintVT.isInteger() != 3595 Input.ConstraintVT.isInteger()) || 3596 (MatchRC.second != InputRC.second)) { 3597 report_fatal_error("Unsupported asm: input constraint" 3598 " with a matching output constraint of" 3599 " incompatible type!"); 3600 } 3601 } 3602 } 3603 } 3604 3605 return ConstraintOperands; 3606 } 3607 3608 /// Return an integer indicating how general CT is. 3609 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3610 switch (CT) { 3611 case TargetLowering::C_Other: 3612 case TargetLowering::C_Unknown: 3613 return 0; 3614 case TargetLowering::C_Register: 3615 return 1; 3616 case TargetLowering::C_RegisterClass: 3617 return 2; 3618 case TargetLowering::C_Memory: 3619 return 3; 3620 } 3621 llvm_unreachable("Invalid constraint type"); 3622 } 3623 3624 /// Examine constraint type and operand type and determine a weight value. 3625 /// This object must already have been set up with the operand type 3626 /// and the current alternative constraint selected. 3627 TargetLowering::ConstraintWeight 3628 TargetLowering::getMultipleConstraintMatchWeight( 3629 AsmOperandInfo &info, int maIndex) const { 3630 InlineAsm::ConstraintCodeVector *rCodes; 3631 if (maIndex >= (int)info.multipleAlternatives.size()) 3632 rCodes = &info.Codes; 3633 else 3634 rCodes = &info.multipleAlternatives[maIndex].Codes; 3635 ConstraintWeight BestWeight = CW_Invalid; 3636 3637 // Loop over the options, keeping track of the most general one. 3638 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3639 ConstraintWeight weight = 3640 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3641 if (weight > BestWeight) 3642 BestWeight = weight; 3643 } 3644 3645 return BestWeight; 3646 } 3647 3648 /// Examine constraint type and operand type and determine a weight value. 3649 /// This object must already have been set up with the operand type 3650 /// and the current alternative constraint selected. 3651 TargetLowering::ConstraintWeight 3652 TargetLowering::getSingleConstraintMatchWeight( 3653 AsmOperandInfo &info, const char *constraint) const { 3654 ConstraintWeight weight = CW_Invalid; 3655 Value *CallOperandVal = info.CallOperandVal; 3656 // If we don't have a value, we can't do a match, 3657 // but allow it at the lowest weight. 3658 if (!CallOperandVal) 3659 return CW_Default; 3660 // Look at the constraint type. 3661 switch (*constraint) { 3662 case 'i': // immediate integer. 3663 case 'n': // immediate integer with a known value. 3664 if (isa<ConstantInt>(CallOperandVal)) 3665 weight = CW_Constant; 3666 break; 3667 case 's': // non-explicit intregal immediate. 3668 if (isa<GlobalValue>(CallOperandVal)) 3669 weight = CW_Constant; 3670 break; 3671 case 'E': // immediate float if host format. 3672 case 'F': // immediate float. 3673 if (isa<ConstantFP>(CallOperandVal)) 3674 weight = CW_Constant; 3675 break; 3676 case '<': // memory operand with autodecrement. 3677 case '>': // memory operand with autoincrement. 3678 case 'm': // memory operand. 3679 case 'o': // offsettable memory operand 3680 case 'V': // non-offsettable memory operand 3681 weight = CW_Memory; 3682 break; 3683 case 'r': // general register. 3684 case 'g': // general register, memory operand or immediate integer. 3685 // note: Clang converts "g" to "imr". 3686 if (CallOperandVal->getType()->isIntegerTy()) 3687 weight = CW_Register; 3688 break; 3689 case 'X': // any operand. 3690 default: 3691 weight = CW_Default; 3692 break; 3693 } 3694 return weight; 3695 } 3696 3697 /// If there are multiple different constraints that we could pick for this 3698 /// operand (e.g. "imr") try to pick the 'best' one. 3699 /// This is somewhat tricky: constraints fall into four classes: 3700 /// Other -> immediates and magic values 3701 /// Register -> one specific register 3702 /// RegisterClass -> a group of regs 3703 /// Memory -> memory 3704 /// Ideally, we would pick the most specific constraint possible: if we have 3705 /// something that fits into a register, we would pick it. The problem here 3706 /// is that if we have something that could either be in a register or in 3707 /// memory that use of the register could cause selection of *other* 3708 /// operands to fail: they might only succeed if we pick memory. Because of 3709 /// this the heuristic we use is: 3710 /// 3711 /// 1) If there is an 'other' constraint, and if the operand is valid for 3712 /// that constraint, use it. This makes us take advantage of 'i' 3713 /// constraints when available. 3714 /// 2) Otherwise, pick the most general constraint present. This prefers 3715 /// 'm' over 'r', for example. 3716 /// 3717 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3718 const TargetLowering &TLI, 3719 SDValue Op, SelectionDAG *DAG) { 3720 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3721 unsigned BestIdx = 0; 3722 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3723 int BestGenerality = -1; 3724 3725 // Loop over the options, keeping track of the most general one. 3726 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3727 TargetLowering::ConstraintType CType = 3728 TLI.getConstraintType(OpInfo.Codes[i]); 3729 3730 // If this is an 'other' constraint, see if the operand is valid for it. 3731 // For example, on X86 we might have an 'rI' constraint. If the operand 3732 // is an integer in the range [0..31] we want to use I (saving a load 3733 // of a register), otherwise we must use 'r'. 3734 if (CType == TargetLowering::C_Other && Op.getNode()) { 3735 assert(OpInfo.Codes[i].size() == 1 && 3736 "Unhandled multi-letter 'other' constraint"); 3737 std::vector<SDValue> ResultOps; 3738 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3739 ResultOps, *DAG); 3740 if (!ResultOps.empty()) { 3741 BestType = CType; 3742 BestIdx = i; 3743 break; 3744 } 3745 } 3746 3747 // Things with matching constraints can only be registers, per gcc 3748 // documentation. This mainly affects "g" constraints. 3749 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3750 continue; 3751 3752 // This constraint letter is more general than the previous one, use it. 3753 int Generality = getConstraintGenerality(CType); 3754 if (Generality > BestGenerality) { 3755 BestType = CType; 3756 BestIdx = i; 3757 BestGenerality = Generality; 3758 } 3759 } 3760 3761 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3762 OpInfo.ConstraintType = BestType; 3763 } 3764 3765 /// Determines the constraint code and constraint type to use for the specific 3766 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3767 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3768 SDValue Op, 3769 SelectionDAG *DAG) const { 3770 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3771 3772 // Single-letter constraints ('r') are very common. 3773 if (OpInfo.Codes.size() == 1) { 3774 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3775 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3776 } else { 3777 ChooseConstraint(OpInfo, *this, Op, DAG); 3778 } 3779 3780 // 'X' matches anything. 3781 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3782 // Labels and constants are handled elsewhere ('X' is the only thing 3783 // that matches labels). For Functions, the type here is the type of 3784 // the result, which is not what we want to look at; leave them alone. 3785 Value *v = OpInfo.CallOperandVal; 3786 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3787 OpInfo.CallOperandVal = v; 3788 return; 3789 } 3790 3791 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 3792 return; 3793 3794 // Otherwise, try to resolve it to something we know about by looking at 3795 // the actual operand type. 3796 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3797 OpInfo.ConstraintCode = Repl; 3798 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3799 } 3800 } 3801 } 3802 3803 /// Given an exact SDIV by a constant, create a multiplication 3804 /// with the multiplicative inverse of the constant. 3805 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3806 const SDLoc &dl, SelectionDAG &DAG, 3807 SmallVectorImpl<SDNode *> &Created) { 3808 SDValue Op0 = N->getOperand(0); 3809 SDValue Op1 = N->getOperand(1); 3810 EVT VT = N->getValueType(0); 3811 EVT SVT = VT.getScalarType(); 3812 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3813 EVT ShSVT = ShVT.getScalarType(); 3814 3815 bool UseSRA = false; 3816 SmallVector<SDValue, 16> Shifts, Factors; 3817 3818 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3819 if (C->isNullValue()) 3820 return false; 3821 APInt Divisor = C->getAPIntValue(); 3822 unsigned Shift = Divisor.countTrailingZeros(); 3823 if (Shift) { 3824 Divisor.ashrInPlace(Shift); 3825 UseSRA = true; 3826 } 3827 // Calculate the multiplicative inverse, using Newton's method. 3828 APInt t; 3829 APInt Factor = Divisor; 3830 while ((t = Divisor * Factor) != 1) 3831 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3832 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3833 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3834 return true; 3835 }; 3836 3837 // Collect all magic values from the build vector. 3838 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3839 return SDValue(); 3840 3841 SDValue Shift, Factor; 3842 if (VT.isVector()) { 3843 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3844 Factor = DAG.getBuildVector(VT, dl, Factors); 3845 } else { 3846 Shift = Shifts[0]; 3847 Factor = Factors[0]; 3848 } 3849 3850 SDValue Res = Op0; 3851 3852 // Shift the value upfront if it is even, so the LSB is one. 3853 if (UseSRA) { 3854 // TODO: For UDIV use SRL instead of SRA. 3855 SDNodeFlags Flags; 3856 Flags.setExact(true); 3857 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3858 Created.push_back(Res.getNode()); 3859 } 3860 3861 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3862 } 3863 3864 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3865 SelectionDAG &DAG, 3866 SmallVectorImpl<SDNode *> &Created) const { 3867 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3868 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3869 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3870 return SDValue(N, 0); // Lower SDIV as SDIV 3871 return SDValue(); 3872 } 3873 3874 /// Given an ISD::SDIV node expressing a divide by constant, 3875 /// return a DAG expression to select that will generate the same value by 3876 /// multiplying by a magic number. 3877 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3878 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3879 bool IsAfterLegalization, 3880 SmallVectorImpl<SDNode *> &Created) const { 3881 SDLoc dl(N); 3882 EVT VT = N->getValueType(0); 3883 EVT SVT = VT.getScalarType(); 3884 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3885 EVT ShSVT = ShVT.getScalarType(); 3886 unsigned EltBits = VT.getScalarSizeInBits(); 3887 3888 // Check to see if we can do this. 3889 // FIXME: We should be more aggressive here. 3890 if (!isTypeLegal(VT)) 3891 return SDValue(); 3892 3893 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3894 if (N->getFlags().hasExact()) 3895 return BuildExactSDIV(*this, N, dl, DAG, Created); 3896 3897 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3898 3899 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3900 if (C->isNullValue()) 3901 return false; 3902 3903 const APInt &Divisor = C->getAPIntValue(); 3904 APInt::ms magics = Divisor.magic(); 3905 int NumeratorFactor = 0; 3906 int ShiftMask = -1; 3907 3908 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3909 // If d is +1/-1, we just multiply the numerator by +1/-1. 3910 NumeratorFactor = Divisor.getSExtValue(); 3911 magics.m = 0; 3912 magics.s = 0; 3913 ShiftMask = 0; 3914 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3915 // If d > 0 and m < 0, add the numerator. 3916 NumeratorFactor = 1; 3917 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3918 // If d < 0 and m > 0, subtract the numerator. 3919 NumeratorFactor = -1; 3920 } 3921 3922 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3923 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3924 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3925 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3926 return true; 3927 }; 3928 3929 SDValue N0 = N->getOperand(0); 3930 SDValue N1 = N->getOperand(1); 3931 3932 // Collect the shifts / magic values from each element. 3933 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3934 return SDValue(); 3935 3936 SDValue MagicFactor, Factor, Shift, ShiftMask; 3937 if (VT.isVector()) { 3938 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3939 Factor = DAG.getBuildVector(VT, dl, Factors); 3940 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3941 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3942 } else { 3943 MagicFactor = MagicFactors[0]; 3944 Factor = Factors[0]; 3945 Shift = Shifts[0]; 3946 ShiftMask = ShiftMasks[0]; 3947 } 3948 3949 // Multiply the numerator (operand 0) by the magic value. 3950 // FIXME: We should support doing a MUL in a wider type. 3951 SDValue Q; 3952 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3953 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3954 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3955 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3956 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3957 SDValue LoHi = 3958 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3959 Q = SDValue(LoHi.getNode(), 1); 3960 } else 3961 return SDValue(); // No mulhs or equivalent. 3962 Created.push_back(Q.getNode()); 3963 3964 // (Optionally) Add/subtract the numerator using Factor. 3965 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3966 Created.push_back(Factor.getNode()); 3967 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3968 Created.push_back(Q.getNode()); 3969 3970 // Shift right algebraic by shift value. 3971 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3972 Created.push_back(Q.getNode()); 3973 3974 // Extract the sign bit, mask it and add it to the quotient. 3975 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 3976 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 3977 Created.push_back(T.getNode()); 3978 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 3979 Created.push_back(T.getNode()); 3980 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3981 } 3982 3983 /// Given an ISD::UDIV node expressing a divide by constant, 3984 /// return a DAG expression to select that will generate the same value by 3985 /// multiplying by a magic number. 3986 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3987 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3988 bool IsAfterLegalization, 3989 SmallVectorImpl<SDNode *> &Created) const { 3990 SDLoc dl(N); 3991 EVT VT = N->getValueType(0); 3992 EVT SVT = VT.getScalarType(); 3993 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3994 EVT ShSVT = ShVT.getScalarType(); 3995 unsigned EltBits = VT.getScalarSizeInBits(); 3996 3997 // Check to see if we can do this. 3998 // FIXME: We should be more aggressive here. 3999 if (!isTypeLegal(VT)) 4000 return SDValue(); 4001 4002 bool UseNPQ = false; 4003 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4004 4005 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4006 if (C->isNullValue()) 4007 return false; 4008 // FIXME: We should use a narrower constant when the upper 4009 // bits are known to be zero. 4010 APInt Divisor = C->getAPIntValue(); 4011 APInt::mu magics = Divisor.magicu(); 4012 unsigned PreShift = 0, PostShift = 0; 4013 4014 // If the divisor is even, we can avoid using the expensive fixup by 4015 // shifting the divided value upfront. 4016 if (magics.a != 0 && !Divisor[0]) { 4017 PreShift = Divisor.countTrailingZeros(); 4018 // Get magic number for the shifted divisor. 4019 magics = Divisor.lshr(PreShift).magicu(PreShift); 4020 assert(magics.a == 0 && "Should use cheap fixup now"); 4021 } 4022 4023 APInt Magic = magics.m; 4024 4025 unsigned SelNPQ; 4026 if (magics.a == 0 || Divisor.isOneValue()) { 4027 assert(magics.s < Divisor.getBitWidth() && 4028 "We shouldn't generate an undefined shift!"); 4029 PostShift = magics.s; 4030 SelNPQ = false; 4031 } else { 4032 PostShift = magics.s - 1; 4033 SelNPQ = true; 4034 } 4035 4036 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4037 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4038 NPQFactors.push_back( 4039 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4040 : APInt::getNullValue(EltBits), 4041 dl, SVT)); 4042 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4043 UseNPQ |= SelNPQ; 4044 return true; 4045 }; 4046 4047 SDValue N0 = N->getOperand(0); 4048 SDValue N1 = N->getOperand(1); 4049 4050 // Collect the shifts/magic values from each element. 4051 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4052 return SDValue(); 4053 4054 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4055 if (VT.isVector()) { 4056 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4057 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4058 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4059 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4060 } else { 4061 PreShift = PreShifts[0]; 4062 MagicFactor = MagicFactors[0]; 4063 PostShift = PostShifts[0]; 4064 } 4065 4066 SDValue Q = N0; 4067 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4068 Created.push_back(Q.getNode()); 4069 4070 // FIXME: We should support doing a MUL in a wider type. 4071 auto GetMULHU = [&](SDValue X, SDValue Y) { 4072 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4073 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4074 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4075 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4076 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4077 SDValue LoHi = 4078 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4079 return SDValue(LoHi.getNode(), 1); 4080 } 4081 return SDValue(); // No mulhu or equivalent 4082 }; 4083 4084 // Multiply the numerator (operand 0) by the magic value. 4085 Q = GetMULHU(Q, MagicFactor); 4086 if (!Q) 4087 return SDValue(); 4088 4089 Created.push_back(Q.getNode()); 4090 4091 if (UseNPQ) { 4092 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4093 Created.push_back(NPQ.getNode()); 4094 4095 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4096 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4097 if (VT.isVector()) 4098 NPQ = GetMULHU(NPQ, NPQFactor); 4099 else 4100 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4101 4102 Created.push_back(NPQ.getNode()); 4103 4104 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4105 Created.push_back(Q.getNode()); 4106 } 4107 4108 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4109 Created.push_back(Q.getNode()); 4110 4111 SDValue One = DAG.getConstant(1, dl, VT); 4112 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4113 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4114 } 4115 4116 bool TargetLowering:: 4117 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4118 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4119 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4120 "be a constant integer"); 4121 return true; 4122 } 4123 4124 return false; 4125 } 4126 4127 //===----------------------------------------------------------------------===// 4128 // Legalization Utilities 4129 //===----------------------------------------------------------------------===// 4130 4131 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4132 SDValue LHS, SDValue RHS, 4133 SmallVectorImpl<SDValue> &Result, 4134 EVT HiLoVT, SelectionDAG &DAG, 4135 MulExpansionKind Kind, SDValue LL, 4136 SDValue LH, SDValue RL, SDValue RH) const { 4137 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4138 Opcode == ISD::SMUL_LOHI); 4139 4140 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4141 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4142 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4143 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4144 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4145 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4146 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4147 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4148 4149 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4150 return false; 4151 4152 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4153 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4154 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4155 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4156 4157 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4158 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4159 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4160 4161 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4162 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4163 bool Signed) -> bool { 4164 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4165 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4166 Hi = SDValue(Lo.getNode(), 1); 4167 return true; 4168 } 4169 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4170 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4171 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4172 return true; 4173 } 4174 return false; 4175 }; 4176 4177 SDValue Lo, Hi; 4178 4179 if (!LL.getNode() && !RL.getNode() && 4180 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4181 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4182 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4183 } 4184 4185 if (!LL.getNode()) 4186 return false; 4187 4188 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4189 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4190 DAG.MaskedValueIsZero(RHS, HighMask)) { 4191 // The inputs are both zero-extended. 4192 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4193 Result.push_back(Lo); 4194 Result.push_back(Hi); 4195 if (Opcode != ISD::MUL) { 4196 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4197 Result.push_back(Zero); 4198 Result.push_back(Zero); 4199 } 4200 return true; 4201 } 4202 } 4203 4204 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4205 RHSSB > InnerBitSize) { 4206 // The input values are both sign-extended. 4207 // TODO non-MUL case? 4208 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4209 Result.push_back(Lo); 4210 Result.push_back(Hi); 4211 return true; 4212 } 4213 } 4214 4215 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4216 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4217 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4218 // FIXME getShiftAmountTy does not always return a sensible result when VT 4219 // is an illegal type, and so the type may be too small to fit the shift 4220 // amount. Override it with i32. The shift will have to be legalized. 4221 ShiftAmountTy = MVT::i32; 4222 } 4223 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4224 4225 if (!LH.getNode() && !RH.getNode() && 4226 isOperationLegalOrCustom(ISD::SRL, VT) && 4227 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4228 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4229 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4230 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4231 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4232 } 4233 4234 if (!LH.getNode()) 4235 return false; 4236 4237 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4238 return false; 4239 4240 Result.push_back(Lo); 4241 4242 if (Opcode == ISD::MUL) { 4243 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4244 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4245 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4246 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4247 Result.push_back(Hi); 4248 return true; 4249 } 4250 4251 // Compute the full width result. 4252 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4253 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4254 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4255 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4256 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4257 }; 4258 4259 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4260 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4261 return false; 4262 4263 // This is effectively the add part of a multiply-add of half-sized operands, 4264 // so it cannot overflow. 4265 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4266 4267 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4268 return false; 4269 4270 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4271 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4272 4273 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4274 isOperationLegalOrCustom(ISD::ADDE, VT)); 4275 if (UseGlue) 4276 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4277 Merge(Lo, Hi)); 4278 else 4279 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4280 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4281 4282 SDValue Carry = Next.getValue(1); 4283 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4284 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4285 4286 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4287 return false; 4288 4289 if (UseGlue) 4290 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4291 Carry); 4292 else 4293 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4294 Zero, Carry); 4295 4296 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4297 4298 if (Opcode == ISD::SMUL_LOHI) { 4299 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4300 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4301 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4302 4303 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4304 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4305 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4306 } 4307 4308 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4309 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4310 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4311 return true; 4312 } 4313 4314 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4315 SelectionDAG &DAG, MulExpansionKind Kind, 4316 SDValue LL, SDValue LH, SDValue RL, 4317 SDValue RH) const { 4318 SmallVector<SDValue, 2> Result; 4319 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4320 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4321 DAG, Kind, LL, LH, RL, RH); 4322 if (Ok) { 4323 assert(Result.size() == 2); 4324 Lo = Result[0]; 4325 Hi = Result[1]; 4326 } 4327 return Ok; 4328 } 4329 4330 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4331 SelectionDAG &DAG) const { 4332 EVT VT = Node->getValueType(0); 4333 4334 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4335 !isOperationLegalOrCustom(ISD::SRL, VT) || 4336 !isOperationLegalOrCustom(ISD::SUB, VT) || 4337 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4338 return false; 4339 4340 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4341 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4342 SDValue X = Node->getOperand(0); 4343 SDValue Y = Node->getOperand(1); 4344 SDValue Z = Node->getOperand(2); 4345 4346 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4347 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4348 SDLoc DL(SDValue(Node, 0)); 4349 4350 EVT ShVT = Z.getValueType(); 4351 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4352 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4353 4354 SDValue ShAmt; 4355 if (isPowerOf2_32(EltSizeInBits)) { 4356 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4357 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4358 } else { 4359 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4360 } 4361 4362 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4363 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4364 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4365 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4366 4367 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4368 // and that is undefined. We must compare and select to avoid UB. 4369 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4370 4371 // For fshl, 0-shift returns the 1st arg (X). 4372 // For fshr, 0-shift returns the 2nd arg (Y). 4373 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4374 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4375 return true; 4376 } 4377 4378 // TODO: Merge with expandFunnelShift. 4379 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4380 SelectionDAG &DAG) const { 4381 EVT VT = Node->getValueType(0); 4382 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4383 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4384 SDValue Op0 = Node->getOperand(0); 4385 SDValue Op1 = Node->getOperand(1); 4386 SDLoc DL(SDValue(Node, 0)); 4387 4388 EVT ShVT = Op1.getValueType(); 4389 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4390 4391 // If a rotate in the other direction is legal, use it. 4392 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4393 if (isOperationLegal(RevRot, VT)) { 4394 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4395 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4396 return true; 4397 } 4398 4399 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4400 !isOperationLegalOrCustom(ISD::SRL, VT) || 4401 !isOperationLegalOrCustom(ISD::SUB, VT) || 4402 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4403 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4404 return false; 4405 4406 // Otherwise, 4407 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4408 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4409 // 4410 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4411 "Expecting the type bitwidth to be a power of 2"); 4412 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4413 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4414 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4415 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4416 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4417 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4418 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4419 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4420 return true; 4421 } 4422 4423 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4424 SelectionDAG &DAG) const { 4425 SDValue Src = Node->getOperand(0); 4426 EVT SrcVT = Src.getValueType(); 4427 EVT DstVT = Node->getValueType(0); 4428 SDLoc dl(SDValue(Node, 0)); 4429 4430 // FIXME: Only f32 to i64 conversions are supported. 4431 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4432 return false; 4433 4434 // Expand f32 -> i64 conversion 4435 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4436 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4437 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4438 EVT IntVT = SrcVT.changeTypeToInteger(); 4439 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4440 4441 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4442 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4443 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4444 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4445 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4446 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4447 4448 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4449 4450 SDValue ExponentBits = DAG.getNode( 4451 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4452 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4453 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4454 4455 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4456 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4457 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4458 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4459 4460 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4461 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4462 DAG.getConstant(0x00800000, dl, IntVT)); 4463 4464 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4465 4466 R = DAG.getSelectCC( 4467 dl, Exponent, ExponentLoBit, 4468 DAG.getNode(ISD::SHL, dl, DstVT, R, 4469 DAG.getZExtOrTrunc( 4470 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4471 dl, IntShVT)), 4472 DAG.getNode(ISD::SRL, dl, DstVT, R, 4473 DAG.getZExtOrTrunc( 4474 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4475 dl, IntShVT)), 4476 ISD::SETGT); 4477 4478 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4479 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4480 4481 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4482 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4483 return true; 4484 } 4485 4486 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4487 SelectionDAG &DAG) const { 4488 SDLoc dl(SDValue(Node, 0)); 4489 SDValue Src = Node->getOperand(0); 4490 4491 EVT SrcVT = Src.getValueType(); 4492 EVT DstVT = Node->getValueType(0); 4493 EVT SetCCVT = 4494 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4495 4496 // Only expand vector types if we have the appropriate vector bit operations. 4497 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4498 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4499 return false; 4500 4501 // If the maximum float value is smaller then the signed integer range, 4502 // the destination signmask can't be represented by the float, so we can 4503 // just use FP_TO_SINT directly. 4504 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4505 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4506 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4507 if (APFloat::opOverflow & 4508 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4509 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4510 return true; 4511 } 4512 4513 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4514 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4515 4516 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4517 if (Strict) { 4518 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4519 // signmask then offset (the result of which should be fully representable). 4520 // Sel = Src < 0x8000000000000000 4521 // Val = select Sel, Src, Src - 0x8000000000000000 4522 // Ofs = select Sel, 0, 0x8000000000000000 4523 // Result = fp_to_sint(Val) ^ Ofs 4524 4525 // TODO: Should any fast-math-flags be set for the FSUB? 4526 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4527 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4528 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4529 DAG.getConstant(SignMask, dl, DstVT)); 4530 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4531 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4532 } else { 4533 // Expand based on maximum range of FP_TO_SINT: 4534 // True = fp_to_sint(Src) 4535 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4536 // Result = select (Src < 0x8000000000000000), True, False 4537 4538 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4539 // TODO: Should any fast-math-flags be set for the FSUB? 4540 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4541 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4542 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4543 DAG.getConstant(SignMask, dl, DstVT)); 4544 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4545 } 4546 return true; 4547 } 4548 4549 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4550 SelectionDAG &DAG) const { 4551 SDValue Src = Node->getOperand(0); 4552 EVT SrcVT = Src.getValueType(); 4553 EVT DstVT = Node->getValueType(0); 4554 4555 if (SrcVT.getScalarType() != MVT::i64) 4556 return false; 4557 4558 SDLoc dl(SDValue(Node, 0)); 4559 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4560 4561 if (DstVT.getScalarType() == MVT::f32) { 4562 // Only expand vector types if we have the appropriate vector bit 4563 // operations. 4564 if (SrcVT.isVector() && 4565 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4566 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4567 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4568 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4569 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4570 return false; 4571 4572 // For unsigned conversions, convert them to signed conversions using the 4573 // algorithm from the x86_64 __floatundidf in compiler_rt. 4574 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4575 4576 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4577 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4578 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4579 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4580 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4581 4582 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4583 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4584 4585 // TODO: This really should be implemented using a branch rather than a 4586 // select. We happen to get lucky and machinesink does the right 4587 // thing most of the time. This would be a good candidate for a 4588 // pseudo-op, or, even better, for whole-function isel. 4589 EVT SetCCVT = 4590 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4591 4592 SDValue SignBitTest = DAG.getSetCC( 4593 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4594 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4595 return true; 4596 } 4597 4598 if (DstVT.getScalarType() == MVT::f64) { 4599 // Only expand vector types if we have the appropriate vector bit 4600 // operations. 4601 if (SrcVT.isVector() && 4602 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4603 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4604 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4605 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4606 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4607 return false; 4608 4609 // Implementation of unsigned i64 to f64 following the algorithm in 4610 // __floatundidf in compiler_rt. This implementation has the advantage 4611 // of performing rounding correctly, both in the default rounding mode 4612 // and in all alternate rounding modes. 4613 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4614 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4615 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4616 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4617 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4618 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4619 4620 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4621 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4622 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4623 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4624 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4625 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4626 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4627 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4628 return true; 4629 } 4630 4631 return false; 4632 } 4633 4634 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4635 SelectionDAG &DAG) const { 4636 SDLoc dl(Node); 4637 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4638 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4639 EVT VT = Node->getValueType(0); 4640 if (isOperationLegalOrCustom(NewOp, VT)) { 4641 SDValue Quiet0 = Node->getOperand(0); 4642 SDValue Quiet1 = Node->getOperand(1); 4643 4644 if (!Node->getFlags().hasNoNaNs()) { 4645 // Insert canonicalizes if it's possible we need to quiet to get correct 4646 // sNaN behavior. 4647 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4648 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4649 Node->getFlags()); 4650 } 4651 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4652 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4653 Node->getFlags()); 4654 } 4655 } 4656 4657 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4658 } 4659 4660 return SDValue(); 4661 } 4662 4663 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4664 SelectionDAG &DAG) const { 4665 SDLoc dl(Node); 4666 EVT VT = Node->getValueType(0); 4667 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4668 SDValue Op = Node->getOperand(0); 4669 unsigned Len = VT.getScalarSizeInBits(); 4670 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4671 4672 // TODO: Add support for irregular type lengths. 4673 if (!(Len <= 128 && Len % 8 == 0)) 4674 return false; 4675 4676 // Only expand vector types if we have the appropriate vector bit operations. 4677 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4678 !isOperationLegalOrCustom(ISD::SUB, VT) || 4679 !isOperationLegalOrCustom(ISD::SRL, VT) || 4680 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4681 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4682 return false; 4683 4684 // This is the "best" algorithm from 4685 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4686 SDValue Mask55 = 4687 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4688 SDValue Mask33 = 4689 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4690 SDValue Mask0F = 4691 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4692 SDValue Mask01 = 4693 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4694 4695 // v = v - ((v >> 1) & 0x55555555...) 4696 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4697 DAG.getNode(ISD::AND, dl, VT, 4698 DAG.getNode(ISD::SRL, dl, VT, Op, 4699 DAG.getConstant(1, dl, ShVT)), 4700 Mask55)); 4701 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4702 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4703 DAG.getNode(ISD::AND, dl, VT, 4704 DAG.getNode(ISD::SRL, dl, VT, Op, 4705 DAG.getConstant(2, dl, ShVT)), 4706 Mask33)); 4707 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4708 Op = DAG.getNode(ISD::AND, dl, VT, 4709 DAG.getNode(ISD::ADD, dl, VT, Op, 4710 DAG.getNode(ISD::SRL, dl, VT, Op, 4711 DAG.getConstant(4, dl, ShVT))), 4712 Mask0F); 4713 // v = (v * 0x01010101...) >> (Len - 8) 4714 if (Len > 8) 4715 Op = 4716 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4717 DAG.getConstant(Len - 8, dl, ShVT)); 4718 4719 Result = Op; 4720 return true; 4721 } 4722 4723 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4724 SelectionDAG &DAG) const { 4725 SDLoc dl(Node); 4726 EVT VT = Node->getValueType(0); 4727 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4728 SDValue Op = Node->getOperand(0); 4729 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4730 4731 // If the non-ZERO_UNDEF version is supported we can use that instead. 4732 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4733 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4734 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4735 return true; 4736 } 4737 4738 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4739 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4740 EVT SetCCVT = 4741 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4742 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4743 SDValue Zero = DAG.getConstant(0, dl, VT); 4744 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4745 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4746 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4747 return true; 4748 } 4749 4750 // Only expand vector types if we have the appropriate vector bit operations. 4751 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4752 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4753 !isOperationLegalOrCustom(ISD::SRL, VT) || 4754 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4755 return false; 4756 4757 // for now, we do this: 4758 // x = x | (x >> 1); 4759 // x = x | (x >> 2); 4760 // ... 4761 // x = x | (x >>16); 4762 // x = x | (x >>32); // for 64-bit input 4763 // return popcount(~x); 4764 // 4765 // Ref: "Hacker's Delight" by Henry Warren 4766 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4767 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4768 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4769 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4770 } 4771 Op = DAG.getNOT(dl, Op, VT); 4772 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4773 return true; 4774 } 4775 4776 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4777 SelectionDAG &DAG) const { 4778 SDLoc dl(Node); 4779 EVT VT = Node->getValueType(0); 4780 SDValue Op = Node->getOperand(0); 4781 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4782 4783 // If the non-ZERO_UNDEF version is supported we can use that instead. 4784 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4785 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4786 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4787 return true; 4788 } 4789 4790 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4791 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4792 EVT SetCCVT = 4793 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4794 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4795 SDValue Zero = DAG.getConstant(0, dl, VT); 4796 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4797 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4798 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4799 return true; 4800 } 4801 4802 // Only expand vector types if we have the appropriate vector bit operations. 4803 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4804 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4805 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4806 !isOperationLegalOrCustom(ISD::SUB, VT) || 4807 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4808 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4809 return false; 4810 4811 // for now, we use: { return popcount(~x & (x - 1)); } 4812 // unless the target has ctlz but not ctpop, in which case we use: 4813 // { return 32 - nlz(~x & (x-1)); } 4814 // Ref: "Hacker's Delight" by Henry Warren 4815 SDValue Tmp = DAG.getNode( 4816 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4817 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4818 4819 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4820 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4821 Result = 4822 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4823 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4824 return true; 4825 } 4826 4827 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4828 return true; 4829 } 4830 4831 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 4832 SelectionDAG &DAG) const { 4833 SDLoc dl(N); 4834 EVT VT = N->getValueType(0); 4835 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4836 SDValue Op = N->getOperand(0); 4837 4838 // Only expand vector types if we have the appropriate vector operations. 4839 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 4840 !isOperationLegalOrCustom(ISD::ADD, VT) || 4841 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4842 return false; 4843 4844 SDValue Shift = 4845 DAG.getNode(ISD::SRA, dl, VT, Op, 4846 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 4847 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 4848 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 4849 return true; 4850 } 4851 4852 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4853 SelectionDAG &DAG) const { 4854 SDLoc SL(LD); 4855 SDValue Chain = LD->getChain(); 4856 SDValue BasePTR = LD->getBasePtr(); 4857 EVT SrcVT = LD->getMemoryVT(); 4858 ISD::LoadExtType ExtType = LD->getExtensionType(); 4859 4860 unsigned NumElem = SrcVT.getVectorNumElements(); 4861 4862 EVT SrcEltVT = SrcVT.getScalarType(); 4863 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4864 4865 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4866 assert(SrcEltVT.isByteSized()); 4867 4868 SmallVector<SDValue, 8> Vals; 4869 SmallVector<SDValue, 8> LoadChains; 4870 4871 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4872 SDValue ScalarLoad = 4873 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4874 LD->getPointerInfo().getWithOffset(Idx * Stride), 4875 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4876 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4877 4878 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4879 4880 Vals.push_back(ScalarLoad.getValue(0)); 4881 LoadChains.push_back(ScalarLoad.getValue(1)); 4882 } 4883 4884 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4885 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4886 4887 return DAG.getMergeValues({Value, NewChain}, SL); 4888 } 4889 4890 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4891 SelectionDAG &DAG) const { 4892 SDLoc SL(ST); 4893 4894 SDValue Chain = ST->getChain(); 4895 SDValue BasePtr = ST->getBasePtr(); 4896 SDValue Value = ST->getValue(); 4897 EVT StVT = ST->getMemoryVT(); 4898 4899 // The type of the data we want to save 4900 EVT RegVT = Value.getValueType(); 4901 EVT RegSclVT = RegVT.getScalarType(); 4902 4903 // The type of data as saved in memory. 4904 EVT MemSclVT = StVT.getScalarType(); 4905 4906 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4907 unsigned NumElem = StVT.getVectorNumElements(); 4908 4909 // A vector must always be stored in memory as-is, i.e. without any padding 4910 // between the elements, since various code depend on it, e.g. in the 4911 // handling of a bitcast of a vector type to int, which may be done with a 4912 // vector store followed by an integer load. A vector that does not have 4913 // elements that are byte-sized must therefore be stored as an integer 4914 // built out of the extracted vector elements. 4915 if (!MemSclVT.isByteSized()) { 4916 unsigned NumBits = StVT.getSizeInBits(); 4917 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4918 4919 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4920 4921 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4922 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4923 DAG.getConstant(Idx, SL, IdxVT)); 4924 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4925 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4926 unsigned ShiftIntoIdx = 4927 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4928 SDValue ShiftAmount = 4929 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4930 SDValue ShiftedElt = 4931 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4932 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4933 } 4934 4935 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4936 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4937 ST->getAAInfo()); 4938 } 4939 4940 // Store Stride in bytes 4941 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4942 assert(Stride && "Zero stride!"); 4943 // Extract each of the elements from the original vector and save them into 4944 // memory individually. 4945 SmallVector<SDValue, 8> Stores; 4946 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4947 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4948 DAG.getConstant(Idx, SL, IdxVT)); 4949 4950 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4951 4952 // This scalar TruncStore may be illegal, but we legalize it later. 4953 SDValue Store = DAG.getTruncStore( 4954 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4955 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4956 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4957 4958 Stores.push_back(Store); 4959 } 4960 4961 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4962 } 4963 4964 std::pair<SDValue, SDValue> 4965 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4966 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4967 "unaligned indexed loads not implemented!"); 4968 SDValue Chain = LD->getChain(); 4969 SDValue Ptr = LD->getBasePtr(); 4970 EVT VT = LD->getValueType(0); 4971 EVT LoadedVT = LD->getMemoryVT(); 4972 SDLoc dl(LD); 4973 auto &MF = DAG.getMachineFunction(); 4974 4975 if (VT.isFloatingPoint() || VT.isVector()) { 4976 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4977 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4978 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 4979 LoadedVT.isVector()) { 4980 // Scalarize the load and let the individual components be handled. 4981 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4982 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4983 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4984 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4985 } 4986 4987 // Expand to a (misaligned) integer load of the same size, 4988 // then bitconvert to floating point or vector. 4989 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4990 LD->getMemOperand()); 4991 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4992 if (LoadedVT != VT) 4993 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4994 ISD::ANY_EXTEND, dl, VT, Result); 4995 4996 return std::make_pair(Result, newLoad.getValue(1)); 4997 } 4998 4999 // Copy the value to a (aligned) stack slot using (unaligned) integer 5000 // loads and stores, then do a (aligned) load from the stack slot. 5001 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5002 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5003 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5004 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5005 5006 // Make sure the stack slot is also aligned for the register type. 5007 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5008 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5009 SmallVector<SDValue, 8> Stores; 5010 SDValue StackPtr = StackBase; 5011 unsigned Offset = 0; 5012 5013 EVT PtrVT = Ptr.getValueType(); 5014 EVT StackPtrVT = StackPtr.getValueType(); 5015 5016 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5017 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5018 5019 // Do all but one copies using the full register width. 5020 for (unsigned i = 1; i < NumRegs; i++) { 5021 // Load one integer register's worth from the original location. 5022 SDValue Load = DAG.getLoad( 5023 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5024 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5025 LD->getAAInfo()); 5026 // Follow the load with a store to the stack slot. Remember the store. 5027 Stores.push_back(DAG.getStore( 5028 Load.getValue(1), dl, Load, StackPtr, 5029 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5030 // Increment the pointers. 5031 Offset += RegBytes; 5032 5033 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5034 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5035 } 5036 5037 // The last copy may be partial. Do an extending load. 5038 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5039 8 * (LoadedBytes - Offset)); 5040 SDValue Load = 5041 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5042 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5043 MinAlign(LD->getAlignment(), Offset), 5044 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5045 // Follow the load with a store to the stack slot. Remember the store. 5046 // On big-endian machines this requires a truncating store to ensure 5047 // that the bits end up in the right place. 5048 Stores.push_back(DAG.getTruncStore( 5049 Load.getValue(1), dl, Load, StackPtr, 5050 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5051 5052 // The order of the stores doesn't matter - say it with a TokenFactor. 5053 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5054 5055 // Finally, perform the original load only redirected to the stack slot. 5056 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5057 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5058 LoadedVT); 5059 5060 // Callers expect a MERGE_VALUES node. 5061 return std::make_pair(Load, TF); 5062 } 5063 5064 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5065 "Unaligned load of unsupported type."); 5066 5067 // Compute the new VT that is half the size of the old one. This is an 5068 // integer MVT. 5069 unsigned NumBits = LoadedVT.getSizeInBits(); 5070 EVT NewLoadedVT; 5071 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5072 NumBits >>= 1; 5073 5074 unsigned Alignment = LD->getAlignment(); 5075 unsigned IncrementSize = NumBits / 8; 5076 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5077 5078 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5079 if (HiExtType == ISD::NON_EXTLOAD) 5080 HiExtType = ISD::ZEXTLOAD; 5081 5082 // Load the value in two parts 5083 SDValue Lo, Hi; 5084 if (DAG.getDataLayout().isLittleEndian()) { 5085 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5086 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5087 LD->getAAInfo()); 5088 5089 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5090 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5091 LD->getPointerInfo().getWithOffset(IncrementSize), 5092 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5093 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5094 } else { 5095 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5096 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5097 LD->getAAInfo()); 5098 5099 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5100 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5101 LD->getPointerInfo().getWithOffset(IncrementSize), 5102 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5103 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5104 } 5105 5106 // aggregate the two parts 5107 SDValue ShiftAmount = 5108 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5109 DAG.getDataLayout())); 5110 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5111 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5112 5113 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5114 Hi.getValue(1)); 5115 5116 return std::make_pair(Result, TF); 5117 } 5118 5119 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5120 SelectionDAG &DAG) const { 5121 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5122 "unaligned indexed stores not implemented!"); 5123 SDValue Chain = ST->getChain(); 5124 SDValue Ptr = ST->getBasePtr(); 5125 SDValue Val = ST->getValue(); 5126 EVT VT = Val.getValueType(); 5127 int Alignment = ST->getAlignment(); 5128 auto &MF = DAG.getMachineFunction(); 5129 EVT MemVT = ST->getMemoryVT(); 5130 5131 SDLoc dl(ST); 5132 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 5133 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5134 if (isTypeLegal(intVT)) { 5135 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5136 MemVT.isVector()) { 5137 // Scalarize the store and let the individual components be handled. 5138 SDValue Result = scalarizeVectorStore(ST, DAG); 5139 5140 return Result; 5141 } 5142 // Expand to a bitconvert of the value to the integer type of the 5143 // same size, then a (misaligned) int store. 5144 // FIXME: Does not handle truncating floating point stores! 5145 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5146 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5147 Alignment, ST->getMemOperand()->getFlags()); 5148 return Result; 5149 } 5150 // Do a (aligned) store to a stack slot, then copy from the stack slot 5151 // to the final destination using (unaligned) integer loads and stores. 5152 EVT StoredVT = ST->getMemoryVT(); 5153 MVT RegVT = 5154 getRegisterType(*DAG.getContext(), 5155 EVT::getIntegerVT(*DAG.getContext(), 5156 StoredVT.getSizeInBits())); 5157 EVT PtrVT = Ptr.getValueType(); 5158 unsigned StoredBytes = StoredVT.getStoreSize(); 5159 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5160 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5161 5162 // Make sure the stack slot is also aligned for the register type. 5163 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 5164 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5165 5166 // Perform the original store, only redirected to the stack slot. 5167 SDValue Store = DAG.getTruncStore( 5168 Chain, dl, Val, StackPtr, 5169 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 5170 5171 EVT StackPtrVT = StackPtr.getValueType(); 5172 5173 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5174 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5175 SmallVector<SDValue, 8> Stores; 5176 unsigned Offset = 0; 5177 5178 // Do all but one copies using the full register width. 5179 for (unsigned i = 1; i < NumRegs; i++) { 5180 // Load one integer register's worth from the stack slot. 5181 SDValue Load = DAG.getLoad( 5182 RegVT, dl, Store, StackPtr, 5183 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5184 // Store it to the final location. Remember the store. 5185 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5186 ST->getPointerInfo().getWithOffset(Offset), 5187 MinAlign(ST->getAlignment(), Offset), 5188 ST->getMemOperand()->getFlags())); 5189 // Increment the pointers. 5190 Offset += RegBytes; 5191 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5192 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5193 } 5194 5195 // The last store may be partial. Do a truncating store. On big-endian 5196 // machines this requires an extending load from the stack slot to ensure 5197 // that the bits are in the right place. 5198 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5199 8 * (StoredBytes - Offset)); 5200 5201 // Load from the stack slot. 5202 SDValue Load = DAG.getExtLoad( 5203 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5204 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 5205 5206 Stores.push_back( 5207 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5208 ST->getPointerInfo().getWithOffset(Offset), MemVT, 5209 MinAlign(ST->getAlignment(), Offset), 5210 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5211 // The order of the stores doesn't matter - say it with a TokenFactor. 5212 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5213 return Result; 5214 } 5215 5216 assert(ST->getMemoryVT().isInteger() && 5217 !ST->getMemoryVT().isVector() && 5218 "Unaligned store of unknown type."); 5219 // Get the half-size VT 5220 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 5221 int NumBits = NewStoredVT.getSizeInBits(); 5222 int IncrementSize = NumBits / 8; 5223 5224 // Divide the stored value in two parts. 5225 SDValue ShiftAmount = 5226 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 5227 DAG.getDataLayout())); 5228 SDValue Lo = Val; 5229 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5230 5231 // Store the two parts 5232 SDValue Store1, Store2; 5233 Store1 = DAG.getTruncStore(Chain, dl, 5234 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5235 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5236 ST->getMemOperand()->getFlags()); 5237 5238 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5239 Alignment = MinAlign(Alignment, IncrementSize); 5240 Store2 = DAG.getTruncStore( 5241 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5242 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5243 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5244 5245 SDValue Result = 5246 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5247 return Result; 5248 } 5249 5250 SDValue 5251 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5252 const SDLoc &DL, EVT DataVT, 5253 SelectionDAG &DAG, 5254 bool IsCompressedMemory) const { 5255 SDValue Increment; 5256 EVT AddrVT = Addr.getValueType(); 5257 EVT MaskVT = Mask.getValueType(); 5258 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5259 "Incompatible types of Data and Mask"); 5260 if (IsCompressedMemory) { 5261 // Incrementing the pointer according to number of '1's in the mask. 5262 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5263 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5264 if (MaskIntVT.getSizeInBits() < 32) { 5265 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5266 MaskIntVT = MVT::i32; 5267 } 5268 5269 // Count '1's with POPCNT. 5270 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5271 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5272 // Scale is an element size in bytes. 5273 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5274 AddrVT); 5275 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5276 } else 5277 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5278 5279 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5280 } 5281 5282 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5283 SDValue Idx, 5284 EVT VecVT, 5285 const SDLoc &dl) { 5286 if (isa<ConstantSDNode>(Idx)) 5287 return Idx; 5288 5289 EVT IdxVT = Idx.getValueType(); 5290 unsigned NElts = VecVT.getVectorNumElements(); 5291 if (isPowerOf2_32(NElts)) { 5292 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5293 Log2_32(NElts)); 5294 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5295 DAG.getConstant(Imm, dl, IdxVT)); 5296 } 5297 5298 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5299 DAG.getConstant(NElts - 1, dl, IdxVT)); 5300 } 5301 5302 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5303 SDValue VecPtr, EVT VecVT, 5304 SDValue Index) const { 5305 SDLoc dl(Index); 5306 // Make sure the index type is big enough to compute in. 5307 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5308 5309 EVT EltVT = VecVT.getVectorElementType(); 5310 5311 // Calculate the element offset and add it to the pointer. 5312 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5313 assert(EltSize * 8 == EltVT.getSizeInBits() && 5314 "Converting bits to bytes lost precision"); 5315 5316 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5317 5318 EVT IdxVT = Index.getValueType(); 5319 5320 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5321 DAG.getConstant(EltSize, dl, IdxVT)); 5322 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5323 } 5324 5325 //===----------------------------------------------------------------------===// 5326 // Implementation of Emulated TLS Model 5327 //===----------------------------------------------------------------------===// 5328 5329 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5330 SelectionDAG &DAG) const { 5331 // Access to address of TLS varialbe xyz is lowered to a function call: 5332 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5333 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5334 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5335 SDLoc dl(GA); 5336 5337 ArgListTy Args; 5338 ArgListEntry Entry; 5339 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5340 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5341 StringRef EmuTlsVarName(NameString); 5342 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5343 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5344 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5345 Entry.Ty = VoidPtrType; 5346 Args.push_back(Entry); 5347 5348 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5349 5350 TargetLowering::CallLoweringInfo CLI(DAG); 5351 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5352 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5353 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5354 5355 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5356 // At last for X86 targets, maybe good for other targets too? 5357 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5358 MFI.setAdjustsStack(true); // Is this only for X86 target? 5359 MFI.setHasCalls(true); 5360 5361 assert((GA->getOffset() == 0) && 5362 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5363 return CallResult.first; 5364 } 5365 5366 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5367 SelectionDAG &DAG) const { 5368 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5369 if (!isCtlzFast()) 5370 return SDValue(); 5371 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5372 SDLoc dl(Op); 5373 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5374 if (C->isNullValue() && CC == ISD::SETEQ) { 5375 EVT VT = Op.getOperand(0).getValueType(); 5376 SDValue Zext = Op.getOperand(0); 5377 if (VT.bitsLT(MVT::i32)) { 5378 VT = MVT::i32; 5379 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5380 } 5381 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5382 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5383 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5384 DAG.getConstant(Log2b, dl, MVT::i32)); 5385 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5386 } 5387 } 5388 return SDValue(); 5389 } 5390 5391 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5392 unsigned Opcode = Node->getOpcode(); 5393 SDValue LHS = Node->getOperand(0); 5394 SDValue RHS = Node->getOperand(1); 5395 EVT VT = LHS.getValueType(); 5396 SDLoc dl(Node); 5397 5398 assert(LHS.getValueType().isInteger() && "Expected operands to be integers"); 5399 assert(RHS.getValueType().isInteger() && "Expected operands to be integers"); 5400 assert(LHS.getValueType() == RHS.getValueType() && 5401 "Expected both operands to be the same type"); 5402 5403 // usub.sat(a, b) -> umax(a, b) - b 5404 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5405 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5406 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5407 } 5408 5409 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5410 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5411 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5412 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5413 } 5414 5415 unsigned OverflowOp; 5416 switch (Opcode) { 5417 case ISD::SADDSAT: 5418 OverflowOp = ISD::SADDO; 5419 break; 5420 case ISD::UADDSAT: 5421 OverflowOp = ISD::UADDO; 5422 break; 5423 case ISD::SSUBSAT: 5424 OverflowOp = ISD::SSUBO; 5425 break; 5426 case ISD::USUBSAT: 5427 OverflowOp = ISD::USUBO; 5428 break; 5429 default: 5430 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5431 "addition or subtraction node."); 5432 } 5433 5434 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5435 EVT ResultType = LHS.getValueType(); 5436 EVT BoolVT = 5437 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType); 5438 SDValue Result = 5439 DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS); 5440 SDValue SumDiff = Result.getValue(0); 5441 SDValue Overflow = Result.getValue(1); 5442 SDValue Zero = DAG.getConstant(0, dl, ResultType); 5443 5444 if (Opcode == ISD::UADDSAT) { 5445 // Just need to check overflow for SatMax. 5446 APInt MaxVal = APInt::getMaxValue(BitWidth); 5447 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5448 return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff); 5449 } else if (Opcode == ISD::USUBSAT) { 5450 // Just need to check overflow for SatMin. 5451 APInt MinVal = APInt::getMinValue(BitWidth); 5452 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5453 return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff); 5454 } else { 5455 // SatMax -> Overflow && SumDiff < 0 5456 // SatMin -> Overflow && SumDiff >= 0 5457 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5458 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5459 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5460 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5461 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5462 Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin); 5463 return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff); 5464 } 5465 } 5466 5467 SDValue 5468 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5469 assert((Node->getOpcode() == ISD::SMULFIX || 5470 Node->getOpcode() == ISD::UMULFIX) && 5471 "Expected opcode to be SMULFIX or UMULFIX."); 5472 5473 SDLoc dl(Node); 5474 SDValue LHS = Node->getOperand(0); 5475 SDValue RHS = Node->getOperand(1); 5476 EVT VT = LHS.getValueType(); 5477 unsigned Scale = Node->getConstantOperandVal(2); 5478 5479 // [us]mul.fix(a, b, 0) -> mul(a, b) 5480 if (!Scale) { 5481 if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5482 return SDValue(); 5483 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5484 } 5485 5486 unsigned VTSize = VT.getScalarSizeInBits(); 5487 bool Signed = Node->getOpcode() == ISD::SMULFIX; 5488 5489 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5490 "Expected scale to be less than the number of bits if signed or at " 5491 "most the number of bits if unsigned."); 5492 assert(LHS.getValueType() == RHS.getValueType() && 5493 "Expected both operands to be the same type"); 5494 5495 // Get the upper and lower bits of the result. 5496 SDValue Lo, Hi; 5497 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5498 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5499 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5500 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5501 Lo = Result.getValue(0); 5502 Hi = Result.getValue(1); 5503 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5504 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5505 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5506 } else if (VT.isVector()) { 5507 return SDValue(); 5508 } else { 5509 report_fatal_error("Unable to expand fixed point multiplication."); 5510 } 5511 5512 if (Scale == VTSize) 5513 // Result is just the top half since we'd be shifting by the width of the 5514 // operand. 5515 return Hi; 5516 5517 // The result will need to be shifted right by the scale since both operands 5518 // are scaled. The result is given to us in 2 halves, so we only want part of 5519 // both in the result. 5520 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5521 return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5522 DAG.getConstant(Scale, dl, ShiftTy)); 5523 } 5524 5525 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5526 SDValue &Overflow, SelectionDAG &DAG) const { 5527 SDLoc dl(Node); 5528 EVT VT = Node->getValueType(0); 5529 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5530 if (VT.isVector()) 5531 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5532 VT.getVectorNumElements()); 5533 5534 SDValue LHS = Node->getOperand(0); 5535 SDValue RHS = Node->getOperand(1); 5536 SDValue BottomHalf; 5537 SDValue TopHalf; 5538 static const unsigned Ops[2][3] = 5539 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5540 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5541 bool isSigned = Node->getOpcode() == ISD::SMULO; 5542 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5543 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5544 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5545 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5546 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5547 RHS); 5548 TopHalf = BottomHalf.getValue(1); 5549 } else if (isTypeLegal(WideVT)) { 5550 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5551 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5552 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5553 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5554 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5555 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5556 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5557 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5558 } else { 5559 if (VT.isVector()) 5560 return false; 5561 5562 // We can fall back to a libcall with an illegal type for the MUL if we 5563 // have a libcall big enough. 5564 // Also, we can fall back to a division in some cases, but that's a big 5565 // performance hit in the general case. 5566 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5567 if (WideVT == MVT::i16) 5568 LC = RTLIB::MUL_I16; 5569 else if (WideVT == MVT::i32) 5570 LC = RTLIB::MUL_I32; 5571 else if (WideVT == MVT::i64) 5572 LC = RTLIB::MUL_I64; 5573 else if (WideVT == MVT::i128) 5574 LC = RTLIB::MUL_I128; 5575 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5576 5577 SDValue HiLHS; 5578 SDValue HiRHS; 5579 if (isSigned) { 5580 // The high part is obtained by SRA'ing all but one of the bits of low 5581 // part. 5582 unsigned LoSize = VT.getSizeInBits(); 5583 HiLHS = 5584 DAG.getNode(ISD::SRA, dl, VT, LHS, 5585 DAG.getConstant(LoSize - 1, dl, 5586 getPointerTy(DAG.getDataLayout()))); 5587 HiRHS = 5588 DAG.getNode(ISD::SRA, dl, VT, RHS, 5589 DAG.getConstant(LoSize - 1, dl, 5590 getPointerTy(DAG.getDataLayout()))); 5591 } else { 5592 HiLHS = DAG.getConstant(0, dl, VT); 5593 HiRHS = DAG.getConstant(0, dl, VT); 5594 } 5595 5596 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5597 // pre-lowered to the correct types. This all depends upon WideVT not 5598 // being a legal type for the architecture and thus has to be split to 5599 // two arguments. 5600 SDValue Ret; 5601 if (DAG.getDataLayout().isLittleEndian()) { 5602 // Halves of WideVT are packed into registers in different order 5603 // depending on platform endianness. This is usually handled by 5604 // the C calling convention, but we can't defer to it in 5605 // the legalizer. 5606 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 5607 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5608 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5609 /* isPostTypeLegalization */ true).first; 5610 } else { 5611 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 5612 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5613 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5614 /* isPostTypeLegalization */ true).first; 5615 } 5616 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 5617 "Ret value is a collection of constituent nodes holding result."); 5618 if (DAG.getDataLayout().isLittleEndian()) { 5619 // Same as above. 5620 BottomHalf = Ret.getOperand(0); 5621 TopHalf = Ret.getOperand(1); 5622 } else { 5623 BottomHalf = Ret.getOperand(1); 5624 TopHalf = Ret.getOperand(0); 5625 } 5626 } 5627 5628 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5629 Result = BottomHalf; 5630 if (isSigned) { 5631 SDValue ShiftAmt = DAG.getConstant( 5632 VT.getScalarSizeInBits() - 1, dl, 5633 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 5634 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 5635 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 5636 } else { 5637 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 5638 DAG.getConstant(0, dl, VT), ISD::SETNE); 5639 } 5640 5641 // Truncate the result if SetCC returns a larger type than needed. 5642 EVT RType = Node->getValueType(1); 5643 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 5644 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 5645 5646 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 5647 "Unexpected result type for S/UMULO legalization"); 5648 return true; 5649 } 5650