1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetLoweringObjectFile.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // Conservatively require the attributes of the call to match those of 58 // the return. Ignore NoAlias and NonNull because they don't affect the 59 // call sequence. 60 AttributeList CallerAttrs = F.getAttributes(); 61 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 62 .removeAttribute(Attribute::NoAlias) 63 .removeAttribute(Attribute::NonNull) 64 .hasAttributes()) 65 return false; 66 67 // It's not safe to eliminate the sign / zero extension of the return value. 68 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 69 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 70 return false; 71 72 // Check if the only use is a function return node. 73 return isUsedByReturnOnly(Node, Chain); 74 } 75 76 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 77 const uint32_t *CallerPreservedMask, 78 const SmallVectorImpl<CCValAssign> &ArgLocs, 79 const SmallVectorImpl<SDValue> &OutVals) const { 80 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 81 const CCValAssign &ArgLoc = ArgLocs[I]; 82 if (!ArgLoc.isRegLoc()) 83 continue; 84 unsigned Reg = ArgLoc.getLocReg(); 85 // Only look at callee saved registers. 86 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 87 continue; 88 // Check that we pass the value used for the caller. 89 // (We look for a CopyFromReg reading a virtual register that is used 90 // for the function live-in value of register Reg) 91 SDValue Value = OutVals[I]; 92 if (Value->getOpcode() != ISD::CopyFromReg) 93 return false; 94 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 95 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 96 return false; 97 } 98 return true; 99 } 100 101 /// Set CallLoweringInfo attribute flags based on a call instruction 102 /// and called function attributes. 103 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 104 unsigned ArgIdx) { 105 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 106 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 107 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 108 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 109 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 110 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 111 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 112 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 113 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 114 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 115 Alignment = CS->getParamAlignment(ArgIdx); 116 } 117 118 /// Generate a libcall taking the given operands as arguments and returning a 119 /// result of type RetVT. 120 std::pair<SDValue, SDValue> 121 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 122 ArrayRef<SDValue> Ops, bool isSigned, 123 const SDLoc &dl, bool doesNotReturn, 124 bool isReturnValueUsed) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setSExtResult(signExtend) 151 .setZExtResult(!signExtend); 152 return LowerCallTo(CLI); 153 } 154 155 /// Soften the operands of a comparison. This code is shared among BR_CC, 156 /// SELECT_CC, and SETCC handlers. 157 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 158 SDValue &NewLHS, SDValue &NewRHS, 159 ISD::CondCode &CCCode, 160 const SDLoc &dl) const { 161 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 162 && "Unsupported setcc type!"); 163 164 // Expand into one or more soft-fp libcall(s). 165 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 166 bool ShouldInvertCC = false; 167 switch (CCCode) { 168 case ISD::SETEQ: 169 case ISD::SETOEQ: 170 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 171 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 172 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 173 break; 174 case ISD::SETNE: 175 case ISD::SETUNE: 176 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 177 (VT == MVT::f64) ? RTLIB::UNE_F64 : 178 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 179 break; 180 case ISD::SETGE: 181 case ISD::SETOGE: 182 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 183 (VT == MVT::f64) ? RTLIB::OGE_F64 : 184 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 185 break; 186 case ISD::SETLT: 187 case ISD::SETOLT: 188 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 189 (VT == MVT::f64) ? RTLIB::OLT_F64 : 190 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 191 break; 192 case ISD::SETLE: 193 case ISD::SETOLE: 194 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 195 (VT == MVT::f64) ? RTLIB::OLE_F64 : 196 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 197 break; 198 case ISD::SETGT: 199 case ISD::SETOGT: 200 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 201 (VT == MVT::f64) ? RTLIB::OGT_F64 : 202 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 203 break; 204 case ISD::SETUO: 205 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 206 (VT == MVT::f64) ? RTLIB::UO_F64 : 207 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 208 break; 209 case ISD::SETO: 210 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 211 (VT == MVT::f64) ? RTLIB::O_F64 : 212 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 213 break; 214 case ISD::SETONE: 215 // SETONE = SETOLT | SETOGT 216 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 217 (VT == MVT::f64) ? RTLIB::OLT_F64 : 218 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 219 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 220 (VT == MVT::f64) ? RTLIB::OGT_F64 : 221 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 222 break; 223 case ISD::SETUEQ: 224 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 225 (VT == MVT::f64) ? RTLIB::UO_F64 : 226 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 227 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 228 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 229 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 230 break; 231 default: 232 // Invert CC for unordered comparisons 233 ShouldInvertCC = true; 234 switch (CCCode) { 235 case ISD::SETULT: 236 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 237 (VT == MVT::f64) ? RTLIB::OGE_F64 : 238 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 239 break; 240 case ISD::SETULE: 241 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 242 (VT == MVT::f64) ? RTLIB::OGT_F64 : 243 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 244 break; 245 case ISD::SETUGT: 246 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 247 (VT == MVT::f64) ? RTLIB::OLE_F64 : 248 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 249 break; 250 case ISD::SETUGE: 251 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 252 (VT == MVT::f64) ? RTLIB::OLT_F64 : 253 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 254 break; 255 default: llvm_unreachable("Do not know how to soften this setcc!"); 256 } 257 } 258 259 // Use the target specific return value for comparions lib calls. 260 EVT RetVT = getCmpLibcallReturnType(); 261 SDValue Ops[2] = {NewLHS, NewRHS}; 262 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 263 dl).first; 264 NewRHS = DAG.getConstant(0, dl, RetVT); 265 266 CCCode = getCmpLibcallCC(LC1); 267 if (ShouldInvertCC) 268 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 269 270 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 271 SDValue Tmp = DAG.getNode( 272 ISD::SETCC, dl, 273 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 274 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 275 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 276 dl).first; 277 NewLHS = DAG.getNode( 278 ISD::SETCC, dl, 279 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 280 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 281 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 282 NewRHS = SDValue(); 283 } 284 } 285 286 /// Return the entry encoding for a jump table in the current function. The 287 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 288 unsigned TargetLowering::getJumpTableEncoding() const { 289 // In non-pic modes, just use the address of a block. 290 if (!isPositionIndependent()) 291 return MachineJumpTableInfo::EK_BlockAddress; 292 293 // In PIC mode, if the target supports a GPRel32 directive, use it. 294 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 295 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 296 297 // Otherwise, use a label difference. 298 return MachineJumpTableInfo::EK_LabelDifference32; 299 } 300 301 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 302 SelectionDAG &DAG) const { 303 // If our PIC model is GP relative, use the global offset table as the base. 304 unsigned JTEncoding = getJumpTableEncoding(); 305 306 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 307 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 308 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 309 310 return Table; 311 } 312 313 /// This returns the relocation base for the given PIC jumptable, the same as 314 /// getPICJumpTableRelocBase, but as an MCExpr. 315 const MCExpr * 316 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 317 unsigned JTI,MCContext &Ctx) const{ 318 // The normal PIC reloc base is the label at the start of the jump table. 319 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 320 } 321 322 bool 323 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 324 const TargetMachine &TM = getTargetMachine(); 325 const GlobalValue *GV = GA->getGlobal(); 326 327 // If the address is not even local to this DSO we will have to load it from 328 // a got and then add the offset. 329 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 330 return false; 331 332 // If the code is position independent we will have to add a base register. 333 if (isPositionIndependent()) 334 return false; 335 336 // Otherwise we can do it. 337 return true; 338 } 339 340 //===----------------------------------------------------------------------===// 341 // Optimization Methods 342 //===----------------------------------------------------------------------===// 343 344 /// If the specified instruction has a constant integer operand and there are 345 /// bits set in that constant that are not demanded, then clear those bits and 346 /// return true. 347 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 348 TargetLoweringOpt &TLO) const { 349 SelectionDAG &DAG = TLO.DAG; 350 SDLoc DL(Op); 351 unsigned Opcode = Op.getOpcode(); 352 353 // Do target-specific constant optimization. 354 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 355 return TLO.New.getNode(); 356 357 // FIXME: ISD::SELECT, ISD::SELECT_CC 358 switch (Opcode) { 359 default: 360 break; 361 case ISD::XOR: 362 case ISD::AND: 363 case ISD::OR: { 364 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 365 if (!Op1C) 366 return false; 367 368 // If this is a 'not' op, don't touch it because that's a canonical form. 369 const APInt &C = Op1C->getAPIntValue(); 370 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 371 return false; 372 373 if (!C.isSubsetOf(Demanded)) { 374 EVT VT = Op.getValueType(); 375 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 376 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 377 return TLO.CombineTo(Op, NewOp); 378 } 379 380 break; 381 } 382 } 383 384 return false; 385 } 386 387 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 388 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 389 /// generalized for targets with other types of implicit widening casts. 390 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 391 const APInt &Demanded, 392 TargetLoweringOpt &TLO) const { 393 assert(Op.getNumOperands() == 2 && 394 "ShrinkDemandedOp only supports binary operators!"); 395 assert(Op.getNode()->getNumValues() == 1 && 396 "ShrinkDemandedOp only supports nodes with one result!"); 397 398 SelectionDAG &DAG = TLO.DAG; 399 SDLoc dl(Op); 400 401 // Early return, as this function cannot handle vector types. 402 if (Op.getValueType().isVector()) 403 return false; 404 405 // Don't do this if the node has another user, which may require the 406 // full value. 407 if (!Op.getNode()->hasOneUse()) 408 return false; 409 410 // Search for the smallest integer type with free casts to and from 411 // Op's type. For expedience, just check power-of-2 integer types. 412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 413 unsigned DemandedSize = Demanded.getActiveBits(); 414 unsigned SmallVTBits = DemandedSize; 415 if (!isPowerOf2_32(SmallVTBits)) 416 SmallVTBits = NextPowerOf2(SmallVTBits); 417 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 418 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 419 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 420 TLI.isZExtFree(SmallVT, Op.getValueType())) { 421 // We found a type with free casts. 422 SDValue X = DAG.getNode( 423 Op.getOpcode(), dl, SmallVT, 424 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 426 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 427 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 428 return TLO.CombineTo(Op, Z); 429 } 430 } 431 return false; 432 } 433 434 bool 435 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, 436 const APInt &DemandedBits, 437 DAGCombinerInfo &DCI, 438 TargetLoweringOpt &TLO) const { 439 SDValue Op = User->getOperand(OpIdx); 440 KnownBits Known; 441 442 if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true)) 443 return false; 444 445 446 // Old will not always be the same as Op. For example: 447 // 448 // Demanded = 0xffffff 449 // Op = i64 truncate (i32 and x, 0xffffff) 450 // In this case simplify demand bits will want to replace the 'and' node 451 // with the value 'x', which will give us: 452 // Old = i32 and x, 0xffffff 453 // New = x 454 if (TLO.Old.hasOneUse()) { 455 // For the one use case, we just commit the change. 456 DCI.CommitTargetLoweringOpt(TLO); 457 return true; 458 } 459 460 // If Old has more than one use then it must be Op, because the 461 // AssumeSingleUse flag is not propogated to recursive calls of 462 // SimplifyDemanded bits, so the only node with multiple use that 463 // it will attempt to combine will be Op. 464 assert(TLO.Old == Op); 465 466 SmallVector <SDValue, 4> NewOps; 467 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 468 if (i == OpIdx) { 469 NewOps.push_back(TLO.New); 470 continue; 471 } 472 NewOps.push_back(User->getOperand(i)); 473 } 474 User = TLO.DAG.UpdateNodeOperands(User, NewOps); 475 // Op has less users now, so we may be able to perform additional combines 476 // with it. 477 DCI.AddToWorklist(Op.getNode()); 478 // User's operands have been updated, so we may be able to do new combines 479 // with it. 480 DCI.AddToWorklist(User); 481 return true; 482 } 483 484 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 485 DAGCombinerInfo &DCI) const { 486 SelectionDAG &DAG = DCI.DAG; 487 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 488 !DCI.isBeforeLegalizeOps()); 489 KnownBits Known; 490 491 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 492 if (Simplified) { 493 DCI.AddToWorklist(Op.getNode()); 494 DCI.CommitTargetLoweringOpt(TLO); 495 } 496 return Simplified; 497 } 498 499 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 500 /// result of Op are ever used downstream. If we can use this information to 501 /// simplify Op, create a new simplified DAG node and return true, returning the 502 /// original and new nodes in Old and New. Otherwise, analyze the expression and 503 /// return a mask of Known bits for the expression (used to simplify the 504 /// caller). The Known bits may only be accurate for those bits in the 505 /// DemandedMask. 506 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 507 const APInt &OriginalDemandedBits, 508 KnownBits &Known, 509 TargetLoweringOpt &TLO, 510 unsigned Depth, 511 bool AssumeSingleUse) const { 512 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 513 assert(Op.getScalarValueSizeInBits() == BitWidth && 514 "Mask size mismatches value type size!"); 515 APInt DemandedBits = OriginalDemandedBits; 516 SDLoc dl(Op); 517 auto &DL = TLO.DAG.getDataLayout(); 518 519 // Don't know anything. 520 Known = KnownBits(BitWidth); 521 522 if (Op.getOpcode() == ISD::Constant) { 523 // We know all of the bits for a constant! 524 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 525 Known.Zero = ~Known.One; 526 return false; 527 } 528 529 // Other users may use these bits. 530 EVT VT = Op.getValueType(); 531 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 532 if (Depth != 0) { 533 // If not at the root, Just compute the Known bits to 534 // simplify things downstream. 535 TLO.DAG.computeKnownBits(Op, Known, Depth); 536 return false; 537 } 538 // If this is the root being simplified, allow it to have multiple uses, 539 // just set the DemandedBits to all bits. 540 DemandedBits = APInt::getAllOnesValue(BitWidth); 541 } else if (OriginalDemandedBits == 0) { 542 // Not demanding any bits from Op. 543 if (!Op.isUndef()) 544 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 545 return false; 546 } else if (Depth == 6) { // Limit search depth. 547 return false; 548 } 549 550 KnownBits Known2, KnownOut; 551 switch (Op.getOpcode()) { 552 case ISD::BUILD_VECTOR: 553 // Collect the known bits that are shared by every constant vector element. 554 Known.Zero.setAllBits(); Known.One.setAllBits(); 555 for (SDValue SrcOp : Op->ops()) { 556 if (!isa<ConstantSDNode>(SrcOp)) { 557 // We can only handle all constant values - bail out with no known bits. 558 Known = KnownBits(BitWidth); 559 return false; 560 } 561 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 562 Known2.Zero = ~Known2.One; 563 564 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 565 if (Known2.One.getBitWidth() != BitWidth) { 566 assert(Known2.getBitWidth() > BitWidth && 567 "Expected BUILD_VECTOR implicit truncation"); 568 Known2 = Known2.trunc(BitWidth); 569 } 570 571 // Known bits are the values that are shared by every element. 572 // TODO: support per-element known bits. 573 Known.One &= Known2.One; 574 Known.Zero &= Known2.Zero; 575 } 576 return false; // Don't fall through, will infinitely loop. 577 case ISD::CONCAT_VECTORS: 578 Known.Zero.setAllBits(); 579 Known.One.setAllBits(); 580 for (SDValue SrcOp : Op->ops()) { 581 if (SimplifyDemandedBits(SrcOp, DemandedBits, Known2, TLO, Depth + 1)) 582 return true; 583 // Known bits are the values that are shared by every subvector. 584 Known.One &= Known2.One; 585 Known.Zero &= Known2.Zero; 586 } 587 break; 588 case ISD::AND: { 589 SDValue Op0 = Op.getOperand(0); 590 SDValue Op1 = Op.getOperand(1); 591 592 // If the RHS is a constant, check to see if the LHS would be zero without 593 // using the bits from the RHS. Below, we use knowledge about the RHS to 594 // simplify the LHS, here we're using information from the LHS to simplify 595 // the RHS. 596 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 597 KnownBits LHSKnown; 598 // Do not increment Depth here; that can cause an infinite loop. 599 TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); 600 // If the LHS already has zeros where RHSC does, this 'and' is dead. 601 if ((LHSKnown.Zero & DemandedBits) == 602 (~RHSC->getAPIntValue() & DemandedBits)) 603 return TLO.CombineTo(Op, Op0); 604 605 // If any of the set bits in the RHS are known zero on the LHS, shrink 606 // the constant. 607 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 608 return true; 609 610 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 611 // constant, but if this 'and' is only clearing bits that were just set by 612 // the xor, then this 'and' can be eliminated by shrinking the mask of 613 // the xor. For example, for a 32-bit X: 614 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 615 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 616 LHSKnown.One == ~RHSC->getAPIntValue()) { 617 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 618 return TLO.CombineTo(Op, Xor); 619 } 620 } 621 622 if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1)) 623 return true; 624 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 625 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, Known2, TLO, 626 Depth + 1)) 627 return true; 628 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 629 630 // If all of the demanded bits are known one on one side, return the other. 631 // These bits cannot contribute to the result of the 'and'. 632 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 633 return TLO.CombineTo(Op, Op0); 634 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 635 return TLO.CombineTo(Op, Op1); 636 // If all of the demanded bits in the inputs are known zeros, return zero. 637 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 638 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 639 // If the RHS is a constant, see if we can simplify it. 640 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 641 return true; 642 // If the operation can be done in a smaller type, do so. 643 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 644 return true; 645 646 // Output known-1 bits are only known if set in both the LHS & RHS. 647 Known.One &= Known2.One; 648 // Output known-0 are known to be clear if zero in either the LHS | RHS. 649 Known.Zero |= Known2.Zero; 650 break; 651 } 652 case ISD::OR: { 653 SDValue Op0 = Op.getOperand(0); 654 SDValue Op1 = Op.getOperand(1); 655 656 if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1)) 657 return true; 658 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 659 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, Known2, TLO, Depth + 1)) 660 return true; 661 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 662 663 // If all of the demanded bits are known zero on one side, return the other. 664 // These bits cannot contribute to the result of the 'or'. 665 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 666 return TLO.CombineTo(Op, Op0); 667 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 668 return TLO.CombineTo(Op, Op1); 669 // If the RHS is a constant, see if we can simplify it. 670 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 671 return true; 672 // If the operation can be done in a smaller type, do so. 673 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 674 return true; 675 676 // Output known-0 bits are only known if clear in both the LHS & RHS. 677 Known.Zero &= Known2.Zero; 678 // Output known-1 are known to be set if set in either the LHS | RHS. 679 Known.One |= Known2.One; 680 break; 681 } 682 case ISD::XOR: { 683 SDValue Op0 = Op.getOperand(0); 684 SDValue Op1 = Op.getOperand(1); 685 686 if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1)) 687 return true; 688 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 689 if (SimplifyDemandedBits(Op0, DemandedBits, Known2, TLO, Depth + 1)) 690 return true; 691 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 692 693 // If all of the demanded bits are known zero on one side, return the other. 694 // These bits cannot contribute to the result of the 'xor'. 695 if (DemandedBits.isSubsetOf(Known.Zero)) 696 return TLO.CombineTo(Op, Op0); 697 if (DemandedBits.isSubsetOf(Known2.Zero)) 698 return TLO.CombineTo(Op, Op1); 699 // If the operation can be done in a smaller type, do so. 700 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 701 return true; 702 703 // If all of the unknown bits are known to be zero on one side or the other 704 // (but not both) turn this into an *inclusive* or. 705 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 706 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 707 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 708 709 // Output known-0 bits are known if clear or set in both the LHS & RHS. 710 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 711 // Output known-1 are known to be set if set in only one of the LHS, RHS. 712 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 713 714 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 715 // If one side is a constant, and all of the known set bits on the other 716 // side are also set in the constant, turn this into an AND, as we know 717 // the bits will be cleared. 718 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 719 // NB: it is okay if more bits are known than are requested 720 if (C->getAPIntValue() == Known2.One) { 721 SDValue ANDC = 722 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 723 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 724 } 725 726 // If the RHS is a constant, see if we can change it. Don't alter a -1 727 // constant because that's a 'not' op, and that is better for combining 728 // and codegen. 729 if (!C->isAllOnesValue()) { 730 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 731 // We're flipping all demanded bits. Flip the undemanded bits too. 732 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 733 return TLO.CombineTo(Op, New); 734 } 735 // If we can't turn this into a 'not', try to shrink the constant. 736 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 737 return true; 738 } 739 } 740 741 Known = std::move(KnownOut); 742 break; 743 } 744 case ISD::SELECT: 745 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 746 Depth + 1)) 747 return true; 748 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 749 Depth + 1)) 750 return true; 751 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 752 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 753 754 // If the operands are constants, see if we can simplify them. 755 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 756 return true; 757 758 // Only known if known in both the LHS and RHS. 759 Known.One &= Known2.One; 760 Known.Zero &= Known2.Zero; 761 break; 762 case ISD::SELECT_CC: 763 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 764 Depth + 1)) 765 return true; 766 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 767 Depth + 1)) 768 return true; 769 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 770 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 771 772 // If the operands are constants, see if we can simplify them. 773 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 774 return true; 775 776 // Only known if known in both the LHS and RHS. 777 Known.One &= Known2.One; 778 Known.Zero &= Known2.Zero; 779 break; 780 case ISD::SETCC: { 781 SDValue Op0 = Op.getOperand(0); 782 SDValue Op1 = Op.getOperand(1); 783 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 784 // If (1) we only need the sign-bit, (2) the setcc operands are the same 785 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 786 // -1, we may be able to bypass the setcc. 787 if (DemandedBits.isSignMask() && 788 Op0.getScalarValueSizeInBits() == BitWidth && 789 getBooleanContents(VT) == 790 BooleanContent::ZeroOrNegativeOneBooleanContent) { 791 // If we're testing X < 0, then this compare isn't needed - just use X! 792 // FIXME: We're limiting to integer types here, but this should also work 793 // if we don't care about FP signed-zero. The use of SETLT with FP means 794 // that we don't care about NaNs. 795 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 796 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 797 return TLO.CombineTo(Op, Op0); 798 799 // TODO: Should we check for other forms of sign-bit comparisons? 800 // Examples: X <= -1, X >= 0 801 } 802 if (getBooleanContents(Op0.getValueType()) == 803 TargetLowering::ZeroOrOneBooleanContent && 804 BitWidth > 1) 805 Known.Zero.setBitsFrom(1); 806 break; 807 } 808 case ISD::SHL: { 809 SDValue Op0 = Op.getOperand(0); 810 SDValue Op1 = Op.getOperand(1); 811 812 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 813 // If the shift count is an invalid immediate, don't do anything. 814 if (SA->getAPIntValue().uge(BitWidth)) 815 break; 816 817 unsigned ShAmt = SA->getZExtValue(); 818 819 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 820 // single shift. We can do this if the bottom bits (which are shifted 821 // out) are never demanded. 822 if (Op0.getOpcode() == ISD::SRL) { 823 if (ShAmt && 824 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 825 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 826 if (SA2->getAPIntValue().ult(BitWidth)) { 827 unsigned C1 = SA2->getZExtValue(); 828 unsigned Opc = ISD::SHL; 829 int Diff = ShAmt - C1; 830 if (Diff < 0) { 831 Diff = -Diff; 832 Opc = ISD::SRL; 833 } 834 835 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 836 return TLO.CombineTo( 837 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 838 } 839 } 840 } 841 } 842 843 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), Known, TLO, 844 Depth + 1)) 845 return true; 846 847 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 848 // are not demanded. This will likely allow the anyext to be folded away. 849 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 850 SDValue InnerOp = Op0.getOperand(0); 851 EVT InnerVT = InnerOp.getValueType(); 852 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 853 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 854 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 855 EVT ShTy = getShiftAmountTy(InnerVT, DL); 856 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 857 ShTy = InnerVT; 858 SDValue NarrowShl = 859 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 860 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 861 return TLO.CombineTo( 862 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 863 } 864 // Repeat the SHL optimization above in cases where an extension 865 // intervenes: (shl (anyext (shr x, c1)), c2) to 866 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 867 // aren't demanded (as above) and that the shifted upper c1 bits of 868 // x aren't demanded. 869 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 870 InnerOp.hasOneUse()) { 871 if (ConstantSDNode *SA2 = 872 isConstOrConstSplat(InnerOp.getOperand(1))) { 873 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 874 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 875 DemandedBits.getActiveBits() <= 876 (InnerBits - InnerShAmt + ShAmt) && 877 DemandedBits.countTrailingZeros() >= ShAmt) { 878 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 879 Op1.getValueType()); 880 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 881 InnerOp.getOperand(0)); 882 return TLO.CombineTo( 883 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 884 } 885 } 886 } 887 } 888 889 Known.Zero <<= ShAmt; 890 Known.One <<= ShAmt; 891 // low bits known zero. 892 Known.Zero.setLowBits(ShAmt); 893 } 894 break; 895 } 896 case ISD::SRL: { 897 SDValue Op0 = Op.getOperand(0); 898 SDValue Op1 = Op.getOperand(1); 899 900 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 901 // If the shift count is an invalid immediate, don't do anything. 902 if (SA->getAPIntValue().uge(BitWidth)) 903 break; 904 905 unsigned ShAmt = SA->getZExtValue(); 906 APInt InDemandedMask = (DemandedBits << ShAmt); 907 908 // If the shift is exact, then it does demand the low bits (and knows that 909 // they are zero). 910 if (Op->getFlags().hasExact()) 911 InDemandedMask.setLowBits(ShAmt); 912 913 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 914 // single shift. We can do this if the top bits (which are shifted out) 915 // are never demanded. 916 if (Op0.getOpcode() == ISD::SHL) { 917 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 918 if (ShAmt && 919 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 920 if (SA2->getAPIntValue().ult(BitWidth)) { 921 unsigned C1 = SA2->getZExtValue(); 922 unsigned Opc = ISD::SRL; 923 int Diff = ShAmt - C1; 924 if (Diff < 0) { 925 Diff = -Diff; 926 Opc = ISD::SHL; 927 } 928 929 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 930 return TLO.CombineTo( 931 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 932 } 933 } 934 } 935 } 936 937 // Compute the new bits that are at the top now. 938 if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1)) 939 return true; 940 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 941 Known.Zero.lshrInPlace(ShAmt); 942 Known.One.lshrInPlace(ShAmt); 943 944 Known.Zero.setHighBits(ShAmt); // High bits known zero. 945 } 946 break; 947 } 948 case ISD::SRA: { 949 SDValue Op0 = Op.getOperand(0); 950 SDValue Op1 = Op.getOperand(1); 951 952 // If this is an arithmetic shift right and only the low-bit is set, we can 953 // always convert this into a logical shr, even if the shift amount is 954 // variable. The low bit of the shift cannot be an input sign bit unless 955 // the shift amount is >= the size of the datatype, which is undefined. 956 if (DemandedBits.isOneValue()) 957 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 958 959 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 960 // If the shift count is an invalid immediate, don't do anything. 961 if (SA->getAPIntValue().uge(BitWidth)) 962 break; 963 964 unsigned ShAmt = SA->getZExtValue(); 965 APInt InDemandedMask = (DemandedBits << ShAmt); 966 967 // If the shift is exact, then it does demand the low bits (and knows that 968 // they are zero). 969 if (Op->getFlags().hasExact()) 970 InDemandedMask.setLowBits(ShAmt); 971 972 // If any of the demanded bits are produced by the sign extension, we also 973 // demand the input sign bit. 974 if (DemandedBits.countLeadingZeros() < ShAmt) 975 InDemandedMask.setSignBit(); 976 977 if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1)) 978 return true; 979 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 980 Known.Zero.lshrInPlace(ShAmt); 981 Known.One.lshrInPlace(ShAmt); 982 983 // If the input sign bit is known to be zero, or if none of the top bits 984 // are demanded, turn this into an unsigned shift right. 985 if (Known.Zero[BitWidth - ShAmt - 1] || 986 DemandedBits.countLeadingZeros() >= ShAmt) { 987 SDNodeFlags Flags; 988 Flags.setExact(Op->getFlags().hasExact()); 989 return TLO.CombineTo( 990 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 991 } 992 993 int Log2 = DemandedBits.exactLogBase2(); 994 if (Log2 >= 0) { 995 // The bit must come from the sign. 996 SDValue NewSA = 997 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 998 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 999 } 1000 1001 if (Known.One[BitWidth - ShAmt - 1]) 1002 // New bits are known one. 1003 Known.One.setHighBits(ShAmt); 1004 } 1005 break; 1006 } 1007 case ISD::SIGN_EXTEND_INREG: { 1008 SDValue Op0 = Op.getOperand(0); 1009 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1010 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1011 1012 // If we only care about the highest bit, don't bother shifting right. 1013 if (DemandedBits.isSignMask()) { 1014 bool AlreadySignExtended = 1015 TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; 1016 // However if the input is already sign extended we expect the sign 1017 // extension to be dropped altogether later and do not simplify. 1018 if (!AlreadySignExtended) { 1019 // Compute the correct shift amount type, which must be getShiftAmountTy 1020 // for scalar types after legalization. 1021 EVT ShiftAmtTy = VT; 1022 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1023 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1024 1025 SDValue ShiftAmt = 1026 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1027 return TLO.CombineTo(Op, 1028 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1029 } 1030 } 1031 1032 // If none of the extended bits are demanded, eliminate the sextinreg. 1033 if (DemandedBits.getActiveBits() <= ExVTBits) 1034 return TLO.CombineTo(Op, Op0); 1035 1036 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1037 1038 // Since the sign extended bits are demanded, we know that the sign 1039 // bit is demanded. 1040 InputDemandedBits.setBit(ExVTBits - 1); 1041 1042 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1043 return true; 1044 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1045 1046 // If the sign bit of the input is known set or clear, then we know the 1047 // top bits of the result. 1048 1049 // If the input sign bit is known zero, convert this into a zero extension. 1050 if (Known.Zero[ExVTBits - 1]) 1051 return TLO.CombineTo( 1052 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1053 1054 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1055 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1056 Known.One.setBitsFrom(ExVTBits); 1057 Known.Zero &= Mask; 1058 } else { // Input sign bit unknown 1059 Known.Zero &= Mask; 1060 Known.One &= Mask; 1061 } 1062 break; 1063 } 1064 case ISD::BUILD_PAIR: { 1065 EVT HalfVT = Op.getOperand(0).getValueType(); 1066 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1067 1068 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1069 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1070 1071 KnownBits KnownLo, KnownHi; 1072 1073 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1074 return true; 1075 1076 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1077 return true; 1078 1079 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1080 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1081 1082 Known.One = KnownLo.One.zext(BitWidth) | 1083 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1084 break; 1085 } 1086 case ISD::ZERO_EXTEND: { 1087 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1088 1089 // If none of the top bits are demanded, convert this into an any_extend. 1090 if (DemandedBits.getActiveBits() <= OperandBitWidth) 1091 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1092 Op.getOperand(0))); 1093 1094 APInt InMask = DemandedBits.trunc(OperandBitWidth); 1095 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1096 return true; 1097 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1098 Known = Known.zext(BitWidth); 1099 Known.Zero.setBitsFrom(OperandBitWidth); 1100 break; 1101 } 1102 case ISD::SIGN_EXTEND: { 1103 SDValue Src = Op.getOperand(0); 1104 unsigned InBits = Src.getScalarValueSizeInBits(); 1105 1106 // If none of the top bits are demanded, convert this into an any_extend. 1107 if (DemandedBits.getActiveBits() <= InBits) 1108 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1109 1110 // Since some of the sign extended bits are demanded, we know that the sign 1111 // bit is demanded. 1112 APInt InDemandedBits = DemandedBits.trunc(InBits); 1113 InDemandedBits.setBit(InBits - 1); 1114 1115 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1116 return true; 1117 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1118 // If the sign bit is known one, the top bits match. 1119 Known = Known.sext(BitWidth); 1120 1121 // If the sign bit is known zero, convert this to a zero extend. 1122 if (Known.isNonNegative()) 1123 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1124 break; 1125 } 1126 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1127 // TODO - merge this with SIGN_EXTEND above? 1128 SDValue Src = Op.getOperand(0); 1129 unsigned InBits = Src.getScalarValueSizeInBits(); 1130 1131 APInt InDemandedBits = DemandedBits.trunc(InBits); 1132 1133 // If some of the sign extended bits are demanded, we know that the sign 1134 // bit is demanded. 1135 if (InBits < DemandedBits.getActiveBits()) 1136 InDemandedBits.setBit(InBits - 1); 1137 1138 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1139 return true; 1140 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1141 // If the sign bit is known one, the top bits match. 1142 Known = Known.sext(BitWidth); 1143 break; 1144 } 1145 case ISD::ANY_EXTEND: { 1146 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1147 APInt InMask = DemandedBits.trunc(OperandBitWidth); 1148 if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) 1149 return true; 1150 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1151 Known = Known.zext(BitWidth); 1152 break; 1153 } 1154 case ISD::TRUNCATE: { 1155 SDValue Src = Op.getOperand(0); 1156 1157 // Simplify the input, using demanded bit information, and compute the known 1158 // zero/one bits live out. 1159 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1160 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1161 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1162 return true; 1163 Known = Known.trunc(BitWidth); 1164 1165 // If the input is only used by this truncate, see if we can shrink it based 1166 // on the known demanded bits. 1167 if (Src.getNode()->hasOneUse()) { 1168 switch (Src.getOpcode()) { 1169 default: 1170 break; 1171 case ISD::SRL: 1172 // Shrink SRL by a constant if none of the high bits shifted in are 1173 // demanded. 1174 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1175 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1176 // undesirable. 1177 break; 1178 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1179 if (!ShAmt) 1180 break; 1181 SDValue Shift = Src.getOperand(1); 1182 if (TLO.LegalTypes()) { 1183 uint64_t ShVal = ShAmt->getZExtValue(); 1184 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1185 } 1186 1187 if (ShAmt->getZExtValue() < BitWidth) { 1188 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1189 OperandBitWidth - BitWidth); 1190 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1191 HighBits = HighBits.trunc(BitWidth); 1192 1193 if (!(HighBits & DemandedBits)) { 1194 // None of the shifted in bits are needed. Add a truncate of the 1195 // shift input, then shift it. 1196 SDValue NewTrunc = 1197 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1198 return TLO.CombineTo( 1199 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1200 } 1201 } 1202 break; 1203 } 1204 } 1205 1206 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1207 break; 1208 } 1209 case ISD::AssertZext: { 1210 // AssertZext demands all of the high bits, plus any of the low bits 1211 // demanded by its users. 1212 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1213 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1214 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, 1215 Known, TLO, Depth+1)) 1216 return true; 1217 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1218 1219 Known.Zero |= ~InMask; 1220 break; 1221 } 1222 case ISD::BITCAST: { 1223 SDValue Src = Op.getOperand(0); 1224 EVT SrcVT = Src.getValueType(); 1225 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1226 1227 // If this is an FP->Int bitcast and if the sign bit is the only 1228 // thing demanded, turn this into a FGETSIGN. 1229 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1230 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1231 SrcVT.isFloatingPoint()) { 1232 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1233 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1234 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1235 SrcVT != MVT::f128) { 1236 // Cannot eliminate/lower SHL for f128 yet. 1237 EVT Ty = OpVTLegal ? VT : MVT::i32; 1238 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1239 // place. We expect the SHL to be eliminated by other optimizations. 1240 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1241 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1242 if (!OpVTLegal && OpVTSizeInBits > 32) 1243 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1244 unsigned ShVal = Op.getValueSizeInBits() - 1; 1245 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1246 return TLO.CombineTo(Op, 1247 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1248 } 1249 } 1250 // If bitcast from a vector and the mask covers entire elements, see if we 1251 // can use SimplifyDemandedVectorElts. 1252 // TODO - bigendian once we have test coverage. 1253 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1254 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1255 (BitWidth % NumSrcEltBits) == 0 && 1256 TLO.DAG.getDataLayout().isLittleEndian()) { 1257 unsigned Scale = BitWidth / NumSrcEltBits; 1258 auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { 1259 DemandedSubElts = APInt::getNullValue(Scale); 1260 for (unsigned i = 0; i != Scale; ++i) { 1261 unsigned Offset = i * NumSrcEltBits; 1262 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1263 if (Sub.isAllOnesValue()) 1264 DemandedSubElts.setBit(i); 1265 else if (!Sub.isNullValue()) 1266 return false; 1267 } 1268 return true; 1269 }; 1270 1271 APInt DemandedSubElts; 1272 if (GetDemandedSubMask(DemandedSubElts)) { 1273 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1274 APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); 1275 1276 APInt KnownUndef, KnownZero; 1277 if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, 1278 TLO, Depth + 1)) 1279 return true; 1280 } 1281 } 1282 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1283 // recursive call where Known may be useful to the caller. 1284 if (Depth > 0) { 1285 TLO.DAG.computeKnownBits(Op, Known, Depth); 1286 return false; 1287 } 1288 break; 1289 } 1290 case ISD::ADD: 1291 case ISD::MUL: 1292 case ISD::SUB: { 1293 // Add, Sub, and Mul don't demand any bits in positions beyond that 1294 // of the highest bit demanded of them. 1295 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1296 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1297 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1298 if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) || 1299 SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) || 1300 // See if the operation should be performed at a smaller bit width. 1301 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1302 SDNodeFlags Flags = Op.getNode()->getFlags(); 1303 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1304 // Disable the nsw and nuw flags. We can no longer guarantee that we 1305 // won't wrap after simplification. 1306 Flags.setNoSignedWrap(false); 1307 Flags.setNoUnsignedWrap(false); 1308 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 1309 Flags); 1310 return TLO.CombineTo(Op, NewOp); 1311 } 1312 return true; 1313 } 1314 1315 // If we have a constant operand, we may be able to turn it into -1 if we 1316 // do not demand the high bits. This can make the constant smaller to 1317 // encode, allow more general folding, or match specialized instruction 1318 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1319 // is probably not useful (and could be detrimental). 1320 ConstantSDNode *C = isConstOrConstSplat(Op1); 1321 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1322 if (C && !C->isAllOnesValue() && !C->isOne() && 1323 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1324 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1325 // We can't guarantee that the new math op doesn't wrap, so explicitly 1326 // clear those flags to prevent folding with a potential existing node 1327 // that has those flags set. 1328 SDNodeFlags Flags; 1329 Flags.setNoSignedWrap(false); 1330 Flags.setNoUnsignedWrap(false); 1331 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1332 return TLO.CombineTo(Op, NewOp); 1333 } 1334 1335 LLVM_FALLTHROUGH; 1336 } 1337 default: 1338 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1339 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, Known, TLO, 1340 Depth)) 1341 return true; 1342 break; 1343 } 1344 1345 // Just use computeKnownBits to compute output bits. 1346 TLO.DAG.computeKnownBits(Op, Known, Depth); 1347 break; 1348 } 1349 1350 // If we know the value of all of the demanded bits, return this as a 1351 // constant. 1352 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1353 // Avoid folding to a constant if any OpaqueConstant is involved. 1354 const SDNode *N = Op.getNode(); 1355 for (SDNodeIterator I = SDNodeIterator::begin(N), 1356 E = SDNodeIterator::end(N); 1357 I != E; ++I) { 1358 SDNode *Op = *I; 1359 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1360 if (C->isOpaque()) 1361 return false; 1362 } 1363 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1364 } 1365 1366 return false; 1367 } 1368 1369 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1370 const APInt &DemandedElts, 1371 APInt &KnownUndef, 1372 APInt &KnownZero, 1373 DAGCombinerInfo &DCI) const { 1374 SelectionDAG &DAG = DCI.DAG; 1375 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1376 !DCI.isBeforeLegalizeOps()); 1377 1378 bool Simplified = 1379 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1380 if (Simplified) { 1381 DCI.AddToWorklist(Op.getNode()); 1382 DCI.CommitTargetLoweringOpt(TLO); 1383 } 1384 return Simplified; 1385 } 1386 1387 bool TargetLowering::SimplifyDemandedVectorElts( 1388 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1389 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1390 bool AssumeSingleUse) const { 1391 EVT VT = Op.getValueType(); 1392 APInt DemandedElts = DemandedEltMask; 1393 unsigned NumElts = DemandedElts.getBitWidth(); 1394 assert(VT.isVector() && "Expected vector op"); 1395 assert(VT.getVectorNumElements() == NumElts && 1396 "Mask size mismatches value type element count!"); 1397 1398 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1399 1400 // Undef operand. 1401 if (Op.isUndef()) { 1402 KnownUndef.setAllBits(); 1403 return false; 1404 } 1405 1406 // If Op has other users, assume that all elements are needed. 1407 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1408 DemandedElts.setAllBits(); 1409 1410 // Not demanding any elements from Op. 1411 if (DemandedElts == 0) { 1412 KnownUndef.setAllBits(); 1413 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1414 } 1415 1416 // Limit search depth. 1417 if (Depth >= 6) 1418 return false; 1419 1420 SDLoc DL(Op); 1421 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1422 1423 switch (Op.getOpcode()) { 1424 case ISD::SCALAR_TO_VECTOR: { 1425 if (!DemandedElts[0]) { 1426 KnownUndef.setAllBits(); 1427 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1428 } 1429 KnownUndef.setHighBits(NumElts - 1); 1430 break; 1431 } 1432 case ISD::BITCAST: { 1433 SDValue Src = Op.getOperand(0); 1434 EVT SrcVT = Src.getValueType(); 1435 1436 // We only handle vectors here. 1437 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1438 if (!SrcVT.isVector()) 1439 break; 1440 1441 // Fast handling of 'identity' bitcasts. 1442 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1443 if (NumSrcElts == NumElts) 1444 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1445 KnownZero, TLO, Depth + 1); 1446 1447 APInt SrcZero, SrcUndef; 1448 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1449 1450 // Bitcast from 'large element' src vector to 'small element' vector, we 1451 // must demand a source element if any DemandedElt maps to it. 1452 if ((NumElts % NumSrcElts) == 0) { 1453 unsigned Scale = NumElts / NumSrcElts; 1454 for (unsigned i = 0; i != NumElts; ++i) 1455 if (DemandedElts[i]) 1456 SrcDemandedElts.setBit(i / Scale); 1457 1458 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1459 TLO, Depth + 1)) 1460 return true; 1461 1462 // If the src element is zero/undef then all the output elements will be - 1463 // only demanded elements are guaranteed to be correct. 1464 for (unsigned i = 0; i != NumSrcElts; ++i) { 1465 if (SrcDemandedElts[i]) { 1466 if (SrcZero[i]) 1467 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1468 if (SrcUndef[i]) 1469 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1470 } 1471 } 1472 } 1473 1474 // Bitcast from 'small element' src vector to 'large element' vector, we 1475 // demand all smaller source elements covered by the larger demanded element 1476 // of this vector. 1477 if ((NumSrcElts % NumElts) == 0) { 1478 unsigned Scale = NumSrcElts / NumElts; 1479 for (unsigned i = 0; i != NumElts; ++i) 1480 if (DemandedElts[i]) 1481 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1482 1483 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1484 TLO, Depth + 1)) 1485 return true; 1486 1487 // If all the src elements covering an output element are zero/undef, then 1488 // the output element will be as well, assuming it was demanded. 1489 for (unsigned i = 0; i != NumElts; ++i) { 1490 if (DemandedElts[i]) { 1491 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1492 KnownZero.setBit(i); 1493 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1494 KnownUndef.setBit(i); 1495 } 1496 } 1497 } 1498 break; 1499 } 1500 case ISD::BUILD_VECTOR: { 1501 // Check all elements and simplify any unused elements with UNDEF. 1502 if (!DemandedElts.isAllOnesValue()) { 1503 // Don't simplify BROADCASTS. 1504 if (llvm::any_of(Op->op_values(), 1505 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1506 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1507 bool Updated = false; 1508 for (unsigned i = 0; i != NumElts; ++i) { 1509 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1510 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1511 KnownUndef.setBit(i); 1512 Updated = true; 1513 } 1514 } 1515 if (Updated) 1516 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1517 } 1518 } 1519 for (unsigned i = 0; i != NumElts; ++i) { 1520 SDValue SrcOp = Op.getOperand(i); 1521 if (SrcOp.isUndef()) { 1522 KnownUndef.setBit(i); 1523 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1524 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1525 KnownZero.setBit(i); 1526 } 1527 } 1528 break; 1529 } 1530 case ISD::CONCAT_VECTORS: { 1531 EVT SubVT = Op.getOperand(0).getValueType(); 1532 unsigned NumSubVecs = Op.getNumOperands(); 1533 unsigned NumSubElts = SubVT.getVectorNumElements(); 1534 for (unsigned i = 0; i != NumSubVecs; ++i) { 1535 SDValue SubOp = Op.getOperand(i); 1536 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1537 APInt SubUndef, SubZero; 1538 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1539 Depth + 1)) 1540 return true; 1541 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1542 KnownZero.insertBits(SubZero, i * NumSubElts); 1543 } 1544 break; 1545 } 1546 case ISD::INSERT_SUBVECTOR: { 1547 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1548 break; 1549 SDValue Base = Op.getOperand(0); 1550 SDValue Sub = Op.getOperand(1); 1551 EVT SubVT = Sub.getValueType(); 1552 unsigned NumSubElts = SubVT.getVectorNumElements(); 1553 const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1554 if (Idx.uge(NumElts - NumSubElts)) 1555 break; 1556 unsigned SubIdx = Idx.getZExtValue(); 1557 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1558 APInt SubUndef, SubZero; 1559 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1560 Depth + 1)) 1561 return true; 1562 APInt BaseElts = DemandedElts; 1563 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1564 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1565 Depth + 1)) 1566 return true; 1567 KnownUndef.insertBits(SubUndef, SubIdx); 1568 KnownZero.insertBits(SubZero, SubIdx); 1569 break; 1570 } 1571 case ISD::EXTRACT_SUBVECTOR: { 1572 SDValue Src = Op.getOperand(0); 1573 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1574 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1575 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1576 // Offset the demanded elts by the subvector index. 1577 uint64_t Idx = SubIdx->getZExtValue(); 1578 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1579 APInt SrcUndef, SrcZero; 1580 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1581 Depth + 1)) 1582 return true; 1583 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1584 KnownZero = SrcZero.extractBits(NumElts, Idx); 1585 } 1586 break; 1587 } 1588 case ISD::INSERT_VECTOR_ELT: { 1589 SDValue Vec = Op.getOperand(0); 1590 SDValue Scl = Op.getOperand(1); 1591 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1592 1593 // For a legal, constant insertion index, if we don't need this insertion 1594 // then strip it, else remove it from the demanded elts. 1595 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1596 unsigned Idx = CIdx->getZExtValue(); 1597 if (!DemandedElts[Idx]) 1598 return TLO.CombineTo(Op, Vec); 1599 DemandedElts.clearBit(Idx); 1600 1601 if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef, 1602 KnownZero, TLO, Depth + 1)) 1603 return true; 1604 1605 KnownUndef.clearBit(Idx); 1606 if (Scl.isUndef()) 1607 KnownUndef.setBit(Idx); 1608 1609 KnownZero.clearBit(Idx); 1610 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1611 KnownZero.setBit(Idx); 1612 break; 1613 } 1614 1615 APInt VecUndef, VecZero; 1616 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1617 Depth + 1)) 1618 return true; 1619 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1620 break; 1621 } 1622 case ISD::VSELECT: { 1623 // Try to transform the select condition based on the current demanded 1624 // elements. 1625 // TODO: If a condition element is undef, we can choose from one arm of the 1626 // select (and if one arm is undef, then we can propagate that to the 1627 // result). 1628 // TODO - add support for constant vselect masks (see IR version of this). 1629 APInt UnusedUndef, UnusedZero; 1630 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1631 UnusedZero, TLO, Depth + 1)) 1632 return true; 1633 1634 // See if we can simplify either vselect operand. 1635 APInt DemandedLHS(DemandedElts); 1636 APInt DemandedRHS(DemandedElts); 1637 APInt UndefLHS, ZeroLHS; 1638 APInt UndefRHS, ZeroRHS; 1639 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1640 ZeroLHS, TLO, Depth + 1)) 1641 return true; 1642 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1643 ZeroRHS, TLO, Depth + 1)) 1644 return true; 1645 1646 KnownUndef = UndefLHS & UndefRHS; 1647 KnownZero = ZeroLHS & ZeroRHS; 1648 break; 1649 } 1650 case ISD::VECTOR_SHUFFLE: { 1651 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1652 1653 // Collect demanded elements from shuffle operands.. 1654 APInt DemandedLHS(NumElts, 0); 1655 APInt DemandedRHS(NumElts, 0); 1656 for (unsigned i = 0; i != NumElts; ++i) { 1657 int M = ShuffleMask[i]; 1658 if (M < 0 || !DemandedElts[i]) 1659 continue; 1660 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1661 if (M < (int)NumElts) 1662 DemandedLHS.setBit(M); 1663 else 1664 DemandedRHS.setBit(M - NumElts); 1665 } 1666 1667 // See if we can simplify either shuffle operand. 1668 APInt UndefLHS, ZeroLHS; 1669 APInt UndefRHS, ZeroRHS; 1670 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1671 ZeroLHS, TLO, Depth + 1)) 1672 return true; 1673 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1674 ZeroRHS, TLO, Depth + 1)) 1675 return true; 1676 1677 // Simplify mask using undef elements from LHS/RHS. 1678 bool Updated = false; 1679 bool IdentityLHS = true, IdentityRHS = true; 1680 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1681 for (unsigned i = 0; i != NumElts; ++i) { 1682 int &M = NewMask[i]; 1683 if (M < 0) 1684 continue; 1685 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1686 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1687 Updated = true; 1688 M = -1; 1689 } 1690 IdentityLHS &= (M < 0) || (M == (int)i); 1691 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1692 } 1693 1694 // Update legal shuffle masks based on demanded elements if it won't reduce 1695 // to Identity which can cause premature removal of the shuffle mask. 1696 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1697 isShuffleMaskLegal(NewMask, VT)) 1698 return TLO.CombineTo(Op, 1699 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1700 Op.getOperand(1), NewMask)); 1701 1702 // Propagate undef/zero elements from LHS/RHS. 1703 for (unsigned i = 0; i != NumElts; ++i) { 1704 int M = ShuffleMask[i]; 1705 if (M < 0) { 1706 KnownUndef.setBit(i); 1707 } else if (M < (int)NumElts) { 1708 if (UndefLHS[M]) 1709 KnownUndef.setBit(i); 1710 if (ZeroLHS[M]) 1711 KnownZero.setBit(i); 1712 } else { 1713 if (UndefRHS[M - NumElts]) 1714 KnownUndef.setBit(i); 1715 if (ZeroRHS[M - NumElts]) 1716 KnownZero.setBit(i); 1717 } 1718 } 1719 break; 1720 } 1721 case ISD::ADD: 1722 case ISD::SUB: 1723 case ISD::FADD: 1724 case ISD::FSUB: 1725 case ISD::FMUL: 1726 case ISD::FDIV: 1727 case ISD::FREM: { 1728 APInt SrcUndef, SrcZero; 1729 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1730 SrcZero, TLO, Depth + 1)) 1731 return true; 1732 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1733 KnownZero, TLO, Depth + 1)) 1734 return true; 1735 KnownZero &= SrcZero; 1736 KnownUndef &= SrcUndef; 1737 break; 1738 } 1739 case ISD::TRUNCATE: 1740 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1741 KnownZero, TLO, Depth + 1)) 1742 return true; 1743 break; 1744 default: { 1745 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 1746 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1747 KnownZero, TLO, Depth)) 1748 return true; 1749 break; 1750 } 1751 } 1752 1753 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1754 return false; 1755 } 1756 1757 /// Determine which of the bits specified in Mask are known to be either zero or 1758 /// one and return them in the Known. 1759 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1760 KnownBits &Known, 1761 const APInt &DemandedElts, 1762 const SelectionDAG &DAG, 1763 unsigned Depth) const { 1764 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1765 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1766 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1767 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1768 "Should use MaskedValueIsZero if you don't know whether Op" 1769 " is a target node!"); 1770 Known.resetAll(); 1771 } 1772 1773 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 1774 KnownBits &Known, 1775 const APInt &DemandedElts, 1776 const SelectionDAG &DAG, 1777 unsigned Depth) const { 1778 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 1779 1780 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 1781 // The low bits are known zero if the pointer is aligned. 1782 Known.Zero.setLowBits(Log2_32(Align)); 1783 } 1784 } 1785 1786 /// This method can be implemented by targets that want to expose additional 1787 /// information about sign bits to the DAG Combiner. 1788 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1789 const APInt &, 1790 const SelectionDAG &, 1791 unsigned Depth) const { 1792 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1793 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1794 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1795 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1796 "Should use ComputeNumSignBits if you don't know whether Op" 1797 " is a target node!"); 1798 return 1; 1799 } 1800 1801 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 1802 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 1803 TargetLoweringOpt &TLO, unsigned Depth) const { 1804 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1805 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1806 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1807 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1808 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 1809 " is a target node!"); 1810 return false; 1811 } 1812 1813 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 1814 SDValue Op, const APInt &DemandedBits, KnownBits &Known, 1815 TargetLoweringOpt &TLO, unsigned Depth) const { 1816 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1817 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1818 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1819 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1820 "Should use SimplifyDemandedBits if you don't know whether Op" 1821 " is a target node!"); 1822 EVT VT = Op.getValueType(); 1823 APInt DemandedElts = VT.isVector() 1824 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 1825 : APInt(1, 1); 1826 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 1827 return false; 1828 } 1829 1830 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 1831 const SelectionDAG &DAG, 1832 bool SNaN, 1833 unsigned Depth) const { 1834 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1835 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1836 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1837 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1838 "Should use isKnownNeverNaN if you don't know whether Op" 1839 " is a target node!"); 1840 return false; 1841 } 1842 1843 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1844 // work with truncating build vectors and vectors with elements of less than 1845 // 8 bits. 1846 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1847 if (!N) 1848 return false; 1849 1850 APInt CVal; 1851 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1852 CVal = CN->getAPIntValue(); 1853 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1854 auto *CN = BV->getConstantSplatNode(); 1855 if (!CN) 1856 return false; 1857 1858 // If this is a truncating build vector, truncate the splat value. 1859 // Otherwise, we may fail to match the expected values below. 1860 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1861 CVal = CN->getAPIntValue(); 1862 if (BVEltWidth < CVal.getBitWidth()) 1863 CVal = CVal.trunc(BVEltWidth); 1864 } else { 1865 return false; 1866 } 1867 1868 switch (getBooleanContents(N->getValueType(0))) { 1869 case UndefinedBooleanContent: 1870 return CVal[0]; 1871 case ZeroOrOneBooleanContent: 1872 return CVal.isOneValue(); 1873 case ZeroOrNegativeOneBooleanContent: 1874 return CVal.isAllOnesValue(); 1875 } 1876 1877 llvm_unreachable("Invalid boolean contents"); 1878 } 1879 1880 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1881 if (!N) 1882 return false; 1883 1884 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1885 if (!CN) { 1886 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1887 if (!BV) 1888 return false; 1889 1890 // Only interested in constant splats, we don't care about undef 1891 // elements in identifying boolean constants and getConstantSplatNode 1892 // returns NULL if all ops are undef; 1893 CN = BV->getConstantSplatNode(); 1894 if (!CN) 1895 return false; 1896 } 1897 1898 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1899 return !CN->getAPIntValue()[0]; 1900 1901 return CN->isNullValue(); 1902 } 1903 1904 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1905 bool SExt) const { 1906 if (VT == MVT::i1) 1907 return N->isOne(); 1908 1909 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1910 switch (Cnt) { 1911 case TargetLowering::ZeroOrOneBooleanContent: 1912 // An extended value of 1 is always true, unless its original type is i1, 1913 // in which case it will be sign extended to -1. 1914 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1915 case TargetLowering::UndefinedBooleanContent: 1916 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1917 return N->isAllOnesValue() && SExt; 1918 } 1919 llvm_unreachable("Unexpected enumeration."); 1920 } 1921 1922 /// This helper function of SimplifySetCC tries to optimize the comparison when 1923 /// either operand of the SetCC node is a bitwise-and instruction. 1924 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1925 ISD::CondCode Cond, 1926 DAGCombinerInfo &DCI, 1927 const SDLoc &DL) const { 1928 // Match these patterns in any of their permutations: 1929 // (X & Y) == Y 1930 // (X & Y) != Y 1931 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1932 std::swap(N0, N1); 1933 1934 EVT OpVT = N0.getValueType(); 1935 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1936 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1937 return SDValue(); 1938 1939 SDValue X, Y; 1940 if (N0.getOperand(0) == N1) { 1941 X = N0.getOperand(1); 1942 Y = N0.getOperand(0); 1943 } else if (N0.getOperand(1) == N1) { 1944 X = N0.getOperand(0); 1945 Y = N0.getOperand(1); 1946 } else { 1947 return SDValue(); 1948 } 1949 1950 SelectionDAG &DAG = DCI.DAG; 1951 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1952 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1953 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1954 // Note that where Y is variable and is known to have at most one bit set 1955 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1956 // equivalent when Y == 0. 1957 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1958 if (DCI.isBeforeLegalizeOps() || 1959 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1960 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1961 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1962 // If the target supports an 'and-not' or 'and-complement' logic operation, 1963 // try to use that to make a comparison operation more efficient. 1964 // But don't do this transform if the mask is a single bit because there are 1965 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1966 // 'rlwinm' on PPC). 1967 1968 // Bail out if the compare operand that we want to turn into a zero is 1969 // already a zero (otherwise, infinite loop). 1970 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1971 if (YConst && YConst->isNullValue()) 1972 return SDValue(); 1973 1974 // Transform this into: ~X & Y == 0. 1975 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1976 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1977 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1978 } 1979 1980 return SDValue(); 1981 } 1982 1983 /// There are multiple IR patterns that could be checking whether certain 1984 /// truncation of a signed number would be lossy or not. The pattern which is 1985 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 1986 /// We are looking for the following pattern: (KeptBits is a constant) 1987 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 1988 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 1989 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 1990 /// We will unfold it into the natural trunc+sext pattern: 1991 /// ((%x << C) a>> C) dstcond %x 1992 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 1993 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 1994 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 1995 const SDLoc &DL) const { 1996 // We must be comparing with a constant. 1997 ConstantSDNode *C1; 1998 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 1999 return SDValue(); 2000 2001 // N0 should be: add %x, (1 << (KeptBits-1)) 2002 if (N0->getOpcode() != ISD::ADD) 2003 return SDValue(); 2004 2005 // And we must be 'add'ing a constant. 2006 ConstantSDNode *C01; 2007 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2008 return SDValue(); 2009 2010 SDValue X = N0->getOperand(0); 2011 EVT XVT = X.getValueType(); 2012 2013 // Validate constants ... 2014 2015 APInt I1 = C1->getAPIntValue(); 2016 2017 ISD::CondCode NewCond; 2018 if (Cond == ISD::CondCode::SETULT) { 2019 NewCond = ISD::CondCode::SETEQ; 2020 } else if (Cond == ISD::CondCode::SETULE) { 2021 NewCond = ISD::CondCode::SETEQ; 2022 // But need to 'canonicalize' the constant. 2023 I1 += 1; 2024 } else if (Cond == ISD::CondCode::SETUGT) { 2025 NewCond = ISD::CondCode::SETNE; 2026 // But need to 'canonicalize' the constant. 2027 I1 += 1; 2028 } else if (Cond == ISD::CondCode::SETUGE) { 2029 NewCond = ISD::CondCode::SETNE; 2030 } else 2031 return SDValue(); 2032 2033 APInt I01 = C01->getAPIntValue(); 2034 2035 auto checkConstants = [&I1, &I01]() -> bool { 2036 // Both of them must be power-of-two, and the constant from setcc is bigger. 2037 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2038 }; 2039 2040 if (checkConstants()) { 2041 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2042 } else { 2043 // What if we invert constants? (and the target predicate) 2044 I1.negate(); 2045 I01.negate(); 2046 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2047 if (!checkConstants()) 2048 return SDValue(); 2049 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2050 } 2051 2052 // They are power-of-two, so which bit is set? 2053 const unsigned KeptBits = I1.logBase2(); 2054 const unsigned KeptBitsMinusOne = I01.logBase2(); 2055 2056 // Magic! 2057 if (KeptBits != (KeptBitsMinusOne + 1)) 2058 return SDValue(); 2059 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2060 2061 // We don't want to do this in every single case. 2062 SelectionDAG &DAG = DCI.DAG; 2063 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2064 XVT, KeptBits)) 2065 return SDValue(); 2066 2067 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2068 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2069 2070 // Unfold into: ((%x << C) a>> C) cond %x 2071 // Where 'cond' will be either 'eq' or 'ne'. 2072 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2073 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2074 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2075 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2076 2077 return T2; 2078 } 2079 2080 /// Try to simplify a setcc built with the specified operands and cc. If it is 2081 /// unable to simplify it, return a null SDValue. 2082 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2083 ISD::CondCode Cond, bool foldBooleans, 2084 DAGCombinerInfo &DCI, 2085 const SDLoc &dl) const { 2086 SelectionDAG &DAG = DCI.DAG; 2087 EVT OpVT = N0.getValueType(); 2088 2089 // These setcc operations always fold. 2090 switch (Cond) { 2091 default: break; 2092 case ISD::SETFALSE: 2093 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 2094 case ISD::SETTRUE: 2095 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 2096 } 2097 2098 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2099 // TODO: Handle non-splat vector constants. All undef causes trouble. 2100 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2101 if (isConstOrConstSplat(N0) && 2102 (DCI.isBeforeLegalizeOps() || 2103 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2104 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2105 2106 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2107 const APInt &C1 = N1C->getAPIntValue(); 2108 2109 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2110 // equality comparison, then we're just comparing whether X itself is 2111 // zero. 2112 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2113 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2114 N0.getOperand(1).getOpcode() == ISD::Constant) { 2115 const APInt &ShAmt 2116 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2117 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2118 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2119 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2120 // (srl (ctlz x), 5) == 0 -> X != 0 2121 // (srl (ctlz x), 5) != 1 -> X != 0 2122 Cond = ISD::SETNE; 2123 } else { 2124 // (srl (ctlz x), 5) != 0 -> X == 0 2125 // (srl (ctlz x), 5) == 1 -> X == 0 2126 Cond = ISD::SETEQ; 2127 } 2128 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2129 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2130 Zero, Cond); 2131 } 2132 } 2133 2134 SDValue CTPOP = N0; 2135 // Look through truncs that don't change the value of a ctpop. 2136 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2137 CTPOP = N0.getOperand(0); 2138 2139 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2140 (N0 == CTPOP || 2141 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2142 EVT CTVT = CTPOP.getValueType(); 2143 SDValue CTOp = CTPOP.getOperand(0); 2144 2145 // (ctpop x) u< 2 -> (x & x-1) == 0 2146 // (ctpop x) u> 1 -> (x & x-1) != 0 2147 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2148 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2149 DAG.getConstant(1, dl, CTVT)); 2150 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2151 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2152 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2153 } 2154 2155 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2156 } 2157 2158 // (zext x) == C --> x == (trunc C) 2159 // (sext x) == C --> x == (trunc C) 2160 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2161 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2162 unsigned MinBits = N0.getValueSizeInBits(); 2163 SDValue PreExt; 2164 bool Signed = false; 2165 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2166 // ZExt 2167 MinBits = N0->getOperand(0).getValueSizeInBits(); 2168 PreExt = N0->getOperand(0); 2169 } else if (N0->getOpcode() == ISD::AND) { 2170 // DAGCombine turns costly ZExts into ANDs 2171 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2172 if ((C->getAPIntValue()+1).isPowerOf2()) { 2173 MinBits = C->getAPIntValue().countTrailingOnes(); 2174 PreExt = N0->getOperand(0); 2175 } 2176 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2177 // SExt 2178 MinBits = N0->getOperand(0).getValueSizeInBits(); 2179 PreExt = N0->getOperand(0); 2180 Signed = true; 2181 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2182 // ZEXTLOAD / SEXTLOAD 2183 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2184 MinBits = LN0->getMemoryVT().getSizeInBits(); 2185 PreExt = N0; 2186 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2187 Signed = true; 2188 MinBits = LN0->getMemoryVT().getSizeInBits(); 2189 PreExt = N0; 2190 } 2191 } 2192 2193 // Figure out how many bits we need to preserve this constant. 2194 unsigned ReqdBits = Signed ? 2195 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2196 C1.getActiveBits(); 2197 2198 // Make sure we're not losing bits from the constant. 2199 if (MinBits > 0 && 2200 MinBits < C1.getBitWidth() && 2201 MinBits >= ReqdBits) { 2202 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2203 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2204 // Will get folded away. 2205 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2206 if (MinBits == 1 && C1 == 1) 2207 // Invert the condition. 2208 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2209 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2210 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2211 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2212 } 2213 2214 // If truncating the setcc operands is not desirable, we can still 2215 // simplify the expression in some cases: 2216 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2217 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2218 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2219 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2220 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2221 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2222 SDValue TopSetCC = N0->getOperand(0); 2223 unsigned N0Opc = N0->getOpcode(); 2224 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2225 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2226 TopSetCC.getOpcode() == ISD::SETCC && 2227 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2228 (isConstFalseVal(N1C) || 2229 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2230 2231 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2232 (!N1C->isNullValue() && Cond == ISD::SETNE); 2233 2234 if (!Inverse) 2235 return TopSetCC; 2236 2237 ISD::CondCode InvCond = ISD::getSetCCInverse( 2238 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2239 TopSetCC.getOperand(0).getValueType().isInteger()); 2240 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2241 TopSetCC.getOperand(1), 2242 InvCond); 2243 } 2244 } 2245 } 2246 2247 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2248 // equality or unsigned, and all 1 bits of the const are in the same 2249 // partial word, see if we can shorten the load. 2250 if (DCI.isBeforeLegalize() && 2251 !ISD::isSignedIntSetCC(Cond) && 2252 N0.getOpcode() == ISD::AND && C1 == 0 && 2253 N0.getNode()->hasOneUse() && 2254 isa<LoadSDNode>(N0.getOperand(0)) && 2255 N0.getOperand(0).getNode()->hasOneUse() && 2256 isa<ConstantSDNode>(N0.getOperand(1))) { 2257 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2258 APInt bestMask; 2259 unsigned bestWidth = 0, bestOffset = 0; 2260 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2261 unsigned origWidth = N0.getValueSizeInBits(); 2262 unsigned maskWidth = origWidth; 2263 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2264 // 8 bits, but have to be careful... 2265 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2266 origWidth = Lod->getMemoryVT().getSizeInBits(); 2267 const APInt &Mask = 2268 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2269 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2270 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2271 for (unsigned offset=0; offset<origWidth/width; offset++) { 2272 if (Mask.isSubsetOf(newMask)) { 2273 if (DAG.getDataLayout().isLittleEndian()) 2274 bestOffset = (uint64_t)offset * (width/8); 2275 else 2276 bestOffset = (origWidth/width - offset - 1) * (width/8); 2277 bestMask = Mask.lshr(offset * (width/8) * 8); 2278 bestWidth = width; 2279 break; 2280 } 2281 newMask <<= width; 2282 } 2283 } 2284 } 2285 if (bestWidth) { 2286 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2287 if (newVT.isRound() && 2288 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2289 EVT PtrType = Lod->getOperand(1).getValueType(); 2290 SDValue Ptr = Lod->getBasePtr(); 2291 if (bestOffset != 0) 2292 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2293 DAG.getConstant(bestOffset, dl, PtrType)); 2294 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2295 SDValue NewLoad = DAG.getLoad( 2296 newVT, dl, Lod->getChain(), Ptr, 2297 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2298 return DAG.getSetCC(dl, VT, 2299 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2300 DAG.getConstant(bestMask.trunc(bestWidth), 2301 dl, newVT)), 2302 DAG.getConstant(0LL, dl, newVT), Cond); 2303 } 2304 } 2305 } 2306 2307 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2308 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2309 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2310 2311 // If the comparison constant has bits in the upper part, the 2312 // zero-extended value could never match. 2313 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2314 C1.getBitWidth() - InSize))) { 2315 switch (Cond) { 2316 case ISD::SETUGT: 2317 case ISD::SETUGE: 2318 case ISD::SETEQ: 2319 return DAG.getConstant(0, dl, VT); 2320 case ISD::SETULT: 2321 case ISD::SETULE: 2322 case ISD::SETNE: 2323 return DAG.getConstant(1, dl, VT); 2324 case ISD::SETGT: 2325 case ISD::SETGE: 2326 // True if the sign bit of C1 is set. 2327 return DAG.getConstant(C1.isNegative(), dl, VT); 2328 case ISD::SETLT: 2329 case ISD::SETLE: 2330 // True if the sign bit of C1 isn't set. 2331 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2332 default: 2333 break; 2334 } 2335 } 2336 2337 // Otherwise, we can perform the comparison with the low bits. 2338 switch (Cond) { 2339 case ISD::SETEQ: 2340 case ISD::SETNE: 2341 case ISD::SETUGT: 2342 case ISD::SETUGE: 2343 case ISD::SETULT: 2344 case ISD::SETULE: { 2345 EVT newVT = N0.getOperand(0).getValueType(); 2346 if (DCI.isBeforeLegalizeOps() || 2347 (isOperationLegal(ISD::SETCC, newVT) && 2348 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2349 EVT NewSetCCVT = 2350 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2351 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2352 2353 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2354 NewConst, Cond); 2355 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2356 } 2357 break; 2358 } 2359 default: 2360 break; // todo, be more careful with signed comparisons 2361 } 2362 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2363 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2364 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2365 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2366 EVT ExtDstTy = N0.getValueType(); 2367 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2368 2369 // If the constant doesn't fit into the number of bits for the source of 2370 // the sign extension, it is impossible for both sides to be equal. 2371 if (C1.getMinSignedBits() > ExtSrcTyBits) 2372 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2373 2374 SDValue ZextOp; 2375 EVT Op0Ty = N0.getOperand(0).getValueType(); 2376 if (Op0Ty == ExtSrcTy) { 2377 ZextOp = N0.getOperand(0); 2378 } else { 2379 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2380 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2381 DAG.getConstant(Imm, dl, Op0Ty)); 2382 } 2383 if (!DCI.isCalledByLegalizer()) 2384 DCI.AddToWorklist(ZextOp.getNode()); 2385 // Otherwise, make this a use of a zext. 2386 return DAG.getSetCC(dl, VT, ZextOp, 2387 DAG.getConstant(C1 & APInt::getLowBitsSet( 2388 ExtDstTyBits, 2389 ExtSrcTyBits), 2390 dl, ExtDstTy), 2391 Cond); 2392 } else if ((N1C->isNullValue() || N1C->isOne()) && 2393 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2394 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2395 if (N0.getOpcode() == ISD::SETCC && 2396 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2397 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2398 if (TrueWhenTrue) 2399 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2400 // Invert the condition. 2401 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2402 CC = ISD::getSetCCInverse(CC, 2403 N0.getOperand(0).getValueType().isInteger()); 2404 if (DCI.isBeforeLegalizeOps() || 2405 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2406 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2407 } 2408 2409 if ((N0.getOpcode() == ISD::XOR || 2410 (N0.getOpcode() == ISD::AND && 2411 N0.getOperand(0).getOpcode() == ISD::XOR && 2412 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2413 isa<ConstantSDNode>(N0.getOperand(1)) && 2414 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2415 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2416 // can only do this if the top bits are known zero. 2417 unsigned BitWidth = N0.getValueSizeInBits(); 2418 if (DAG.MaskedValueIsZero(N0, 2419 APInt::getHighBitsSet(BitWidth, 2420 BitWidth-1))) { 2421 // Okay, get the un-inverted input value. 2422 SDValue Val; 2423 if (N0.getOpcode() == ISD::XOR) { 2424 Val = N0.getOperand(0); 2425 } else { 2426 assert(N0.getOpcode() == ISD::AND && 2427 N0.getOperand(0).getOpcode() == ISD::XOR); 2428 // ((X^1)&1)^1 -> X & 1 2429 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2430 N0.getOperand(0).getOperand(0), 2431 N0.getOperand(1)); 2432 } 2433 2434 return DAG.getSetCC(dl, VT, Val, N1, 2435 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2436 } 2437 } else if (N1C->isOne() && 2438 (VT == MVT::i1 || 2439 getBooleanContents(N0->getValueType(0)) == 2440 ZeroOrOneBooleanContent)) { 2441 SDValue Op0 = N0; 2442 if (Op0.getOpcode() == ISD::TRUNCATE) 2443 Op0 = Op0.getOperand(0); 2444 2445 if ((Op0.getOpcode() == ISD::XOR) && 2446 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2447 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2448 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2449 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2450 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2451 Cond); 2452 } 2453 if (Op0.getOpcode() == ISD::AND && 2454 isa<ConstantSDNode>(Op0.getOperand(1)) && 2455 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2456 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2457 if (Op0.getValueType().bitsGT(VT)) 2458 Op0 = DAG.getNode(ISD::AND, dl, VT, 2459 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2460 DAG.getConstant(1, dl, VT)); 2461 else if (Op0.getValueType().bitsLT(VT)) 2462 Op0 = DAG.getNode(ISD::AND, dl, VT, 2463 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2464 DAG.getConstant(1, dl, VT)); 2465 2466 return DAG.getSetCC(dl, VT, Op0, 2467 DAG.getConstant(0, dl, Op0.getValueType()), 2468 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2469 } 2470 if (Op0.getOpcode() == ISD::AssertZext && 2471 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2472 return DAG.getSetCC(dl, VT, Op0, 2473 DAG.getConstant(0, dl, Op0.getValueType()), 2474 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2475 } 2476 } 2477 2478 if (SDValue V = 2479 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2480 return V; 2481 } 2482 2483 // These simplifications apply to splat vectors as well. 2484 // TODO: Handle more splat vector cases. 2485 if (auto *N1C = isConstOrConstSplat(N1)) { 2486 const APInt &C1 = N1C->getAPIntValue(); 2487 2488 APInt MinVal, MaxVal; 2489 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2490 if (ISD::isSignedIntSetCC(Cond)) { 2491 MinVal = APInt::getSignedMinValue(OperandBitSize); 2492 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2493 } else { 2494 MinVal = APInt::getMinValue(OperandBitSize); 2495 MaxVal = APInt::getMaxValue(OperandBitSize); 2496 } 2497 2498 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2499 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2500 // X >= MIN --> true 2501 if (C1 == MinVal) 2502 return DAG.getBoolConstant(true, dl, VT, OpVT); 2503 2504 if (!VT.isVector()) { // TODO: Support this for vectors. 2505 // X >= C0 --> X > (C0 - 1) 2506 APInt C = C1 - 1; 2507 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2508 if ((DCI.isBeforeLegalizeOps() || 2509 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2510 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2511 isLegalICmpImmediate(C.getSExtValue())))) { 2512 return DAG.getSetCC(dl, VT, N0, 2513 DAG.getConstant(C, dl, N1.getValueType()), 2514 NewCC); 2515 } 2516 } 2517 } 2518 2519 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2520 // X <= MAX --> true 2521 if (C1 == MaxVal) 2522 return DAG.getBoolConstant(true, dl, VT, OpVT); 2523 2524 // X <= C0 --> X < (C0 + 1) 2525 if (!VT.isVector()) { // TODO: Support this for vectors. 2526 APInt C = C1 + 1; 2527 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2528 if ((DCI.isBeforeLegalizeOps() || 2529 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2530 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2531 isLegalICmpImmediate(C.getSExtValue())))) { 2532 return DAG.getSetCC(dl, VT, N0, 2533 DAG.getConstant(C, dl, N1.getValueType()), 2534 NewCC); 2535 } 2536 } 2537 } 2538 2539 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2540 if (C1 == MinVal) 2541 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2542 2543 // TODO: Support this for vectors after legalize ops. 2544 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2545 // Canonicalize setlt X, Max --> setne X, Max 2546 if (C1 == MaxVal) 2547 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2548 2549 // If we have setult X, 1, turn it into seteq X, 0 2550 if (C1 == MinVal+1) 2551 return DAG.getSetCC(dl, VT, N0, 2552 DAG.getConstant(MinVal, dl, N0.getValueType()), 2553 ISD::SETEQ); 2554 } 2555 } 2556 2557 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2558 if (C1 == MaxVal) 2559 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2560 2561 // TODO: Support this for vectors after legalize ops. 2562 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2563 // Canonicalize setgt X, Min --> setne X, Min 2564 if (C1 == MinVal) 2565 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2566 2567 // If we have setugt X, Max-1, turn it into seteq X, Max 2568 if (C1 == MaxVal-1) 2569 return DAG.getSetCC(dl, VT, N0, 2570 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2571 ISD::SETEQ); 2572 } 2573 } 2574 2575 // If we have "setcc X, C0", check to see if we can shrink the immediate 2576 // by changing cc. 2577 // TODO: Support this for vectors after legalize ops. 2578 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2579 // SETUGT X, SINTMAX -> SETLT X, 0 2580 if (Cond == ISD::SETUGT && 2581 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2582 return DAG.getSetCC(dl, VT, N0, 2583 DAG.getConstant(0, dl, N1.getValueType()), 2584 ISD::SETLT); 2585 2586 // SETULT X, SINTMIN -> SETGT X, -1 2587 if (Cond == ISD::SETULT && 2588 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2589 SDValue ConstMinusOne = 2590 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2591 N1.getValueType()); 2592 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2593 } 2594 } 2595 } 2596 2597 // Back to non-vector simplifications. 2598 // TODO: Can we do these for vector splats? 2599 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2600 const APInt &C1 = N1C->getAPIntValue(); 2601 2602 // Fold bit comparisons when we can. 2603 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2604 (VT == N0.getValueType() || 2605 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2606 N0.getOpcode() == ISD::AND) { 2607 auto &DL = DAG.getDataLayout(); 2608 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2609 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2610 !DCI.isBeforeLegalize()); 2611 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2612 // Perform the xform if the AND RHS is a single bit. 2613 if (AndRHS->getAPIntValue().isPowerOf2()) { 2614 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2615 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2616 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2617 ShiftTy))); 2618 } 2619 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2620 // (X & 8) == 8 --> (X & 8) >> 3 2621 // Perform the xform if C1 is a single bit. 2622 if (C1.isPowerOf2()) { 2623 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2624 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2625 DAG.getConstant(C1.logBase2(), dl, 2626 ShiftTy))); 2627 } 2628 } 2629 } 2630 } 2631 2632 if (C1.getMinSignedBits() <= 64 && 2633 !isLegalICmpImmediate(C1.getSExtValue())) { 2634 // (X & -256) == 256 -> (X >> 8) == 1 2635 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2636 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2637 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2638 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2639 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2640 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2641 auto &DL = DAG.getDataLayout(); 2642 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2643 !DCI.isBeforeLegalize()); 2644 EVT CmpTy = N0.getValueType(); 2645 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2646 DAG.getConstant(ShiftBits, dl, 2647 ShiftTy)); 2648 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2649 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2650 } 2651 } 2652 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2653 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2654 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2655 // X < 0x100000000 -> (X >> 32) < 1 2656 // X >= 0x100000000 -> (X >> 32) >= 1 2657 // X <= 0x0ffffffff -> (X >> 32) < 1 2658 // X > 0x0ffffffff -> (X >> 32) >= 1 2659 unsigned ShiftBits; 2660 APInt NewC = C1; 2661 ISD::CondCode NewCond = Cond; 2662 if (AdjOne) { 2663 ShiftBits = C1.countTrailingOnes(); 2664 NewC = NewC + 1; 2665 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2666 } else { 2667 ShiftBits = C1.countTrailingZeros(); 2668 } 2669 NewC.lshrInPlace(ShiftBits); 2670 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2671 isLegalICmpImmediate(NewC.getSExtValue())) { 2672 auto &DL = DAG.getDataLayout(); 2673 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2674 !DCI.isBeforeLegalize()); 2675 EVT CmpTy = N0.getValueType(); 2676 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2677 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2678 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2679 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2680 } 2681 } 2682 } 2683 } 2684 2685 if (isa<ConstantFPSDNode>(N0.getNode())) { 2686 // Constant fold or commute setcc. 2687 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2688 if (O.getNode()) return O; 2689 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2690 // If the RHS of an FP comparison is a constant, simplify it away in 2691 // some cases. 2692 if (CFP->getValueAPF().isNaN()) { 2693 // If an operand is known to be a nan, we can fold it. 2694 switch (ISD::getUnorderedFlavor(Cond)) { 2695 default: llvm_unreachable("Unknown flavor!"); 2696 case 0: // Known false. 2697 return DAG.getBoolConstant(false, dl, VT, OpVT); 2698 case 1: // Known true. 2699 return DAG.getBoolConstant(true, dl, VT, OpVT); 2700 case 2: // Undefined. 2701 return DAG.getUNDEF(VT); 2702 } 2703 } 2704 2705 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2706 // constant if knowing that the operand is non-nan is enough. We prefer to 2707 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2708 // materialize 0.0. 2709 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2710 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2711 2712 // setcc (fneg x), C -> setcc swap(pred) x, -C 2713 if (N0.getOpcode() == ISD::FNEG) { 2714 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2715 if (DCI.isBeforeLegalizeOps() || 2716 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2717 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2718 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2719 } 2720 } 2721 2722 // If the condition is not legal, see if we can find an equivalent one 2723 // which is legal. 2724 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2725 // If the comparison was an awkward floating-point == or != and one of 2726 // the comparison operands is infinity or negative infinity, convert the 2727 // condition to a less-awkward <= or >=. 2728 if (CFP->getValueAPF().isInfinity()) { 2729 if (CFP->getValueAPF().isNegative()) { 2730 if (Cond == ISD::SETOEQ && 2731 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2732 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2733 if (Cond == ISD::SETUEQ && 2734 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2735 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2736 if (Cond == ISD::SETUNE && 2737 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2738 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2739 if (Cond == ISD::SETONE && 2740 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2741 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2742 } else { 2743 if (Cond == ISD::SETOEQ && 2744 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2745 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2746 if (Cond == ISD::SETUEQ && 2747 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2748 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2749 if (Cond == ISD::SETUNE && 2750 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2751 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2752 if (Cond == ISD::SETONE && 2753 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2754 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2755 } 2756 } 2757 } 2758 } 2759 2760 if (N0 == N1) { 2761 // The sext(setcc()) => setcc() optimization relies on the appropriate 2762 // constant being emitted. 2763 2764 bool EqTrue = ISD::isTrueWhenEqual(Cond); 2765 2766 // We can always fold X == X for integer setcc's. 2767 if (N0.getValueType().isInteger()) 2768 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2769 2770 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2771 if (UOF == 2) // FP operators that are undefined on NaNs. 2772 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2773 if (UOF == unsigned(EqTrue)) 2774 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2775 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2776 // if it is not already. 2777 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2778 if (NewCond != Cond && 2779 (DCI.isBeforeLegalizeOps() || 2780 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 2781 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2782 } 2783 2784 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2785 N0.getValueType().isInteger()) { 2786 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2787 N0.getOpcode() == ISD::XOR) { 2788 // Simplify (X+Y) == (X+Z) --> Y == Z 2789 if (N0.getOpcode() == N1.getOpcode()) { 2790 if (N0.getOperand(0) == N1.getOperand(0)) 2791 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2792 if (N0.getOperand(1) == N1.getOperand(1)) 2793 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2794 if (isCommutativeBinOp(N0.getOpcode())) { 2795 // If X op Y == Y op X, try other combinations. 2796 if (N0.getOperand(0) == N1.getOperand(1)) 2797 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2798 Cond); 2799 if (N0.getOperand(1) == N1.getOperand(0)) 2800 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2801 Cond); 2802 } 2803 } 2804 2805 // If RHS is a legal immediate value for a compare instruction, we need 2806 // to be careful about increasing register pressure needlessly. 2807 bool LegalRHSImm = false; 2808 2809 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2810 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2811 // Turn (X+C1) == C2 --> X == C2-C1 2812 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2813 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2814 DAG.getConstant(RHSC->getAPIntValue()- 2815 LHSR->getAPIntValue(), 2816 dl, N0.getValueType()), Cond); 2817 } 2818 2819 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2820 if (N0.getOpcode() == ISD::XOR) 2821 // If we know that all of the inverted bits are zero, don't bother 2822 // performing the inversion. 2823 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2824 return 2825 DAG.getSetCC(dl, VT, N0.getOperand(0), 2826 DAG.getConstant(LHSR->getAPIntValue() ^ 2827 RHSC->getAPIntValue(), 2828 dl, N0.getValueType()), 2829 Cond); 2830 } 2831 2832 // Turn (C1-X) == C2 --> X == C1-C2 2833 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2834 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2835 return 2836 DAG.getSetCC(dl, VT, N0.getOperand(1), 2837 DAG.getConstant(SUBC->getAPIntValue() - 2838 RHSC->getAPIntValue(), 2839 dl, N0.getValueType()), 2840 Cond); 2841 } 2842 } 2843 2844 // Could RHSC fold directly into a compare? 2845 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2846 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2847 } 2848 2849 // Simplify (X+Z) == X --> Z == 0 2850 // Don't do this if X is an immediate that can fold into a cmp 2851 // instruction and X+Z has other uses. It could be an induction variable 2852 // chain, and the transform would increase register pressure. 2853 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2854 if (N0.getOperand(0) == N1) 2855 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2856 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2857 if (N0.getOperand(1) == N1) { 2858 if (isCommutativeBinOp(N0.getOpcode())) 2859 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2860 DAG.getConstant(0, dl, N0.getValueType()), 2861 Cond); 2862 if (N0.getNode()->hasOneUse()) { 2863 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2864 auto &DL = DAG.getDataLayout(); 2865 // (Z-X) == X --> Z == X<<1 2866 SDValue SH = DAG.getNode( 2867 ISD::SHL, dl, N1.getValueType(), N1, 2868 DAG.getConstant(1, dl, 2869 getShiftAmountTy(N1.getValueType(), DL, 2870 !DCI.isBeforeLegalize()))); 2871 if (!DCI.isCalledByLegalizer()) 2872 DCI.AddToWorklist(SH.getNode()); 2873 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2874 } 2875 } 2876 } 2877 } 2878 2879 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2880 N1.getOpcode() == ISD::XOR) { 2881 // Simplify X == (X+Z) --> Z == 0 2882 if (N1.getOperand(0) == N0) 2883 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2884 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2885 if (N1.getOperand(1) == N0) { 2886 if (isCommutativeBinOp(N1.getOpcode())) 2887 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2888 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2889 if (N1.getNode()->hasOneUse()) { 2890 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2891 auto &DL = DAG.getDataLayout(); 2892 // X == (Z-X) --> X<<1 == Z 2893 SDValue SH = DAG.getNode( 2894 ISD::SHL, dl, N1.getValueType(), N0, 2895 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, 2896 !DCI.isBeforeLegalize()))); 2897 if (!DCI.isCalledByLegalizer()) 2898 DCI.AddToWorklist(SH.getNode()); 2899 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2900 } 2901 } 2902 } 2903 2904 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2905 return V; 2906 } 2907 2908 // Fold away ALL boolean setcc's. 2909 SDValue Temp; 2910 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 2911 EVT OpVT = N0.getValueType(); 2912 switch (Cond) { 2913 default: llvm_unreachable("Unknown integer setcc!"); 2914 case ISD::SETEQ: // X == Y -> ~(X^Y) 2915 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2916 N0 = DAG.getNOT(dl, Temp, OpVT); 2917 if (!DCI.isCalledByLegalizer()) 2918 DCI.AddToWorklist(Temp.getNode()); 2919 break; 2920 case ISD::SETNE: // X != Y --> (X^Y) 2921 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 2922 break; 2923 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2924 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2925 Temp = DAG.getNOT(dl, N0, OpVT); 2926 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 2927 if (!DCI.isCalledByLegalizer()) 2928 DCI.AddToWorklist(Temp.getNode()); 2929 break; 2930 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2931 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2932 Temp = DAG.getNOT(dl, N1, OpVT); 2933 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 2934 if (!DCI.isCalledByLegalizer()) 2935 DCI.AddToWorklist(Temp.getNode()); 2936 break; 2937 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2938 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2939 Temp = DAG.getNOT(dl, N0, OpVT); 2940 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 2941 if (!DCI.isCalledByLegalizer()) 2942 DCI.AddToWorklist(Temp.getNode()); 2943 break; 2944 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2945 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2946 Temp = DAG.getNOT(dl, N1, OpVT); 2947 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 2948 break; 2949 } 2950 if (VT.getScalarType() != MVT::i1) { 2951 if (!DCI.isCalledByLegalizer()) 2952 DCI.AddToWorklist(N0.getNode()); 2953 // FIXME: If running after legalize, we probably can't do this. 2954 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 2955 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 2956 } 2957 return N0; 2958 } 2959 2960 // Could not fold it. 2961 return SDValue(); 2962 } 2963 2964 /// Returns true (and the GlobalValue and the offset) if the node is a 2965 /// GlobalAddress + offset. 2966 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2967 int64_t &Offset) const { 2968 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2969 GA = GASD->getGlobal(); 2970 Offset += GASD->getOffset(); 2971 return true; 2972 } 2973 2974 if (N->getOpcode() == ISD::ADD) { 2975 SDValue N1 = N->getOperand(0); 2976 SDValue N2 = N->getOperand(1); 2977 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2978 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2979 Offset += V->getSExtValue(); 2980 return true; 2981 } 2982 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2983 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2984 Offset += V->getSExtValue(); 2985 return true; 2986 } 2987 } 2988 } 2989 2990 return false; 2991 } 2992 2993 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2994 DAGCombinerInfo &DCI) const { 2995 // Default implementation: no optimization. 2996 return SDValue(); 2997 } 2998 2999 //===----------------------------------------------------------------------===// 3000 // Inline Assembler Implementation Methods 3001 //===----------------------------------------------------------------------===// 3002 3003 TargetLowering::ConstraintType 3004 TargetLowering::getConstraintType(StringRef Constraint) const { 3005 unsigned S = Constraint.size(); 3006 3007 if (S == 1) { 3008 switch (Constraint[0]) { 3009 default: break; 3010 case 'r': return C_RegisterClass; 3011 case 'm': // memory 3012 case 'o': // offsetable 3013 case 'V': // not offsetable 3014 return C_Memory; 3015 case 'i': // Simple Integer or Relocatable Constant 3016 case 'n': // Simple Integer 3017 case 'E': // Floating Point Constant 3018 case 'F': // Floating Point Constant 3019 case 's': // Relocatable Constant 3020 case 'p': // Address. 3021 case 'X': // Allow ANY value. 3022 case 'I': // Target registers. 3023 case 'J': 3024 case 'K': 3025 case 'L': 3026 case 'M': 3027 case 'N': 3028 case 'O': 3029 case 'P': 3030 case '<': 3031 case '>': 3032 return C_Other; 3033 } 3034 } 3035 3036 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 3037 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3038 return C_Memory; 3039 return C_Register; 3040 } 3041 return C_Unknown; 3042 } 3043 3044 /// Try to replace an X constraint, which matches anything, with another that 3045 /// has more specific requirements based on the type of the corresponding 3046 /// operand. 3047 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 3048 if (ConstraintVT.isInteger()) 3049 return "r"; 3050 if (ConstraintVT.isFloatingPoint()) 3051 return "f"; // works for many targets 3052 return nullptr; 3053 } 3054 3055 /// Lower the specified operand into the Ops vector. 3056 /// If it is invalid, don't add anything to Ops. 3057 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3058 std::string &Constraint, 3059 std::vector<SDValue> &Ops, 3060 SelectionDAG &DAG) const { 3061 3062 if (Constraint.length() > 1) return; 3063 3064 char ConstraintLetter = Constraint[0]; 3065 switch (ConstraintLetter) { 3066 default: break; 3067 case 'X': // Allows any operand; labels (basic block) use this. 3068 if (Op.getOpcode() == ISD::BasicBlock) { 3069 Ops.push_back(Op); 3070 return; 3071 } 3072 LLVM_FALLTHROUGH; 3073 case 'i': // Simple Integer or Relocatable Constant 3074 case 'n': // Simple Integer 3075 case 's': { // Relocatable Constant 3076 // These operands are interested in values of the form (GV+C), where C may 3077 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3078 // is possible and fine if either GV or C are missing. 3079 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3080 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3081 3082 // If we have "(add GV, C)", pull out GV/C 3083 if (Op.getOpcode() == ISD::ADD) { 3084 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3085 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3086 if (!C || !GA) { 3087 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3088 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3089 } 3090 if (!C || !GA) { 3091 C = nullptr; 3092 GA = nullptr; 3093 } 3094 } 3095 3096 // If we find a valid operand, map to the TargetXXX version so that the 3097 // value itself doesn't get selected. 3098 if (GA) { // Either &GV or &GV+C 3099 if (ConstraintLetter != 'n') { 3100 int64_t Offs = GA->getOffset(); 3101 if (C) Offs += C->getZExtValue(); 3102 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3103 C ? SDLoc(C) : SDLoc(), 3104 Op.getValueType(), Offs)); 3105 } 3106 return; 3107 } 3108 if (C) { // just C, no GV. 3109 // Simple constants are not allowed for 's'. 3110 if (ConstraintLetter != 's') { 3111 // gcc prints these as sign extended. Sign extend value to 64 bits 3112 // now; without this it would get ZExt'd later in 3113 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3114 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3115 SDLoc(C), MVT::i64)); 3116 } 3117 return; 3118 } 3119 break; 3120 } 3121 } 3122 } 3123 3124 std::pair<unsigned, const TargetRegisterClass *> 3125 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3126 StringRef Constraint, 3127 MVT VT) const { 3128 if (Constraint.empty() || Constraint[0] != '{') 3129 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 3130 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 3131 3132 // Remove the braces from around the name. 3133 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 3134 3135 std::pair<unsigned, const TargetRegisterClass*> R = 3136 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 3137 3138 // Figure out which register class contains this reg. 3139 for (const TargetRegisterClass *RC : RI->regclasses()) { 3140 // If none of the value types for this register class are valid, we 3141 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3142 if (!isLegalRC(*RI, *RC)) 3143 continue; 3144 3145 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3146 I != E; ++I) { 3147 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3148 std::pair<unsigned, const TargetRegisterClass*> S = 3149 std::make_pair(*I, RC); 3150 3151 // If this register class has the requested value type, return it, 3152 // otherwise keep searching and return the first class found 3153 // if no other is found which explicitly has the requested type. 3154 if (RI->isTypeLegalForClass(*RC, VT)) 3155 return S; 3156 if (!R.second) 3157 R = S; 3158 } 3159 } 3160 } 3161 3162 return R; 3163 } 3164 3165 //===----------------------------------------------------------------------===// 3166 // Constraint Selection. 3167 3168 /// Return true of this is an input operand that is a matching constraint like 3169 /// "4". 3170 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3171 assert(!ConstraintCode.empty() && "No known constraint!"); 3172 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3173 } 3174 3175 /// If this is an input matching constraint, this method returns the output 3176 /// operand it matches. 3177 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3178 assert(!ConstraintCode.empty() && "No known constraint!"); 3179 return atoi(ConstraintCode.c_str()); 3180 } 3181 3182 /// Split up the constraint string from the inline assembly value into the 3183 /// specific constraints and their prefixes, and also tie in the associated 3184 /// operand values. 3185 /// If this returns an empty vector, and if the constraint string itself 3186 /// isn't empty, there was an error parsing. 3187 TargetLowering::AsmOperandInfoVector 3188 TargetLowering::ParseConstraints(const DataLayout &DL, 3189 const TargetRegisterInfo *TRI, 3190 ImmutableCallSite CS) const { 3191 /// Information about all of the constraints. 3192 AsmOperandInfoVector ConstraintOperands; 3193 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3194 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3195 3196 // Do a prepass over the constraints, canonicalizing them, and building up the 3197 // ConstraintOperands list. 3198 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3199 unsigned ResNo = 0; // ResNo - The result number of the next output. 3200 3201 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3202 ConstraintOperands.emplace_back(std::move(CI)); 3203 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3204 3205 // Update multiple alternative constraint count. 3206 if (OpInfo.multipleAlternatives.size() > maCount) 3207 maCount = OpInfo.multipleAlternatives.size(); 3208 3209 OpInfo.ConstraintVT = MVT::Other; 3210 3211 // Compute the value type for each operand. 3212 switch (OpInfo.Type) { 3213 case InlineAsm::isOutput: 3214 // Indirect outputs just consume an argument. 3215 if (OpInfo.isIndirect) { 3216 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3217 break; 3218 } 3219 3220 // The return value of the call is this value. As such, there is no 3221 // corresponding argument. 3222 assert(!CS.getType()->isVoidTy() && 3223 "Bad inline asm!"); 3224 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3225 OpInfo.ConstraintVT = 3226 getSimpleValueType(DL, STy->getElementType(ResNo)); 3227 } else { 3228 assert(ResNo == 0 && "Asm only has one result!"); 3229 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3230 } 3231 ++ResNo; 3232 break; 3233 case InlineAsm::isInput: 3234 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3235 break; 3236 case InlineAsm::isClobber: 3237 // Nothing to do. 3238 break; 3239 } 3240 3241 if (OpInfo.CallOperandVal) { 3242 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3243 if (OpInfo.isIndirect) { 3244 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3245 if (!PtrTy) 3246 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3247 OpTy = PtrTy->getElementType(); 3248 } 3249 3250 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3251 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3252 if (STy->getNumElements() == 1) 3253 OpTy = STy->getElementType(0); 3254 3255 // If OpTy is not a single value, it may be a struct/union that we 3256 // can tile with integers. 3257 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3258 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3259 switch (BitSize) { 3260 default: break; 3261 case 1: 3262 case 8: 3263 case 16: 3264 case 32: 3265 case 64: 3266 case 128: 3267 OpInfo.ConstraintVT = 3268 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3269 break; 3270 } 3271 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3272 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3273 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3274 } else { 3275 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3276 } 3277 } 3278 } 3279 3280 // If we have multiple alternative constraints, select the best alternative. 3281 if (!ConstraintOperands.empty()) { 3282 if (maCount) { 3283 unsigned bestMAIndex = 0; 3284 int bestWeight = -1; 3285 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3286 int weight = -1; 3287 unsigned maIndex; 3288 // Compute the sums of the weights for each alternative, keeping track 3289 // of the best (highest weight) one so far. 3290 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3291 int weightSum = 0; 3292 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3293 cIndex != eIndex; ++cIndex) { 3294 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3295 if (OpInfo.Type == InlineAsm::isClobber) 3296 continue; 3297 3298 // If this is an output operand with a matching input operand, 3299 // look up the matching input. If their types mismatch, e.g. one 3300 // is an integer, the other is floating point, or their sizes are 3301 // different, flag it as an maCantMatch. 3302 if (OpInfo.hasMatchingInput()) { 3303 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3304 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3305 if ((OpInfo.ConstraintVT.isInteger() != 3306 Input.ConstraintVT.isInteger()) || 3307 (OpInfo.ConstraintVT.getSizeInBits() != 3308 Input.ConstraintVT.getSizeInBits())) { 3309 weightSum = -1; // Can't match. 3310 break; 3311 } 3312 } 3313 } 3314 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3315 if (weight == -1) { 3316 weightSum = -1; 3317 break; 3318 } 3319 weightSum += weight; 3320 } 3321 // Update best. 3322 if (weightSum > bestWeight) { 3323 bestWeight = weightSum; 3324 bestMAIndex = maIndex; 3325 } 3326 } 3327 3328 // Now select chosen alternative in each constraint. 3329 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3330 cIndex != eIndex; ++cIndex) { 3331 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 3332 if (cInfo.Type == InlineAsm::isClobber) 3333 continue; 3334 cInfo.selectAlternative(bestMAIndex); 3335 } 3336 } 3337 } 3338 3339 // Check and hook up tied operands, choose constraint code to use. 3340 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3341 cIndex != eIndex; ++cIndex) { 3342 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3343 3344 // If this is an output operand with a matching input operand, look up the 3345 // matching input. If their types mismatch, e.g. one is an integer, the 3346 // other is floating point, or their sizes are different, flag it as an 3347 // error. 3348 if (OpInfo.hasMatchingInput()) { 3349 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3350 3351 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3352 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3353 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3354 OpInfo.ConstraintVT); 3355 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3356 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3357 Input.ConstraintVT); 3358 if ((OpInfo.ConstraintVT.isInteger() != 3359 Input.ConstraintVT.isInteger()) || 3360 (MatchRC.second != InputRC.second)) { 3361 report_fatal_error("Unsupported asm: input constraint" 3362 " with a matching output constraint of" 3363 " incompatible type!"); 3364 } 3365 } 3366 } 3367 } 3368 3369 return ConstraintOperands; 3370 } 3371 3372 /// Return an integer indicating how general CT is. 3373 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3374 switch (CT) { 3375 case TargetLowering::C_Other: 3376 case TargetLowering::C_Unknown: 3377 return 0; 3378 case TargetLowering::C_Register: 3379 return 1; 3380 case TargetLowering::C_RegisterClass: 3381 return 2; 3382 case TargetLowering::C_Memory: 3383 return 3; 3384 } 3385 llvm_unreachable("Invalid constraint type"); 3386 } 3387 3388 /// Examine constraint type and operand type and determine a weight value. 3389 /// This object must already have been set up with the operand type 3390 /// and the current alternative constraint selected. 3391 TargetLowering::ConstraintWeight 3392 TargetLowering::getMultipleConstraintMatchWeight( 3393 AsmOperandInfo &info, int maIndex) const { 3394 InlineAsm::ConstraintCodeVector *rCodes; 3395 if (maIndex >= (int)info.multipleAlternatives.size()) 3396 rCodes = &info.Codes; 3397 else 3398 rCodes = &info.multipleAlternatives[maIndex].Codes; 3399 ConstraintWeight BestWeight = CW_Invalid; 3400 3401 // Loop over the options, keeping track of the most general one. 3402 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3403 ConstraintWeight weight = 3404 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3405 if (weight > BestWeight) 3406 BestWeight = weight; 3407 } 3408 3409 return BestWeight; 3410 } 3411 3412 /// Examine constraint type and operand type and determine a weight value. 3413 /// This object must already have been set up with the operand type 3414 /// and the current alternative constraint selected. 3415 TargetLowering::ConstraintWeight 3416 TargetLowering::getSingleConstraintMatchWeight( 3417 AsmOperandInfo &info, const char *constraint) const { 3418 ConstraintWeight weight = CW_Invalid; 3419 Value *CallOperandVal = info.CallOperandVal; 3420 // If we don't have a value, we can't do a match, 3421 // but allow it at the lowest weight. 3422 if (!CallOperandVal) 3423 return CW_Default; 3424 // Look at the constraint type. 3425 switch (*constraint) { 3426 case 'i': // immediate integer. 3427 case 'n': // immediate integer with a known value. 3428 if (isa<ConstantInt>(CallOperandVal)) 3429 weight = CW_Constant; 3430 break; 3431 case 's': // non-explicit intregal immediate. 3432 if (isa<GlobalValue>(CallOperandVal)) 3433 weight = CW_Constant; 3434 break; 3435 case 'E': // immediate float if host format. 3436 case 'F': // immediate float. 3437 if (isa<ConstantFP>(CallOperandVal)) 3438 weight = CW_Constant; 3439 break; 3440 case '<': // memory operand with autodecrement. 3441 case '>': // memory operand with autoincrement. 3442 case 'm': // memory operand. 3443 case 'o': // offsettable memory operand 3444 case 'V': // non-offsettable memory operand 3445 weight = CW_Memory; 3446 break; 3447 case 'r': // general register. 3448 case 'g': // general register, memory operand or immediate integer. 3449 // note: Clang converts "g" to "imr". 3450 if (CallOperandVal->getType()->isIntegerTy()) 3451 weight = CW_Register; 3452 break; 3453 case 'X': // any operand. 3454 default: 3455 weight = CW_Default; 3456 break; 3457 } 3458 return weight; 3459 } 3460 3461 /// If there are multiple different constraints that we could pick for this 3462 /// operand (e.g. "imr") try to pick the 'best' one. 3463 /// This is somewhat tricky: constraints fall into four classes: 3464 /// Other -> immediates and magic values 3465 /// Register -> one specific register 3466 /// RegisterClass -> a group of regs 3467 /// Memory -> memory 3468 /// Ideally, we would pick the most specific constraint possible: if we have 3469 /// something that fits into a register, we would pick it. The problem here 3470 /// is that if we have something that could either be in a register or in 3471 /// memory that use of the register could cause selection of *other* 3472 /// operands to fail: they might only succeed if we pick memory. Because of 3473 /// this the heuristic we use is: 3474 /// 3475 /// 1) If there is an 'other' constraint, and if the operand is valid for 3476 /// that constraint, use it. This makes us take advantage of 'i' 3477 /// constraints when available. 3478 /// 2) Otherwise, pick the most general constraint present. This prefers 3479 /// 'm' over 'r', for example. 3480 /// 3481 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3482 const TargetLowering &TLI, 3483 SDValue Op, SelectionDAG *DAG) { 3484 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3485 unsigned BestIdx = 0; 3486 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3487 int BestGenerality = -1; 3488 3489 // Loop over the options, keeping track of the most general one. 3490 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3491 TargetLowering::ConstraintType CType = 3492 TLI.getConstraintType(OpInfo.Codes[i]); 3493 3494 // If this is an 'other' constraint, see if the operand is valid for it. 3495 // For example, on X86 we might have an 'rI' constraint. If the operand 3496 // is an integer in the range [0..31] we want to use I (saving a load 3497 // of a register), otherwise we must use 'r'. 3498 if (CType == TargetLowering::C_Other && Op.getNode()) { 3499 assert(OpInfo.Codes[i].size() == 1 && 3500 "Unhandled multi-letter 'other' constraint"); 3501 std::vector<SDValue> ResultOps; 3502 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3503 ResultOps, *DAG); 3504 if (!ResultOps.empty()) { 3505 BestType = CType; 3506 BestIdx = i; 3507 break; 3508 } 3509 } 3510 3511 // Things with matching constraints can only be registers, per gcc 3512 // documentation. This mainly affects "g" constraints. 3513 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3514 continue; 3515 3516 // This constraint letter is more general than the previous one, use it. 3517 int Generality = getConstraintGenerality(CType); 3518 if (Generality > BestGenerality) { 3519 BestType = CType; 3520 BestIdx = i; 3521 BestGenerality = Generality; 3522 } 3523 } 3524 3525 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3526 OpInfo.ConstraintType = BestType; 3527 } 3528 3529 /// Determines the constraint code and constraint type to use for the specific 3530 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3531 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3532 SDValue Op, 3533 SelectionDAG *DAG) const { 3534 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3535 3536 // Single-letter constraints ('r') are very common. 3537 if (OpInfo.Codes.size() == 1) { 3538 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3539 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3540 } else { 3541 ChooseConstraint(OpInfo, *this, Op, DAG); 3542 } 3543 3544 // 'X' matches anything. 3545 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3546 // Labels and constants are handled elsewhere ('X' is the only thing 3547 // that matches labels). For Functions, the type here is the type of 3548 // the result, which is not what we want to look at; leave them alone. 3549 Value *v = OpInfo.CallOperandVal; 3550 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3551 OpInfo.CallOperandVal = v; 3552 return; 3553 } 3554 3555 // Otherwise, try to resolve it to something we know about by looking at 3556 // the actual operand type. 3557 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3558 OpInfo.ConstraintCode = Repl; 3559 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3560 } 3561 } 3562 } 3563 3564 /// Given an exact SDIV by a constant, create a multiplication 3565 /// with the multiplicative inverse of the constant. 3566 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3567 const SDLoc &dl, SelectionDAG &DAG, 3568 SmallVectorImpl<SDNode *> &Created) { 3569 SDValue Op0 = N->getOperand(0); 3570 SDValue Op1 = N->getOperand(1); 3571 EVT VT = N->getValueType(0); 3572 EVT SVT = VT.getScalarType(); 3573 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3574 EVT ShSVT = ShVT.getScalarType(); 3575 3576 bool UseSRA = false; 3577 SmallVector<SDValue, 16> Shifts, Factors; 3578 3579 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3580 if (C->isNullValue()) 3581 return false; 3582 APInt Divisor = C->getAPIntValue(); 3583 unsigned Shift = Divisor.countTrailingZeros(); 3584 if (Shift) { 3585 Divisor.ashrInPlace(Shift); 3586 UseSRA = true; 3587 } 3588 // Calculate the multiplicative inverse, using Newton's method. 3589 APInt t; 3590 APInt Factor = Divisor; 3591 while ((t = Divisor * Factor) != 1) 3592 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3593 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3594 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3595 return true; 3596 }; 3597 3598 // Collect all magic values from the build vector. 3599 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3600 return SDValue(); 3601 3602 SDValue Shift, Factor; 3603 if (VT.isVector()) { 3604 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3605 Factor = DAG.getBuildVector(VT, dl, Factors); 3606 } else { 3607 Shift = Shifts[0]; 3608 Factor = Factors[0]; 3609 } 3610 3611 SDValue Res = Op0; 3612 3613 // Shift the value upfront if it is even, so the LSB is one. 3614 if (UseSRA) { 3615 // TODO: For UDIV use SRL instead of SRA. 3616 SDNodeFlags Flags; 3617 Flags.setExact(true); 3618 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3619 Created.push_back(Res.getNode()); 3620 } 3621 3622 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3623 } 3624 3625 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3626 SelectionDAG &DAG, 3627 SmallVectorImpl<SDNode *> &Created) const { 3628 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3630 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3631 return SDValue(N,0); // Lower SDIV as SDIV 3632 return SDValue(); 3633 } 3634 3635 /// Given an ISD::SDIV node expressing a divide by constant, 3636 /// return a DAG expression to select that will generate the same value by 3637 /// multiplying by a magic number. 3638 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3639 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3640 bool IsAfterLegalization, 3641 SmallVectorImpl<SDNode *> &Created) const { 3642 SDLoc dl(N); 3643 EVT VT = N->getValueType(0); 3644 EVT SVT = VT.getScalarType(); 3645 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3646 EVT ShSVT = ShVT.getScalarType(); 3647 unsigned EltBits = VT.getScalarSizeInBits(); 3648 3649 // Check to see if we can do this. 3650 // FIXME: We should be more aggressive here. 3651 if (!isTypeLegal(VT)) 3652 return SDValue(); 3653 3654 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3655 if (N->getFlags().hasExact()) 3656 return BuildExactSDIV(*this, N, dl, DAG, Created); 3657 3658 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3659 3660 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3661 if (C->isNullValue()) 3662 return false; 3663 3664 const APInt &Divisor = C->getAPIntValue(); 3665 APInt::ms magics = Divisor.magic(); 3666 int NumeratorFactor = 0; 3667 int ShiftMask = -1; 3668 3669 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3670 // If d is +1/-1, we just multiply the numerator by +1/-1. 3671 NumeratorFactor = Divisor.getSExtValue(); 3672 magics.m = 0; 3673 magics.s = 0; 3674 ShiftMask = 0; 3675 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3676 // If d > 0 and m < 0, add the numerator. 3677 NumeratorFactor = 1; 3678 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3679 // If d < 0 and m > 0, subtract the numerator. 3680 NumeratorFactor = -1; 3681 } 3682 3683 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3684 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3685 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3686 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3687 return true; 3688 }; 3689 3690 SDValue N0 = N->getOperand(0); 3691 SDValue N1 = N->getOperand(1); 3692 3693 // Collect the shifts / magic values from each element. 3694 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3695 return SDValue(); 3696 3697 SDValue MagicFactor, Factor, Shift, ShiftMask; 3698 if (VT.isVector()) { 3699 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3700 Factor = DAG.getBuildVector(VT, dl, Factors); 3701 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3702 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3703 } else { 3704 MagicFactor = MagicFactors[0]; 3705 Factor = Factors[0]; 3706 Shift = Shifts[0]; 3707 ShiftMask = ShiftMasks[0]; 3708 } 3709 3710 // Multiply the numerator (operand 0) by the magic value. 3711 // FIXME: We should support doing a MUL in a wider type. 3712 SDValue Q; 3713 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3714 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3715 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3716 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3717 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3718 SDValue LoHi = 3719 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3720 Q = SDValue(LoHi.getNode(), 1); 3721 } else 3722 return SDValue(); // No mulhs or equivalent. 3723 Created.push_back(Q.getNode()); 3724 3725 // (Optionally) Add/subtract the numerator using Factor. 3726 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3727 Created.push_back(Factor.getNode()); 3728 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3729 Created.push_back(Q.getNode()); 3730 3731 // Shift right algebraic by shift value. 3732 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3733 Created.push_back(Q.getNode()); 3734 3735 // Extract the sign bit, mask it and add it to the quotient. 3736 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 3737 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 3738 Created.push_back(T.getNode()); 3739 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 3740 Created.push_back(T.getNode()); 3741 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3742 } 3743 3744 /// Given an ISD::UDIV node expressing a divide by constant, 3745 /// return a DAG expression to select that will generate the same value by 3746 /// multiplying by a magic number. 3747 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3748 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3749 bool IsAfterLegalization, 3750 SmallVectorImpl<SDNode *> &Created) const { 3751 SDLoc dl(N); 3752 EVT VT = N->getValueType(0); 3753 EVT SVT = VT.getScalarType(); 3754 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3755 EVT ShSVT = ShVT.getScalarType(); 3756 unsigned EltBits = VT.getScalarSizeInBits(); 3757 3758 // Check to see if we can do this. 3759 // FIXME: We should be more aggressive here. 3760 if (!isTypeLegal(VT)) 3761 return SDValue(); 3762 3763 bool UseNPQ = false; 3764 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 3765 3766 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 3767 if (C->isNullValue()) 3768 return false; 3769 // FIXME: We should use a narrower constant when the upper 3770 // bits are known to be zero. 3771 APInt Divisor = C->getAPIntValue(); 3772 APInt::mu magics = Divisor.magicu(); 3773 unsigned PreShift = 0, PostShift = 0; 3774 3775 // If the divisor is even, we can avoid using the expensive fixup by 3776 // shifting the divided value upfront. 3777 if (magics.a != 0 && !Divisor[0]) { 3778 PreShift = Divisor.countTrailingZeros(); 3779 // Get magic number for the shifted divisor. 3780 magics = Divisor.lshr(PreShift).magicu(PreShift); 3781 assert(magics.a == 0 && "Should use cheap fixup now"); 3782 } 3783 3784 APInt Magic = magics.m; 3785 3786 unsigned SelNPQ; 3787 if (magics.a == 0 || Divisor.isOneValue()) { 3788 assert(magics.s < Divisor.getBitWidth() && 3789 "We shouldn't generate an undefined shift!"); 3790 PostShift = magics.s; 3791 SelNPQ = false; 3792 } else { 3793 PostShift = magics.s - 1; 3794 SelNPQ = true; 3795 } 3796 3797 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 3798 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 3799 NPQFactors.push_back( 3800 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 3801 : APInt::getNullValue(EltBits), 3802 dl, SVT)); 3803 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 3804 UseNPQ |= SelNPQ; 3805 return true; 3806 }; 3807 3808 SDValue N0 = N->getOperand(0); 3809 SDValue N1 = N->getOperand(1); 3810 3811 // Collect the shifts/magic values from each element. 3812 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 3813 return SDValue(); 3814 3815 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 3816 if (VT.isVector()) { 3817 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 3818 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3819 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 3820 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 3821 } else { 3822 PreShift = PreShifts[0]; 3823 MagicFactor = MagicFactors[0]; 3824 PostShift = PostShifts[0]; 3825 } 3826 3827 SDValue Q = N0; 3828 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 3829 Created.push_back(Q.getNode()); 3830 3831 // FIXME: We should support doing a MUL in a wider type. 3832 auto GetMULHU = [&](SDValue X, SDValue Y) { 3833 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 3834 : isOperationLegalOrCustom(ISD::MULHU, VT)) 3835 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 3836 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 3837 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 3838 SDValue LoHi = 3839 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 3840 return SDValue(LoHi.getNode(), 1); 3841 } 3842 return SDValue(); // No mulhu or equivalent 3843 }; 3844 3845 // Multiply the numerator (operand 0) by the magic value. 3846 Q = GetMULHU(Q, MagicFactor); 3847 if (!Q) 3848 return SDValue(); 3849 3850 Created.push_back(Q.getNode()); 3851 3852 if (UseNPQ) { 3853 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 3854 Created.push_back(NPQ.getNode()); 3855 3856 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 3857 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 3858 if (VT.isVector()) 3859 NPQ = GetMULHU(NPQ, NPQFactor); 3860 else 3861 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 3862 3863 Created.push_back(NPQ.getNode()); 3864 3865 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3866 Created.push_back(Q.getNode()); 3867 } 3868 3869 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 3870 Created.push_back(Q.getNode()); 3871 3872 SDValue One = DAG.getConstant(1, dl, VT); 3873 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 3874 return DAG.getSelect(dl, VT, IsOne, N0, Q); 3875 } 3876 3877 bool TargetLowering:: 3878 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3879 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3880 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3881 "be a constant integer"); 3882 return true; 3883 } 3884 3885 return false; 3886 } 3887 3888 //===----------------------------------------------------------------------===// 3889 // Legalization Utilities 3890 //===----------------------------------------------------------------------===// 3891 3892 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3893 SDValue LHS, SDValue RHS, 3894 SmallVectorImpl<SDValue> &Result, 3895 EVT HiLoVT, SelectionDAG &DAG, 3896 MulExpansionKind Kind, SDValue LL, 3897 SDValue LH, SDValue RL, SDValue RH) const { 3898 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3899 Opcode == ISD::SMUL_LOHI); 3900 3901 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3902 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3903 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3904 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3905 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3906 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3907 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3908 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3909 3910 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3911 return false; 3912 3913 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3914 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3915 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3916 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3917 3918 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3919 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3920 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3921 3922 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3923 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3924 bool Signed) -> bool { 3925 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3926 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3927 Hi = SDValue(Lo.getNode(), 1); 3928 return true; 3929 } 3930 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3931 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3932 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3933 return true; 3934 } 3935 return false; 3936 }; 3937 3938 SDValue Lo, Hi; 3939 3940 if (!LL.getNode() && !RL.getNode() && 3941 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3942 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3943 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3944 } 3945 3946 if (!LL.getNode()) 3947 return false; 3948 3949 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3950 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3951 DAG.MaskedValueIsZero(RHS, HighMask)) { 3952 // The inputs are both zero-extended. 3953 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3954 Result.push_back(Lo); 3955 Result.push_back(Hi); 3956 if (Opcode != ISD::MUL) { 3957 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3958 Result.push_back(Zero); 3959 Result.push_back(Zero); 3960 } 3961 return true; 3962 } 3963 } 3964 3965 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3966 RHSSB > InnerBitSize) { 3967 // The input values are both sign-extended. 3968 // TODO non-MUL case? 3969 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3970 Result.push_back(Lo); 3971 Result.push_back(Hi); 3972 return true; 3973 } 3974 } 3975 3976 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3977 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3978 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3979 // FIXME getShiftAmountTy does not always return a sensible result when VT 3980 // is an illegal type, and so the type may be too small to fit the shift 3981 // amount. Override it with i32. The shift will have to be legalized. 3982 ShiftAmountTy = MVT::i32; 3983 } 3984 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3985 3986 if (!LH.getNode() && !RH.getNode() && 3987 isOperationLegalOrCustom(ISD::SRL, VT) && 3988 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3989 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3990 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3991 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3992 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3993 } 3994 3995 if (!LH.getNode()) 3996 return false; 3997 3998 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3999 return false; 4000 4001 Result.push_back(Lo); 4002 4003 if (Opcode == ISD::MUL) { 4004 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4005 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4006 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4007 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4008 Result.push_back(Hi); 4009 return true; 4010 } 4011 4012 // Compute the full width result. 4013 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4014 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4015 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4016 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4017 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4018 }; 4019 4020 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4021 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4022 return false; 4023 4024 // This is effectively the add part of a multiply-add of half-sized operands, 4025 // so it cannot overflow. 4026 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4027 4028 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4029 return false; 4030 4031 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4032 Merge(Lo, Hi)); 4033 4034 SDValue Carry = Next.getValue(1); 4035 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4036 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4037 4038 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4039 return false; 4040 4041 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4042 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4043 Carry); 4044 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4045 4046 if (Opcode == ISD::SMUL_LOHI) { 4047 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4048 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4049 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4050 4051 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4052 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4053 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4054 } 4055 4056 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4057 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4058 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4059 return true; 4060 } 4061 4062 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4063 SelectionDAG &DAG, MulExpansionKind Kind, 4064 SDValue LL, SDValue LH, SDValue RL, 4065 SDValue RH) const { 4066 SmallVector<SDValue, 2> Result; 4067 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4068 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4069 DAG, Kind, LL, LH, RL, RH); 4070 if (Ok) { 4071 assert(Result.size() == 2); 4072 Lo = Result[0]; 4073 Hi = Result[1]; 4074 } 4075 return Ok; 4076 } 4077 4078 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4079 SelectionDAG &DAG) const { 4080 EVT VT = Node->getOperand(0).getValueType(); 4081 EVT NVT = Node->getValueType(0); 4082 SDLoc dl(SDValue(Node, 0)); 4083 4084 // FIXME: Only f32 to i64 conversions are supported. 4085 if (VT != MVT::f32 || NVT != MVT::i64) 4086 return false; 4087 4088 // Expand f32 -> i64 conversion 4089 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4090 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 4091 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 4092 VT.getSizeInBits()); 4093 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4094 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4095 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4096 SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl, 4097 IntVT); 4098 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 4099 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4100 4101 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 4102 4103 auto &DL = DAG.getDataLayout(); 4104 SDValue ExponentBits = DAG.getNode( 4105 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4106 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 4107 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4108 4109 SDValue Sign = DAG.getNode( 4110 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4111 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 4112 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 4113 4114 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4115 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4116 DAG.getConstant(0x00800000, dl, IntVT)); 4117 4118 R = DAG.getZExtOrTrunc(R, dl, NVT); 4119 4120 R = DAG.getSelectCC( 4121 dl, Exponent, ExponentLoBit, 4122 DAG.getNode(ISD::SHL, dl, NVT, R, 4123 DAG.getZExtOrTrunc( 4124 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4125 dl, getShiftAmountTy(IntVT, DL))), 4126 DAG.getNode(ISD::SRL, dl, NVT, R, 4127 DAG.getZExtOrTrunc( 4128 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4129 dl, getShiftAmountTy(IntVT, DL))), 4130 ISD::SETGT); 4131 4132 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 4133 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 4134 Sign); 4135 4136 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4137 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 4138 return true; 4139 } 4140 4141 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4142 SelectionDAG &DAG) const { 4143 SDLoc dl(SDValue(Node, 0)); 4144 SDValue Src = Node->getOperand(0); 4145 4146 EVT SrcVT = Src.getValueType(); 4147 EVT DstVT = Node->getValueType(0); 4148 EVT SetCCVT = 4149 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4150 4151 // Only expand vector types if we have the appropriate vector bit operations. 4152 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4153 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4154 return false; 4155 4156 // Expand based on maximum range of FP_TO_SINT: 4157 // True = fp_to_sint(Src) 4158 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4159 // Result = select (Src < 0x8000000000000000), True, False 4160 APFloat apf(DAG.EVTToAPFloatSemantics(SrcVT), 4161 APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4162 APInt x = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4163 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 4164 4165 SDValue Tmp1 = DAG.getConstantFP(apf, dl, SrcVT); 4166 SDValue Tmp2 = DAG.getSetCC(dl, SetCCVT, Src, Tmp1, ISD::SETLT); 4167 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4168 // TODO: Should any fast-math-flags be set for the FSUB? 4169 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4170 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Tmp1)); 4171 False = 4172 DAG.getNode(ISD::XOR, dl, DstVT, False, DAG.getConstant(x, dl, DstVT)); 4173 Result = DAG.getSelect(dl, DstVT, Tmp2, True, False); 4174 return true; 4175 } 4176 4177 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4178 SelectionDAG &DAG) const { 4179 SDValue Src = Node->getOperand(0); 4180 EVT SrcVT = Src.getValueType(); 4181 EVT DstVT = Node->getValueType(0); 4182 4183 if (SrcVT.getScalarType() != MVT::i64) 4184 return false; 4185 4186 SDLoc dl(SDValue(Node, 0)); 4187 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4188 4189 if (DstVT.getScalarType() == MVT::f32) { 4190 // Only expand vector types if we have the appropriate vector bit 4191 // operations. 4192 if (SrcVT.isVector() && 4193 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4194 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4195 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4196 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4197 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4198 return false; 4199 4200 // For unsigned conversions, convert them to signed conversions using the 4201 // algorithm from the x86_64 __floatundidf in compiler_rt. 4202 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4203 4204 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4205 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4206 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4207 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4208 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4209 4210 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4211 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4212 4213 // TODO: This really should be implemented using a branch rather than a 4214 // select. We happen to get lucky and machinesink does the right 4215 // thing most of the time. This would be a good candidate for a 4216 // pseudo-op, or, even better, for whole-function isel. 4217 EVT SetCCVT = 4218 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4219 4220 SDValue SignBitTest = DAG.getSetCC( 4221 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4222 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4223 return true; 4224 } 4225 4226 if (DstVT.getScalarType() == MVT::f64) { 4227 // Only expand vector types if we have the appropriate vector bit 4228 // operations. 4229 if (SrcVT.isVector() && 4230 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4231 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4232 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4233 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4234 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4235 return false; 4236 4237 // Implementation of unsigned i64 to f64 following the algorithm in 4238 // __floatundidf in compiler_rt. This implementation has the advantage 4239 // of performing rounding correctly, both in the default rounding mode 4240 // and in all alternate rounding modes. 4241 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4242 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4243 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4244 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4245 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4246 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4247 4248 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4249 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4250 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4251 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4252 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4253 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4254 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4255 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4256 return true; 4257 } 4258 4259 return false; 4260 } 4261 4262 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4263 SelectionDAG &DAG) const { 4264 SDLoc dl(Node); 4265 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4266 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4267 EVT VT = Node->getValueType(0); 4268 if (isOperationLegalOrCustom(NewOp, VT)) { 4269 SDValue Quiet0 = Node->getOperand(0); 4270 SDValue Quiet1 = Node->getOperand(1); 4271 4272 if (!Node->getFlags().hasNoNaNs()) { 4273 // Insert canonicalizes if it's possible we need to quiet to get correct 4274 // sNaN behavior. 4275 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4276 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4277 Node->getFlags()); 4278 } 4279 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4280 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4281 Node->getFlags()); 4282 } 4283 } 4284 4285 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4286 } 4287 4288 return SDValue(); 4289 } 4290 4291 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4292 SelectionDAG &DAG) const { 4293 SDLoc dl(Node); 4294 EVT VT = Node->getValueType(0); 4295 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4296 SDValue Op = Node->getOperand(0); 4297 unsigned Len = VT.getScalarSizeInBits(); 4298 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4299 4300 // TODO: Add support for irregular type lengths. 4301 if (!(Len <= 128 && Len % 8 == 0)) 4302 return false; 4303 4304 // Only expand vector types if we have the appropriate vector bit operations. 4305 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4306 !isOperationLegalOrCustom(ISD::SUB, VT) || 4307 !isOperationLegalOrCustom(ISD::SRL, VT) || 4308 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4309 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4310 return false; 4311 4312 // This is the "best" algorithm from 4313 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4314 SDValue Mask55 = 4315 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4316 SDValue Mask33 = 4317 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4318 SDValue Mask0F = 4319 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4320 SDValue Mask01 = 4321 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4322 4323 // v = v - ((v >> 1) & 0x55555555...) 4324 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4325 DAG.getNode(ISD::AND, dl, VT, 4326 DAG.getNode(ISD::SRL, dl, VT, Op, 4327 DAG.getConstant(1, dl, ShVT)), 4328 Mask55)); 4329 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4330 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4331 DAG.getNode(ISD::AND, dl, VT, 4332 DAG.getNode(ISD::SRL, dl, VT, Op, 4333 DAG.getConstant(2, dl, ShVT)), 4334 Mask33)); 4335 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4336 Op = DAG.getNode(ISD::AND, dl, VT, 4337 DAG.getNode(ISD::ADD, dl, VT, Op, 4338 DAG.getNode(ISD::SRL, dl, VT, Op, 4339 DAG.getConstant(4, dl, ShVT))), 4340 Mask0F); 4341 // v = (v * 0x01010101...) >> (Len - 8) 4342 if (Len > 8) 4343 Op = 4344 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4345 DAG.getConstant(Len - 8, dl, ShVT)); 4346 4347 Result = Op; 4348 return true; 4349 } 4350 4351 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4352 SelectionDAG &DAG) const { 4353 SDLoc dl(Node); 4354 EVT VT = Node->getValueType(0); 4355 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4356 SDValue Op = Node->getOperand(0); 4357 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4358 4359 // If the non-ZERO_UNDEF version is supported we can use that instead. 4360 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4361 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4362 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4363 return true; 4364 } 4365 4366 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4367 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4368 EVT SetCCVT = 4369 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4370 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4371 SDValue Zero = DAG.getConstant(0, dl, VT); 4372 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4373 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4374 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4375 return true; 4376 } 4377 4378 // Only expand vector types if we have the appropriate vector bit operations. 4379 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4380 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4381 !isOperationLegalOrCustom(ISD::SRL, VT) || 4382 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4383 return false; 4384 4385 // for now, we do this: 4386 // x = x | (x >> 1); 4387 // x = x | (x >> 2); 4388 // ... 4389 // x = x | (x >>16); 4390 // x = x | (x >>32); // for 64-bit input 4391 // return popcount(~x); 4392 // 4393 // Ref: "Hacker's Delight" by Henry Warren 4394 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4395 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4396 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4397 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4398 } 4399 Op = DAG.getNOT(dl, Op, VT); 4400 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4401 return true; 4402 } 4403 4404 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4405 SelectionDAG &DAG) const { 4406 SDLoc dl(Node); 4407 EVT VT = Node->getValueType(0); 4408 SDValue Op = Node->getOperand(0); 4409 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4410 4411 // If the non-ZERO_UNDEF version is supported we can use that instead. 4412 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4413 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4414 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4415 return true; 4416 } 4417 4418 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4419 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4420 EVT SetCCVT = 4421 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4422 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4423 SDValue Zero = DAG.getConstant(0, dl, VT); 4424 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4425 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4426 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4427 return true; 4428 } 4429 4430 // Only expand vector types if we have the appropriate vector bit operations. 4431 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4432 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4433 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4434 !isOperationLegalOrCustom(ISD::SUB, VT) || 4435 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4436 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4437 return false; 4438 4439 // for now, we use: { return popcount(~x & (x - 1)); } 4440 // unless the target has ctlz but not ctpop, in which case we use: 4441 // { return 32 - nlz(~x & (x-1)); } 4442 // Ref: "Hacker's Delight" by Henry Warren 4443 SDValue Tmp = DAG.getNode( 4444 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4445 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4446 4447 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4448 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4449 Result = 4450 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4451 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4452 return true; 4453 } 4454 4455 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4456 return true; 4457 } 4458 4459 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4460 SelectionDAG &DAG) const { 4461 SDLoc SL(LD); 4462 SDValue Chain = LD->getChain(); 4463 SDValue BasePTR = LD->getBasePtr(); 4464 EVT SrcVT = LD->getMemoryVT(); 4465 ISD::LoadExtType ExtType = LD->getExtensionType(); 4466 4467 unsigned NumElem = SrcVT.getVectorNumElements(); 4468 4469 EVT SrcEltVT = SrcVT.getScalarType(); 4470 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4471 4472 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4473 assert(SrcEltVT.isByteSized()); 4474 4475 SmallVector<SDValue, 8> Vals; 4476 SmallVector<SDValue, 8> LoadChains; 4477 4478 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4479 SDValue ScalarLoad = 4480 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4481 LD->getPointerInfo().getWithOffset(Idx * Stride), 4482 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4483 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4484 4485 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4486 4487 Vals.push_back(ScalarLoad.getValue(0)); 4488 LoadChains.push_back(ScalarLoad.getValue(1)); 4489 } 4490 4491 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4492 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4493 4494 return DAG.getMergeValues({ Value, NewChain }, SL); 4495 } 4496 4497 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4498 SelectionDAG &DAG) const { 4499 SDLoc SL(ST); 4500 4501 SDValue Chain = ST->getChain(); 4502 SDValue BasePtr = ST->getBasePtr(); 4503 SDValue Value = ST->getValue(); 4504 EVT StVT = ST->getMemoryVT(); 4505 4506 // The type of the data we want to save 4507 EVT RegVT = Value.getValueType(); 4508 EVT RegSclVT = RegVT.getScalarType(); 4509 4510 // The type of data as saved in memory. 4511 EVT MemSclVT = StVT.getScalarType(); 4512 4513 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4514 unsigned NumElem = StVT.getVectorNumElements(); 4515 4516 // A vector must always be stored in memory as-is, i.e. without any padding 4517 // between the elements, since various code depend on it, e.g. in the 4518 // handling of a bitcast of a vector type to int, which may be done with a 4519 // vector store followed by an integer load. A vector that does not have 4520 // elements that are byte-sized must therefore be stored as an integer 4521 // built out of the extracted vector elements. 4522 if (!MemSclVT.isByteSized()) { 4523 unsigned NumBits = StVT.getSizeInBits(); 4524 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4525 4526 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4527 4528 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4529 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4530 DAG.getConstant(Idx, SL, IdxVT)); 4531 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4532 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4533 unsigned ShiftIntoIdx = 4534 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4535 SDValue ShiftAmount = 4536 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4537 SDValue ShiftedElt = 4538 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4539 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4540 } 4541 4542 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4543 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4544 ST->getAAInfo()); 4545 } 4546 4547 // Store Stride in bytes 4548 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4549 assert (Stride && "Zero stride!"); 4550 // Extract each of the elements from the original vector and save them into 4551 // memory individually. 4552 SmallVector<SDValue, 8> Stores; 4553 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4554 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4555 DAG.getConstant(Idx, SL, IdxVT)); 4556 4557 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4558 4559 // This scalar TruncStore may be illegal, but we legalize it later. 4560 SDValue Store = DAG.getTruncStore( 4561 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4562 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4563 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4564 4565 Stores.push_back(Store); 4566 } 4567 4568 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4569 } 4570 4571 std::pair<SDValue, SDValue> 4572 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4573 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4574 "unaligned indexed loads not implemented!"); 4575 SDValue Chain = LD->getChain(); 4576 SDValue Ptr = LD->getBasePtr(); 4577 EVT VT = LD->getValueType(0); 4578 EVT LoadedVT = LD->getMemoryVT(); 4579 SDLoc dl(LD); 4580 auto &MF = DAG.getMachineFunction(); 4581 4582 if (VT.isFloatingPoint() || VT.isVector()) { 4583 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4584 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4585 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 4586 LoadedVT.isVector()) { 4587 // Scalarize the load and let the individual components be handled. 4588 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4589 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4590 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4591 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4592 } 4593 4594 // Expand to a (misaligned) integer load of the same size, 4595 // then bitconvert to floating point or vector. 4596 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4597 LD->getMemOperand()); 4598 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4599 if (LoadedVT != VT) 4600 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4601 ISD::ANY_EXTEND, dl, VT, Result); 4602 4603 return std::make_pair(Result, newLoad.getValue(1)); 4604 } 4605 4606 // Copy the value to a (aligned) stack slot using (unaligned) integer 4607 // loads and stores, then do a (aligned) load from the stack slot. 4608 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 4609 unsigned LoadedBytes = LoadedVT.getStoreSize(); 4610 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4611 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 4612 4613 // Make sure the stack slot is also aligned for the register type. 4614 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 4615 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 4616 SmallVector<SDValue, 8> Stores; 4617 SDValue StackPtr = StackBase; 4618 unsigned Offset = 0; 4619 4620 EVT PtrVT = Ptr.getValueType(); 4621 EVT StackPtrVT = StackPtr.getValueType(); 4622 4623 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4624 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4625 4626 // Do all but one copies using the full register width. 4627 for (unsigned i = 1; i < NumRegs; i++) { 4628 // Load one integer register's worth from the original location. 4629 SDValue Load = DAG.getLoad( 4630 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 4631 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 4632 LD->getAAInfo()); 4633 // Follow the load with a store to the stack slot. Remember the store. 4634 Stores.push_back(DAG.getStore( 4635 Load.getValue(1), dl, Load, StackPtr, 4636 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 4637 // Increment the pointers. 4638 Offset += RegBytes; 4639 4640 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4641 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4642 } 4643 4644 // The last copy may be partial. Do an extending load. 4645 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4646 8 * (LoadedBytes - Offset)); 4647 SDValue Load = 4648 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 4649 LD->getPointerInfo().getWithOffset(Offset), MemVT, 4650 MinAlign(LD->getAlignment(), Offset), 4651 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4652 // Follow the load with a store to the stack slot. Remember the store. 4653 // On big-endian machines this requires a truncating store to ensure 4654 // that the bits end up in the right place. 4655 Stores.push_back(DAG.getTruncStore( 4656 Load.getValue(1), dl, Load, StackPtr, 4657 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 4658 4659 // The order of the stores doesn't matter - say it with a TokenFactor. 4660 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4661 4662 // Finally, perform the original load only redirected to the stack slot. 4663 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 4664 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 4665 LoadedVT); 4666 4667 // Callers expect a MERGE_VALUES node. 4668 return std::make_pair(Load, TF); 4669 } 4670 4671 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 4672 "Unaligned load of unsupported type."); 4673 4674 // Compute the new VT that is half the size of the old one. This is an 4675 // integer MVT. 4676 unsigned NumBits = LoadedVT.getSizeInBits(); 4677 EVT NewLoadedVT; 4678 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 4679 NumBits >>= 1; 4680 4681 unsigned Alignment = LD->getAlignment(); 4682 unsigned IncrementSize = NumBits / 8; 4683 ISD::LoadExtType HiExtType = LD->getExtensionType(); 4684 4685 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 4686 if (HiExtType == ISD::NON_EXTLOAD) 4687 HiExtType = ISD::ZEXTLOAD; 4688 4689 // Load the value in two parts 4690 SDValue Lo, Hi; 4691 if (DAG.getDataLayout().isLittleEndian()) { 4692 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4693 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4694 LD->getAAInfo()); 4695 4696 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4697 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 4698 LD->getPointerInfo().getWithOffset(IncrementSize), 4699 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4700 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4701 } else { 4702 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4703 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4704 LD->getAAInfo()); 4705 4706 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4707 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 4708 LD->getPointerInfo().getWithOffset(IncrementSize), 4709 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4710 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4711 } 4712 4713 // aggregate the two parts 4714 SDValue ShiftAmount = 4715 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 4716 DAG.getDataLayout())); 4717 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 4718 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 4719 4720 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 4721 Hi.getValue(1)); 4722 4723 return std::make_pair(Result, TF); 4724 } 4725 4726 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 4727 SelectionDAG &DAG) const { 4728 assert(ST->getAddressingMode() == ISD::UNINDEXED && 4729 "unaligned indexed stores not implemented!"); 4730 SDValue Chain = ST->getChain(); 4731 SDValue Ptr = ST->getBasePtr(); 4732 SDValue Val = ST->getValue(); 4733 EVT VT = Val.getValueType(); 4734 int Alignment = ST->getAlignment(); 4735 auto &MF = DAG.getMachineFunction(); 4736 EVT MemVT = ST->getMemoryVT(); 4737 4738 SDLoc dl(ST); 4739 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 4740 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 4741 if (isTypeLegal(intVT)) { 4742 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 4743 MemVT.isVector()) { 4744 // Scalarize the store and let the individual components be handled. 4745 SDValue Result = scalarizeVectorStore(ST, DAG); 4746 4747 return Result; 4748 } 4749 // Expand to a bitconvert of the value to the integer type of the 4750 // same size, then a (misaligned) int store. 4751 // FIXME: Does not handle truncating floating point stores! 4752 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 4753 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 4754 Alignment, ST->getMemOperand()->getFlags()); 4755 return Result; 4756 } 4757 // Do a (aligned) store to a stack slot, then copy from the stack slot 4758 // to the final destination using (unaligned) integer loads and stores. 4759 EVT StoredVT = ST->getMemoryVT(); 4760 MVT RegVT = 4761 getRegisterType(*DAG.getContext(), 4762 EVT::getIntegerVT(*DAG.getContext(), 4763 StoredVT.getSizeInBits())); 4764 EVT PtrVT = Ptr.getValueType(); 4765 unsigned StoredBytes = StoredVT.getStoreSize(); 4766 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4767 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 4768 4769 // Make sure the stack slot is also aligned for the register type. 4770 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 4771 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 4772 4773 // Perform the original store, only redirected to the stack slot. 4774 SDValue Store = DAG.getTruncStore( 4775 Chain, dl, Val, StackPtr, 4776 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 4777 4778 EVT StackPtrVT = StackPtr.getValueType(); 4779 4780 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4781 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4782 SmallVector<SDValue, 8> Stores; 4783 unsigned Offset = 0; 4784 4785 // Do all but one copies using the full register width. 4786 for (unsigned i = 1; i < NumRegs; i++) { 4787 // Load one integer register's worth from the stack slot. 4788 SDValue Load = DAG.getLoad( 4789 RegVT, dl, Store, StackPtr, 4790 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 4791 // Store it to the final location. Remember the store. 4792 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 4793 ST->getPointerInfo().getWithOffset(Offset), 4794 MinAlign(ST->getAlignment(), Offset), 4795 ST->getMemOperand()->getFlags())); 4796 // Increment the pointers. 4797 Offset += RegBytes; 4798 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4799 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4800 } 4801 4802 // The last store may be partial. Do a truncating store. On big-endian 4803 // machines this requires an extending load from the stack slot to ensure 4804 // that the bits are in the right place. 4805 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4806 8 * (StoredBytes - Offset)); 4807 4808 // Load from the stack slot. 4809 SDValue Load = DAG.getExtLoad( 4810 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 4811 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 4812 4813 Stores.push_back( 4814 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 4815 ST->getPointerInfo().getWithOffset(Offset), MemVT, 4816 MinAlign(ST->getAlignment(), Offset), 4817 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 4818 // The order of the stores doesn't matter - say it with a TokenFactor. 4819 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4820 return Result; 4821 } 4822 4823 assert(ST->getMemoryVT().isInteger() && 4824 !ST->getMemoryVT().isVector() && 4825 "Unaligned store of unknown type."); 4826 // Get the half-size VT 4827 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 4828 int NumBits = NewStoredVT.getSizeInBits(); 4829 int IncrementSize = NumBits / 8; 4830 4831 // Divide the stored value in two parts. 4832 SDValue ShiftAmount = 4833 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 4834 DAG.getDataLayout())); 4835 SDValue Lo = Val; 4836 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 4837 4838 // Store the two parts 4839 SDValue Store1, Store2; 4840 Store1 = DAG.getTruncStore(Chain, dl, 4841 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 4842 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 4843 ST->getMemOperand()->getFlags()); 4844 4845 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4846 Alignment = MinAlign(Alignment, IncrementSize); 4847 Store2 = DAG.getTruncStore( 4848 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 4849 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 4850 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4851 4852 SDValue Result = 4853 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 4854 return Result; 4855 } 4856 4857 SDValue 4858 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 4859 const SDLoc &DL, EVT DataVT, 4860 SelectionDAG &DAG, 4861 bool IsCompressedMemory) const { 4862 SDValue Increment; 4863 EVT AddrVT = Addr.getValueType(); 4864 EVT MaskVT = Mask.getValueType(); 4865 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 4866 "Incompatible types of Data and Mask"); 4867 if (IsCompressedMemory) { 4868 // Incrementing the pointer according to number of '1's in the mask. 4869 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 4870 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 4871 if (MaskIntVT.getSizeInBits() < 32) { 4872 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 4873 MaskIntVT = MVT::i32; 4874 } 4875 4876 // Count '1's with POPCNT. 4877 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 4878 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 4879 // Scale is an element size in bytes. 4880 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 4881 AddrVT); 4882 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 4883 } else 4884 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 4885 4886 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 4887 } 4888 4889 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 4890 SDValue Idx, 4891 EVT VecVT, 4892 const SDLoc &dl) { 4893 if (isa<ConstantSDNode>(Idx)) 4894 return Idx; 4895 4896 EVT IdxVT = Idx.getValueType(); 4897 unsigned NElts = VecVT.getVectorNumElements(); 4898 if (isPowerOf2_32(NElts)) { 4899 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 4900 Log2_32(NElts)); 4901 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 4902 DAG.getConstant(Imm, dl, IdxVT)); 4903 } 4904 4905 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 4906 DAG.getConstant(NElts - 1, dl, IdxVT)); 4907 } 4908 4909 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 4910 SDValue VecPtr, EVT VecVT, 4911 SDValue Index) const { 4912 SDLoc dl(Index); 4913 // Make sure the index type is big enough to compute in. 4914 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 4915 4916 EVT EltVT = VecVT.getVectorElementType(); 4917 4918 // Calculate the element offset and add it to the pointer. 4919 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 4920 assert(EltSize * 8 == EltVT.getSizeInBits() && 4921 "Converting bits to bytes lost precision"); 4922 4923 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 4924 4925 EVT IdxVT = Index.getValueType(); 4926 4927 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 4928 DAG.getConstant(EltSize, dl, IdxVT)); 4929 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 4930 } 4931 4932 //===----------------------------------------------------------------------===// 4933 // Implementation of Emulated TLS Model 4934 //===----------------------------------------------------------------------===// 4935 4936 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 4937 SelectionDAG &DAG) const { 4938 // Access to address of TLS varialbe xyz is lowered to a function call: 4939 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 4940 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 4941 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 4942 SDLoc dl(GA); 4943 4944 ArgListTy Args; 4945 ArgListEntry Entry; 4946 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 4947 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 4948 StringRef EmuTlsVarName(NameString); 4949 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 4950 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 4951 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 4952 Entry.Ty = VoidPtrType; 4953 Args.push_back(Entry); 4954 4955 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 4956 4957 TargetLowering::CallLoweringInfo CLI(DAG); 4958 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 4959 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 4960 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 4961 4962 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 4963 // At last for X86 targets, maybe good for other targets too? 4964 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 4965 MFI.setAdjustsStack(true); // Is this only for X86 target? 4966 MFI.setHasCalls(true); 4967 4968 assert((GA->getOffset() == 0) && 4969 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 4970 return CallResult.first; 4971 } 4972 4973 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 4974 SelectionDAG &DAG) const { 4975 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 4976 if (!isCtlzFast()) 4977 return SDValue(); 4978 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 4979 SDLoc dl(Op); 4980 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4981 if (C->isNullValue() && CC == ISD::SETEQ) { 4982 EVT VT = Op.getOperand(0).getValueType(); 4983 SDValue Zext = Op.getOperand(0); 4984 if (VT.bitsLT(MVT::i32)) { 4985 VT = MVT::i32; 4986 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 4987 } 4988 unsigned Log2b = Log2_32(VT.getSizeInBits()); 4989 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 4990 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 4991 DAG.getConstant(Log2b, dl, MVT::i32)); 4992 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 4993 } 4994 } 4995 return SDValue(); 4996 } 4997 4998 SDValue TargetLowering::getExpandedSaturationAdditionSubtraction( 4999 SDNode *Node, SelectionDAG &DAG) const { 5000 unsigned Opcode = Node->getOpcode(); 5001 unsigned OverflowOp; 5002 switch (Opcode) { 5003 case ISD::SADDSAT: 5004 OverflowOp = ISD::SADDO; 5005 break; 5006 case ISD::UADDSAT: 5007 OverflowOp = ISD::UADDO; 5008 break; 5009 case ISD::SSUBSAT: 5010 OverflowOp = ISD::SSUBO; 5011 break; 5012 case ISD::USUBSAT: 5013 OverflowOp = ISD::USUBO; 5014 break; 5015 default: 5016 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5017 "addition or subtraction node."); 5018 } 5019 assert(Node->getNumOperands() == 2 && "Expected node to have 2 operands."); 5020 5021 SDLoc dl(Node); 5022 SDValue LHS = Node->getOperand(0); 5023 SDValue RHS = Node->getOperand(1); 5024 assert(LHS.getValueType().isScalarInteger() && 5025 "Expected operands to be integers. Vector of int arguments should " 5026 "already be unrolled."); 5027 assert(RHS.getValueType().isScalarInteger() && 5028 "Expected operands to be integers. Vector of int arguments should " 5029 "already be unrolled."); 5030 assert(LHS.getValueType() == RHS.getValueType() && 5031 "Expected both operands to be the same type"); 5032 5033 unsigned BitWidth = LHS.getValueSizeInBits(); 5034 EVT ResultType = LHS.getValueType(); 5035 EVT BoolVT = 5036 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType); 5037 SDValue Result = 5038 DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS); 5039 SDValue SumDiff = Result.getValue(0); 5040 SDValue Overflow = Result.getValue(1); 5041 SDValue Zero = DAG.getConstant(0, dl, ResultType); 5042 5043 if (Opcode == ISD::UADDSAT) { 5044 // Just need to check overflow for SatMax. 5045 APInt MaxVal = APInt::getMaxValue(BitWidth); 5046 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5047 return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff); 5048 } else if (Opcode == ISD::USUBSAT) { 5049 // Just need to check overflow for SatMin. 5050 APInt MinVal = APInt::getMinValue(BitWidth); 5051 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5052 return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff); 5053 } else { 5054 // SatMax -> Overflow && SumDiff < 0 5055 // SatMin -> Overflow && SumDiff >= 0 5056 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5057 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5058 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5059 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5060 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5061 Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin); 5062 return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff); 5063 } 5064 } 5065