1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115 }
116 
117 /// Generate a libcall taking the given operands as arguments and returning a
118 /// result of type RetVT.
119 std::pair<SDValue, SDValue>
120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
121                             ArrayRef<SDValue> Ops, bool isSigned,
122                             const SDLoc &dl, bool doesNotReturn,
123                             bool isReturnValueUsed) const {
124   TargetLowering::ArgListTy Args;
125   Args.reserve(Ops.size());
126 
127   TargetLowering::ArgListEntry Entry;
128   for (SDValue Op : Ops) {
129     Entry.Node = Op;
130     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
131     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Args.push_back(Entry);
134   }
135 
136   if (LC == RTLIB::UNKNOWN_LIBCALL)
137     report_fatal_error("Unsupported library call operation!");
138   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
139                                          getPointerTy(DAG.getDataLayout()));
140 
141   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
142   TargetLowering::CallLoweringInfo CLI(DAG);
143   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
144   CLI.setDebugLoc(dl)
145       .setChain(DAG.getEntryNode())
146       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
147       .setNoReturn(doesNotReturn)
148       .setDiscardResult(!isReturnValueUsed)
149       .setSExtResult(signExtend)
150       .setZExtResult(!signExtend);
151   return LowerCallTo(CLI);
152 }
153 
154 /// Soften the operands of a comparison. This code is shared among BR_CC,
155 /// SELECT_CC, and SETCC handlers.
156 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
157                                          SDValue &NewLHS, SDValue &NewRHS,
158                                          ISD::CondCode &CCCode,
159                                          const SDLoc &dl) const {
160   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
161          && "Unsupported setcc type!");
162 
163   // Expand into one or more soft-fp libcall(s).
164   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
165   bool ShouldInvertCC = false;
166   switch (CCCode) {
167   case ISD::SETEQ:
168   case ISD::SETOEQ:
169     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
170           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
171           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
172     break;
173   case ISD::SETNE:
174   case ISD::SETUNE:
175     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
176           (VT == MVT::f64) ? RTLIB::UNE_F64 :
177           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
178     break;
179   case ISD::SETGE:
180   case ISD::SETOGE:
181     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
182           (VT == MVT::f64) ? RTLIB::OGE_F64 :
183           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
184     break;
185   case ISD::SETLT:
186   case ISD::SETOLT:
187     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
188           (VT == MVT::f64) ? RTLIB::OLT_F64 :
189           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
190     break;
191   case ISD::SETLE:
192   case ISD::SETOLE:
193     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
194           (VT == MVT::f64) ? RTLIB::OLE_F64 :
195           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
196     break;
197   case ISD::SETGT:
198   case ISD::SETOGT:
199     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
200           (VT == MVT::f64) ? RTLIB::OGT_F64 :
201           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
202     break;
203   case ISD::SETUO:
204     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
205           (VT == MVT::f64) ? RTLIB::UO_F64 :
206           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
207     break;
208   case ISD::SETO:
209     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
210           (VT == MVT::f64) ? RTLIB::O_F64 :
211           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
212     break;
213   case ISD::SETONE:
214     // SETONE = SETOLT | SETOGT
215     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
216           (VT == MVT::f64) ? RTLIB::OLT_F64 :
217           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
218     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
219           (VT == MVT::f64) ? RTLIB::OGT_F64 :
220           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
221     break;
222   case ISD::SETUEQ:
223     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
224           (VT == MVT::f64) ? RTLIB::UO_F64 :
225           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
226     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
227           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
228           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
229     break;
230   default:
231     // Invert CC for unordered comparisons
232     ShouldInvertCC = true;
233     switch (CCCode) {
234     case ISD::SETULT:
235       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
236             (VT == MVT::f64) ? RTLIB::OGE_F64 :
237             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
238       break;
239     case ISD::SETULE:
240       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
241             (VT == MVT::f64) ? RTLIB::OGT_F64 :
242             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
243       break;
244     case ISD::SETUGT:
245       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
246             (VT == MVT::f64) ? RTLIB::OLE_F64 :
247             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
248       break;
249     case ISD::SETUGE:
250       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
251             (VT == MVT::f64) ? RTLIB::OLT_F64 :
252             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
253       break;
254     default: llvm_unreachable("Do not know how to soften this setcc!");
255     }
256   }
257 
258   // Use the target specific return value for comparions lib calls.
259   EVT RetVT = getCmpLibcallReturnType();
260   SDValue Ops[2] = {NewLHS, NewRHS};
261   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
262                        dl).first;
263   NewRHS = DAG.getConstant(0, dl, RetVT);
264 
265   CCCode = getCmpLibcallCC(LC1);
266   if (ShouldInvertCC)
267     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
268 
269   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
270     SDValue Tmp = DAG.getNode(
271         ISD::SETCC, dl,
272         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
273         NewLHS, NewRHS, DAG.getCondCode(CCCode));
274     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
275                          dl).first;
276     NewLHS = DAG.getNode(
277         ISD::SETCC, dl,
278         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
279         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
280     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
281     NewRHS = SDValue();
282   }
283 }
284 
285 /// Return the entry encoding for a jump table in the current function. The
286 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
287 unsigned TargetLowering::getJumpTableEncoding() const {
288   // In non-pic modes, just use the address of a block.
289   if (!isPositionIndependent())
290     return MachineJumpTableInfo::EK_BlockAddress;
291 
292   // In PIC mode, if the target supports a GPRel32 directive, use it.
293   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
294     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
295 
296   // Otherwise, use a label difference.
297   return MachineJumpTableInfo::EK_LabelDifference32;
298 }
299 
300 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
301                                                  SelectionDAG &DAG) const {
302   // If our PIC model is GP relative, use the global offset table as the base.
303   unsigned JTEncoding = getJumpTableEncoding();
304 
305   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
306       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
307     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
308 
309   return Table;
310 }
311 
312 /// This returns the relocation base for the given PIC jumptable, the same as
313 /// getPICJumpTableRelocBase, but as an MCExpr.
314 const MCExpr *
315 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
316                                              unsigned JTI,MCContext &Ctx) const{
317   // The normal PIC reloc base is the label at the start of the jump table.
318   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
319 }
320 
321 bool
322 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
323   const TargetMachine &TM = getTargetMachine();
324   const GlobalValue *GV = GA->getGlobal();
325 
326   // If the address is not even local to this DSO we will have to load it from
327   // a got and then add the offset.
328   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
329     return false;
330 
331   // If the code is position independent we will have to add a base register.
332   if (isPositionIndependent())
333     return false;
334 
335   // Otherwise we can do it.
336   return true;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 //  Optimization Methods
341 //===----------------------------------------------------------------------===//
342 
343 /// If the specified instruction has a constant integer operand and there are
344 /// bits set in that constant that are not demanded, then clear those bits and
345 /// return true.
346 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
347                                             TargetLoweringOpt &TLO) const {
348   SelectionDAG &DAG = TLO.DAG;
349   SDLoc DL(Op);
350   unsigned Opcode = Op.getOpcode();
351 
352   // Do target-specific constant optimization.
353   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
354     return TLO.New.getNode();
355 
356   // FIXME: ISD::SELECT, ISD::SELECT_CC
357   switch (Opcode) {
358   default:
359     break;
360   case ISD::XOR:
361   case ISD::AND:
362   case ISD::OR: {
363     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
364     if (!Op1C)
365       return false;
366 
367     // If this is a 'not' op, don't touch it because that's a canonical form.
368     const APInt &C = Op1C->getAPIntValue();
369     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
370       return false;
371 
372     if (!C.isSubsetOf(Demanded)) {
373       EVT VT = Op.getValueType();
374       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
375       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
376       return TLO.CombineTo(Op, NewOp);
377     }
378 
379     break;
380   }
381   }
382 
383   return false;
384 }
385 
386 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
387 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
388 /// generalized for targets with other types of implicit widening casts.
389 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
390                                       const APInt &Demanded,
391                                       TargetLoweringOpt &TLO) const {
392   assert(Op.getNumOperands() == 2 &&
393          "ShrinkDemandedOp only supports binary operators!");
394   assert(Op.getNode()->getNumValues() == 1 &&
395          "ShrinkDemandedOp only supports nodes with one result!");
396 
397   SelectionDAG &DAG = TLO.DAG;
398   SDLoc dl(Op);
399 
400   // Early return, as this function cannot handle vector types.
401   if (Op.getValueType().isVector())
402     return false;
403 
404   // Don't do this if the node has another user, which may require the
405   // full value.
406   if (!Op.getNode()->hasOneUse())
407     return false;
408 
409   // Search for the smallest integer type with free casts to and from
410   // Op's type. For expedience, just check power-of-2 integer types.
411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
412   unsigned DemandedSize = Demanded.getActiveBits();
413   unsigned SmallVTBits = DemandedSize;
414   if (!isPowerOf2_32(SmallVTBits))
415     SmallVTBits = NextPowerOf2(SmallVTBits);
416   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
417     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
418     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
419         TLI.isZExtFree(SmallVT, Op.getValueType())) {
420       // We found a type with free casts.
421       SDValue X = DAG.getNode(
422           Op.getOpcode(), dl, SmallVT,
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
424           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
425       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
426       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
427       return TLO.CombineTo(Op, Z);
428     }
429   }
430   return false;
431 }
432 
433 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
434                                           DAGCombinerInfo &DCI) const {
435   SelectionDAG &DAG = DCI.DAG;
436   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
437                         !DCI.isBeforeLegalizeOps());
438   KnownBits Known;
439 
440   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
441   if (Simplified) {
442     DCI.AddToWorklist(Op.getNode());
443     DCI.CommitTargetLoweringOpt(TLO);
444   }
445   return Simplified;
446 }
447 
448 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
449                                           KnownBits &Known,
450                                           TargetLoweringOpt &TLO,
451                                           unsigned Depth,
452                                           bool AssumeSingleUse) const {
453   EVT VT = Op.getValueType();
454   APInt DemandedElts = VT.isVector()
455                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
456                            : APInt(1, 1);
457   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
458                               AssumeSingleUse);
459 }
460 
461 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
462 /// result of Op are ever used downstream. If we can use this information to
463 /// simplify Op, create a new simplified DAG node and return true, returning the
464 /// original and new nodes in Old and New. Otherwise, analyze the expression and
465 /// return a mask of Known bits for the expression (used to simplify the
466 /// caller).  The Known bits may only be accurate for those bits in the
467 /// OriginalDemandedBits and OriginalDemandedElts.
468 bool TargetLowering::SimplifyDemandedBits(
469     SDValue Op, const APInt &OriginalDemandedBits,
470     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
471     unsigned Depth, bool AssumeSingleUse) const {
472   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
473   assert(Op.getScalarValueSizeInBits() == BitWidth &&
474          "Mask size mismatches value type size!");
475 
476   unsigned NumElts = OriginalDemandedElts.getBitWidth();
477   assert((!Op.getValueType().isVector() ||
478           NumElts == Op.getValueType().getVectorNumElements()) &&
479          "Unexpected vector size");
480 
481   APInt DemandedBits = OriginalDemandedBits;
482   APInt DemandedElts = OriginalDemandedElts;
483   SDLoc dl(Op);
484   auto &DL = TLO.DAG.getDataLayout();
485 
486   // Don't know anything.
487   Known = KnownBits(BitWidth);
488 
489   if (Op.getOpcode() == ISD::Constant) {
490     // We know all of the bits for a constant!
491     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
492     Known.Zero = ~Known.One;
493     return false;
494   }
495 
496   // Other users may use these bits.
497   EVT VT = Op.getValueType();
498   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
499     if (Depth != 0) {
500       // If not at the root, Just compute the Known bits to
501       // simplify things downstream.
502       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
503       return false;
504     }
505     // If this is the root being simplified, allow it to have multiple uses,
506     // just set the DemandedBits/Elts to all bits.
507     DemandedBits = APInt::getAllOnesValue(BitWidth);
508     DemandedElts = APInt::getAllOnesValue(NumElts);
509   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
510     // Not demanding any bits/elts from Op.
511     if (!Op.isUndef())
512       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
513     return false;
514   } else if (Depth == 6) { // Limit search depth.
515     return false;
516   }
517 
518   KnownBits Known2, KnownOut;
519   switch (Op.getOpcode()) {
520   case ISD::BUILD_VECTOR:
521     // Collect the known bits that are shared by every constant vector element.
522     Known.Zero.setAllBits(); Known.One.setAllBits();
523     for (SDValue SrcOp : Op->ops()) {
524       if (!isa<ConstantSDNode>(SrcOp)) {
525         // We can only handle all constant values - bail out with no known bits.
526         Known = KnownBits(BitWidth);
527         return false;
528       }
529       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
530       Known2.Zero = ~Known2.One;
531 
532       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
533       if (Known2.One.getBitWidth() != BitWidth) {
534         assert(Known2.getBitWidth() > BitWidth &&
535                "Expected BUILD_VECTOR implicit truncation");
536         Known2 = Known2.trunc(BitWidth);
537       }
538 
539       // Known bits are the values that are shared by every element.
540       // TODO: support per-element known bits.
541       Known.One &= Known2.One;
542       Known.Zero &= Known2.Zero;
543     }
544     return false; // Don't fall through, will infinitely loop.
545   case ISD::CONCAT_VECTORS: {
546     Known.Zero.setAllBits();
547     Known.One.setAllBits();
548     EVT SubVT = Op.getOperand(0).getValueType();
549     unsigned NumSubVecs = Op.getNumOperands();
550     unsigned NumSubElts = SubVT.getVectorNumElements();
551     for (unsigned i = 0; i != NumSubVecs; ++i) {
552       APInt DemandedSubElts =
553           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
554       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
555                                Known2, TLO, Depth + 1))
556         return true;
557       // Known bits are shared by every demanded subvector element.
558       if (!!DemandedSubElts) {
559         Known.One &= Known2.One;
560         Known.Zero &= Known2.Zero;
561       }
562     }
563     break;
564   }
565   case ISD::VECTOR_SHUFFLE: {
566     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
567 
568     // Collect demanded elements from shuffle operands..
569     APInt DemandedLHS(NumElts, 0);
570     APInt DemandedRHS(NumElts, 0);
571     for (unsigned i = 0; i != NumElts; ++i) {
572       if (!DemandedElts[i])
573         continue;
574       int M = ShuffleMask[i];
575       if (M < 0) {
576         // For UNDEF elements, we don't know anything about the common state of
577         // the shuffle result.
578         DemandedLHS.clearAllBits();
579         DemandedRHS.clearAllBits();
580         break;
581       }
582       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
583       if (M < (int)NumElts)
584         DemandedLHS.setBit(M);
585       else
586         DemandedRHS.setBit(M - NumElts);
587     }
588 
589     if (!!DemandedLHS || !!DemandedRHS) {
590       Known.Zero.setAllBits();
591       Known.One.setAllBits();
592       if (!!DemandedLHS) {
593         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
594                                  Known2, TLO, Depth + 1))
595           return true;
596         Known.One &= Known2.One;
597         Known.Zero &= Known2.Zero;
598       }
599       if (!!DemandedRHS) {
600         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
601                                  Known2, TLO, Depth + 1))
602           return true;
603         Known.One &= Known2.One;
604         Known.Zero &= Known2.Zero;
605       }
606     }
607     break;
608   }
609   case ISD::AND: {
610     SDValue Op0 = Op.getOperand(0);
611     SDValue Op1 = Op.getOperand(1);
612 
613     // If the RHS is a constant, check to see if the LHS would be zero without
614     // using the bits from the RHS.  Below, we use knowledge about the RHS to
615     // simplify the LHS, here we're using information from the LHS to simplify
616     // the RHS.
617     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
618       // Do not increment Depth here; that can cause an infinite loop.
619       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
620       // If the LHS already has zeros where RHSC does, this 'and' is dead.
621       if ((LHSKnown.Zero & DemandedBits) ==
622           (~RHSC->getAPIntValue() & DemandedBits))
623         return TLO.CombineTo(Op, Op0);
624 
625       // If any of the set bits in the RHS are known zero on the LHS, shrink
626       // the constant.
627       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
628         return true;
629 
630       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
631       // constant, but if this 'and' is only clearing bits that were just set by
632       // the xor, then this 'and' can be eliminated by shrinking the mask of
633       // the xor. For example, for a 32-bit X:
634       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
635       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
636           LHSKnown.One == ~RHSC->getAPIntValue()) {
637         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
638         return TLO.CombineTo(Op, Xor);
639       }
640     }
641 
642     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
643       return true;
644     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
645     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO,
646                              Depth + 1))
647       return true;
648     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
649 
650     // If all of the demanded bits are known one on one side, return the other.
651     // These bits cannot contribute to the result of the 'and'.
652     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
653       return TLO.CombineTo(Op, Op0);
654     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
655       return TLO.CombineTo(Op, Op1);
656     // If all of the demanded bits in the inputs are known zeros, return zero.
657     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
658       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
659     // If the RHS is a constant, see if we can simplify it.
660     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
661       return true;
662     // If the operation can be done in a smaller type, do so.
663     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
664       return true;
665 
666     // Output known-1 bits are only known if set in both the LHS & RHS.
667     Known.One &= Known2.One;
668     // Output known-0 are known to be clear if zero in either the LHS | RHS.
669     Known.Zero |= Known2.Zero;
670     break;
671   }
672   case ISD::OR: {
673     SDValue Op0 = Op.getOperand(0);
674     SDValue Op1 = Op.getOperand(1);
675 
676     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
677       return true;
678     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
679     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO,
680                              Depth + 1))
681       return true;
682     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
683 
684     // If all of the demanded bits are known zero on one side, return the other.
685     // These bits cannot contribute to the result of the 'or'.
686     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
687       return TLO.CombineTo(Op, Op0);
688     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
689       return TLO.CombineTo(Op, Op1);
690     // If the RHS is a constant, see if we can simplify it.
691     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
692       return true;
693     // If the operation can be done in a smaller type, do so.
694     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
695       return true;
696 
697     // Output known-0 bits are only known if clear in both the LHS & RHS.
698     Known.Zero &= Known2.Zero;
699     // Output known-1 are known to be set if set in either the LHS | RHS.
700     Known.One |= Known2.One;
701     break;
702   }
703   case ISD::XOR: {
704     SDValue Op0 = Op.getOperand(0);
705     SDValue Op1 = Op.getOperand(1);
706 
707     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
708       return true;
709     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
710     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1))
711       return true;
712     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
713 
714     // If all of the demanded bits are known zero on one side, return the other.
715     // These bits cannot contribute to the result of the 'xor'.
716     if (DemandedBits.isSubsetOf(Known.Zero))
717       return TLO.CombineTo(Op, Op0);
718     if (DemandedBits.isSubsetOf(Known2.Zero))
719       return TLO.CombineTo(Op, Op1);
720     // If the operation can be done in a smaller type, do so.
721     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
722       return true;
723 
724     // If all of the unknown bits are known to be zero on one side or the other
725     // (but not both) turn this into an *inclusive* or.
726     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
727     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
728       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
729 
730     // Output known-0 bits are known if clear or set in both the LHS & RHS.
731     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
732     // Output known-1 are known to be set if set in only one of the LHS, RHS.
733     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
734 
735     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
736       // If one side is a constant, and all of the known set bits on the other
737       // side are also set in the constant, turn this into an AND, as we know
738       // the bits will be cleared.
739       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
740       // NB: it is okay if more bits are known than are requested
741       if (C->getAPIntValue() == Known2.One) {
742         SDValue ANDC =
743             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
744         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
745       }
746 
747       // If the RHS is a constant, see if we can change it. Don't alter a -1
748       // constant because that's a 'not' op, and that is better for combining
749       // and codegen.
750       if (!C->isAllOnesValue()) {
751         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
752           // We're flipping all demanded bits. Flip the undemanded bits too.
753           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
754           return TLO.CombineTo(Op, New);
755         }
756         // If we can't turn this into a 'not', try to shrink the constant.
757         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
758           return true;
759       }
760     }
761 
762     Known = std::move(KnownOut);
763     break;
764   }
765   case ISD::SELECT:
766     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
767                              Depth + 1))
768       return true;
769     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
770                              Depth + 1))
771       return true;
772     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
773     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
774 
775     // If the operands are constants, see if we can simplify them.
776     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
777       return true;
778 
779     // Only known if known in both the LHS and RHS.
780     Known.One &= Known2.One;
781     Known.Zero &= Known2.Zero;
782     break;
783   case ISD::SELECT_CC:
784     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
785                              Depth + 1))
786       return true;
787     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
788                              Depth + 1))
789       return true;
790     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
791     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
792 
793     // If the operands are constants, see if we can simplify them.
794     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
795       return true;
796 
797     // Only known if known in both the LHS and RHS.
798     Known.One &= Known2.One;
799     Known.Zero &= Known2.Zero;
800     break;
801   case ISD::SETCC: {
802     SDValue Op0 = Op.getOperand(0);
803     SDValue Op1 = Op.getOperand(1);
804     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
805     // If (1) we only need the sign-bit, (2) the setcc operands are the same
806     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
807     // -1, we may be able to bypass the setcc.
808     if (DemandedBits.isSignMask() &&
809         Op0.getScalarValueSizeInBits() == BitWidth &&
810         getBooleanContents(VT) ==
811             BooleanContent::ZeroOrNegativeOneBooleanContent) {
812       // If we're testing X < 0, then this compare isn't needed - just use X!
813       // FIXME: We're limiting to integer types here, but this should also work
814       // if we don't care about FP signed-zero. The use of SETLT with FP means
815       // that we don't care about NaNs.
816       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
817           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
818         return TLO.CombineTo(Op, Op0);
819 
820       // TODO: Should we check for other forms of sign-bit comparisons?
821       // Examples: X <= -1, X >= 0
822     }
823     if (getBooleanContents(Op0.getValueType()) ==
824             TargetLowering::ZeroOrOneBooleanContent &&
825         BitWidth > 1)
826       Known.Zero.setBitsFrom(1);
827     break;
828   }
829   case ISD::SHL: {
830     SDValue Op0 = Op.getOperand(0);
831     SDValue Op1 = Op.getOperand(1);
832 
833     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
834       // If the shift count is an invalid immediate, don't do anything.
835       if (SA->getAPIntValue().uge(BitWidth))
836         break;
837 
838       unsigned ShAmt = SA->getZExtValue();
839 
840       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
841       // single shift.  We can do this if the bottom bits (which are shifted
842       // out) are never demanded.
843       if (Op0.getOpcode() == ISD::SRL) {
844         if (ShAmt &&
845             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
846           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
847             if (SA2->getAPIntValue().ult(BitWidth)) {
848               unsigned C1 = SA2->getZExtValue();
849               unsigned Opc = ISD::SHL;
850               int Diff = ShAmt - C1;
851               if (Diff < 0) {
852                 Diff = -Diff;
853                 Opc = ISD::SRL;
854               }
855 
856               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
857               return TLO.CombineTo(
858                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
859             }
860           }
861         }
862       }
863 
864       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO,
865                                Depth + 1))
866         return true;
867 
868       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
869       // are not demanded. This will likely allow the anyext to be folded away.
870       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
871         SDValue InnerOp = Op0.getOperand(0);
872         EVT InnerVT = InnerOp.getValueType();
873         unsigned InnerBits = InnerVT.getScalarSizeInBits();
874         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
875             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
876           EVT ShTy = getShiftAmountTy(InnerVT, DL);
877           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
878             ShTy = InnerVT;
879           SDValue NarrowShl =
880               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
881                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
882           return TLO.CombineTo(
883               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
884         }
885         // Repeat the SHL optimization above in cases where an extension
886         // intervenes: (shl (anyext (shr x, c1)), c2) to
887         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
888         // aren't demanded (as above) and that the shifted upper c1 bits of
889         // x aren't demanded.
890         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
891             InnerOp.hasOneUse()) {
892           if (ConstantSDNode *SA2 =
893                   isConstOrConstSplat(InnerOp.getOperand(1))) {
894             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
895             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
896                 DemandedBits.getActiveBits() <=
897                     (InnerBits - InnerShAmt + ShAmt) &&
898                 DemandedBits.countTrailingZeros() >= ShAmt) {
899               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
900                                                   Op1.getValueType());
901               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
902                                                InnerOp.getOperand(0));
903               return TLO.CombineTo(
904                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
905             }
906           }
907         }
908       }
909 
910       Known.Zero <<= ShAmt;
911       Known.One <<= ShAmt;
912       // low bits known zero.
913       Known.Zero.setLowBits(ShAmt);
914     }
915     break;
916   }
917   case ISD::SRL: {
918     SDValue Op0 = Op.getOperand(0);
919     SDValue Op1 = Op.getOperand(1);
920 
921     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
922       // If the shift count is an invalid immediate, don't do anything.
923       if (SA->getAPIntValue().uge(BitWidth))
924         break;
925 
926       unsigned ShAmt = SA->getZExtValue();
927       APInt InDemandedMask = (DemandedBits << ShAmt);
928 
929       // If the shift is exact, then it does demand the low bits (and knows that
930       // they are zero).
931       if (Op->getFlags().hasExact())
932         InDemandedMask.setLowBits(ShAmt);
933 
934       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
935       // single shift.  We can do this if the top bits (which are shifted out)
936       // are never demanded.
937       if (Op0.getOpcode() == ISD::SHL) {
938         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
939           if (ShAmt &&
940               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
941             if (SA2->getAPIntValue().ult(BitWidth)) {
942               unsigned C1 = SA2->getZExtValue();
943               unsigned Opc = ISD::SRL;
944               int Diff = ShAmt - C1;
945               if (Diff < 0) {
946                 Diff = -Diff;
947                 Opc = ISD::SHL;
948               }
949 
950               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
951               return TLO.CombineTo(
952                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
953             }
954           }
955         }
956       }
957 
958       // Compute the new bits that are at the top now.
959       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
960         return true;
961       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
962       Known.Zero.lshrInPlace(ShAmt);
963       Known.One.lshrInPlace(ShAmt);
964 
965       Known.Zero.setHighBits(ShAmt); // High bits known zero.
966     }
967     break;
968   }
969   case ISD::SRA: {
970     SDValue Op0 = Op.getOperand(0);
971     SDValue Op1 = Op.getOperand(1);
972 
973     // If this is an arithmetic shift right and only the low-bit is set, we can
974     // always convert this into a logical shr, even if the shift amount is
975     // variable.  The low bit of the shift cannot be an input sign bit unless
976     // the shift amount is >= the size of the datatype, which is undefined.
977     if (DemandedBits.isOneValue())
978       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
979 
980     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
981       // If the shift count is an invalid immediate, don't do anything.
982       if (SA->getAPIntValue().uge(BitWidth))
983         break;
984 
985       unsigned ShAmt = SA->getZExtValue();
986       APInt InDemandedMask = (DemandedBits << ShAmt);
987 
988       // If the shift is exact, then it does demand the low bits (and knows that
989       // they are zero).
990       if (Op->getFlags().hasExact())
991         InDemandedMask.setLowBits(ShAmt);
992 
993       // If any of the demanded bits are produced by the sign extension, we also
994       // demand the input sign bit.
995       if (DemandedBits.countLeadingZeros() < ShAmt)
996         InDemandedMask.setSignBit();
997 
998       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
999         return true;
1000       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1001       Known.Zero.lshrInPlace(ShAmt);
1002       Known.One.lshrInPlace(ShAmt);
1003 
1004       // If the input sign bit is known to be zero, or if none of the top bits
1005       // are demanded, turn this into an unsigned shift right.
1006       if (Known.Zero[BitWidth - ShAmt - 1] ||
1007           DemandedBits.countLeadingZeros() >= ShAmt) {
1008         SDNodeFlags Flags;
1009         Flags.setExact(Op->getFlags().hasExact());
1010         return TLO.CombineTo(
1011             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1012       }
1013 
1014       int Log2 = DemandedBits.exactLogBase2();
1015       if (Log2 >= 0) {
1016         // The bit must come from the sign.
1017         SDValue NewSA =
1018             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1019         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1020       }
1021 
1022       if (Known.One[BitWidth - ShAmt - 1])
1023         // New bits are known one.
1024         Known.One.setHighBits(ShAmt);
1025     }
1026     break;
1027   }
1028   case ISD::FSHL:
1029   case ISD::FSHR: {
1030     SDValue Op0 = Op.getOperand(0);
1031     SDValue Op1 = Op.getOperand(1);
1032     SDValue Op2 = Op.getOperand(2);
1033     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1034 
1035     if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) {
1036       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1037 
1038       // For fshl, 0-shift returns the 1st arg.
1039       // For fshr, 0-shift returns the 2nd arg.
1040       if (Amt == 0) {
1041         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1042                                  Known, TLO, Depth + 1))
1043           return true;
1044         break;
1045       }
1046 
1047       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1048       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1049       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1050       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1051       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1052                                Depth + 1))
1053         return true;
1054       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1055                                Depth + 1))
1056         return true;
1057 
1058       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1059       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1060       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1061       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1062       Known.One |= Known2.One;
1063       Known.Zero |= Known2.Zero;
1064     }
1065     break;
1066   }
1067   case ISD::SIGN_EXTEND_INREG: {
1068     SDValue Op0 = Op.getOperand(0);
1069     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1070     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1071 
1072     // If we only care about the highest bit, don't bother shifting right.
1073     if (DemandedBits.isSignMask()) {
1074       bool AlreadySignExtended =
1075           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
1076       // However if the input is already sign extended we expect the sign
1077       // extension to be dropped altogether later and do not simplify.
1078       if (!AlreadySignExtended) {
1079         // Compute the correct shift amount type, which must be getShiftAmountTy
1080         // for scalar types after legalization.
1081         EVT ShiftAmtTy = VT;
1082         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1083           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1084 
1085         SDValue ShiftAmt =
1086             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1087         return TLO.CombineTo(Op,
1088                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1089       }
1090     }
1091 
1092     // If none of the extended bits are demanded, eliminate the sextinreg.
1093     if (DemandedBits.getActiveBits() <= ExVTBits)
1094       return TLO.CombineTo(Op, Op0);
1095 
1096     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1097 
1098     // Since the sign extended bits are demanded, we know that the sign
1099     // bit is demanded.
1100     InputDemandedBits.setBit(ExVTBits - 1);
1101 
1102     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1103       return true;
1104     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1105 
1106     // If the sign bit of the input is known set or clear, then we know the
1107     // top bits of the result.
1108 
1109     // If the input sign bit is known zero, convert this into a zero extension.
1110     if (Known.Zero[ExVTBits - 1])
1111       return TLO.CombineTo(
1112           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1113 
1114     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1115     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1116       Known.One.setBitsFrom(ExVTBits);
1117       Known.Zero &= Mask;
1118     } else { // Input sign bit unknown
1119       Known.Zero &= Mask;
1120       Known.One &= Mask;
1121     }
1122     break;
1123   }
1124   case ISD::BUILD_PAIR: {
1125     EVT HalfVT = Op.getOperand(0).getValueType();
1126     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1127 
1128     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1129     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1130 
1131     KnownBits KnownLo, KnownHi;
1132 
1133     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1134       return true;
1135 
1136     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1137       return true;
1138 
1139     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1140                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1141 
1142     Known.One = KnownLo.One.zext(BitWidth) |
1143                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1144     break;
1145   }
1146   case ISD::ZERO_EXTEND: {
1147     SDValue Src = Op.getOperand(0);
1148     unsigned InBits = Src.getScalarValueSizeInBits();
1149 
1150     // If none of the top bits are demanded, convert this into an any_extend.
1151     if (DemandedBits.getActiveBits() <= InBits)
1152       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1153 
1154     APInt InDemandedBits = DemandedBits.trunc(InBits);
1155     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1156       return true;
1157     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1158     Known = Known.zext(BitWidth);
1159     Known.Zero.setBitsFrom(InBits);
1160     break;
1161   }
1162   case ISD::SIGN_EXTEND: {
1163     SDValue Src = Op.getOperand(0);
1164     unsigned InBits = Src.getScalarValueSizeInBits();
1165 
1166     // If none of the top bits are demanded, convert this into an any_extend.
1167     if (DemandedBits.getActiveBits() <= InBits)
1168       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1169 
1170     // Since some of the sign extended bits are demanded, we know that the sign
1171     // bit is demanded.
1172     APInt InDemandedBits = DemandedBits.trunc(InBits);
1173     InDemandedBits.setBit(InBits - 1);
1174 
1175     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1176       return true;
1177     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1178     // If the sign bit is known one, the top bits match.
1179     Known = Known.sext(BitWidth);
1180 
1181     // If the sign bit is known zero, convert this to a zero extend.
1182     if (Known.isNonNegative())
1183       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1184     break;
1185   }
1186   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1187     // TODO - merge this with SIGN_EXTEND above?
1188     SDValue Src = Op.getOperand(0);
1189     unsigned InBits = Src.getScalarValueSizeInBits();
1190 
1191     APInt InDemandedBits = DemandedBits.trunc(InBits);
1192 
1193     // If some of the sign extended bits are demanded, we know that the sign
1194     // bit is demanded.
1195     if (InBits < DemandedBits.getActiveBits())
1196       InDemandedBits.setBit(InBits - 1);
1197 
1198     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1199       return true;
1200     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1201     // If the sign bit is known one, the top bits match.
1202     Known = Known.sext(BitWidth);
1203     break;
1204   }
1205   case ISD::ANY_EXTEND: {
1206     SDValue Src = Op.getOperand(0);
1207     unsigned InBits = Src.getScalarValueSizeInBits();
1208     APInt InDemandedBits = DemandedBits.trunc(InBits);
1209     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1210       return true;
1211     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1212     Known = Known.zext(BitWidth);
1213     break;
1214   }
1215   case ISD::TRUNCATE: {
1216     SDValue Src = Op.getOperand(0);
1217 
1218     // Simplify the input, using demanded bit information, and compute the known
1219     // zero/one bits live out.
1220     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1221     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1222     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1223       return true;
1224     Known = Known.trunc(BitWidth);
1225 
1226     // If the input is only used by this truncate, see if we can shrink it based
1227     // on the known demanded bits.
1228     if (Src.getNode()->hasOneUse()) {
1229       switch (Src.getOpcode()) {
1230       default:
1231         break;
1232       case ISD::SRL:
1233         // Shrink SRL by a constant if none of the high bits shifted in are
1234         // demanded.
1235         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1236           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1237           // undesirable.
1238           break;
1239         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1240         if (!ShAmt)
1241           break;
1242         SDValue Shift = Src.getOperand(1);
1243         if (TLO.LegalTypes()) {
1244           uint64_t ShVal = ShAmt->getZExtValue();
1245           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1246         }
1247 
1248         if (ShAmt->getZExtValue() < BitWidth) {
1249           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1250                                                  OperandBitWidth - BitWidth);
1251           HighBits.lshrInPlace(ShAmt->getZExtValue());
1252           HighBits = HighBits.trunc(BitWidth);
1253 
1254           if (!(HighBits & DemandedBits)) {
1255             // None of the shifted in bits are needed.  Add a truncate of the
1256             // shift input, then shift it.
1257             SDValue NewTrunc =
1258                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1259             return TLO.CombineTo(
1260                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1261           }
1262         }
1263         break;
1264       }
1265     }
1266 
1267     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1268     break;
1269   }
1270   case ISD::AssertZext: {
1271     // AssertZext demands all of the high bits, plus any of the low bits
1272     // demanded by its users.
1273     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1274     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1275     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
1276                              Known, TLO, Depth+1))
1277       return true;
1278     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1279 
1280     Known.Zero |= ~InMask;
1281     break;
1282   }
1283   case ISD::EXTRACT_VECTOR_ELT: {
1284     SDValue Src = Op.getOperand(0);
1285     SDValue Idx = Op.getOperand(1);
1286     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1287     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1288 
1289     // Demand the bits from every vector element without a constant index.
1290     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1291     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1292       if (CIdx->getAPIntValue().ult(NumSrcElts))
1293         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1294 
1295     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1296     // anything about the extended bits.
1297     APInt DemandedSrcBits = DemandedBits;
1298     if (BitWidth > EltBitWidth)
1299       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1300 
1301     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1302                              Depth + 1))
1303       return true;
1304 
1305     Known = Known2;
1306     if (BitWidth > EltBitWidth)
1307       Known = Known.zext(BitWidth);
1308     break;
1309   }
1310   case ISD::BITCAST: {
1311     SDValue Src = Op.getOperand(0);
1312     EVT SrcVT = Src.getValueType();
1313     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1314 
1315     // If this is an FP->Int bitcast and if the sign bit is the only
1316     // thing demanded, turn this into a FGETSIGN.
1317     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1318         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1319         SrcVT.isFloatingPoint()) {
1320       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1321       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1322       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1323           SrcVT != MVT::f128) {
1324         // Cannot eliminate/lower SHL for f128 yet.
1325         EVT Ty = OpVTLegal ? VT : MVT::i32;
1326         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1327         // place.  We expect the SHL to be eliminated by other optimizations.
1328         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1329         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1330         if (!OpVTLegal && OpVTSizeInBits > 32)
1331           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1332         unsigned ShVal = Op.getValueSizeInBits() - 1;
1333         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1334         return TLO.CombineTo(Op,
1335                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1336       }
1337     }
1338     // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
1339     // demanding the element if any bits from it are demanded.
1340     // TODO - bigendian once we have test coverage.
1341     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1342     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1343         (BitWidth % NumSrcEltBits) == 0 &&
1344         TLO.DAG.getDataLayout().isLittleEndian()) {
1345       unsigned Scale = BitWidth / NumSrcEltBits;
1346       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
1347         DemandedSubElts = APInt::getNullValue(Scale);
1348         for (unsigned i = 0; i != Scale; ++i) {
1349           unsigned Offset = i * NumSrcEltBits;
1350           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1351           if (!Sub.isNullValue())
1352             DemandedSubElts.setBit(i);
1353         }
1354         return true;
1355       };
1356 
1357       APInt DemandedSubElts;
1358       if (GetDemandedSubMask(DemandedSubElts)) {
1359         unsigned NumSrcElts = SrcVT.getVectorNumElements();
1360         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
1361 
1362         APInt KnownUndef, KnownZero;
1363         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
1364                                        TLO, Depth + 1))
1365           return true;
1366       }
1367     }
1368     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1369     // recursive call where Known may be useful to the caller.
1370     if (Depth > 0) {
1371       Known = TLO.DAG.computeKnownBits(Op, Depth);
1372       return false;
1373     }
1374     break;
1375   }
1376   case ISD::ADD:
1377   case ISD::MUL:
1378   case ISD::SUB: {
1379     // Add, Sub, and Mul don't demand any bits in positions beyond that
1380     // of the highest bit demanded of them.
1381     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1382     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1383     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1384     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1385         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1386         // See if the operation should be performed at a smaller bit width.
1387         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1388       SDNodeFlags Flags = Op.getNode()->getFlags();
1389       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1390         // Disable the nsw and nuw flags. We can no longer guarantee that we
1391         // won't wrap after simplification.
1392         Flags.setNoSignedWrap(false);
1393         Flags.setNoUnsignedWrap(false);
1394         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1395                                         Flags);
1396         return TLO.CombineTo(Op, NewOp);
1397       }
1398       return true;
1399     }
1400 
1401     // If we have a constant operand, we may be able to turn it into -1 if we
1402     // do not demand the high bits. This can make the constant smaller to
1403     // encode, allow more general folding, or match specialized instruction
1404     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1405     // is probably not useful (and could be detrimental).
1406     ConstantSDNode *C = isConstOrConstSplat(Op1);
1407     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1408     if (C && !C->isAllOnesValue() && !C->isOne() &&
1409         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1410       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1411       // We can't guarantee that the new math op doesn't wrap, so explicitly
1412       // clear those flags to prevent folding with a potential existing node
1413       // that has those flags set.
1414       SDNodeFlags Flags;
1415       Flags.setNoSignedWrap(false);
1416       Flags.setNoUnsignedWrap(false);
1417       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1418       return TLO.CombineTo(Op, NewOp);
1419     }
1420 
1421     LLVM_FALLTHROUGH;
1422   }
1423   default:
1424     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1425       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1426                                             Known, TLO, Depth))
1427         return true;
1428       break;
1429     }
1430 
1431     // Just use computeKnownBits to compute output bits.
1432     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1433     break;
1434   }
1435 
1436   // If we know the value of all of the demanded bits, return this as a
1437   // constant.
1438   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1439     // Avoid folding to a constant if any OpaqueConstant is involved.
1440     const SDNode *N = Op.getNode();
1441     for (SDNodeIterator I = SDNodeIterator::begin(N),
1442                         E = SDNodeIterator::end(N);
1443          I != E; ++I) {
1444       SDNode *Op = *I;
1445       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1446         if (C->isOpaque())
1447           return false;
1448     }
1449     // TODO: Handle float bits as well.
1450     if (VT.isInteger())
1451       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1452   }
1453 
1454   return false;
1455 }
1456 
1457 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1458                                                 const APInt &DemandedElts,
1459                                                 APInt &KnownUndef,
1460                                                 APInt &KnownZero,
1461                                                 DAGCombinerInfo &DCI) const {
1462   SelectionDAG &DAG = DCI.DAG;
1463   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1464                         !DCI.isBeforeLegalizeOps());
1465 
1466   bool Simplified =
1467       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1468   if (Simplified) {
1469     DCI.AddToWorklist(Op.getNode());
1470     DCI.CommitTargetLoweringOpt(TLO);
1471   }
1472   return Simplified;
1473 }
1474 
1475 /// Given a vector binary operation and known undefined elements for each input
1476 /// operand, compute whether each element of the output is undefined.
1477 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1478                                          const APInt &UndefOp0,
1479                                          const APInt &UndefOp1) {
1480   EVT VT = BO.getValueType();
1481   assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only");
1482 
1483   EVT EltVT = VT.getVectorElementType();
1484   unsigned NumElts = VT.getVectorNumElements();
1485   assert(UndefOp0.getBitWidth() == NumElts &&
1486          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1487 
1488   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1489                                    const APInt &UndefVals) {
1490     if (UndefVals[Index])
1491       return DAG.getUNDEF(EltVT);
1492 
1493     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1494       // Try hard to make sure that the getNode() call is not creating temporary
1495       // nodes. Ignore opaque integers because they do not constant fold.
1496       SDValue Elt = BV->getOperand(Index);
1497       auto *C = dyn_cast<ConstantSDNode>(Elt);
1498       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
1499         return Elt;
1500     }
1501 
1502     return SDValue();
1503   };
1504 
1505   APInt KnownUndef = APInt::getNullValue(NumElts);
1506   for (unsigned i = 0; i != NumElts; ++i) {
1507     // If both inputs for this element are either constant or undef and match
1508     // the element type, compute the constant/undef result for this element of
1509     // the vector.
1510     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
1511     // not handle FP constants. The code within getNode() should be refactored
1512     // to avoid the danger of creating a bogus temporary node here.
1513     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
1514     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
1515     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
1516       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
1517         KnownUndef.setBit(i);
1518   }
1519   return KnownUndef;
1520 }
1521 
1522 bool TargetLowering::SimplifyDemandedVectorElts(
1523     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1524     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1525     bool AssumeSingleUse) const {
1526   EVT VT = Op.getValueType();
1527   APInt DemandedElts = DemandedEltMask;
1528   unsigned NumElts = DemandedElts.getBitWidth();
1529   assert(VT.isVector() && "Expected vector op");
1530   assert(VT.getVectorNumElements() == NumElts &&
1531          "Mask size mismatches value type element count!");
1532 
1533   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1534 
1535   // Undef operand.
1536   if (Op.isUndef()) {
1537     KnownUndef.setAllBits();
1538     return false;
1539   }
1540 
1541   // If Op has other users, assume that all elements are needed.
1542   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1543     DemandedElts.setAllBits();
1544 
1545   // Not demanding any elements from Op.
1546   if (DemandedElts == 0) {
1547     KnownUndef.setAllBits();
1548     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1549   }
1550 
1551   // Limit search depth.
1552   if (Depth >= 6)
1553     return false;
1554 
1555   SDLoc DL(Op);
1556   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1557 
1558   switch (Op.getOpcode()) {
1559   case ISD::SCALAR_TO_VECTOR: {
1560     if (!DemandedElts[0]) {
1561       KnownUndef.setAllBits();
1562       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1563     }
1564     KnownUndef.setHighBits(NumElts - 1);
1565     break;
1566   }
1567   case ISD::BITCAST: {
1568     SDValue Src = Op.getOperand(0);
1569     EVT SrcVT = Src.getValueType();
1570 
1571     // We only handle vectors here.
1572     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1573     if (!SrcVT.isVector())
1574       break;
1575 
1576     // Fast handling of 'identity' bitcasts.
1577     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1578     if (NumSrcElts == NumElts)
1579       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1580                                         KnownZero, TLO, Depth + 1);
1581 
1582     APInt SrcZero, SrcUndef;
1583     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1584 
1585     // Bitcast from 'large element' src vector to 'small element' vector, we
1586     // must demand a source element if any DemandedElt maps to it.
1587     if ((NumElts % NumSrcElts) == 0) {
1588       unsigned Scale = NumElts / NumSrcElts;
1589       for (unsigned i = 0; i != NumElts; ++i)
1590         if (DemandedElts[i])
1591           SrcDemandedElts.setBit(i / Scale);
1592 
1593       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1594                                      TLO, Depth + 1))
1595         return true;
1596 
1597       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1598       // of the large element.
1599       // TODO - bigendian once we have test coverage.
1600       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1601         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1602         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1603         for (unsigned i = 0; i != NumElts; ++i)
1604           if (DemandedElts[i]) {
1605             unsigned Ofs = (i % Scale) * EltSizeInBits;
1606             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1607           }
1608 
1609         KnownBits Known;
1610         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1611           return true;
1612       }
1613 
1614       // If the src element is zero/undef then all the output elements will be -
1615       // only demanded elements are guaranteed to be correct.
1616       for (unsigned i = 0; i != NumSrcElts; ++i) {
1617         if (SrcDemandedElts[i]) {
1618           if (SrcZero[i])
1619             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1620           if (SrcUndef[i])
1621             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1622         }
1623       }
1624     }
1625 
1626     // Bitcast from 'small element' src vector to 'large element' vector, we
1627     // demand all smaller source elements covered by the larger demanded element
1628     // of this vector.
1629     if ((NumSrcElts % NumElts) == 0) {
1630       unsigned Scale = NumSrcElts / NumElts;
1631       for (unsigned i = 0; i != NumElts; ++i)
1632         if (DemandedElts[i])
1633           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1634 
1635       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1636                                      TLO, Depth + 1))
1637         return true;
1638 
1639       // If all the src elements covering an output element are zero/undef, then
1640       // the output element will be as well, assuming it was demanded.
1641       for (unsigned i = 0; i != NumElts; ++i) {
1642         if (DemandedElts[i]) {
1643           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1644             KnownZero.setBit(i);
1645           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1646             KnownUndef.setBit(i);
1647         }
1648       }
1649     }
1650     break;
1651   }
1652   case ISD::BUILD_VECTOR: {
1653     // Check all elements and simplify any unused elements with UNDEF.
1654     if (!DemandedElts.isAllOnesValue()) {
1655       // Don't simplify BROADCASTS.
1656       if (llvm::any_of(Op->op_values(),
1657                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1658         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1659         bool Updated = false;
1660         for (unsigned i = 0; i != NumElts; ++i) {
1661           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1662             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1663             KnownUndef.setBit(i);
1664             Updated = true;
1665           }
1666         }
1667         if (Updated)
1668           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1669       }
1670     }
1671     for (unsigned i = 0; i != NumElts; ++i) {
1672       SDValue SrcOp = Op.getOperand(i);
1673       if (SrcOp.isUndef()) {
1674         KnownUndef.setBit(i);
1675       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1676                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1677         KnownZero.setBit(i);
1678       }
1679     }
1680     break;
1681   }
1682   case ISD::CONCAT_VECTORS: {
1683     EVT SubVT = Op.getOperand(0).getValueType();
1684     unsigned NumSubVecs = Op.getNumOperands();
1685     unsigned NumSubElts = SubVT.getVectorNumElements();
1686     for (unsigned i = 0; i != NumSubVecs; ++i) {
1687       SDValue SubOp = Op.getOperand(i);
1688       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1689       APInt SubUndef, SubZero;
1690       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1691                                      Depth + 1))
1692         return true;
1693       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1694       KnownZero.insertBits(SubZero, i * NumSubElts);
1695     }
1696     break;
1697   }
1698   case ISD::INSERT_SUBVECTOR: {
1699     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1700       break;
1701     SDValue Base = Op.getOperand(0);
1702     SDValue Sub = Op.getOperand(1);
1703     EVT SubVT = Sub.getValueType();
1704     unsigned NumSubElts = SubVT.getVectorNumElements();
1705     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1706     if (Idx.ugt(NumElts - NumSubElts))
1707       break;
1708     unsigned SubIdx = Idx.getZExtValue();
1709     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1710     APInt SubUndef, SubZero;
1711     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1712                                    Depth + 1))
1713       return true;
1714     APInt BaseElts = DemandedElts;
1715     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1716     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1717                                    Depth + 1))
1718       return true;
1719     KnownUndef.insertBits(SubUndef, SubIdx);
1720     KnownZero.insertBits(SubZero, SubIdx);
1721     break;
1722   }
1723   case ISD::EXTRACT_SUBVECTOR: {
1724     SDValue Src = Op.getOperand(0);
1725     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1726     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1727     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1728       // Offset the demanded elts by the subvector index.
1729       uint64_t Idx = SubIdx->getZExtValue();
1730       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1731       APInt SrcUndef, SrcZero;
1732       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1733                                      Depth + 1))
1734         return true;
1735       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1736       KnownZero = SrcZero.extractBits(NumElts, Idx);
1737     }
1738     break;
1739   }
1740   case ISD::INSERT_VECTOR_ELT: {
1741     SDValue Vec = Op.getOperand(0);
1742     SDValue Scl = Op.getOperand(1);
1743     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1744 
1745     // For a legal, constant insertion index, if we don't need this insertion
1746     // then strip it, else remove it from the demanded elts.
1747     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1748       unsigned Idx = CIdx->getZExtValue();
1749       if (!DemandedElts[Idx])
1750         return TLO.CombineTo(Op, Vec);
1751 
1752       APInt DemandedVecElts(DemandedElts);
1753       DemandedVecElts.clearBit(Idx);
1754       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1755                                      KnownZero, TLO, Depth + 1))
1756         return true;
1757 
1758       KnownUndef.clearBit(Idx);
1759       if (Scl.isUndef())
1760         KnownUndef.setBit(Idx);
1761 
1762       KnownZero.clearBit(Idx);
1763       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1764         KnownZero.setBit(Idx);
1765       break;
1766     }
1767 
1768     APInt VecUndef, VecZero;
1769     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1770                                    Depth + 1))
1771       return true;
1772     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1773     break;
1774   }
1775   case ISD::VSELECT: {
1776     // Try to transform the select condition based on the current demanded
1777     // elements.
1778     // TODO: If a condition element is undef, we can choose from one arm of the
1779     //       select (and if one arm is undef, then we can propagate that to the
1780     //       result).
1781     // TODO - add support for constant vselect masks (see IR version of this).
1782     APInt UnusedUndef, UnusedZero;
1783     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1784                                    UnusedZero, TLO, Depth + 1))
1785       return true;
1786 
1787     // See if we can simplify either vselect operand.
1788     APInt DemandedLHS(DemandedElts);
1789     APInt DemandedRHS(DemandedElts);
1790     APInt UndefLHS, ZeroLHS;
1791     APInt UndefRHS, ZeroRHS;
1792     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1793                                    ZeroLHS, TLO, Depth + 1))
1794       return true;
1795     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1796                                    ZeroRHS, TLO, Depth + 1))
1797       return true;
1798 
1799     KnownUndef = UndefLHS & UndefRHS;
1800     KnownZero = ZeroLHS & ZeroRHS;
1801     break;
1802   }
1803   case ISD::VECTOR_SHUFFLE: {
1804     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1805 
1806     // Collect demanded elements from shuffle operands..
1807     APInt DemandedLHS(NumElts, 0);
1808     APInt DemandedRHS(NumElts, 0);
1809     for (unsigned i = 0; i != NumElts; ++i) {
1810       int M = ShuffleMask[i];
1811       if (M < 0 || !DemandedElts[i])
1812         continue;
1813       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1814       if (M < (int)NumElts)
1815         DemandedLHS.setBit(M);
1816       else
1817         DemandedRHS.setBit(M - NumElts);
1818     }
1819 
1820     // See if we can simplify either shuffle operand.
1821     APInt UndefLHS, ZeroLHS;
1822     APInt UndefRHS, ZeroRHS;
1823     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1824                                    ZeroLHS, TLO, Depth + 1))
1825       return true;
1826     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1827                                    ZeroRHS, TLO, Depth + 1))
1828       return true;
1829 
1830     // Simplify mask using undef elements from LHS/RHS.
1831     bool Updated = false;
1832     bool IdentityLHS = true, IdentityRHS = true;
1833     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1834     for (unsigned i = 0; i != NumElts; ++i) {
1835       int &M = NewMask[i];
1836       if (M < 0)
1837         continue;
1838       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1839           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1840         Updated = true;
1841         M = -1;
1842       }
1843       IdentityLHS &= (M < 0) || (M == (int)i);
1844       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1845     }
1846 
1847     // Update legal shuffle masks based on demanded elements if it won't reduce
1848     // to Identity which can cause premature removal of the shuffle mask.
1849     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1850         isShuffleMaskLegal(NewMask, VT))
1851       return TLO.CombineTo(Op,
1852                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1853                                                     Op.getOperand(1), NewMask));
1854 
1855     // Propagate undef/zero elements from LHS/RHS.
1856     for (unsigned i = 0; i != NumElts; ++i) {
1857       int M = ShuffleMask[i];
1858       if (M < 0) {
1859         KnownUndef.setBit(i);
1860       } else if (M < (int)NumElts) {
1861         if (UndefLHS[M])
1862           KnownUndef.setBit(i);
1863         if (ZeroLHS[M])
1864           KnownZero.setBit(i);
1865       } else {
1866         if (UndefRHS[M - NumElts])
1867           KnownUndef.setBit(i);
1868         if (ZeroRHS[M - NumElts])
1869           KnownZero.setBit(i);
1870       }
1871     }
1872     break;
1873   }
1874   case ISD::SIGN_EXTEND_VECTOR_INREG:
1875   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1876     APInt SrcUndef, SrcZero;
1877     SDValue Src = Op.getOperand(0);
1878     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1879     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
1880     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
1881                                    SrcZero, TLO, Depth + 1))
1882       return true;
1883     KnownZero = SrcZero.zextOrTrunc(NumElts);
1884     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
1885 
1886     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
1887       // zext(undef) upper bits are guaranteed to be zero.
1888       if (DemandedElts.isSubsetOf(KnownUndef))
1889         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1890       KnownUndef.clearAllBits();
1891     }
1892     break;
1893   }
1894 
1895   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
1896   // MAX, saturated math, etc.
1897   case ISD::OR:
1898   case ISD::XOR:
1899   case ISD::ADD:
1900   case ISD::SUB:
1901   case ISD::FADD:
1902   case ISD::FSUB:
1903   case ISD::FMUL:
1904   case ISD::FDIV:
1905   case ISD::FREM: {
1906     APInt UndefRHS, ZeroRHS;
1907     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
1908                                    ZeroRHS, TLO, Depth + 1))
1909       return true;
1910     APInt UndefLHS, ZeroLHS;
1911     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
1912                                    ZeroLHS, TLO, Depth + 1))
1913       return true;
1914 
1915     KnownZero = ZeroLHS & ZeroRHS;
1916     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
1917     break;
1918   }
1919   case ISD::AND: {
1920     APInt SrcUndef, SrcZero;
1921     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1922                                    SrcZero, TLO, Depth + 1))
1923       return true;
1924     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1925                                    KnownZero, TLO, Depth + 1))
1926       return true;
1927 
1928     // If either side has a zero element, then the result element is zero, even
1929     // if the other is an UNDEF.
1930     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
1931     // and then handle 'and' nodes with the rest of the binop opcodes.
1932     KnownZero |= SrcZero;
1933     KnownUndef &= SrcUndef;
1934     KnownUndef &= ~KnownZero;
1935     break;
1936   }
1937   case ISD::TRUNCATE:
1938   case ISD::SIGN_EXTEND:
1939   case ISD::ZERO_EXTEND:
1940     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1941                                    KnownZero, TLO, Depth + 1))
1942       return true;
1943 
1944     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
1945       // zext(undef) upper bits are guaranteed to be zero.
1946       if (DemandedElts.isSubsetOf(KnownUndef))
1947         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1948       KnownUndef.clearAllBits();
1949     }
1950     break;
1951   default: {
1952     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1953       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1954                                                   KnownZero, TLO, Depth))
1955         return true;
1956     } else {
1957       KnownBits Known;
1958       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
1959       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
1960                                Depth, AssumeSingleUse))
1961         return true;
1962     }
1963     break;
1964   }
1965   }
1966   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1967 
1968   // Constant fold all undef cases.
1969   // TODO: Handle zero cases as well.
1970   if (DemandedElts.isSubsetOf(KnownUndef))
1971     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1972 
1973   return false;
1974 }
1975 
1976 /// Determine which of the bits specified in Mask are known to be either zero or
1977 /// one and return them in the Known.
1978 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1979                                                    KnownBits &Known,
1980                                                    const APInt &DemandedElts,
1981                                                    const SelectionDAG &DAG,
1982                                                    unsigned Depth) const {
1983   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1984           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1985           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1986           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1987          "Should use MaskedValueIsZero if you don't know whether Op"
1988          " is a target node!");
1989   Known.resetAll();
1990 }
1991 
1992 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1993                                                    KnownBits &Known,
1994                                                    const APInt &DemandedElts,
1995                                                    const SelectionDAG &DAG,
1996                                                    unsigned Depth) const {
1997   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1998 
1999   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2000     // The low bits are known zero if the pointer is aligned.
2001     Known.Zero.setLowBits(Log2_32(Align));
2002   }
2003 }
2004 
2005 /// This method can be implemented by targets that want to expose additional
2006 /// information about sign bits to the DAG Combiner.
2007 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2008                                                          const APInt &,
2009                                                          const SelectionDAG &,
2010                                                          unsigned Depth) const {
2011   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2012           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2013           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2014           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2015          "Should use ComputeNumSignBits if you don't know whether Op"
2016          " is a target node!");
2017   return 1;
2018 }
2019 
2020 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2021     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2022     TargetLoweringOpt &TLO, unsigned Depth) const {
2023   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2024           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2025           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2026           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2027          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2028          " is a target node!");
2029   return false;
2030 }
2031 
2032 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2033     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2034     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2035   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2036           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2037           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2038           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2039          "Should use SimplifyDemandedBits if you don't know whether Op"
2040          " is a target node!");
2041   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2042   return false;
2043 }
2044 
2045 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2046                                                   const SelectionDAG &DAG,
2047                                                   bool SNaN,
2048                                                   unsigned Depth) const {
2049   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2050           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2051           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2052           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2053          "Should use isKnownNeverNaN if you don't know whether Op"
2054          " is a target node!");
2055   return false;
2056 }
2057 
2058 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2059 // work with truncating build vectors and vectors with elements of less than
2060 // 8 bits.
2061 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2062   if (!N)
2063     return false;
2064 
2065   APInt CVal;
2066   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2067     CVal = CN->getAPIntValue();
2068   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2069     auto *CN = BV->getConstantSplatNode();
2070     if (!CN)
2071       return false;
2072 
2073     // If this is a truncating build vector, truncate the splat value.
2074     // Otherwise, we may fail to match the expected values below.
2075     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2076     CVal = CN->getAPIntValue();
2077     if (BVEltWidth < CVal.getBitWidth())
2078       CVal = CVal.trunc(BVEltWidth);
2079   } else {
2080     return false;
2081   }
2082 
2083   switch (getBooleanContents(N->getValueType(0))) {
2084   case UndefinedBooleanContent:
2085     return CVal[0];
2086   case ZeroOrOneBooleanContent:
2087     return CVal.isOneValue();
2088   case ZeroOrNegativeOneBooleanContent:
2089     return CVal.isAllOnesValue();
2090   }
2091 
2092   llvm_unreachable("Invalid boolean contents");
2093 }
2094 
2095 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2096   if (!N)
2097     return false;
2098 
2099   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2100   if (!CN) {
2101     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2102     if (!BV)
2103       return false;
2104 
2105     // Only interested in constant splats, we don't care about undef
2106     // elements in identifying boolean constants and getConstantSplatNode
2107     // returns NULL if all ops are undef;
2108     CN = BV->getConstantSplatNode();
2109     if (!CN)
2110       return false;
2111   }
2112 
2113   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2114     return !CN->getAPIntValue()[0];
2115 
2116   return CN->isNullValue();
2117 }
2118 
2119 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2120                                        bool SExt) const {
2121   if (VT == MVT::i1)
2122     return N->isOne();
2123 
2124   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2125   switch (Cnt) {
2126   case TargetLowering::ZeroOrOneBooleanContent:
2127     // An extended value of 1 is always true, unless its original type is i1,
2128     // in which case it will be sign extended to -1.
2129     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2130   case TargetLowering::UndefinedBooleanContent:
2131   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2132     return N->isAllOnesValue() && SExt;
2133   }
2134   llvm_unreachable("Unexpected enumeration.");
2135 }
2136 
2137 /// This helper function of SimplifySetCC tries to optimize the comparison when
2138 /// either operand of the SetCC node is a bitwise-and instruction.
2139 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2140                                          ISD::CondCode Cond, const SDLoc &DL,
2141                                          DAGCombinerInfo &DCI) const {
2142   // Match these patterns in any of their permutations:
2143   // (X & Y) == Y
2144   // (X & Y) != Y
2145   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2146     std::swap(N0, N1);
2147 
2148   EVT OpVT = N0.getValueType();
2149   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2150       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2151     return SDValue();
2152 
2153   SDValue X, Y;
2154   if (N0.getOperand(0) == N1) {
2155     X = N0.getOperand(1);
2156     Y = N0.getOperand(0);
2157   } else if (N0.getOperand(1) == N1) {
2158     X = N0.getOperand(0);
2159     Y = N0.getOperand(1);
2160   } else {
2161     return SDValue();
2162   }
2163 
2164   SelectionDAG &DAG = DCI.DAG;
2165   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2166   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2167     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2168     // Note that where Y is variable and is known to have at most one bit set
2169     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2170     // equivalent when Y == 0.
2171     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2172     if (DCI.isBeforeLegalizeOps() ||
2173         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2174       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2175   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2176     // If the target supports an 'and-not' or 'and-complement' logic operation,
2177     // try to use that to make a comparison operation more efficient.
2178     // But don't do this transform if the mask is a single bit because there are
2179     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2180     // 'rlwinm' on PPC).
2181 
2182     // Bail out if the compare operand that we want to turn into a zero is
2183     // already a zero (otherwise, infinite loop).
2184     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2185     if (YConst && YConst->isNullValue())
2186       return SDValue();
2187 
2188     // Transform this into: ~X & Y == 0.
2189     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2190     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2191     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2192   }
2193 
2194   return SDValue();
2195 }
2196 
2197 /// There are multiple IR patterns that could be checking whether certain
2198 /// truncation of a signed number would be lossy or not. The pattern which is
2199 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2200 /// We are looking for the following pattern: (KeptBits is a constant)
2201 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2202 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2203 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2204 /// We will unfold it into the natural trunc+sext pattern:
2205 ///   ((%x << C) a>> C) dstcond %x
2206 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2207 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2208     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2209     const SDLoc &DL) const {
2210   // We must be comparing with a constant.
2211   ConstantSDNode *C1;
2212   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2213     return SDValue();
2214 
2215   // N0 should be:  add %x, (1 << (KeptBits-1))
2216   if (N0->getOpcode() != ISD::ADD)
2217     return SDValue();
2218 
2219   // And we must be 'add'ing a constant.
2220   ConstantSDNode *C01;
2221   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2222     return SDValue();
2223 
2224   SDValue X = N0->getOperand(0);
2225   EVT XVT = X.getValueType();
2226 
2227   // Validate constants ...
2228 
2229   APInt I1 = C1->getAPIntValue();
2230 
2231   ISD::CondCode NewCond;
2232   if (Cond == ISD::CondCode::SETULT) {
2233     NewCond = ISD::CondCode::SETEQ;
2234   } else if (Cond == ISD::CondCode::SETULE) {
2235     NewCond = ISD::CondCode::SETEQ;
2236     // But need to 'canonicalize' the constant.
2237     I1 += 1;
2238   } else if (Cond == ISD::CondCode::SETUGT) {
2239     NewCond = ISD::CondCode::SETNE;
2240     // But need to 'canonicalize' the constant.
2241     I1 += 1;
2242   } else if (Cond == ISD::CondCode::SETUGE) {
2243     NewCond = ISD::CondCode::SETNE;
2244   } else
2245     return SDValue();
2246 
2247   APInt I01 = C01->getAPIntValue();
2248 
2249   auto checkConstants = [&I1, &I01]() -> bool {
2250     // Both of them must be power-of-two, and the constant from setcc is bigger.
2251     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2252   };
2253 
2254   if (checkConstants()) {
2255     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2256   } else {
2257     // What if we invert constants? (and the target predicate)
2258     I1.negate();
2259     I01.negate();
2260     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2261     if (!checkConstants())
2262       return SDValue();
2263     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2264   }
2265 
2266   // They are power-of-two, so which bit is set?
2267   const unsigned KeptBits = I1.logBase2();
2268   const unsigned KeptBitsMinusOne = I01.logBase2();
2269 
2270   // Magic!
2271   if (KeptBits != (KeptBitsMinusOne + 1))
2272     return SDValue();
2273   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2274 
2275   // We don't want to do this in every single case.
2276   SelectionDAG &DAG = DCI.DAG;
2277   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2278           XVT, KeptBits))
2279     return SDValue();
2280 
2281   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2282   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2283 
2284   // Unfold into:  ((%x << C) a>> C) cond %x
2285   // Where 'cond' will be either 'eq' or 'ne'.
2286   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2287   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2288   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2289   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2290 
2291   return T2;
2292 }
2293 
2294 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2295 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2296 /// handle the commuted versions of these patterns.
2297 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2298                                            ISD::CondCode Cond, const SDLoc &DL,
2299                                            DAGCombinerInfo &DCI) const {
2300   unsigned BOpcode = N0.getOpcode();
2301   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2302          "Unexpected binop");
2303   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2304 
2305   // (X + Y) == X --> Y == 0
2306   // (X - Y) == X --> Y == 0
2307   // (X ^ Y) == X --> Y == 0
2308   SelectionDAG &DAG = DCI.DAG;
2309   EVT OpVT = N0.getValueType();
2310   SDValue X = N0.getOperand(0);
2311   SDValue Y = N0.getOperand(1);
2312   if (X == N1)
2313     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2314 
2315   if (Y != N1)
2316     return SDValue();
2317 
2318   // (X + Y) == Y --> X == 0
2319   // (X ^ Y) == Y --> X == 0
2320   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2321     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2322 
2323   // The shift would not be valid if the operands are boolean (i1).
2324   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2325     return SDValue();
2326 
2327   // (X - Y) == Y --> X == Y << 1
2328   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2329                                  !DCI.isBeforeLegalize());
2330   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2331   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2332   if (!DCI.isCalledByLegalizer())
2333     DCI.AddToWorklist(YShl1.getNode());
2334   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2335 }
2336 
2337 /// Try to simplify a setcc built with the specified operands and cc. If it is
2338 /// unable to simplify it, return a null SDValue.
2339 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2340                                       ISD::CondCode Cond, bool foldBooleans,
2341                                       DAGCombinerInfo &DCI,
2342                                       const SDLoc &dl) const {
2343   SelectionDAG &DAG = DCI.DAG;
2344   EVT OpVT = N0.getValueType();
2345 
2346   // These setcc operations always fold.
2347   switch (Cond) {
2348   default: break;
2349   case ISD::SETFALSE:
2350   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
2351   case ISD::SETTRUE:
2352   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
2353   }
2354 
2355   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2356   // TODO: Handle non-splat vector constants. All undef causes trouble.
2357   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2358   if (isConstOrConstSplat(N0) &&
2359       (DCI.isBeforeLegalizeOps() ||
2360        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2361     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2362 
2363   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2364     const APInt &C1 = N1C->getAPIntValue();
2365 
2366     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2367     // equality comparison, then we're just comparing whether X itself is
2368     // zero.
2369     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2370         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2371         N0.getOperand(1).getOpcode() == ISD::Constant) {
2372       const APInt &ShAmt
2373         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2374       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2375           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2376         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2377           // (srl (ctlz x), 5) == 0  -> X != 0
2378           // (srl (ctlz x), 5) != 1  -> X != 0
2379           Cond = ISD::SETNE;
2380         } else {
2381           // (srl (ctlz x), 5) != 0  -> X == 0
2382           // (srl (ctlz x), 5) == 1  -> X == 0
2383           Cond = ISD::SETEQ;
2384         }
2385         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2386         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2387                             Zero, Cond);
2388       }
2389     }
2390 
2391     SDValue CTPOP = N0;
2392     // Look through truncs that don't change the value of a ctpop.
2393     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2394       CTPOP = N0.getOperand(0);
2395 
2396     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2397         (N0 == CTPOP ||
2398          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2399       EVT CTVT = CTPOP.getValueType();
2400       SDValue CTOp = CTPOP.getOperand(0);
2401 
2402       // (ctpop x) u< 2 -> (x & x-1) == 0
2403       // (ctpop x) u> 1 -> (x & x-1) != 0
2404       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2405         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2406                                   DAG.getConstant(1, dl, CTVT));
2407         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2408         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2409         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2410       }
2411 
2412       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2413     }
2414 
2415     // (zext x) == C --> x == (trunc C)
2416     // (sext x) == C --> x == (trunc C)
2417     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2418         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2419       unsigned MinBits = N0.getValueSizeInBits();
2420       SDValue PreExt;
2421       bool Signed = false;
2422       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2423         // ZExt
2424         MinBits = N0->getOperand(0).getValueSizeInBits();
2425         PreExt = N0->getOperand(0);
2426       } else if (N0->getOpcode() == ISD::AND) {
2427         // DAGCombine turns costly ZExts into ANDs
2428         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2429           if ((C->getAPIntValue()+1).isPowerOf2()) {
2430             MinBits = C->getAPIntValue().countTrailingOnes();
2431             PreExt = N0->getOperand(0);
2432           }
2433       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2434         // SExt
2435         MinBits = N0->getOperand(0).getValueSizeInBits();
2436         PreExt = N0->getOperand(0);
2437         Signed = true;
2438       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2439         // ZEXTLOAD / SEXTLOAD
2440         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2441           MinBits = LN0->getMemoryVT().getSizeInBits();
2442           PreExt = N0;
2443         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2444           Signed = true;
2445           MinBits = LN0->getMemoryVT().getSizeInBits();
2446           PreExt = N0;
2447         }
2448       }
2449 
2450       // Figure out how many bits we need to preserve this constant.
2451       unsigned ReqdBits = Signed ?
2452         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2453         C1.getActiveBits();
2454 
2455       // Make sure we're not losing bits from the constant.
2456       if (MinBits > 0 &&
2457           MinBits < C1.getBitWidth() &&
2458           MinBits >= ReqdBits) {
2459         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2460         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2461           // Will get folded away.
2462           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2463           if (MinBits == 1 && C1 == 1)
2464             // Invert the condition.
2465             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2466                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2467           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2468           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2469         }
2470 
2471         // If truncating the setcc operands is not desirable, we can still
2472         // simplify the expression in some cases:
2473         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2474         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2475         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2476         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2477         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2478         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2479         SDValue TopSetCC = N0->getOperand(0);
2480         unsigned N0Opc = N0->getOpcode();
2481         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2482         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2483             TopSetCC.getOpcode() == ISD::SETCC &&
2484             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2485             (isConstFalseVal(N1C) ||
2486              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2487 
2488           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2489                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2490 
2491           if (!Inverse)
2492             return TopSetCC;
2493 
2494           ISD::CondCode InvCond = ISD::getSetCCInverse(
2495               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2496               TopSetCC.getOperand(0).getValueType().isInteger());
2497           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2498                                       TopSetCC.getOperand(1),
2499                                       InvCond);
2500         }
2501       }
2502     }
2503 
2504     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2505     // equality or unsigned, and all 1 bits of the const are in the same
2506     // partial word, see if we can shorten the load.
2507     if (DCI.isBeforeLegalize() &&
2508         !ISD::isSignedIntSetCC(Cond) &&
2509         N0.getOpcode() == ISD::AND && C1 == 0 &&
2510         N0.getNode()->hasOneUse() &&
2511         isa<LoadSDNode>(N0.getOperand(0)) &&
2512         N0.getOperand(0).getNode()->hasOneUse() &&
2513         isa<ConstantSDNode>(N0.getOperand(1))) {
2514       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2515       APInt bestMask;
2516       unsigned bestWidth = 0, bestOffset = 0;
2517       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2518         unsigned origWidth = N0.getValueSizeInBits();
2519         unsigned maskWidth = origWidth;
2520         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2521         // 8 bits, but have to be careful...
2522         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2523           origWidth = Lod->getMemoryVT().getSizeInBits();
2524         const APInt &Mask =
2525           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2526         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2527           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2528           for (unsigned offset=0; offset<origWidth/width; offset++) {
2529             if (Mask.isSubsetOf(newMask)) {
2530               if (DAG.getDataLayout().isLittleEndian())
2531                 bestOffset = (uint64_t)offset * (width/8);
2532               else
2533                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2534               bestMask = Mask.lshr(offset * (width/8) * 8);
2535               bestWidth = width;
2536               break;
2537             }
2538             newMask <<= width;
2539           }
2540         }
2541       }
2542       if (bestWidth) {
2543         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2544         if (newVT.isRound() &&
2545             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2546           EVT PtrType = Lod->getOperand(1).getValueType();
2547           SDValue Ptr = Lod->getBasePtr();
2548           if (bestOffset != 0)
2549             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2550                               DAG.getConstant(bestOffset, dl, PtrType));
2551           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2552           SDValue NewLoad = DAG.getLoad(
2553               newVT, dl, Lod->getChain(), Ptr,
2554               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2555           return DAG.getSetCC(dl, VT,
2556                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2557                                       DAG.getConstant(bestMask.trunc(bestWidth),
2558                                                       dl, newVT)),
2559                               DAG.getConstant(0LL, dl, newVT), Cond);
2560         }
2561       }
2562     }
2563 
2564     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2565     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2566       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2567 
2568       // If the comparison constant has bits in the upper part, the
2569       // zero-extended value could never match.
2570       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2571                                               C1.getBitWidth() - InSize))) {
2572         switch (Cond) {
2573         case ISD::SETUGT:
2574         case ISD::SETUGE:
2575         case ISD::SETEQ:
2576           return DAG.getConstant(0, dl, VT);
2577         case ISD::SETULT:
2578         case ISD::SETULE:
2579         case ISD::SETNE:
2580           return DAG.getConstant(1, dl, VT);
2581         case ISD::SETGT:
2582         case ISD::SETGE:
2583           // True if the sign bit of C1 is set.
2584           return DAG.getConstant(C1.isNegative(), dl, VT);
2585         case ISD::SETLT:
2586         case ISD::SETLE:
2587           // True if the sign bit of C1 isn't set.
2588           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2589         default:
2590           break;
2591         }
2592       }
2593 
2594       // Otherwise, we can perform the comparison with the low bits.
2595       switch (Cond) {
2596       case ISD::SETEQ:
2597       case ISD::SETNE:
2598       case ISD::SETUGT:
2599       case ISD::SETUGE:
2600       case ISD::SETULT:
2601       case ISD::SETULE: {
2602         EVT newVT = N0.getOperand(0).getValueType();
2603         if (DCI.isBeforeLegalizeOps() ||
2604             (isOperationLegal(ISD::SETCC, newVT) &&
2605              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2606           EVT NewSetCCVT =
2607               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2608           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2609 
2610           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2611                                           NewConst, Cond);
2612           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2613         }
2614         break;
2615       }
2616       default:
2617         break;   // todo, be more careful with signed comparisons
2618       }
2619     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2620                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2621       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2622       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2623       EVT ExtDstTy = N0.getValueType();
2624       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2625 
2626       // If the constant doesn't fit into the number of bits for the source of
2627       // the sign extension, it is impossible for both sides to be equal.
2628       if (C1.getMinSignedBits() > ExtSrcTyBits)
2629         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2630 
2631       SDValue ZextOp;
2632       EVT Op0Ty = N0.getOperand(0).getValueType();
2633       if (Op0Ty == ExtSrcTy) {
2634         ZextOp = N0.getOperand(0);
2635       } else {
2636         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2637         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2638                               DAG.getConstant(Imm, dl, Op0Ty));
2639       }
2640       if (!DCI.isCalledByLegalizer())
2641         DCI.AddToWorklist(ZextOp.getNode());
2642       // Otherwise, make this a use of a zext.
2643       return DAG.getSetCC(dl, VT, ZextOp,
2644                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2645                                                               ExtDstTyBits,
2646                                                               ExtSrcTyBits),
2647                                           dl, ExtDstTy),
2648                           Cond);
2649     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2650                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2651       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2652       if (N0.getOpcode() == ISD::SETCC &&
2653           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2654         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2655         if (TrueWhenTrue)
2656           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2657         // Invert the condition.
2658         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2659         CC = ISD::getSetCCInverse(CC,
2660                                   N0.getOperand(0).getValueType().isInteger());
2661         if (DCI.isBeforeLegalizeOps() ||
2662             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2663           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2664       }
2665 
2666       if ((N0.getOpcode() == ISD::XOR ||
2667            (N0.getOpcode() == ISD::AND &&
2668             N0.getOperand(0).getOpcode() == ISD::XOR &&
2669             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2670           isa<ConstantSDNode>(N0.getOperand(1)) &&
2671           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2672         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2673         // can only do this if the top bits are known zero.
2674         unsigned BitWidth = N0.getValueSizeInBits();
2675         if (DAG.MaskedValueIsZero(N0,
2676                                   APInt::getHighBitsSet(BitWidth,
2677                                                         BitWidth-1))) {
2678           // Okay, get the un-inverted input value.
2679           SDValue Val;
2680           if (N0.getOpcode() == ISD::XOR) {
2681             Val = N0.getOperand(0);
2682           } else {
2683             assert(N0.getOpcode() == ISD::AND &&
2684                     N0.getOperand(0).getOpcode() == ISD::XOR);
2685             // ((X^1)&1)^1 -> X & 1
2686             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2687                               N0.getOperand(0).getOperand(0),
2688                               N0.getOperand(1));
2689           }
2690 
2691           return DAG.getSetCC(dl, VT, Val, N1,
2692                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2693         }
2694       } else if (N1C->isOne() &&
2695                  (VT == MVT::i1 ||
2696                   getBooleanContents(N0->getValueType(0)) ==
2697                       ZeroOrOneBooleanContent)) {
2698         SDValue Op0 = N0;
2699         if (Op0.getOpcode() == ISD::TRUNCATE)
2700           Op0 = Op0.getOperand(0);
2701 
2702         if ((Op0.getOpcode() == ISD::XOR) &&
2703             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2704             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2705           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2706           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2707           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2708                               Cond);
2709         }
2710         if (Op0.getOpcode() == ISD::AND &&
2711             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2712             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2713           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2714           if (Op0.getValueType().bitsGT(VT))
2715             Op0 = DAG.getNode(ISD::AND, dl, VT,
2716                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2717                           DAG.getConstant(1, dl, VT));
2718           else if (Op0.getValueType().bitsLT(VT))
2719             Op0 = DAG.getNode(ISD::AND, dl, VT,
2720                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2721                         DAG.getConstant(1, dl, VT));
2722 
2723           return DAG.getSetCC(dl, VT, Op0,
2724                               DAG.getConstant(0, dl, Op0.getValueType()),
2725                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2726         }
2727         if (Op0.getOpcode() == ISD::AssertZext &&
2728             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2729           return DAG.getSetCC(dl, VT, Op0,
2730                               DAG.getConstant(0, dl, Op0.getValueType()),
2731                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2732       }
2733     }
2734 
2735     if (SDValue V =
2736             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2737       return V;
2738   }
2739 
2740   // These simplifications apply to splat vectors as well.
2741   // TODO: Handle more splat vector cases.
2742   if (auto *N1C = isConstOrConstSplat(N1)) {
2743     const APInt &C1 = N1C->getAPIntValue();
2744 
2745     APInt MinVal, MaxVal;
2746     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2747     if (ISD::isSignedIntSetCC(Cond)) {
2748       MinVal = APInt::getSignedMinValue(OperandBitSize);
2749       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2750     } else {
2751       MinVal = APInt::getMinValue(OperandBitSize);
2752       MaxVal = APInt::getMaxValue(OperandBitSize);
2753     }
2754 
2755     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2756     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2757       // X >= MIN --> true
2758       if (C1 == MinVal)
2759         return DAG.getBoolConstant(true, dl, VT, OpVT);
2760 
2761       if (!VT.isVector()) { // TODO: Support this for vectors.
2762         // X >= C0 --> X > (C0 - 1)
2763         APInt C = C1 - 1;
2764         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2765         if ((DCI.isBeforeLegalizeOps() ||
2766              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2767             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2768                                   isLegalICmpImmediate(C.getSExtValue())))) {
2769           return DAG.getSetCC(dl, VT, N0,
2770                               DAG.getConstant(C, dl, N1.getValueType()),
2771                               NewCC);
2772         }
2773       }
2774     }
2775 
2776     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2777       // X <= MAX --> true
2778       if (C1 == MaxVal)
2779         return DAG.getBoolConstant(true, dl, VT, OpVT);
2780 
2781       // X <= C0 --> X < (C0 + 1)
2782       if (!VT.isVector()) { // TODO: Support this for vectors.
2783         APInt C = C1 + 1;
2784         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2785         if ((DCI.isBeforeLegalizeOps() ||
2786              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2787             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2788                                   isLegalICmpImmediate(C.getSExtValue())))) {
2789           return DAG.getSetCC(dl, VT, N0,
2790                               DAG.getConstant(C, dl, N1.getValueType()),
2791                               NewCC);
2792         }
2793       }
2794     }
2795 
2796     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2797       if (C1 == MinVal)
2798         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2799 
2800       // TODO: Support this for vectors after legalize ops.
2801       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2802         // Canonicalize setlt X, Max --> setne X, Max
2803         if (C1 == MaxVal)
2804           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2805 
2806         // If we have setult X, 1, turn it into seteq X, 0
2807         if (C1 == MinVal+1)
2808           return DAG.getSetCC(dl, VT, N0,
2809                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2810                               ISD::SETEQ);
2811       }
2812     }
2813 
2814     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2815       if (C1 == MaxVal)
2816         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2817 
2818       // TODO: Support this for vectors after legalize ops.
2819       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2820         // Canonicalize setgt X, Min --> setne X, Min
2821         if (C1 == MinVal)
2822           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2823 
2824         // If we have setugt X, Max-1, turn it into seteq X, Max
2825         if (C1 == MaxVal-1)
2826           return DAG.getSetCC(dl, VT, N0,
2827                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2828                               ISD::SETEQ);
2829       }
2830     }
2831 
2832     // If we have "setcc X, C0", check to see if we can shrink the immediate
2833     // by changing cc.
2834     // TODO: Support this for vectors after legalize ops.
2835     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2836       // SETUGT X, SINTMAX  -> SETLT X, 0
2837       if (Cond == ISD::SETUGT &&
2838           C1 == APInt::getSignedMaxValue(OperandBitSize))
2839         return DAG.getSetCC(dl, VT, N0,
2840                             DAG.getConstant(0, dl, N1.getValueType()),
2841                             ISD::SETLT);
2842 
2843       // SETULT X, SINTMIN  -> SETGT X, -1
2844       if (Cond == ISD::SETULT &&
2845           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2846         SDValue ConstMinusOne =
2847             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2848                             N1.getValueType());
2849         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2850       }
2851     }
2852   }
2853 
2854   // Back to non-vector simplifications.
2855   // TODO: Can we do these for vector splats?
2856   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2857     const APInt &C1 = N1C->getAPIntValue();
2858 
2859     // Fold bit comparisons when we can.
2860     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2861         (VT == N0.getValueType() ||
2862          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2863         N0.getOpcode() == ISD::AND) {
2864       auto &DL = DAG.getDataLayout();
2865       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2866         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2867                                        !DCI.isBeforeLegalize());
2868         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2869           // Perform the xform if the AND RHS is a single bit.
2870           if (AndRHS->getAPIntValue().isPowerOf2()) {
2871             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2872                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2873                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2874                                    ShiftTy)));
2875           }
2876         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2877           // (X & 8) == 8  -->  (X & 8) >> 3
2878           // Perform the xform if C1 is a single bit.
2879           if (C1.isPowerOf2()) {
2880             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2881                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2882                                       DAG.getConstant(C1.logBase2(), dl,
2883                                                       ShiftTy)));
2884           }
2885         }
2886       }
2887     }
2888 
2889     if (C1.getMinSignedBits() <= 64 &&
2890         !isLegalICmpImmediate(C1.getSExtValue())) {
2891       // (X & -256) == 256 -> (X >> 8) == 1
2892       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2893           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2894         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2895           const APInt &AndRHSC = AndRHS->getAPIntValue();
2896           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2897             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2898             auto &DL = DAG.getDataLayout();
2899             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2900                                            !DCI.isBeforeLegalize());
2901             EVT CmpTy = N0.getValueType();
2902             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2903                                         DAG.getConstant(ShiftBits, dl,
2904                                                         ShiftTy));
2905             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2906             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2907           }
2908         }
2909       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2910                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2911         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2912         // X <  0x100000000 -> (X >> 32) <  1
2913         // X >= 0x100000000 -> (X >> 32) >= 1
2914         // X <= 0x0ffffffff -> (X >> 32) <  1
2915         // X >  0x0ffffffff -> (X >> 32) >= 1
2916         unsigned ShiftBits;
2917         APInt NewC = C1;
2918         ISD::CondCode NewCond = Cond;
2919         if (AdjOne) {
2920           ShiftBits = C1.countTrailingOnes();
2921           NewC = NewC + 1;
2922           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2923         } else {
2924           ShiftBits = C1.countTrailingZeros();
2925         }
2926         NewC.lshrInPlace(ShiftBits);
2927         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2928           isLegalICmpImmediate(NewC.getSExtValue())) {
2929           auto &DL = DAG.getDataLayout();
2930           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2931                                          !DCI.isBeforeLegalize());
2932           EVT CmpTy = N0.getValueType();
2933           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2934                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2935           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2936           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2937         }
2938       }
2939     }
2940   }
2941 
2942   if (isa<ConstantFPSDNode>(N0.getNode())) {
2943     // Constant fold or commute setcc.
2944     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2945     if (O.getNode()) return O;
2946   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2947     // If the RHS of an FP comparison is a constant, simplify it away in
2948     // some cases.
2949     if (CFP->getValueAPF().isNaN()) {
2950       // If an operand is known to be a nan, we can fold it.
2951       switch (ISD::getUnorderedFlavor(Cond)) {
2952       default: llvm_unreachable("Unknown flavor!");
2953       case 0:  // Known false.
2954         return DAG.getBoolConstant(false, dl, VT, OpVT);
2955       case 1:  // Known true.
2956         return DAG.getBoolConstant(true, dl, VT, OpVT);
2957       case 2:  // Undefined.
2958         return DAG.getUNDEF(VT);
2959       }
2960     }
2961 
2962     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2963     // constant if knowing that the operand is non-nan is enough.  We prefer to
2964     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2965     // materialize 0.0.
2966     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2967       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2968 
2969     // setcc (fneg x), C -> setcc swap(pred) x, -C
2970     if (N0.getOpcode() == ISD::FNEG) {
2971       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2972       if (DCI.isBeforeLegalizeOps() ||
2973           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2974         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2975         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2976       }
2977     }
2978 
2979     // If the condition is not legal, see if we can find an equivalent one
2980     // which is legal.
2981     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2982       // If the comparison was an awkward floating-point == or != and one of
2983       // the comparison operands is infinity or negative infinity, convert the
2984       // condition to a less-awkward <= or >=.
2985       if (CFP->getValueAPF().isInfinity()) {
2986         if (CFP->getValueAPF().isNegative()) {
2987           if (Cond == ISD::SETOEQ &&
2988               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2989             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2990           if (Cond == ISD::SETUEQ &&
2991               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2992             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2993           if (Cond == ISD::SETUNE &&
2994               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2995             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2996           if (Cond == ISD::SETONE &&
2997               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2998             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2999         } else {
3000           if (Cond == ISD::SETOEQ &&
3001               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3002             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3003           if (Cond == ISD::SETUEQ &&
3004               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3005             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3006           if (Cond == ISD::SETUNE &&
3007               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3008             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3009           if (Cond == ISD::SETONE &&
3010               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3011             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3012         }
3013       }
3014     }
3015   }
3016 
3017   if (N0 == N1) {
3018     // The sext(setcc()) => setcc() optimization relies on the appropriate
3019     // constant being emitted.
3020 
3021     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3022 
3023     // We can always fold X == X for integer setcc's.
3024     if (N0.getValueType().isInteger())
3025       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3026 
3027     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3028     if (UOF == 2)   // FP operators that are undefined on NaNs.
3029       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3030     if (UOF == unsigned(EqTrue))
3031       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3032     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3033     // if it is not already.
3034     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3035     if (NewCond != Cond &&
3036         (DCI.isBeforeLegalizeOps() ||
3037          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3038       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3039   }
3040 
3041   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3042       N0.getValueType().isInteger()) {
3043     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3044         N0.getOpcode() == ISD::XOR) {
3045       // Simplify (X+Y) == (X+Z) -->  Y == Z
3046       if (N0.getOpcode() == N1.getOpcode()) {
3047         if (N0.getOperand(0) == N1.getOperand(0))
3048           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3049         if (N0.getOperand(1) == N1.getOperand(1))
3050           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3051         if (isCommutativeBinOp(N0.getOpcode())) {
3052           // If X op Y == Y op X, try other combinations.
3053           if (N0.getOperand(0) == N1.getOperand(1))
3054             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3055                                 Cond);
3056           if (N0.getOperand(1) == N1.getOperand(0))
3057             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3058                                 Cond);
3059         }
3060       }
3061 
3062       // If RHS is a legal immediate value for a compare instruction, we need
3063       // to be careful about increasing register pressure needlessly.
3064       bool LegalRHSImm = false;
3065 
3066       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3067         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3068           // Turn (X+C1) == C2 --> X == C2-C1
3069           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3070             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3071                                 DAG.getConstant(RHSC->getAPIntValue()-
3072                                                 LHSR->getAPIntValue(),
3073                                 dl, N0.getValueType()), Cond);
3074           }
3075 
3076           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3077           if (N0.getOpcode() == ISD::XOR)
3078             // If we know that all of the inverted bits are zero, don't bother
3079             // performing the inversion.
3080             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3081               return
3082                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3083                              DAG.getConstant(LHSR->getAPIntValue() ^
3084                                                RHSC->getAPIntValue(),
3085                                              dl, N0.getValueType()),
3086                              Cond);
3087         }
3088 
3089         // Turn (C1-X) == C2 --> X == C1-C2
3090         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3091           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3092             return
3093               DAG.getSetCC(dl, VT, N0.getOperand(1),
3094                            DAG.getConstant(SUBC->getAPIntValue() -
3095                                              RHSC->getAPIntValue(),
3096                                            dl, N0.getValueType()),
3097                            Cond);
3098           }
3099         }
3100 
3101         // Could RHSC fold directly into a compare?
3102         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3103           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3104       }
3105 
3106       // (X+Y) == X --> Y == 0 and similar folds.
3107       // Don't do this if X is an immediate that can fold into a cmp
3108       // instruction and X+Y has other uses. It could be an induction variable
3109       // chain, and the transform would increase register pressure.
3110       if (!LegalRHSImm || N0.hasOneUse())
3111         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3112           return V;
3113     }
3114 
3115     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3116         N1.getOpcode() == ISD::XOR)
3117       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3118         return V;
3119 
3120     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3121       return V;
3122   }
3123 
3124   // Fold away ALL boolean setcc's.
3125   SDValue Temp;
3126   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3127     EVT OpVT = N0.getValueType();
3128     switch (Cond) {
3129     default: llvm_unreachable("Unknown integer setcc!");
3130     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3131       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3132       N0 = DAG.getNOT(dl, Temp, OpVT);
3133       if (!DCI.isCalledByLegalizer())
3134         DCI.AddToWorklist(Temp.getNode());
3135       break;
3136     case ISD::SETNE:  // X != Y   -->  (X^Y)
3137       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3138       break;
3139     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3140     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3141       Temp = DAG.getNOT(dl, N0, OpVT);
3142       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3143       if (!DCI.isCalledByLegalizer())
3144         DCI.AddToWorklist(Temp.getNode());
3145       break;
3146     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3147     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3148       Temp = DAG.getNOT(dl, N1, OpVT);
3149       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3150       if (!DCI.isCalledByLegalizer())
3151         DCI.AddToWorklist(Temp.getNode());
3152       break;
3153     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3154     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3155       Temp = DAG.getNOT(dl, N0, OpVT);
3156       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3157       if (!DCI.isCalledByLegalizer())
3158         DCI.AddToWorklist(Temp.getNode());
3159       break;
3160     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3161     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3162       Temp = DAG.getNOT(dl, N1, OpVT);
3163       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3164       break;
3165     }
3166     if (VT.getScalarType() != MVT::i1) {
3167       if (!DCI.isCalledByLegalizer())
3168         DCI.AddToWorklist(N0.getNode());
3169       // FIXME: If running after legalize, we probably can't do this.
3170       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3171       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3172     }
3173     return N0;
3174   }
3175 
3176   // Could not fold it.
3177   return SDValue();
3178 }
3179 
3180 /// Returns true (and the GlobalValue and the offset) if the node is a
3181 /// GlobalAddress + offset.
3182 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3183                                     int64_t &Offset) const {
3184 
3185   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3186 
3187   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3188     GA = GASD->getGlobal();
3189     Offset += GASD->getOffset();
3190     return true;
3191   }
3192 
3193   if (N->getOpcode() == ISD::ADD) {
3194     SDValue N1 = N->getOperand(0);
3195     SDValue N2 = N->getOperand(1);
3196     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3197       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3198         Offset += V->getSExtValue();
3199         return true;
3200       }
3201     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3202       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3203         Offset += V->getSExtValue();
3204         return true;
3205       }
3206     }
3207   }
3208 
3209   return false;
3210 }
3211 
3212 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3213                                           DAGCombinerInfo &DCI) const {
3214   // Default implementation: no optimization.
3215   return SDValue();
3216 }
3217 
3218 //===----------------------------------------------------------------------===//
3219 //  Inline Assembler Implementation Methods
3220 //===----------------------------------------------------------------------===//
3221 
3222 TargetLowering::ConstraintType
3223 TargetLowering::getConstraintType(StringRef Constraint) const {
3224   unsigned S = Constraint.size();
3225 
3226   if (S == 1) {
3227     switch (Constraint[0]) {
3228     default: break;
3229     case 'r': return C_RegisterClass;
3230     case 'm':    // memory
3231     case 'o':    // offsetable
3232     case 'V':    // not offsetable
3233       return C_Memory;
3234     case 'i':    // Simple Integer or Relocatable Constant
3235     case 'n':    // Simple Integer
3236     case 'E':    // Floating Point Constant
3237     case 'F':    // Floating Point Constant
3238     case 's':    // Relocatable Constant
3239     case 'p':    // Address.
3240     case 'X':    // Allow ANY value.
3241     case 'I':    // Target registers.
3242     case 'J':
3243     case 'K':
3244     case 'L':
3245     case 'M':
3246     case 'N':
3247     case 'O':
3248     case 'P':
3249     case '<':
3250     case '>':
3251       return C_Other;
3252     }
3253   }
3254 
3255   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
3256     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3257       return C_Memory;
3258     return C_Register;
3259   }
3260   return C_Unknown;
3261 }
3262 
3263 /// Try to replace an X constraint, which matches anything, with another that
3264 /// has more specific requirements based on the type of the corresponding
3265 /// operand.
3266 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
3267   if (ConstraintVT.isInteger())
3268     return "r";
3269   if (ConstraintVT.isFloatingPoint())
3270     return "f";      // works for many targets
3271   return nullptr;
3272 }
3273 
3274 SDValue TargetLowering::LowerAsmOutputForConstraint(
3275     SDValue &Chain, SDValue *Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3276     SelectionDAG &DAG) const {
3277   return SDValue();
3278 }
3279 
3280 /// Lower the specified operand into the Ops vector.
3281 /// If it is invalid, don't add anything to Ops.
3282 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3283                                                   std::string &Constraint,
3284                                                   std::vector<SDValue> &Ops,
3285                                                   SelectionDAG &DAG) const {
3286 
3287   if (Constraint.length() > 1) return;
3288 
3289   char ConstraintLetter = Constraint[0];
3290   switch (ConstraintLetter) {
3291   default: break;
3292   case 'X':     // Allows any operand; labels (basic block) use this.
3293     if (Op.getOpcode() == ISD::BasicBlock ||
3294         Op.getOpcode() == ISD::TargetBlockAddress) {
3295       Ops.push_back(Op);
3296       return;
3297     }
3298     LLVM_FALLTHROUGH;
3299   case 'i':    // Simple Integer or Relocatable Constant
3300   case 'n':    // Simple Integer
3301   case 's': {  // Relocatable Constant
3302     // These operands are interested in values of the form (GV+C), where C may
3303     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3304     // is possible and fine if either GV or C are missing.
3305     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3306     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3307 
3308     // If we have "(add GV, C)", pull out GV/C
3309     if (Op.getOpcode() == ISD::ADD) {
3310       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3311       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3312       if (!C || !GA) {
3313         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3314         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3315       }
3316       if (!C || !GA) {
3317         C = nullptr;
3318         GA = nullptr;
3319       }
3320     }
3321 
3322     // If we find a valid operand, map to the TargetXXX version so that the
3323     // value itself doesn't get selected.
3324     if (GA) {   // Either &GV   or   &GV+C
3325       if (ConstraintLetter != 'n') {
3326         int64_t Offs = GA->getOffset();
3327         if (C) Offs += C->getZExtValue();
3328         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3329                                                  C ? SDLoc(C) : SDLoc(),
3330                                                  Op.getValueType(), Offs));
3331       }
3332       return;
3333     }
3334     if (C) {   // just C, no GV.
3335       // Simple constants are not allowed for 's'.
3336       if (ConstraintLetter != 's') {
3337         // gcc prints these as sign extended.  Sign extend value to 64 bits
3338         // now; without this it would get ZExt'd later in
3339         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3340         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3341                                             SDLoc(C), MVT::i64));
3342       }
3343       return;
3344     }
3345     break;
3346   }
3347   }
3348 }
3349 
3350 std::pair<unsigned, const TargetRegisterClass *>
3351 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3352                                              StringRef Constraint,
3353                                              MVT VT) const {
3354   if (Constraint.empty() || Constraint[0] != '{')
3355     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3356   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3357 
3358   // Remove the braces from around the name.
3359   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3360 
3361   std::pair<unsigned, const TargetRegisterClass*> R =
3362     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3363 
3364   // Figure out which register class contains this reg.
3365   for (const TargetRegisterClass *RC : RI->regclasses()) {
3366     // If none of the value types for this register class are valid, we
3367     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3368     if (!isLegalRC(*RI, *RC))
3369       continue;
3370 
3371     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3372          I != E; ++I) {
3373       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3374         std::pair<unsigned, const TargetRegisterClass*> S =
3375           std::make_pair(*I, RC);
3376 
3377         // If this register class has the requested value type, return it,
3378         // otherwise keep searching and return the first class found
3379         // if no other is found which explicitly has the requested type.
3380         if (RI->isTypeLegalForClass(*RC, VT))
3381           return S;
3382         if (!R.second)
3383           R = S;
3384       }
3385     }
3386   }
3387 
3388   return R;
3389 }
3390 
3391 //===----------------------------------------------------------------------===//
3392 // Constraint Selection.
3393 
3394 /// Return true of this is an input operand that is a matching constraint like
3395 /// "4".
3396 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3397   assert(!ConstraintCode.empty() && "No known constraint!");
3398   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3399 }
3400 
3401 /// If this is an input matching constraint, this method returns the output
3402 /// operand it matches.
3403 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3404   assert(!ConstraintCode.empty() && "No known constraint!");
3405   return atoi(ConstraintCode.c_str());
3406 }
3407 
3408 /// Split up the constraint string from the inline assembly value into the
3409 /// specific constraints and their prefixes, and also tie in the associated
3410 /// operand values.
3411 /// If this returns an empty vector, and if the constraint string itself
3412 /// isn't empty, there was an error parsing.
3413 TargetLowering::AsmOperandInfoVector
3414 TargetLowering::ParseConstraints(const DataLayout &DL,
3415                                  const TargetRegisterInfo *TRI,
3416                                  ImmutableCallSite CS) const {
3417   /// Information about all of the constraints.
3418   AsmOperandInfoVector ConstraintOperands;
3419   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3420   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3421 
3422   // Do a prepass over the constraints, canonicalizing them, and building up the
3423   // ConstraintOperands list.
3424   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3425   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3426 
3427   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3428     ConstraintOperands.emplace_back(std::move(CI));
3429     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3430 
3431     // Update multiple alternative constraint count.
3432     if (OpInfo.multipleAlternatives.size() > maCount)
3433       maCount = OpInfo.multipleAlternatives.size();
3434 
3435     OpInfo.ConstraintVT = MVT::Other;
3436 
3437     // Compute the value type for each operand.
3438     switch (OpInfo.Type) {
3439     case InlineAsm::isOutput:
3440       // Indirect outputs just consume an argument.
3441       if (OpInfo.isIndirect) {
3442         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3443         break;
3444       }
3445 
3446       // The return value of the call is this value.  As such, there is no
3447       // corresponding argument.
3448       assert(!CS.getType()->isVoidTy() &&
3449              "Bad inline asm!");
3450       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3451         OpInfo.ConstraintVT =
3452             getSimpleValueType(DL, STy->getElementType(ResNo));
3453       } else {
3454         assert(ResNo == 0 && "Asm only has one result!");
3455         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3456       }
3457       ++ResNo;
3458       break;
3459     case InlineAsm::isInput:
3460       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3461       break;
3462     case InlineAsm::isClobber:
3463       // Nothing to do.
3464       break;
3465     }
3466 
3467     if (OpInfo.CallOperandVal) {
3468       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3469       if (OpInfo.isIndirect) {
3470         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3471         if (!PtrTy)
3472           report_fatal_error("Indirect operand for inline asm not a pointer!");
3473         OpTy = PtrTy->getElementType();
3474       }
3475 
3476       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3477       if (StructType *STy = dyn_cast<StructType>(OpTy))
3478         if (STy->getNumElements() == 1)
3479           OpTy = STy->getElementType(0);
3480 
3481       // If OpTy is not a single value, it may be a struct/union that we
3482       // can tile with integers.
3483       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3484         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3485         switch (BitSize) {
3486         default: break;
3487         case 1:
3488         case 8:
3489         case 16:
3490         case 32:
3491         case 64:
3492         case 128:
3493           OpInfo.ConstraintVT =
3494             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3495           break;
3496         }
3497       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3498         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3499         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3500       } else {
3501         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3502       }
3503     }
3504   }
3505 
3506   // If we have multiple alternative constraints, select the best alternative.
3507   if (!ConstraintOperands.empty()) {
3508     if (maCount) {
3509       unsigned bestMAIndex = 0;
3510       int bestWeight = -1;
3511       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3512       int weight = -1;
3513       unsigned maIndex;
3514       // Compute the sums of the weights for each alternative, keeping track
3515       // of the best (highest weight) one so far.
3516       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3517         int weightSum = 0;
3518         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3519             cIndex != eIndex; ++cIndex) {
3520           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3521           if (OpInfo.Type == InlineAsm::isClobber)
3522             continue;
3523 
3524           // If this is an output operand with a matching input operand,
3525           // look up the matching input. If their types mismatch, e.g. one
3526           // is an integer, the other is floating point, or their sizes are
3527           // different, flag it as an maCantMatch.
3528           if (OpInfo.hasMatchingInput()) {
3529             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3530             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3531               if ((OpInfo.ConstraintVT.isInteger() !=
3532                    Input.ConstraintVT.isInteger()) ||
3533                   (OpInfo.ConstraintVT.getSizeInBits() !=
3534                    Input.ConstraintVT.getSizeInBits())) {
3535                 weightSum = -1;  // Can't match.
3536                 break;
3537               }
3538             }
3539           }
3540           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3541           if (weight == -1) {
3542             weightSum = -1;
3543             break;
3544           }
3545           weightSum += weight;
3546         }
3547         // Update best.
3548         if (weightSum > bestWeight) {
3549           bestWeight = weightSum;
3550           bestMAIndex = maIndex;
3551         }
3552       }
3553 
3554       // Now select chosen alternative in each constraint.
3555       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3556           cIndex != eIndex; ++cIndex) {
3557         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3558         if (cInfo.Type == InlineAsm::isClobber)
3559           continue;
3560         cInfo.selectAlternative(bestMAIndex);
3561       }
3562     }
3563   }
3564 
3565   // Check and hook up tied operands, choose constraint code to use.
3566   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3567       cIndex != eIndex; ++cIndex) {
3568     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3569 
3570     // If this is an output operand with a matching input operand, look up the
3571     // matching input. If their types mismatch, e.g. one is an integer, the
3572     // other is floating point, or their sizes are different, flag it as an
3573     // error.
3574     if (OpInfo.hasMatchingInput()) {
3575       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3576 
3577       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3578         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3579             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3580                                          OpInfo.ConstraintVT);
3581         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3582             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3583                                          Input.ConstraintVT);
3584         if ((OpInfo.ConstraintVT.isInteger() !=
3585              Input.ConstraintVT.isInteger()) ||
3586             (MatchRC.second != InputRC.second)) {
3587           report_fatal_error("Unsupported asm: input constraint"
3588                              " with a matching output constraint of"
3589                              " incompatible type!");
3590         }
3591       }
3592     }
3593   }
3594 
3595   return ConstraintOperands;
3596 }
3597 
3598 /// Return an integer indicating how general CT is.
3599 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3600   switch (CT) {
3601   case TargetLowering::C_Other:
3602   case TargetLowering::C_Unknown:
3603     return 0;
3604   case TargetLowering::C_Register:
3605     return 1;
3606   case TargetLowering::C_RegisterClass:
3607     return 2;
3608   case TargetLowering::C_Memory:
3609     return 3;
3610   }
3611   llvm_unreachable("Invalid constraint type");
3612 }
3613 
3614 /// Examine constraint type and operand type and determine a weight value.
3615 /// This object must already have been set up with the operand type
3616 /// and the current alternative constraint selected.
3617 TargetLowering::ConstraintWeight
3618   TargetLowering::getMultipleConstraintMatchWeight(
3619     AsmOperandInfo &info, int maIndex) const {
3620   InlineAsm::ConstraintCodeVector *rCodes;
3621   if (maIndex >= (int)info.multipleAlternatives.size())
3622     rCodes = &info.Codes;
3623   else
3624     rCodes = &info.multipleAlternatives[maIndex].Codes;
3625   ConstraintWeight BestWeight = CW_Invalid;
3626 
3627   // Loop over the options, keeping track of the most general one.
3628   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3629     ConstraintWeight weight =
3630       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3631     if (weight > BestWeight)
3632       BestWeight = weight;
3633   }
3634 
3635   return BestWeight;
3636 }
3637 
3638 /// Examine constraint type and operand type and determine a weight value.
3639 /// This object must already have been set up with the operand type
3640 /// and the current alternative constraint selected.
3641 TargetLowering::ConstraintWeight
3642   TargetLowering::getSingleConstraintMatchWeight(
3643     AsmOperandInfo &info, const char *constraint) const {
3644   ConstraintWeight weight = CW_Invalid;
3645   Value *CallOperandVal = info.CallOperandVal;
3646     // If we don't have a value, we can't do a match,
3647     // but allow it at the lowest weight.
3648   if (!CallOperandVal)
3649     return CW_Default;
3650   // Look at the constraint type.
3651   switch (*constraint) {
3652     case 'i': // immediate integer.
3653     case 'n': // immediate integer with a known value.
3654       if (isa<ConstantInt>(CallOperandVal))
3655         weight = CW_Constant;
3656       break;
3657     case 's': // non-explicit intregal immediate.
3658       if (isa<GlobalValue>(CallOperandVal))
3659         weight = CW_Constant;
3660       break;
3661     case 'E': // immediate float if host format.
3662     case 'F': // immediate float.
3663       if (isa<ConstantFP>(CallOperandVal))
3664         weight = CW_Constant;
3665       break;
3666     case '<': // memory operand with autodecrement.
3667     case '>': // memory operand with autoincrement.
3668     case 'm': // memory operand.
3669     case 'o': // offsettable memory operand
3670     case 'V': // non-offsettable memory operand
3671       weight = CW_Memory;
3672       break;
3673     case 'r': // general register.
3674     case 'g': // general register, memory operand or immediate integer.
3675               // note: Clang converts "g" to "imr".
3676       if (CallOperandVal->getType()->isIntegerTy())
3677         weight = CW_Register;
3678       break;
3679     case 'X': // any operand.
3680     default:
3681       weight = CW_Default;
3682       break;
3683   }
3684   return weight;
3685 }
3686 
3687 /// If there are multiple different constraints that we could pick for this
3688 /// operand (e.g. "imr") try to pick the 'best' one.
3689 /// This is somewhat tricky: constraints fall into four classes:
3690 ///    Other         -> immediates and magic values
3691 ///    Register      -> one specific register
3692 ///    RegisterClass -> a group of regs
3693 ///    Memory        -> memory
3694 /// Ideally, we would pick the most specific constraint possible: if we have
3695 /// something that fits into a register, we would pick it.  The problem here
3696 /// is that if we have something that could either be in a register or in
3697 /// memory that use of the register could cause selection of *other*
3698 /// operands to fail: they might only succeed if we pick memory.  Because of
3699 /// this the heuristic we use is:
3700 ///
3701 ///  1) If there is an 'other' constraint, and if the operand is valid for
3702 ///     that constraint, use it.  This makes us take advantage of 'i'
3703 ///     constraints when available.
3704 ///  2) Otherwise, pick the most general constraint present.  This prefers
3705 ///     'm' over 'r', for example.
3706 ///
3707 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3708                              const TargetLowering &TLI,
3709                              SDValue Op, SelectionDAG *DAG) {
3710   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3711   unsigned BestIdx = 0;
3712   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3713   int BestGenerality = -1;
3714 
3715   // Loop over the options, keeping track of the most general one.
3716   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3717     TargetLowering::ConstraintType CType =
3718       TLI.getConstraintType(OpInfo.Codes[i]);
3719 
3720     // If this is an 'other' constraint, see if the operand is valid for it.
3721     // For example, on X86 we might have an 'rI' constraint.  If the operand
3722     // is an integer in the range [0..31] we want to use I (saving a load
3723     // of a register), otherwise we must use 'r'.
3724     if (CType == TargetLowering::C_Other && Op.getNode()) {
3725       assert(OpInfo.Codes[i].size() == 1 &&
3726              "Unhandled multi-letter 'other' constraint");
3727       std::vector<SDValue> ResultOps;
3728       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3729                                        ResultOps, *DAG);
3730       if (!ResultOps.empty()) {
3731         BestType = CType;
3732         BestIdx = i;
3733         break;
3734       }
3735     }
3736 
3737     // Things with matching constraints can only be registers, per gcc
3738     // documentation.  This mainly affects "g" constraints.
3739     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3740       continue;
3741 
3742     // This constraint letter is more general than the previous one, use it.
3743     int Generality = getConstraintGenerality(CType);
3744     if (Generality > BestGenerality) {
3745       BestType = CType;
3746       BestIdx = i;
3747       BestGenerality = Generality;
3748     }
3749   }
3750 
3751   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3752   OpInfo.ConstraintType = BestType;
3753 }
3754 
3755 /// Determines the constraint code and constraint type to use for the specific
3756 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3757 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3758                                             SDValue Op,
3759                                             SelectionDAG *DAG) const {
3760   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3761 
3762   // Single-letter constraints ('r') are very common.
3763   if (OpInfo.Codes.size() == 1) {
3764     OpInfo.ConstraintCode = OpInfo.Codes[0];
3765     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3766   } else {
3767     ChooseConstraint(OpInfo, *this, Op, DAG);
3768   }
3769 
3770   // 'X' matches anything.
3771   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3772     // Labels and constants are handled elsewhere ('X' is the only thing
3773     // that matches labels).  For Functions, the type here is the type of
3774     // the result, which is not what we want to look at; leave them alone.
3775     Value *v = OpInfo.CallOperandVal;
3776     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3777       OpInfo.CallOperandVal = v;
3778       return;
3779     }
3780 
3781     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
3782       return;
3783 
3784     // Otherwise, try to resolve it to something we know about by looking at
3785     // the actual operand type.
3786     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3787       OpInfo.ConstraintCode = Repl;
3788       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3789     }
3790   }
3791 }
3792 
3793 /// Given an exact SDIV by a constant, create a multiplication
3794 /// with the multiplicative inverse of the constant.
3795 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3796                               const SDLoc &dl, SelectionDAG &DAG,
3797                               SmallVectorImpl<SDNode *> &Created) {
3798   SDValue Op0 = N->getOperand(0);
3799   SDValue Op1 = N->getOperand(1);
3800   EVT VT = N->getValueType(0);
3801   EVT SVT = VT.getScalarType();
3802   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3803   EVT ShSVT = ShVT.getScalarType();
3804 
3805   bool UseSRA = false;
3806   SmallVector<SDValue, 16> Shifts, Factors;
3807 
3808   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3809     if (C->isNullValue())
3810       return false;
3811     APInt Divisor = C->getAPIntValue();
3812     unsigned Shift = Divisor.countTrailingZeros();
3813     if (Shift) {
3814       Divisor.ashrInPlace(Shift);
3815       UseSRA = true;
3816     }
3817     // Calculate the multiplicative inverse, using Newton's method.
3818     APInt t;
3819     APInt Factor = Divisor;
3820     while ((t = Divisor * Factor) != 1)
3821       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3822     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3823     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3824     return true;
3825   };
3826 
3827   // Collect all magic values from the build vector.
3828   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3829     return SDValue();
3830 
3831   SDValue Shift, Factor;
3832   if (VT.isVector()) {
3833     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3834     Factor = DAG.getBuildVector(VT, dl, Factors);
3835   } else {
3836     Shift = Shifts[0];
3837     Factor = Factors[0];
3838   }
3839 
3840   SDValue Res = Op0;
3841 
3842   // Shift the value upfront if it is even, so the LSB is one.
3843   if (UseSRA) {
3844     // TODO: For UDIV use SRL instead of SRA.
3845     SDNodeFlags Flags;
3846     Flags.setExact(true);
3847     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3848     Created.push_back(Res.getNode());
3849   }
3850 
3851   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3852 }
3853 
3854 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3855                                      SelectionDAG &DAG,
3856                                      SmallVectorImpl<SDNode *> &Created) const {
3857   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3859   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3860     return SDValue(N,0); // Lower SDIV as SDIV
3861   return SDValue();
3862 }
3863 
3864 /// Given an ISD::SDIV node expressing a divide by constant,
3865 /// return a DAG expression to select that will generate the same value by
3866 /// multiplying by a magic number.
3867 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3868 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3869                                   bool IsAfterLegalization,
3870                                   SmallVectorImpl<SDNode *> &Created) const {
3871   SDLoc dl(N);
3872   EVT VT = N->getValueType(0);
3873   EVT SVT = VT.getScalarType();
3874   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3875   EVT ShSVT = ShVT.getScalarType();
3876   unsigned EltBits = VT.getScalarSizeInBits();
3877 
3878   // Check to see if we can do this.
3879   // FIXME: We should be more aggressive here.
3880   if (!isTypeLegal(VT))
3881     return SDValue();
3882 
3883   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3884   if (N->getFlags().hasExact())
3885     return BuildExactSDIV(*this, N, dl, DAG, Created);
3886 
3887   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3888 
3889   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3890     if (C->isNullValue())
3891       return false;
3892 
3893     const APInt &Divisor = C->getAPIntValue();
3894     APInt::ms magics = Divisor.magic();
3895     int NumeratorFactor = 0;
3896     int ShiftMask = -1;
3897 
3898     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3899       // If d is +1/-1, we just multiply the numerator by +1/-1.
3900       NumeratorFactor = Divisor.getSExtValue();
3901       magics.m = 0;
3902       magics.s = 0;
3903       ShiftMask = 0;
3904     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3905       // If d > 0 and m < 0, add the numerator.
3906       NumeratorFactor = 1;
3907     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3908       // If d < 0 and m > 0, subtract the numerator.
3909       NumeratorFactor = -1;
3910     }
3911 
3912     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3913     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3914     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3915     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3916     return true;
3917   };
3918 
3919   SDValue N0 = N->getOperand(0);
3920   SDValue N1 = N->getOperand(1);
3921 
3922   // Collect the shifts / magic values from each element.
3923   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3924     return SDValue();
3925 
3926   SDValue MagicFactor, Factor, Shift, ShiftMask;
3927   if (VT.isVector()) {
3928     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3929     Factor = DAG.getBuildVector(VT, dl, Factors);
3930     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3931     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3932   } else {
3933     MagicFactor = MagicFactors[0];
3934     Factor = Factors[0];
3935     Shift = Shifts[0];
3936     ShiftMask = ShiftMasks[0];
3937   }
3938 
3939   // Multiply the numerator (operand 0) by the magic value.
3940   // FIXME: We should support doing a MUL in a wider type.
3941   SDValue Q;
3942   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3943                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3944     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3945   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3946                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3947     SDValue LoHi =
3948         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3949     Q = SDValue(LoHi.getNode(), 1);
3950   } else
3951     return SDValue(); // No mulhs or equivalent.
3952   Created.push_back(Q.getNode());
3953 
3954   // (Optionally) Add/subtract the numerator using Factor.
3955   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3956   Created.push_back(Factor.getNode());
3957   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3958   Created.push_back(Q.getNode());
3959 
3960   // Shift right algebraic by shift value.
3961   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3962   Created.push_back(Q.getNode());
3963 
3964   // Extract the sign bit, mask it and add it to the quotient.
3965   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3966   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3967   Created.push_back(T.getNode());
3968   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3969   Created.push_back(T.getNode());
3970   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3971 }
3972 
3973 /// Given an ISD::UDIV node expressing a divide by constant,
3974 /// return a DAG expression to select that will generate the same value by
3975 /// multiplying by a magic number.
3976 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3977 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3978                                   bool IsAfterLegalization,
3979                                   SmallVectorImpl<SDNode *> &Created) const {
3980   SDLoc dl(N);
3981   EVT VT = N->getValueType(0);
3982   EVT SVT = VT.getScalarType();
3983   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3984   EVT ShSVT = ShVT.getScalarType();
3985   unsigned EltBits = VT.getScalarSizeInBits();
3986 
3987   // Check to see if we can do this.
3988   // FIXME: We should be more aggressive here.
3989   if (!isTypeLegal(VT))
3990     return SDValue();
3991 
3992   bool UseNPQ = false;
3993   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3994 
3995   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3996     if (C->isNullValue())
3997       return false;
3998     // FIXME: We should use a narrower constant when the upper
3999     // bits are known to be zero.
4000     APInt Divisor = C->getAPIntValue();
4001     APInt::mu magics = Divisor.magicu();
4002     unsigned PreShift = 0, PostShift = 0;
4003 
4004     // If the divisor is even, we can avoid using the expensive fixup by
4005     // shifting the divided value upfront.
4006     if (magics.a != 0 && !Divisor[0]) {
4007       PreShift = Divisor.countTrailingZeros();
4008       // Get magic number for the shifted divisor.
4009       magics = Divisor.lshr(PreShift).magicu(PreShift);
4010       assert(magics.a == 0 && "Should use cheap fixup now");
4011     }
4012 
4013     APInt Magic = magics.m;
4014 
4015     unsigned SelNPQ;
4016     if (magics.a == 0 || Divisor.isOneValue()) {
4017       assert(magics.s < Divisor.getBitWidth() &&
4018              "We shouldn't generate an undefined shift!");
4019       PostShift = magics.s;
4020       SelNPQ = false;
4021     } else {
4022       PostShift = magics.s - 1;
4023       SelNPQ = true;
4024     }
4025 
4026     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4027     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4028     NPQFactors.push_back(
4029         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4030                                : APInt::getNullValue(EltBits),
4031                         dl, SVT));
4032     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4033     UseNPQ |= SelNPQ;
4034     return true;
4035   };
4036 
4037   SDValue N0 = N->getOperand(0);
4038   SDValue N1 = N->getOperand(1);
4039 
4040   // Collect the shifts/magic values from each element.
4041   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4042     return SDValue();
4043 
4044   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4045   if (VT.isVector()) {
4046     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4047     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4048     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4049     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4050   } else {
4051     PreShift = PreShifts[0];
4052     MagicFactor = MagicFactors[0];
4053     PostShift = PostShifts[0];
4054   }
4055 
4056   SDValue Q = N0;
4057   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4058   Created.push_back(Q.getNode());
4059 
4060   // FIXME: We should support doing a MUL in a wider type.
4061   auto GetMULHU = [&](SDValue X, SDValue Y) {
4062     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4063                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4064       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4065     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4066                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4067       SDValue LoHi =
4068           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4069       return SDValue(LoHi.getNode(), 1);
4070     }
4071     return SDValue(); // No mulhu or equivalent
4072   };
4073 
4074   // Multiply the numerator (operand 0) by the magic value.
4075   Q = GetMULHU(Q, MagicFactor);
4076   if (!Q)
4077     return SDValue();
4078 
4079   Created.push_back(Q.getNode());
4080 
4081   if (UseNPQ) {
4082     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4083     Created.push_back(NPQ.getNode());
4084 
4085     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4086     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4087     if (VT.isVector())
4088       NPQ = GetMULHU(NPQ, NPQFactor);
4089     else
4090       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4091 
4092     Created.push_back(NPQ.getNode());
4093 
4094     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4095     Created.push_back(Q.getNode());
4096   }
4097 
4098   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4099   Created.push_back(Q.getNode());
4100 
4101   SDValue One = DAG.getConstant(1, dl, VT);
4102   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4103   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4104 }
4105 
4106 bool TargetLowering::
4107 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4108   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4109     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4110                                 "be a constant integer");
4111     return true;
4112   }
4113 
4114   return false;
4115 }
4116 
4117 //===----------------------------------------------------------------------===//
4118 // Legalization Utilities
4119 //===----------------------------------------------------------------------===//
4120 
4121 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4122                                     SDValue LHS, SDValue RHS,
4123                                     SmallVectorImpl<SDValue> &Result,
4124                                     EVT HiLoVT, SelectionDAG &DAG,
4125                                     MulExpansionKind Kind, SDValue LL,
4126                                     SDValue LH, SDValue RL, SDValue RH) const {
4127   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4128          Opcode == ISD::SMUL_LOHI);
4129 
4130   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4131                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4132   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4133                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4134   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4135                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4136   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4137                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4138 
4139   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4140     return false;
4141 
4142   unsigned OuterBitSize = VT.getScalarSizeInBits();
4143   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4144   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4145   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4146 
4147   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4148   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4149          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4150 
4151   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4152   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4153                           bool Signed) -> bool {
4154     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4155       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4156       Hi = SDValue(Lo.getNode(), 1);
4157       return true;
4158     }
4159     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4160       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4161       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4162       return true;
4163     }
4164     return false;
4165   };
4166 
4167   SDValue Lo, Hi;
4168 
4169   if (!LL.getNode() && !RL.getNode() &&
4170       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4171     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4172     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4173   }
4174 
4175   if (!LL.getNode())
4176     return false;
4177 
4178   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4179   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4180       DAG.MaskedValueIsZero(RHS, HighMask)) {
4181     // The inputs are both zero-extended.
4182     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4183       Result.push_back(Lo);
4184       Result.push_back(Hi);
4185       if (Opcode != ISD::MUL) {
4186         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4187         Result.push_back(Zero);
4188         Result.push_back(Zero);
4189       }
4190       return true;
4191     }
4192   }
4193 
4194   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4195       RHSSB > InnerBitSize) {
4196     // The input values are both sign-extended.
4197     // TODO non-MUL case?
4198     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4199       Result.push_back(Lo);
4200       Result.push_back(Hi);
4201       return true;
4202     }
4203   }
4204 
4205   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4206   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4207   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4208     // FIXME getShiftAmountTy does not always return a sensible result when VT
4209     // is an illegal type, and so the type may be too small to fit the shift
4210     // amount. Override it with i32. The shift will have to be legalized.
4211     ShiftAmountTy = MVT::i32;
4212   }
4213   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4214 
4215   if (!LH.getNode() && !RH.getNode() &&
4216       isOperationLegalOrCustom(ISD::SRL, VT) &&
4217       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4218     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4219     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4220     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4221     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4222   }
4223 
4224   if (!LH.getNode())
4225     return false;
4226 
4227   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4228     return false;
4229 
4230   Result.push_back(Lo);
4231 
4232   if (Opcode == ISD::MUL) {
4233     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4234     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4235     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4236     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4237     Result.push_back(Hi);
4238     return true;
4239   }
4240 
4241   // Compute the full width result.
4242   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4243     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4244     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4245     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4246     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4247   };
4248 
4249   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4250   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4251     return false;
4252 
4253   // This is effectively the add part of a multiply-add of half-sized operands,
4254   // so it cannot overflow.
4255   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4256 
4257   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4258     return false;
4259 
4260   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4261   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4262 
4263   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4264                   isOperationLegalOrCustom(ISD::ADDE, VT));
4265   if (UseGlue)
4266     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4267                        Merge(Lo, Hi));
4268   else
4269     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4270                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4271 
4272   SDValue Carry = Next.getValue(1);
4273   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4274   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4275 
4276   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4277     return false;
4278 
4279   if (UseGlue)
4280     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4281                      Carry);
4282   else
4283     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4284                      Zero, Carry);
4285 
4286   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4287 
4288   if (Opcode == ISD::SMUL_LOHI) {
4289     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4290                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4291     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4292 
4293     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4294                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4295     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4296   }
4297 
4298   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4299   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4300   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4301   return true;
4302 }
4303 
4304 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4305                                SelectionDAG &DAG, MulExpansionKind Kind,
4306                                SDValue LL, SDValue LH, SDValue RL,
4307                                SDValue RH) const {
4308   SmallVector<SDValue, 2> Result;
4309   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4310                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4311                            DAG, Kind, LL, LH, RL, RH);
4312   if (Ok) {
4313     assert(Result.size() == 2);
4314     Lo = Result[0];
4315     Hi = Result[1];
4316   }
4317   return Ok;
4318 }
4319 
4320 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4321                                        SelectionDAG &DAG) const {
4322   EVT VT = Node->getValueType(0);
4323 
4324   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4325                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4326                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4327                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4328     return false;
4329 
4330   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4331   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4332   SDValue X = Node->getOperand(0);
4333   SDValue Y = Node->getOperand(1);
4334   SDValue Z = Node->getOperand(2);
4335 
4336   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4337   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4338   SDLoc DL(SDValue(Node, 0));
4339 
4340   EVT ShVT = Z.getValueType();
4341   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4342   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4343 
4344   SDValue ShAmt;
4345   if (isPowerOf2_32(EltSizeInBits)) {
4346     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4347     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4348   } else {
4349     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4350   }
4351 
4352   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4353   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4354   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4355   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4356 
4357   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4358   // and that is undefined. We must compare and select to avoid UB.
4359   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4360 
4361   // For fshl, 0-shift returns the 1st arg (X).
4362   // For fshr, 0-shift returns the 2nd arg (Y).
4363   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4364   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4365   return true;
4366 }
4367 
4368 // TODO: Merge with expandFunnelShift.
4369 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4370                                SelectionDAG &DAG) const {
4371   EVT VT = Node->getValueType(0);
4372   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4373   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4374   SDValue Op0 = Node->getOperand(0);
4375   SDValue Op1 = Node->getOperand(1);
4376   SDLoc DL(SDValue(Node, 0));
4377 
4378   EVT ShVT = Op1.getValueType();
4379   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4380 
4381   // If a rotate in the other direction is legal, use it.
4382   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4383   if (isOperationLegal(RevRot, VT)) {
4384     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4385     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4386     return true;
4387   }
4388 
4389   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4390                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4391                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4392                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4393                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4394     return false;
4395 
4396   // Otherwise,
4397   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4398   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4399   //
4400   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4401          "Expecting the type bitwidth to be a power of 2");
4402   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4403   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4404   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4405   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4406   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4407   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4408   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4409                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4410   return true;
4411 }
4412 
4413 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4414                                SelectionDAG &DAG) const {
4415   SDValue Src = Node->getOperand(0);
4416   EVT SrcVT = Src.getValueType();
4417   EVT DstVT = Node->getValueType(0);
4418   SDLoc dl(SDValue(Node, 0));
4419 
4420   // FIXME: Only f32 to i64 conversions are supported.
4421   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4422     return false;
4423 
4424   // Expand f32 -> i64 conversion
4425   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4426   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4427   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4428   EVT IntVT = SrcVT.changeTypeToInteger();
4429   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4430 
4431   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4432   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4433   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4434   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4435   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4436   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4437 
4438   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4439 
4440   SDValue ExponentBits = DAG.getNode(
4441       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4442       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4443   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4444 
4445   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4446                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4447                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4448   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4449 
4450   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4451                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4452                           DAG.getConstant(0x00800000, dl, IntVT));
4453 
4454   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4455 
4456   R = DAG.getSelectCC(
4457       dl, Exponent, ExponentLoBit,
4458       DAG.getNode(ISD::SHL, dl, DstVT, R,
4459                   DAG.getZExtOrTrunc(
4460                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4461                       dl, IntShVT)),
4462       DAG.getNode(ISD::SRL, dl, DstVT, R,
4463                   DAG.getZExtOrTrunc(
4464                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4465                       dl, IntShVT)),
4466       ISD::SETGT);
4467 
4468   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4469                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4470 
4471   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4472                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4473   return true;
4474 }
4475 
4476 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4477                                       SelectionDAG &DAG) const {
4478   SDLoc dl(SDValue(Node, 0));
4479   SDValue Src = Node->getOperand(0);
4480 
4481   EVT SrcVT = Src.getValueType();
4482   EVT DstVT = Node->getValueType(0);
4483   EVT SetCCVT =
4484       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4485 
4486   // Only expand vector types if we have the appropriate vector bit operations.
4487   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4488                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4489     return false;
4490 
4491   // If the maximum float value is smaller then the signed integer range,
4492   // the destination signmask can't be represented by the float, so we can
4493   // just use FP_TO_SINT directly.
4494   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4495   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4496   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4497   if (APFloat::opOverflow &
4498       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4499     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4500     return true;
4501   }
4502 
4503   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4504   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4505 
4506   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4507   if (Strict) {
4508     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4509     // signmask then offset (the result of which should be fully representable).
4510     // Sel = Src < 0x8000000000000000
4511     // Val = select Sel, Src, Src - 0x8000000000000000
4512     // Ofs = select Sel, 0, 0x8000000000000000
4513     // Result = fp_to_sint(Val) ^ Ofs
4514 
4515     // TODO: Should any fast-math-flags be set for the FSUB?
4516     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4517                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4518     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4519                                 DAG.getConstant(SignMask, dl, DstVT));
4520     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4521                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4522   } else {
4523     // Expand based on maximum range of FP_TO_SINT:
4524     // True = fp_to_sint(Src)
4525     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4526     // Result = select (Src < 0x8000000000000000), True, False
4527 
4528     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4529     // TODO: Should any fast-math-flags be set for the FSUB?
4530     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4531                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4532     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4533                         DAG.getConstant(SignMask, dl, DstVT));
4534     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4535   }
4536   return true;
4537 }
4538 
4539 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4540                                       SelectionDAG &DAG) const {
4541   SDValue Src = Node->getOperand(0);
4542   EVT SrcVT = Src.getValueType();
4543   EVT DstVT = Node->getValueType(0);
4544 
4545   if (SrcVT.getScalarType() != MVT::i64)
4546     return false;
4547 
4548   SDLoc dl(SDValue(Node, 0));
4549   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4550 
4551   if (DstVT.getScalarType() == MVT::f32) {
4552     // Only expand vector types if we have the appropriate vector bit
4553     // operations.
4554     if (SrcVT.isVector() &&
4555         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4556          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4557          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4558          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4559          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4560       return false;
4561 
4562     // For unsigned conversions, convert them to signed conversions using the
4563     // algorithm from the x86_64 __floatundidf in compiler_rt.
4564     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4565 
4566     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4567     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4568     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4569     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4570     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4571 
4572     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4573     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4574 
4575     // TODO: This really should be implemented using a branch rather than a
4576     // select.  We happen to get lucky and machinesink does the right
4577     // thing most of the time.  This would be a good candidate for a
4578     // pseudo-op, or, even better, for whole-function isel.
4579     EVT SetCCVT =
4580         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4581 
4582     SDValue SignBitTest = DAG.getSetCC(
4583         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4584     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4585     return true;
4586   }
4587 
4588   if (DstVT.getScalarType() == MVT::f64) {
4589     // Only expand vector types if we have the appropriate vector bit
4590     // operations.
4591     if (SrcVT.isVector() &&
4592         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4593          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4594          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4595          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4596          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4597       return false;
4598 
4599     // Implementation of unsigned i64 to f64 following the algorithm in
4600     // __floatundidf in compiler_rt. This implementation has the advantage
4601     // of performing rounding correctly, both in the default rounding mode
4602     // and in all alternate rounding modes.
4603     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4604     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4605         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4606     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4607     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4608     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4609 
4610     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4611     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4612     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4613     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4614     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4615     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4616     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4617     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4618     return true;
4619   }
4620 
4621   return false;
4622 }
4623 
4624 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4625                                               SelectionDAG &DAG) const {
4626   SDLoc dl(Node);
4627   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4628     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4629   EVT VT = Node->getValueType(0);
4630   if (isOperationLegalOrCustom(NewOp, VT)) {
4631     SDValue Quiet0 = Node->getOperand(0);
4632     SDValue Quiet1 = Node->getOperand(1);
4633 
4634     if (!Node->getFlags().hasNoNaNs()) {
4635       // Insert canonicalizes if it's possible we need to quiet to get correct
4636       // sNaN behavior.
4637       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4638         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4639                              Node->getFlags());
4640       }
4641       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4642         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4643                              Node->getFlags());
4644       }
4645     }
4646 
4647     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4648   }
4649 
4650   return SDValue();
4651 }
4652 
4653 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4654                                  SelectionDAG &DAG) const {
4655   SDLoc dl(Node);
4656   EVT VT = Node->getValueType(0);
4657   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4658   SDValue Op = Node->getOperand(0);
4659   unsigned Len = VT.getScalarSizeInBits();
4660   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4661 
4662   // TODO: Add support for irregular type lengths.
4663   if (!(Len <= 128 && Len % 8 == 0))
4664     return false;
4665 
4666   // Only expand vector types if we have the appropriate vector bit operations.
4667   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4668                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4669                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4670                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4671                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4672     return false;
4673 
4674   // This is the "best" algorithm from
4675   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4676   SDValue Mask55 =
4677       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4678   SDValue Mask33 =
4679       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4680   SDValue Mask0F =
4681       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4682   SDValue Mask01 =
4683       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4684 
4685   // v = v - ((v >> 1) & 0x55555555...)
4686   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4687                    DAG.getNode(ISD::AND, dl, VT,
4688                                DAG.getNode(ISD::SRL, dl, VT, Op,
4689                                            DAG.getConstant(1, dl, ShVT)),
4690                                Mask55));
4691   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4692   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4693                    DAG.getNode(ISD::AND, dl, VT,
4694                                DAG.getNode(ISD::SRL, dl, VT, Op,
4695                                            DAG.getConstant(2, dl, ShVT)),
4696                                Mask33));
4697   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4698   Op = DAG.getNode(ISD::AND, dl, VT,
4699                    DAG.getNode(ISD::ADD, dl, VT, Op,
4700                                DAG.getNode(ISD::SRL, dl, VT, Op,
4701                                            DAG.getConstant(4, dl, ShVT))),
4702                    Mask0F);
4703   // v = (v * 0x01010101...) >> (Len - 8)
4704   if (Len > 8)
4705     Op =
4706         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4707                     DAG.getConstant(Len - 8, dl, ShVT));
4708 
4709   Result = Op;
4710   return true;
4711 }
4712 
4713 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4714                                 SelectionDAG &DAG) const {
4715   SDLoc dl(Node);
4716   EVT VT = Node->getValueType(0);
4717   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4718   SDValue Op = Node->getOperand(0);
4719   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4720 
4721   // If the non-ZERO_UNDEF version is supported we can use that instead.
4722   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4723       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4724     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4725     return true;
4726   }
4727 
4728   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4729   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4730     EVT SetCCVT =
4731         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4732     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4733     SDValue Zero = DAG.getConstant(0, dl, VT);
4734     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4735     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4736                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4737     return true;
4738   }
4739 
4740   // Only expand vector types if we have the appropriate vector bit operations.
4741   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4742                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4743                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4744                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4745     return false;
4746 
4747   // for now, we do this:
4748   // x = x | (x >> 1);
4749   // x = x | (x >> 2);
4750   // ...
4751   // x = x | (x >>16);
4752   // x = x | (x >>32); // for 64-bit input
4753   // return popcount(~x);
4754   //
4755   // Ref: "Hacker's Delight" by Henry Warren
4756   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4757     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4758     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4759                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4760   }
4761   Op = DAG.getNOT(dl, Op, VT);
4762   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4763   return true;
4764 }
4765 
4766 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4767                                 SelectionDAG &DAG) const {
4768   SDLoc dl(Node);
4769   EVT VT = Node->getValueType(0);
4770   SDValue Op = Node->getOperand(0);
4771   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4772 
4773   // If the non-ZERO_UNDEF version is supported we can use that instead.
4774   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4775       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4776     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4777     return true;
4778   }
4779 
4780   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4781   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4782     EVT SetCCVT =
4783         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4784     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4785     SDValue Zero = DAG.getConstant(0, dl, VT);
4786     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4787     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4788                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4789     return true;
4790   }
4791 
4792   // Only expand vector types if we have the appropriate vector bit operations.
4793   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4794                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4795                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4796                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4797                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4798                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4799     return false;
4800 
4801   // for now, we use: { return popcount(~x & (x - 1)); }
4802   // unless the target has ctlz but not ctpop, in which case we use:
4803   // { return 32 - nlz(~x & (x-1)); }
4804   // Ref: "Hacker's Delight" by Henry Warren
4805   SDValue Tmp = DAG.getNode(
4806       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4807       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4808 
4809   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4810   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4811     Result =
4812         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4813                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4814     return true;
4815   }
4816 
4817   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4818   return true;
4819 }
4820 
4821 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
4822                                SelectionDAG &DAG) const {
4823   SDLoc dl(N);
4824   EVT VT = N->getValueType(0);
4825   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4826   SDValue Op = N->getOperand(0);
4827 
4828   // Only expand vector types if we have the appropriate vector operations.
4829   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
4830                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
4831                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4832     return false;
4833 
4834   SDValue Shift =
4835       DAG.getNode(ISD::SRA, dl, VT, Op,
4836                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
4837   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
4838   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
4839   return true;
4840 }
4841 
4842 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4843                                             SelectionDAG &DAG) const {
4844   SDLoc SL(LD);
4845   SDValue Chain = LD->getChain();
4846   SDValue BasePTR = LD->getBasePtr();
4847   EVT SrcVT = LD->getMemoryVT();
4848   ISD::LoadExtType ExtType = LD->getExtensionType();
4849 
4850   unsigned NumElem = SrcVT.getVectorNumElements();
4851 
4852   EVT SrcEltVT = SrcVT.getScalarType();
4853   EVT DstEltVT = LD->getValueType(0).getScalarType();
4854 
4855   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4856   assert(SrcEltVT.isByteSized());
4857 
4858   SmallVector<SDValue, 8> Vals;
4859   SmallVector<SDValue, 8> LoadChains;
4860 
4861   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4862     SDValue ScalarLoad =
4863         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4864                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4865                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4866                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4867 
4868     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4869 
4870     Vals.push_back(ScalarLoad.getValue(0));
4871     LoadChains.push_back(ScalarLoad.getValue(1));
4872   }
4873 
4874   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4875   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4876 
4877   return DAG.getMergeValues({ Value, NewChain }, SL);
4878 }
4879 
4880 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4881                                              SelectionDAG &DAG) const {
4882   SDLoc SL(ST);
4883 
4884   SDValue Chain = ST->getChain();
4885   SDValue BasePtr = ST->getBasePtr();
4886   SDValue Value = ST->getValue();
4887   EVT StVT = ST->getMemoryVT();
4888 
4889   // The type of the data we want to save
4890   EVT RegVT = Value.getValueType();
4891   EVT RegSclVT = RegVT.getScalarType();
4892 
4893   // The type of data as saved in memory.
4894   EVT MemSclVT = StVT.getScalarType();
4895 
4896   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4897   unsigned NumElem = StVT.getVectorNumElements();
4898 
4899   // A vector must always be stored in memory as-is, i.e. without any padding
4900   // between the elements, since various code depend on it, e.g. in the
4901   // handling of a bitcast of a vector type to int, which may be done with a
4902   // vector store followed by an integer load. A vector that does not have
4903   // elements that are byte-sized must therefore be stored as an integer
4904   // built out of the extracted vector elements.
4905   if (!MemSclVT.isByteSized()) {
4906     unsigned NumBits = StVT.getSizeInBits();
4907     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4908 
4909     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4910 
4911     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4912       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4913                                 DAG.getConstant(Idx, SL, IdxVT));
4914       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4915       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4916       unsigned ShiftIntoIdx =
4917           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4918       SDValue ShiftAmount =
4919           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4920       SDValue ShiftedElt =
4921           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4922       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4923     }
4924 
4925     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4926                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4927                         ST->getAAInfo());
4928   }
4929 
4930   // Store Stride in bytes
4931   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4932   assert (Stride && "Zero stride!");
4933   // Extract each of the elements from the original vector and save them into
4934   // memory individually.
4935   SmallVector<SDValue, 8> Stores;
4936   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4937     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4938                               DAG.getConstant(Idx, SL, IdxVT));
4939 
4940     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4941 
4942     // This scalar TruncStore may be illegal, but we legalize it later.
4943     SDValue Store = DAG.getTruncStore(
4944         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4945         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4946         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4947 
4948     Stores.push_back(Store);
4949   }
4950 
4951   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4952 }
4953 
4954 std::pair<SDValue, SDValue>
4955 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4956   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4957          "unaligned indexed loads not implemented!");
4958   SDValue Chain = LD->getChain();
4959   SDValue Ptr = LD->getBasePtr();
4960   EVT VT = LD->getValueType(0);
4961   EVT LoadedVT = LD->getMemoryVT();
4962   SDLoc dl(LD);
4963   auto &MF = DAG.getMachineFunction();
4964 
4965   if (VT.isFloatingPoint() || VT.isVector()) {
4966     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4967     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4968       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4969           LoadedVT.isVector()) {
4970         // Scalarize the load and let the individual components be handled.
4971         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4972         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4973           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4974         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4975       }
4976 
4977       // Expand to a (misaligned) integer load of the same size,
4978       // then bitconvert to floating point or vector.
4979       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4980                                     LD->getMemOperand());
4981       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4982       if (LoadedVT != VT)
4983         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4984                              ISD::ANY_EXTEND, dl, VT, Result);
4985 
4986       return std::make_pair(Result, newLoad.getValue(1));
4987     }
4988 
4989     // Copy the value to a (aligned) stack slot using (unaligned) integer
4990     // loads and stores, then do a (aligned) load from the stack slot.
4991     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4992     unsigned LoadedBytes = LoadedVT.getStoreSize();
4993     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4994     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4995 
4996     // Make sure the stack slot is also aligned for the register type.
4997     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4998     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4999     SmallVector<SDValue, 8> Stores;
5000     SDValue StackPtr = StackBase;
5001     unsigned Offset = 0;
5002 
5003     EVT PtrVT = Ptr.getValueType();
5004     EVT StackPtrVT = StackPtr.getValueType();
5005 
5006     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5007     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5008 
5009     // Do all but one copies using the full register width.
5010     for (unsigned i = 1; i < NumRegs; i++) {
5011       // Load one integer register's worth from the original location.
5012       SDValue Load = DAG.getLoad(
5013           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5014           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5015           LD->getAAInfo());
5016       // Follow the load with a store to the stack slot.  Remember the store.
5017       Stores.push_back(DAG.getStore(
5018           Load.getValue(1), dl, Load, StackPtr,
5019           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5020       // Increment the pointers.
5021       Offset += RegBytes;
5022 
5023       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5024       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5025     }
5026 
5027     // The last copy may be partial.  Do an extending load.
5028     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5029                                   8 * (LoadedBytes - Offset));
5030     SDValue Load =
5031         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5032                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
5033                        MinAlign(LD->getAlignment(), Offset),
5034                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5035     // Follow the load with a store to the stack slot.  Remember the store.
5036     // On big-endian machines this requires a truncating store to ensure
5037     // that the bits end up in the right place.
5038     Stores.push_back(DAG.getTruncStore(
5039         Load.getValue(1), dl, Load, StackPtr,
5040         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5041 
5042     // The order of the stores doesn't matter - say it with a TokenFactor.
5043     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5044 
5045     // Finally, perform the original load only redirected to the stack slot.
5046     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5047                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5048                           LoadedVT);
5049 
5050     // Callers expect a MERGE_VALUES node.
5051     return std::make_pair(Load, TF);
5052   }
5053 
5054   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5055          "Unaligned load of unsupported type.");
5056 
5057   // Compute the new VT that is half the size of the old one.  This is an
5058   // integer MVT.
5059   unsigned NumBits = LoadedVT.getSizeInBits();
5060   EVT NewLoadedVT;
5061   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5062   NumBits >>= 1;
5063 
5064   unsigned Alignment = LD->getAlignment();
5065   unsigned IncrementSize = NumBits / 8;
5066   ISD::LoadExtType HiExtType = LD->getExtensionType();
5067 
5068   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5069   if (HiExtType == ISD::NON_EXTLOAD)
5070     HiExtType = ISD::ZEXTLOAD;
5071 
5072   // Load the value in two parts
5073   SDValue Lo, Hi;
5074   if (DAG.getDataLayout().isLittleEndian()) {
5075     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5076                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5077                         LD->getAAInfo());
5078 
5079     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5080     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5081                         LD->getPointerInfo().getWithOffset(IncrementSize),
5082                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5083                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5084   } else {
5085     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5086                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5087                         LD->getAAInfo());
5088 
5089     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5090     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5091                         LD->getPointerInfo().getWithOffset(IncrementSize),
5092                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5093                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5094   }
5095 
5096   // aggregate the two parts
5097   SDValue ShiftAmount =
5098       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5099                                                     DAG.getDataLayout()));
5100   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5101   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5102 
5103   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5104                              Hi.getValue(1));
5105 
5106   return std::make_pair(Result, TF);
5107 }
5108 
5109 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5110                                              SelectionDAG &DAG) const {
5111   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5112          "unaligned indexed stores not implemented!");
5113   SDValue Chain = ST->getChain();
5114   SDValue Ptr = ST->getBasePtr();
5115   SDValue Val = ST->getValue();
5116   EVT VT = Val.getValueType();
5117   int Alignment = ST->getAlignment();
5118   auto &MF = DAG.getMachineFunction();
5119   EVT MemVT = ST->getMemoryVT();
5120 
5121   SDLoc dl(ST);
5122   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
5123     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5124     if (isTypeLegal(intVT)) {
5125       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5126           MemVT.isVector()) {
5127         // Scalarize the store and let the individual components be handled.
5128         SDValue Result = scalarizeVectorStore(ST, DAG);
5129 
5130         return Result;
5131       }
5132       // Expand to a bitconvert of the value to the integer type of the
5133       // same size, then a (misaligned) int store.
5134       // FIXME: Does not handle truncating floating point stores!
5135       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5136       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5137                             Alignment, ST->getMemOperand()->getFlags());
5138       return Result;
5139     }
5140     // Do a (aligned) store to a stack slot, then copy from the stack slot
5141     // to the final destination using (unaligned) integer loads and stores.
5142     EVT StoredVT = ST->getMemoryVT();
5143     MVT RegVT =
5144       getRegisterType(*DAG.getContext(),
5145                       EVT::getIntegerVT(*DAG.getContext(),
5146                                         StoredVT.getSizeInBits()));
5147     EVT PtrVT = Ptr.getValueType();
5148     unsigned StoredBytes = StoredVT.getStoreSize();
5149     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5150     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5151 
5152     // Make sure the stack slot is also aligned for the register type.
5153     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
5154     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5155 
5156     // Perform the original store, only redirected to the stack slot.
5157     SDValue Store = DAG.getTruncStore(
5158         Chain, dl, Val, StackPtr,
5159         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
5160 
5161     EVT StackPtrVT = StackPtr.getValueType();
5162 
5163     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5164     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5165     SmallVector<SDValue, 8> Stores;
5166     unsigned Offset = 0;
5167 
5168     // Do all but one copies using the full register width.
5169     for (unsigned i = 1; i < NumRegs; i++) {
5170       // Load one integer register's worth from the stack slot.
5171       SDValue Load = DAG.getLoad(
5172           RegVT, dl, Store, StackPtr,
5173           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5174       // Store it to the final location.  Remember the store.
5175       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5176                                     ST->getPointerInfo().getWithOffset(Offset),
5177                                     MinAlign(ST->getAlignment(), Offset),
5178                                     ST->getMemOperand()->getFlags()));
5179       // Increment the pointers.
5180       Offset += RegBytes;
5181       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5182       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5183     }
5184 
5185     // The last store may be partial.  Do a truncating store.  On big-endian
5186     // machines this requires an extending load from the stack slot to ensure
5187     // that the bits are in the right place.
5188     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5189                                   8 * (StoredBytes - Offset));
5190 
5191     // Load from the stack slot.
5192     SDValue Load = DAG.getExtLoad(
5193         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5194         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
5195 
5196     Stores.push_back(
5197         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5198                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
5199                           MinAlign(ST->getAlignment(), Offset),
5200                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5201     // The order of the stores doesn't matter - say it with a TokenFactor.
5202     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5203     return Result;
5204   }
5205 
5206   assert(ST->getMemoryVT().isInteger() &&
5207          !ST->getMemoryVT().isVector() &&
5208          "Unaligned store of unknown type.");
5209   // Get the half-size VT
5210   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
5211   int NumBits = NewStoredVT.getSizeInBits();
5212   int IncrementSize = NumBits / 8;
5213 
5214   // Divide the stored value in two parts.
5215   SDValue ShiftAmount =
5216       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
5217                                                     DAG.getDataLayout()));
5218   SDValue Lo = Val;
5219   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5220 
5221   // Store the two parts
5222   SDValue Store1, Store2;
5223   Store1 = DAG.getTruncStore(Chain, dl,
5224                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5225                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5226                              ST->getMemOperand()->getFlags());
5227 
5228   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5229   Alignment = MinAlign(Alignment, IncrementSize);
5230   Store2 = DAG.getTruncStore(
5231       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5232       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5233       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5234 
5235   SDValue Result =
5236     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5237   return Result;
5238 }
5239 
5240 SDValue
5241 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5242                                        const SDLoc &DL, EVT DataVT,
5243                                        SelectionDAG &DAG,
5244                                        bool IsCompressedMemory) const {
5245   SDValue Increment;
5246   EVT AddrVT = Addr.getValueType();
5247   EVT MaskVT = Mask.getValueType();
5248   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5249          "Incompatible types of Data and Mask");
5250   if (IsCompressedMemory) {
5251     // Incrementing the pointer according to number of '1's in the mask.
5252     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5253     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5254     if (MaskIntVT.getSizeInBits() < 32) {
5255       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5256       MaskIntVT = MVT::i32;
5257     }
5258 
5259     // Count '1's with POPCNT.
5260     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5261     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5262     // Scale is an element size in bytes.
5263     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5264                                     AddrVT);
5265     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5266   } else
5267     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5268 
5269   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5270 }
5271 
5272 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5273                                        SDValue Idx,
5274                                        EVT VecVT,
5275                                        const SDLoc &dl) {
5276   if (isa<ConstantSDNode>(Idx))
5277     return Idx;
5278 
5279   EVT IdxVT = Idx.getValueType();
5280   unsigned NElts = VecVT.getVectorNumElements();
5281   if (isPowerOf2_32(NElts)) {
5282     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5283                                      Log2_32(NElts));
5284     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5285                        DAG.getConstant(Imm, dl, IdxVT));
5286   }
5287 
5288   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5289                      DAG.getConstant(NElts - 1, dl, IdxVT));
5290 }
5291 
5292 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5293                                                 SDValue VecPtr, EVT VecVT,
5294                                                 SDValue Index) const {
5295   SDLoc dl(Index);
5296   // Make sure the index type is big enough to compute in.
5297   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5298 
5299   EVT EltVT = VecVT.getVectorElementType();
5300 
5301   // Calculate the element offset and add it to the pointer.
5302   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5303   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5304          "Converting bits to bytes lost precision");
5305 
5306   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5307 
5308   EVT IdxVT = Index.getValueType();
5309 
5310   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5311                       DAG.getConstant(EltSize, dl, IdxVT));
5312   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5313 }
5314 
5315 //===----------------------------------------------------------------------===//
5316 // Implementation of Emulated TLS Model
5317 //===----------------------------------------------------------------------===//
5318 
5319 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5320                                                 SelectionDAG &DAG) const {
5321   // Access to address of TLS varialbe xyz is lowered to a function call:
5322   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5323   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5324   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5325   SDLoc dl(GA);
5326 
5327   ArgListTy Args;
5328   ArgListEntry Entry;
5329   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5330   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5331   StringRef EmuTlsVarName(NameString);
5332   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5333   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5334   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5335   Entry.Ty = VoidPtrType;
5336   Args.push_back(Entry);
5337 
5338   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5339 
5340   TargetLowering::CallLoweringInfo CLI(DAG);
5341   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5342   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5343   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5344 
5345   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5346   // At last for X86 targets, maybe good for other targets too?
5347   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5348   MFI.setAdjustsStack(true);  // Is this only for X86 target?
5349   MFI.setHasCalls(true);
5350 
5351   assert((GA->getOffset() == 0) &&
5352          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5353   return CallResult.first;
5354 }
5355 
5356 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5357                                                 SelectionDAG &DAG) const {
5358   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5359   if (!isCtlzFast())
5360     return SDValue();
5361   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5362   SDLoc dl(Op);
5363   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5364     if (C->isNullValue() && CC == ISD::SETEQ) {
5365       EVT VT = Op.getOperand(0).getValueType();
5366       SDValue Zext = Op.getOperand(0);
5367       if (VT.bitsLT(MVT::i32)) {
5368         VT = MVT::i32;
5369         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5370       }
5371       unsigned Log2b = Log2_32(VT.getSizeInBits());
5372       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5373       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5374                                 DAG.getConstant(Log2b, dl, MVT::i32));
5375       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5376     }
5377   }
5378   return SDValue();
5379 }
5380 
5381 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
5382   unsigned Opcode = Node->getOpcode();
5383   SDValue LHS = Node->getOperand(0);
5384   SDValue RHS = Node->getOperand(1);
5385   EVT VT = LHS.getValueType();
5386   SDLoc dl(Node);
5387 
5388   assert(LHS.getValueType().isInteger() && "Expected operands to be integers");
5389   assert(RHS.getValueType().isInteger() && "Expected operands to be integers");
5390   assert(LHS.getValueType() == RHS.getValueType() &&
5391          "Expected both operands to be the same type");
5392 
5393   // usub.sat(a, b) -> umax(a, b) - b
5394   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
5395     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
5396     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
5397   }
5398 
5399   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
5400     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
5401     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
5402     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
5403   }
5404 
5405   unsigned OverflowOp;
5406   switch (Opcode) {
5407   case ISD::SADDSAT:
5408     OverflowOp = ISD::SADDO;
5409     break;
5410   case ISD::UADDSAT:
5411     OverflowOp = ISD::UADDO;
5412     break;
5413   case ISD::SSUBSAT:
5414     OverflowOp = ISD::SSUBO;
5415     break;
5416   case ISD::USUBSAT:
5417     OverflowOp = ISD::USUBO;
5418     break;
5419   default:
5420     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5421                      "addition or subtraction node.");
5422   }
5423 
5424   unsigned BitWidth = LHS.getScalarValueSizeInBits();
5425   EVT ResultType = LHS.getValueType();
5426   EVT BoolVT =
5427       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
5428   SDValue Result =
5429       DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
5430   SDValue SumDiff = Result.getValue(0);
5431   SDValue Overflow = Result.getValue(1);
5432   SDValue Zero = DAG.getConstant(0, dl, ResultType);
5433 
5434   if (Opcode == ISD::UADDSAT) {
5435     // Just need to check overflow for SatMax.
5436     APInt MaxVal = APInt::getMaxValue(BitWidth);
5437     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5438     return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
5439   } else if (Opcode == ISD::USUBSAT) {
5440     // Just need to check overflow for SatMin.
5441     APInt MinVal = APInt::getMinValue(BitWidth);
5442     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5443     return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
5444   } else {
5445     // SatMax -> Overflow && SumDiff < 0
5446     // SatMin -> Overflow && SumDiff >= 0
5447     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5448     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5449     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5450     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5451     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5452     Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
5453     return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
5454   }
5455 }
5456 
5457 SDValue
5458 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
5459   assert((Node->getOpcode() == ISD::SMULFIX ||
5460           Node->getOpcode() == ISD::UMULFIX) &&
5461          "Expected opcode to be SMULFIX or UMULFIX.");
5462 
5463   SDLoc dl(Node);
5464   SDValue LHS = Node->getOperand(0);
5465   SDValue RHS = Node->getOperand(1);
5466   EVT VT = LHS.getValueType();
5467   unsigned Scale = Node->getConstantOperandVal(2);
5468 
5469   // [us]mul.fix(a, b, 0) -> mul(a, b)
5470   if (!Scale) {
5471     if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT))
5472       return SDValue();
5473     return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5474   }
5475 
5476   unsigned VTSize = VT.getScalarSizeInBits();
5477   bool Signed = Node->getOpcode() == ISD::SMULFIX;
5478 
5479   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
5480          "Expected scale to be less than the number of bits if signed or at "
5481          "most the number of bits if unsigned.");
5482   assert(LHS.getValueType() == RHS.getValueType() &&
5483          "Expected both operands to be the same type");
5484 
5485   // Get the upper and lower bits of the result.
5486   SDValue Lo, Hi;
5487   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
5488   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
5489   if (isOperationLegalOrCustom(LoHiOp, VT)) {
5490     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
5491     Lo = Result.getValue(0);
5492     Hi = Result.getValue(1);
5493   } else if (isOperationLegalOrCustom(HiOp, VT)) {
5494     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5495     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
5496   } else if (VT.isVector()) {
5497     return SDValue();
5498   } else {
5499     report_fatal_error("Unable to expand fixed point multiplication.");
5500   }
5501 
5502   if (Scale == VTSize)
5503     // Result is just the top half since we'd be shifting by the width of the
5504     // operand.
5505     return Hi;
5506 
5507   // The result will need to be shifted right by the scale since both operands
5508   // are scaled. The result is given to us in 2 halves, so we only want part of
5509   // both in the result.
5510   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5511   return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
5512                      DAG.getConstant(Scale, dl, ShiftTy));
5513 }
5514