1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     Register Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlignment(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
621     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
622 
623     if (NumSrcEltBits == NumDstEltBits)
624       if (SDValue V = SimplifyMultipleUseDemandedBits(
625               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
626         return DAG.getBitcast(DstVT, V);
627 
628     // TODO - bigendian once we have test coverage.
629     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
630         DAG.getDataLayout().isLittleEndian()) {
631       unsigned Scale = NumDstEltBits / NumSrcEltBits;
632       unsigned NumSrcElts = SrcVT.getVectorNumElements();
633       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
634       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
635       for (unsigned i = 0; i != Scale; ++i) {
636         unsigned Offset = i * NumSrcEltBits;
637         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
638         if (!Sub.isNullValue()) {
639           DemandedSrcBits |= Sub;
640           for (unsigned j = 0; j != NumElts; ++j)
641             if (DemandedElts[j])
642               DemandedSrcElts.setBit((j * Scale) + i);
643         }
644       }
645 
646       if (SDValue V = SimplifyMultipleUseDemandedBits(
647               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
648         return DAG.getBitcast(DstVT, V);
649     }
650 
651     // TODO - bigendian once we have test coverage.
652     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
653         DAG.getDataLayout().isLittleEndian()) {
654       unsigned Scale = NumSrcEltBits / NumDstEltBits;
655       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
656       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
657       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
658       for (unsigned i = 0; i != NumElts; ++i)
659         if (DemandedElts[i]) {
660           unsigned Offset = (i % Scale) * NumDstEltBits;
661           DemandedSrcBits.insertBits(DemandedBits, Offset);
662           DemandedSrcElts.setBit(i / Scale);
663         }
664 
665       if (SDValue V = SimplifyMultipleUseDemandedBits(
666               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
667         return DAG.getBitcast(DstVT, V);
668     }
669 
670     break;
671   }
672   case ISD::AND: {
673     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
674     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 
676     // If all of the demanded bits are known 1 on one side, return the other.
677     // These bits cannot contribute to the result of the 'and' in this
678     // context.
679     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
680       return Op.getOperand(0);
681     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
682       return Op.getOperand(1);
683     break;
684   }
685   case ISD::OR: {
686     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
687     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 
689     // If all of the demanded bits are known zero on one side, return the
690     // other.  These bits cannot contribute to the result of the 'or' in this
691     // context.
692     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
693       return Op.getOperand(0);
694     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
695       return Op.getOperand(1);
696     break;
697   }
698   case ISD::XOR: {
699     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
700     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
701 
702     // If all of the demanded bits are known zero on one side, return the
703     // other.
704     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
705       return Op.getOperand(0);
706     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
707       return Op.getOperand(1);
708     break;
709   }
710   case ISD::SETCC: {
711     SDValue Op0 = Op.getOperand(0);
712     SDValue Op1 = Op.getOperand(1);
713     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
714     // If (1) we only need the sign-bit, (2) the setcc operands are the same
715     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
716     // -1, we may be able to bypass the setcc.
717     if (DemandedBits.isSignMask() &&
718         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
719         getBooleanContents(Op0.getValueType()) ==
720             BooleanContent::ZeroOrNegativeOneBooleanContent) {
721       // If we're testing X < 0, then this compare isn't needed - just use X!
722       // FIXME: We're limiting to integer types here, but this should also work
723       // if we don't care about FP signed-zero. The use of SETLT with FP means
724       // that we don't care about NaNs.
725       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
726           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
727         return Op0;
728     }
729     break;
730   }
731   case ISD::SIGN_EXTEND_INREG: {
732     // If none of the extended bits are demanded, eliminate the sextinreg.
733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
734     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
735       return Op.getOperand(0);
736     break;
737   }
738   case ISD::INSERT_VECTOR_ELT: {
739     // If we don't demand the inserted element, return the base vector.
740     SDValue Vec = Op.getOperand(0);
741     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
742     EVT VecVT = Vec.getValueType();
743     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
744         !DemandedElts[CIdx->getZExtValue()])
745       return Vec;
746     break;
747   }
748   case ISD::INSERT_SUBVECTOR: {
749     // If we don't demand the inserted subvector, return the base vector.
750     SDValue Vec = Op.getOperand(0);
751     SDValue Sub = Op.getOperand(1);
752     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
753     unsigned NumVecElts = Vec.getValueType().getVectorNumElements();
754     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
755     if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts))
756       if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0)
757         return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2, KnownOut;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878 
879     // Upper elements are undef, so only get the knownbits if we just demand
880     // the bottom element.
881     if (DemandedElts == 1)
882       Known = SrcKnown.anyextOrTrunc(BitWidth);
883     break;
884   }
885   case ISD::BUILD_VECTOR:
886     // Collect the known bits that are shared by every demanded element.
887     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
888     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
889     return false; // Don't fall through, will infinitely loop.
890   case ISD::LOAD: {
891     LoadSDNode *LD = cast<LoadSDNode>(Op);
892     if (getTargetConstantFromLoad(LD)) {
893       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
894       return false; // Don't fall through, will infinitely loop.
895     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
896       // If this is a ZEXTLoad and we are looking at the loaded value.
897       EVT MemVT = LD->getMemoryVT();
898       unsigned MemBits = MemVT.getScalarSizeInBits();
899       Known.Zero.setBitsFrom(MemBits);
900       return false; // Don't fall through, will infinitely loop.
901     }
902     break;
903   }
904   case ISD::INSERT_VECTOR_ELT: {
905     SDValue Vec = Op.getOperand(0);
906     SDValue Scl = Op.getOperand(1);
907     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
908     EVT VecVT = Vec.getValueType();
909 
910     // If index isn't constant, assume we need all vector elements AND the
911     // inserted element.
912     APInt DemandedVecElts(DemandedElts);
913     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
914       unsigned Idx = CIdx->getZExtValue();
915       DemandedVecElts.clearBit(Idx);
916 
917       // Inserted element is not required.
918       if (!DemandedElts[Idx])
919         return TLO.CombineTo(Op, Vec);
920     }
921 
922     KnownBits KnownScl;
923     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
924     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
925     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
926       return true;
927 
928     Known = KnownScl.anyextOrTrunc(BitWidth);
929 
930     KnownBits KnownVec;
931     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
932                              Depth + 1))
933       return true;
934 
935     if (!!DemandedVecElts) {
936       Known.One &= KnownVec.One;
937       Known.Zero &= KnownVec.Zero;
938     }
939 
940     return false;
941   }
942   case ISD::INSERT_SUBVECTOR: {
943     SDValue Base = Op.getOperand(0);
944     SDValue Sub = Op.getOperand(1);
945     EVT SubVT = Sub.getValueType();
946     unsigned NumSubElts = SubVT.getVectorNumElements();
947 
948     // If index isn't constant, assume we need the original demanded base
949     // elements and ALL the inserted subvector elements.
950     APInt BaseElts = DemandedElts;
951     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
952     if (isa<ConstantSDNode>(Op.getOperand(2))) {
953       const APInt &Idx = Op.getConstantOperandAPInt(2);
954       if (Idx.ule(NumElts - NumSubElts)) {
955         unsigned SubIdx = Idx.getZExtValue();
956         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
957         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
958       }
959     }
960 
961     KnownBits KnownSub, KnownBase;
962     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
963                              Depth + 1))
964       return true;
965     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
966                              Depth + 1))
967       return true;
968 
969     Known.Zero.setAllBits();
970     Known.One.setAllBits();
971     if (!!SubElts) {
972         Known.One &= KnownSub.One;
973         Known.Zero &= KnownSub.Zero;
974     }
975     if (!!BaseElts) {
976         Known.One &= KnownBase.One;
977         Known.Zero &= KnownBase.Zero;
978     }
979 
980     // Attempt to avoid multi-use src if we don't need anything from it.
981     if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() ||
982         !BaseElts.isAllOnesValue()) {
983       SDValue NewSub = SimplifyMultipleUseDemandedBits(
984           Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1);
985       SDValue NewBase = SimplifyMultipleUseDemandedBits(
986           Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1);
987       if (NewSub || NewBase) {
988         NewSub = NewSub ? NewSub : Sub;
989         NewBase = NewBase ? NewBase : Base;
990         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub,
991                                         Op.getOperand(2));
992         return TLO.CombineTo(Op, NewOp);
993       }
994     }
995     break;
996   }
997   case ISD::EXTRACT_SUBVECTOR: {
998     // If index isn't constant, assume we need all the source vector elements.
999     SDValue Src = Op.getOperand(0);
1000     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1001     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1002     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
1003     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1004       // Offset the demanded elts by the subvector index.
1005       uint64_t Idx = SubIdx->getZExtValue();
1006       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1007     }
1008     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
1009       return true;
1010 
1011     // Attempt to avoid multi-use src if we don't need anything from it.
1012     if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) {
1013       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1014           Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1);
1015       if (DemandedSrc) {
1016         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1017                                         Op.getOperand(1));
1018         return TLO.CombineTo(Op, NewOp);
1019       }
1020     }
1021     break;
1022   }
1023   case ISD::CONCAT_VECTORS: {
1024     Known.Zero.setAllBits();
1025     Known.One.setAllBits();
1026     EVT SubVT = Op.getOperand(0).getValueType();
1027     unsigned NumSubVecs = Op.getNumOperands();
1028     unsigned NumSubElts = SubVT.getVectorNumElements();
1029     for (unsigned i = 0; i != NumSubVecs; ++i) {
1030       APInt DemandedSubElts =
1031           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1032       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1033                                Known2, TLO, Depth + 1))
1034         return true;
1035       // Known bits are shared by every demanded subvector element.
1036       if (!!DemandedSubElts) {
1037         Known.One &= Known2.One;
1038         Known.Zero &= Known2.Zero;
1039       }
1040     }
1041     break;
1042   }
1043   case ISD::VECTOR_SHUFFLE: {
1044     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1045 
1046     // Collect demanded elements from shuffle operands..
1047     APInt DemandedLHS(NumElts, 0);
1048     APInt DemandedRHS(NumElts, 0);
1049     for (unsigned i = 0; i != NumElts; ++i) {
1050       if (!DemandedElts[i])
1051         continue;
1052       int M = ShuffleMask[i];
1053       if (M < 0) {
1054         // For UNDEF elements, we don't know anything about the common state of
1055         // the shuffle result.
1056         DemandedLHS.clearAllBits();
1057         DemandedRHS.clearAllBits();
1058         break;
1059       }
1060       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1061       if (M < (int)NumElts)
1062         DemandedLHS.setBit(M);
1063       else
1064         DemandedRHS.setBit(M - NumElts);
1065     }
1066 
1067     if (!!DemandedLHS || !!DemandedRHS) {
1068       SDValue Op0 = Op.getOperand(0);
1069       SDValue Op1 = Op.getOperand(1);
1070 
1071       Known.Zero.setAllBits();
1072       Known.One.setAllBits();
1073       if (!!DemandedLHS) {
1074         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080       if (!!DemandedRHS) {
1081         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1082                                  Depth + 1))
1083           return true;
1084         Known.One &= Known2.One;
1085         Known.Zero &= Known2.Zero;
1086       }
1087 
1088       // Attempt to avoid multi-use ops if we don't need anything from them.
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100     break;
1101   }
1102   case ISD::AND: {
1103     SDValue Op0 = Op.getOperand(0);
1104     SDValue Op1 = Op.getOperand(1);
1105 
1106     // If the RHS is a constant, check to see if the LHS would be zero without
1107     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1108     // simplify the LHS, here we're using information from the LHS to simplify
1109     // the RHS.
1110     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1111       // Do not increment Depth here; that can cause an infinite loop.
1112       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1113       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1114       if ((LHSKnown.Zero & DemandedBits) ==
1115           (~RHSC->getAPIntValue() & DemandedBits))
1116         return TLO.CombineTo(Op, Op0);
1117 
1118       // If any of the set bits in the RHS are known zero on the LHS, shrink
1119       // the constant.
1120       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1121         return true;
1122 
1123       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1124       // constant, but if this 'and' is only clearing bits that were just set by
1125       // the xor, then this 'and' can be eliminated by shrinking the mask of
1126       // the xor. For example, for a 32-bit X:
1127       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1128       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1129           LHSKnown.One == ~RHSC->getAPIntValue()) {
1130         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1131         return TLO.CombineTo(Op, Xor);
1132       }
1133     }
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1140                              Known2, TLO, Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known one on one side, return the other.
1159     // These bits cannot contribute to the result of the 'and'.
1160     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1163       return TLO.CombineTo(Op, Op1);
1164     // If all of the demanded bits in the inputs are known zeros, return zero.
1165     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1166       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1167     // If the RHS is a constant, see if we can simplify it.
1168     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1169       return true;
1170     // If the operation can be done in a smaller type, do so.
1171     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1172       return true;
1173 
1174     // Output known-1 bits are only known if set in both the LHS & RHS.
1175     Known.One &= Known2.One;
1176     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1177     Known.Zero |= Known2.Zero;
1178     break;
1179   }
1180   case ISD::OR: {
1181     SDValue Op0 = Op.getOperand(0);
1182     SDValue Op1 = Op.getOperand(1);
1183 
1184     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1185                              Depth + 1))
1186       return true;
1187     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1188     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1189                              Known2, TLO, Depth + 1))
1190       return true;
1191     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1192 
1193     // Attempt to avoid multi-use ops if we don't need anything from them.
1194     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1195       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1196           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1197       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1198           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1199       if (DemandedOp0 || DemandedOp1) {
1200         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1201         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1202         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1203         return TLO.CombineTo(Op, NewOp);
1204       }
1205     }
1206 
1207     // If all of the demanded bits are known zero on one side, return the other.
1208     // These bits cannot contribute to the result of the 'or'.
1209     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1210       return TLO.CombineTo(Op, Op0);
1211     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1212       return TLO.CombineTo(Op, Op1);
1213     // If the RHS is a constant, see if we can simplify it.
1214     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1215       return true;
1216     // If the operation can be done in a smaller type, do so.
1217     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1218       return true;
1219 
1220     // Output known-0 bits are only known if clear in both the LHS & RHS.
1221     Known.Zero &= Known2.Zero;
1222     // Output known-1 are known to be set if set in either the LHS | RHS.
1223     Known.One |= Known2.One;
1224     break;
1225   }
1226   case ISD::XOR: {
1227     SDValue Op0 = Op.getOperand(0);
1228     SDValue Op1 = Op.getOperand(1);
1229 
1230     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1231                              Depth + 1))
1232       return true;
1233     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1234     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1235                              Depth + 1))
1236       return true;
1237     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1238 
1239     // Attempt to avoid multi-use ops if we don't need anything from them.
1240     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1241       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1242           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1243       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1244           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1245       if (DemandedOp0 || DemandedOp1) {
1246         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1247         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1248         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252 
1253     // If all of the demanded bits are known zero on one side, return the other.
1254     // These bits cannot contribute to the result of the 'xor'.
1255     if (DemandedBits.isSubsetOf(Known.Zero))
1256       return TLO.CombineTo(Op, Op0);
1257     if (DemandedBits.isSubsetOf(Known2.Zero))
1258       return TLO.CombineTo(Op, Op1);
1259     // If the operation can be done in a smaller type, do so.
1260     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1261       return true;
1262 
1263     // If all of the unknown bits are known to be zero on one side or the other
1264     // (but not both) turn this into an *inclusive* or.
1265     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1266     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1267       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1268 
1269     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1270     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1271     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1272     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1273 
1274     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1275       // If one side is a constant, and all of the known set bits on the other
1276       // side are also set in the constant, turn this into an AND, as we know
1277       // the bits will be cleared.
1278       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1279       // NB: it is okay if more bits are known than are requested
1280       if (C->getAPIntValue() == Known2.One) {
1281         SDValue ANDC =
1282             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1283         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1284       }
1285 
1286       // If the RHS is a constant, see if we can change it. Don't alter a -1
1287       // constant because that's a 'not' op, and that is better for combining
1288       // and codegen.
1289       if (!C->isAllOnesValue()) {
1290         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1291           // We're flipping all demanded bits. Flip the undemanded bits too.
1292           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1293           return TLO.CombineTo(Op, New);
1294         }
1295         // If we can't turn this into a 'not', try to shrink the constant.
1296         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1297           return true;
1298       }
1299     }
1300 
1301     Known = std::move(KnownOut);
1302     break;
1303   }
1304   case ISD::SELECT:
1305     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1306                              Depth + 1))
1307       return true;
1308     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1313 
1314     // If the operands are constants, see if we can simplify them.
1315     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1316       return true;
1317 
1318     // Only known if known in both the LHS and RHS.
1319     Known.One &= Known2.One;
1320     Known.Zero &= Known2.Zero;
1321     break;
1322   case ISD::SELECT_CC:
1323     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1324                              Depth + 1))
1325       return true;
1326     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1327                              Depth + 1))
1328       return true;
1329     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1330     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1331 
1332     // If the operands are constants, see if we can simplify them.
1333     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1334       return true;
1335 
1336     // Only known if known in both the LHS and RHS.
1337     Known.One &= Known2.One;
1338     Known.Zero &= Known2.Zero;
1339     break;
1340   case ISD::SETCC: {
1341     SDValue Op0 = Op.getOperand(0);
1342     SDValue Op1 = Op.getOperand(1);
1343     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1344     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1345     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1346     // -1, we may be able to bypass the setcc.
1347     if (DemandedBits.isSignMask() &&
1348         Op0.getScalarValueSizeInBits() == BitWidth &&
1349         getBooleanContents(Op0.getValueType()) ==
1350             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1351       // If we're testing X < 0, then this compare isn't needed - just use X!
1352       // FIXME: We're limiting to integer types here, but this should also work
1353       // if we don't care about FP signed-zero. The use of SETLT with FP means
1354       // that we don't care about NaNs.
1355       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1356           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1357         return TLO.CombineTo(Op, Op0);
1358 
1359       // TODO: Should we check for other forms of sign-bit comparisons?
1360       // Examples: X <= -1, X >= 0
1361     }
1362     if (getBooleanContents(Op0.getValueType()) ==
1363             TargetLowering::ZeroOrOneBooleanContent &&
1364         BitWidth > 1)
1365       Known.Zero.setBitsFrom(1);
1366     break;
1367   }
1368   case ISD::SHL: {
1369     SDValue Op0 = Op.getOperand(0);
1370     SDValue Op1 = Op.getOperand(1);
1371     EVT ShiftVT = Op1.getValueType();
1372 
1373     if (const APInt *SA =
1374             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1375       unsigned ShAmt = SA->getZExtValue();
1376       if (ShAmt == 0)
1377         return TLO.CombineTo(Op, Op0);
1378 
1379       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1380       // single shift.  We can do this if the bottom bits (which are shifted
1381       // out) are never demanded.
1382       // TODO - support non-uniform vector amounts.
1383       if (Op0.getOpcode() == ISD::SRL) {
1384         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1385           if (const APInt *SA2 =
1386                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1387             if (SA2->ult(BitWidth)) {
1388               unsigned C1 = SA2->getZExtValue();
1389               unsigned Opc = ISD::SHL;
1390               int Diff = ShAmt - C1;
1391               if (Diff < 0) {
1392                 Diff = -Diff;
1393                 Opc = ISD::SRL;
1394               }
1395 
1396               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1397               return TLO.CombineTo(
1398                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1399             }
1400           }
1401         }
1402       }
1403 
1404       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1405       // are not demanded. This will likely allow the anyext to be folded away.
1406       // TODO - support non-uniform vector amounts.
1407       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1408         SDValue InnerOp = Op0.getOperand(0);
1409         EVT InnerVT = InnerOp.getValueType();
1410         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1411         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1412             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1413           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1414           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1415             ShTy = InnerVT;
1416           SDValue NarrowShl =
1417               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1418                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1419           return TLO.CombineTo(
1420               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1421         }
1422 
1423         // Repeat the SHL optimization above in cases where an extension
1424         // intervenes: (shl (anyext (shr x, c1)), c2) to
1425         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1426         // aren't demanded (as above) and that the shifted upper c1 bits of
1427         // x aren't demanded.
1428         // TODO - support non-uniform vector amounts.
1429         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1430             InnerOp.hasOneUse()) {
1431           if (const APInt *SA2 =
1432                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1433             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1434             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1435                 DemandedBits.getActiveBits() <=
1436                     (InnerBits - InnerShAmt + ShAmt) &&
1437                 DemandedBits.countTrailingZeros() >= ShAmt) {
1438               SDValue NewSA =
1439                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1440               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1441                                                InnerOp.getOperand(0));
1442               return TLO.CombineTo(
1443                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1444             }
1445           }
1446         }
1447       }
1448 
1449       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1450       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1451                                Depth + 1))
1452         return true;
1453       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1454       Known.Zero <<= ShAmt;
1455       Known.One <<= ShAmt;
1456       // low bits known zero.
1457       Known.Zero.setLowBits(ShAmt);
1458 
1459       // Try shrinking the operation as long as the shift amount will still be
1460       // in range.
1461       if ((ShAmt < DemandedBits.getActiveBits()) &&
1462           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1463         return true;
1464     }
1465     break;
1466   }
1467   case ISD::SRL: {
1468     SDValue Op0 = Op.getOperand(0);
1469     SDValue Op1 = Op.getOperand(1);
1470     EVT ShiftVT = Op1.getValueType();
1471 
1472     if (const APInt *SA =
1473             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1474       unsigned ShAmt = SA->getZExtValue();
1475       if (ShAmt == 0)
1476         return TLO.CombineTo(Op, Op0);
1477 
1478       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1479       // single shift.  We can do this if the top bits (which are shifted out)
1480       // are never demanded.
1481       // TODO - support non-uniform vector amounts.
1482       if (Op0.getOpcode() == ISD::SHL) {
1483         if (const APInt *SA2 =
1484                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1485           if (!DemandedBits.intersects(
1486                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1487             if (SA2->ult(BitWidth)) {
1488               unsigned C1 = SA2->getZExtValue();
1489               unsigned Opc = ISD::SRL;
1490               int Diff = ShAmt - C1;
1491               if (Diff < 0) {
1492                 Diff = -Diff;
1493                 Opc = ISD::SHL;
1494               }
1495 
1496               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1497               return TLO.CombineTo(
1498                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1499             }
1500           }
1501         }
1502       }
1503 
1504       APInt InDemandedMask = (DemandedBits << ShAmt);
1505 
1506       // If the shift is exact, then it does demand the low bits (and knows that
1507       // they are zero).
1508       if (Op->getFlags().hasExact())
1509         InDemandedMask.setLowBits(ShAmt);
1510 
1511       // Compute the new bits that are at the top now.
1512       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1513                                Depth + 1))
1514         return true;
1515       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1516       Known.Zero.lshrInPlace(ShAmt);
1517       Known.One.lshrInPlace(ShAmt);
1518       // High bits known zero.
1519       Known.Zero.setHighBits(ShAmt);
1520     }
1521     break;
1522   }
1523   case ISD::SRA: {
1524     SDValue Op0 = Op.getOperand(0);
1525     SDValue Op1 = Op.getOperand(1);
1526     EVT ShiftVT = Op1.getValueType();
1527 
1528     // If we only want bits that already match the signbit then we don't need
1529     // to shift.
1530     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1531     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1532         NumHiDemandedBits)
1533       return TLO.CombineTo(Op, Op0);
1534 
1535     // If this is an arithmetic shift right and only the low-bit is set, we can
1536     // always convert this into a logical shr, even if the shift amount is
1537     // variable.  The low bit of the shift cannot be an input sign bit unless
1538     // the shift amount is >= the size of the datatype, which is undefined.
1539     if (DemandedBits.isOneValue())
1540       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1541 
1542     if (const APInt *SA =
1543             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1544       unsigned ShAmt = SA->getZExtValue();
1545       if (ShAmt == 0)
1546         return TLO.CombineTo(Op, Op0);
1547 
1548       APInt InDemandedMask = (DemandedBits << ShAmt);
1549 
1550       // If the shift is exact, then it does demand the low bits (and knows that
1551       // they are zero).
1552       if (Op->getFlags().hasExact())
1553         InDemandedMask.setLowBits(ShAmt);
1554 
1555       // If any of the demanded bits are produced by the sign extension, we also
1556       // demand the input sign bit.
1557       if (DemandedBits.countLeadingZeros() < ShAmt)
1558         InDemandedMask.setSignBit();
1559 
1560       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1561                                Depth + 1))
1562         return true;
1563       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1564       Known.Zero.lshrInPlace(ShAmt);
1565       Known.One.lshrInPlace(ShAmt);
1566 
1567       // If the input sign bit is known to be zero, or if none of the top bits
1568       // are demanded, turn this into an unsigned shift right.
1569       if (Known.Zero[BitWidth - ShAmt - 1] ||
1570           DemandedBits.countLeadingZeros() >= ShAmt) {
1571         SDNodeFlags Flags;
1572         Flags.setExact(Op->getFlags().hasExact());
1573         return TLO.CombineTo(
1574             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1575       }
1576 
1577       int Log2 = DemandedBits.exactLogBase2();
1578       if (Log2 >= 0) {
1579         // The bit must come from the sign.
1580         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1581         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1582       }
1583 
1584       if (Known.One[BitWidth - ShAmt - 1])
1585         // New bits are known one.
1586         Known.One.setHighBits(ShAmt);
1587 
1588       // Attempt to avoid multi-use ops if we don't need anything from them.
1589       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1590         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1591             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1592         if (DemandedOp0) {
1593           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1594           return TLO.CombineTo(Op, NewOp);
1595         }
1596       }
1597     }
1598     break;
1599   }
1600   case ISD::FSHL:
1601   case ISD::FSHR: {
1602     SDValue Op0 = Op.getOperand(0);
1603     SDValue Op1 = Op.getOperand(1);
1604     SDValue Op2 = Op.getOperand(2);
1605     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1606 
1607     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1608       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1609 
1610       // For fshl, 0-shift returns the 1st arg.
1611       // For fshr, 0-shift returns the 2nd arg.
1612       if (Amt == 0) {
1613         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1614                                  Known, TLO, Depth + 1))
1615           return true;
1616         break;
1617       }
1618 
1619       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1620       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1621       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1622       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1623       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1624                                Depth + 1))
1625         return true;
1626       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1627                                Depth + 1))
1628         return true;
1629 
1630       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1631       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1632       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1633       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1634       Known.One |= Known2.One;
1635       Known.Zero |= Known2.Zero;
1636     }
1637     break;
1638   }
1639   case ISD::ROTL:
1640   case ISD::ROTR: {
1641     SDValue Op0 = Op.getOperand(0);
1642 
1643     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1644     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1645       return TLO.CombineTo(Op, Op0);
1646     break;
1647   }
1648   case ISD::BITREVERSE: {
1649     SDValue Src = Op.getOperand(0);
1650     APInt DemandedSrcBits = DemandedBits.reverseBits();
1651     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1652                              Depth + 1))
1653       return true;
1654     Known.One = Known2.One.reverseBits();
1655     Known.Zero = Known2.Zero.reverseBits();
1656     break;
1657   }
1658   case ISD::BSWAP: {
1659     SDValue Src = Op.getOperand(0);
1660     APInt DemandedSrcBits = DemandedBits.byteSwap();
1661     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1662                              Depth + 1))
1663       return true;
1664     Known.One = Known2.One.byteSwap();
1665     Known.Zero = Known2.Zero.byteSwap();
1666     break;
1667   }
1668   case ISD::SIGN_EXTEND_INREG: {
1669     SDValue Op0 = Op.getOperand(0);
1670     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1671     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1672 
1673     // If we only care about the highest bit, don't bother shifting right.
1674     if (DemandedBits.isSignMask()) {
1675       unsigned NumSignBits =
1676           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1677       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1678       // However if the input is already sign extended we expect the sign
1679       // extension to be dropped altogether later and do not simplify.
1680       if (!AlreadySignExtended) {
1681         // Compute the correct shift amount type, which must be getShiftAmountTy
1682         // for scalar types after legalization.
1683         EVT ShiftAmtTy = VT;
1684         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1685           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1686 
1687         SDValue ShiftAmt =
1688             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1689         return TLO.CombineTo(Op,
1690                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1691       }
1692     }
1693 
1694     // If none of the extended bits are demanded, eliminate the sextinreg.
1695     if (DemandedBits.getActiveBits() <= ExVTBits)
1696       return TLO.CombineTo(Op, Op0);
1697 
1698     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1699 
1700     // Since the sign extended bits are demanded, we know that the sign
1701     // bit is demanded.
1702     InputDemandedBits.setBit(ExVTBits - 1);
1703 
1704     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1705       return true;
1706     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1707 
1708     // If the sign bit of the input is known set or clear, then we know the
1709     // top bits of the result.
1710 
1711     // If the input sign bit is known zero, convert this into a zero extension.
1712     if (Known.Zero[ExVTBits - 1])
1713       return TLO.CombineTo(
1714           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1715 
1716     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1717     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1718       Known.One.setBitsFrom(ExVTBits);
1719       Known.Zero &= Mask;
1720     } else { // Input sign bit unknown
1721       Known.Zero &= Mask;
1722       Known.One &= Mask;
1723     }
1724     break;
1725   }
1726   case ISD::BUILD_PAIR: {
1727     EVT HalfVT = Op.getOperand(0).getValueType();
1728     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1729 
1730     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1731     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1732 
1733     KnownBits KnownLo, KnownHi;
1734 
1735     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1736       return true;
1737 
1738     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1739       return true;
1740 
1741     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1742                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1743 
1744     Known.One = KnownLo.One.zext(BitWidth) |
1745                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1746     break;
1747   }
1748   case ISD::ZERO_EXTEND:
1749   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1750     SDValue Src = Op.getOperand(0);
1751     EVT SrcVT = Src.getValueType();
1752     unsigned InBits = SrcVT.getScalarSizeInBits();
1753     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1754     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1755 
1756     // If none of the top bits are demanded, convert this into an any_extend.
1757     if (DemandedBits.getActiveBits() <= InBits) {
1758       // If we only need the non-extended bits of the bottom element
1759       // then we can just bitcast to the result.
1760       if (IsVecInReg && DemandedElts == 1 &&
1761           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1762           TLO.DAG.getDataLayout().isLittleEndian())
1763         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1764 
1765       unsigned Opc =
1766           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1767       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1768         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1769     }
1770 
1771     APInt InDemandedBits = DemandedBits.trunc(InBits);
1772     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1773     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1774                              Depth + 1))
1775       return true;
1776     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1777     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1778     Known = Known.zext(BitWidth);
1779     break;
1780   }
1781   case ISD::SIGN_EXTEND:
1782   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1783     SDValue Src = Op.getOperand(0);
1784     EVT SrcVT = Src.getValueType();
1785     unsigned InBits = SrcVT.getScalarSizeInBits();
1786     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1787     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1788 
1789     // If none of the top bits are demanded, convert this into an any_extend.
1790     if (DemandedBits.getActiveBits() <= InBits) {
1791       // If we only need the non-extended bits of the bottom element
1792       // then we can just bitcast to the result.
1793       if (IsVecInReg && DemandedElts == 1 &&
1794           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1795           TLO.DAG.getDataLayout().isLittleEndian())
1796         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1797 
1798       unsigned Opc =
1799           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1800       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1801         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1802     }
1803 
1804     APInt InDemandedBits = DemandedBits.trunc(InBits);
1805     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1806 
1807     // Since some of the sign extended bits are demanded, we know that the sign
1808     // bit is demanded.
1809     InDemandedBits.setBit(InBits - 1);
1810 
1811     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1812                              Depth + 1))
1813       return true;
1814     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1815     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1816 
1817     // If the sign bit is known one, the top bits match.
1818     Known = Known.sext(BitWidth);
1819 
1820     // If the sign bit is known zero, convert this to a zero extend.
1821     if (Known.isNonNegative()) {
1822       unsigned Opc =
1823           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1824       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1825         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1826     }
1827     break;
1828   }
1829   case ISD::ANY_EXTEND:
1830   case ISD::ANY_EXTEND_VECTOR_INREG: {
1831     SDValue Src = Op.getOperand(0);
1832     EVT SrcVT = Src.getValueType();
1833     unsigned InBits = SrcVT.getScalarSizeInBits();
1834     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1835     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1836 
1837     // If we only need the bottom element then we can just bitcast.
1838     // TODO: Handle ANY_EXTEND?
1839     if (IsVecInReg && DemandedElts == 1 &&
1840         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1841         TLO.DAG.getDataLayout().isLittleEndian())
1842       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1843 
1844     APInt InDemandedBits = DemandedBits.trunc(InBits);
1845     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1846     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1847                              Depth + 1))
1848       return true;
1849     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1850     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1851     Known = Known.anyext(BitWidth);
1852 
1853     // Attempt to avoid multi-use ops if we don't need anything from them.
1854     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1855             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1856       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1857     break;
1858   }
1859   case ISD::TRUNCATE: {
1860     SDValue Src = Op.getOperand(0);
1861 
1862     // Simplify the input, using demanded bit information, and compute the known
1863     // zero/one bits live out.
1864     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1865     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1866     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1867       return true;
1868     Known = Known.trunc(BitWidth);
1869 
1870     // Attempt to avoid multi-use ops if we don't need anything from them.
1871     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1872             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1873       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1874 
1875     // If the input is only used by this truncate, see if we can shrink it based
1876     // on the known demanded bits.
1877     if (Src.getNode()->hasOneUse()) {
1878       switch (Src.getOpcode()) {
1879       default:
1880         break;
1881       case ISD::SRL:
1882         // Shrink SRL by a constant if none of the high bits shifted in are
1883         // demanded.
1884         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1885           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1886           // undesirable.
1887           break;
1888 
1889         SDValue ShAmt = Src.getOperand(1);
1890         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1891         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1892           break;
1893         uint64_t ShVal = ShAmtC->getZExtValue();
1894 
1895         APInt HighBits =
1896             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1897         HighBits.lshrInPlace(ShVal);
1898         HighBits = HighBits.trunc(BitWidth);
1899 
1900         if (!(HighBits & DemandedBits)) {
1901           // None of the shifted in bits are needed.  Add a truncate of the
1902           // shift input, then shift it.
1903           if (TLO.LegalTypes())
1904             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1905           SDValue NewTrunc =
1906               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1907           return TLO.CombineTo(
1908               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1909         }
1910         break;
1911       }
1912     }
1913 
1914     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1915     break;
1916   }
1917   case ISD::AssertZext: {
1918     // AssertZext demands all of the high bits, plus any of the low bits
1919     // demanded by its users.
1920     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1921     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1922     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1923                              TLO, Depth + 1))
1924       return true;
1925     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1926 
1927     Known.Zero |= ~InMask;
1928     break;
1929   }
1930   case ISD::EXTRACT_VECTOR_ELT: {
1931     SDValue Src = Op.getOperand(0);
1932     SDValue Idx = Op.getOperand(1);
1933     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1934     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1935 
1936     // Demand the bits from every vector element without a constant index.
1937     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1938     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1939       if (CIdx->getAPIntValue().ult(NumSrcElts))
1940         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1941 
1942     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1943     // anything about the extended bits.
1944     APInt DemandedSrcBits = DemandedBits;
1945     if (BitWidth > EltBitWidth)
1946       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1947 
1948     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1949                              Depth + 1))
1950       return true;
1951 
1952     // Attempt to avoid multi-use ops if we don't need anything from them.
1953     if (!DemandedSrcBits.isAllOnesValue() ||
1954         !DemandedSrcElts.isAllOnesValue()) {
1955       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1956               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1957         SDValue NewOp =
1958             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1959         return TLO.CombineTo(Op, NewOp);
1960       }
1961     }
1962 
1963     Known = Known2;
1964     if (BitWidth > EltBitWidth)
1965       Known = Known.anyext(BitWidth);
1966     break;
1967   }
1968   case ISD::BITCAST: {
1969     SDValue Src = Op.getOperand(0);
1970     EVT SrcVT = Src.getValueType();
1971     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1972 
1973     // If this is an FP->Int bitcast and if the sign bit is the only
1974     // thing demanded, turn this into a FGETSIGN.
1975     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1976         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1977         SrcVT.isFloatingPoint()) {
1978       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1979       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1980       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1981           SrcVT != MVT::f128) {
1982         // Cannot eliminate/lower SHL for f128 yet.
1983         EVT Ty = OpVTLegal ? VT : MVT::i32;
1984         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1985         // place.  We expect the SHL to be eliminated by other optimizations.
1986         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1987         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1988         if (!OpVTLegal && OpVTSizeInBits > 32)
1989           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1990         unsigned ShVal = Op.getValueSizeInBits() - 1;
1991         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1992         return TLO.CombineTo(Op,
1993                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1994       }
1995     }
1996 
1997     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1998     // Demand the elt/bit if any of the original elts/bits are demanded.
1999     // TODO - bigendian once we have test coverage.
2000     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2001         TLO.DAG.getDataLayout().isLittleEndian()) {
2002       unsigned Scale = BitWidth / NumSrcEltBits;
2003       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2004       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2005       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2006       for (unsigned i = 0; i != Scale; ++i) {
2007         unsigned Offset = i * NumSrcEltBits;
2008         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2009         if (!Sub.isNullValue()) {
2010           DemandedSrcBits |= Sub;
2011           for (unsigned j = 0; j != NumElts; ++j)
2012             if (DemandedElts[j])
2013               DemandedSrcElts.setBit((j * Scale) + i);
2014         }
2015       }
2016 
2017       APInt KnownSrcUndef, KnownSrcZero;
2018       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2019                                      KnownSrcZero, TLO, Depth + 1))
2020         return true;
2021 
2022       KnownBits KnownSrcBits;
2023       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2024                                KnownSrcBits, TLO, Depth + 1))
2025         return true;
2026     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2027                TLO.DAG.getDataLayout().isLittleEndian()) {
2028       unsigned Scale = NumSrcEltBits / BitWidth;
2029       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2030       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2031       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2032       for (unsigned i = 0; i != NumElts; ++i)
2033         if (DemandedElts[i]) {
2034           unsigned Offset = (i % Scale) * BitWidth;
2035           DemandedSrcBits.insertBits(DemandedBits, Offset);
2036           DemandedSrcElts.setBit(i / Scale);
2037         }
2038 
2039       if (SrcVT.isVector()) {
2040         APInt KnownSrcUndef, KnownSrcZero;
2041         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2042                                        KnownSrcZero, TLO, Depth + 1))
2043           return true;
2044       }
2045 
2046       KnownBits KnownSrcBits;
2047       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2048                                KnownSrcBits, TLO, Depth + 1))
2049         return true;
2050     }
2051 
2052     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2053     // recursive call where Known may be useful to the caller.
2054     if (Depth > 0) {
2055       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2056       return false;
2057     }
2058     break;
2059   }
2060   case ISD::ADD:
2061   case ISD::MUL:
2062   case ISD::SUB: {
2063     // Add, Sub, and Mul don't demand any bits in positions beyond that
2064     // of the highest bit demanded of them.
2065     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2066     SDNodeFlags Flags = Op.getNode()->getFlags();
2067     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2068     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2069     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2070                              Depth + 1) ||
2071         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2072                              Depth + 1) ||
2073         // See if the operation should be performed at a smaller bit width.
2074         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2075       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2076         // Disable the nsw and nuw flags. We can no longer guarantee that we
2077         // won't wrap after simplification.
2078         Flags.setNoSignedWrap(false);
2079         Flags.setNoUnsignedWrap(false);
2080         SDValue NewOp =
2081             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2082         return TLO.CombineTo(Op, NewOp);
2083       }
2084       return true;
2085     }
2086 
2087     // Attempt to avoid multi-use ops if we don't need anything from them.
2088     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2090           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2092           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2093       if (DemandedOp0 || DemandedOp1) {
2094         Flags.setNoSignedWrap(false);
2095         Flags.setNoUnsignedWrap(false);
2096         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2097         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2098         SDValue NewOp =
2099             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2100         return TLO.CombineTo(Op, NewOp);
2101       }
2102     }
2103 
2104     // If we have a constant operand, we may be able to turn it into -1 if we
2105     // do not demand the high bits. This can make the constant smaller to
2106     // encode, allow more general folding, or match specialized instruction
2107     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2108     // is probably not useful (and could be detrimental).
2109     ConstantSDNode *C = isConstOrConstSplat(Op1);
2110     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2111     if (C && !C->isAllOnesValue() && !C->isOne() &&
2112         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2113       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2114       // Disable the nsw and nuw flags. We can no longer guarantee that we
2115       // won't wrap after simplification.
2116       Flags.setNoSignedWrap(false);
2117       Flags.setNoUnsignedWrap(false);
2118       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2119       return TLO.CombineTo(Op, NewOp);
2120     }
2121 
2122     LLVM_FALLTHROUGH;
2123   }
2124   default:
2125     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2126       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2127                                             Known, TLO, Depth))
2128         return true;
2129       break;
2130     }
2131 
2132     // Just use computeKnownBits to compute output bits.
2133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2134     break;
2135   }
2136 
2137   // If we know the value of all of the demanded bits, return this as a
2138   // constant.
2139   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2140     // Avoid folding to a constant if any OpaqueConstant is involved.
2141     const SDNode *N = Op.getNode();
2142     for (SDNodeIterator I = SDNodeIterator::begin(N),
2143                         E = SDNodeIterator::end(N);
2144          I != E; ++I) {
2145       SDNode *Op = *I;
2146       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2147         if (C->isOpaque())
2148           return false;
2149     }
2150     // TODO: Handle float bits as well.
2151     if (VT.isInteger())
2152       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2153   }
2154 
2155   return false;
2156 }
2157 
2158 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2159                                                 const APInt &DemandedElts,
2160                                                 APInt &KnownUndef,
2161                                                 APInt &KnownZero,
2162                                                 DAGCombinerInfo &DCI) const {
2163   SelectionDAG &DAG = DCI.DAG;
2164   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2165                         !DCI.isBeforeLegalizeOps());
2166 
2167   bool Simplified =
2168       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2169   if (Simplified) {
2170     DCI.AddToWorklist(Op.getNode());
2171     DCI.CommitTargetLoweringOpt(TLO);
2172   }
2173 
2174   return Simplified;
2175 }
2176 
2177 /// Given a vector binary operation and known undefined elements for each input
2178 /// operand, compute whether each element of the output is undefined.
2179 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2180                                          const APInt &UndefOp0,
2181                                          const APInt &UndefOp1) {
2182   EVT VT = BO.getValueType();
2183   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2184          "Vector binop only");
2185 
2186   EVT EltVT = VT.getVectorElementType();
2187   unsigned NumElts = VT.getVectorNumElements();
2188   assert(UndefOp0.getBitWidth() == NumElts &&
2189          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2190 
2191   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2192                                    const APInt &UndefVals) {
2193     if (UndefVals[Index])
2194       return DAG.getUNDEF(EltVT);
2195 
2196     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2197       // Try hard to make sure that the getNode() call is not creating temporary
2198       // nodes. Ignore opaque integers because they do not constant fold.
2199       SDValue Elt = BV->getOperand(Index);
2200       auto *C = dyn_cast<ConstantSDNode>(Elt);
2201       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2202         return Elt;
2203     }
2204 
2205     return SDValue();
2206   };
2207 
2208   APInt KnownUndef = APInt::getNullValue(NumElts);
2209   for (unsigned i = 0; i != NumElts; ++i) {
2210     // If both inputs for this element are either constant or undef and match
2211     // the element type, compute the constant/undef result for this element of
2212     // the vector.
2213     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2214     // not handle FP constants. The code within getNode() should be refactored
2215     // to avoid the danger of creating a bogus temporary node here.
2216     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2217     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2218     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2219       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2220         KnownUndef.setBit(i);
2221   }
2222   return KnownUndef;
2223 }
2224 
2225 bool TargetLowering::SimplifyDemandedVectorElts(
2226     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2227     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2228     bool AssumeSingleUse) const {
2229   EVT VT = Op.getValueType();
2230   APInt DemandedElts = OriginalDemandedElts;
2231   unsigned NumElts = DemandedElts.getBitWidth();
2232   assert(VT.isVector() && "Expected vector op");
2233   assert(VT.getVectorNumElements() == NumElts &&
2234          "Mask size mismatches value type element count!");
2235 
2236   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2237 
2238   // Undef operand.
2239   if (Op.isUndef()) {
2240     KnownUndef.setAllBits();
2241     return false;
2242   }
2243 
2244   // If Op has other users, assume that all elements are needed.
2245   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2246     DemandedElts.setAllBits();
2247 
2248   // Not demanding any elements from Op.
2249   if (DemandedElts == 0) {
2250     KnownUndef.setAllBits();
2251     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2252   }
2253 
2254   // Limit search depth.
2255   if (Depth >= SelectionDAG::MaxRecursionDepth)
2256     return false;
2257 
2258   SDLoc DL(Op);
2259   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2260 
2261   switch (Op.getOpcode()) {
2262   case ISD::SCALAR_TO_VECTOR: {
2263     if (!DemandedElts[0]) {
2264       KnownUndef.setAllBits();
2265       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2266     }
2267     KnownUndef.setHighBits(NumElts - 1);
2268     break;
2269   }
2270   case ISD::BITCAST: {
2271     SDValue Src = Op.getOperand(0);
2272     EVT SrcVT = Src.getValueType();
2273 
2274     // We only handle vectors here.
2275     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2276     if (!SrcVT.isVector())
2277       break;
2278 
2279     // Fast handling of 'identity' bitcasts.
2280     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2281     if (NumSrcElts == NumElts)
2282       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2283                                         KnownZero, TLO, Depth + 1);
2284 
2285     APInt SrcZero, SrcUndef;
2286     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2287 
2288     // Bitcast from 'large element' src vector to 'small element' vector, we
2289     // must demand a source element if any DemandedElt maps to it.
2290     if ((NumElts % NumSrcElts) == 0) {
2291       unsigned Scale = NumElts / NumSrcElts;
2292       for (unsigned i = 0; i != NumElts; ++i)
2293         if (DemandedElts[i])
2294           SrcDemandedElts.setBit(i / Scale);
2295 
2296       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2297                                      TLO, Depth + 1))
2298         return true;
2299 
2300       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2301       // of the large element.
2302       // TODO - bigendian once we have test coverage.
2303       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2304         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2305         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2306         for (unsigned i = 0; i != NumElts; ++i)
2307           if (DemandedElts[i]) {
2308             unsigned Ofs = (i % Scale) * EltSizeInBits;
2309             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2310           }
2311 
2312         KnownBits Known;
2313         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2314                                  TLO, Depth + 1))
2315           return true;
2316       }
2317 
2318       // If the src element is zero/undef then all the output elements will be -
2319       // only demanded elements are guaranteed to be correct.
2320       for (unsigned i = 0; i != NumSrcElts; ++i) {
2321         if (SrcDemandedElts[i]) {
2322           if (SrcZero[i])
2323             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2324           if (SrcUndef[i])
2325             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2326         }
2327       }
2328     }
2329 
2330     // Bitcast from 'small element' src vector to 'large element' vector, we
2331     // demand all smaller source elements covered by the larger demanded element
2332     // of this vector.
2333     if ((NumSrcElts % NumElts) == 0) {
2334       unsigned Scale = NumSrcElts / NumElts;
2335       for (unsigned i = 0; i != NumElts; ++i)
2336         if (DemandedElts[i])
2337           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2338 
2339       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2340                                      TLO, Depth + 1))
2341         return true;
2342 
2343       // If all the src elements covering an output element are zero/undef, then
2344       // the output element will be as well, assuming it was demanded.
2345       for (unsigned i = 0; i != NumElts; ++i) {
2346         if (DemandedElts[i]) {
2347           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2348             KnownZero.setBit(i);
2349           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2350             KnownUndef.setBit(i);
2351         }
2352       }
2353     }
2354     break;
2355   }
2356   case ISD::BUILD_VECTOR: {
2357     // Check all elements and simplify any unused elements with UNDEF.
2358     if (!DemandedElts.isAllOnesValue()) {
2359       // Don't simplify BROADCASTS.
2360       if (llvm::any_of(Op->op_values(),
2361                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2362         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2363         bool Updated = false;
2364         for (unsigned i = 0; i != NumElts; ++i) {
2365           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2366             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2367             KnownUndef.setBit(i);
2368             Updated = true;
2369           }
2370         }
2371         if (Updated)
2372           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2373       }
2374     }
2375     for (unsigned i = 0; i != NumElts; ++i) {
2376       SDValue SrcOp = Op.getOperand(i);
2377       if (SrcOp.isUndef()) {
2378         KnownUndef.setBit(i);
2379       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2380                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2381         KnownZero.setBit(i);
2382       }
2383     }
2384     break;
2385   }
2386   case ISD::CONCAT_VECTORS: {
2387     EVT SubVT = Op.getOperand(0).getValueType();
2388     unsigned NumSubVecs = Op.getNumOperands();
2389     unsigned NumSubElts = SubVT.getVectorNumElements();
2390     for (unsigned i = 0; i != NumSubVecs; ++i) {
2391       SDValue SubOp = Op.getOperand(i);
2392       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2393       APInt SubUndef, SubZero;
2394       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2395                                      Depth + 1))
2396         return true;
2397       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2398       KnownZero.insertBits(SubZero, i * NumSubElts);
2399     }
2400     break;
2401   }
2402   case ISD::INSERT_SUBVECTOR: {
2403     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2404       break;
2405     SDValue Base = Op.getOperand(0);
2406     SDValue Sub = Op.getOperand(1);
2407     EVT SubVT = Sub.getValueType();
2408     unsigned NumSubElts = SubVT.getVectorNumElements();
2409     const APInt &Idx = Op.getConstantOperandAPInt(2);
2410     if (Idx.ugt(NumElts - NumSubElts))
2411       break;
2412     unsigned SubIdx = Idx.getZExtValue();
2413     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2414     APInt SubUndef, SubZero;
2415     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2416                                    Depth + 1))
2417       return true;
2418     APInt BaseElts = DemandedElts;
2419     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2420 
2421     // If none of the base operand elements are demanded, replace it with undef.
2422     if (!BaseElts && !Base.isUndef())
2423       return TLO.CombineTo(Op,
2424                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2425                                            TLO.DAG.getUNDEF(VT),
2426                                            Op.getOperand(1),
2427                                            Op.getOperand(2)));
2428 
2429     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2430                                    Depth + 1))
2431       return true;
2432     KnownUndef.insertBits(SubUndef, SubIdx);
2433     KnownZero.insertBits(SubZero, SubIdx);
2434     break;
2435   }
2436   case ISD::EXTRACT_SUBVECTOR: {
2437     SDValue Src = Op.getOperand(0);
2438     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2439     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2440     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2441       // Offset the demanded elts by the subvector index.
2442       uint64_t Idx = SubIdx->getZExtValue();
2443       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2444       APInt SrcUndef, SrcZero;
2445       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2446                                      Depth + 1))
2447         return true;
2448       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2449       KnownZero = SrcZero.extractBits(NumElts, Idx);
2450     }
2451     break;
2452   }
2453   case ISD::INSERT_VECTOR_ELT: {
2454     SDValue Vec = Op.getOperand(0);
2455     SDValue Scl = Op.getOperand(1);
2456     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2457 
2458     // For a legal, constant insertion index, if we don't need this insertion
2459     // then strip it, else remove it from the demanded elts.
2460     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2461       unsigned Idx = CIdx->getZExtValue();
2462       if (!DemandedElts[Idx])
2463         return TLO.CombineTo(Op, Vec);
2464 
2465       APInt DemandedVecElts(DemandedElts);
2466       DemandedVecElts.clearBit(Idx);
2467       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2468                                      KnownZero, TLO, Depth + 1))
2469         return true;
2470 
2471       KnownUndef.clearBit(Idx);
2472       if (Scl.isUndef())
2473         KnownUndef.setBit(Idx);
2474 
2475       KnownZero.clearBit(Idx);
2476       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2477         KnownZero.setBit(Idx);
2478       break;
2479     }
2480 
2481     APInt VecUndef, VecZero;
2482     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2483                                    Depth + 1))
2484       return true;
2485     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2486     break;
2487   }
2488   case ISD::VSELECT: {
2489     // Try to transform the select condition based on the current demanded
2490     // elements.
2491     // TODO: If a condition element is undef, we can choose from one arm of the
2492     //       select (and if one arm is undef, then we can propagate that to the
2493     //       result).
2494     // TODO - add support for constant vselect masks (see IR version of this).
2495     APInt UnusedUndef, UnusedZero;
2496     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2497                                    UnusedZero, TLO, Depth + 1))
2498       return true;
2499 
2500     // See if we can simplify either vselect operand.
2501     APInt DemandedLHS(DemandedElts);
2502     APInt DemandedRHS(DemandedElts);
2503     APInt UndefLHS, ZeroLHS;
2504     APInt UndefRHS, ZeroRHS;
2505     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2506                                    ZeroLHS, TLO, Depth + 1))
2507       return true;
2508     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2509                                    ZeroRHS, TLO, Depth + 1))
2510       return true;
2511 
2512     KnownUndef = UndefLHS & UndefRHS;
2513     KnownZero = ZeroLHS & ZeroRHS;
2514     break;
2515   }
2516   case ISD::VECTOR_SHUFFLE: {
2517     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2518 
2519     // Collect demanded elements from shuffle operands..
2520     APInt DemandedLHS(NumElts, 0);
2521     APInt DemandedRHS(NumElts, 0);
2522     for (unsigned i = 0; i != NumElts; ++i) {
2523       int M = ShuffleMask[i];
2524       if (M < 0 || !DemandedElts[i])
2525         continue;
2526       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2527       if (M < (int)NumElts)
2528         DemandedLHS.setBit(M);
2529       else
2530         DemandedRHS.setBit(M - NumElts);
2531     }
2532 
2533     // See if we can simplify either shuffle operand.
2534     APInt UndefLHS, ZeroLHS;
2535     APInt UndefRHS, ZeroRHS;
2536     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2537                                    ZeroLHS, TLO, Depth + 1))
2538       return true;
2539     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2540                                    ZeroRHS, TLO, Depth + 1))
2541       return true;
2542 
2543     // Simplify mask using undef elements from LHS/RHS.
2544     bool Updated = false;
2545     bool IdentityLHS = true, IdentityRHS = true;
2546     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2547     for (unsigned i = 0; i != NumElts; ++i) {
2548       int &M = NewMask[i];
2549       if (M < 0)
2550         continue;
2551       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2552           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2553         Updated = true;
2554         M = -1;
2555       }
2556       IdentityLHS &= (M < 0) || (M == (int)i);
2557       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2558     }
2559 
2560     // Update legal shuffle masks based on demanded elements if it won't reduce
2561     // to Identity which can cause premature removal of the shuffle mask.
2562     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2563       SDValue LegalShuffle =
2564           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2565                                   NewMask, TLO.DAG);
2566       if (LegalShuffle)
2567         return TLO.CombineTo(Op, LegalShuffle);
2568     }
2569 
2570     // Propagate undef/zero elements from LHS/RHS.
2571     for (unsigned i = 0; i != NumElts; ++i) {
2572       int M = ShuffleMask[i];
2573       if (M < 0) {
2574         KnownUndef.setBit(i);
2575       } else if (M < (int)NumElts) {
2576         if (UndefLHS[M])
2577           KnownUndef.setBit(i);
2578         if (ZeroLHS[M])
2579           KnownZero.setBit(i);
2580       } else {
2581         if (UndefRHS[M - NumElts])
2582           KnownUndef.setBit(i);
2583         if (ZeroRHS[M - NumElts])
2584           KnownZero.setBit(i);
2585       }
2586     }
2587     break;
2588   }
2589   case ISD::ANY_EXTEND_VECTOR_INREG:
2590   case ISD::SIGN_EXTEND_VECTOR_INREG:
2591   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2592     APInt SrcUndef, SrcZero;
2593     SDValue Src = Op.getOperand(0);
2594     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2595     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2596     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2597                                    Depth + 1))
2598       return true;
2599     KnownZero = SrcZero.zextOrTrunc(NumElts);
2600     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2601 
2602     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2603         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2604         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2605       // aext - if we just need the bottom element then we can bitcast.
2606       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2607     }
2608 
2609     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2610       // zext(undef) upper bits are guaranteed to be zero.
2611       if (DemandedElts.isSubsetOf(KnownUndef))
2612         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2613       KnownUndef.clearAllBits();
2614     }
2615     break;
2616   }
2617 
2618   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2619   // MAX, saturated math, etc.
2620   case ISD::OR:
2621   case ISD::XOR:
2622   case ISD::ADD:
2623   case ISD::SUB:
2624   case ISD::FADD:
2625   case ISD::FSUB:
2626   case ISD::FMUL:
2627   case ISD::FDIV:
2628   case ISD::FREM: {
2629     APInt UndefRHS, ZeroRHS;
2630     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2631                                    ZeroRHS, TLO, Depth + 1))
2632       return true;
2633     APInt UndefLHS, ZeroLHS;
2634     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2635                                    ZeroLHS, TLO, Depth + 1))
2636       return true;
2637 
2638     KnownZero = ZeroLHS & ZeroRHS;
2639     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2640     break;
2641   }
2642   case ISD::SHL:
2643   case ISD::SRL:
2644   case ISD::SRA:
2645   case ISD::ROTL:
2646   case ISD::ROTR: {
2647     APInt UndefRHS, ZeroRHS;
2648     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2649                                    ZeroRHS, TLO, Depth + 1))
2650       return true;
2651     APInt UndefLHS, ZeroLHS;
2652     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2653                                    ZeroLHS, TLO, Depth + 1))
2654       return true;
2655 
2656     KnownZero = ZeroLHS;
2657     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2658     break;
2659   }
2660   case ISD::MUL:
2661   case ISD::AND: {
2662     APInt SrcUndef, SrcZero;
2663     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2664                                    SrcZero, TLO, Depth + 1))
2665       return true;
2666     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2667                                    KnownZero, TLO, Depth + 1))
2668       return true;
2669 
2670     // If either side has a zero element, then the result element is zero, even
2671     // if the other is an UNDEF.
2672     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2673     // and then handle 'and' nodes with the rest of the binop opcodes.
2674     KnownZero |= SrcZero;
2675     KnownUndef &= SrcUndef;
2676     KnownUndef &= ~KnownZero;
2677     break;
2678   }
2679   case ISD::TRUNCATE:
2680   case ISD::SIGN_EXTEND:
2681   case ISD::ZERO_EXTEND:
2682     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2683                                    KnownZero, TLO, Depth + 1))
2684       return true;
2685 
2686     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2687       // zext(undef) upper bits are guaranteed to be zero.
2688       if (DemandedElts.isSubsetOf(KnownUndef))
2689         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2690       KnownUndef.clearAllBits();
2691     }
2692     break;
2693   default: {
2694     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2695       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2696                                                   KnownZero, TLO, Depth))
2697         return true;
2698     } else {
2699       KnownBits Known;
2700       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2701       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2702                                TLO, Depth, AssumeSingleUse))
2703         return true;
2704     }
2705     break;
2706   }
2707   }
2708   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2709 
2710   // Constant fold all undef cases.
2711   // TODO: Handle zero cases as well.
2712   if (DemandedElts.isSubsetOf(KnownUndef))
2713     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2714 
2715   return false;
2716 }
2717 
2718 /// Determine which of the bits specified in Mask are known to be either zero or
2719 /// one and return them in the Known.
2720 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2721                                                    KnownBits &Known,
2722                                                    const APInt &DemandedElts,
2723                                                    const SelectionDAG &DAG,
2724                                                    unsigned Depth) const {
2725   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2726           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2727           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2728           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2729          "Should use MaskedValueIsZero if you don't know whether Op"
2730          " is a target node!");
2731   Known.resetAll();
2732 }
2733 
2734 void TargetLowering::computeKnownBitsForTargetInstr(
2735     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2736     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2737     unsigned Depth) const {
2738   Known.resetAll();
2739 }
2740 
2741 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2742                                                    KnownBits &Known,
2743                                                    const APInt &DemandedElts,
2744                                                    const SelectionDAG &DAG,
2745                                                    unsigned Depth) const {
2746   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2747 
2748   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2749     // The low bits are known zero if the pointer is aligned.
2750     Known.Zero.setLowBits(Log2_32(Align));
2751   }
2752 }
2753 
2754 /// This method can be implemented by targets that want to expose additional
2755 /// information about sign bits to the DAG Combiner.
2756 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2757                                                          const APInt &,
2758                                                          const SelectionDAG &,
2759                                                          unsigned Depth) const {
2760   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2761           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2762           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2763           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2764          "Should use ComputeNumSignBits if you don't know whether Op"
2765          " is a target node!");
2766   return 1;
2767 }
2768 
2769 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2770     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2771     TargetLoweringOpt &TLO, unsigned Depth) const {
2772   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2773           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2774           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2775           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2776          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2777          " is a target node!");
2778   return false;
2779 }
2780 
2781 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2782     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2783     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2784   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2785           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2786           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2787           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2788          "Should use SimplifyDemandedBits if you don't know whether Op"
2789          " is a target node!");
2790   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2791   return false;
2792 }
2793 
2794 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2795     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2796     SelectionDAG &DAG, unsigned Depth) const {
2797   assert(
2798       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2799        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2800        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2801        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2802       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2803       " is a target node!");
2804   return SDValue();
2805 }
2806 
2807 SDValue
2808 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2809                                         SDValue N1, MutableArrayRef<int> Mask,
2810                                         SelectionDAG &DAG) const {
2811   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2812   if (!LegalMask) {
2813     std::swap(N0, N1);
2814     ShuffleVectorSDNode::commuteMask(Mask);
2815     LegalMask = isShuffleMaskLegal(Mask, VT);
2816   }
2817 
2818   if (!LegalMask)
2819     return SDValue();
2820 
2821   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2822 }
2823 
2824 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2825   return nullptr;
2826 }
2827 
2828 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2829                                                   const SelectionDAG &DAG,
2830                                                   bool SNaN,
2831                                                   unsigned Depth) const {
2832   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2833           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2834           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2835           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2836          "Should use isKnownNeverNaN if you don't know whether Op"
2837          " is a target node!");
2838   return false;
2839 }
2840 
2841 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2842 // work with truncating build vectors and vectors with elements of less than
2843 // 8 bits.
2844 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2845   if (!N)
2846     return false;
2847 
2848   APInt CVal;
2849   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2850     CVal = CN->getAPIntValue();
2851   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2852     auto *CN = BV->getConstantSplatNode();
2853     if (!CN)
2854       return false;
2855 
2856     // If this is a truncating build vector, truncate the splat value.
2857     // Otherwise, we may fail to match the expected values below.
2858     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2859     CVal = CN->getAPIntValue();
2860     if (BVEltWidth < CVal.getBitWidth())
2861       CVal = CVal.trunc(BVEltWidth);
2862   } else {
2863     return false;
2864   }
2865 
2866   switch (getBooleanContents(N->getValueType(0))) {
2867   case UndefinedBooleanContent:
2868     return CVal[0];
2869   case ZeroOrOneBooleanContent:
2870     return CVal.isOneValue();
2871   case ZeroOrNegativeOneBooleanContent:
2872     return CVal.isAllOnesValue();
2873   }
2874 
2875   llvm_unreachable("Invalid boolean contents");
2876 }
2877 
2878 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2879   if (!N)
2880     return false;
2881 
2882   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2883   if (!CN) {
2884     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2885     if (!BV)
2886       return false;
2887 
2888     // Only interested in constant splats, we don't care about undef
2889     // elements in identifying boolean constants and getConstantSplatNode
2890     // returns NULL if all ops are undef;
2891     CN = BV->getConstantSplatNode();
2892     if (!CN)
2893       return false;
2894   }
2895 
2896   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2897     return !CN->getAPIntValue()[0];
2898 
2899   return CN->isNullValue();
2900 }
2901 
2902 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2903                                        bool SExt) const {
2904   if (VT == MVT::i1)
2905     return N->isOne();
2906 
2907   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2908   switch (Cnt) {
2909   case TargetLowering::ZeroOrOneBooleanContent:
2910     // An extended value of 1 is always true, unless its original type is i1,
2911     // in which case it will be sign extended to -1.
2912     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2913   case TargetLowering::UndefinedBooleanContent:
2914   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2915     return N->isAllOnesValue() && SExt;
2916   }
2917   llvm_unreachable("Unexpected enumeration.");
2918 }
2919 
2920 /// This helper function of SimplifySetCC tries to optimize the comparison when
2921 /// either operand of the SetCC node is a bitwise-and instruction.
2922 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2923                                          ISD::CondCode Cond, const SDLoc &DL,
2924                                          DAGCombinerInfo &DCI) const {
2925   // Match these patterns in any of their permutations:
2926   // (X & Y) == Y
2927   // (X & Y) != Y
2928   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2929     std::swap(N0, N1);
2930 
2931   EVT OpVT = N0.getValueType();
2932   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2933       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2934     return SDValue();
2935 
2936   SDValue X, Y;
2937   if (N0.getOperand(0) == N1) {
2938     X = N0.getOperand(1);
2939     Y = N0.getOperand(0);
2940   } else if (N0.getOperand(1) == N1) {
2941     X = N0.getOperand(0);
2942     Y = N0.getOperand(1);
2943   } else {
2944     return SDValue();
2945   }
2946 
2947   SelectionDAG &DAG = DCI.DAG;
2948   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2949   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2950     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2951     // Note that where Y is variable and is known to have at most one bit set
2952     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2953     // equivalent when Y == 0.
2954     assert(OpVT.isInteger());
2955     Cond = ISD::getSetCCInverse(Cond, OpVT);
2956     if (DCI.isBeforeLegalizeOps() ||
2957         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2958       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2959   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2960     // If the target supports an 'and-not' or 'and-complement' logic operation,
2961     // try to use that to make a comparison operation more efficient.
2962     // But don't do this transform if the mask is a single bit because there are
2963     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2964     // 'rlwinm' on PPC).
2965 
2966     // Bail out if the compare operand that we want to turn into a zero is
2967     // already a zero (otherwise, infinite loop).
2968     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2969     if (YConst && YConst->isNullValue())
2970       return SDValue();
2971 
2972     // Transform this into: ~X & Y == 0.
2973     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2974     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2975     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2976   }
2977 
2978   return SDValue();
2979 }
2980 
2981 /// There are multiple IR patterns that could be checking whether certain
2982 /// truncation of a signed number would be lossy or not. The pattern which is
2983 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2984 /// We are looking for the following pattern: (KeptBits is a constant)
2985 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2986 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2987 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2988 /// We will unfold it into the natural trunc+sext pattern:
2989 ///   ((%x << C) a>> C) dstcond %x
2990 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2991 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2992     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2993     const SDLoc &DL) const {
2994   // We must be comparing with a constant.
2995   ConstantSDNode *C1;
2996   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2997     return SDValue();
2998 
2999   // N0 should be:  add %x, (1 << (KeptBits-1))
3000   if (N0->getOpcode() != ISD::ADD)
3001     return SDValue();
3002 
3003   // And we must be 'add'ing a constant.
3004   ConstantSDNode *C01;
3005   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3006     return SDValue();
3007 
3008   SDValue X = N0->getOperand(0);
3009   EVT XVT = X.getValueType();
3010 
3011   // Validate constants ...
3012 
3013   APInt I1 = C1->getAPIntValue();
3014 
3015   ISD::CondCode NewCond;
3016   if (Cond == ISD::CondCode::SETULT) {
3017     NewCond = ISD::CondCode::SETEQ;
3018   } else if (Cond == ISD::CondCode::SETULE) {
3019     NewCond = ISD::CondCode::SETEQ;
3020     // But need to 'canonicalize' the constant.
3021     I1 += 1;
3022   } else if (Cond == ISD::CondCode::SETUGT) {
3023     NewCond = ISD::CondCode::SETNE;
3024     // But need to 'canonicalize' the constant.
3025     I1 += 1;
3026   } else if (Cond == ISD::CondCode::SETUGE) {
3027     NewCond = ISD::CondCode::SETNE;
3028   } else
3029     return SDValue();
3030 
3031   APInt I01 = C01->getAPIntValue();
3032 
3033   auto checkConstants = [&I1, &I01]() -> bool {
3034     // Both of them must be power-of-two, and the constant from setcc is bigger.
3035     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3036   };
3037 
3038   if (checkConstants()) {
3039     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3040   } else {
3041     // What if we invert constants? (and the target predicate)
3042     I1.negate();
3043     I01.negate();
3044     assert(XVT.isInteger());
3045     NewCond = getSetCCInverse(NewCond, XVT);
3046     if (!checkConstants())
3047       return SDValue();
3048     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3049   }
3050 
3051   // They are power-of-two, so which bit is set?
3052   const unsigned KeptBits = I1.logBase2();
3053   const unsigned KeptBitsMinusOne = I01.logBase2();
3054 
3055   // Magic!
3056   if (KeptBits != (KeptBitsMinusOne + 1))
3057     return SDValue();
3058   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3059 
3060   // We don't want to do this in every single case.
3061   SelectionDAG &DAG = DCI.DAG;
3062   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3063           XVT, KeptBits))
3064     return SDValue();
3065 
3066   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3067   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3068 
3069   // Unfold into:  ((%x << C) a>> C) cond %x
3070   // Where 'cond' will be either 'eq' or 'ne'.
3071   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3072   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3073   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3074   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3075 
3076   return T2;
3077 }
3078 
3079 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3080 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3081     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3082     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3083   assert(isConstOrConstSplat(N1C) &&
3084          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3085          "Should be a comparison with 0.");
3086   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3087          "Valid only for [in]equality comparisons.");
3088 
3089   unsigned NewShiftOpcode;
3090   SDValue X, C, Y;
3091 
3092   SelectionDAG &DAG = DCI.DAG;
3093   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3094 
3095   // Look for '(C l>>/<< Y)'.
3096   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3097     // The shift should be one-use.
3098     if (!V.hasOneUse())
3099       return false;
3100     unsigned OldShiftOpcode = V.getOpcode();
3101     switch (OldShiftOpcode) {
3102     case ISD::SHL:
3103       NewShiftOpcode = ISD::SRL;
3104       break;
3105     case ISD::SRL:
3106       NewShiftOpcode = ISD::SHL;
3107       break;
3108     default:
3109       return false; // must be a logical shift.
3110     }
3111     // We should be shifting a constant.
3112     // FIXME: best to use isConstantOrConstantVector().
3113     C = V.getOperand(0);
3114     ConstantSDNode *CC =
3115         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3116     if (!CC)
3117       return false;
3118     Y = V.getOperand(1);
3119 
3120     ConstantSDNode *XC =
3121         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3122     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3123         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3124   };
3125 
3126   // LHS of comparison should be an one-use 'and'.
3127   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3128     return SDValue();
3129 
3130   X = N0.getOperand(0);
3131   SDValue Mask = N0.getOperand(1);
3132 
3133   // 'and' is commutative!
3134   if (!Match(Mask)) {
3135     std::swap(X, Mask);
3136     if (!Match(Mask))
3137       return SDValue();
3138   }
3139 
3140   EVT VT = X.getValueType();
3141 
3142   // Produce:
3143   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3144   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3145   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3146   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3147   return T2;
3148 }
3149 
3150 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3151 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3152 /// handle the commuted versions of these patterns.
3153 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3154                                            ISD::CondCode Cond, const SDLoc &DL,
3155                                            DAGCombinerInfo &DCI) const {
3156   unsigned BOpcode = N0.getOpcode();
3157   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3158          "Unexpected binop");
3159   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3160 
3161   // (X + Y) == X --> Y == 0
3162   // (X - Y) == X --> Y == 0
3163   // (X ^ Y) == X --> Y == 0
3164   SelectionDAG &DAG = DCI.DAG;
3165   EVT OpVT = N0.getValueType();
3166   SDValue X = N0.getOperand(0);
3167   SDValue Y = N0.getOperand(1);
3168   if (X == N1)
3169     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3170 
3171   if (Y != N1)
3172     return SDValue();
3173 
3174   // (X + Y) == Y --> X == 0
3175   // (X ^ Y) == Y --> X == 0
3176   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3177     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3178 
3179   // The shift would not be valid if the operands are boolean (i1).
3180   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3181     return SDValue();
3182 
3183   // (X - Y) == Y --> X == Y << 1
3184   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3185                                  !DCI.isBeforeLegalize());
3186   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3187   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3188   if (!DCI.isCalledByLegalizer())
3189     DCI.AddToWorklist(YShl1.getNode());
3190   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3191 }
3192 
3193 /// Try to simplify a setcc built with the specified operands and cc. If it is
3194 /// unable to simplify it, return a null SDValue.
3195 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3196                                       ISD::CondCode Cond, bool foldBooleans,
3197                                       DAGCombinerInfo &DCI,
3198                                       const SDLoc &dl) const {
3199   SelectionDAG &DAG = DCI.DAG;
3200   const DataLayout &Layout = DAG.getDataLayout();
3201   EVT OpVT = N0.getValueType();
3202 
3203   // Constant fold or commute setcc.
3204   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3205     return Fold;
3206 
3207   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3208   // TODO: Handle non-splat vector constants. All undef causes trouble.
3209   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3210   if (isConstOrConstSplat(N0) &&
3211       (DCI.isBeforeLegalizeOps() ||
3212        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3213     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3214 
3215   // If we have a subtract with the same 2 non-constant operands as this setcc
3216   // -- but in reverse order -- then try to commute the operands of this setcc
3217   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3218   // instruction on some targets.
3219   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3220       (DCI.isBeforeLegalizeOps() ||
3221        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3222       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3223       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3224     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3225 
3226   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3227     const APInt &C1 = N1C->getAPIntValue();
3228 
3229     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3230     // equality comparison, then we're just comparing whether X itself is
3231     // zero.
3232     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3233         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3234         N0.getOperand(1).getOpcode() == ISD::Constant) {
3235       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3236       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3237           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3238         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3239           // (srl (ctlz x), 5) == 0  -> X != 0
3240           // (srl (ctlz x), 5) != 1  -> X != 0
3241           Cond = ISD::SETNE;
3242         } else {
3243           // (srl (ctlz x), 5) != 0  -> X == 0
3244           // (srl (ctlz x), 5) == 1  -> X == 0
3245           Cond = ISD::SETEQ;
3246         }
3247         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3248         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3249                             Zero, Cond);
3250       }
3251     }
3252 
3253     SDValue CTPOP = N0;
3254     // Look through truncs that don't change the value of a ctpop.
3255     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3256       CTPOP = N0.getOperand(0);
3257 
3258     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3259         (N0 == CTPOP ||
3260          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3261       EVT CTVT = CTPOP.getValueType();
3262       SDValue CTOp = CTPOP.getOperand(0);
3263 
3264       // (ctpop x) u< 2 -> (x & x-1) == 0
3265       // (ctpop x) u> 1 -> (x & x-1) != 0
3266       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3267         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3268         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3269         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3270         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3271         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3272       }
3273 
3274       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3275       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3276           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3277         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3278         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3279         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3280         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3281         assert(CTVT.isInteger());
3282         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3283         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3284         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3285         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3286         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3287         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3288         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3289       }
3290     }
3291 
3292     // (zext x) == C --> x == (trunc C)
3293     // (sext x) == C --> x == (trunc C)
3294     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3295         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3296       unsigned MinBits = N0.getValueSizeInBits();
3297       SDValue PreExt;
3298       bool Signed = false;
3299       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3300         // ZExt
3301         MinBits = N0->getOperand(0).getValueSizeInBits();
3302         PreExt = N0->getOperand(0);
3303       } else if (N0->getOpcode() == ISD::AND) {
3304         // DAGCombine turns costly ZExts into ANDs
3305         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3306           if ((C->getAPIntValue()+1).isPowerOf2()) {
3307             MinBits = C->getAPIntValue().countTrailingOnes();
3308             PreExt = N0->getOperand(0);
3309           }
3310       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3311         // SExt
3312         MinBits = N0->getOperand(0).getValueSizeInBits();
3313         PreExt = N0->getOperand(0);
3314         Signed = true;
3315       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3316         // ZEXTLOAD / SEXTLOAD
3317         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3318           MinBits = LN0->getMemoryVT().getSizeInBits();
3319           PreExt = N0;
3320         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3321           Signed = true;
3322           MinBits = LN0->getMemoryVT().getSizeInBits();
3323           PreExt = N0;
3324         }
3325       }
3326 
3327       // Figure out how many bits we need to preserve this constant.
3328       unsigned ReqdBits = Signed ?
3329         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3330         C1.getActiveBits();
3331 
3332       // Make sure we're not losing bits from the constant.
3333       if (MinBits > 0 &&
3334           MinBits < C1.getBitWidth() &&
3335           MinBits >= ReqdBits) {
3336         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3337         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3338           // Will get folded away.
3339           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3340           if (MinBits == 1 && C1 == 1)
3341             // Invert the condition.
3342             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3343                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3344           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3345           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3346         }
3347 
3348         // If truncating the setcc operands is not desirable, we can still
3349         // simplify the expression in some cases:
3350         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3351         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3352         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3353         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3354         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3355         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3356         SDValue TopSetCC = N0->getOperand(0);
3357         unsigned N0Opc = N0->getOpcode();
3358         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3359         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3360             TopSetCC.getOpcode() == ISD::SETCC &&
3361             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3362             (isConstFalseVal(N1C) ||
3363              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3364 
3365           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3366                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3367 
3368           if (!Inverse)
3369             return TopSetCC;
3370 
3371           ISD::CondCode InvCond = ISD::getSetCCInverse(
3372               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3373               TopSetCC.getOperand(0).getValueType());
3374           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3375                                       TopSetCC.getOperand(1),
3376                                       InvCond);
3377         }
3378       }
3379     }
3380 
3381     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3382     // equality or unsigned, and all 1 bits of the const are in the same
3383     // partial word, see if we can shorten the load.
3384     if (DCI.isBeforeLegalize() &&
3385         !ISD::isSignedIntSetCC(Cond) &&
3386         N0.getOpcode() == ISD::AND && C1 == 0 &&
3387         N0.getNode()->hasOneUse() &&
3388         isa<LoadSDNode>(N0.getOperand(0)) &&
3389         N0.getOperand(0).getNode()->hasOneUse() &&
3390         isa<ConstantSDNode>(N0.getOperand(1))) {
3391       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3392       APInt bestMask;
3393       unsigned bestWidth = 0, bestOffset = 0;
3394       if (Lod->isSimple() && Lod->isUnindexed()) {
3395         unsigned origWidth = N0.getValueSizeInBits();
3396         unsigned maskWidth = origWidth;
3397         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3398         // 8 bits, but have to be careful...
3399         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3400           origWidth = Lod->getMemoryVT().getSizeInBits();
3401         const APInt &Mask = N0.getConstantOperandAPInt(1);
3402         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3403           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3404           for (unsigned offset=0; offset<origWidth/width; offset++) {
3405             if (Mask.isSubsetOf(newMask)) {
3406               if (Layout.isLittleEndian())
3407                 bestOffset = (uint64_t)offset * (width/8);
3408               else
3409                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3410               bestMask = Mask.lshr(offset * (width/8) * 8);
3411               bestWidth = width;
3412               break;
3413             }
3414             newMask <<= width;
3415           }
3416         }
3417       }
3418       if (bestWidth) {
3419         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3420         if (newVT.isRound() &&
3421             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3422           SDValue Ptr = Lod->getBasePtr();
3423           if (bestOffset != 0)
3424             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3425           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3426           SDValue NewLoad = DAG.getLoad(
3427               newVT, dl, Lod->getChain(), Ptr,
3428               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3429           return DAG.getSetCC(dl, VT,
3430                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3431                                       DAG.getConstant(bestMask.trunc(bestWidth),
3432                                                       dl, newVT)),
3433                               DAG.getConstant(0LL, dl, newVT), Cond);
3434         }
3435       }
3436     }
3437 
3438     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3439     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3440       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3441 
3442       // If the comparison constant has bits in the upper part, the
3443       // zero-extended value could never match.
3444       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3445                                               C1.getBitWidth() - InSize))) {
3446         switch (Cond) {
3447         case ISD::SETUGT:
3448         case ISD::SETUGE:
3449         case ISD::SETEQ:
3450           return DAG.getConstant(0, dl, VT);
3451         case ISD::SETULT:
3452         case ISD::SETULE:
3453         case ISD::SETNE:
3454           return DAG.getConstant(1, dl, VT);
3455         case ISD::SETGT:
3456         case ISD::SETGE:
3457           // True if the sign bit of C1 is set.
3458           return DAG.getConstant(C1.isNegative(), dl, VT);
3459         case ISD::SETLT:
3460         case ISD::SETLE:
3461           // True if the sign bit of C1 isn't set.
3462           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3463         default:
3464           break;
3465         }
3466       }
3467 
3468       // Otherwise, we can perform the comparison with the low bits.
3469       switch (Cond) {
3470       case ISD::SETEQ:
3471       case ISD::SETNE:
3472       case ISD::SETUGT:
3473       case ISD::SETUGE:
3474       case ISD::SETULT:
3475       case ISD::SETULE: {
3476         EVT newVT = N0.getOperand(0).getValueType();
3477         if (DCI.isBeforeLegalizeOps() ||
3478             (isOperationLegal(ISD::SETCC, newVT) &&
3479              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3480           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3481           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3482 
3483           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3484                                           NewConst, Cond);
3485           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3486         }
3487         break;
3488       }
3489       default:
3490         break; // todo, be more careful with signed comparisons
3491       }
3492     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3493                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3494       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3495       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3496       EVT ExtDstTy = N0.getValueType();
3497       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3498 
3499       // If the constant doesn't fit into the number of bits for the source of
3500       // the sign extension, it is impossible for both sides to be equal.
3501       if (C1.getMinSignedBits() > ExtSrcTyBits)
3502         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3503 
3504       SDValue ZextOp;
3505       EVT Op0Ty = N0.getOperand(0).getValueType();
3506       if (Op0Ty == ExtSrcTy) {
3507         ZextOp = N0.getOperand(0);
3508       } else {
3509         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3510         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3511                              DAG.getConstant(Imm, dl, Op0Ty));
3512       }
3513       if (!DCI.isCalledByLegalizer())
3514         DCI.AddToWorklist(ZextOp.getNode());
3515       // Otherwise, make this a use of a zext.
3516       return DAG.getSetCC(dl, VT, ZextOp,
3517                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3518                                                               ExtDstTyBits,
3519                                                               ExtSrcTyBits),
3520                                           dl, ExtDstTy),
3521                           Cond);
3522     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3523                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3524       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3525       if (N0.getOpcode() == ISD::SETCC &&
3526           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3527           (N0.getValueType() == MVT::i1 ||
3528            getBooleanContents(N0.getOperand(0).getValueType()) ==
3529                        ZeroOrOneBooleanContent)) {
3530         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3531         if (TrueWhenTrue)
3532           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3533         // Invert the condition.
3534         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3535         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3536         if (DCI.isBeforeLegalizeOps() ||
3537             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3538           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3539       }
3540 
3541       if ((N0.getOpcode() == ISD::XOR ||
3542            (N0.getOpcode() == ISD::AND &&
3543             N0.getOperand(0).getOpcode() == ISD::XOR &&
3544             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3545           isa<ConstantSDNode>(N0.getOperand(1)) &&
3546           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3547         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3548         // can only do this if the top bits are known zero.
3549         unsigned BitWidth = N0.getValueSizeInBits();
3550         if (DAG.MaskedValueIsZero(N0,
3551                                   APInt::getHighBitsSet(BitWidth,
3552                                                         BitWidth-1))) {
3553           // Okay, get the un-inverted input value.
3554           SDValue Val;
3555           if (N0.getOpcode() == ISD::XOR) {
3556             Val = N0.getOperand(0);
3557           } else {
3558             assert(N0.getOpcode() == ISD::AND &&
3559                     N0.getOperand(0).getOpcode() == ISD::XOR);
3560             // ((X^1)&1)^1 -> X & 1
3561             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3562                               N0.getOperand(0).getOperand(0),
3563                               N0.getOperand(1));
3564           }
3565 
3566           return DAG.getSetCC(dl, VT, Val, N1,
3567                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3568         }
3569       } else if (N1C->isOne()) {
3570         SDValue Op0 = N0;
3571         if (Op0.getOpcode() == ISD::TRUNCATE)
3572           Op0 = Op0.getOperand(0);
3573 
3574         if ((Op0.getOpcode() == ISD::XOR) &&
3575             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3576             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3577           SDValue XorLHS = Op0.getOperand(0);
3578           SDValue XorRHS = Op0.getOperand(1);
3579           // Ensure that the input setccs return an i1 type or 0/1 value.
3580           if (Op0.getValueType() == MVT::i1 ||
3581               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3582                       ZeroOrOneBooleanContent &&
3583                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3584                         ZeroOrOneBooleanContent)) {
3585             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3586             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3587             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3588           }
3589         }
3590         if (Op0.getOpcode() == ISD::AND &&
3591             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3592             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3593           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3594           if (Op0.getValueType().bitsGT(VT))
3595             Op0 = DAG.getNode(ISD::AND, dl, VT,
3596                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3597                           DAG.getConstant(1, dl, VT));
3598           else if (Op0.getValueType().bitsLT(VT))
3599             Op0 = DAG.getNode(ISD::AND, dl, VT,
3600                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3601                         DAG.getConstant(1, dl, VT));
3602 
3603           return DAG.getSetCC(dl, VT, Op0,
3604                               DAG.getConstant(0, dl, Op0.getValueType()),
3605                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3606         }
3607         if (Op0.getOpcode() == ISD::AssertZext &&
3608             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3609           return DAG.getSetCC(dl, VT, Op0,
3610                               DAG.getConstant(0, dl, Op0.getValueType()),
3611                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3612       }
3613     }
3614 
3615     // Given:
3616     //   icmp eq/ne (urem %x, %y), 0
3617     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3618     //   icmp eq/ne %x, 0
3619     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3620         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3621       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3622       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3623       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3624         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3625     }
3626 
3627     if (SDValue V =
3628             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3629       return V;
3630   }
3631 
3632   // These simplifications apply to splat vectors as well.
3633   // TODO: Handle more splat vector cases.
3634   if (auto *N1C = isConstOrConstSplat(N1)) {
3635     const APInt &C1 = N1C->getAPIntValue();
3636 
3637     APInt MinVal, MaxVal;
3638     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3639     if (ISD::isSignedIntSetCC(Cond)) {
3640       MinVal = APInt::getSignedMinValue(OperandBitSize);
3641       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3642     } else {
3643       MinVal = APInt::getMinValue(OperandBitSize);
3644       MaxVal = APInt::getMaxValue(OperandBitSize);
3645     }
3646 
3647     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3648     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3649       // X >= MIN --> true
3650       if (C1 == MinVal)
3651         return DAG.getBoolConstant(true, dl, VT, OpVT);
3652 
3653       if (!VT.isVector()) { // TODO: Support this for vectors.
3654         // X >= C0 --> X > (C0 - 1)
3655         APInt C = C1 - 1;
3656         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3657         if ((DCI.isBeforeLegalizeOps() ||
3658              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3659             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3660                                   isLegalICmpImmediate(C.getSExtValue())))) {
3661           return DAG.getSetCC(dl, VT, N0,
3662                               DAG.getConstant(C, dl, N1.getValueType()),
3663                               NewCC);
3664         }
3665       }
3666     }
3667 
3668     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3669       // X <= MAX --> true
3670       if (C1 == MaxVal)
3671         return DAG.getBoolConstant(true, dl, VT, OpVT);
3672 
3673       // X <= C0 --> X < (C0 + 1)
3674       if (!VT.isVector()) { // TODO: Support this for vectors.
3675         APInt C = C1 + 1;
3676         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3677         if ((DCI.isBeforeLegalizeOps() ||
3678              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3679             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3680                                   isLegalICmpImmediate(C.getSExtValue())))) {
3681           return DAG.getSetCC(dl, VT, N0,
3682                               DAG.getConstant(C, dl, N1.getValueType()),
3683                               NewCC);
3684         }
3685       }
3686     }
3687 
3688     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3689       if (C1 == MinVal)
3690         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3691 
3692       // TODO: Support this for vectors after legalize ops.
3693       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3694         // Canonicalize setlt X, Max --> setne X, Max
3695         if (C1 == MaxVal)
3696           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3697 
3698         // If we have setult X, 1, turn it into seteq X, 0
3699         if (C1 == MinVal+1)
3700           return DAG.getSetCC(dl, VT, N0,
3701                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3702                               ISD::SETEQ);
3703       }
3704     }
3705 
3706     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3707       if (C1 == MaxVal)
3708         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3709 
3710       // TODO: Support this for vectors after legalize ops.
3711       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3712         // Canonicalize setgt X, Min --> setne X, Min
3713         if (C1 == MinVal)
3714           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3715 
3716         // If we have setugt X, Max-1, turn it into seteq X, Max
3717         if (C1 == MaxVal-1)
3718           return DAG.getSetCC(dl, VT, N0,
3719                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3720                               ISD::SETEQ);
3721       }
3722     }
3723 
3724     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3725       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3726       if (C1.isNullValue())
3727         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3728                 VT, N0, N1, Cond, DCI, dl))
3729           return CC;
3730     }
3731 
3732     // If we have "setcc X, C0", check to see if we can shrink the immediate
3733     // by changing cc.
3734     // TODO: Support this for vectors after legalize ops.
3735     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3736       // SETUGT X, SINTMAX  -> SETLT X, 0
3737       if (Cond == ISD::SETUGT &&
3738           C1 == APInt::getSignedMaxValue(OperandBitSize))
3739         return DAG.getSetCC(dl, VT, N0,
3740                             DAG.getConstant(0, dl, N1.getValueType()),
3741                             ISD::SETLT);
3742 
3743       // SETULT X, SINTMIN  -> SETGT X, -1
3744       if (Cond == ISD::SETULT &&
3745           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3746         SDValue ConstMinusOne =
3747             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3748                             N1.getValueType());
3749         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3750       }
3751     }
3752   }
3753 
3754   // Back to non-vector simplifications.
3755   // TODO: Can we do these for vector splats?
3756   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3757     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3758     const APInt &C1 = N1C->getAPIntValue();
3759     EVT ShValTy = N0.getValueType();
3760 
3761     // Fold bit comparisons when we can.
3762     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3763         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3764         N0.getOpcode() == ISD::AND) {
3765       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3766         EVT ShiftTy =
3767             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3768         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3769           // Perform the xform if the AND RHS is a single bit.
3770           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3771           if (AndRHS->getAPIntValue().isPowerOf2() &&
3772               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3773             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3774                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3775                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3776           }
3777         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3778           // (X & 8) == 8  -->  (X & 8) >> 3
3779           // Perform the xform if C1 is a single bit.
3780           unsigned ShCt = C1.logBase2();
3781           if (C1.isPowerOf2() &&
3782               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3783             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3784                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3785                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3786           }
3787         }
3788       }
3789     }
3790 
3791     if (C1.getMinSignedBits() <= 64 &&
3792         !isLegalICmpImmediate(C1.getSExtValue())) {
3793       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3794       // (X & -256) == 256 -> (X >> 8) == 1
3795       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3796           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3797         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3798           const APInt &AndRHSC = AndRHS->getAPIntValue();
3799           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3800             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3801             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3802               SDValue Shift =
3803                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3804                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3805               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3806               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3807             }
3808           }
3809         }
3810       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3811                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3812         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3813         // X <  0x100000000 -> (X >> 32) <  1
3814         // X >= 0x100000000 -> (X >> 32) >= 1
3815         // X <= 0x0ffffffff -> (X >> 32) <  1
3816         // X >  0x0ffffffff -> (X >> 32) >= 1
3817         unsigned ShiftBits;
3818         APInt NewC = C1;
3819         ISD::CondCode NewCond = Cond;
3820         if (AdjOne) {
3821           ShiftBits = C1.countTrailingOnes();
3822           NewC = NewC + 1;
3823           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3824         } else {
3825           ShiftBits = C1.countTrailingZeros();
3826         }
3827         NewC.lshrInPlace(ShiftBits);
3828         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3829             isLegalICmpImmediate(NewC.getSExtValue()) &&
3830             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3831           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3832                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3833           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3834           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3835         }
3836       }
3837     }
3838   }
3839 
3840   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3841     auto *CFP = cast<ConstantFPSDNode>(N1);
3842     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3843 
3844     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3845     // constant if knowing that the operand is non-nan is enough.  We prefer to
3846     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3847     // materialize 0.0.
3848     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3849       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3850 
3851     // setcc (fneg x), C -> setcc swap(pred) x, -C
3852     if (N0.getOpcode() == ISD::FNEG) {
3853       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3854       if (DCI.isBeforeLegalizeOps() ||
3855           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3856         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3857         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3858       }
3859     }
3860 
3861     // If the condition is not legal, see if we can find an equivalent one
3862     // which is legal.
3863     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3864       // If the comparison was an awkward floating-point == or != and one of
3865       // the comparison operands is infinity or negative infinity, convert the
3866       // condition to a less-awkward <= or >=.
3867       if (CFP->getValueAPF().isInfinity()) {
3868         bool IsNegInf = CFP->getValueAPF().isNegative();
3869         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3870         switch (Cond) {
3871         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3872         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3873         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3874         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3875         default: break;
3876         }
3877         if (NewCond != ISD::SETCC_INVALID &&
3878             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3879           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3880       }
3881     }
3882   }
3883 
3884   if (N0 == N1) {
3885     // The sext(setcc()) => setcc() optimization relies on the appropriate
3886     // constant being emitted.
3887     assert(!N0.getValueType().isInteger() &&
3888            "Integer types should be handled by FoldSetCC");
3889 
3890     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3891     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3892     if (UOF == 2) // FP operators that are undefined on NaNs.
3893       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3894     if (UOF == unsigned(EqTrue))
3895       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3896     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3897     // if it is not already.
3898     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3899     if (NewCond != Cond &&
3900         (DCI.isBeforeLegalizeOps() ||
3901                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3902       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3903   }
3904 
3905   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3906       N0.getValueType().isInteger()) {
3907     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3908         N0.getOpcode() == ISD::XOR) {
3909       // Simplify (X+Y) == (X+Z) -->  Y == Z
3910       if (N0.getOpcode() == N1.getOpcode()) {
3911         if (N0.getOperand(0) == N1.getOperand(0))
3912           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3913         if (N0.getOperand(1) == N1.getOperand(1))
3914           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3915         if (isCommutativeBinOp(N0.getOpcode())) {
3916           // If X op Y == Y op X, try other combinations.
3917           if (N0.getOperand(0) == N1.getOperand(1))
3918             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3919                                 Cond);
3920           if (N0.getOperand(1) == N1.getOperand(0))
3921             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3922                                 Cond);
3923         }
3924       }
3925 
3926       // If RHS is a legal immediate value for a compare instruction, we need
3927       // to be careful about increasing register pressure needlessly.
3928       bool LegalRHSImm = false;
3929 
3930       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3931         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3932           // Turn (X+C1) == C2 --> X == C2-C1
3933           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3934             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3935                                 DAG.getConstant(RHSC->getAPIntValue()-
3936                                                 LHSR->getAPIntValue(),
3937                                 dl, N0.getValueType()), Cond);
3938           }
3939 
3940           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3941           if (N0.getOpcode() == ISD::XOR)
3942             // If we know that all of the inverted bits are zero, don't bother
3943             // performing the inversion.
3944             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3945               return
3946                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3947                              DAG.getConstant(LHSR->getAPIntValue() ^
3948                                                RHSC->getAPIntValue(),
3949                                              dl, N0.getValueType()),
3950                              Cond);
3951         }
3952 
3953         // Turn (C1-X) == C2 --> X == C1-C2
3954         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3955           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3956             return
3957               DAG.getSetCC(dl, VT, N0.getOperand(1),
3958                            DAG.getConstant(SUBC->getAPIntValue() -
3959                                              RHSC->getAPIntValue(),
3960                                            dl, N0.getValueType()),
3961                            Cond);
3962           }
3963         }
3964 
3965         // Could RHSC fold directly into a compare?
3966         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3967           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3968       }
3969 
3970       // (X+Y) == X --> Y == 0 and similar folds.
3971       // Don't do this if X is an immediate that can fold into a cmp
3972       // instruction and X+Y has other uses. It could be an induction variable
3973       // chain, and the transform would increase register pressure.
3974       if (!LegalRHSImm || N0.hasOneUse())
3975         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3976           return V;
3977     }
3978 
3979     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3980         N1.getOpcode() == ISD::XOR)
3981       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3982         return V;
3983 
3984     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3985       return V;
3986   }
3987 
3988   // Fold remainder of division by a constant.
3989   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3990       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3991     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3992 
3993     // When division is cheap or optimizing for minimum size,
3994     // fall through to DIVREM creation by skipping this fold.
3995     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3996       if (N0.getOpcode() == ISD::UREM) {
3997         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3998           return Folded;
3999       } else if (N0.getOpcode() == ISD::SREM) {
4000         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4001           return Folded;
4002       }
4003     }
4004   }
4005 
4006   // Fold away ALL boolean setcc's.
4007   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4008     SDValue Temp;
4009     switch (Cond) {
4010     default: llvm_unreachable("Unknown integer setcc!");
4011     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4012       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4013       N0 = DAG.getNOT(dl, Temp, OpVT);
4014       if (!DCI.isCalledByLegalizer())
4015         DCI.AddToWorklist(Temp.getNode());
4016       break;
4017     case ISD::SETNE:  // X != Y   -->  (X^Y)
4018       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4019       break;
4020     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4021     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4022       Temp = DAG.getNOT(dl, N0, OpVT);
4023       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4024       if (!DCI.isCalledByLegalizer())
4025         DCI.AddToWorklist(Temp.getNode());
4026       break;
4027     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4028     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4029       Temp = DAG.getNOT(dl, N1, OpVT);
4030       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4031       if (!DCI.isCalledByLegalizer())
4032         DCI.AddToWorklist(Temp.getNode());
4033       break;
4034     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4035     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4036       Temp = DAG.getNOT(dl, N0, OpVT);
4037       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4038       if (!DCI.isCalledByLegalizer())
4039         DCI.AddToWorklist(Temp.getNode());
4040       break;
4041     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4042     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4043       Temp = DAG.getNOT(dl, N1, OpVT);
4044       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4045       break;
4046     }
4047     if (VT.getScalarType() != MVT::i1) {
4048       if (!DCI.isCalledByLegalizer())
4049         DCI.AddToWorklist(N0.getNode());
4050       // FIXME: If running after legalize, we probably can't do this.
4051       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4052       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4053     }
4054     return N0;
4055   }
4056 
4057   // Could not fold it.
4058   return SDValue();
4059 }
4060 
4061 /// Returns true (and the GlobalValue and the offset) if the node is a
4062 /// GlobalAddress + offset.
4063 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4064                                     int64_t &Offset) const {
4065 
4066   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4067 
4068   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4069     GA = GASD->getGlobal();
4070     Offset += GASD->getOffset();
4071     return true;
4072   }
4073 
4074   if (N->getOpcode() == ISD::ADD) {
4075     SDValue N1 = N->getOperand(0);
4076     SDValue N2 = N->getOperand(1);
4077     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4078       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4079         Offset += V->getSExtValue();
4080         return true;
4081       }
4082     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4083       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4084         Offset += V->getSExtValue();
4085         return true;
4086       }
4087     }
4088   }
4089 
4090   return false;
4091 }
4092 
4093 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4094                                           DAGCombinerInfo &DCI) const {
4095   // Default implementation: no optimization.
4096   return SDValue();
4097 }
4098 
4099 //===----------------------------------------------------------------------===//
4100 //  Inline Assembler Implementation Methods
4101 //===----------------------------------------------------------------------===//
4102 
4103 TargetLowering::ConstraintType
4104 TargetLowering::getConstraintType(StringRef Constraint) const {
4105   unsigned S = Constraint.size();
4106 
4107   if (S == 1) {
4108     switch (Constraint[0]) {
4109     default: break;
4110     case 'r':
4111       return C_RegisterClass;
4112     case 'm': // memory
4113     case 'o': // offsetable
4114     case 'V': // not offsetable
4115       return C_Memory;
4116     case 'n': // Simple Integer
4117     case 'E': // Floating Point Constant
4118     case 'F': // Floating Point Constant
4119       return C_Immediate;
4120     case 'i': // Simple Integer or Relocatable Constant
4121     case 's': // Relocatable Constant
4122     case 'p': // Address.
4123     case 'X': // Allow ANY value.
4124     case 'I': // Target registers.
4125     case 'J':
4126     case 'K':
4127     case 'L':
4128     case 'M':
4129     case 'N':
4130     case 'O':
4131     case 'P':
4132     case '<':
4133     case '>':
4134       return C_Other;
4135     }
4136   }
4137 
4138   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4139     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4140       return C_Memory;
4141     return C_Register;
4142   }
4143   return C_Unknown;
4144 }
4145 
4146 /// Try to replace an X constraint, which matches anything, with another that
4147 /// has more specific requirements based on the type of the corresponding
4148 /// operand.
4149 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4150   if (ConstraintVT.isInteger())
4151     return "r";
4152   if (ConstraintVT.isFloatingPoint())
4153     return "f"; // works for many targets
4154   return nullptr;
4155 }
4156 
4157 SDValue TargetLowering::LowerAsmOutputForConstraint(
4158     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4159     SelectionDAG &DAG) const {
4160   return SDValue();
4161 }
4162 
4163 /// Lower the specified operand into the Ops vector.
4164 /// If it is invalid, don't add anything to Ops.
4165 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4166                                                   std::string &Constraint,
4167                                                   std::vector<SDValue> &Ops,
4168                                                   SelectionDAG &DAG) const {
4169 
4170   if (Constraint.length() > 1) return;
4171 
4172   char ConstraintLetter = Constraint[0];
4173   switch (ConstraintLetter) {
4174   default: break;
4175   case 'X':     // Allows any operand; labels (basic block) use this.
4176     if (Op.getOpcode() == ISD::BasicBlock ||
4177         Op.getOpcode() == ISD::TargetBlockAddress) {
4178       Ops.push_back(Op);
4179       return;
4180     }
4181     LLVM_FALLTHROUGH;
4182   case 'i':    // Simple Integer or Relocatable Constant
4183   case 'n':    // Simple Integer
4184   case 's': {  // Relocatable Constant
4185 
4186     GlobalAddressSDNode *GA;
4187     ConstantSDNode *C;
4188     BlockAddressSDNode *BA;
4189     uint64_t Offset = 0;
4190 
4191     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4192     // etc., since getelementpointer is variadic. We can't use
4193     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4194     // while in this case the GA may be furthest from the root node which is
4195     // likely an ISD::ADD.
4196     while (1) {
4197       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4198         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4199                                                  GA->getValueType(0),
4200                                                  Offset + GA->getOffset()));
4201         return;
4202       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4203                  ConstraintLetter != 's') {
4204         // gcc prints these as sign extended.  Sign extend value to 64 bits
4205         // now; without this it would get ZExt'd later in
4206         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4207         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4208         BooleanContent BCont = getBooleanContents(MVT::i64);
4209         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4210                                       : ISD::SIGN_EXTEND;
4211         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4212                                                     : C->getSExtValue();
4213         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4214                                             SDLoc(C), MVT::i64));
4215         return;
4216       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4217                  ConstraintLetter != 'n') {
4218         Ops.push_back(DAG.getTargetBlockAddress(
4219             BA->getBlockAddress(), BA->getValueType(0),
4220             Offset + BA->getOffset(), BA->getTargetFlags()));
4221         return;
4222       } else {
4223         const unsigned OpCode = Op.getOpcode();
4224         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4225           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4226             Op = Op.getOperand(1);
4227           // Subtraction is not commutative.
4228           else if (OpCode == ISD::ADD &&
4229                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4230             Op = Op.getOperand(0);
4231           else
4232             return;
4233           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4234           continue;
4235         }
4236       }
4237       return;
4238     }
4239     break;
4240   }
4241   }
4242 }
4243 
4244 std::pair<unsigned, const TargetRegisterClass *>
4245 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4246                                              StringRef Constraint,
4247                                              MVT VT) const {
4248   if (Constraint.empty() || Constraint[0] != '{')
4249     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4250   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4251 
4252   // Remove the braces from around the name.
4253   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4254 
4255   std::pair<unsigned, const TargetRegisterClass *> R =
4256       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4257 
4258   // Figure out which register class contains this reg.
4259   for (const TargetRegisterClass *RC : RI->regclasses()) {
4260     // If none of the value types for this register class are valid, we
4261     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4262     if (!isLegalRC(*RI, *RC))
4263       continue;
4264 
4265     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4266          I != E; ++I) {
4267       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4268         std::pair<unsigned, const TargetRegisterClass *> S =
4269             std::make_pair(*I, RC);
4270 
4271         // If this register class has the requested value type, return it,
4272         // otherwise keep searching and return the first class found
4273         // if no other is found which explicitly has the requested type.
4274         if (RI->isTypeLegalForClass(*RC, VT))
4275           return S;
4276         if (!R.second)
4277           R = S;
4278       }
4279     }
4280   }
4281 
4282   return R;
4283 }
4284 
4285 //===----------------------------------------------------------------------===//
4286 // Constraint Selection.
4287 
4288 /// Return true of this is an input operand that is a matching constraint like
4289 /// "4".
4290 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4291   assert(!ConstraintCode.empty() && "No known constraint!");
4292   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4293 }
4294 
4295 /// If this is an input matching constraint, this method returns the output
4296 /// operand it matches.
4297 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4298   assert(!ConstraintCode.empty() && "No known constraint!");
4299   return atoi(ConstraintCode.c_str());
4300 }
4301 
4302 /// Split up the constraint string from the inline assembly value into the
4303 /// specific constraints and their prefixes, and also tie in the associated
4304 /// operand values.
4305 /// If this returns an empty vector, and if the constraint string itself
4306 /// isn't empty, there was an error parsing.
4307 TargetLowering::AsmOperandInfoVector
4308 TargetLowering::ParseConstraints(const DataLayout &DL,
4309                                  const TargetRegisterInfo *TRI,
4310                                  ImmutableCallSite CS) const {
4311   /// Information about all of the constraints.
4312   AsmOperandInfoVector ConstraintOperands;
4313   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4314   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4315 
4316   // Do a prepass over the constraints, canonicalizing them, and building up the
4317   // ConstraintOperands list.
4318   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4319   unsigned ResNo = 0; // ResNo - The result number of the next output.
4320 
4321   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4322     ConstraintOperands.emplace_back(std::move(CI));
4323     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4324 
4325     // Update multiple alternative constraint count.
4326     if (OpInfo.multipleAlternatives.size() > maCount)
4327       maCount = OpInfo.multipleAlternatives.size();
4328 
4329     OpInfo.ConstraintVT = MVT::Other;
4330 
4331     // Compute the value type for each operand.
4332     switch (OpInfo.Type) {
4333     case InlineAsm::isOutput:
4334       // Indirect outputs just consume an argument.
4335       if (OpInfo.isIndirect) {
4336         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4337         break;
4338       }
4339 
4340       // The return value of the call is this value.  As such, there is no
4341       // corresponding argument.
4342       assert(!CS.getType()->isVoidTy() &&
4343              "Bad inline asm!");
4344       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4345         OpInfo.ConstraintVT =
4346             getSimpleValueType(DL, STy->getElementType(ResNo));
4347       } else {
4348         assert(ResNo == 0 && "Asm only has one result!");
4349         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4350       }
4351       ++ResNo;
4352       break;
4353     case InlineAsm::isInput:
4354       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4355       break;
4356     case InlineAsm::isClobber:
4357       // Nothing to do.
4358       break;
4359     }
4360 
4361     if (OpInfo.CallOperandVal) {
4362       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4363       if (OpInfo.isIndirect) {
4364         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4365         if (!PtrTy)
4366           report_fatal_error("Indirect operand for inline asm not a pointer!");
4367         OpTy = PtrTy->getElementType();
4368       }
4369 
4370       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4371       if (StructType *STy = dyn_cast<StructType>(OpTy))
4372         if (STy->getNumElements() == 1)
4373           OpTy = STy->getElementType(0);
4374 
4375       // If OpTy is not a single value, it may be a struct/union that we
4376       // can tile with integers.
4377       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4378         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4379         switch (BitSize) {
4380         default: break;
4381         case 1:
4382         case 8:
4383         case 16:
4384         case 32:
4385         case 64:
4386         case 128:
4387           OpInfo.ConstraintVT =
4388               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4389           break;
4390         }
4391       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4392         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4393         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4394       } else {
4395         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4396       }
4397     }
4398   }
4399 
4400   // If we have multiple alternative constraints, select the best alternative.
4401   if (!ConstraintOperands.empty()) {
4402     if (maCount) {
4403       unsigned bestMAIndex = 0;
4404       int bestWeight = -1;
4405       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4406       int weight = -1;
4407       unsigned maIndex;
4408       // Compute the sums of the weights for each alternative, keeping track
4409       // of the best (highest weight) one so far.
4410       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4411         int weightSum = 0;
4412         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4413              cIndex != eIndex; ++cIndex) {
4414           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4415           if (OpInfo.Type == InlineAsm::isClobber)
4416             continue;
4417 
4418           // If this is an output operand with a matching input operand,
4419           // look up the matching input. If their types mismatch, e.g. one
4420           // is an integer, the other is floating point, or their sizes are
4421           // different, flag it as an maCantMatch.
4422           if (OpInfo.hasMatchingInput()) {
4423             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4424             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4425               if ((OpInfo.ConstraintVT.isInteger() !=
4426                    Input.ConstraintVT.isInteger()) ||
4427                   (OpInfo.ConstraintVT.getSizeInBits() !=
4428                    Input.ConstraintVT.getSizeInBits())) {
4429                 weightSum = -1; // Can't match.
4430                 break;
4431               }
4432             }
4433           }
4434           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4435           if (weight == -1) {
4436             weightSum = -1;
4437             break;
4438           }
4439           weightSum += weight;
4440         }
4441         // Update best.
4442         if (weightSum > bestWeight) {
4443           bestWeight = weightSum;
4444           bestMAIndex = maIndex;
4445         }
4446       }
4447 
4448       // Now select chosen alternative in each constraint.
4449       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4450            cIndex != eIndex; ++cIndex) {
4451         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4452         if (cInfo.Type == InlineAsm::isClobber)
4453           continue;
4454         cInfo.selectAlternative(bestMAIndex);
4455       }
4456     }
4457   }
4458 
4459   // Check and hook up tied operands, choose constraint code to use.
4460   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4461        cIndex != eIndex; ++cIndex) {
4462     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4463 
4464     // If this is an output operand with a matching input operand, look up the
4465     // matching input. If their types mismatch, e.g. one is an integer, the
4466     // other is floating point, or their sizes are different, flag it as an
4467     // error.
4468     if (OpInfo.hasMatchingInput()) {
4469       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4470 
4471       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4472         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4473             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4474                                          OpInfo.ConstraintVT);
4475         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4476             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4477                                          Input.ConstraintVT);
4478         if ((OpInfo.ConstraintVT.isInteger() !=
4479              Input.ConstraintVT.isInteger()) ||
4480             (MatchRC.second != InputRC.second)) {
4481           report_fatal_error("Unsupported asm: input constraint"
4482                              " with a matching output constraint of"
4483                              " incompatible type!");
4484         }
4485       }
4486     }
4487   }
4488 
4489   return ConstraintOperands;
4490 }
4491 
4492 /// Return an integer indicating how general CT is.
4493 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4494   switch (CT) {
4495   case TargetLowering::C_Immediate:
4496   case TargetLowering::C_Other:
4497   case TargetLowering::C_Unknown:
4498     return 0;
4499   case TargetLowering::C_Register:
4500     return 1;
4501   case TargetLowering::C_RegisterClass:
4502     return 2;
4503   case TargetLowering::C_Memory:
4504     return 3;
4505   }
4506   llvm_unreachable("Invalid constraint type");
4507 }
4508 
4509 /// Examine constraint type and operand type and determine a weight value.
4510 /// This object must already have been set up with the operand type
4511 /// and the current alternative constraint selected.
4512 TargetLowering::ConstraintWeight
4513   TargetLowering::getMultipleConstraintMatchWeight(
4514     AsmOperandInfo &info, int maIndex) const {
4515   InlineAsm::ConstraintCodeVector *rCodes;
4516   if (maIndex >= (int)info.multipleAlternatives.size())
4517     rCodes = &info.Codes;
4518   else
4519     rCodes = &info.multipleAlternatives[maIndex].Codes;
4520   ConstraintWeight BestWeight = CW_Invalid;
4521 
4522   // Loop over the options, keeping track of the most general one.
4523   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4524     ConstraintWeight weight =
4525       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4526     if (weight > BestWeight)
4527       BestWeight = weight;
4528   }
4529 
4530   return BestWeight;
4531 }
4532 
4533 /// Examine constraint type and operand type and determine a weight value.
4534 /// This object must already have been set up with the operand type
4535 /// and the current alternative constraint selected.
4536 TargetLowering::ConstraintWeight
4537   TargetLowering::getSingleConstraintMatchWeight(
4538     AsmOperandInfo &info, const char *constraint) const {
4539   ConstraintWeight weight = CW_Invalid;
4540   Value *CallOperandVal = info.CallOperandVal;
4541     // If we don't have a value, we can't do a match,
4542     // but allow it at the lowest weight.
4543   if (!CallOperandVal)
4544     return CW_Default;
4545   // Look at the constraint type.
4546   switch (*constraint) {
4547     case 'i': // immediate integer.
4548     case 'n': // immediate integer with a known value.
4549       if (isa<ConstantInt>(CallOperandVal))
4550         weight = CW_Constant;
4551       break;
4552     case 's': // non-explicit intregal immediate.
4553       if (isa<GlobalValue>(CallOperandVal))
4554         weight = CW_Constant;
4555       break;
4556     case 'E': // immediate float if host format.
4557     case 'F': // immediate float.
4558       if (isa<ConstantFP>(CallOperandVal))
4559         weight = CW_Constant;
4560       break;
4561     case '<': // memory operand with autodecrement.
4562     case '>': // memory operand with autoincrement.
4563     case 'm': // memory operand.
4564     case 'o': // offsettable memory operand
4565     case 'V': // non-offsettable memory operand
4566       weight = CW_Memory;
4567       break;
4568     case 'r': // general register.
4569     case 'g': // general register, memory operand or immediate integer.
4570               // note: Clang converts "g" to "imr".
4571       if (CallOperandVal->getType()->isIntegerTy())
4572         weight = CW_Register;
4573       break;
4574     case 'X': // any operand.
4575   default:
4576     weight = CW_Default;
4577     break;
4578   }
4579   return weight;
4580 }
4581 
4582 /// If there are multiple different constraints that we could pick for this
4583 /// operand (e.g. "imr") try to pick the 'best' one.
4584 /// This is somewhat tricky: constraints fall into four classes:
4585 ///    Other         -> immediates and magic values
4586 ///    Register      -> one specific register
4587 ///    RegisterClass -> a group of regs
4588 ///    Memory        -> memory
4589 /// Ideally, we would pick the most specific constraint possible: if we have
4590 /// something that fits into a register, we would pick it.  The problem here
4591 /// is that if we have something that could either be in a register or in
4592 /// memory that use of the register could cause selection of *other*
4593 /// operands to fail: they might only succeed if we pick memory.  Because of
4594 /// this the heuristic we use is:
4595 ///
4596 ///  1) If there is an 'other' constraint, and if the operand is valid for
4597 ///     that constraint, use it.  This makes us take advantage of 'i'
4598 ///     constraints when available.
4599 ///  2) Otherwise, pick the most general constraint present.  This prefers
4600 ///     'm' over 'r', for example.
4601 ///
4602 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4603                              const TargetLowering &TLI,
4604                              SDValue Op, SelectionDAG *DAG) {
4605   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4606   unsigned BestIdx = 0;
4607   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4608   int BestGenerality = -1;
4609 
4610   // Loop over the options, keeping track of the most general one.
4611   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4612     TargetLowering::ConstraintType CType =
4613       TLI.getConstraintType(OpInfo.Codes[i]);
4614 
4615     // Indirect 'other' or 'immediate' constraints are not allowed.
4616     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4617                                CType == TargetLowering::C_Register ||
4618                                CType == TargetLowering::C_RegisterClass))
4619       continue;
4620 
4621     // If this is an 'other' or 'immediate' constraint, see if the operand is
4622     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4623     // the operand is an integer in the range [0..31] we want to use I (saving a
4624     // load of a register), otherwise we must use 'r'.
4625     if ((CType == TargetLowering::C_Other ||
4626          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4627       assert(OpInfo.Codes[i].size() == 1 &&
4628              "Unhandled multi-letter 'other' constraint");
4629       std::vector<SDValue> ResultOps;
4630       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4631                                        ResultOps, *DAG);
4632       if (!ResultOps.empty()) {
4633         BestType = CType;
4634         BestIdx = i;
4635         break;
4636       }
4637     }
4638 
4639     // Things with matching constraints can only be registers, per gcc
4640     // documentation.  This mainly affects "g" constraints.
4641     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4642       continue;
4643 
4644     // This constraint letter is more general than the previous one, use it.
4645     int Generality = getConstraintGenerality(CType);
4646     if (Generality > BestGenerality) {
4647       BestType = CType;
4648       BestIdx = i;
4649       BestGenerality = Generality;
4650     }
4651   }
4652 
4653   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4654   OpInfo.ConstraintType = BestType;
4655 }
4656 
4657 /// Determines the constraint code and constraint type to use for the specific
4658 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4659 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4660                                             SDValue Op,
4661                                             SelectionDAG *DAG) const {
4662   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4663 
4664   // Single-letter constraints ('r') are very common.
4665   if (OpInfo.Codes.size() == 1) {
4666     OpInfo.ConstraintCode = OpInfo.Codes[0];
4667     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4668   } else {
4669     ChooseConstraint(OpInfo, *this, Op, DAG);
4670   }
4671 
4672   // 'X' matches anything.
4673   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4674     // Labels and constants are handled elsewhere ('X' is the only thing
4675     // that matches labels).  For Functions, the type here is the type of
4676     // the result, which is not what we want to look at; leave them alone.
4677     Value *v = OpInfo.CallOperandVal;
4678     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4679       OpInfo.CallOperandVal = v;
4680       return;
4681     }
4682 
4683     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4684       return;
4685 
4686     // Otherwise, try to resolve it to something we know about by looking at
4687     // the actual operand type.
4688     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4689       OpInfo.ConstraintCode = Repl;
4690       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4691     }
4692   }
4693 }
4694 
4695 /// Given an exact SDIV by a constant, create a multiplication
4696 /// with the multiplicative inverse of the constant.
4697 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4698                               const SDLoc &dl, SelectionDAG &DAG,
4699                               SmallVectorImpl<SDNode *> &Created) {
4700   SDValue Op0 = N->getOperand(0);
4701   SDValue Op1 = N->getOperand(1);
4702   EVT VT = N->getValueType(0);
4703   EVT SVT = VT.getScalarType();
4704   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4705   EVT ShSVT = ShVT.getScalarType();
4706 
4707   bool UseSRA = false;
4708   SmallVector<SDValue, 16> Shifts, Factors;
4709 
4710   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4711     if (C->isNullValue())
4712       return false;
4713     APInt Divisor = C->getAPIntValue();
4714     unsigned Shift = Divisor.countTrailingZeros();
4715     if (Shift) {
4716       Divisor.ashrInPlace(Shift);
4717       UseSRA = true;
4718     }
4719     // Calculate the multiplicative inverse, using Newton's method.
4720     APInt t;
4721     APInt Factor = Divisor;
4722     while ((t = Divisor * Factor) != 1)
4723       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4724     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4725     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4726     return true;
4727   };
4728 
4729   // Collect all magic values from the build vector.
4730   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4731     return SDValue();
4732 
4733   SDValue Shift, Factor;
4734   if (VT.isVector()) {
4735     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4736     Factor = DAG.getBuildVector(VT, dl, Factors);
4737   } else {
4738     Shift = Shifts[0];
4739     Factor = Factors[0];
4740   }
4741 
4742   SDValue Res = Op0;
4743 
4744   // Shift the value upfront if it is even, so the LSB is one.
4745   if (UseSRA) {
4746     // TODO: For UDIV use SRL instead of SRA.
4747     SDNodeFlags Flags;
4748     Flags.setExact(true);
4749     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4750     Created.push_back(Res.getNode());
4751   }
4752 
4753   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4754 }
4755 
4756 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4757                               SelectionDAG &DAG,
4758                               SmallVectorImpl<SDNode *> &Created) const {
4759   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4761   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4762     return SDValue(N, 0); // Lower SDIV as SDIV
4763   return SDValue();
4764 }
4765 
4766 /// Given an ISD::SDIV node expressing a divide by constant,
4767 /// return a DAG expression to select that will generate the same value by
4768 /// multiplying by a magic number.
4769 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4770 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4771                                   bool IsAfterLegalization,
4772                                   SmallVectorImpl<SDNode *> &Created) const {
4773   SDLoc dl(N);
4774   EVT VT = N->getValueType(0);
4775   EVT SVT = VT.getScalarType();
4776   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4777   EVT ShSVT = ShVT.getScalarType();
4778   unsigned EltBits = VT.getScalarSizeInBits();
4779 
4780   // Check to see if we can do this.
4781   // FIXME: We should be more aggressive here.
4782   if (!isTypeLegal(VT))
4783     return SDValue();
4784 
4785   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4786   if (N->getFlags().hasExact())
4787     return BuildExactSDIV(*this, N, dl, DAG, Created);
4788 
4789   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4790 
4791   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4792     if (C->isNullValue())
4793       return false;
4794 
4795     const APInt &Divisor = C->getAPIntValue();
4796     APInt::ms magics = Divisor.magic();
4797     int NumeratorFactor = 0;
4798     int ShiftMask = -1;
4799 
4800     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4801       // If d is +1/-1, we just multiply the numerator by +1/-1.
4802       NumeratorFactor = Divisor.getSExtValue();
4803       magics.m = 0;
4804       magics.s = 0;
4805       ShiftMask = 0;
4806     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4807       // If d > 0 and m < 0, add the numerator.
4808       NumeratorFactor = 1;
4809     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4810       // If d < 0 and m > 0, subtract the numerator.
4811       NumeratorFactor = -1;
4812     }
4813 
4814     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4815     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4816     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4817     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4818     return true;
4819   };
4820 
4821   SDValue N0 = N->getOperand(0);
4822   SDValue N1 = N->getOperand(1);
4823 
4824   // Collect the shifts / magic values from each element.
4825   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4826     return SDValue();
4827 
4828   SDValue MagicFactor, Factor, Shift, ShiftMask;
4829   if (VT.isVector()) {
4830     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4831     Factor = DAG.getBuildVector(VT, dl, Factors);
4832     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4833     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4834   } else {
4835     MagicFactor = MagicFactors[0];
4836     Factor = Factors[0];
4837     Shift = Shifts[0];
4838     ShiftMask = ShiftMasks[0];
4839   }
4840 
4841   // Multiply the numerator (operand 0) by the magic value.
4842   // FIXME: We should support doing a MUL in a wider type.
4843   SDValue Q;
4844   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4845                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4846     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4847   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4848                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4849     SDValue LoHi =
4850         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4851     Q = SDValue(LoHi.getNode(), 1);
4852   } else
4853     return SDValue(); // No mulhs or equivalent.
4854   Created.push_back(Q.getNode());
4855 
4856   // (Optionally) Add/subtract the numerator using Factor.
4857   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4858   Created.push_back(Factor.getNode());
4859   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4860   Created.push_back(Q.getNode());
4861 
4862   // Shift right algebraic by shift value.
4863   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4864   Created.push_back(Q.getNode());
4865 
4866   // Extract the sign bit, mask it and add it to the quotient.
4867   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4868   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4869   Created.push_back(T.getNode());
4870   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4871   Created.push_back(T.getNode());
4872   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4873 }
4874 
4875 /// Given an ISD::UDIV node expressing a divide by constant,
4876 /// return a DAG expression to select that will generate the same value by
4877 /// multiplying by a magic number.
4878 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4879 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4880                                   bool IsAfterLegalization,
4881                                   SmallVectorImpl<SDNode *> &Created) const {
4882   SDLoc dl(N);
4883   EVT VT = N->getValueType(0);
4884   EVT SVT = VT.getScalarType();
4885   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4886   EVT ShSVT = ShVT.getScalarType();
4887   unsigned EltBits = VT.getScalarSizeInBits();
4888 
4889   // Check to see if we can do this.
4890   // FIXME: We should be more aggressive here.
4891   if (!isTypeLegal(VT))
4892     return SDValue();
4893 
4894   bool UseNPQ = false;
4895   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4896 
4897   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4898     if (C->isNullValue())
4899       return false;
4900     // FIXME: We should use a narrower constant when the upper
4901     // bits are known to be zero.
4902     APInt Divisor = C->getAPIntValue();
4903     APInt::mu magics = Divisor.magicu();
4904     unsigned PreShift = 0, PostShift = 0;
4905 
4906     // If the divisor is even, we can avoid using the expensive fixup by
4907     // shifting the divided value upfront.
4908     if (magics.a != 0 && !Divisor[0]) {
4909       PreShift = Divisor.countTrailingZeros();
4910       // Get magic number for the shifted divisor.
4911       magics = Divisor.lshr(PreShift).magicu(PreShift);
4912       assert(magics.a == 0 && "Should use cheap fixup now");
4913     }
4914 
4915     APInt Magic = magics.m;
4916 
4917     unsigned SelNPQ;
4918     if (magics.a == 0 || Divisor.isOneValue()) {
4919       assert(magics.s < Divisor.getBitWidth() &&
4920              "We shouldn't generate an undefined shift!");
4921       PostShift = magics.s;
4922       SelNPQ = false;
4923     } else {
4924       PostShift = magics.s - 1;
4925       SelNPQ = true;
4926     }
4927 
4928     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4929     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4930     NPQFactors.push_back(
4931         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4932                                : APInt::getNullValue(EltBits),
4933                         dl, SVT));
4934     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4935     UseNPQ |= SelNPQ;
4936     return true;
4937   };
4938 
4939   SDValue N0 = N->getOperand(0);
4940   SDValue N1 = N->getOperand(1);
4941 
4942   // Collect the shifts/magic values from each element.
4943   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4944     return SDValue();
4945 
4946   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4947   if (VT.isVector()) {
4948     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4949     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4950     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4951     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4952   } else {
4953     PreShift = PreShifts[0];
4954     MagicFactor = MagicFactors[0];
4955     PostShift = PostShifts[0];
4956   }
4957 
4958   SDValue Q = N0;
4959   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4960   Created.push_back(Q.getNode());
4961 
4962   // FIXME: We should support doing a MUL in a wider type.
4963   auto GetMULHU = [&](SDValue X, SDValue Y) {
4964     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4965                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4966       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4967     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4968                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4969       SDValue LoHi =
4970           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4971       return SDValue(LoHi.getNode(), 1);
4972     }
4973     return SDValue(); // No mulhu or equivalent
4974   };
4975 
4976   // Multiply the numerator (operand 0) by the magic value.
4977   Q = GetMULHU(Q, MagicFactor);
4978   if (!Q)
4979     return SDValue();
4980 
4981   Created.push_back(Q.getNode());
4982 
4983   if (UseNPQ) {
4984     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4985     Created.push_back(NPQ.getNode());
4986 
4987     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4988     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4989     if (VT.isVector())
4990       NPQ = GetMULHU(NPQ, NPQFactor);
4991     else
4992       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4993 
4994     Created.push_back(NPQ.getNode());
4995 
4996     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4997     Created.push_back(Q.getNode());
4998   }
4999 
5000   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5001   Created.push_back(Q.getNode());
5002 
5003   SDValue One = DAG.getConstant(1, dl, VT);
5004   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5005   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5006 }
5007 
5008 /// If all values in Values that *don't* match the predicate are same 'splat'
5009 /// value, then replace all values with that splat value.
5010 /// Else, if AlternativeReplacement was provided, then replace all values that
5011 /// do match predicate with AlternativeReplacement value.
5012 static void
5013 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5014                           std::function<bool(SDValue)> Predicate,
5015                           SDValue AlternativeReplacement = SDValue()) {
5016   SDValue Replacement;
5017   // Is there a value for which the Predicate does *NOT* match? What is it?
5018   auto SplatValue = llvm::find_if_not(Values, Predicate);
5019   if (SplatValue != Values.end()) {
5020     // Does Values consist only of SplatValue's and values matching Predicate?
5021     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5022           return Value == *SplatValue || Predicate(Value);
5023         })) // Then we shall replace values matching predicate with SplatValue.
5024       Replacement = *SplatValue;
5025   }
5026   if (!Replacement) {
5027     // Oops, we did not find the "baseline" splat value.
5028     if (!AlternativeReplacement)
5029       return; // Nothing to do.
5030     // Let's replace with provided value then.
5031     Replacement = AlternativeReplacement;
5032   }
5033   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5034 }
5035 
5036 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5037 /// where the divisor is constant and the comparison target is zero,
5038 /// return a DAG expression that will generate the same comparison result
5039 /// using only multiplications, additions and shifts/rotations.
5040 /// Ref: "Hacker's Delight" 10-17.
5041 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5042                                         SDValue CompTargetNode,
5043                                         ISD::CondCode Cond,
5044                                         DAGCombinerInfo &DCI,
5045                                         const SDLoc &DL) const {
5046   SmallVector<SDNode *, 5> Built;
5047   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5048                                          DCI, DL, Built)) {
5049     for (SDNode *N : Built)
5050       DCI.AddToWorklist(N);
5051     return Folded;
5052   }
5053 
5054   return SDValue();
5055 }
5056 
5057 SDValue
5058 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5059                                   SDValue CompTargetNode, ISD::CondCode Cond,
5060                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5061                                   SmallVectorImpl<SDNode *> &Created) const {
5062   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5063   // - D must be constant, with D = D0 * 2^K where D0 is odd
5064   // - P is the multiplicative inverse of D0 modulo 2^W
5065   // - Q = floor(((2^W) - 1) / D)
5066   // where W is the width of the common type of N and D.
5067   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5068          "Only applicable for (in)equality comparisons.");
5069 
5070   SelectionDAG &DAG = DCI.DAG;
5071 
5072   EVT VT = REMNode.getValueType();
5073   EVT SVT = VT.getScalarType();
5074   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5075   EVT ShSVT = ShVT.getScalarType();
5076 
5077   // If MUL is unavailable, we cannot proceed in any case.
5078   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5079     return SDValue();
5080 
5081   bool ComparingWithAllZeros = true;
5082   bool AllComparisonsWithNonZerosAreTautological = true;
5083   bool HadTautologicalLanes = false;
5084   bool AllLanesAreTautological = true;
5085   bool HadEvenDivisor = false;
5086   bool AllDivisorsArePowerOfTwo = true;
5087   bool HadTautologicalInvertedLanes = false;
5088   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5089 
5090   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5091     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5092     if (CDiv->isNullValue())
5093       return false;
5094 
5095     const APInt &D = CDiv->getAPIntValue();
5096     const APInt &Cmp = CCmp->getAPIntValue();
5097 
5098     ComparingWithAllZeros &= Cmp.isNullValue();
5099 
5100     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5101     // if C2 is not less than C1, the comparison is always false.
5102     // But we will only be able to produce the comparison that will give the
5103     // opposive tautological answer. So this lane would need to be fixed up.
5104     bool TautologicalInvertedLane = D.ule(Cmp);
5105     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5106 
5107     // If all lanes are tautological (either all divisors are ones, or divisor
5108     // is not greater than the constant we are comparing with),
5109     // we will prefer to avoid the fold.
5110     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5111     HadTautologicalLanes |= TautologicalLane;
5112     AllLanesAreTautological &= TautologicalLane;
5113 
5114     // If we are comparing with non-zero, we need'll need  to subtract said
5115     // comparison value from the LHS. But there is no point in doing that if
5116     // every lane where we are comparing with non-zero is tautological..
5117     if (!Cmp.isNullValue())
5118       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5119 
5120     // Decompose D into D0 * 2^K
5121     unsigned K = D.countTrailingZeros();
5122     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5123     APInt D0 = D.lshr(K);
5124 
5125     // D is even if it has trailing zeros.
5126     HadEvenDivisor |= (K != 0);
5127     // D is a power-of-two if D0 is one.
5128     // If all divisors are power-of-two, we will prefer to avoid the fold.
5129     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5130 
5131     // P = inv(D0, 2^W)
5132     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5133     unsigned W = D.getBitWidth();
5134     APInt P = D0.zext(W + 1)
5135                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5136                   .trunc(W);
5137     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5138     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5139 
5140     // Q = floor((2^W - 1) u/ D)
5141     // R = ((2^W - 1) u% D)
5142     APInt Q, R;
5143     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5144 
5145     // If we are comparing with zero, then that comparison constant is okay,
5146     // else it may need to be one less than that.
5147     if (Cmp.ugt(R))
5148       Q -= 1;
5149 
5150     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5151            "We are expecting that K is always less than all-ones for ShSVT");
5152 
5153     // If the lane is tautological the result can be constant-folded.
5154     if (TautologicalLane) {
5155       // Set P and K amount to a bogus values so we can try to splat them.
5156       P = 0;
5157       K = -1;
5158       // And ensure that comparison constant is tautological,
5159       // it will always compare true/false.
5160       Q = -1;
5161     }
5162 
5163     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5164     KAmts.push_back(
5165         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5166     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5167     return true;
5168   };
5169 
5170   SDValue N = REMNode.getOperand(0);
5171   SDValue D = REMNode.getOperand(1);
5172 
5173   // Collect the values from each element.
5174   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5175     return SDValue();
5176 
5177   // If all lanes are tautological, the result can be constant-folded.
5178   if (AllLanesAreTautological)
5179     return SDValue();
5180 
5181   // If this is a urem by a powers-of-two, avoid the fold since it can be
5182   // best implemented as a bit test.
5183   if (AllDivisorsArePowerOfTwo)
5184     return SDValue();
5185 
5186   SDValue PVal, KVal, QVal;
5187   if (VT.isVector()) {
5188     if (HadTautologicalLanes) {
5189       // Try to turn PAmts into a splat, since we don't care about the values
5190       // that are currently '0'. If we can't, just keep '0'`s.
5191       turnVectorIntoSplatVector(PAmts, isNullConstant);
5192       // Try to turn KAmts into a splat, since we don't care about the values
5193       // that are currently '-1'. If we can't, change them to '0'`s.
5194       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5195                                 DAG.getConstant(0, DL, ShSVT));
5196     }
5197 
5198     PVal = DAG.getBuildVector(VT, DL, PAmts);
5199     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5200     QVal = DAG.getBuildVector(VT, DL, QAmts);
5201   } else {
5202     PVal = PAmts[0];
5203     KVal = KAmts[0];
5204     QVal = QAmts[0];
5205   }
5206 
5207   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5208     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5209       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5210     assert(CompTargetNode.getValueType() == N.getValueType() &&
5211            "Expecting that the types on LHS and RHS of comparisons match.");
5212     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5213   }
5214 
5215   // (mul N, P)
5216   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5217   Created.push_back(Op0.getNode());
5218 
5219   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5220   // divisors as a performance improvement, since rotating by 0 is a no-op.
5221   if (HadEvenDivisor) {
5222     // We need ROTR to do this.
5223     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5224       return SDValue();
5225     SDNodeFlags Flags;
5226     Flags.setExact(true);
5227     // UREM: (rotr (mul N, P), K)
5228     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5229     Created.push_back(Op0.getNode());
5230   }
5231 
5232   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5233   SDValue NewCC =
5234       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5235                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5236   if (!HadTautologicalInvertedLanes)
5237     return NewCC;
5238 
5239   // If any lanes previously compared always-false, the NewCC will give
5240   // always-true result for them, so we need to fixup those lanes.
5241   // Or the other way around for inequality predicate.
5242   assert(VT.isVector() && "Can/should only get here for vectors.");
5243   Created.push_back(NewCC.getNode());
5244 
5245   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5246   // if C2 is not less than C1, the comparison is always false.
5247   // But we have produced the comparison that will give the
5248   // opposive tautological answer. So these lanes would need to be fixed up.
5249   SDValue TautologicalInvertedChannels =
5250       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5251   Created.push_back(TautologicalInvertedChannels.getNode());
5252 
5253   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5254     // If we have a vector select, let's replace the comparison results in the
5255     // affected lanes with the correct tautological result.
5256     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5257                                               DL, SETCCVT, SETCCVT);
5258     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5259                        Replacement, NewCC);
5260   }
5261 
5262   // Else, we can just invert the comparison result in the appropriate lanes.
5263   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5264     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5265                        TautologicalInvertedChannels);
5266 
5267   return SDValue(); // Don't know how to lower.
5268 }
5269 
5270 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5271 /// where the divisor is constant and the comparison target is zero,
5272 /// return a DAG expression that will generate the same comparison result
5273 /// using only multiplications, additions and shifts/rotations.
5274 /// Ref: "Hacker's Delight" 10-17.
5275 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5276                                         SDValue CompTargetNode,
5277                                         ISD::CondCode Cond,
5278                                         DAGCombinerInfo &DCI,
5279                                         const SDLoc &DL) const {
5280   SmallVector<SDNode *, 7> Built;
5281   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5282                                          DCI, DL, Built)) {
5283     assert(Built.size() <= 7 && "Max size prediction failed.");
5284     for (SDNode *N : Built)
5285       DCI.AddToWorklist(N);
5286     return Folded;
5287   }
5288 
5289   return SDValue();
5290 }
5291 
5292 SDValue
5293 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5294                                   SDValue CompTargetNode, ISD::CondCode Cond,
5295                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5296                                   SmallVectorImpl<SDNode *> &Created) const {
5297   // Fold:
5298   //   (seteq/ne (srem N, D), 0)
5299   // To:
5300   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5301   //
5302   // - D must be constant, with D = D0 * 2^K where D0 is odd
5303   // - P is the multiplicative inverse of D0 modulo 2^W
5304   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5305   // - Q = floor((2 * A) / (2^K))
5306   // where W is the width of the common type of N and D.
5307   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5308          "Only applicable for (in)equality comparisons.");
5309 
5310   SelectionDAG &DAG = DCI.DAG;
5311 
5312   EVT VT = REMNode.getValueType();
5313   EVT SVT = VT.getScalarType();
5314   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5315   EVT ShSVT = ShVT.getScalarType();
5316 
5317   // If MUL is unavailable, we cannot proceed in any case.
5318   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5319     return SDValue();
5320 
5321   // TODO: Could support comparing with non-zero too.
5322   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5323   if (!CompTarget || !CompTarget->isNullValue())
5324     return SDValue();
5325 
5326   bool HadIntMinDivisor = false;
5327   bool HadOneDivisor = false;
5328   bool AllDivisorsAreOnes = true;
5329   bool HadEvenDivisor = false;
5330   bool NeedToApplyOffset = false;
5331   bool AllDivisorsArePowerOfTwo = true;
5332   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5333 
5334   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5335     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5336     if (C->isNullValue())
5337       return false;
5338 
5339     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5340 
5341     // WARNING: this fold is only valid for positive divisors!
5342     APInt D = C->getAPIntValue();
5343     if (D.isNegative())
5344       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5345 
5346     HadIntMinDivisor |= D.isMinSignedValue();
5347 
5348     // If all divisors are ones, we will prefer to avoid the fold.
5349     HadOneDivisor |= D.isOneValue();
5350     AllDivisorsAreOnes &= D.isOneValue();
5351 
5352     // Decompose D into D0 * 2^K
5353     unsigned K = D.countTrailingZeros();
5354     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5355     APInt D0 = D.lshr(K);
5356 
5357     if (!D.isMinSignedValue()) {
5358       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5359       // we don't care about this lane in this fold, we'll special-handle it.
5360       HadEvenDivisor |= (K != 0);
5361     }
5362 
5363     // D is a power-of-two if D0 is one. This includes INT_MIN.
5364     // If all divisors are power-of-two, we will prefer to avoid the fold.
5365     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5366 
5367     // P = inv(D0, 2^W)
5368     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5369     unsigned W = D.getBitWidth();
5370     APInt P = D0.zext(W + 1)
5371                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5372                   .trunc(W);
5373     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5374     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5375 
5376     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5377     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5378     A.clearLowBits(K);
5379 
5380     if (!D.isMinSignedValue()) {
5381       // If divisor INT_MIN, then we don't care about this lane in this fold,
5382       // we'll special-handle it.
5383       NeedToApplyOffset |= A != 0;
5384     }
5385 
5386     // Q = floor((2 * A) / (2^K))
5387     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5388 
5389     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5390            "We are expecting that A is always less than all-ones for SVT");
5391     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5392            "We are expecting that K is always less than all-ones for ShSVT");
5393 
5394     // If the divisor is 1 the result can be constant-folded. Likewise, we
5395     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5396     if (D.isOneValue()) {
5397       // Set P, A and K to a bogus values so we can try to splat them.
5398       P = 0;
5399       A = -1;
5400       K = -1;
5401 
5402       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5403       Q = -1;
5404     }
5405 
5406     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5407     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5408     KAmts.push_back(
5409         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5410     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5411     return true;
5412   };
5413 
5414   SDValue N = REMNode.getOperand(0);
5415   SDValue D = REMNode.getOperand(1);
5416 
5417   // Collect the values from each element.
5418   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5419     return SDValue();
5420 
5421   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5422   if (AllDivisorsAreOnes)
5423     return SDValue();
5424 
5425   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5426   // since it can be best implemented as a bit test.
5427   if (AllDivisorsArePowerOfTwo)
5428     return SDValue();
5429 
5430   SDValue PVal, AVal, KVal, QVal;
5431   if (VT.isVector()) {
5432     if (HadOneDivisor) {
5433       // Try to turn PAmts into a splat, since we don't care about the values
5434       // that are currently '0'. If we can't, just keep '0'`s.
5435       turnVectorIntoSplatVector(PAmts, isNullConstant);
5436       // Try to turn AAmts into a splat, since we don't care about the
5437       // values that are currently '-1'. If we can't, change them to '0'`s.
5438       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5439                                 DAG.getConstant(0, DL, SVT));
5440       // Try to turn KAmts into a splat, since we don't care about the values
5441       // that are currently '-1'. If we can't, change them to '0'`s.
5442       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5443                                 DAG.getConstant(0, DL, ShSVT));
5444     }
5445 
5446     PVal = DAG.getBuildVector(VT, DL, PAmts);
5447     AVal = DAG.getBuildVector(VT, DL, AAmts);
5448     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5449     QVal = DAG.getBuildVector(VT, DL, QAmts);
5450   } else {
5451     PVal = PAmts[0];
5452     AVal = AAmts[0];
5453     KVal = KAmts[0];
5454     QVal = QAmts[0];
5455   }
5456 
5457   // (mul N, P)
5458   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5459   Created.push_back(Op0.getNode());
5460 
5461   if (NeedToApplyOffset) {
5462     // We need ADD to do this.
5463     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5464       return SDValue();
5465 
5466     // (add (mul N, P), A)
5467     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5468     Created.push_back(Op0.getNode());
5469   }
5470 
5471   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5472   // divisors as a performance improvement, since rotating by 0 is a no-op.
5473   if (HadEvenDivisor) {
5474     // We need ROTR to do this.
5475     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5476       return SDValue();
5477     SDNodeFlags Flags;
5478     Flags.setExact(true);
5479     // SREM: (rotr (add (mul N, P), A), K)
5480     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5481     Created.push_back(Op0.getNode());
5482   }
5483 
5484   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5485   SDValue Fold =
5486       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5487                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5488 
5489   // If we didn't have lanes with INT_MIN divisor, then we're done.
5490   if (!HadIntMinDivisor)
5491     return Fold;
5492 
5493   // That fold is only valid for positive divisors. Which effectively means,
5494   // it is invalid for INT_MIN divisors. So if we have such a lane,
5495   // we must fix-up results for said lanes.
5496   assert(VT.isVector() && "Can/should only get here for vectors.");
5497 
5498   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5499       !isOperationLegalOrCustom(ISD::AND, VT) ||
5500       !isOperationLegalOrCustom(Cond, VT) ||
5501       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5502     return SDValue();
5503 
5504   Created.push_back(Fold.getNode());
5505 
5506   SDValue IntMin = DAG.getConstant(
5507       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5508   SDValue IntMax = DAG.getConstant(
5509       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5510   SDValue Zero =
5511       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5512 
5513   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5514   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5515   Created.push_back(DivisorIsIntMin.getNode());
5516 
5517   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5518   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5519   Created.push_back(Masked.getNode());
5520   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5521   Created.push_back(MaskedIsZero.getNode());
5522 
5523   // To produce final result we need to blend 2 vectors: 'SetCC' and
5524   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5525   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5526   // constant-folded, select can get lowered to a shuffle with constant mask.
5527   SDValue Blended =
5528       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5529 
5530   return Blended;
5531 }
5532 
5533 bool TargetLowering::
5534 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5535   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5536     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5537                                 "be a constant integer");
5538     return true;
5539   }
5540 
5541   return false;
5542 }
5543 
5544 TargetLowering::NegatibleCost
5545 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG,
5546                                  bool LegalOperations, bool ForCodeSize,
5547                                  unsigned Depth) const {
5548   // fneg is removable even if it has multiple uses.
5549   if (Op.getOpcode() == ISD::FNEG)
5550     return NegatibleCost::Cheaper;
5551 
5552   // Don't allow anything with multiple uses unless we know it is free.
5553   EVT VT = Op.getValueType();
5554   const SDNodeFlags Flags = Op->getFlags();
5555   const TargetOptions &Options = DAG.getTarget().Options;
5556   if (!Op.hasOneUse()) {
5557     bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND &&
5558                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5559 
5560     // If we already have the use of the negated floating constant, it is free
5561     // to negate it even it has multiple uses.
5562     bool IsFreeConstant =
5563         Op.getOpcode() == ISD::ConstantFP &&
5564         !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize)
5565              .use_empty();
5566 
5567     if (!IsFreeExtend && !IsFreeConstant)
5568       return NegatibleCost::Expensive;
5569   }
5570 
5571   // Don't recurse exponentially.
5572   if (Depth > SelectionDAG::MaxRecursionDepth)
5573     return NegatibleCost::Expensive;
5574 
5575   switch (Op.getOpcode()) {
5576   case ISD::ConstantFP: {
5577     if (!LegalOperations)
5578       return NegatibleCost::Neutral;
5579 
5580     // Don't invert constant FP values after legalization unless the target says
5581     // the negated constant is legal.
5582     if (isOperationLegal(ISD::ConstantFP, VT) ||
5583         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5584                      ForCodeSize))
5585       return NegatibleCost::Neutral;
5586     break;
5587   }
5588   case ISD::BUILD_VECTOR: {
5589     // Only permit BUILD_VECTOR of constants.
5590     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5591           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5592         }))
5593       return NegatibleCost::Expensive;
5594     if (!LegalOperations)
5595       return NegatibleCost::Neutral;
5596     if (isOperationLegal(ISD::ConstantFP, VT) &&
5597         isOperationLegal(ISD::BUILD_VECTOR, VT))
5598       return NegatibleCost::Neutral;
5599     if (llvm::all_of(Op->op_values(), [&](SDValue N) {
5600           return N.isUndef() ||
5601                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5602                               ForCodeSize);
5603         }))
5604       return NegatibleCost::Neutral;
5605     break;
5606   }
5607   case ISD::FADD: {
5608     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5609       return NegatibleCost::Expensive;
5610 
5611     // After operation legalization, it might not be legal to create new FSUBs.
5612     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5613       return NegatibleCost::Expensive;
5614 
5615     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5616     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5617                                         ForCodeSize, Depth + 1);
5618     if (V0 != NegatibleCost::Expensive)
5619       return V0;
5620     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5621     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5622                             Depth + 1);
5623   }
5624   case ISD::FSUB:
5625     // We can't turn -(A-B) into B-A when we honor signed zeros.
5626     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5627       return NegatibleCost::Expensive;
5628 
5629     // fold (fneg (fsub A, B)) -> (fsub B, A)
5630     return NegatibleCost::Neutral;
5631   case ISD::FMUL:
5632   case ISD::FDIV: {
5633     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5634     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5635                                         ForCodeSize, Depth + 1);
5636     if (V0 != NegatibleCost::Expensive)
5637       return V0;
5638 
5639     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5640     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5641       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5642         return NegatibleCost::Expensive;
5643 
5644     return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize,
5645                             Depth + 1);
5646   }
5647   case ISD::FMA:
5648   case ISD::FMAD: {
5649     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5650       return NegatibleCost::Expensive;
5651 
5652     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5653     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5654     NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations,
5655                                         ForCodeSize, Depth + 1);
5656     if (NegatibleCost::Expensive == V2)
5657       return NegatibleCost::Expensive;
5658 
5659     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5660     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5661                                         ForCodeSize, Depth + 1);
5662     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5663                                         ForCodeSize, Depth + 1);
5664     NegatibleCost V01 = std::max(V0, V1);
5665     if (V01 == NegatibleCost::Expensive)
5666       return NegatibleCost::Expensive;
5667     return std::max(V01, V2);
5668   }
5669 
5670   case ISD::FP_EXTEND:
5671   case ISD::FP_ROUND:
5672   case ISD::FSIN:
5673     return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5674                             Depth + 1);
5675   }
5676 
5677   return NegatibleCost::Expensive;
5678 }
5679 
5680 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5681                                              bool LegalOperations,
5682                                              bool ForCodeSize,
5683                                              unsigned Depth) const {
5684   // fneg is removable even if it has multiple uses.
5685   if (Op.getOpcode() == ISD::FNEG)
5686     return Op.getOperand(0);
5687 
5688   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5689          "getNegatedExpression doesn't match getNegatibleCost");
5690   const SDNodeFlags Flags = Op->getFlags();
5691 
5692   switch (Op.getOpcode()) {
5693   case ISD::ConstantFP: {
5694     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5695     V.changeSign();
5696     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5697   }
5698   case ISD::BUILD_VECTOR: {
5699     SmallVector<SDValue, 4> Ops;
5700     for (SDValue C : Op->op_values()) {
5701       if (C.isUndef()) {
5702         Ops.push_back(C);
5703         continue;
5704       }
5705       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5706       V.changeSign();
5707       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5708     }
5709     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5710   }
5711   case ISD::FADD: {
5712     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5713             Flags.hasNoSignedZeros()) &&
5714            "Expected NSZ fp-flag");
5715 
5716     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5717     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5718                                         ForCodeSize, Depth + 1);
5719     if (V0 != NegatibleCost::Expensive)
5720       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5721                          getNegatedExpression(Op.getOperand(0), DAG,
5722                                               LegalOperations, ForCodeSize,
5723                                               Depth + 1),
5724                          Op.getOperand(1), Flags);
5725     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5726     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5727                        getNegatedExpression(Op.getOperand(1), DAG,
5728                                             LegalOperations, ForCodeSize,
5729                                             Depth + 1),
5730                        Op.getOperand(0), Flags);
5731   }
5732   case ISD::FSUB:
5733     // fold (fneg (fsub 0, B)) -> B
5734     if (ConstantFPSDNode *N0CFP =
5735             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5736       if (N0CFP->isZero())
5737         return Op.getOperand(1);
5738 
5739     // fold (fneg (fsub A, B)) -> (fsub B, A)
5740     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5741                        Op.getOperand(1), Op.getOperand(0), Flags);
5742 
5743   case ISD::FMUL:
5744   case ISD::FDIV: {
5745     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5746     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5747                                         ForCodeSize, Depth + 1);
5748     if (V0 != NegatibleCost::Expensive)
5749       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5750                          getNegatedExpression(Op.getOperand(0), DAG,
5751                                               LegalOperations, ForCodeSize,
5752                                               Depth + 1),
5753                          Op.getOperand(1), Flags);
5754 
5755     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5756     return DAG.getNode(
5757         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5758         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5759                              ForCodeSize, Depth + 1),
5760         Flags);
5761   }
5762   case ISD::FMA:
5763   case ISD::FMAD: {
5764     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5765             Flags.hasNoSignedZeros()) &&
5766            "Expected NSZ fp-flag");
5767 
5768     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5769                                         ForCodeSize, Depth + 1);
5770 
5771     NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations,
5772                                         ForCodeSize, Depth + 1);
5773     NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations,
5774                                         ForCodeSize, Depth + 1);
5775     if (V0 > V1) {
5776       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5777       SDValue Neg0 = getNegatedExpression(
5778           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5779       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5780                          Op.getOperand(1), Neg2, Flags);
5781     }
5782 
5783     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5784     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5785                                         ForCodeSize, Depth + 1);
5786     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5787                        Op.getOperand(0), Neg1, Neg2, Flags);
5788   }
5789 
5790   case ISD::FP_EXTEND:
5791   case ISD::FSIN:
5792     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5793                        getNegatedExpression(Op.getOperand(0), DAG,
5794                                             LegalOperations, ForCodeSize,
5795                                             Depth + 1));
5796   case ISD::FP_ROUND:
5797     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5798                        getNegatedExpression(Op.getOperand(0), DAG,
5799                                             LegalOperations, ForCodeSize,
5800                                             Depth + 1),
5801                        Op.getOperand(1));
5802   }
5803 
5804   llvm_unreachable("Unknown code");
5805 }
5806 
5807 //===----------------------------------------------------------------------===//
5808 // Legalization Utilities
5809 //===----------------------------------------------------------------------===//
5810 
5811 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5812                                     SDValue LHS, SDValue RHS,
5813                                     SmallVectorImpl<SDValue> &Result,
5814                                     EVT HiLoVT, SelectionDAG &DAG,
5815                                     MulExpansionKind Kind, SDValue LL,
5816                                     SDValue LH, SDValue RL, SDValue RH) const {
5817   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5818          Opcode == ISD::SMUL_LOHI);
5819 
5820   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5821                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5822   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5823                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5824   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5825                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5826   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5827                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5828 
5829   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5830     return false;
5831 
5832   unsigned OuterBitSize = VT.getScalarSizeInBits();
5833   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5834   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5835   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5836 
5837   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5838   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5839          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5840 
5841   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5842   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5843                           bool Signed) -> bool {
5844     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5845       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5846       Hi = SDValue(Lo.getNode(), 1);
5847       return true;
5848     }
5849     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5850       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5851       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5852       return true;
5853     }
5854     return false;
5855   };
5856 
5857   SDValue Lo, Hi;
5858 
5859   if (!LL.getNode() && !RL.getNode() &&
5860       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5861     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5862     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5863   }
5864 
5865   if (!LL.getNode())
5866     return false;
5867 
5868   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5869   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5870       DAG.MaskedValueIsZero(RHS, HighMask)) {
5871     // The inputs are both zero-extended.
5872     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5873       Result.push_back(Lo);
5874       Result.push_back(Hi);
5875       if (Opcode != ISD::MUL) {
5876         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5877         Result.push_back(Zero);
5878         Result.push_back(Zero);
5879       }
5880       return true;
5881     }
5882   }
5883 
5884   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5885       RHSSB > InnerBitSize) {
5886     // The input values are both sign-extended.
5887     // TODO non-MUL case?
5888     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5889       Result.push_back(Lo);
5890       Result.push_back(Hi);
5891       return true;
5892     }
5893   }
5894 
5895   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5896   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5897   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5898     // FIXME getShiftAmountTy does not always return a sensible result when VT
5899     // is an illegal type, and so the type may be too small to fit the shift
5900     // amount. Override it with i32. The shift will have to be legalized.
5901     ShiftAmountTy = MVT::i32;
5902   }
5903   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5904 
5905   if (!LH.getNode() && !RH.getNode() &&
5906       isOperationLegalOrCustom(ISD::SRL, VT) &&
5907       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5908     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5909     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5910     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5911     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5912   }
5913 
5914   if (!LH.getNode())
5915     return false;
5916 
5917   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5918     return false;
5919 
5920   Result.push_back(Lo);
5921 
5922   if (Opcode == ISD::MUL) {
5923     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5924     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5925     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5926     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5927     Result.push_back(Hi);
5928     return true;
5929   }
5930 
5931   // Compute the full width result.
5932   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5933     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5934     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5935     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5936     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5937   };
5938 
5939   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5940   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5941     return false;
5942 
5943   // This is effectively the add part of a multiply-add of half-sized operands,
5944   // so it cannot overflow.
5945   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5946 
5947   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5948     return false;
5949 
5950   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5951   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5952 
5953   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5954                   isOperationLegalOrCustom(ISD::ADDE, VT));
5955   if (UseGlue)
5956     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5957                        Merge(Lo, Hi));
5958   else
5959     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5960                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5961 
5962   SDValue Carry = Next.getValue(1);
5963   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5964   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5965 
5966   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5967     return false;
5968 
5969   if (UseGlue)
5970     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5971                      Carry);
5972   else
5973     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5974                      Zero, Carry);
5975 
5976   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5977 
5978   if (Opcode == ISD::SMUL_LOHI) {
5979     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5980                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5981     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5982 
5983     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5984                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5985     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5986   }
5987 
5988   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5989   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5990   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5991   return true;
5992 }
5993 
5994 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5995                                SelectionDAG &DAG, MulExpansionKind Kind,
5996                                SDValue LL, SDValue LH, SDValue RL,
5997                                SDValue RH) const {
5998   SmallVector<SDValue, 2> Result;
5999   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6000                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6001                            DAG, Kind, LL, LH, RL, RH);
6002   if (Ok) {
6003     assert(Result.size() == 2);
6004     Lo = Result[0];
6005     Hi = Result[1];
6006   }
6007   return Ok;
6008 }
6009 
6010 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6011                                        SelectionDAG &DAG) const {
6012   EVT VT = Node->getValueType(0);
6013 
6014   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6015                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6016                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6017                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6018     return false;
6019 
6020   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6021   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6022   SDValue X = Node->getOperand(0);
6023   SDValue Y = Node->getOperand(1);
6024   SDValue Z = Node->getOperand(2);
6025 
6026   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6027   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6028   SDLoc DL(SDValue(Node, 0));
6029 
6030   EVT ShVT = Z.getValueType();
6031   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6032   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6033 
6034   SDValue ShAmt;
6035   if (isPowerOf2_32(EltSizeInBits)) {
6036     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6037     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6038   } else {
6039     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6040   }
6041 
6042   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6043   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6044   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6045   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6046 
6047   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6048   // and that is undefined. We must compare and select to avoid UB.
6049   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
6050 
6051   // For fshl, 0-shift returns the 1st arg (X).
6052   // For fshr, 0-shift returns the 2nd arg (Y).
6053   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
6054   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
6055   return true;
6056 }
6057 
6058 // TODO: Merge with expandFunnelShift.
6059 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6060                                SelectionDAG &DAG) const {
6061   EVT VT = Node->getValueType(0);
6062   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6063   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6064   SDValue Op0 = Node->getOperand(0);
6065   SDValue Op1 = Node->getOperand(1);
6066   SDLoc DL(SDValue(Node, 0));
6067 
6068   EVT ShVT = Op1.getValueType();
6069   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6070 
6071   // If a rotate in the other direction is legal, use it.
6072   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6073   if (isOperationLegal(RevRot, VT)) {
6074     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6075     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6076     return true;
6077   }
6078 
6079   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6080                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6081                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6082                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6083                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6084     return false;
6085 
6086   // Otherwise,
6087   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6088   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6089   //
6090   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6091          "Expecting the type bitwidth to be a power of 2");
6092   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6093   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6094   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6095   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6096   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6097   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6098   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6099                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6100   return true;
6101 }
6102 
6103 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6104                                       SelectionDAG &DAG) const {
6105   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6106   SDValue Src = Node->getOperand(OpNo);
6107   EVT SrcVT = Src.getValueType();
6108   EVT DstVT = Node->getValueType(0);
6109   SDLoc dl(SDValue(Node, 0));
6110 
6111   // FIXME: Only f32 to i64 conversions are supported.
6112   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6113     return false;
6114 
6115   if (Node->isStrictFPOpcode())
6116     // When a NaN is converted to an integer a trap is allowed. We can't
6117     // use this expansion here because it would eliminate that trap. Other
6118     // traps are also allowed and cannot be eliminated. See
6119     // IEEE 754-2008 sec 5.8.
6120     return false;
6121 
6122   // Expand f32 -> i64 conversion
6123   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6124   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6125   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6126   EVT IntVT = SrcVT.changeTypeToInteger();
6127   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6128 
6129   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6130   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6131   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6132   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6133   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6134   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6135 
6136   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6137 
6138   SDValue ExponentBits = DAG.getNode(
6139       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6140       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6141   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6142 
6143   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6144                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6145                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6146   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6147 
6148   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6149                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6150                           DAG.getConstant(0x00800000, dl, IntVT));
6151 
6152   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6153 
6154   R = DAG.getSelectCC(
6155       dl, Exponent, ExponentLoBit,
6156       DAG.getNode(ISD::SHL, dl, DstVT, R,
6157                   DAG.getZExtOrTrunc(
6158                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6159                       dl, IntShVT)),
6160       DAG.getNode(ISD::SRL, dl, DstVT, R,
6161                   DAG.getZExtOrTrunc(
6162                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6163                       dl, IntShVT)),
6164       ISD::SETGT);
6165 
6166   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6167                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6168 
6169   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6170                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6171   return true;
6172 }
6173 
6174 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6175                                       SDValue &Chain,
6176                                       SelectionDAG &DAG) const {
6177   SDLoc dl(SDValue(Node, 0));
6178   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6179   SDValue Src = Node->getOperand(OpNo);
6180 
6181   EVT SrcVT = Src.getValueType();
6182   EVT DstVT = Node->getValueType(0);
6183   EVT SetCCVT =
6184       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6185   EVT DstSetCCVT =
6186       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6187 
6188   // Only expand vector types if we have the appropriate vector bit operations.
6189   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6190                                                    ISD::FP_TO_SINT;
6191   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6192                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6193     return false;
6194 
6195   // If the maximum float value is smaller then the signed integer range,
6196   // the destination signmask can't be represented by the float, so we can
6197   // just use FP_TO_SINT directly.
6198   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6199   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6200   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6201   if (APFloat::opOverflow &
6202       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6203     if (Node->isStrictFPOpcode()) {
6204       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6205                            { Node->getOperand(0), Src });
6206       Chain = Result.getValue(1);
6207     } else
6208       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6209     return true;
6210   }
6211 
6212   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6213   SDValue Sel;
6214 
6215   if (Node->isStrictFPOpcode()) {
6216     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6217                        Node->getOperand(0), /*IsSignaling*/ true);
6218     Chain = Sel.getValue(1);
6219   } else {
6220     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6221   }
6222 
6223   bool Strict = Node->isStrictFPOpcode() ||
6224                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6225 
6226   if (Strict) {
6227     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6228     // signmask then offset (the result of which should be fully representable).
6229     // Sel = Src < 0x8000000000000000
6230     // FltOfs = select Sel, 0, 0x8000000000000000
6231     // IntOfs = select Sel, 0, 0x8000000000000000
6232     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6233 
6234     // TODO: Should any fast-math-flags be set for the FSUB?
6235     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6236                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6237     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6238     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6239                                    DAG.getConstant(0, dl, DstVT),
6240                                    DAG.getConstant(SignMask, dl, DstVT));
6241     SDValue SInt;
6242     if (Node->isStrictFPOpcode()) {
6243       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6244                                 { Chain, Src, FltOfs });
6245       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6246                          { Val.getValue(1), Val });
6247       Chain = SInt.getValue(1);
6248     } else {
6249       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6250       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6251     }
6252     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6253   } else {
6254     // Expand based on maximum range of FP_TO_SINT:
6255     // True = fp_to_sint(Src)
6256     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6257     // Result = select (Src < 0x8000000000000000), True, False
6258 
6259     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6260     // TODO: Should any fast-math-flags be set for the FSUB?
6261     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6262                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6263     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6264                         DAG.getConstant(SignMask, dl, DstVT));
6265     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6266     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6267   }
6268   return true;
6269 }
6270 
6271 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6272                                       SDValue &Chain,
6273                                       SelectionDAG &DAG) const {
6274   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6275   SDValue Src = Node->getOperand(OpNo);
6276   EVT SrcVT = Src.getValueType();
6277   EVT DstVT = Node->getValueType(0);
6278 
6279   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6280     return false;
6281 
6282   // Only expand vector types if we have the appropriate vector bit operations.
6283   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6284                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6285                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6286                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6287                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6288     return false;
6289 
6290   SDLoc dl(SDValue(Node, 0));
6291   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6292 
6293   // Implementation of unsigned i64 to f64 following the algorithm in
6294   // __floatundidf in compiler_rt. This implementation has the advantage
6295   // of performing rounding correctly, both in the default rounding mode
6296   // and in all alternate rounding modes.
6297   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6298   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6299       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6300   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6301   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6302   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6303 
6304   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6305   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6306   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6307   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6308   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6309   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6310   if (Node->isStrictFPOpcode()) {
6311     SDValue HiSub =
6312         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6313                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6314     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6315                          {HiSub.getValue(1), LoFlt, HiSub});
6316     Chain = Result.getValue(1);
6317   } else {
6318     SDValue HiSub =
6319         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6320     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6321   }
6322   return true;
6323 }
6324 
6325 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6326                                               SelectionDAG &DAG) const {
6327   SDLoc dl(Node);
6328   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6329     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6330   EVT VT = Node->getValueType(0);
6331   if (isOperationLegalOrCustom(NewOp, VT)) {
6332     SDValue Quiet0 = Node->getOperand(0);
6333     SDValue Quiet1 = Node->getOperand(1);
6334 
6335     if (!Node->getFlags().hasNoNaNs()) {
6336       // Insert canonicalizes if it's possible we need to quiet to get correct
6337       // sNaN behavior.
6338       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6339         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6340                              Node->getFlags());
6341       }
6342       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6343         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6344                              Node->getFlags());
6345       }
6346     }
6347 
6348     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6349   }
6350 
6351   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6352   // instead if there are no NaNs.
6353   if (Node->getFlags().hasNoNaNs()) {
6354     unsigned IEEE2018Op =
6355         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6356     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6357       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6358                          Node->getOperand(1), Node->getFlags());
6359     }
6360   }
6361 
6362   // If none of the above worked, but there are no NaNs, then expand to
6363   // a compare/select sequence.  This is required for correctness since
6364   // InstCombine might have canonicalized a fcmp+select sequence to a
6365   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6366   // expansion to libcall, we might introduce a link-time dependency
6367   // on libm into a file that originally did not have one.
6368   if (Node->getFlags().hasNoNaNs()) {
6369     ISD::CondCode Pred =
6370         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6371     SDValue Op1 = Node->getOperand(0);
6372     SDValue Op2 = Node->getOperand(1);
6373     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6374     // Copy FMF flags, but always set the no-signed-zeros flag
6375     // as this is implied by the FMINNUM/FMAXNUM semantics.
6376     SDNodeFlags Flags = Node->getFlags();
6377     Flags.setNoSignedZeros(true);
6378     SelCC->setFlags(Flags);
6379     return SelCC;
6380   }
6381 
6382   return SDValue();
6383 }
6384 
6385 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6386                                  SelectionDAG &DAG) const {
6387   SDLoc dl(Node);
6388   EVT VT = Node->getValueType(0);
6389   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6390   SDValue Op = Node->getOperand(0);
6391   unsigned Len = VT.getScalarSizeInBits();
6392   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6393 
6394   // TODO: Add support for irregular type lengths.
6395   if (!(Len <= 128 && Len % 8 == 0))
6396     return false;
6397 
6398   // Only expand vector types if we have the appropriate vector bit operations.
6399   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6400                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6401                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6402                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6403                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6404     return false;
6405 
6406   // This is the "best" algorithm from
6407   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6408   SDValue Mask55 =
6409       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6410   SDValue Mask33 =
6411       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6412   SDValue Mask0F =
6413       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6414   SDValue Mask01 =
6415       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6416 
6417   // v = v - ((v >> 1) & 0x55555555...)
6418   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6419                    DAG.getNode(ISD::AND, dl, VT,
6420                                DAG.getNode(ISD::SRL, dl, VT, Op,
6421                                            DAG.getConstant(1, dl, ShVT)),
6422                                Mask55));
6423   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6424   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6425                    DAG.getNode(ISD::AND, dl, VT,
6426                                DAG.getNode(ISD::SRL, dl, VT, Op,
6427                                            DAG.getConstant(2, dl, ShVT)),
6428                                Mask33));
6429   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6430   Op = DAG.getNode(ISD::AND, dl, VT,
6431                    DAG.getNode(ISD::ADD, dl, VT, Op,
6432                                DAG.getNode(ISD::SRL, dl, VT, Op,
6433                                            DAG.getConstant(4, dl, ShVT))),
6434                    Mask0F);
6435   // v = (v * 0x01010101...) >> (Len - 8)
6436   if (Len > 8)
6437     Op =
6438         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6439                     DAG.getConstant(Len - 8, dl, ShVT));
6440 
6441   Result = Op;
6442   return true;
6443 }
6444 
6445 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6446                                 SelectionDAG &DAG) const {
6447   SDLoc dl(Node);
6448   EVT VT = Node->getValueType(0);
6449   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6450   SDValue Op = Node->getOperand(0);
6451   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6452 
6453   // If the non-ZERO_UNDEF version is supported we can use that instead.
6454   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6455       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6456     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6457     return true;
6458   }
6459 
6460   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6461   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6462     EVT SetCCVT =
6463         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6464     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6465     SDValue Zero = DAG.getConstant(0, dl, VT);
6466     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6467     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6468                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6469     return true;
6470   }
6471 
6472   // Only expand vector types if we have the appropriate vector bit operations.
6473   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6474                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6475                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6476                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6477     return false;
6478 
6479   // for now, we do this:
6480   // x = x | (x >> 1);
6481   // x = x | (x >> 2);
6482   // ...
6483   // x = x | (x >>16);
6484   // x = x | (x >>32); // for 64-bit input
6485   // return popcount(~x);
6486   //
6487   // Ref: "Hacker's Delight" by Henry Warren
6488   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6489     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6490     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6491                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6492   }
6493   Op = DAG.getNOT(dl, Op, VT);
6494   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6495   return true;
6496 }
6497 
6498 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6499                                 SelectionDAG &DAG) const {
6500   SDLoc dl(Node);
6501   EVT VT = Node->getValueType(0);
6502   SDValue Op = Node->getOperand(0);
6503   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6504 
6505   // If the non-ZERO_UNDEF version is supported we can use that instead.
6506   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6507       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6508     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6509     return true;
6510   }
6511 
6512   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6513   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6514     EVT SetCCVT =
6515         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6516     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6517     SDValue Zero = DAG.getConstant(0, dl, VT);
6518     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6519     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6520                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6521     return true;
6522   }
6523 
6524   // Only expand vector types if we have the appropriate vector bit operations.
6525   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6526                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6527                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6528                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6529                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6530                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6531     return false;
6532 
6533   // for now, we use: { return popcount(~x & (x - 1)); }
6534   // unless the target has ctlz but not ctpop, in which case we use:
6535   // { return 32 - nlz(~x & (x-1)); }
6536   // Ref: "Hacker's Delight" by Henry Warren
6537   SDValue Tmp = DAG.getNode(
6538       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6539       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6540 
6541   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6542   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6543     Result =
6544         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6545                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6546     return true;
6547   }
6548 
6549   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6550   return true;
6551 }
6552 
6553 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6554                                SelectionDAG &DAG) const {
6555   SDLoc dl(N);
6556   EVT VT = N->getValueType(0);
6557   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6558   SDValue Op = N->getOperand(0);
6559 
6560   // Only expand vector types if we have the appropriate vector operations.
6561   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6562                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6563                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6564     return false;
6565 
6566   SDValue Shift =
6567       DAG.getNode(ISD::SRA, dl, VT, Op,
6568                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6569   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6570   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6571   return true;
6572 }
6573 
6574 std::pair<SDValue, SDValue>
6575 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6576                                     SelectionDAG &DAG) const {
6577   SDLoc SL(LD);
6578   SDValue Chain = LD->getChain();
6579   SDValue BasePTR = LD->getBasePtr();
6580   EVT SrcVT = LD->getMemoryVT();
6581   EVT DstVT = LD->getValueType(0);
6582   ISD::LoadExtType ExtType = LD->getExtensionType();
6583 
6584   unsigned NumElem = SrcVT.getVectorNumElements();
6585 
6586   EVT SrcEltVT = SrcVT.getScalarType();
6587   EVT DstEltVT = DstVT.getScalarType();
6588 
6589   // A vector must always be stored in memory as-is, i.e. without any padding
6590   // between the elements, since various code depend on it, e.g. in the
6591   // handling of a bitcast of a vector type to int, which may be done with a
6592   // vector store followed by an integer load. A vector that does not have
6593   // elements that are byte-sized must therefore be stored as an integer
6594   // built out of the extracted vector elements.
6595   if (!SrcEltVT.isByteSized()) {
6596     unsigned NumBits = SrcVT.getSizeInBits();
6597     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6598 
6599     SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(),
6600                                LD->getAlignment(),
6601                                LD->getMemOperand()->getFlags(),
6602                                LD->getAAInfo());
6603 
6604     SmallVector<SDValue, 8> Vals;
6605     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6606       unsigned ShiftIntoIdx =
6607           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6608       SDValue ShiftAmount =
6609           DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT);
6610       SDValue ShiftedElt =
6611           DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount);
6612       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt);
6613       if (ExtType != ISD::NON_EXTLOAD) {
6614         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6615         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6616       }
6617       Vals.push_back(Scalar);
6618     }
6619 
6620     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6621     return std::make_pair(Value, Load.getValue(1));
6622   }
6623 
6624   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6625   assert(SrcEltVT.isByteSized());
6626 
6627   SmallVector<SDValue, 8> Vals;
6628   SmallVector<SDValue, 8> LoadChains;
6629 
6630   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6631     SDValue ScalarLoad =
6632         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6633                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6634                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6635                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6636 
6637     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6638 
6639     Vals.push_back(ScalarLoad.getValue(0));
6640     LoadChains.push_back(ScalarLoad.getValue(1));
6641   }
6642 
6643   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6644   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6645 
6646   return std::make_pair(Value, NewChain);
6647 }
6648 
6649 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6650                                              SelectionDAG &DAG) const {
6651   SDLoc SL(ST);
6652 
6653   SDValue Chain = ST->getChain();
6654   SDValue BasePtr = ST->getBasePtr();
6655   SDValue Value = ST->getValue();
6656   EVT StVT = ST->getMemoryVT();
6657 
6658   // The type of the data we want to save
6659   EVT RegVT = Value.getValueType();
6660   EVT RegSclVT = RegVT.getScalarType();
6661 
6662   // The type of data as saved in memory.
6663   EVT MemSclVT = StVT.getScalarType();
6664 
6665   unsigned NumElem = StVT.getVectorNumElements();
6666 
6667   // A vector must always be stored in memory as-is, i.e. without any padding
6668   // between the elements, since various code depend on it, e.g. in the
6669   // handling of a bitcast of a vector type to int, which may be done with a
6670   // vector store followed by an integer load. A vector that does not have
6671   // elements that are byte-sized must therefore be stored as an integer
6672   // built out of the extracted vector elements.
6673   if (!MemSclVT.isByteSized()) {
6674     unsigned NumBits = StVT.getSizeInBits();
6675     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6676 
6677     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6678 
6679     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6680       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6681                                 DAG.getVectorIdxConstant(Idx, SL));
6682       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6683       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6684       unsigned ShiftIntoIdx =
6685           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6686       SDValue ShiftAmount =
6687           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6688       SDValue ShiftedElt =
6689           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6690       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6691     }
6692 
6693     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6694                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6695                         ST->getAAInfo());
6696   }
6697 
6698   // Store Stride in bytes
6699   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6700   assert(Stride && "Zero stride!");
6701   // Extract each of the elements from the original vector and save them into
6702   // memory individually.
6703   SmallVector<SDValue, 8> Stores;
6704   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6705     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6706                               DAG.getVectorIdxConstant(Idx, SL));
6707 
6708     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6709 
6710     // This scalar TruncStore may be illegal, but we legalize it later.
6711     SDValue Store = DAG.getTruncStore(
6712         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6713         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6714         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6715 
6716     Stores.push_back(Store);
6717   }
6718 
6719   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6720 }
6721 
6722 std::pair<SDValue, SDValue>
6723 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6724   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6725          "unaligned indexed loads not implemented!");
6726   SDValue Chain = LD->getChain();
6727   SDValue Ptr = LD->getBasePtr();
6728   EVT VT = LD->getValueType(0);
6729   EVT LoadedVT = LD->getMemoryVT();
6730   SDLoc dl(LD);
6731   auto &MF = DAG.getMachineFunction();
6732 
6733   if (VT.isFloatingPoint() || VT.isVector()) {
6734     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6735     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6736       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6737           LoadedVT.isVector()) {
6738         // Scalarize the load and let the individual components be handled.
6739         return scalarizeVectorLoad(LD, DAG);
6740       }
6741 
6742       // Expand to a (misaligned) integer load of the same size,
6743       // then bitconvert to floating point or vector.
6744       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6745                                     LD->getMemOperand());
6746       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6747       if (LoadedVT != VT)
6748         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6749                              ISD::ANY_EXTEND, dl, VT, Result);
6750 
6751       return std::make_pair(Result, newLoad.getValue(1));
6752     }
6753 
6754     // Copy the value to a (aligned) stack slot using (unaligned) integer
6755     // loads and stores, then do a (aligned) load from the stack slot.
6756     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6757     unsigned LoadedBytes = LoadedVT.getStoreSize();
6758     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6759     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6760 
6761     // Make sure the stack slot is also aligned for the register type.
6762     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6763     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6764     SmallVector<SDValue, 8> Stores;
6765     SDValue StackPtr = StackBase;
6766     unsigned Offset = 0;
6767 
6768     EVT PtrVT = Ptr.getValueType();
6769     EVT StackPtrVT = StackPtr.getValueType();
6770 
6771     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6772     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6773 
6774     // Do all but one copies using the full register width.
6775     for (unsigned i = 1; i < NumRegs; i++) {
6776       // Load one integer register's worth from the original location.
6777       SDValue Load = DAG.getLoad(
6778           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6779           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6780           LD->getAAInfo());
6781       // Follow the load with a store to the stack slot.  Remember the store.
6782       Stores.push_back(DAG.getStore(
6783           Load.getValue(1), dl, Load, StackPtr,
6784           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6785       // Increment the pointers.
6786       Offset += RegBytes;
6787 
6788       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6789       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6790     }
6791 
6792     // The last copy may be partial.  Do an extending load.
6793     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6794                                   8 * (LoadedBytes - Offset));
6795     SDValue Load =
6796         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6797                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6798                        MinAlign(LD->getAlignment(), Offset),
6799                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6800     // Follow the load with a store to the stack slot.  Remember the store.
6801     // On big-endian machines this requires a truncating store to ensure
6802     // that the bits end up in the right place.
6803     Stores.push_back(DAG.getTruncStore(
6804         Load.getValue(1), dl, Load, StackPtr,
6805         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6806 
6807     // The order of the stores doesn't matter - say it with a TokenFactor.
6808     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6809 
6810     // Finally, perform the original load only redirected to the stack slot.
6811     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6812                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6813                           LoadedVT);
6814 
6815     // Callers expect a MERGE_VALUES node.
6816     return std::make_pair(Load, TF);
6817   }
6818 
6819   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6820          "Unaligned load of unsupported type.");
6821 
6822   // Compute the new VT that is half the size of the old one.  This is an
6823   // integer MVT.
6824   unsigned NumBits = LoadedVT.getSizeInBits();
6825   EVT NewLoadedVT;
6826   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6827   NumBits >>= 1;
6828 
6829   unsigned Alignment = LD->getAlignment();
6830   unsigned IncrementSize = NumBits / 8;
6831   ISD::LoadExtType HiExtType = LD->getExtensionType();
6832 
6833   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6834   if (HiExtType == ISD::NON_EXTLOAD)
6835     HiExtType = ISD::ZEXTLOAD;
6836 
6837   // Load the value in two parts
6838   SDValue Lo, Hi;
6839   if (DAG.getDataLayout().isLittleEndian()) {
6840     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6841                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6842                         LD->getAAInfo());
6843 
6844     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6845     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6846                         LD->getPointerInfo().getWithOffset(IncrementSize),
6847                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6848                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6849   } else {
6850     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6851                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6852                         LD->getAAInfo());
6853 
6854     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6855     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6856                         LD->getPointerInfo().getWithOffset(IncrementSize),
6857                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6858                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6859   }
6860 
6861   // aggregate the two parts
6862   SDValue ShiftAmount =
6863       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6864                                                     DAG.getDataLayout()));
6865   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6866   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6867 
6868   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6869                              Hi.getValue(1));
6870 
6871   return std::make_pair(Result, TF);
6872 }
6873 
6874 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6875                                              SelectionDAG &DAG) const {
6876   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6877          "unaligned indexed stores not implemented!");
6878   SDValue Chain = ST->getChain();
6879   SDValue Ptr = ST->getBasePtr();
6880   SDValue Val = ST->getValue();
6881   EVT VT = Val.getValueType();
6882   int Alignment = ST->getAlignment();
6883   auto &MF = DAG.getMachineFunction();
6884   EVT StoreMemVT = ST->getMemoryVT();
6885 
6886   SDLoc dl(ST);
6887   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6888     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6889     if (isTypeLegal(intVT)) {
6890       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6891           StoreMemVT.isVector()) {
6892         // Scalarize the store and let the individual components be handled.
6893         SDValue Result = scalarizeVectorStore(ST, DAG);
6894         return Result;
6895       }
6896       // Expand to a bitconvert of the value to the integer type of the
6897       // same size, then a (misaligned) int store.
6898       // FIXME: Does not handle truncating floating point stores!
6899       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6900       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6901                             Alignment, ST->getMemOperand()->getFlags());
6902       return Result;
6903     }
6904     // Do a (aligned) store to a stack slot, then copy from the stack slot
6905     // to the final destination using (unaligned) integer loads and stores.
6906     MVT RegVT = getRegisterType(
6907         *DAG.getContext(),
6908         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6909     EVT PtrVT = Ptr.getValueType();
6910     unsigned StoredBytes = StoreMemVT.getStoreSize();
6911     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6912     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6913 
6914     // Make sure the stack slot is also aligned for the register type.
6915     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6916     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6917 
6918     // Perform the original store, only redirected to the stack slot.
6919     SDValue Store = DAG.getTruncStore(
6920         Chain, dl, Val, StackPtr,
6921         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6922 
6923     EVT StackPtrVT = StackPtr.getValueType();
6924 
6925     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6926     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6927     SmallVector<SDValue, 8> Stores;
6928     unsigned Offset = 0;
6929 
6930     // Do all but one copies using the full register width.
6931     for (unsigned i = 1; i < NumRegs; i++) {
6932       // Load one integer register's worth from the stack slot.
6933       SDValue Load = DAG.getLoad(
6934           RegVT, dl, Store, StackPtr,
6935           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6936       // Store it to the final location.  Remember the store.
6937       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6938                                     ST->getPointerInfo().getWithOffset(Offset),
6939                                     MinAlign(ST->getAlignment(), Offset),
6940                                     ST->getMemOperand()->getFlags()));
6941       // Increment the pointers.
6942       Offset += RegBytes;
6943       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6944       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6945     }
6946 
6947     // The last store may be partial.  Do a truncating store.  On big-endian
6948     // machines this requires an extending load from the stack slot to ensure
6949     // that the bits are in the right place.
6950     EVT LoadMemVT =
6951         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6952 
6953     // Load from the stack slot.
6954     SDValue Load = DAG.getExtLoad(
6955         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6956         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6957 
6958     Stores.push_back(
6959         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6960                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6961                           MinAlign(ST->getAlignment(), Offset),
6962                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6963     // The order of the stores doesn't matter - say it with a TokenFactor.
6964     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6965     return Result;
6966   }
6967 
6968   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6969          "Unaligned store of unknown type.");
6970   // Get the half-size VT
6971   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6972   int NumBits = NewStoredVT.getSizeInBits();
6973   int IncrementSize = NumBits / 8;
6974 
6975   // Divide the stored value in two parts.
6976   SDValue ShiftAmount = DAG.getConstant(
6977       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6978   SDValue Lo = Val;
6979   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6980 
6981   // Store the two parts
6982   SDValue Store1, Store2;
6983   Store1 = DAG.getTruncStore(Chain, dl,
6984                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6985                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6986                              ST->getMemOperand()->getFlags());
6987 
6988   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6989   Alignment = MinAlign(Alignment, IncrementSize);
6990   Store2 = DAG.getTruncStore(
6991       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6992       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6993       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6994 
6995   SDValue Result =
6996       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6997   return Result;
6998 }
6999 
7000 SDValue
7001 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7002                                        const SDLoc &DL, EVT DataVT,
7003                                        SelectionDAG &DAG,
7004                                        bool IsCompressedMemory) const {
7005   SDValue Increment;
7006   EVT AddrVT = Addr.getValueType();
7007   EVT MaskVT = Mask.getValueType();
7008   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7009          "Incompatible types of Data and Mask");
7010   if (IsCompressedMemory) {
7011     // Incrementing the pointer according to number of '1's in the mask.
7012     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7013     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7014     if (MaskIntVT.getSizeInBits() < 32) {
7015       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7016       MaskIntVT = MVT::i32;
7017     }
7018 
7019     // Count '1's with POPCNT.
7020     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7021     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7022     // Scale is an element size in bytes.
7023     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7024                                     AddrVT);
7025     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7026   } else
7027     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7028 
7029   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7030 }
7031 
7032 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7033                                        SDValue Idx,
7034                                        EVT VecVT,
7035                                        const SDLoc &dl) {
7036   if (isa<ConstantSDNode>(Idx))
7037     return Idx;
7038 
7039   EVT IdxVT = Idx.getValueType();
7040   unsigned NElts = VecVT.getVectorNumElements();
7041   if (isPowerOf2_32(NElts)) {
7042     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7043                                      Log2_32(NElts));
7044     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7045                        DAG.getConstant(Imm, dl, IdxVT));
7046   }
7047 
7048   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7049                      DAG.getConstant(NElts - 1, dl, IdxVT));
7050 }
7051 
7052 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7053                                                 SDValue VecPtr, EVT VecVT,
7054                                                 SDValue Index) const {
7055   SDLoc dl(Index);
7056   // Make sure the index type is big enough to compute in.
7057   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7058 
7059   EVT EltVT = VecVT.getVectorElementType();
7060 
7061   // Calculate the element offset and add it to the pointer.
7062   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7063   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7064          "Converting bits to bytes lost precision");
7065 
7066   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7067 
7068   EVT IdxVT = Index.getValueType();
7069 
7070   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7071                       DAG.getConstant(EltSize, dl, IdxVT));
7072   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7073 }
7074 
7075 //===----------------------------------------------------------------------===//
7076 // Implementation of Emulated TLS Model
7077 //===----------------------------------------------------------------------===//
7078 
7079 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7080                                                 SelectionDAG &DAG) const {
7081   // Access to address of TLS varialbe xyz is lowered to a function call:
7082   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7083   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7084   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7085   SDLoc dl(GA);
7086 
7087   ArgListTy Args;
7088   ArgListEntry Entry;
7089   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7090   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7091   StringRef EmuTlsVarName(NameString);
7092   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7093   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7094   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7095   Entry.Ty = VoidPtrType;
7096   Args.push_back(Entry);
7097 
7098   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7099 
7100   TargetLowering::CallLoweringInfo CLI(DAG);
7101   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7102   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7103   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7104 
7105   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7106   // At last for X86 targets, maybe good for other targets too?
7107   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7108   MFI.setAdjustsStack(true); // Is this only for X86 target?
7109   MFI.setHasCalls(true);
7110 
7111   assert((GA->getOffset() == 0) &&
7112          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7113   return CallResult.first;
7114 }
7115 
7116 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7117                                                 SelectionDAG &DAG) const {
7118   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7119   if (!isCtlzFast())
7120     return SDValue();
7121   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7122   SDLoc dl(Op);
7123   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7124     if (C->isNullValue() && CC == ISD::SETEQ) {
7125       EVT VT = Op.getOperand(0).getValueType();
7126       SDValue Zext = Op.getOperand(0);
7127       if (VT.bitsLT(MVT::i32)) {
7128         VT = MVT::i32;
7129         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7130       }
7131       unsigned Log2b = Log2_32(VT.getSizeInBits());
7132       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7133       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7134                                 DAG.getConstant(Log2b, dl, MVT::i32));
7135       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7136     }
7137   }
7138   return SDValue();
7139 }
7140 
7141 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7142   unsigned Opcode = Node->getOpcode();
7143   SDValue LHS = Node->getOperand(0);
7144   SDValue RHS = Node->getOperand(1);
7145   EVT VT = LHS.getValueType();
7146   SDLoc dl(Node);
7147 
7148   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7149   assert(VT.isInteger() && "Expected operands to be integers");
7150 
7151   // usub.sat(a, b) -> umax(a, b) - b
7152   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7153     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7154     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7155   }
7156 
7157   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7158     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7159     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7160     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7161   }
7162 
7163   unsigned OverflowOp;
7164   switch (Opcode) {
7165   case ISD::SADDSAT:
7166     OverflowOp = ISD::SADDO;
7167     break;
7168   case ISD::UADDSAT:
7169     OverflowOp = ISD::UADDO;
7170     break;
7171   case ISD::SSUBSAT:
7172     OverflowOp = ISD::SSUBO;
7173     break;
7174   case ISD::USUBSAT:
7175     OverflowOp = ISD::USUBO;
7176     break;
7177   default:
7178     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7179                      "addition or subtraction node.");
7180   }
7181 
7182   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7183   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7184   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7185                                LHS, RHS);
7186   SDValue SumDiff = Result.getValue(0);
7187   SDValue Overflow = Result.getValue(1);
7188   SDValue Zero = DAG.getConstant(0, dl, VT);
7189   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7190 
7191   if (Opcode == ISD::UADDSAT) {
7192     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7193       // (LHS + RHS) | OverflowMask
7194       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7195       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7196     }
7197     // Overflow ? 0xffff.... : (LHS + RHS)
7198     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7199   } else if (Opcode == ISD::USUBSAT) {
7200     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7201       // (LHS - RHS) & ~OverflowMask
7202       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7203       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7204       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7205     }
7206     // Overflow ? 0 : (LHS - RHS)
7207     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7208   } else {
7209     // SatMax -> Overflow && SumDiff < 0
7210     // SatMin -> Overflow && SumDiff >= 0
7211     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7212     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7213     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7214     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7215     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7216     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7217     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7218   }
7219 }
7220 
7221 SDValue
7222 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7223   assert((Node->getOpcode() == ISD::SMULFIX ||
7224           Node->getOpcode() == ISD::UMULFIX ||
7225           Node->getOpcode() == ISD::SMULFIXSAT ||
7226           Node->getOpcode() == ISD::UMULFIXSAT) &&
7227          "Expected a fixed point multiplication opcode");
7228 
7229   SDLoc dl(Node);
7230   SDValue LHS = Node->getOperand(0);
7231   SDValue RHS = Node->getOperand(1);
7232   EVT VT = LHS.getValueType();
7233   unsigned Scale = Node->getConstantOperandVal(2);
7234   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7235                      Node->getOpcode() == ISD::UMULFIXSAT);
7236   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7237                  Node->getOpcode() == ISD::SMULFIXSAT);
7238   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7239   unsigned VTSize = VT.getScalarSizeInBits();
7240 
7241   if (!Scale) {
7242     // [us]mul.fix(a, b, 0) -> mul(a, b)
7243     if (!Saturating) {
7244       if (isOperationLegalOrCustom(ISD::MUL, VT))
7245         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7246     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7247       SDValue Result =
7248           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7249       SDValue Product = Result.getValue(0);
7250       SDValue Overflow = Result.getValue(1);
7251       SDValue Zero = DAG.getConstant(0, dl, VT);
7252 
7253       APInt MinVal = APInt::getSignedMinValue(VTSize);
7254       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7255       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7256       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7257       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7258       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7259       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7260     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7261       SDValue Result =
7262           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7263       SDValue Product = Result.getValue(0);
7264       SDValue Overflow = Result.getValue(1);
7265 
7266       APInt MaxVal = APInt::getMaxValue(VTSize);
7267       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7268       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7269     }
7270   }
7271 
7272   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7273          "Expected scale to be less than the number of bits if signed or at "
7274          "most the number of bits if unsigned.");
7275   assert(LHS.getValueType() == RHS.getValueType() &&
7276          "Expected both operands to be the same type");
7277 
7278   // Get the upper and lower bits of the result.
7279   SDValue Lo, Hi;
7280   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7281   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7282   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7283     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7284     Lo = Result.getValue(0);
7285     Hi = Result.getValue(1);
7286   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7287     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7288     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7289   } else if (VT.isVector()) {
7290     return SDValue();
7291   } else {
7292     report_fatal_error("Unable to expand fixed point multiplication.");
7293   }
7294 
7295   if (Scale == VTSize)
7296     // Result is just the top half since we'd be shifting by the width of the
7297     // operand. Overflow impossible so this works for both UMULFIX and
7298     // UMULFIXSAT.
7299     return Hi;
7300 
7301   // The result will need to be shifted right by the scale since both operands
7302   // are scaled. The result is given to us in 2 halves, so we only want part of
7303   // both in the result.
7304   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7305   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7306                                DAG.getConstant(Scale, dl, ShiftTy));
7307   if (!Saturating)
7308     return Result;
7309 
7310   if (!Signed) {
7311     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7312     // widened multiplication) aren't all zeroes.
7313 
7314     // Saturate to max if ((Hi >> Scale) != 0),
7315     // which is the same as if (Hi > ((1 << Scale) - 1))
7316     APInt MaxVal = APInt::getMaxValue(VTSize);
7317     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7318                                       dl, VT);
7319     Result = DAG.getSelectCC(dl, Hi, LowMask,
7320                              DAG.getConstant(MaxVal, dl, VT), Result,
7321                              ISD::SETUGT);
7322 
7323     return Result;
7324   }
7325 
7326   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7327   // widened multiplication) aren't all ones or all zeroes.
7328 
7329   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7330   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7331 
7332   if (Scale == 0) {
7333     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7334                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7335     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7336     // Saturated to SatMin if wide product is negative, and SatMax if wide
7337     // product is positive ...
7338     SDValue Zero = DAG.getConstant(0, dl, VT);
7339     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7340                                                ISD::SETLT);
7341     // ... but only if we overflowed.
7342     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7343   }
7344 
7345   //  We handled Scale==0 above so all the bits to examine is in Hi.
7346 
7347   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7348   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7349   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7350                                     dl, VT);
7351   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7352   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7353   // which is the same as if (HI < (-1 << (Scale - 1))
7354   SDValue HighMask =
7355       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7356                       dl, VT);
7357   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7358   return Result;
7359 }
7360 
7361 SDValue
7362 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7363                                     SDValue LHS, SDValue RHS,
7364                                     unsigned Scale, SelectionDAG &DAG) const {
7365   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7366           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7367          "Expected a fixed point division opcode");
7368 
7369   EVT VT = LHS.getValueType();
7370   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7371   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7372   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7373 
7374   // If there is enough room in the type to upscale the LHS or downscale the
7375   // RHS before the division, we can perform it in this type without having to
7376   // resize. For signed operations, the LHS headroom is the number of
7377   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7378   // The headroom for the RHS is the number of trailing zeroes.
7379   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7380                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7381   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7382 
7383   // For signed saturating operations, we need to be able to detect true integer
7384   // division overflow; that is, when you have MIN / -EPS. However, this
7385   // is undefined behavior and if we emit divisions that could take such
7386   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7387   // example).
7388   // Avoid this by requiring an extra bit so that we never get this case.
7389   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7390   // signed saturating division, we need to emit a whopping 32-bit division.
7391   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7392     return SDValue();
7393 
7394   unsigned LHSShift = std::min(LHSLead, Scale);
7395   unsigned RHSShift = Scale - LHSShift;
7396 
7397   // At this point, we know that if we shift the LHS up by LHSShift and the
7398   // RHS down by RHSShift, we can emit a regular division with a final scaling
7399   // factor of Scale.
7400 
7401   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7402   if (LHSShift)
7403     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7404                       DAG.getConstant(LHSShift, dl, ShiftTy));
7405   if (RHSShift)
7406     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7407                       DAG.getConstant(RHSShift, dl, ShiftTy));
7408 
7409   SDValue Quot;
7410   if (Signed) {
7411     // For signed operations, if the resulting quotient is negative and the
7412     // remainder is nonzero, subtract 1 from the quotient to round towards
7413     // negative infinity.
7414     SDValue Rem;
7415     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7416     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7417     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7418     if (isTypeLegal(VT) &&
7419         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7420       Quot = DAG.getNode(ISD::SDIVREM, dl,
7421                          DAG.getVTList(VT, VT),
7422                          LHS, RHS);
7423       Rem = Quot.getValue(1);
7424       Quot = Quot.getValue(0);
7425     } else {
7426       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7427                          LHS, RHS);
7428       Rem = DAG.getNode(ISD::SREM, dl, VT,
7429                         LHS, RHS);
7430     }
7431     SDValue Zero = DAG.getConstant(0, dl, VT);
7432     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7433     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7434     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7435     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7436     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7437                                DAG.getConstant(1, dl, VT));
7438     Quot = DAG.getSelect(dl, VT,
7439                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7440                          Sub1, Quot);
7441   } else
7442     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7443                        LHS, RHS);
7444 
7445   return Quot;
7446 }
7447 
7448 void TargetLowering::expandUADDSUBO(
7449     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7450   SDLoc dl(Node);
7451   SDValue LHS = Node->getOperand(0);
7452   SDValue RHS = Node->getOperand(1);
7453   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7454 
7455   // If ADD/SUBCARRY is legal, use that instead.
7456   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7457   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7458     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7459     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7460                                     { LHS, RHS, CarryIn });
7461     Result = SDValue(NodeCarry.getNode(), 0);
7462     Overflow = SDValue(NodeCarry.getNode(), 1);
7463     return;
7464   }
7465 
7466   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7467                             LHS.getValueType(), LHS, RHS);
7468 
7469   EVT ResultType = Node->getValueType(1);
7470   EVT SetCCType = getSetCCResultType(
7471       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7472   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7473   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7474   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7475 }
7476 
7477 void TargetLowering::expandSADDSUBO(
7478     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7479   SDLoc dl(Node);
7480   SDValue LHS = Node->getOperand(0);
7481   SDValue RHS = Node->getOperand(1);
7482   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7483 
7484   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7485                             LHS.getValueType(), LHS, RHS);
7486 
7487   EVT ResultType = Node->getValueType(1);
7488   EVT OType = getSetCCResultType(
7489       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7490 
7491   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7492   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7493   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7494     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7495     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7496     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7497     return;
7498   }
7499 
7500   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7501 
7502   // For an addition, the result should be less than one of the operands (LHS)
7503   // if and only if the other operand (RHS) is negative, otherwise there will
7504   // be overflow.
7505   // For a subtraction, the result should be less than one of the operands
7506   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7507   // otherwise there will be overflow.
7508   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7509   SDValue ConditionRHS =
7510       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7511 
7512   Overflow = DAG.getBoolExtOrTrunc(
7513       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7514       ResultType, ResultType);
7515 }
7516 
7517 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7518                                 SDValue &Overflow, SelectionDAG &DAG) const {
7519   SDLoc dl(Node);
7520   EVT VT = Node->getValueType(0);
7521   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7522   SDValue LHS = Node->getOperand(0);
7523   SDValue RHS = Node->getOperand(1);
7524   bool isSigned = Node->getOpcode() == ISD::SMULO;
7525 
7526   // For power-of-two multiplications we can use a simpler shift expansion.
7527   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7528     const APInt &C = RHSC->getAPIntValue();
7529     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7530     if (C.isPowerOf2()) {
7531       // smulo(x, signed_min) is same as umulo(x, signed_min).
7532       bool UseArithShift = isSigned && !C.isMinSignedValue();
7533       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7534       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7535       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7536       Overflow = DAG.getSetCC(dl, SetCCVT,
7537           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7538                       dl, VT, Result, ShiftAmt),
7539           LHS, ISD::SETNE);
7540       return true;
7541     }
7542   }
7543 
7544   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7545   if (VT.isVector())
7546     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7547                               VT.getVectorNumElements());
7548 
7549   SDValue BottomHalf;
7550   SDValue TopHalf;
7551   static const unsigned Ops[2][3] =
7552       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7553         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7554   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7555     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7556     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7557   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7558     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7559                              RHS);
7560     TopHalf = BottomHalf.getValue(1);
7561   } else if (isTypeLegal(WideVT)) {
7562     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7563     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7564     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7565     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7566     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7567         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7568     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7569                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7570   } else {
7571     if (VT.isVector())
7572       return false;
7573 
7574     // We can fall back to a libcall with an illegal type for the MUL if we
7575     // have a libcall big enough.
7576     // Also, we can fall back to a division in some cases, but that's a big
7577     // performance hit in the general case.
7578     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7579     if (WideVT == MVT::i16)
7580       LC = RTLIB::MUL_I16;
7581     else if (WideVT == MVT::i32)
7582       LC = RTLIB::MUL_I32;
7583     else if (WideVT == MVT::i64)
7584       LC = RTLIB::MUL_I64;
7585     else if (WideVT == MVT::i128)
7586       LC = RTLIB::MUL_I128;
7587     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7588 
7589     SDValue HiLHS;
7590     SDValue HiRHS;
7591     if (isSigned) {
7592       // The high part is obtained by SRA'ing all but one of the bits of low
7593       // part.
7594       unsigned LoSize = VT.getSizeInBits();
7595       HiLHS =
7596           DAG.getNode(ISD::SRA, dl, VT, LHS,
7597                       DAG.getConstant(LoSize - 1, dl,
7598                                       getPointerTy(DAG.getDataLayout())));
7599       HiRHS =
7600           DAG.getNode(ISD::SRA, dl, VT, RHS,
7601                       DAG.getConstant(LoSize - 1, dl,
7602                                       getPointerTy(DAG.getDataLayout())));
7603     } else {
7604         HiLHS = DAG.getConstant(0, dl, VT);
7605         HiRHS = DAG.getConstant(0, dl, VT);
7606     }
7607 
7608     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7609     // pre-lowered to the correct types. This all depends upon WideVT not
7610     // being a legal type for the architecture and thus has to be split to
7611     // two arguments.
7612     SDValue Ret;
7613     TargetLowering::MakeLibCallOptions CallOptions;
7614     CallOptions.setSExt(isSigned);
7615     CallOptions.setIsPostTypeLegalization(true);
7616     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7617       // Halves of WideVT are packed into registers in different order
7618       // depending on platform endianness. This is usually handled by
7619       // the C calling convention, but we can't defer to it in
7620       // the legalizer.
7621       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7622       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7623     } else {
7624       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7625       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7626     }
7627     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7628            "Ret value is a collection of constituent nodes holding result.");
7629     if (DAG.getDataLayout().isLittleEndian()) {
7630       // Same as above.
7631       BottomHalf = Ret.getOperand(0);
7632       TopHalf = Ret.getOperand(1);
7633     } else {
7634       BottomHalf = Ret.getOperand(1);
7635       TopHalf = Ret.getOperand(0);
7636     }
7637   }
7638 
7639   Result = BottomHalf;
7640   if (isSigned) {
7641     SDValue ShiftAmt = DAG.getConstant(
7642         VT.getScalarSizeInBits() - 1, dl,
7643         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7644     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7645     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7646   } else {
7647     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7648                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7649   }
7650 
7651   // Truncate the result if SetCC returns a larger type than needed.
7652   EVT RType = Node->getValueType(1);
7653   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7654     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7655 
7656   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7657          "Unexpected result type for S/UMULO legalization");
7658   return true;
7659 }
7660 
7661 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7662   SDLoc dl(Node);
7663   bool NoNaN = Node->getFlags().hasNoNaNs();
7664   unsigned BaseOpcode = 0;
7665   switch (Node->getOpcode()) {
7666   default: llvm_unreachable("Expected VECREDUCE opcode");
7667   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7668   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7669   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7670   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7671   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7672   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7673   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7674   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7675   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7676   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7677   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7678   case ISD::VECREDUCE_FMAX:
7679     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7680     break;
7681   case ISD::VECREDUCE_FMIN:
7682     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7683     break;
7684   }
7685 
7686   SDValue Op = Node->getOperand(0);
7687   EVT VT = Op.getValueType();
7688 
7689   // Try to use a shuffle reduction for power of two vectors.
7690   if (VT.isPow2VectorType()) {
7691     while (VT.getVectorNumElements() > 1) {
7692       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7693       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7694         break;
7695 
7696       SDValue Lo, Hi;
7697       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7698       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7699       VT = HalfVT;
7700     }
7701   }
7702 
7703   EVT EltVT = VT.getVectorElementType();
7704   unsigned NumElts = VT.getVectorNumElements();
7705 
7706   SmallVector<SDValue, 8> Ops;
7707   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7708 
7709   SDValue Res = Ops[0];
7710   for (unsigned i = 1; i < NumElts; i++)
7711     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7712 
7713   // Result type may be wider than element type.
7714   if (EltVT != Node->getValueType(0))
7715     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7716   return Res;
7717 }
7718