1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 Register Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 114 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 115 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 116 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 117 Alignment = Call->getParamAlignment(ArgIdx); 118 ByValType = nullptr; 119 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 120 ByValType = Call->getParamByValType(ArgIdx); 121 } 122 123 /// Generate a libcall taking the given operands as arguments and returning a 124 /// result of type RetVT. 125 std::pair<SDValue, SDValue> 126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 127 ArrayRef<SDValue> Ops, 128 MakeLibCallOptions CallOptions, 129 const SDLoc &dl, 130 SDValue InChain) const { 131 if (!InChain) 132 InChain = DAG.getEntryNode(); 133 134 TargetLowering::ArgListTy Args; 135 Args.reserve(Ops.size()); 136 137 TargetLowering::ArgListEntry Entry; 138 for (unsigned i = 0; i < Ops.size(); ++i) { 139 SDValue NewOp = Ops[i]; 140 Entry.Node = NewOp; 141 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 142 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 143 CallOptions.IsSExt); 144 Entry.IsZExt = !Entry.IsSExt; 145 146 if (CallOptions.IsSoften && 147 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 148 Entry.IsSExt = Entry.IsZExt = false; 149 } 150 Args.push_back(Entry); 151 } 152 153 if (LC == RTLIB::UNKNOWN_LIBCALL) 154 report_fatal_error("Unsupported library call operation!"); 155 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 156 getPointerTy(DAG.getDataLayout())); 157 158 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 159 TargetLowering::CallLoweringInfo CLI(DAG); 160 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 161 bool zeroExtend = !signExtend; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 165 signExtend = zeroExtend = false; 166 } 167 168 CLI.setDebugLoc(dl) 169 .setChain(InChain) 170 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 171 .setNoReturn(CallOptions.DoesNotReturn) 172 .setDiscardResult(!CallOptions.IsReturnValueUsed) 173 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 174 .setSExtResult(signExtend) 175 .setZExtResult(zeroExtend); 176 return LowerCallTo(CLI); 177 } 178 179 bool TargetLowering::findOptimalMemOpLowering( 180 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 181 unsigned SrcAS, const AttributeList &FuncAttributes) const { 182 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 183 return false; 184 185 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 186 187 if (VT == MVT::Other) { 188 // Use the largest integer type whose alignment constraints are satisfied. 189 // We only need to check DstAlign here as SrcAlign is always greater or 190 // equal to DstAlign (or zero). 191 VT = MVT::i64; 192 if (Op.isFixedDstAlign()) 193 while ( 194 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 195 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 196 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 197 assert(VT.isInteger()); 198 199 // Find the largest legal integer type. 200 MVT LVT = MVT::i64; 201 while (!isTypeLegal(LVT)) 202 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 203 assert(LVT.isInteger()); 204 205 // If the type we've chosen is larger than the largest legal integer type 206 // then use that instead. 207 if (VT.bitsGT(LVT)) 208 VT = LVT; 209 } 210 211 unsigned NumMemOps = 0; 212 uint64_t Size = Op.size(); 213 while (Size) { 214 unsigned VTSize = VT.getSizeInBits() / 8; 215 while (VTSize > Size) { 216 // For now, only use non-vector load / store's for the left-over pieces. 217 EVT NewVT = VT; 218 unsigned NewVTSize; 219 220 bool Found = false; 221 if (VT.isVector() || VT.isFloatingPoint()) { 222 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 223 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 224 isSafeMemOpType(NewVT.getSimpleVT())) 225 Found = true; 226 else if (NewVT == MVT::i64 && 227 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 228 isSafeMemOpType(MVT::f64)) { 229 // i64 is usually not legal on 32-bit targets, but f64 may be. 230 NewVT = MVT::f64; 231 Found = true; 232 } 233 } 234 235 if (!Found) { 236 do { 237 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 238 if (NewVT == MVT::i8) 239 break; 240 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 241 } 242 NewVTSize = NewVT.getSizeInBits() / 8; 243 244 // If the new VT cannot cover all of the remaining bits, then consider 245 // issuing a (or a pair of) unaligned and overlapping load / store. 246 bool Fast; 247 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 248 allowsMisalignedMemoryAccesses( 249 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 250 MachineMemOperand::MONone, &Fast) && 251 Fast) 252 VTSize = Size; 253 else { 254 VT = NewVT; 255 VTSize = NewVTSize; 256 } 257 } 258 259 if (++NumMemOps > Limit) 260 return false; 261 262 MemOps.push_back(VT); 263 Size -= VTSize; 264 } 265 266 return true; 267 } 268 269 /// Soften the operands of a comparison. This code is shared among BR_CC, 270 /// SELECT_CC, and SETCC handlers. 271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 272 SDValue &NewLHS, SDValue &NewRHS, 273 ISD::CondCode &CCCode, 274 const SDLoc &dl, const SDValue OldLHS, 275 const SDValue OldRHS) const { 276 SDValue Chain; 277 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 278 OldRHS, Chain); 279 } 280 281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 282 SDValue &NewLHS, SDValue &NewRHS, 283 ISD::CondCode &CCCode, 284 const SDLoc &dl, const SDValue OldLHS, 285 const SDValue OldRHS, 286 SDValue &Chain, 287 bool IsSignaling) const { 288 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 289 // not supporting it. We can update this code when libgcc provides such 290 // functions. 291 292 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 293 && "Unsupported setcc type!"); 294 295 // Expand into one or more soft-fp libcall(s). 296 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 297 bool ShouldInvertCC = false; 298 switch (CCCode) { 299 case ISD::SETEQ: 300 case ISD::SETOEQ: 301 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 302 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 303 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 304 break; 305 case ISD::SETNE: 306 case ISD::SETUNE: 307 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 308 (VT == MVT::f64) ? RTLIB::UNE_F64 : 309 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 310 break; 311 case ISD::SETGE: 312 case ISD::SETOGE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 314 (VT == MVT::f64) ? RTLIB::OGE_F64 : 315 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 316 break; 317 case ISD::SETLT: 318 case ISD::SETOLT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 320 (VT == MVT::f64) ? RTLIB::OLT_F64 : 321 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 322 break; 323 case ISD::SETLE: 324 case ISD::SETOLE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 326 (VT == MVT::f64) ? RTLIB::OLE_F64 : 327 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 328 break; 329 case ISD::SETGT: 330 case ISD::SETOGT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 332 (VT == MVT::f64) ? RTLIB::OGT_F64 : 333 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 334 break; 335 case ISD::SETO: 336 ShouldInvertCC = true; 337 LLVM_FALLTHROUGH; 338 case ISD::SETUO: 339 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 340 (VT == MVT::f64) ? RTLIB::UO_F64 : 341 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 342 break; 343 case ISD::SETONE: 344 // SETONE = O && UNE 345 ShouldInvertCC = true; 346 LLVM_FALLTHROUGH; 347 case ISD::SETUEQ: 348 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 349 (VT == MVT::f64) ? RTLIB::UO_F64 : 350 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 351 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 352 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 353 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 354 break; 355 default: 356 // Invert CC for unordered comparisons 357 ShouldInvertCC = true; 358 switch (CCCode) { 359 case ISD::SETULT: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 361 (VT == MVT::f64) ? RTLIB::OGE_F64 : 362 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 363 break; 364 case ISD::SETULE: 365 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 366 (VT == MVT::f64) ? RTLIB::OGT_F64 : 367 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 368 break; 369 case ISD::SETUGT: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 371 (VT == MVT::f64) ? RTLIB::OLE_F64 : 372 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 373 break; 374 case ISD::SETUGE: 375 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 376 (VT == MVT::f64) ? RTLIB::OLT_F64 : 377 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 378 break; 379 default: llvm_unreachable("Do not know how to soften this setcc!"); 380 } 381 } 382 383 // Use the target specific return value for comparions lib calls. 384 EVT RetVT = getCmpLibcallReturnType(); 385 SDValue Ops[2] = {NewLHS, NewRHS}; 386 TargetLowering::MakeLibCallOptions CallOptions; 387 EVT OpsVT[2] = { OldLHS.getValueType(), 388 OldRHS.getValueType() }; 389 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 390 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 391 NewLHS = Call.first; 392 NewRHS = DAG.getConstant(0, dl, RetVT); 393 394 CCCode = getCmpLibcallCC(LC1); 395 if (ShouldInvertCC) { 396 assert(RetVT.isInteger()); 397 CCCode = getSetCCInverse(CCCode, RetVT); 398 } 399 400 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 401 // Update Chain. 402 Chain = Call.second; 403 } else { 404 EVT SetCCVT = 405 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 406 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 407 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 408 CCCode = getCmpLibcallCC(LC2); 409 if (ShouldInvertCC) 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 412 if (Chain) 413 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 414 Call2.second); 415 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 416 Tmp.getValueType(), Tmp, NewLHS); 417 NewRHS = SDValue(); 418 } 419 } 420 421 /// Return the entry encoding for a jump table in the current function. The 422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 423 unsigned TargetLowering::getJumpTableEncoding() const { 424 // In non-pic modes, just use the address of a block. 425 if (!isPositionIndependent()) 426 return MachineJumpTableInfo::EK_BlockAddress; 427 428 // In PIC mode, if the target supports a GPRel32 directive, use it. 429 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 430 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 431 432 // Otherwise, use a label difference. 433 return MachineJumpTableInfo::EK_LabelDifference32; 434 } 435 436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 437 SelectionDAG &DAG) const { 438 // If our PIC model is GP relative, use the global offset table as the base. 439 unsigned JTEncoding = getJumpTableEncoding(); 440 441 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 442 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 443 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 444 445 return Table; 446 } 447 448 /// This returns the relocation base for the given PIC jumptable, the same as 449 /// getPICJumpTableRelocBase, but as an MCExpr. 450 const MCExpr * 451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 452 unsigned JTI,MCContext &Ctx) const{ 453 // The normal PIC reloc base is the label at the start of the jump table. 454 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 455 } 456 457 bool 458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 459 const TargetMachine &TM = getTargetMachine(); 460 const GlobalValue *GV = GA->getGlobal(); 461 462 // If the address is not even local to this DSO we will have to load it from 463 // a got and then add the offset. 464 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 465 return false; 466 467 // If the code is position independent we will have to add a base register. 468 if (isPositionIndependent()) 469 return false; 470 471 // Otherwise we can do it. 472 return true; 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Optimization Methods 477 //===----------------------------------------------------------------------===// 478 479 /// If the specified instruction has a constant integer operand and there are 480 /// bits set in that constant that are not demanded, then clear those bits and 481 /// return true. 482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 483 TargetLoweringOpt &TLO) const { 484 SDLoc DL(Op); 485 unsigned Opcode = Op.getOpcode(); 486 487 // Do target-specific constant optimization. 488 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 489 return TLO.New.getNode(); 490 491 // FIXME: ISD::SELECT, ISD::SELECT_CC 492 switch (Opcode) { 493 default: 494 break; 495 case ISD::XOR: 496 case ISD::AND: 497 case ISD::OR: { 498 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 499 if (!Op1C) 500 return false; 501 502 // If this is a 'not' op, don't touch it because that's a canonical form. 503 const APInt &C = Op1C->getAPIntValue(); 504 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 505 return false; 506 507 if (!C.isSubsetOf(Demanded)) { 508 EVT VT = Op.getValueType(); 509 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 510 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 511 return TLO.CombineTo(Op, NewOp); 512 } 513 514 break; 515 } 516 } 517 518 return false; 519 } 520 521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 523 /// generalized for targets with other types of implicit widening casts. 524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 525 const APInt &Demanded, 526 TargetLoweringOpt &TLO) const { 527 assert(Op.getNumOperands() == 2 && 528 "ShrinkDemandedOp only supports binary operators!"); 529 assert(Op.getNode()->getNumValues() == 1 && 530 "ShrinkDemandedOp only supports nodes with one result!"); 531 532 SelectionDAG &DAG = TLO.DAG; 533 SDLoc dl(Op); 534 535 // Early return, as this function cannot handle vector types. 536 if (Op.getValueType().isVector()) 537 return false; 538 539 // Don't do this if the node has another user, which may require the 540 // full value. 541 if (!Op.getNode()->hasOneUse()) 542 return false; 543 544 // Search for the smallest integer type with free casts to and from 545 // Op's type. For expedience, just check power-of-2 integer types. 546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 547 unsigned DemandedSize = Demanded.getActiveBits(); 548 unsigned SmallVTBits = DemandedSize; 549 if (!isPowerOf2_32(SmallVTBits)) 550 SmallVTBits = NextPowerOf2(SmallVTBits); 551 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 552 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 553 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 554 TLI.isZExtFree(SmallVT, Op.getValueType())) { 555 // We found a type with free casts. 556 SDValue X = DAG.getNode( 557 Op.getOpcode(), dl, SmallVT, 558 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 559 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 560 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 561 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 562 return TLO.CombineTo(Op, Z); 563 } 564 } 565 return false; 566 } 567 568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 569 DAGCombinerInfo &DCI) const { 570 SelectionDAG &DAG = DCI.DAG; 571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 572 !DCI.isBeforeLegalizeOps()); 573 KnownBits Known; 574 575 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 576 if (Simplified) { 577 DCI.AddToWorklist(Op.getNode()); 578 DCI.CommitTargetLoweringOpt(TLO); 579 } 580 return Simplified; 581 } 582 583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 584 KnownBits &Known, 585 TargetLoweringOpt &TLO, 586 unsigned Depth, 587 bool AssumeSingleUse) const { 588 EVT VT = Op.getValueType(); 589 APInt DemandedElts = VT.isVector() 590 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 591 : APInt(1, 1); 592 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 593 AssumeSingleUse); 594 } 595 596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 597 // TODO: Under what circumstances can we create nodes? Constant folding? 598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 599 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 600 SelectionDAG &DAG, unsigned Depth) const { 601 // Limit search depth. 602 if (Depth >= SelectionDAG::MaxRecursionDepth) 603 return SDValue(); 604 605 // Ignore UNDEFs. 606 if (Op.isUndef()) 607 return SDValue(); 608 609 // Not demanding any bits/elts from Op. 610 if (DemandedBits == 0 || DemandedElts == 0) 611 return DAG.getUNDEF(Op.getValueType()); 612 613 unsigned NumElts = DemandedElts.getBitWidth(); 614 KnownBits LHSKnown, RHSKnown; 615 switch (Op.getOpcode()) { 616 case ISD::BITCAST: { 617 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 618 EVT SrcVT = Src.getValueType(); 619 EVT DstVT = Op.getValueType(); 620 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 621 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 622 623 if (NumSrcEltBits == NumDstEltBits) 624 if (SDValue V = SimplifyMultipleUseDemandedBits( 625 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 626 return DAG.getBitcast(DstVT, V); 627 628 // TODO - bigendian once we have test coverage. 629 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 630 DAG.getDataLayout().isLittleEndian()) { 631 unsigned Scale = NumDstEltBits / NumSrcEltBits; 632 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 633 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 634 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 635 for (unsigned i = 0; i != Scale; ++i) { 636 unsigned Offset = i * NumSrcEltBits; 637 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 638 if (!Sub.isNullValue()) { 639 DemandedSrcBits |= Sub; 640 for (unsigned j = 0; j != NumElts; ++j) 641 if (DemandedElts[j]) 642 DemandedSrcElts.setBit((j * Scale) + i); 643 } 644 } 645 646 if (SDValue V = SimplifyMultipleUseDemandedBits( 647 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 648 return DAG.getBitcast(DstVT, V); 649 } 650 651 // TODO - bigendian once we have test coverage. 652 if ((NumSrcEltBits % NumDstEltBits) == 0 && 653 DAG.getDataLayout().isLittleEndian()) { 654 unsigned Scale = NumSrcEltBits / NumDstEltBits; 655 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 656 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 657 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 658 for (unsigned i = 0; i != NumElts; ++i) 659 if (DemandedElts[i]) { 660 unsigned Offset = (i % Scale) * NumDstEltBits; 661 DemandedSrcBits.insertBits(DemandedBits, Offset); 662 DemandedSrcElts.setBit(i / Scale); 663 } 664 665 if (SDValue V = SimplifyMultipleUseDemandedBits( 666 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 667 return DAG.getBitcast(DstVT, V); 668 } 669 670 break; 671 } 672 case ISD::AND: { 673 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 674 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 675 676 // If all of the demanded bits are known 1 on one side, return the other. 677 // These bits cannot contribute to the result of the 'and' in this 678 // context. 679 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 680 return Op.getOperand(0); 681 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 682 return Op.getOperand(1); 683 break; 684 } 685 case ISD::OR: { 686 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 687 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 688 689 // If all of the demanded bits are known zero on one side, return the 690 // other. These bits cannot contribute to the result of the 'or' in this 691 // context. 692 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 693 return Op.getOperand(0); 694 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 695 return Op.getOperand(1); 696 break; 697 } 698 case ISD::XOR: { 699 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 700 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 701 702 // If all of the demanded bits are known zero on one side, return the 703 // other. 704 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 705 return Op.getOperand(0); 706 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 707 return Op.getOperand(1); 708 break; 709 } 710 case ISD::SETCC: { 711 SDValue Op0 = Op.getOperand(0); 712 SDValue Op1 = Op.getOperand(1); 713 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 714 // If (1) we only need the sign-bit, (2) the setcc operands are the same 715 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 716 // -1, we may be able to bypass the setcc. 717 if (DemandedBits.isSignMask() && 718 Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() && 719 getBooleanContents(Op0.getValueType()) == 720 BooleanContent::ZeroOrNegativeOneBooleanContent) { 721 // If we're testing X < 0, then this compare isn't needed - just use X! 722 // FIXME: We're limiting to integer types here, but this should also work 723 // if we don't care about FP signed-zero. The use of SETLT with FP means 724 // that we don't care about NaNs. 725 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 726 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 727 return Op0; 728 } 729 break; 730 } 731 case ISD::SIGN_EXTEND_INREG: { 732 // If none of the extended bits are demanded, eliminate the sextinreg. 733 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 734 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 735 return Op.getOperand(0); 736 break; 737 } 738 case ISD::INSERT_VECTOR_ELT: { 739 // If we don't demand the inserted element, return the base vector. 740 SDValue Vec = Op.getOperand(0); 741 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 742 EVT VecVT = Vec.getValueType(); 743 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 744 !DemandedElts[CIdx->getZExtValue()]) 745 return Vec; 746 break; 747 } 748 case ISD::INSERT_SUBVECTOR: { 749 // If we don't demand the inserted subvector, return the base vector. 750 SDValue Vec = Op.getOperand(0); 751 SDValue Sub = Op.getOperand(1); 752 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 753 unsigned NumVecElts = Vec.getValueType().getVectorNumElements(); 754 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 755 if (CIdx && CIdx->getAPIntValue().ule(NumVecElts - NumSubElts)) 756 if (DemandedElts.extractBits(NumSubElts, CIdx->getZExtValue()) == 0) 757 return Vec; 758 break; 759 } 760 case ISD::VECTOR_SHUFFLE: { 761 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 762 763 // If all the demanded elts are from one operand and are inline, 764 // then we can use the operand directly. 765 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 766 for (unsigned i = 0; i != NumElts; ++i) { 767 int M = ShuffleMask[i]; 768 if (M < 0 || !DemandedElts[i]) 769 continue; 770 AllUndef = false; 771 IdentityLHS &= (M == (int)i); 772 IdentityRHS &= ((M - NumElts) == i); 773 } 774 775 if (AllUndef) 776 return DAG.getUNDEF(Op.getValueType()); 777 if (IdentityLHS) 778 return Op.getOperand(0); 779 if (IdentityRHS) 780 return Op.getOperand(1); 781 break; 782 } 783 default: 784 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 785 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 786 Op, DemandedBits, DemandedElts, DAG, Depth)) 787 return V; 788 break; 789 } 790 return SDValue(); 791 } 792 793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 794 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 795 unsigned Depth) const { 796 EVT VT = Op.getValueType(); 797 APInt DemandedElts = VT.isVector() 798 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 799 : APInt(1, 1); 800 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 801 Depth); 802 } 803 804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 805 /// result of Op are ever used downstream. If we can use this information to 806 /// simplify Op, create a new simplified DAG node and return true, returning the 807 /// original and new nodes in Old and New. Otherwise, analyze the expression and 808 /// return a mask of Known bits for the expression (used to simplify the 809 /// caller). The Known bits may only be accurate for those bits in the 810 /// OriginalDemandedBits and OriginalDemandedElts. 811 bool TargetLowering::SimplifyDemandedBits( 812 SDValue Op, const APInt &OriginalDemandedBits, 813 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 814 unsigned Depth, bool AssumeSingleUse) const { 815 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 816 assert(Op.getScalarValueSizeInBits() == BitWidth && 817 "Mask size mismatches value type size!"); 818 819 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 820 assert((!Op.getValueType().isVector() || 821 NumElts == Op.getValueType().getVectorNumElements()) && 822 "Unexpected vector size"); 823 824 APInt DemandedBits = OriginalDemandedBits; 825 APInt DemandedElts = OriginalDemandedElts; 826 SDLoc dl(Op); 827 auto &DL = TLO.DAG.getDataLayout(); 828 829 // Don't know anything. 830 Known = KnownBits(BitWidth); 831 832 // Undef operand. 833 if (Op.isUndef()) 834 return false; 835 836 if (Op.getOpcode() == ISD::Constant) { 837 // We know all of the bits for a constant! 838 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 839 Known.Zero = ~Known.One; 840 return false; 841 } 842 843 // Other users may use these bits. 844 EVT VT = Op.getValueType(); 845 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 846 if (Depth != 0) { 847 // If not at the root, Just compute the Known bits to 848 // simplify things downstream. 849 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 850 return false; 851 } 852 // If this is the root being simplified, allow it to have multiple uses, 853 // just set the DemandedBits/Elts to all bits. 854 DemandedBits = APInt::getAllOnesValue(BitWidth); 855 DemandedElts = APInt::getAllOnesValue(NumElts); 856 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 857 // Not demanding any bits/elts from Op. 858 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 859 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 860 // Limit search depth. 861 return false; 862 } 863 864 KnownBits Known2, KnownOut; 865 switch (Op.getOpcode()) { 866 case ISD::TargetConstant: 867 llvm_unreachable("Can't simplify this node"); 868 case ISD::SCALAR_TO_VECTOR: { 869 if (!DemandedElts[0]) 870 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 871 872 KnownBits SrcKnown; 873 SDValue Src = Op.getOperand(0); 874 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 875 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 876 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 877 return true; 878 879 // Upper elements are undef, so only get the knownbits if we just demand 880 // the bottom element. 881 if (DemandedElts == 1) 882 Known = SrcKnown.anyextOrTrunc(BitWidth); 883 break; 884 } 885 case ISD::BUILD_VECTOR: 886 // Collect the known bits that are shared by every demanded element. 887 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 888 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 889 return false; // Don't fall through, will infinitely loop. 890 case ISD::LOAD: { 891 LoadSDNode *LD = cast<LoadSDNode>(Op); 892 if (getTargetConstantFromLoad(LD)) { 893 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 894 return false; // Don't fall through, will infinitely loop. 895 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 896 // If this is a ZEXTLoad and we are looking at the loaded value. 897 EVT MemVT = LD->getMemoryVT(); 898 unsigned MemBits = MemVT.getScalarSizeInBits(); 899 Known.Zero.setBitsFrom(MemBits); 900 return false; // Don't fall through, will infinitely loop. 901 } 902 break; 903 } 904 case ISD::INSERT_VECTOR_ELT: { 905 SDValue Vec = Op.getOperand(0); 906 SDValue Scl = Op.getOperand(1); 907 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 908 EVT VecVT = Vec.getValueType(); 909 910 // If index isn't constant, assume we need all vector elements AND the 911 // inserted element. 912 APInt DemandedVecElts(DemandedElts); 913 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 914 unsigned Idx = CIdx->getZExtValue(); 915 DemandedVecElts.clearBit(Idx); 916 917 // Inserted element is not required. 918 if (!DemandedElts[Idx]) 919 return TLO.CombineTo(Op, Vec); 920 } 921 922 KnownBits KnownScl; 923 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 924 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 925 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 926 return true; 927 928 Known = KnownScl.anyextOrTrunc(BitWidth); 929 930 KnownBits KnownVec; 931 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 932 Depth + 1)) 933 return true; 934 935 if (!!DemandedVecElts) { 936 Known.One &= KnownVec.One; 937 Known.Zero &= KnownVec.Zero; 938 } 939 940 return false; 941 } 942 case ISD::INSERT_SUBVECTOR: { 943 SDValue Base = Op.getOperand(0); 944 SDValue Sub = Op.getOperand(1); 945 EVT SubVT = Sub.getValueType(); 946 unsigned NumSubElts = SubVT.getVectorNumElements(); 947 948 // If index isn't constant, assume we need the original demanded base 949 // elements and ALL the inserted subvector elements. 950 APInt BaseElts = DemandedElts; 951 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 952 if (isa<ConstantSDNode>(Op.getOperand(2))) { 953 const APInt &Idx = Op.getConstantOperandAPInt(2); 954 if (Idx.ule(NumElts - NumSubElts)) { 955 unsigned SubIdx = Idx.getZExtValue(); 956 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 957 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 958 } 959 } 960 961 KnownBits KnownSub, KnownBase; 962 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 963 Depth + 1)) 964 return true; 965 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 966 Depth + 1)) 967 return true; 968 969 Known.Zero.setAllBits(); 970 Known.One.setAllBits(); 971 if (!!SubElts) { 972 Known.One &= KnownSub.One; 973 Known.Zero &= KnownSub.Zero; 974 } 975 if (!!BaseElts) { 976 Known.One &= KnownBase.One; 977 Known.Zero &= KnownBase.Zero; 978 } 979 980 // Attempt to avoid multi-use src if we don't need anything from it. 981 if (!DemandedBits.isAllOnesValue() || !SubElts.isAllOnesValue() || 982 !BaseElts.isAllOnesValue()) { 983 SDValue NewSub = SimplifyMultipleUseDemandedBits( 984 Sub, DemandedBits, SubElts, TLO.DAG, Depth + 1); 985 SDValue NewBase = SimplifyMultipleUseDemandedBits( 986 Base, DemandedBits, BaseElts, TLO.DAG, Depth + 1); 987 if (NewSub || NewBase) { 988 NewSub = NewSub ? NewSub : Sub; 989 NewBase = NewBase ? NewBase : Base; 990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewBase, NewSub, 991 Op.getOperand(2)); 992 return TLO.CombineTo(Op, NewOp); 993 } 994 } 995 break; 996 } 997 case ISD::EXTRACT_SUBVECTOR: { 998 // If index isn't constant, assume we need all the source vector elements. 999 SDValue Src = Op.getOperand(0); 1000 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1001 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1002 APInt SrcElts = APInt::getAllOnesValue(NumSrcElts); 1003 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1004 // Offset the demanded elts by the subvector index. 1005 uint64_t Idx = SubIdx->getZExtValue(); 1006 SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1007 } 1008 if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1)) 1009 return true; 1010 1011 // Attempt to avoid multi-use src if we don't need anything from it. 1012 if (!DemandedBits.isAllOnesValue() || !SrcElts.isAllOnesValue()) { 1013 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1014 Src, DemandedBits, SrcElts, TLO.DAG, Depth + 1); 1015 if (DemandedSrc) { 1016 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1017 Op.getOperand(1)); 1018 return TLO.CombineTo(Op, NewOp); 1019 } 1020 } 1021 break; 1022 } 1023 case ISD::CONCAT_VECTORS: { 1024 Known.Zero.setAllBits(); 1025 Known.One.setAllBits(); 1026 EVT SubVT = Op.getOperand(0).getValueType(); 1027 unsigned NumSubVecs = Op.getNumOperands(); 1028 unsigned NumSubElts = SubVT.getVectorNumElements(); 1029 for (unsigned i = 0; i != NumSubVecs; ++i) { 1030 APInt DemandedSubElts = 1031 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1032 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1033 Known2, TLO, Depth + 1)) 1034 return true; 1035 // Known bits are shared by every demanded subvector element. 1036 if (!!DemandedSubElts) { 1037 Known.One &= Known2.One; 1038 Known.Zero &= Known2.Zero; 1039 } 1040 } 1041 break; 1042 } 1043 case ISD::VECTOR_SHUFFLE: { 1044 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1045 1046 // Collect demanded elements from shuffle operands.. 1047 APInt DemandedLHS(NumElts, 0); 1048 APInt DemandedRHS(NumElts, 0); 1049 for (unsigned i = 0; i != NumElts; ++i) { 1050 if (!DemandedElts[i]) 1051 continue; 1052 int M = ShuffleMask[i]; 1053 if (M < 0) { 1054 // For UNDEF elements, we don't know anything about the common state of 1055 // the shuffle result. 1056 DemandedLHS.clearAllBits(); 1057 DemandedRHS.clearAllBits(); 1058 break; 1059 } 1060 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1061 if (M < (int)NumElts) 1062 DemandedLHS.setBit(M); 1063 else 1064 DemandedRHS.setBit(M - NumElts); 1065 } 1066 1067 if (!!DemandedLHS || !!DemandedRHS) { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 Known.Zero.setAllBits(); 1072 Known.One.setAllBits(); 1073 if (!!DemandedLHS) { 1074 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1075 Depth + 1)) 1076 return true; 1077 Known.One &= Known2.One; 1078 Known.Zero &= Known2.Zero; 1079 } 1080 if (!!DemandedRHS) { 1081 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1082 Depth + 1)) 1083 return true; 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 } 1087 1088 // Attempt to avoid multi-use ops if we don't need anything from them. 1089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1090 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1092 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1093 if (DemandedOp0 || DemandedOp1) { 1094 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1095 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1096 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1097 return TLO.CombineTo(Op, NewOp); 1098 } 1099 } 1100 break; 1101 } 1102 case ISD::AND: { 1103 SDValue Op0 = Op.getOperand(0); 1104 SDValue Op1 = Op.getOperand(1); 1105 1106 // If the RHS is a constant, check to see if the LHS would be zero without 1107 // using the bits from the RHS. Below, we use knowledge about the RHS to 1108 // simplify the LHS, here we're using information from the LHS to simplify 1109 // the RHS. 1110 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1111 // Do not increment Depth here; that can cause an infinite loop. 1112 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1113 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1114 if ((LHSKnown.Zero & DemandedBits) == 1115 (~RHSC->getAPIntValue() & DemandedBits)) 1116 return TLO.CombineTo(Op, Op0); 1117 1118 // If any of the set bits in the RHS are known zero on the LHS, shrink 1119 // the constant. 1120 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1121 return true; 1122 1123 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1124 // constant, but if this 'and' is only clearing bits that were just set by 1125 // the xor, then this 'and' can be eliminated by shrinking the mask of 1126 // the xor. For example, for a 32-bit X: 1127 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1128 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1129 LHSKnown.One == ~RHSC->getAPIntValue()) { 1130 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1131 return TLO.CombineTo(Op, Xor); 1132 } 1133 } 1134 1135 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1136 Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1140 Known2, TLO, Depth + 1)) 1141 return true; 1142 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1143 1144 // Attempt to avoid multi-use ops if we don't need anything from them. 1145 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1146 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1147 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1148 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1149 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1150 if (DemandedOp0 || DemandedOp1) { 1151 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1152 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1153 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1154 return TLO.CombineTo(Op, NewOp); 1155 } 1156 } 1157 1158 // If all of the demanded bits are known one on one side, return the other. 1159 // These bits cannot contribute to the result of the 'and'. 1160 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1161 return TLO.CombineTo(Op, Op0); 1162 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1163 return TLO.CombineTo(Op, Op1); 1164 // If all of the demanded bits in the inputs are known zeros, return zero. 1165 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1167 // If the RHS is a constant, see if we can simplify it. 1168 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1169 return true; 1170 // If the operation can be done in a smaller type, do so. 1171 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1172 return true; 1173 1174 // Output known-1 bits are only known if set in both the LHS & RHS. 1175 Known.One &= Known2.One; 1176 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1177 Known.Zero |= Known2.Zero; 1178 break; 1179 } 1180 case ISD::OR: { 1181 SDValue Op0 = Op.getOperand(0); 1182 SDValue Op1 = Op.getOperand(1); 1183 1184 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1185 Depth + 1)) 1186 return true; 1187 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1188 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1189 Known2, TLO, Depth + 1)) 1190 return true; 1191 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1192 1193 // Attempt to avoid multi-use ops if we don't need anything from them. 1194 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1195 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1196 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1197 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1198 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1199 if (DemandedOp0 || DemandedOp1) { 1200 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1201 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1202 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1203 return TLO.CombineTo(Op, NewOp); 1204 } 1205 } 1206 1207 // If all of the demanded bits are known zero on one side, return the other. 1208 // These bits cannot contribute to the result of the 'or'. 1209 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1210 return TLO.CombineTo(Op, Op0); 1211 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1212 return TLO.CombineTo(Op, Op1); 1213 // If the RHS is a constant, see if we can simplify it. 1214 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1215 return true; 1216 // If the operation can be done in a smaller type, do so. 1217 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1218 return true; 1219 1220 // Output known-0 bits are only known if clear in both the LHS & RHS. 1221 Known.Zero &= Known2.Zero; 1222 // Output known-1 are known to be set if set in either the LHS | RHS. 1223 Known.One |= Known2.One; 1224 break; 1225 } 1226 case ISD::XOR: { 1227 SDValue Op0 = Op.getOperand(0); 1228 SDValue Op1 = Op.getOperand(1); 1229 1230 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1231 Depth + 1)) 1232 return true; 1233 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1234 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1235 Depth + 1)) 1236 return true; 1237 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1238 1239 // Attempt to avoid multi-use ops if we don't need anything from them. 1240 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1241 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1242 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1243 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1244 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1245 if (DemandedOp0 || DemandedOp1) { 1246 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1247 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1248 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 1253 // If all of the demanded bits are known zero on one side, return the other. 1254 // These bits cannot contribute to the result of the 'xor'. 1255 if (DemandedBits.isSubsetOf(Known.Zero)) 1256 return TLO.CombineTo(Op, Op0); 1257 if (DemandedBits.isSubsetOf(Known2.Zero)) 1258 return TLO.CombineTo(Op, Op1); 1259 // If the operation can be done in a smaller type, do so. 1260 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1261 return true; 1262 1263 // If all of the unknown bits are known to be zero on one side or the other 1264 // (but not both) turn this into an *inclusive* or. 1265 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1266 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1267 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1268 1269 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1270 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1271 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1272 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1273 1274 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1275 // If one side is a constant, and all of the known set bits on the other 1276 // side are also set in the constant, turn this into an AND, as we know 1277 // the bits will be cleared. 1278 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1279 // NB: it is okay if more bits are known than are requested 1280 if (C->getAPIntValue() == Known2.One) { 1281 SDValue ANDC = 1282 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1283 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1284 } 1285 1286 // If the RHS is a constant, see if we can change it. Don't alter a -1 1287 // constant because that's a 'not' op, and that is better for combining 1288 // and codegen. 1289 if (!C->isAllOnesValue()) { 1290 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1291 // We're flipping all demanded bits. Flip the undemanded bits too. 1292 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1293 return TLO.CombineTo(Op, New); 1294 } 1295 // If we can't turn this into a 'not', try to shrink the constant. 1296 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1297 return true; 1298 } 1299 } 1300 1301 Known = std::move(KnownOut); 1302 break; 1303 } 1304 case ISD::SELECT: 1305 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1306 Depth + 1)) 1307 return true; 1308 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1313 1314 // If the operands are constants, see if we can simplify them. 1315 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1316 return true; 1317 1318 // Only known if known in both the LHS and RHS. 1319 Known.One &= Known2.One; 1320 Known.Zero &= Known2.Zero; 1321 break; 1322 case ISD::SELECT_CC: 1323 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1324 Depth + 1)) 1325 return true; 1326 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1327 Depth + 1)) 1328 return true; 1329 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1330 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1331 1332 // If the operands are constants, see if we can simplify them. 1333 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1334 return true; 1335 1336 // Only known if known in both the LHS and RHS. 1337 Known.One &= Known2.One; 1338 Known.Zero &= Known2.Zero; 1339 break; 1340 case ISD::SETCC: { 1341 SDValue Op0 = Op.getOperand(0); 1342 SDValue Op1 = Op.getOperand(1); 1343 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1344 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1345 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1346 // -1, we may be able to bypass the setcc. 1347 if (DemandedBits.isSignMask() && 1348 Op0.getScalarValueSizeInBits() == BitWidth && 1349 getBooleanContents(Op0.getValueType()) == 1350 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1351 // If we're testing X < 0, then this compare isn't needed - just use X! 1352 // FIXME: We're limiting to integer types here, but this should also work 1353 // if we don't care about FP signed-zero. The use of SETLT with FP means 1354 // that we don't care about NaNs. 1355 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1356 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1357 return TLO.CombineTo(Op, Op0); 1358 1359 // TODO: Should we check for other forms of sign-bit comparisons? 1360 // Examples: X <= -1, X >= 0 1361 } 1362 if (getBooleanContents(Op0.getValueType()) == 1363 TargetLowering::ZeroOrOneBooleanContent && 1364 BitWidth > 1) 1365 Known.Zero.setBitsFrom(1); 1366 break; 1367 } 1368 case ISD::SHL: { 1369 SDValue Op0 = Op.getOperand(0); 1370 SDValue Op1 = Op.getOperand(1); 1371 EVT ShiftVT = Op1.getValueType(); 1372 1373 if (const APInt *SA = 1374 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1375 unsigned ShAmt = SA->getZExtValue(); 1376 if (ShAmt == 0) 1377 return TLO.CombineTo(Op, Op0); 1378 1379 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1380 // single shift. We can do this if the bottom bits (which are shifted 1381 // out) are never demanded. 1382 // TODO - support non-uniform vector amounts. 1383 if (Op0.getOpcode() == ISD::SRL) { 1384 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1385 if (const APInt *SA2 = 1386 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1387 if (SA2->ult(BitWidth)) { 1388 unsigned C1 = SA2->getZExtValue(); 1389 unsigned Opc = ISD::SHL; 1390 int Diff = ShAmt - C1; 1391 if (Diff < 0) { 1392 Diff = -Diff; 1393 Opc = ISD::SRL; 1394 } 1395 1396 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1397 return TLO.CombineTo( 1398 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1399 } 1400 } 1401 } 1402 } 1403 1404 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1405 // are not demanded. This will likely allow the anyext to be folded away. 1406 // TODO - support non-uniform vector amounts. 1407 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1408 SDValue InnerOp = Op0.getOperand(0); 1409 EVT InnerVT = InnerOp.getValueType(); 1410 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1411 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1412 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1413 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1414 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1415 ShTy = InnerVT; 1416 SDValue NarrowShl = 1417 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1418 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1419 return TLO.CombineTo( 1420 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1421 } 1422 1423 // Repeat the SHL optimization above in cases where an extension 1424 // intervenes: (shl (anyext (shr x, c1)), c2) to 1425 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1426 // aren't demanded (as above) and that the shifted upper c1 bits of 1427 // x aren't demanded. 1428 // TODO - support non-uniform vector amounts. 1429 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1430 InnerOp.hasOneUse()) { 1431 if (const APInt *SA2 = 1432 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1433 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1434 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1435 DemandedBits.getActiveBits() <= 1436 (InnerBits - InnerShAmt + ShAmt) && 1437 DemandedBits.countTrailingZeros() >= ShAmt) { 1438 SDValue NewSA = 1439 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1440 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1441 InnerOp.getOperand(0)); 1442 return TLO.CombineTo( 1443 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1444 } 1445 } 1446 } 1447 } 1448 1449 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1450 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1451 Depth + 1)) 1452 return true; 1453 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1454 Known.Zero <<= ShAmt; 1455 Known.One <<= ShAmt; 1456 // low bits known zero. 1457 Known.Zero.setLowBits(ShAmt); 1458 1459 // Try shrinking the operation as long as the shift amount will still be 1460 // in range. 1461 if ((ShAmt < DemandedBits.getActiveBits()) && 1462 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1463 return true; 1464 } 1465 break; 1466 } 1467 case ISD::SRL: { 1468 SDValue Op0 = Op.getOperand(0); 1469 SDValue Op1 = Op.getOperand(1); 1470 EVT ShiftVT = Op1.getValueType(); 1471 1472 if (const APInt *SA = 1473 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1474 unsigned ShAmt = SA->getZExtValue(); 1475 if (ShAmt == 0) 1476 return TLO.CombineTo(Op, Op0); 1477 1478 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1479 // single shift. We can do this if the top bits (which are shifted out) 1480 // are never demanded. 1481 // TODO - support non-uniform vector amounts. 1482 if (Op0.getOpcode() == ISD::SHL) { 1483 if (const APInt *SA2 = 1484 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1485 if (!DemandedBits.intersects( 1486 APInt::getHighBitsSet(BitWidth, ShAmt))) { 1487 if (SA2->ult(BitWidth)) { 1488 unsigned C1 = SA2->getZExtValue(); 1489 unsigned Opc = ISD::SRL; 1490 int Diff = ShAmt - C1; 1491 if (Diff < 0) { 1492 Diff = -Diff; 1493 Opc = ISD::SHL; 1494 } 1495 1496 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1497 return TLO.CombineTo( 1498 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1499 } 1500 } 1501 } 1502 } 1503 1504 APInt InDemandedMask = (DemandedBits << ShAmt); 1505 1506 // If the shift is exact, then it does demand the low bits (and knows that 1507 // they are zero). 1508 if (Op->getFlags().hasExact()) 1509 InDemandedMask.setLowBits(ShAmt); 1510 1511 // Compute the new bits that are at the top now. 1512 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1513 Depth + 1)) 1514 return true; 1515 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1516 Known.Zero.lshrInPlace(ShAmt); 1517 Known.One.lshrInPlace(ShAmt); 1518 // High bits known zero. 1519 Known.Zero.setHighBits(ShAmt); 1520 } 1521 break; 1522 } 1523 case ISD::SRA: { 1524 SDValue Op0 = Op.getOperand(0); 1525 SDValue Op1 = Op.getOperand(1); 1526 EVT ShiftVT = Op1.getValueType(); 1527 1528 // If we only want bits that already match the signbit then we don't need 1529 // to shift. 1530 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1531 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1532 NumHiDemandedBits) 1533 return TLO.CombineTo(Op, Op0); 1534 1535 // If this is an arithmetic shift right and only the low-bit is set, we can 1536 // always convert this into a logical shr, even if the shift amount is 1537 // variable. The low bit of the shift cannot be an input sign bit unless 1538 // the shift amount is >= the size of the datatype, which is undefined. 1539 if (DemandedBits.isOneValue()) 1540 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1541 1542 if (const APInt *SA = 1543 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1544 unsigned ShAmt = SA->getZExtValue(); 1545 if (ShAmt == 0) 1546 return TLO.CombineTo(Op, Op0); 1547 1548 APInt InDemandedMask = (DemandedBits << ShAmt); 1549 1550 // If the shift is exact, then it does demand the low bits (and knows that 1551 // they are zero). 1552 if (Op->getFlags().hasExact()) 1553 InDemandedMask.setLowBits(ShAmt); 1554 1555 // If any of the demanded bits are produced by the sign extension, we also 1556 // demand the input sign bit. 1557 if (DemandedBits.countLeadingZeros() < ShAmt) 1558 InDemandedMask.setSignBit(); 1559 1560 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1561 Depth + 1)) 1562 return true; 1563 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1564 Known.Zero.lshrInPlace(ShAmt); 1565 Known.One.lshrInPlace(ShAmt); 1566 1567 // If the input sign bit is known to be zero, or if none of the top bits 1568 // are demanded, turn this into an unsigned shift right. 1569 if (Known.Zero[BitWidth - ShAmt - 1] || 1570 DemandedBits.countLeadingZeros() >= ShAmt) { 1571 SDNodeFlags Flags; 1572 Flags.setExact(Op->getFlags().hasExact()); 1573 return TLO.CombineTo( 1574 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1575 } 1576 1577 int Log2 = DemandedBits.exactLogBase2(); 1578 if (Log2 >= 0) { 1579 // The bit must come from the sign. 1580 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1581 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1582 } 1583 1584 if (Known.One[BitWidth - ShAmt - 1]) 1585 // New bits are known one. 1586 Known.One.setHighBits(ShAmt); 1587 1588 // Attempt to avoid multi-use ops if we don't need anything from them. 1589 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1590 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1591 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1592 if (DemandedOp0) { 1593 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1594 return TLO.CombineTo(Op, NewOp); 1595 } 1596 } 1597 } 1598 break; 1599 } 1600 case ISD::FSHL: 1601 case ISD::FSHR: { 1602 SDValue Op0 = Op.getOperand(0); 1603 SDValue Op1 = Op.getOperand(1); 1604 SDValue Op2 = Op.getOperand(2); 1605 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1606 1607 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1608 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1609 1610 // For fshl, 0-shift returns the 1st arg. 1611 // For fshr, 0-shift returns the 2nd arg. 1612 if (Amt == 0) { 1613 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1614 Known, TLO, Depth + 1)) 1615 return true; 1616 break; 1617 } 1618 1619 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1620 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1621 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1622 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1623 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1624 Depth + 1)) 1625 return true; 1626 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 1630 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1631 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1632 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1633 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1634 Known.One |= Known2.One; 1635 Known.Zero |= Known2.Zero; 1636 } 1637 break; 1638 } 1639 case ISD::ROTL: 1640 case ISD::ROTR: { 1641 SDValue Op0 = Op.getOperand(0); 1642 1643 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1644 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1645 return TLO.CombineTo(Op, Op0); 1646 break; 1647 } 1648 case ISD::BITREVERSE: { 1649 SDValue Src = Op.getOperand(0); 1650 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1651 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1652 Depth + 1)) 1653 return true; 1654 Known.One = Known2.One.reverseBits(); 1655 Known.Zero = Known2.Zero.reverseBits(); 1656 break; 1657 } 1658 case ISD::BSWAP: { 1659 SDValue Src = Op.getOperand(0); 1660 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1661 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1662 Depth + 1)) 1663 return true; 1664 Known.One = Known2.One.byteSwap(); 1665 Known.Zero = Known2.Zero.byteSwap(); 1666 break; 1667 } 1668 case ISD::SIGN_EXTEND_INREG: { 1669 SDValue Op0 = Op.getOperand(0); 1670 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1671 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1672 1673 // If we only care about the highest bit, don't bother shifting right. 1674 if (DemandedBits.isSignMask()) { 1675 unsigned NumSignBits = 1676 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1677 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1678 // However if the input is already sign extended we expect the sign 1679 // extension to be dropped altogether later and do not simplify. 1680 if (!AlreadySignExtended) { 1681 // Compute the correct shift amount type, which must be getShiftAmountTy 1682 // for scalar types after legalization. 1683 EVT ShiftAmtTy = VT; 1684 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1685 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1686 1687 SDValue ShiftAmt = 1688 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1689 return TLO.CombineTo(Op, 1690 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1691 } 1692 } 1693 1694 // If none of the extended bits are demanded, eliminate the sextinreg. 1695 if (DemandedBits.getActiveBits() <= ExVTBits) 1696 return TLO.CombineTo(Op, Op0); 1697 1698 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1699 1700 // Since the sign extended bits are demanded, we know that the sign 1701 // bit is demanded. 1702 InputDemandedBits.setBit(ExVTBits - 1); 1703 1704 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1705 return true; 1706 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1707 1708 // If the sign bit of the input is known set or clear, then we know the 1709 // top bits of the result. 1710 1711 // If the input sign bit is known zero, convert this into a zero extension. 1712 if (Known.Zero[ExVTBits - 1]) 1713 return TLO.CombineTo( 1714 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1715 1716 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1717 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1718 Known.One.setBitsFrom(ExVTBits); 1719 Known.Zero &= Mask; 1720 } else { // Input sign bit unknown 1721 Known.Zero &= Mask; 1722 Known.One &= Mask; 1723 } 1724 break; 1725 } 1726 case ISD::BUILD_PAIR: { 1727 EVT HalfVT = Op.getOperand(0).getValueType(); 1728 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1729 1730 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1731 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1732 1733 KnownBits KnownLo, KnownHi; 1734 1735 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1736 return true; 1737 1738 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1739 return true; 1740 1741 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1742 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1743 1744 Known.One = KnownLo.One.zext(BitWidth) | 1745 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1746 break; 1747 } 1748 case ISD::ZERO_EXTEND: 1749 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1750 SDValue Src = Op.getOperand(0); 1751 EVT SrcVT = Src.getValueType(); 1752 unsigned InBits = SrcVT.getScalarSizeInBits(); 1753 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1754 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1755 1756 // If none of the top bits are demanded, convert this into an any_extend. 1757 if (DemandedBits.getActiveBits() <= InBits) { 1758 // If we only need the non-extended bits of the bottom element 1759 // then we can just bitcast to the result. 1760 if (IsVecInReg && DemandedElts == 1 && 1761 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1762 TLO.DAG.getDataLayout().isLittleEndian()) 1763 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1764 1765 unsigned Opc = 1766 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1767 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1768 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1769 } 1770 1771 APInt InDemandedBits = DemandedBits.trunc(InBits); 1772 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1773 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1774 Depth + 1)) 1775 return true; 1776 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1777 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1778 Known = Known.zext(BitWidth); 1779 break; 1780 } 1781 case ISD::SIGN_EXTEND: 1782 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1783 SDValue Src = Op.getOperand(0); 1784 EVT SrcVT = Src.getValueType(); 1785 unsigned InBits = SrcVT.getScalarSizeInBits(); 1786 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1787 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1788 1789 // If none of the top bits are demanded, convert this into an any_extend. 1790 if (DemandedBits.getActiveBits() <= InBits) { 1791 // If we only need the non-extended bits of the bottom element 1792 // then we can just bitcast to the result. 1793 if (IsVecInReg && DemandedElts == 1 && 1794 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1795 TLO.DAG.getDataLayout().isLittleEndian()) 1796 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1797 1798 unsigned Opc = 1799 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1800 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1801 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1802 } 1803 1804 APInt InDemandedBits = DemandedBits.trunc(InBits); 1805 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1806 1807 // Since some of the sign extended bits are demanded, we know that the sign 1808 // bit is demanded. 1809 InDemandedBits.setBit(InBits - 1); 1810 1811 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1812 Depth + 1)) 1813 return true; 1814 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1815 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1816 1817 // If the sign bit is known one, the top bits match. 1818 Known = Known.sext(BitWidth); 1819 1820 // If the sign bit is known zero, convert this to a zero extend. 1821 if (Known.isNonNegative()) { 1822 unsigned Opc = 1823 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1824 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1825 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1826 } 1827 break; 1828 } 1829 case ISD::ANY_EXTEND: 1830 case ISD::ANY_EXTEND_VECTOR_INREG: { 1831 SDValue Src = Op.getOperand(0); 1832 EVT SrcVT = Src.getValueType(); 1833 unsigned InBits = SrcVT.getScalarSizeInBits(); 1834 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1835 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1836 1837 // If we only need the bottom element then we can just bitcast. 1838 // TODO: Handle ANY_EXTEND? 1839 if (IsVecInReg && DemandedElts == 1 && 1840 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1841 TLO.DAG.getDataLayout().isLittleEndian()) 1842 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1843 1844 APInt InDemandedBits = DemandedBits.trunc(InBits); 1845 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1846 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1847 Depth + 1)) 1848 return true; 1849 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1850 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1851 Known = Known.anyext(BitWidth); 1852 1853 // Attempt to avoid multi-use ops if we don't need anything from them. 1854 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1855 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1856 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1857 break; 1858 } 1859 case ISD::TRUNCATE: { 1860 SDValue Src = Op.getOperand(0); 1861 1862 // Simplify the input, using demanded bit information, and compute the known 1863 // zero/one bits live out. 1864 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1865 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1866 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1867 return true; 1868 Known = Known.trunc(BitWidth); 1869 1870 // Attempt to avoid multi-use ops if we don't need anything from them. 1871 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1872 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1873 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1874 1875 // If the input is only used by this truncate, see if we can shrink it based 1876 // on the known demanded bits. 1877 if (Src.getNode()->hasOneUse()) { 1878 switch (Src.getOpcode()) { 1879 default: 1880 break; 1881 case ISD::SRL: 1882 // Shrink SRL by a constant if none of the high bits shifted in are 1883 // demanded. 1884 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1885 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1886 // undesirable. 1887 break; 1888 1889 SDValue ShAmt = Src.getOperand(1); 1890 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 1891 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 1892 break; 1893 uint64_t ShVal = ShAmtC->getZExtValue(); 1894 1895 APInt HighBits = 1896 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1897 HighBits.lshrInPlace(ShVal); 1898 HighBits = HighBits.trunc(BitWidth); 1899 1900 if (!(HighBits & DemandedBits)) { 1901 // None of the shifted in bits are needed. Add a truncate of the 1902 // shift input, then shift it. 1903 if (TLO.LegalTypes()) 1904 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1905 SDValue NewTrunc = 1906 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1907 return TLO.CombineTo( 1908 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 1909 } 1910 break; 1911 } 1912 } 1913 1914 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1915 break; 1916 } 1917 case ISD::AssertZext: { 1918 // AssertZext demands all of the high bits, plus any of the low bits 1919 // demanded by its users. 1920 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1921 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1922 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1923 TLO, Depth + 1)) 1924 return true; 1925 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1926 1927 Known.Zero |= ~InMask; 1928 break; 1929 } 1930 case ISD::EXTRACT_VECTOR_ELT: { 1931 SDValue Src = Op.getOperand(0); 1932 SDValue Idx = Op.getOperand(1); 1933 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1934 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1935 1936 // Demand the bits from every vector element without a constant index. 1937 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1938 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1939 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1940 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1941 1942 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1943 // anything about the extended bits. 1944 APInt DemandedSrcBits = DemandedBits; 1945 if (BitWidth > EltBitWidth) 1946 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1947 1948 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1949 Depth + 1)) 1950 return true; 1951 1952 // Attempt to avoid multi-use ops if we don't need anything from them. 1953 if (!DemandedSrcBits.isAllOnesValue() || 1954 !DemandedSrcElts.isAllOnesValue()) { 1955 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1956 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 1957 SDValue NewOp = 1958 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 1959 return TLO.CombineTo(Op, NewOp); 1960 } 1961 } 1962 1963 Known = Known2; 1964 if (BitWidth > EltBitWidth) 1965 Known = Known.anyext(BitWidth); 1966 break; 1967 } 1968 case ISD::BITCAST: { 1969 SDValue Src = Op.getOperand(0); 1970 EVT SrcVT = Src.getValueType(); 1971 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1972 1973 // If this is an FP->Int bitcast and if the sign bit is the only 1974 // thing demanded, turn this into a FGETSIGN. 1975 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1976 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1977 SrcVT.isFloatingPoint()) { 1978 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1979 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1980 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1981 SrcVT != MVT::f128) { 1982 // Cannot eliminate/lower SHL for f128 yet. 1983 EVT Ty = OpVTLegal ? VT : MVT::i32; 1984 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1985 // place. We expect the SHL to be eliminated by other optimizations. 1986 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1987 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1988 if (!OpVTLegal && OpVTSizeInBits > 32) 1989 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1990 unsigned ShVal = Op.getValueSizeInBits() - 1; 1991 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1992 return TLO.CombineTo(Op, 1993 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1994 } 1995 } 1996 1997 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1998 // Demand the elt/bit if any of the original elts/bits are demanded. 1999 // TODO - bigendian once we have test coverage. 2000 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2001 TLO.DAG.getDataLayout().isLittleEndian()) { 2002 unsigned Scale = BitWidth / NumSrcEltBits; 2003 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2004 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2005 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2006 for (unsigned i = 0; i != Scale; ++i) { 2007 unsigned Offset = i * NumSrcEltBits; 2008 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2009 if (!Sub.isNullValue()) { 2010 DemandedSrcBits |= Sub; 2011 for (unsigned j = 0; j != NumElts; ++j) 2012 if (DemandedElts[j]) 2013 DemandedSrcElts.setBit((j * Scale) + i); 2014 } 2015 } 2016 2017 APInt KnownSrcUndef, KnownSrcZero; 2018 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2019 KnownSrcZero, TLO, Depth + 1)) 2020 return true; 2021 2022 KnownBits KnownSrcBits; 2023 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2024 KnownSrcBits, TLO, Depth + 1)) 2025 return true; 2026 } else if ((NumSrcEltBits % BitWidth) == 0 && 2027 TLO.DAG.getDataLayout().isLittleEndian()) { 2028 unsigned Scale = NumSrcEltBits / BitWidth; 2029 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2030 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2031 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2032 for (unsigned i = 0; i != NumElts; ++i) 2033 if (DemandedElts[i]) { 2034 unsigned Offset = (i % Scale) * BitWidth; 2035 DemandedSrcBits.insertBits(DemandedBits, Offset); 2036 DemandedSrcElts.setBit(i / Scale); 2037 } 2038 2039 if (SrcVT.isVector()) { 2040 APInt KnownSrcUndef, KnownSrcZero; 2041 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2042 KnownSrcZero, TLO, Depth + 1)) 2043 return true; 2044 } 2045 2046 KnownBits KnownSrcBits; 2047 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2048 KnownSrcBits, TLO, Depth + 1)) 2049 return true; 2050 } 2051 2052 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2053 // recursive call where Known may be useful to the caller. 2054 if (Depth > 0) { 2055 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2056 return false; 2057 } 2058 break; 2059 } 2060 case ISD::ADD: 2061 case ISD::MUL: 2062 case ISD::SUB: { 2063 // Add, Sub, and Mul don't demand any bits in positions beyond that 2064 // of the highest bit demanded of them. 2065 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2066 SDNodeFlags Flags = Op.getNode()->getFlags(); 2067 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2068 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2069 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2070 Depth + 1) || 2071 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2072 Depth + 1) || 2073 // See if the operation should be performed at a smaller bit width. 2074 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2075 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2076 // Disable the nsw and nuw flags. We can no longer guarantee that we 2077 // won't wrap after simplification. 2078 Flags.setNoSignedWrap(false); 2079 Flags.setNoUnsignedWrap(false); 2080 SDValue NewOp = 2081 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2082 return TLO.CombineTo(Op, NewOp); 2083 } 2084 return true; 2085 } 2086 2087 // Attempt to avoid multi-use ops if we don't need anything from them. 2088 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2089 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2090 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2091 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2092 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2093 if (DemandedOp0 || DemandedOp1) { 2094 Flags.setNoSignedWrap(false); 2095 Flags.setNoUnsignedWrap(false); 2096 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2097 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2098 SDValue NewOp = 2099 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2100 return TLO.CombineTo(Op, NewOp); 2101 } 2102 } 2103 2104 // If we have a constant operand, we may be able to turn it into -1 if we 2105 // do not demand the high bits. This can make the constant smaller to 2106 // encode, allow more general folding, or match specialized instruction 2107 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2108 // is probably not useful (and could be detrimental). 2109 ConstantSDNode *C = isConstOrConstSplat(Op1); 2110 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2111 if (C && !C->isAllOnesValue() && !C->isOne() && 2112 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2113 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2114 // Disable the nsw and nuw flags. We can no longer guarantee that we 2115 // won't wrap after simplification. 2116 Flags.setNoSignedWrap(false); 2117 Flags.setNoUnsignedWrap(false); 2118 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2119 return TLO.CombineTo(Op, NewOp); 2120 } 2121 2122 LLVM_FALLTHROUGH; 2123 } 2124 default: 2125 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2126 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2127 Known, TLO, Depth)) 2128 return true; 2129 break; 2130 } 2131 2132 // Just use computeKnownBits to compute output bits. 2133 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2134 break; 2135 } 2136 2137 // If we know the value of all of the demanded bits, return this as a 2138 // constant. 2139 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2140 // Avoid folding to a constant if any OpaqueConstant is involved. 2141 const SDNode *N = Op.getNode(); 2142 for (SDNodeIterator I = SDNodeIterator::begin(N), 2143 E = SDNodeIterator::end(N); 2144 I != E; ++I) { 2145 SDNode *Op = *I; 2146 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2147 if (C->isOpaque()) 2148 return false; 2149 } 2150 // TODO: Handle float bits as well. 2151 if (VT.isInteger()) 2152 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2153 } 2154 2155 return false; 2156 } 2157 2158 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2159 const APInt &DemandedElts, 2160 APInt &KnownUndef, 2161 APInt &KnownZero, 2162 DAGCombinerInfo &DCI) const { 2163 SelectionDAG &DAG = DCI.DAG; 2164 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2165 !DCI.isBeforeLegalizeOps()); 2166 2167 bool Simplified = 2168 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2169 if (Simplified) { 2170 DCI.AddToWorklist(Op.getNode()); 2171 DCI.CommitTargetLoweringOpt(TLO); 2172 } 2173 2174 return Simplified; 2175 } 2176 2177 /// Given a vector binary operation and known undefined elements for each input 2178 /// operand, compute whether each element of the output is undefined. 2179 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2180 const APInt &UndefOp0, 2181 const APInt &UndefOp1) { 2182 EVT VT = BO.getValueType(); 2183 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2184 "Vector binop only"); 2185 2186 EVT EltVT = VT.getVectorElementType(); 2187 unsigned NumElts = VT.getVectorNumElements(); 2188 assert(UndefOp0.getBitWidth() == NumElts && 2189 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2190 2191 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2192 const APInt &UndefVals) { 2193 if (UndefVals[Index]) 2194 return DAG.getUNDEF(EltVT); 2195 2196 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2197 // Try hard to make sure that the getNode() call is not creating temporary 2198 // nodes. Ignore opaque integers because they do not constant fold. 2199 SDValue Elt = BV->getOperand(Index); 2200 auto *C = dyn_cast<ConstantSDNode>(Elt); 2201 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2202 return Elt; 2203 } 2204 2205 return SDValue(); 2206 }; 2207 2208 APInt KnownUndef = APInt::getNullValue(NumElts); 2209 for (unsigned i = 0; i != NumElts; ++i) { 2210 // If both inputs for this element are either constant or undef and match 2211 // the element type, compute the constant/undef result for this element of 2212 // the vector. 2213 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2214 // not handle FP constants. The code within getNode() should be refactored 2215 // to avoid the danger of creating a bogus temporary node here. 2216 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2217 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2218 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2219 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2220 KnownUndef.setBit(i); 2221 } 2222 return KnownUndef; 2223 } 2224 2225 bool TargetLowering::SimplifyDemandedVectorElts( 2226 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2227 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2228 bool AssumeSingleUse) const { 2229 EVT VT = Op.getValueType(); 2230 APInt DemandedElts = OriginalDemandedElts; 2231 unsigned NumElts = DemandedElts.getBitWidth(); 2232 assert(VT.isVector() && "Expected vector op"); 2233 assert(VT.getVectorNumElements() == NumElts && 2234 "Mask size mismatches value type element count!"); 2235 2236 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2237 2238 // Undef operand. 2239 if (Op.isUndef()) { 2240 KnownUndef.setAllBits(); 2241 return false; 2242 } 2243 2244 // If Op has other users, assume that all elements are needed. 2245 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2246 DemandedElts.setAllBits(); 2247 2248 // Not demanding any elements from Op. 2249 if (DemandedElts == 0) { 2250 KnownUndef.setAllBits(); 2251 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2252 } 2253 2254 // Limit search depth. 2255 if (Depth >= SelectionDAG::MaxRecursionDepth) 2256 return false; 2257 2258 SDLoc DL(Op); 2259 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2260 2261 switch (Op.getOpcode()) { 2262 case ISD::SCALAR_TO_VECTOR: { 2263 if (!DemandedElts[0]) { 2264 KnownUndef.setAllBits(); 2265 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2266 } 2267 KnownUndef.setHighBits(NumElts - 1); 2268 break; 2269 } 2270 case ISD::BITCAST: { 2271 SDValue Src = Op.getOperand(0); 2272 EVT SrcVT = Src.getValueType(); 2273 2274 // We only handle vectors here. 2275 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2276 if (!SrcVT.isVector()) 2277 break; 2278 2279 // Fast handling of 'identity' bitcasts. 2280 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2281 if (NumSrcElts == NumElts) 2282 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2283 KnownZero, TLO, Depth + 1); 2284 2285 APInt SrcZero, SrcUndef; 2286 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2287 2288 // Bitcast from 'large element' src vector to 'small element' vector, we 2289 // must demand a source element if any DemandedElt maps to it. 2290 if ((NumElts % NumSrcElts) == 0) { 2291 unsigned Scale = NumElts / NumSrcElts; 2292 for (unsigned i = 0; i != NumElts; ++i) 2293 if (DemandedElts[i]) 2294 SrcDemandedElts.setBit(i / Scale); 2295 2296 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2297 TLO, Depth + 1)) 2298 return true; 2299 2300 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2301 // of the large element. 2302 // TODO - bigendian once we have test coverage. 2303 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2304 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2305 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2306 for (unsigned i = 0; i != NumElts; ++i) 2307 if (DemandedElts[i]) { 2308 unsigned Ofs = (i % Scale) * EltSizeInBits; 2309 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2310 } 2311 2312 KnownBits Known; 2313 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2314 TLO, Depth + 1)) 2315 return true; 2316 } 2317 2318 // If the src element is zero/undef then all the output elements will be - 2319 // only demanded elements are guaranteed to be correct. 2320 for (unsigned i = 0; i != NumSrcElts; ++i) { 2321 if (SrcDemandedElts[i]) { 2322 if (SrcZero[i]) 2323 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2324 if (SrcUndef[i]) 2325 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2326 } 2327 } 2328 } 2329 2330 // Bitcast from 'small element' src vector to 'large element' vector, we 2331 // demand all smaller source elements covered by the larger demanded element 2332 // of this vector. 2333 if ((NumSrcElts % NumElts) == 0) { 2334 unsigned Scale = NumSrcElts / NumElts; 2335 for (unsigned i = 0; i != NumElts; ++i) 2336 if (DemandedElts[i]) 2337 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2338 2339 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2340 TLO, Depth + 1)) 2341 return true; 2342 2343 // If all the src elements covering an output element are zero/undef, then 2344 // the output element will be as well, assuming it was demanded. 2345 for (unsigned i = 0; i != NumElts; ++i) { 2346 if (DemandedElts[i]) { 2347 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2348 KnownZero.setBit(i); 2349 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2350 KnownUndef.setBit(i); 2351 } 2352 } 2353 } 2354 break; 2355 } 2356 case ISD::BUILD_VECTOR: { 2357 // Check all elements and simplify any unused elements with UNDEF. 2358 if (!DemandedElts.isAllOnesValue()) { 2359 // Don't simplify BROADCASTS. 2360 if (llvm::any_of(Op->op_values(), 2361 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2362 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2363 bool Updated = false; 2364 for (unsigned i = 0; i != NumElts; ++i) { 2365 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2366 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2367 KnownUndef.setBit(i); 2368 Updated = true; 2369 } 2370 } 2371 if (Updated) 2372 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2373 } 2374 } 2375 for (unsigned i = 0; i != NumElts; ++i) { 2376 SDValue SrcOp = Op.getOperand(i); 2377 if (SrcOp.isUndef()) { 2378 KnownUndef.setBit(i); 2379 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2380 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2381 KnownZero.setBit(i); 2382 } 2383 } 2384 break; 2385 } 2386 case ISD::CONCAT_VECTORS: { 2387 EVT SubVT = Op.getOperand(0).getValueType(); 2388 unsigned NumSubVecs = Op.getNumOperands(); 2389 unsigned NumSubElts = SubVT.getVectorNumElements(); 2390 for (unsigned i = 0; i != NumSubVecs; ++i) { 2391 SDValue SubOp = Op.getOperand(i); 2392 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2393 APInt SubUndef, SubZero; 2394 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2395 Depth + 1)) 2396 return true; 2397 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2398 KnownZero.insertBits(SubZero, i * NumSubElts); 2399 } 2400 break; 2401 } 2402 case ISD::INSERT_SUBVECTOR: { 2403 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2404 break; 2405 SDValue Base = Op.getOperand(0); 2406 SDValue Sub = Op.getOperand(1); 2407 EVT SubVT = Sub.getValueType(); 2408 unsigned NumSubElts = SubVT.getVectorNumElements(); 2409 const APInt &Idx = Op.getConstantOperandAPInt(2); 2410 if (Idx.ugt(NumElts - NumSubElts)) 2411 break; 2412 unsigned SubIdx = Idx.getZExtValue(); 2413 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2414 APInt SubUndef, SubZero; 2415 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2416 Depth + 1)) 2417 return true; 2418 APInt BaseElts = DemandedElts; 2419 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2420 2421 // If none of the base operand elements are demanded, replace it with undef. 2422 if (!BaseElts && !Base.isUndef()) 2423 return TLO.CombineTo(Op, 2424 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2425 TLO.DAG.getUNDEF(VT), 2426 Op.getOperand(1), 2427 Op.getOperand(2))); 2428 2429 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2430 Depth + 1)) 2431 return true; 2432 KnownUndef.insertBits(SubUndef, SubIdx); 2433 KnownZero.insertBits(SubZero, SubIdx); 2434 break; 2435 } 2436 case ISD::EXTRACT_SUBVECTOR: { 2437 SDValue Src = Op.getOperand(0); 2438 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2439 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2440 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2441 // Offset the demanded elts by the subvector index. 2442 uint64_t Idx = SubIdx->getZExtValue(); 2443 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2444 APInt SrcUndef, SrcZero; 2445 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2446 Depth + 1)) 2447 return true; 2448 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2449 KnownZero = SrcZero.extractBits(NumElts, Idx); 2450 } 2451 break; 2452 } 2453 case ISD::INSERT_VECTOR_ELT: { 2454 SDValue Vec = Op.getOperand(0); 2455 SDValue Scl = Op.getOperand(1); 2456 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2457 2458 // For a legal, constant insertion index, if we don't need this insertion 2459 // then strip it, else remove it from the demanded elts. 2460 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2461 unsigned Idx = CIdx->getZExtValue(); 2462 if (!DemandedElts[Idx]) 2463 return TLO.CombineTo(Op, Vec); 2464 2465 APInt DemandedVecElts(DemandedElts); 2466 DemandedVecElts.clearBit(Idx); 2467 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2468 KnownZero, TLO, Depth + 1)) 2469 return true; 2470 2471 KnownUndef.clearBit(Idx); 2472 if (Scl.isUndef()) 2473 KnownUndef.setBit(Idx); 2474 2475 KnownZero.clearBit(Idx); 2476 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2477 KnownZero.setBit(Idx); 2478 break; 2479 } 2480 2481 APInt VecUndef, VecZero; 2482 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2483 Depth + 1)) 2484 return true; 2485 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2486 break; 2487 } 2488 case ISD::VSELECT: { 2489 // Try to transform the select condition based on the current demanded 2490 // elements. 2491 // TODO: If a condition element is undef, we can choose from one arm of the 2492 // select (and if one arm is undef, then we can propagate that to the 2493 // result). 2494 // TODO - add support for constant vselect masks (see IR version of this). 2495 APInt UnusedUndef, UnusedZero; 2496 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2497 UnusedZero, TLO, Depth + 1)) 2498 return true; 2499 2500 // See if we can simplify either vselect operand. 2501 APInt DemandedLHS(DemandedElts); 2502 APInt DemandedRHS(DemandedElts); 2503 APInt UndefLHS, ZeroLHS; 2504 APInt UndefRHS, ZeroRHS; 2505 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2506 ZeroLHS, TLO, Depth + 1)) 2507 return true; 2508 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2509 ZeroRHS, TLO, Depth + 1)) 2510 return true; 2511 2512 KnownUndef = UndefLHS & UndefRHS; 2513 KnownZero = ZeroLHS & ZeroRHS; 2514 break; 2515 } 2516 case ISD::VECTOR_SHUFFLE: { 2517 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2518 2519 // Collect demanded elements from shuffle operands.. 2520 APInt DemandedLHS(NumElts, 0); 2521 APInt DemandedRHS(NumElts, 0); 2522 for (unsigned i = 0; i != NumElts; ++i) { 2523 int M = ShuffleMask[i]; 2524 if (M < 0 || !DemandedElts[i]) 2525 continue; 2526 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2527 if (M < (int)NumElts) 2528 DemandedLHS.setBit(M); 2529 else 2530 DemandedRHS.setBit(M - NumElts); 2531 } 2532 2533 // See if we can simplify either shuffle operand. 2534 APInt UndefLHS, ZeroLHS; 2535 APInt UndefRHS, ZeroRHS; 2536 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2537 ZeroLHS, TLO, Depth + 1)) 2538 return true; 2539 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2540 ZeroRHS, TLO, Depth + 1)) 2541 return true; 2542 2543 // Simplify mask using undef elements from LHS/RHS. 2544 bool Updated = false; 2545 bool IdentityLHS = true, IdentityRHS = true; 2546 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2547 for (unsigned i = 0; i != NumElts; ++i) { 2548 int &M = NewMask[i]; 2549 if (M < 0) 2550 continue; 2551 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2552 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2553 Updated = true; 2554 M = -1; 2555 } 2556 IdentityLHS &= (M < 0) || (M == (int)i); 2557 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2558 } 2559 2560 // Update legal shuffle masks based on demanded elements if it won't reduce 2561 // to Identity which can cause premature removal of the shuffle mask. 2562 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2563 SDValue LegalShuffle = 2564 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2565 NewMask, TLO.DAG); 2566 if (LegalShuffle) 2567 return TLO.CombineTo(Op, LegalShuffle); 2568 } 2569 2570 // Propagate undef/zero elements from LHS/RHS. 2571 for (unsigned i = 0; i != NumElts; ++i) { 2572 int M = ShuffleMask[i]; 2573 if (M < 0) { 2574 KnownUndef.setBit(i); 2575 } else if (M < (int)NumElts) { 2576 if (UndefLHS[M]) 2577 KnownUndef.setBit(i); 2578 if (ZeroLHS[M]) 2579 KnownZero.setBit(i); 2580 } else { 2581 if (UndefRHS[M - NumElts]) 2582 KnownUndef.setBit(i); 2583 if (ZeroRHS[M - NumElts]) 2584 KnownZero.setBit(i); 2585 } 2586 } 2587 break; 2588 } 2589 case ISD::ANY_EXTEND_VECTOR_INREG: 2590 case ISD::SIGN_EXTEND_VECTOR_INREG: 2591 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2592 APInt SrcUndef, SrcZero; 2593 SDValue Src = Op.getOperand(0); 2594 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2595 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2596 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2597 Depth + 1)) 2598 return true; 2599 KnownZero = SrcZero.zextOrTrunc(NumElts); 2600 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2601 2602 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2603 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2604 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2605 // aext - if we just need the bottom element then we can bitcast. 2606 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2607 } 2608 2609 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2610 // zext(undef) upper bits are guaranteed to be zero. 2611 if (DemandedElts.isSubsetOf(KnownUndef)) 2612 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2613 KnownUndef.clearAllBits(); 2614 } 2615 break; 2616 } 2617 2618 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2619 // MAX, saturated math, etc. 2620 case ISD::OR: 2621 case ISD::XOR: 2622 case ISD::ADD: 2623 case ISD::SUB: 2624 case ISD::FADD: 2625 case ISD::FSUB: 2626 case ISD::FMUL: 2627 case ISD::FDIV: 2628 case ISD::FREM: { 2629 APInt UndefRHS, ZeroRHS; 2630 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2631 ZeroRHS, TLO, Depth + 1)) 2632 return true; 2633 APInt UndefLHS, ZeroLHS; 2634 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2635 ZeroLHS, TLO, Depth + 1)) 2636 return true; 2637 2638 KnownZero = ZeroLHS & ZeroRHS; 2639 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2640 break; 2641 } 2642 case ISD::SHL: 2643 case ISD::SRL: 2644 case ISD::SRA: 2645 case ISD::ROTL: 2646 case ISD::ROTR: { 2647 APInt UndefRHS, ZeroRHS; 2648 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2649 ZeroRHS, TLO, Depth + 1)) 2650 return true; 2651 APInt UndefLHS, ZeroLHS; 2652 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2653 ZeroLHS, TLO, Depth + 1)) 2654 return true; 2655 2656 KnownZero = ZeroLHS; 2657 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2658 break; 2659 } 2660 case ISD::MUL: 2661 case ISD::AND: { 2662 APInt SrcUndef, SrcZero; 2663 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2664 SrcZero, TLO, Depth + 1)) 2665 return true; 2666 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2667 KnownZero, TLO, Depth + 1)) 2668 return true; 2669 2670 // If either side has a zero element, then the result element is zero, even 2671 // if the other is an UNDEF. 2672 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2673 // and then handle 'and' nodes with the rest of the binop opcodes. 2674 KnownZero |= SrcZero; 2675 KnownUndef &= SrcUndef; 2676 KnownUndef &= ~KnownZero; 2677 break; 2678 } 2679 case ISD::TRUNCATE: 2680 case ISD::SIGN_EXTEND: 2681 case ISD::ZERO_EXTEND: 2682 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2683 KnownZero, TLO, Depth + 1)) 2684 return true; 2685 2686 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2687 // zext(undef) upper bits are guaranteed to be zero. 2688 if (DemandedElts.isSubsetOf(KnownUndef)) 2689 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2690 KnownUndef.clearAllBits(); 2691 } 2692 break; 2693 default: { 2694 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2695 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2696 KnownZero, TLO, Depth)) 2697 return true; 2698 } else { 2699 KnownBits Known; 2700 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2701 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2702 TLO, Depth, AssumeSingleUse)) 2703 return true; 2704 } 2705 break; 2706 } 2707 } 2708 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2709 2710 // Constant fold all undef cases. 2711 // TODO: Handle zero cases as well. 2712 if (DemandedElts.isSubsetOf(KnownUndef)) 2713 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2714 2715 return false; 2716 } 2717 2718 /// Determine which of the bits specified in Mask are known to be either zero or 2719 /// one and return them in the Known. 2720 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2721 KnownBits &Known, 2722 const APInt &DemandedElts, 2723 const SelectionDAG &DAG, 2724 unsigned Depth) const { 2725 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2726 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2727 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2728 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2729 "Should use MaskedValueIsZero if you don't know whether Op" 2730 " is a target node!"); 2731 Known.resetAll(); 2732 } 2733 2734 void TargetLowering::computeKnownBitsForTargetInstr( 2735 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2736 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2737 unsigned Depth) const { 2738 Known.resetAll(); 2739 } 2740 2741 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2742 KnownBits &Known, 2743 const APInt &DemandedElts, 2744 const SelectionDAG &DAG, 2745 unsigned Depth) const { 2746 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2747 2748 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2749 // The low bits are known zero if the pointer is aligned. 2750 Known.Zero.setLowBits(Log2_32(Align)); 2751 } 2752 } 2753 2754 /// This method can be implemented by targets that want to expose additional 2755 /// information about sign bits to the DAG Combiner. 2756 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2757 const APInt &, 2758 const SelectionDAG &, 2759 unsigned Depth) const { 2760 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2761 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2762 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2763 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2764 "Should use ComputeNumSignBits if you don't know whether Op" 2765 " is a target node!"); 2766 return 1; 2767 } 2768 2769 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2770 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2771 TargetLoweringOpt &TLO, unsigned Depth) const { 2772 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2773 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2774 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2775 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2776 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2777 " is a target node!"); 2778 return false; 2779 } 2780 2781 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2782 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2783 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2784 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2785 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2786 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2787 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2788 "Should use SimplifyDemandedBits if you don't know whether Op" 2789 " is a target node!"); 2790 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2791 return false; 2792 } 2793 2794 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2795 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2796 SelectionDAG &DAG, unsigned Depth) const { 2797 assert( 2798 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2799 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2800 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2801 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2802 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2803 " is a target node!"); 2804 return SDValue(); 2805 } 2806 2807 SDValue 2808 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2809 SDValue N1, MutableArrayRef<int> Mask, 2810 SelectionDAG &DAG) const { 2811 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2812 if (!LegalMask) { 2813 std::swap(N0, N1); 2814 ShuffleVectorSDNode::commuteMask(Mask); 2815 LegalMask = isShuffleMaskLegal(Mask, VT); 2816 } 2817 2818 if (!LegalMask) 2819 return SDValue(); 2820 2821 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2822 } 2823 2824 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2825 return nullptr; 2826 } 2827 2828 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2829 const SelectionDAG &DAG, 2830 bool SNaN, 2831 unsigned Depth) const { 2832 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2833 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2834 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2835 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2836 "Should use isKnownNeverNaN if you don't know whether Op" 2837 " is a target node!"); 2838 return false; 2839 } 2840 2841 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2842 // work with truncating build vectors and vectors with elements of less than 2843 // 8 bits. 2844 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2845 if (!N) 2846 return false; 2847 2848 APInt CVal; 2849 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2850 CVal = CN->getAPIntValue(); 2851 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2852 auto *CN = BV->getConstantSplatNode(); 2853 if (!CN) 2854 return false; 2855 2856 // If this is a truncating build vector, truncate the splat value. 2857 // Otherwise, we may fail to match the expected values below. 2858 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2859 CVal = CN->getAPIntValue(); 2860 if (BVEltWidth < CVal.getBitWidth()) 2861 CVal = CVal.trunc(BVEltWidth); 2862 } else { 2863 return false; 2864 } 2865 2866 switch (getBooleanContents(N->getValueType(0))) { 2867 case UndefinedBooleanContent: 2868 return CVal[0]; 2869 case ZeroOrOneBooleanContent: 2870 return CVal.isOneValue(); 2871 case ZeroOrNegativeOneBooleanContent: 2872 return CVal.isAllOnesValue(); 2873 } 2874 2875 llvm_unreachable("Invalid boolean contents"); 2876 } 2877 2878 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2879 if (!N) 2880 return false; 2881 2882 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2883 if (!CN) { 2884 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2885 if (!BV) 2886 return false; 2887 2888 // Only interested in constant splats, we don't care about undef 2889 // elements in identifying boolean constants and getConstantSplatNode 2890 // returns NULL if all ops are undef; 2891 CN = BV->getConstantSplatNode(); 2892 if (!CN) 2893 return false; 2894 } 2895 2896 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2897 return !CN->getAPIntValue()[0]; 2898 2899 return CN->isNullValue(); 2900 } 2901 2902 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2903 bool SExt) const { 2904 if (VT == MVT::i1) 2905 return N->isOne(); 2906 2907 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2908 switch (Cnt) { 2909 case TargetLowering::ZeroOrOneBooleanContent: 2910 // An extended value of 1 is always true, unless its original type is i1, 2911 // in which case it will be sign extended to -1. 2912 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2913 case TargetLowering::UndefinedBooleanContent: 2914 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2915 return N->isAllOnesValue() && SExt; 2916 } 2917 llvm_unreachable("Unexpected enumeration."); 2918 } 2919 2920 /// This helper function of SimplifySetCC tries to optimize the comparison when 2921 /// either operand of the SetCC node is a bitwise-and instruction. 2922 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2923 ISD::CondCode Cond, const SDLoc &DL, 2924 DAGCombinerInfo &DCI) const { 2925 // Match these patterns in any of their permutations: 2926 // (X & Y) == Y 2927 // (X & Y) != Y 2928 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2929 std::swap(N0, N1); 2930 2931 EVT OpVT = N0.getValueType(); 2932 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2933 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2934 return SDValue(); 2935 2936 SDValue X, Y; 2937 if (N0.getOperand(0) == N1) { 2938 X = N0.getOperand(1); 2939 Y = N0.getOperand(0); 2940 } else if (N0.getOperand(1) == N1) { 2941 X = N0.getOperand(0); 2942 Y = N0.getOperand(1); 2943 } else { 2944 return SDValue(); 2945 } 2946 2947 SelectionDAG &DAG = DCI.DAG; 2948 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2949 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2950 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2951 // Note that where Y is variable and is known to have at most one bit set 2952 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2953 // equivalent when Y == 0. 2954 assert(OpVT.isInteger()); 2955 Cond = ISD::getSetCCInverse(Cond, OpVT); 2956 if (DCI.isBeforeLegalizeOps() || 2957 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2958 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2959 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2960 // If the target supports an 'and-not' or 'and-complement' logic operation, 2961 // try to use that to make a comparison operation more efficient. 2962 // But don't do this transform if the mask is a single bit because there are 2963 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2964 // 'rlwinm' on PPC). 2965 2966 // Bail out if the compare operand that we want to turn into a zero is 2967 // already a zero (otherwise, infinite loop). 2968 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2969 if (YConst && YConst->isNullValue()) 2970 return SDValue(); 2971 2972 // Transform this into: ~X & Y == 0. 2973 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2974 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2975 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2976 } 2977 2978 return SDValue(); 2979 } 2980 2981 /// There are multiple IR patterns that could be checking whether certain 2982 /// truncation of a signed number would be lossy or not. The pattern which is 2983 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2984 /// We are looking for the following pattern: (KeptBits is a constant) 2985 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2986 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2987 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2988 /// We will unfold it into the natural trunc+sext pattern: 2989 /// ((%x << C) a>> C) dstcond %x 2990 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2991 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2992 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2993 const SDLoc &DL) const { 2994 // We must be comparing with a constant. 2995 ConstantSDNode *C1; 2996 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2997 return SDValue(); 2998 2999 // N0 should be: add %x, (1 << (KeptBits-1)) 3000 if (N0->getOpcode() != ISD::ADD) 3001 return SDValue(); 3002 3003 // And we must be 'add'ing a constant. 3004 ConstantSDNode *C01; 3005 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3006 return SDValue(); 3007 3008 SDValue X = N0->getOperand(0); 3009 EVT XVT = X.getValueType(); 3010 3011 // Validate constants ... 3012 3013 APInt I1 = C1->getAPIntValue(); 3014 3015 ISD::CondCode NewCond; 3016 if (Cond == ISD::CondCode::SETULT) { 3017 NewCond = ISD::CondCode::SETEQ; 3018 } else if (Cond == ISD::CondCode::SETULE) { 3019 NewCond = ISD::CondCode::SETEQ; 3020 // But need to 'canonicalize' the constant. 3021 I1 += 1; 3022 } else if (Cond == ISD::CondCode::SETUGT) { 3023 NewCond = ISD::CondCode::SETNE; 3024 // But need to 'canonicalize' the constant. 3025 I1 += 1; 3026 } else if (Cond == ISD::CondCode::SETUGE) { 3027 NewCond = ISD::CondCode::SETNE; 3028 } else 3029 return SDValue(); 3030 3031 APInt I01 = C01->getAPIntValue(); 3032 3033 auto checkConstants = [&I1, &I01]() -> bool { 3034 // Both of them must be power-of-two, and the constant from setcc is bigger. 3035 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3036 }; 3037 3038 if (checkConstants()) { 3039 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3040 } else { 3041 // What if we invert constants? (and the target predicate) 3042 I1.negate(); 3043 I01.negate(); 3044 assert(XVT.isInteger()); 3045 NewCond = getSetCCInverse(NewCond, XVT); 3046 if (!checkConstants()) 3047 return SDValue(); 3048 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3049 } 3050 3051 // They are power-of-two, so which bit is set? 3052 const unsigned KeptBits = I1.logBase2(); 3053 const unsigned KeptBitsMinusOne = I01.logBase2(); 3054 3055 // Magic! 3056 if (KeptBits != (KeptBitsMinusOne + 1)) 3057 return SDValue(); 3058 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3059 3060 // We don't want to do this in every single case. 3061 SelectionDAG &DAG = DCI.DAG; 3062 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3063 XVT, KeptBits)) 3064 return SDValue(); 3065 3066 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3067 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3068 3069 // Unfold into: ((%x << C) a>> C) cond %x 3070 // Where 'cond' will be either 'eq' or 'ne'. 3071 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3072 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3073 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3074 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3075 3076 return T2; 3077 } 3078 3079 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3080 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3081 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3082 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3083 assert(isConstOrConstSplat(N1C) && 3084 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3085 "Should be a comparison with 0."); 3086 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3087 "Valid only for [in]equality comparisons."); 3088 3089 unsigned NewShiftOpcode; 3090 SDValue X, C, Y; 3091 3092 SelectionDAG &DAG = DCI.DAG; 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 3095 // Look for '(C l>>/<< Y)'. 3096 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3097 // The shift should be one-use. 3098 if (!V.hasOneUse()) 3099 return false; 3100 unsigned OldShiftOpcode = V.getOpcode(); 3101 switch (OldShiftOpcode) { 3102 case ISD::SHL: 3103 NewShiftOpcode = ISD::SRL; 3104 break; 3105 case ISD::SRL: 3106 NewShiftOpcode = ISD::SHL; 3107 break; 3108 default: 3109 return false; // must be a logical shift. 3110 } 3111 // We should be shifting a constant. 3112 // FIXME: best to use isConstantOrConstantVector(). 3113 C = V.getOperand(0); 3114 ConstantSDNode *CC = 3115 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3116 if (!CC) 3117 return false; 3118 Y = V.getOperand(1); 3119 3120 ConstantSDNode *XC = 3121 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3122 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3123 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3124 }; 3125 3126 // LHS of comparison should be an one-use 'and'. 3127 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3128 return SDValue(); 3129 3130 X = N0.getOperand(0); 3131 SDValue Mask = N0.getOperand(1); 3132 3133 // 'and' is commutative! 3134 if (!Match(Mask)) { 3135 std::swap(X, Mask); 3136 if (!Match(Mask)) 3137 return SDValue(); 3138 } 3139 3140 EVT VT = X.getValueType(); 3141 3142 // Produce: 3143 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3144 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3145 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3146 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3147 return T2; 3148 } 3149 3150 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3151 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3152 /// handle the commuted versions of these patterns. 3153 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3154 ISD::CondCode Cond, const SDLoc &DL, 3155 DAGCombinerInfo &DCI) const { 3156 unsigned BOpcode = N0.getOpcode(); 3157 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3158 "Unexpected binop"); 3159 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3160 3161 // (X + Y) == X --> Y == 0 3162 // (X - Y) == X --> Y == 0 3163 // (X ^ Y) == X --> Y == 0 3164 SelectionDAG &DAG = DCI.DAG; 3165 EVT OpVT = N0.getValueType(); 3166 SDValue X = N0.getOperand(0); 3167 SDValue Y = N0.getOperand(1); 3168 if (X == N1) 3169 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3170 3171 if (Y != N1) 3172 return SDValue(); 3173 3174 // (X + Y) == Y --> X == 0 3175 // (X ^ Y) == Y --> X == 0 3176 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3177 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3178 3179 // The shift would not be valid if the operands are boolean (i1). 3180 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3181 return SDValue(); 3182 3183 // (X - Y) == Y --> X == Y << 1 3184 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3185 !DCI.isBeforeLegalize()); 3186 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3187 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3188 if (!DCI.isCalledByLegalizer()) 3189 DCI.AddToWorklist(YShl1.getNode()); 3190 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3191 } 3192 3193 /// Try to simplify a setcc built with the specified operands and cc. If it is 3194 /// unable to simplify it, return a null SDValue. 3195 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3196 ISD::CondCode Cond, bool foldBooleans, 3197 DAGCombinerInfo &DCI, 3198 const SDLoc &dl) const { 3199 SelectionDAG &DAG = DCI.DAG; 3200 const DataLayout &Layout = DAG.getDataLayout(); 3201 EVT OpVT = N0.getValueType(); 3202 3203 // Constant fold or commute setcc. 3204 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3205 return Fold; 3206 3207 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3208 // TODO: Handle non-splat vector constants. All undef causes trouble. 3209 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3210 if (isConstOrConstSplat(N0) && 3211 (DCI.isBeforeLegalizeOps() || 3212 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3213 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3214 3215 // If we have a subtract with the same 2 non-constant operands as this setcc 3216 // -- but in reverse order -- then try to commute the operands of this setcc 3217 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3218 // instruction on some targets. 3219 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3220 (DCI.isBeforeLegalizeOps() || 3221 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3222 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3223 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3224 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3225 3226 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3227 const APInt &C1 = N1C->getAPIntValue(); 3228 3229 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3230 // equality comparison, then we're just comparing whether X itself is 3231 // zero. 3232 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3233 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3234 N0.getOperand(1).getOpcode() == ISD::Constant) { 3235 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3236 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3237 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3238 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3239 // (srl (ctlz x), 5) == 0 -> X != 0 3240 // (srl (ctlz x), 5) != 1 -> X != 0 3241 Cond = ISD::SETNE; 3242 } else { 3243 // (srl (ctlz x), 5) != 0 -> X == 0 3244 // (srl (ctlz x), 5) == 1 -> X == 0 3245 Cond = ISD::SETEQ; 3246 } 3247 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3248 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3249 Zero, Cond); 3250 } 3251 } 3252 3253 SDValue CTPOP = N0; 3254 // Look through truncs that don't change the value of a ctpop. 3255 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3256 CTPOP = N0.getOperand(0); 3257 3258 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3259 (N0 == CTPOP || 3260 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3261 EVT CTVT = CTPOP.getValueType(); 3262 SDValue CTOp = CTPOP.getOperand(0); 3263 3264 // (ctpop x) u< 2 -> (x & x-1) == 0 3265 // (ctpop x) u> 1 -> (x & x-1) != 0 3266 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3267 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3268 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3269 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3270 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3271 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3272 } 3273 3274 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3275 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3276 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3277 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3278 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3279 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3280 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3281 assert(CTVT.isInteger()); 3282 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3283 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3284 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3285 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3286 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3287 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3288 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3289 } 3290 } 3291 3292 // (zext x) == C --> x == (trunc C) 3293 // (sext x) == C --> x == (trunc C) 3294 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3295 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3296 unsigned MinBits = N0.getValueSizeInBits(); 3297 SDValue PreExt; 3298 bool Signed = false; 3299 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3300 // ZExt 3301 MinBits = N0->getOperand(0).getValueSizeInBits(); 3302 PreExt = N0->getOperand(0); 3303 } else if (N0->getOpcode() == ISD::AND) { 3304 // DAGCombine turns costly ZExts into ANDs 3305 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3306 if ((C->getAPIntValue()+1).isPowerOf2()) { 3307 MinBits = C->getAPIntValue().countTrailingOnes(); 3308 PreExt = N0->getOperand(0); 3309 } 3310 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3311 // SExt 3312 MinBits = N0->getOperand(0).getValueSizeInBits(); 3313 PreExt = N0->getOperand(0); 3314 Signed = true; 3315 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3316 // ZEXTLOAD / SEXTLOAD 3317 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3318 MinBits = LN0->getMemoryVT().getSizeInBits(); 3319 PreExt = N0; 3320 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3321 Signed = true; 3322 MinBits = LN0->getMemoryVT().getSizeInBits(); 3323 PreExt = N0; 3324 } 3325 } 3326 3327 // Figure out how many bits we need to preserve this constant. 3328 unsigned ReqdBits = Signed ? 3329 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3330 C1.getActiveBits(); 3331 3332 // Make sure we're not losing bits from the constant. 3333 if (MinBits > 0 && 3334 MinBits < C1.getBitWidth() && 3335 MinBits >= ReqdBits) { 3336 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3337 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3338 // Will get folded away. 3339 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3340 if (MinBits == 1 && C1 == 1) 3341 // Invert the condition. 3342 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3343 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3344 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3345 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3346 } 3347 3348 // If truncating the setcc operands is not desirable, we can still 3349 // simplify the expression in some cases: 3350 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3351 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3352 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3353 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3354 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3355 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3356 SDValue TopSetCC = N0->getOperand(0); 3357 unsigned N0Opc = N0->getOpcode(); 3358 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3359 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3360 TopSetCC.getOpcode() == ISD::SETCC && 3361 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3362 (isConstFalseVal(N1C) || 3363 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3364 3365 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3366 (!N1C->isNullValue() && Cond == ISD::SETNE); 3367 3368 if (!Inverse) 3369 return TopSetCC; 3370 3371 ISD::CondCode InvCond = ISD::getSetCCInverse( 3372 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3373 TopSetCC.getOperand(0).getValueType()); 3374 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3375 TopSetCC.getOperand(1), 3376 InvCond); 3377 } 3378 } 3379 } 3380 3381 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3382 // equality or unsigned, and all 1 bits of the const are in the same 3383 // partial word, see if we can shorten the load. 3384 if (DCI.isBeforeLegalize() && 3385 !ISD::isSignedIntSetCC(Cond) && 3386 N0.getOpcode() == ISD::AND && C1 == 0 && 3387 N0.getNode()->hasOneUse() && 3388 isa<LoadSDNode>(N0.getOperand(0)) && 3389 N0.getOperand(0).getNode()->hasOneUse() && 3390 isa<ConstantSDNode>(N0.getOperand(1))) { 3391 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3392 APInt bestMask; 3393 unsigned bestWidth = 0, bestOffset = 0; 3394 if (Lod->isSimple() && Lod->isUnindexed()) { 3395 unsigned origWidth = N0.getValueSizeInBits(); 3396 unsigned maskWidth = origWidth; 3397 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3398 // 8 bits, but have to be careful... 3399 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3400 origWidth = Lod->getMemoryVT().getSizeInBits(); 3401 const APInt &Mask = N0.getConstantOperandAPInt(1); 3402 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3403 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3404 for (unsigned offset=0; offset<origWidth/width; offset++) { 3405 if (Mask.isSubsetOf(newMask)) { 3406 if (Layout.isLittleEndian()) 3407 bestOffset = (uint64_t)offset * (width/8); 3408 else 3409 bestOffset = (origWidth/width - offset - 1) * (width/8); 3410 bestMask = Mask.lshr(offset * (width/8) * 8); 3411 bestWidth = width; 3412 break; 3413 } 3414 newMask <<= width; 3415 } 3416 } 3417 } 3418 if (bestWidth) { 3419 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3420 if (newVT.isRound() && 3421 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3422 SDValue Ptr = Lod->getBasePtr(); 3423 if (bestOffset != 0) 3424 Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl); 3425 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3426 SDValue NewLoad = DAG.getLoad( 3427 newVT, dl, Lod->getChain(), Ptr, 3428 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3429 return DAG.getSetCC(dl, VT, 3430 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3431 DAG.getConstant(bestMask.trunc(bestWidth), 3432 dl, newVT)), 3433 DAG.getConstant(0LL, dl, newVT), Cond); 3434 } 3435 } 3436 } 3437 3438 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3439 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3440 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3441 3442 // If the comparison constant has bits in the upper part, the 3443 // zero-extended value could never match. 3444 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3445 C1.getBitWidth() - InSize))) { 3446 switch (Cond) { 3447 case ISD::SETUGT: 3448 case ISD::SETUGE: 3449 case ISD::SETEQ: 3450 return DAG.getConstant(0, dl, VT); 3451 case ISD::SETULT: 3452 case ISD::SETULE: 3453 case ISD::SETNE: 3454 return DAG.getConstant(1, dl, VT); 3455 case ISD::SETGT: 3456 case ISD::SETGE: 3457 // True if the sign bit of C1 is set. 3458 return DAG.getConstant(C1.isNegative(), dl, VT); 3459 case ISD::SETLT: 3460 case ISD::SETLE: 3461 // True if the sign bit of C1 isn't set. 3462 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3463 default: 3464 break; 3465 } 3466 } 3467 3468 // Otherwise, we can perform the comparison with the low bits. 3469 switch (Cond) { 3470 case ISD::SETEQ: 3471 case ISD::SETNE: 3472 case ISD::SETUGT: 3473 case ISD::SETUGE: 3474 case ISD::SETULT: 3475 case ISD::SETULE: { 3476 EVT newVT = N0.getOperand(0).getValueType(); 3477 if (DCI.isBeforeLegalizeOps() || 3478 (isOperationLegal(ISD::SETCC, newVT) && 3479 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3480 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3481 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3482 3483 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3484 NewConst, Cond); 3485 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3486 } 3487 break; 3488 } 3489 default: 3490 break; // todo, be more careful with signed comparisons 3491 } 3492 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3493 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3494 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3495 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3496 EVT ExtDstTy = N0.getValueType(); 3497 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3498 3499 // If the constant doesn't fit into the number of bits for the source of 3500 // the sign extension, it is impossible for both sides to be equal. 3501 if (C1.getMinSignedBits() > ExtSrcTyBits) 3502 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3503 3504 SDValue ZextOp; 3505 EVT Op0Ty = N0.getOperand(0).getValueType(); 3506 if (Op0Ty == ExtSrcTy) { 3507 ZextOp = N0.getOperand(0); 3508 } else { 3509 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3510 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3511 DAG.getConstant(Imm, dl, Op0Ty)); 3512 } 3513 if (!DCI.isCalledByLegalizer()) 3514 DCI.AddToWorklist(ZextOp.getNode()); 3515 // Otherwise, make this a use of a zext. 3516 return DAG.getSetCC(dl, VT, ZextOp, 3517 DAG.getConstant(C1 & APInt::getLowBitsSet( 3518 ExtDstTyBits, 3519 ExtSrcTyBits), 3520 dl, ExtDstTy), 3521 Cond); 3522 } else if ((N1C->isNullValue() || N1C->isOne()) && 3523 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3524 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3525 if (N0.getOpcode() == ISD::SETCC && 3526 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3527 (N0.getValueType() == MVT::i1 || 3528 getBooleanContents(N0.getOperand(0).getValueType()) == 3529 ZeroOrOneBooleanContent)) { 3530 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3531 if (TrueWhenTrue) 3532 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3533 // Invert the condition. 3534 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3535 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3536 if (DCI.isBeforeLegalizeOps() || 3537 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3538 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3539 } 3540 3541 if ((N0.getOpcode() == ISD::XOR || 3542 (N0.getOpcode() == ISD::AND && 3543 N0.getOperand(0).getOpcode() == ISD::XOR && 3544 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3545 isa<ConstantSDNode>(N0.getOperand(1)) && 3546 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3547 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3548 // can only do this if the top bits are known zero. 3549 unsigned BitWidth = N0.getValueSizeInBits(); 3550 if (DAG.MaskedValueIsZero(N0, 3551 APInt::getHighBitsSet(BitWidth, 3552 BitWidth-1))) { 3553 // Okay, get the un-inverted input value. 3554 SDValue Val; 3555 if (N0.getOpcode() == ISD::XOR) { 3556 Val = N0.getOperand(0); 3557 } else { 3558 assert(N0.getOpcode() == ISD::AND && 3559 N0.getOperand(0).getOpcode() == ISD::XOR); 3560 // ((X^1)&1)^1 -> X & 1 3561 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3562 N0.getOperand(0).getOperand(0), 3563 N0.getOperand(1)); 3564 } 3565 3566 return DAG.getSetCC(dl, VT, Val, N1, 3567 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3568 } 3569 } else if (N1C->isOne()) { 3570 SDValue Op0 = N0; 3571 if (Op0.getOpcode() == ISD::TRUNCATE) 3572 Op0 = Op0.getOperand(0); 3573 3574 if ((Op0.getOpcode() == ISD::XOR) && 3575 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3576 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3577 SDValue XorLHS = Op0.getOperand(0); 3578 SDValue XorRHS = Op0.getOperand(1); 3579 // Ensure that the input setccs return an i1 type or 0/1 value. 3580 if (Op0.getValueType() == MVT::i1 || 3581 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3582 ZeroOrOneBooleanContent && 3583 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3584 ZeroOrOneBooleanContent)) { 3585 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3586 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3587 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3588 } 3589 } 3590 if (Op0.getOpcode() == ISD::AND && 3591 isa<ConstantSDNode>(Op0.getOperand(1)) && 3592 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3593 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3594 if (Op0.getValueType().bitsGT(VT)) 3595 Op0 = DAG.getNode(ISD::AND, dl, VT, 3596 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3597 DAG.getConstant(1, dl, VT)); 3598 else if (Op0.getValueType().bitsLT(VT)) 3599 Op0 = DAG.getNode(ISD::AND, dl, VT, 3600 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3601 DAG.getConstant(1, dl, VT)); 3602 3603 return DAG.getSetCC(dl, VT, Op0, 3604 DAG.getConstant(0, dl, Op0.getValueType()), 3605 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3606 } 3607 if (Op0.getOpcode() == ISD::AssertZext && 3608 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3609 return DAG.getSetCC(dl, VT, Op0, 3610 DAG.getConstant(0, dl, Op0.getValueType()), 3611 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3612 } 3613 } 3614 3615 // Given: 3616 // icmp eq/ne (urem %x, %y), 0 3617 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3618 // icmp eq/ne %x, 0 3619 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3620 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3621 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3622 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3623 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3624 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3625 } 3626 3627 if (SDValue V = 3628 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3629 return V; 3630 } 3631 3632 // These simplifications apply to splat vectors as well. 3633 // TODO: Handle more splat vector cases. 3634 if (auto *N1C = isConstOrConstSplat(N1)) { 3635 const APInt &C1 = N1C->getAPIntValue(); 3636 3637 APInt MinVal, MaxVal; 3638 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3639 if (ISD::isSignedIntSetCC(Cond)) { 3640 MinVal = APInt::getSignedMinValue(OperandBitSize); 3641 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3642 } else { 3643 MinVal = APInt::getMinValue(OperandBitSize); 3644 MaxVal = APInt::getMaxValue(OperandBitSize); 3645 } 3646 3647 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3648 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3649 // X >= MIN --> true 3650 if (C1 == MinVal) 3651 return DAG.getBoolConstant(true, dl, VT, OpVT); 3652 3653 if (!VT.isVector()) { // TODO: Support this for vectors. 3654 // X >= C0 --> X > (C0 - 1) 3655 APInt C = C1 - 1; 3656 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3657 if ((DCI.isBeforeLegalizeOps() || 3658 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3659 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3660 isLegalICmpImmediate(C.getSExtValue())))) { 3661 return DAG.getSetCC(dl, VT, N0, 3662 DAG.getConstant(C, dl, N1.getValueType()), 3663 NewCC); 3664 } 3665 } 3666 } 3667 3668 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3669 // X <= MAX --> true 3670 if (C1 == MaxVal) 3671 return DAG.getBoolConstant(true, dl, VT, OpVT); 3672 3673 // X <= C0 --> X < (C0 + 1) 3674 if (!VT.isVector()) { // TODO: Support this for vectors. 3675 APInt C = C1 + 1; 3676 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3677 if ((DCI.isBeforeLegalizeOps() || 3678 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3679 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3680 isLegalICmpImmediate(C.getSExtValue())))) { 3681 return DAG.getSetCC(dl, VT, N0, 3682 DAG.getConstant(C, dl, N1.getValueType()), 3683 NewCC); 3684 } 3685 } 3686 } 3687 3688 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3689 if (C1 == MinVal) 3690 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3691 3692 // TODO: Support this for vectors after legalize ops. 3693 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3694 // Canonicalize setlt X, Max --> setne X, Max 3695 if (C1 == MaxVal) 3696 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3697 3698 // If we have setult X, 1, turn it into seteq X, 0 3699 if (C1 == MinVal+1) 3700 return DAG.getSetCC(dl, VT, N0, 3701 DAG.getConstant(MinVal, dl, N0.getValueType()), 3702 ISD::SETEQ); 3703 } 3704 } 3705 3706 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3707 if (C1 == MaxVal) 3708 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3709 3710 // TODO: Support this for vectors after legalize ops. 3711 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3712 // Canonicalize setgt X, Min --> setne X, Min 3713 if (C1 == MinVal) 3714 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3715 3716 // If we have setugt X, Max-1, turn it into seteq X, Max 3717 if (C1 == MaxVal-1) 3718 return DAG.getSetCC(dl, VT, N0, 3719 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3720 ISD::SETEQ); 3721 } 3722 } 3723 3724 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3725 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3726 if (C1.isNullValue()) 3727 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3728 VT, N0, N1, Cond, DCI, dl)) 3729 return CC; 3730 } 3731 3732 // If we have "setcc X, C0", check to see if we can shrink the immediate 3733 // by changing cc. 3734 // TODO: Support this for vectors after legalize ops. 3735 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3736 // SETUGT X, SINTMAX -> SETLT X, 0 3737 if (Cond == ISD::SETUGT && 3738 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3739 return DAG.getSetCC(dl, VT, N0, 3740 DAG.getConstant(0, dl, N1.getValueType()), 3741 ISD::SETLT); 3742 3743 // SETULT X, SINTMIN -> SETGT X, -1 3744 if (Cond == ISD::SETULT && 3745 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3746 SDValue ConstMinusOne = 3747 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3748 N1.getValueType()); 3749 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3750 } 3751 } 3752 } 3753 3754 // Back to non-vector simplifications. 3755 // TODO: Can we do these for vector splats? 3756 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3758 const APInt &C1 = N1C->getAPIntValue(); 3759 EVT ShValTy = N0.getValueType(); 3760 3761 // Fold bit comparisons when we can. 3762 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3763 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3764 N0.getOpcode() == ISD::AND) { 3765 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3766 EVT ShiftTy = 3767 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3768 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3769 // Perform the xform if the AND RHS is a single bit. 3770 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3771 if (AndRHS->getAPIntValue().isPowerOf2() && 3772 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3773 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3774 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3775 DAG.getConstant(ShCt, dl, ShiftTy))); 3776 } 3777 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3778 // (X & 8) == 8 --> (X & 8) >> 3 3779 // Perform the xform if C1 is a single bit. 3780 unsigned ShCt = C1.logBase2(); 3781 if (C1.isPowerOf2() && 3782 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3783 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3784 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3785 DAG.getConstant(ShCt, dl, ShiftTy))); 3786 } 3787 } 3788 } 3789 } 3790 3791 if (C1.getMinSignedBits() <= 64 && 3792 !isLegalICmpImmediate(C1.getSExtValue())) { 3793 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3794 // (X & -256) == 256 -> (X >> 8) == 1 3795 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3796 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3797 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3798 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3799 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3800 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3801 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3802 SDValue Shift = 3803 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3804 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3805 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3806 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3807 } 3808 } 3809 } 3810 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3811 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3812 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3813 // X < 0x100000000 -> (X >> 32) < 1 3814 // X >= 0x100000000 -> (X >> 32) >= 1 3815 // X <= 0x0ffffffff -> (X >> 32) < 1 3816 // X > 0x0ffffffff -> (X >> 32) >= 1 3817 unsigned ShiftBits; 3818 APInt NewC = C1; 3819 ISD::CondCode NewCond = Cond; 3820 if (AdjOne) { 3821 ShiftBits = C1.countTrailingOnes(); 3822 NewC = NewC + 1; 3823 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3824 } else { 3825 ShiftBits = C1.countTrailingZeros(); 3826 } 3827 NewC.lshrInPlace(ShiftBits); 3828 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3829 isLegalICmpImmediate(NewC.getSExtValue()) && 3830 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3831 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3832 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3833 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 3834 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3835 } 3836 } 3837 } 3838 } 3839 3840 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3841 auto *CFP = cast<ConstantFPSDNode>(N1); 3842 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3843 3844 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3845 // constant if knowing that the operand is non-nan is enough. We prefer to 3846 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3847 // materialize 0.0. 3848 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3849 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3850 3851 // setcc (fneg x), C -> setcc swap(pred) x, -C 3852 if (N0.getOpcode() == ISD::FNEG) { 3853 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3854 if (DCI.isBeforeLegalizeOps() || 3855 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3856 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3857 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3858 } 3859 } 3860 3861 // If the condition is not legal, see if we can find an equivalent one 3862 // which is legal. 3863 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3864 // If the comparison was an awkward floating-point == or != and one of 3865 // the comparison operands is infinity or negative infinity, convert the 3866 // condition to a less-awkward <= or >=. 3867 if (CFP->getValueAPF().isInfinity()) { 3868 bool IsNegInf = CFP->getValueAPF().isNegative(); 3869 ISD::CondCode NewCond = ISD::SETCC_INVALID; 3870 switch (Cond) { 3871 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 3872 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 3873 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 3874 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 3875 default: break; 3876 } 3877 if (NewCond != ISD::SETCC_INVALID && 3878 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 3879 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3880 } 3881 } 3882 } 3883 3884 if (N0 == N1) { 3885 // The sext(setcc()) => setcc() optimization relies on the appropriate 3886 // constant being emitted. 3887 assert(!N0.getValueType().isInteger() && 3888 "Integer types should be handled by FoldSetCC"); 3889 3890 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3891 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3892 if (UOF == 2) // FP operators that are undefined on NaNs. 3893 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3894 if (UOF == unsigned(EqTrue)) 3895 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3896 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3897 // if it is not already. 3898 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3899 if (NewCond != Cond && 3900 (DCI.isBeforeLegalizeOps() || 3901 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3902 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3903 } 3904 3905 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3906 N0.getValueType().isInteger()) { 3907 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3908 N0.getOpcode() == ISD::XOR) { 3909 // Simplify (X+Y) == (X+Z) --> Y == Z 3910 if (N0.getOpcode() == N1.getOpcode()) { 3911 if (N0.getOperand(0) == N1.getOperand(0)) 3912 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3913 if (N0.getOperand(1) == N1.getOperand(1)) 3914 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3915 if (isCommutativeBinOp(N0.getOpcode())) { 3916 // If X op Y == Y op X, try other combinations. 3917 if (N0.getOperand(0) == N1.getOperand(1)) 3918 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3919 Cond); 3920 if (N0.getOperand(1) == N1.getOperand(0)) 3921 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3922 Cond); 3923 } 3924 } 3925 3926 // If RHS is a legal immediate value for a compare instruction, we need 3927 // to be careful about increasing register pressure needlessly. 3928 bool LegalRHSImm = false; 3929 3930 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3931 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3932 // Turn (X+C1) == C2 --> X == C2-C1 3933 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3934 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3935 DAG.getConstant(RHSC->getAPIntValue()- 3936 LHSR->getAPIntValue(), 3937 dl, N0.getValueType()), Cond); 3938 } 3939 3940 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3941 if (N0.getOpcode() == ISD::XOR) 3942 // If we know that all of the inverted bits are zero, don't bother 3943 // performing the inversion. 3944 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3945 return 3946 DAG.getSetCC(dl, VT, N0.getOperand(0), 3947 DAG.getConstant(LHSR->getAPIntValue() ^ 3948 RHSC->getAPIntValue(), 3949 dl, N0.getValueType()), 3950 Cond); 3951 } 3952 3953 // Turn (C1-X) == C2 --> X == C1-C2 3954 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3955 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3956 return 3957 DAG.getSetCC(dl, VT, N0.getOperand(1), 3958 DAG.getConstant(SUBC->getAPIntValue() - 3959 RHSC->getAPIntValue(), 3960 dl, N0.getValueType()), 3961 Cond); 3962 } 3963 } 3964 3965 // Could RHSC fold directly into a compare? 3966 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3967 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3968 } 3969 3970 // (X+Y) == X --> Y == 0 and similar folds. 3971 // Don't do this if X is an immediate that can fold into a cmp 3972 // instruction and X+Y has other uses. It could be an induction variable 3973 // chain, and the transform would increase register pressure. 3974 if (!LegalRHSImm || N0.hasOneUse()) 3975 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3976 return V; 3977 } 3978 3979 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3980 N1.getOpcode() == ISD::XOR) 3981 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3982 return V; 3983 3984 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3985 return V; 3986 } 3987 3988 // Fold remainder of division by a constant. 3989 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3990 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3991 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3992 3993 // When division is cheap or optimizing for minimum size, 3994 // fall through to DIVREM creation by skipping this fold. 3995 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3996 if (N0.getOpcode() == ISD::UREM) { 3997 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3998 return Folded; 3999 } else if (N0.getOpcode() == ISD::SREM) { 4000 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4001 return Folded; 4002 } 4003 } 4004 } 4005 4006 // Fold away ALL boolean setcc's. 4007 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4008 SDValue Temp; 4009 switch (Cond) { 4010 default: llvm_unreachable("Unknown integer setcc!"); 4011 case ISD::SETEQ: // X == Y -> ~(X^Y) 4012 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4013 N0 = DAG.getNOT(dl, Temp, OpVT); 4014 if (!DCI.isCalledByLegalizer()) 4015 DCI.AddToWorklist(Temp.getNode()); 4016 break; 4017 case ISD::SETNE: // X != Y --> (X^Y) 4018 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4019 break; 4020 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4021 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4022 Temp = DAG.getNOT(dl, N0, OpVT); 4023 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4024 if (!DCI.isCalledByLegalizer()) 4025 DCI.AddToWorklist(Temp.getNode()); 4026 break; 4027 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4028 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4029 Temp = DAG.getNOT(dl, N1, OpVT); 4030 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4031 if (!DCI.isCalledByLegalizer()) 4032 DCI.AddToWorklist(Temp.getNode()); 4033 break; 4034 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4035 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4036 Temp = DAG.getNOT(dl, N0, OpVT); 4037 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4038 if (!DCI.isCalledByLegalizer()) 4039 DCI.AddToWorklist(Temp.getNode()); 4040 break; 4041 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4042 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4043 Temp = DAG.getNOT(dl, N1, OpVT); 4044 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4045 break; 4046 } 4047 if (VT.getScalarType() != MVT::i1) { 4048 if (!DCI.isCalledByLegalizer()) 4049 DCI.AddToWorklist(N0.getNode()); 4050 // FIXME: If running after legalize, we probably can't do this. 4051 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4052 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4053 } 4054 return N0; 4055 } 4056 4057 // Could not fold it. 4058 return SDValue(); 4059 } 4060 4061 /// Returns true (and the GlobalValue and the offset) if the node is a 4062 /// GlobalAddress + offset. 4063 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4064 int64_t &Offset) const { 4065 4066 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4067 4068 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4069 GA = GASD->getGlobal(); 4070 Offset += GASD->getOffset(); 4071 return true; 4072 } 4073 4074 if (N->getOpcode() == ISD::ADD) { 4075 SDValue N1 = N->getOperand(0); 4076 SDValue N2 = N->getOperand(1); 4077 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4078 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4079 Offset += V->getSExtValue(); 4080 return true; 4081 } 4082 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4083 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4084 Offset += V->getSExtValue(); 4085 return true; 4086 } 4087 } 4088 } 4089 4090 return false; 4091 } 4092 4093 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4094 DAGCombinerInfo &DCI) const { 4095 // Default implementation: no optimization. 4096 return SDValue(); 4097 } 4098 4099 //===----------------------------------------------------------------------===// 4100 // Inline Assembler Implementation Methods 4101 //===----------------------------------------------------------------------===// 4102 4103 TargetLowering::ConstraintType 4104 TargetLowering::getConstraintType(StringRef Constraint) const { 4105 unsigned S = Constraint.size(); 4106 4107 if (S == 1) { 4108 switch (Constraint[0]) { 4109 default: break; 4110 case 'r': 4111 return C_RegisterClass; 4112 case 'm': // memory 4113 case 'o': // offsetable 4114 case 'V': // not offsetable 4115 return C_Memory; 4116 case 'n': // Simple Integer 4117 case 'E': // Floating Point Constant 4118 case 'F': // Floating Point Constant 4119 return C_Immediate; 4120 case 'i': // Simple Integer or Relocatable Constant 4121 case 's': // Relocatable Constant 4122 case 'p': // Address. 4123 case 'X': // Allow ANY value. 4124 case 'I': // Target registers. 4125 case 'J': 4126 case 'K': 4127 case 'L': 4128 case 'M': 4129 case 'N': 4130 case 'O': 4131 case 'P': 4132 case '<': 4133 case '>': 4134 return C_Other; 4135 } 4136 } 4137 4138 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4139 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4140 return C_Memory; 4141 return C_Register; 4142 } 4143 return C_Unknown; 4144 } 4145 4146 /// Try to replace an X constraint, which matches anything, with another that 4147 /// has more specific requirements based on the type of the corresponding 4148 /// operand. 4149 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4150 if (ConstraintVT.isInteger()) 4151 return "r"; 4152 if (ConstraintVT.isFloatingPoint()) 4153 return "f"; // works for many targets 4154 return nullptr; 4155 } 4156 4157 SDValue TargetLowering::LowerAsmOutputForConstraint( 4158 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4159 SelectionDAG &DAG) const { 4160 return SDValue(); 4161 } 4162 4163 /// Lower the specified operand into the Ops vector. 4164 /// If it is invalid, don't add anything to Ops. 4165 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4166 std::string &Constraint, 4167 std::vector<SDValue> &Ops, 4168 SelectionDAG &DAG) const { 4169 4170 if (Constraint.length() > 1) return; 4171 4172 char ConstraintLetter = Constraint[0]; 4173 switch (ConstraintLetter) { 4174 default: break; 4175 case 'X': // Allows any operand; labels (basic block) use this. 4176 if (Op.getOpcode() == ISD::BasicBlock || 4177 Op.getOpcode() == ISD::TargetBlockAddress) { 4178 Ops.push_back(Op); 4179 return; 4180 } 4181 LLVM_FALLTHROUGH; 4182 case 'i': // Simple Integer or Relocatable Constant 4183 case 'n': // Simple Integer 4184 case 's': { // Relocatable Constant 4185 4186 GlobalAddressSDNode *GA; 4187 ConstantSDNode *C; 4188 BlockAddressSDNode *BA; 4189 uint64_t Offset = 0; 4190 4191 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4192 // etc., since getelementpointer is variadic. We can't use 4193 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4194 // while in this case the GA may be furthest from the root node which is 4195 // likely an ISD::ADD. 4196 while (1) { 4197 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4198 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4199 GA->getValueType(0), 4200 Offset + GA->getOffset())); 4201 return; 4202 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4203 ConstraintLetter != 's') { 4204 // gcc prints these as sign extended. Sign extend value to 64 bits 4205 // now; without this it would get ZExt'd later in 4206 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4207 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4208 BooleanContent BCont = getBooleanContents(MVT::i64); 4209 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4210 : ISD::SIGN_EXTEND; 4211 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4212 : C->getSExtValue(); 4213 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4214 SDLoc(C), MVT::i64)); 4215 return; 4216 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4217 ConstraintLetter != 'n') { 4218 Ops.push_back(DAG.getTargetBlockAddress( 4219 BA->getBlockAddress(), BA->getValueType(0), 4220 Offset + BA->getOffset(), BA->getTargetFlags())); 4221 return; 4222 } else { 4223 const unsigned OpCode = Op.getOpcode(); 4224 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4225 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4226 Op = Op.getOperand(1); 4227 // Subtraction is not commutative. 4228 else if (OpCode == ISD::ADD && 4229 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4230 Op = Op.getOperand(0); 4231 else 4232 return; 4233 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4234 continue; 4235 } 4236 } 4237 return; 4238 } 4239 break; 4240 } 4241 } 4242 } 4243 4244 std::pair<unsigned, const TargetRegisterClass *> 4245 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4246 StringRef Constraint, 4247 MVT VT) const { 4248 if (Constraint.empty() || Constraint[0] != '{') 4249 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4250 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4251 4252 // Remove the braces from around the name. 4253 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4254 4255 std::pair<unsigned, const TargetRegisterClass *> R = 4256 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4257 4258 // Figure out which register class contains this reg. 4259 for (const TargetRegisterClass *RC : RI->regclasses()) { 4260 // If none of the value types for this register class are valid, we 4261 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4262 if (!isLegalRC(*RI, *RC)) 4263 continue; 4264 4265 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4266 I != E; ++I) { 4267 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4268 std::pair<unsigned, const TargetRegisterClass *> S = 4269 std::make_pair(*I, RC); 4270 4271 // If this register class has the requested value type, return it, 4272 // otherwise keep searching and return the first class found 4273 // if no other is found which explicitly has the requested type. 4274 if (RI->isTypeLegalForClass(*RC, VT)) 4275 return S; 4276 if (!R.second) 4277 R = S; 4278 } 4279 } 4280 } 4281 4282 return R; 4283 } 4284 4285 //===----------------------------------------------------------------------===// 4286 // Constraint Selection. 4287 4288 /// Return true of this is an input operand that is a matching constraint like 4289 /// "4". 4290 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4291 assert(!ConstraintCode.empty() && "No known constraint!"); 4292 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4293 } 4294 4295 /// If this is an input matching constraint, this method returns the output 4296 /// operand it matches. 4297 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4298 assert(!ConstraintCode.empty() && "No known constraint!"); 4299 return atoi(ConstraintCode.c_str()); 4300 } 4301 4302 /// Split up the constraint string from the inline assembly value into the 4303 /// specific constraints and their prefixes, and also tie in the associated 4304 /// operand values. 4305 /// If this returns an empty vector, and if the constraint string itself 4306 /// isn't empty, there was an error parsing. 4307 TargetLowering::AsmOperandInfoVector 4308 TargetLowering::ParseConstraints(const DataLayout &DL, 4309 const TargetRegisterInfo *TRI, 4310 ImmutableCallSite CS) const { 4311 /// Information about all of the constraints. 4312 AsmOperandInfoVector ConstraintOperands; 4313 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4314 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4315 4316 // Do a prepass over the constraints, canonicalizing them, and building up the 4317 // ConstraintOperands list. 4318 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4319 unsigned ResNo = 0; // ResNo - The result number of the next output. 4320 4321 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4322 ConstraintOperands.emplace_back(std::move(CI)); 4323 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4324 4325 // Update multiple alternative constraint count. 4326 if (OpInfo.multipleAlternatives.size() > maCount) 4327 maCount = OpInfo.multipleAlternatives.size(); 4328 4329 OpInfo.ConstraintVT = MVT::Other; 4330 4331 // Compute the value type for each operand. 4332 switch (OpInfo.Type) { 4333 case InlineAsm::isOutput: 4334 // Indirect outputs just consume an argument. 4335 if (OpInfo.isIndirect) { 4336 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4337 break; 4338 } 4339 4340 // The return value of the call is this value. As such, there is no 4341 // corresponding argument. 4342 assert(!CS.getType()->isVoidTy() && 4343 "Bad inline asm!"); 4344 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4345 OpInfo.ConstraintVT = 4346 getSimpleValueType(DL, STy->getElementType(ResNo)); 4347 } else { 4348 assert(ResNo == 0 && "Asm only has one result!"); 4349 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4350 } 4351 ++ResNo; 4352 break; 4353 case InlineAsm::isInput: 4354 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4355 break; 4356 case InlineAsm::isClobber: 4357 // Nothing to do. 4358 break; 4359 } 4360 4361 if (OpInfo.CallOperandVal) { 4362 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4363 if (OpInfo.isIndirect) { 4364 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4365 if (!PtrTy) 4366 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4367 OpTy = PtrTy->getElementType(); 4368 } 4369 4370 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4371 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4372 if (STy->getNumElements() == 1) 4373 OpTy = STy->getElementType(0); 4374 4375 // If OpTy is not a single value, it may be a struct/union that we 4376 // can tile with integers. 4377 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4378 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4379 switch (BitSize) { 4380 default: break; 4381 case 1: 4382 case 8: 4383 case 16: 4384 case 32: 4385 case 64: 4386 case 128: 4387 OpInfo.ConstraintVT = 4388 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4389 break; 4390 } 4391 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4392 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4393 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4394 } else { 4395 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4396 } 4397 } 4398 } 4399 4400 // If we have multiple alternative constraints, select the best alternative. 4401 if (!ConstraintOperands.empty()) { 4402 if (maCount) { 4403 unsigned bestMAIndex = 0; 4404 int bestWeight = -1; 4405 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4406 int weight = -1; 4407 unsigned maIndex; 4408 // Compute the sums of the weights for each alternative, keeping track 4409 // of the best (highest weight) one so far. 4410 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4411 int weightSum = 0; 4412 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4413 cIndex != eIndex; ++cIndex) { 4414 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4415 if (OpInfo.Type == InlineAsm::isClobber) 4416 continue; 4417 4418 // If this is an output operand with a matching input operand, 4419 // look up the matching input. If their types mismatch, e.g. one 4420 // is an integer, the other is floating point, or their sizes are 4421 // different, flag it as an maCantMatch. 4422 if (OpInfo.hasMatchingInput()) { 4423 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4424 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4425 if ((OpInfo.ConstraintVT.isInteger() != 4426 Input.ConstraintVT.isInteger()) || 4427 (OpInfo.ConstraintVT.getSizeInBits() != 4428 Input.ConstraintVT.getSizeInBits())) { 4429 weightSum = -1; // Can't match. 4430 break; 4431 } 4432 } 4433 } 4434 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4435 if (weight == -1) { 4436 weightSum = -1; 4437 break; 4438 } 4439 weightSum += weight; 4440 } 4441 // Update best. 4442 if (weightSum > bestWeight) { 4443 bestWeight = weightSum; 4444 bestMAIndex = maIndex; 4445 } 4446 } 4447 4448 // Now select chosen alternative in each constraint. 4449 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4450 cIndex != eIndex; ++cIndex) { 4451 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4452 if (cInfo.Type == InlineAsm::isClobber) 4453 continue; 4454 cInfo.selectAlternative(bestMAIndex); 4455 } 4456 } 4457 } 4458 4459 // Check and hook up tied operands, choose constraint code to use. 4460 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4461 cIndex != eIndex; ++cIndex) { 4462 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4463 4464 // If this is an output operand with a matching input operand, look up the 4465 // matching input. If their types mismatch, e.g. one is an integer, the 4466 // other is floating point, or their sizes are different, flag it as an 4467 // error. 4468 if (OpInfo.hasMatchingInput()) { 4469 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4470 4471 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4472 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4473 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4474 OpInfo.ConstraintVT); 4475 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4476 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4477 Input.ConstraintVT); 4478 if ((OpInfo.ConstraintVT.isInteger() != 4479 Input.ConstraintVT.isInteger()) || 4480 (MatchRC.second != InputRC.second)) { 4481 report_fatal_error("Unsupported asm: input constraint" 4482 " with a matching output constraint of" 4483 " incompatible type!"); 4484 } 4485 } 4486 } 4487 } 4488 4489 return ConstraintOperands; 4490 } 4491 4492 /// Return an integer indicating how general CT is. 4493 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4494 switch (CT) { 4495 case TargetLowering::C_Immediate: 4496 case TargetLowering::C_Other: 4497 case TargetLowering::C_Unknown: 4498 return 0; 4499 case TargetLowering::C_Register: 4500 return 1; 4501 case TargetLowering::C_RegisterClass: 4502 return 2; 4503 case TargetLowering::C_Memory: 4504 return 3; 4505 } 4506 llvm_unreachable("Invalid constraint type"); 4507 } 4508 4509 /// Examine constraint type and operand type and determine a weight value. 4510 /// This object must already have been set up with the operand type 4511 /// and the current alternative constraint selected. 4512 TargetLowering::ConstraintWeight 4513 TargetLowering::getMultipleConstraintMatchWeight( 4514 AsmOperandInfo &info, int maIndex) const { 4515 InlineAsm::ConstraintCodeVector *rCodes; 4516 if (maIndex >= (int)info.multipleAlternatives.size()) 4517 rCodes = &info.Codes; 4518 else 4519 rCodes = &info.multipleAlternatives[maIndex].Codes; 4520 ConstraintWeight BestWeight = CW_Invalid; 4521 4522 // Loop over the options, keeping track of the most general one. 4523 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4524 ConstraintWeight weight = 4525 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4526 if (weight > BestWeight) 4527 BestWeight = weight; 4528 } 4529 4530 return BestWeight; 4531 } 4532 4533 /// Examine constraint type and operand type and determine a weight value. 4534 /// This object must already have been set up with the operand type 4535 /// and the current alternative constraint selected. 4536 TargetLowering::ConstraintWeight 4537 TargetLowering::getSingleConstraintMatchWeight( 4538 AsmOperandInfo &info, const char *constraint) const { 4539 ConstraintWeight weight = CW_Invalid; 4540 Value *CallOperandVal = info.CallOperandVal; 4541 // If we don't have a value, we can't do a match, 4542 // but allow it at the lowest weight. 4543 if (!CallOperandVal) 4544 return CW_Default; 4545 // Look at the constraint type. 4546 switch (*constraint) { 4547 case 'i': // immediate integer. 4548 case 'n': // immediate integer with a known value. 4549 if (isa<ConstantInt>(CallOperandVal)) 4550 weight = CW_Constant; 4551 break; 4552 case 's': // non-explicit intregal immediate. 4553 if (isa<GlobalValue>(CallOperandVal)) 4554 weight = CW_Constant; 4555 break; 4556 case 'E': // immediate float if host format. 4557 case 'F': // immediate float. 4558 if (isa<ConstantFP>(CallOperandVal)) 4559 weight = CW_Constant; 4560 break; 4561 case '<': // memory operand with autodecrement. 4562 case '>': // memory operand with autoincrement. 4563 case 'm': // memory operand. 4564 case 'o': // offsettable memory operand 4565 case 'V': // non-offsettable memory operand 4566 weight = CW_Memory; 4567 break; 4568 case 'r': // general register. 4569 case 'g': // general register, memory operand or immediate integer. 4570 // note: Clang converts "g" to "imr". 4571 if (CallOperandVal->getType()->isIntegerTy()) 4572 weight = CW_Register; 4573 break; 4574 case 'X': // any operand. 4575 default: 4576 weight = CW_Default; 4577 break; 4578 } 4579 return weight; 4580 } 4581 4582 /// If there are multiple different constraints that we could pick for this 4583 /// operand (e.g. "imr") try to pick the 'best' one. 4584 /// This is somewhat tricky: constraints fall into four classes: 4585 /// Other -> immediates and magic values 4586 /// Register -> one specific register 4587 /// RegisterClass -> a group of regs 4588 /// Memory -> memory 4589 /// Ideally, we would pick the most specific constraint possible: if we have 4590 /// something that fits into a register, we would pick it. The problem here 4591 /// is that if we have something that could either be in a register or in 4592 /// memory that use of the register could cause selection of *other* 4593 /// operands to fail: they might only succeed if we pick memory. Because of 4594 /// this the heuristic we use is: 4595 /// 4596 /// 1) If there is an 'other' constraint, and if the operand is valid for 4597 /// that constraint, use it. This makes us take advantage of 'i' 4598 /// constraints when available. 4599 /// 2) Otherwise, pick the most general constraint present. This prefers 4600 /// 'm' over 'r', for example. 4601 /// 4602 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4603 const TargetLowering &TLI, 4604 SDValue Op, SelectionDAG *DAG) { 4605 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4606 unsigned BestIdx = 0; 4607 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4608 int BestGenerality = -1; 4609 4610 // Loop over the options, keeping track of the most general one. 4611 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4612 TargetLowering::ConstraintType CType = 4613 TLI.getConstraintType(OpInfo.Codes[i]); 4614 4615 // Indirect 'other' or 'immediate' constraints are not allowed. 4616 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4617 CType == TargetLowering::C_Register || 4618 CType == TargetLowering::C_RegisterClass)) 4619 continue; 4620 4621 // If this is an 'other' or 'immediate' constraint, see if the operand is 4622 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4623 // the operand is an integer in the range [0..31] we want to use I (saving a 4624 // load of a register), otherwise we must use 'r'. 4625 if ((CType == TargetLowering::C_Other || 4626 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4627 assert(OpInfo.Codes[i].size() == 1 && 4628 "Unhandled multi-letter 'other' constraint"); 4629 std::vector<SDValue> ResultOps; 4630 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4631 ResultOps, *DAG); 4632 if (!ResultOps.empty()) { 4633 BestType = CType; 4634 BestIdx = i; 4635 break; 4636 } 4637 } 4638 4639 // Things with matching constraints can only be registers, per gcc 4640 // documentation. This mainly affects "g" constraints. 4641 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4642 continue; 4643 4644 // This constraint letter is more general than the previous one, use it. 4645 int Generality = getConstraintGenerality(CType); 4646 if (Generality > BestGenerality) { 4647 BestType = CType; 4648 BestIdx = i; 4649 BestGenerality = Generality; 4650 } 4651 } 4652 4653 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4654 OpInfo.ConstraintType = BestType; 4655 } 4656 4657 /// Determines the constraint code and constraint type to use for the specific 4658 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4659 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4660 SDValue Op, 4661 SelectionDAG *DAG) const { 4662 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4663 4664 // Single-letter constraints ('r') are very common. 4665 if (OpInfo.Codes.size() == 1) { 4666 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4667 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4668 } else { 4669 ChooseConstraint(OpInfo, *this, Op, DAG); 4670 } 4671 4672 // 'X' matches anything. 4673 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4674 // Labels and constants are handled elsewhere ('X' is the only thing 4675 // that matches labels). For Functions, the type here is the type of 4676 // the result, which is not what we want to look at; leave them alone. 4677 Value *v = OpInfo.CallOperandVal; 4678 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4679 OpInfo.CallOperandVal = v; 4680 return; 4681 } 4682 4683 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4684 return; 4685 4686 // Otherwise, try to resolve it to something we know about by looking at 4687 // the actual operand type. 4688 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4689 OpInfo.ConstraintCode = Repl; 4690 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4691 } 4692 } 4693 } 4694 4695 /// Given an exact SDIV by a constant, create a multiplication 4696 /// with the multiplicative inverse of the constant. 4697 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4698 const SDLoc &dl, SelectionDAG &DAG, 4699 SmallVectorImpl<SDNode *> &Created) { 4700 SDValue Op0 = N->getOperand(0); 4701 SDValue Op1 = N->getOperand(1); 4702 EVT VT = N->getValueType(0); 4703 EVT SVT = VT.getScalarType(); 4704 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4705 EVT ShSVT = ShVT.getScalarType(); 4706 4707 bool UseSRA = false; 4708 SmallVector<SDValue, 16> Shifts, Factors; 4709 4710 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4711 if (C->isNullValue()) 4712 return false; 4713 APInt Divisor = C->getAPIntValue(); 4714 unsigned Shift = Divisor.countTrailingZeros(); 4715 if (Shift) { 4716 Divisor.ashrInPlace(Shift); 4717 UseSRA = true; 4718 } 4719 // Calculate the multiplicative inverse, using Newton's method. 4720 APInt t; 4721 APInt Factor = Divisor; 4722 while ((t = Divisor * Factor) != 1) 4723 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4724 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4725 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4726 return true; 4727 }; 4728 4729 // Collect all magic values from the build vector. 4730 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4731 return SDValue(); 4732 4733 SDValue Shift, Factor; 4734 if (VT.isVector()) { 4735 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4736 Factor = DAG.getBuildVector(VT, dl, Factors); 4737 } else { 4738 Shift = Shifts[0]; 4739 Factor = Factors[0]; 4740 } 4741 4742 SDValue Res = Op0; 4743 4744 // Shift the value upfront if it is even, so the LSB is one. 4745 if (UseSRA) { 4746 // TODO: For UDIV use SRL instead of SRA. 4747 SDNodeFlags Flags; 4748 Flags.setExact(true); 4749 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4750 Created.push_back(Res.getNode()); 4751 } 4752 4753 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4754 } 4755 4756 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4757 SelectionDAG &DAG, 4758 SmallVectorImpl<SDNode *> &Created) const { 4759 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4761 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4762 return SDValue(N, 0); // Lower SDIV as SDIV 4763 return SDValue(); 4764 } 4765 4766 /// Given an ISD::SDIV node expressing a divide by constant, 4767 /// return a DAG expression to select that will generate the same value by 4768 /// multiplying by a magic number. 4769 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4770 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4771 bool IsAfterLegalization, 4772 SmallVectorImpl<SDNode *> &Created) const { 4773 SDLoc dl(N); 4774 EVT VT = N->getValueType(0); 4775 EVT SVT = VT.getScalarType(); 4776 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4777 EVT ShSVT = ShVT.getScalarType(); 4778 unsigned EltBits = VT.getScalarSizeInBits(); 4779 4780 // Check to see if we can do this. 4781 // FIXME: We should be more aggressive here. 4782 if (!isTypeLegal(VT)) 4783 return SDValue(); 4784 4785 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4786 if (N->getFlags().hasExact()) 4787 return BuildExactSDIV(*this, N, dl, DAG, Created); 4788 4789 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4790 4791 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4792 if (C->isNullValue()) 4793 return false; 4794 4795 const APInt &Divisor = C->getAPIntValue(); 4796 APInt::ms magics = Divisor.magic(); 4797 int NumeratorFactor = 0; 4798 int ShiftMask = -1; 4799 4800 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4801 // If d is +1/-1, we just multiply the numerator by +1/-1. 4802 NumeratorFactor = Divisor.getSExtValue(); 4803 magics.m = 0; 4804 magics.s = 0; 4805 ShiftMask = 0; 4806 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4807 // If d > 0 and m < 0, add the numerator. 4808 NumeratorFactor = 1; 4809 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4810 // If d < 0 and m > 0, subtract the numerator. 4811 NumeratorFactor = -1; 4812 } 4813 4814 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4815 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4816 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4817 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4818 return true; 4819 }; 4820 4821 SDValue N0 = N->getOperand(0); 4822 SDValue N1 = N->getOperand(1); 4823 4824 // Collect the shifts / magic values from each element. 4825 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4826 return SDValue(); 4827 4828 SDValue MagicFactor, Factor, Shift, ShiftMask; 4829 if (VT.isVector()) { 4830 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4831 Factor = DAG.getBuildVector(VT, dl, Factors); 4832 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4833 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4834 } else { 4835 MagicFactor = MagicFactors[0]; 4836 Factor = Factors[0]; 4837 Shift = Shifts[0]; 4838 ShiftMask = ShiftMasks[0]; 4839 } 4840 4841 // Multiply the numerator (operand 0) by the magic value. 4842 // FIXME: We should support doing a MUL in a wider type. 4843 SDValue Q; 4844 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4845 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4846 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4847 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4848 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4849 SDValue LoHi = 4850 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4851 Q = SDValue(LoHi.getNode(), 1); 4852 } else 4853 return SDValue(); // No mulhs or equivalent. 4854 Created.push_back(Q.getNode()); 4855 4856 // (Optionally) Add/subtract the numerator using Factor. 4857 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4858 Created.push_back(Factor.getNode()); 4859 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4860 Created.push_back(Q.getNode()); 4861 4862 // Shift right algebraic by shift value. 4863 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4864 Created.push_back(Q.getNode()); 4865 4866 // Extract the sign bit, mask it and add it to the quotient. 4867 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4868 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4869 Created.push_back(T.getNode()); 4870 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4871 Created.push_back(T.getNode()); 4872 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4873 } 4874 4875 /// Given an ISD::UDIV node expressing a divide by constant, 4876 /// return a DAG expression to select that will generate the same value by 4877 /// multiplying by a magic number. 4878 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4879 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4880 bool IsAfterLegalization, 4881 SmallVectorImpl<SDNode *> &Created) const { 4882 SDLoc dl(N); 4883 EVT VT = N->getValueType(0); 4884 EVT SVT = VT.getScalarType(); 4885 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4886 EVT ShSVT = ShVT.getScalarType(); 4887 unsigned EltBits = VT.getScalarSizeInBits(); 4888 4889 // Check to see if we can do this. 4890 // FIXME: We should be more aggressive here. 4891 if (!isTypeLegal(VT)) 4892 return SDValue(); 4893 4894 bool UseNPQ = false; 4895 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4896 4897 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4898 if (C->isNullValue()) 4899 return false; 4900 // FIXME: We should use a narrower constant when the upper 4901 // bits are known to be zero. 4902 APInt Divisor = C->getAPIntValue(); 4903 APInt::mu magics = Divisor.magicu(); 4904 unsigned PreShift = 0, PostShift = 0; 4905 4906 // If the divisor is even, we can avoid using the expensive fixup by 4907 // shifting the divided value upfront. 4908 if (magics.a != 0 && !Divisor[0]) { 4909 PreShift = Divisor.countTrailingZeros(); 4910 // Get magic number for the shifted divisor. 4911 magics = Divisor.lshr(PreShift).magicu(PreShift); 4912 assert(magics.a == 0 && "Should use cheap fixup now"); 4913 } 4914 4915 APInt Magic = magics.m; 4916 4917 unsigned SelNPQ; 4918 if (magics.a == 0 || Divisor.isOneValue()) { 4919 assert(magics.s < Divisor.getBitWidth() && 4920 "We shouldn't generate an undefined shift!"); 4921 PostShift = magics.s; 4922 SelNPQ = false; 4923 } else { 4924 PostShift = magics.s - 1; 4925 SelNPQ = true; 4926 } 4927 4928 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4929 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4930 NPQFactors.push_back( 4931 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4932 : APInt::getNullValue(EltBits), 4933 dl, SVT)); 4934 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4935 UseNPQ |= SelNPQ; 4936 return true; 4937 }; 4938 4939 SDValue N0 = N->getOperand(0); 4940 SDValue N1 = N->getOperand(1); 4941 4942 // Collect the shifts/magic values from each element. 4943 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4944 return SDValue(); 4945 4946 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4947 if (VT.isVector()) { 4948 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4949 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4950 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4951 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4952 } else { 4953 PreShift = PreShifts[0]; 4954 MagicFactor = MagicFactors[0]; 4955 PostShift = PostShifts[0]; 4956 } 4957 4958 SDValue Q = N0; 4959 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4960 Created.push_back(Q.getNode()); 4961 4962 // FIXME: We should support doing a MUL in a wider type. 4963 auto GetMULHU = [&](SDValue X, SDValue Y) { 4964 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4965 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4966 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4967 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4968 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4969 SDValue LoHi = 4970 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4971 return SDValue(LoHi.getNode(), 1); 4972 } 4973 return SDValue(); // No mulhu or equivalent 4974 }; 4975 4976 // Multiply the numerator (operand 0) by the magic value. 4977 Q = GetMULHU(Q, MagicFactor); 4978 if (!Q) 4979 return SDValue(); 4980 4981 Created.push_back(Q.getNode()); 4982 4983 if (UseNPQ) { 4984 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4985 Created.push_back(NPQ.getNode()); 4986 4987 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4988 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4989 if (VT.isVector()) 4990 NPQ = GetMULHU(NPQ, NPQFactor); 4991 else 4992 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4993 4994 Created.push_back(NPQ.getNode()); 4995 4996 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4997 Created.push_back(Q.getNode()); 4998 } 4999 5000 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5001 Created.push_back(Q.getNode()); 5002 5003 SDValue One = DAG.getConstant(1, dl, VT); 5004 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5005 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5006 } 5007 5008 /// If all values in Values that *don't* match the predicate are same 'splat' 5009 /// value, then replace all values with that splat value. 5010 /// Else, if AlternativeReplacement was provided, then replace all values that 5011 /// do match predicate with AlternativeReplacement value. 5012 static void 5013 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5014 std::function<bool(SDValue)> Predicate, 5015 SDValue AlternativeReplacement = SDValue()) { 5016 SDValue Replacement; 5017 // Is there a value for which the Predicate does *NOT* match? What is it? 5018 auto SplatValue = llvm::find_if_not(Values, Predicate); 5019 if (SplatValue != Values.end()) { 5020 // Does Values consist only of SplatValue's and values matching Predicate? 5021 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5022 return Value == *SplatValue || Predicate(Value); 5023 })) // Then we shall replace values matching predicate with SplatValue. 5024 Replacement = *SplatValue; 5025 } 5026 if (!Replacement) { 5027 // Oops, we did not find the "baseline" splat value. 5028 if (!AlternativeReplacement) 5029 return; // Nothing to do. 5030 // Let's replace with provided value then. 5031 Replacement = AlternativeReplacement; 5032 } 5033 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5034 } 5035 5036 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5037 /// where the divisor is constant and the comparison target is zero, 5038 /// return a DAG expression that will generate the same comparison result 5039 /// using only multiplications, additions and shifts/rotations. 5040 /// Ref: "Hacker's Delight" 10-17. 5041 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5042 SDValue CompTargetNode, 5043 ISD::CondCode Cond, 5044 DAGCombinerInfo &DCI, 5045 const SDLoc &DL) const { 5046 SmallVector<SDNode *, 5> Built; 5047 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5048 DCI, DL, Built)) { 5049 for (SDNode *N : Built) 5050 DCI.AddToWorklist(N); 5051 return Folded; 5052 } 5053 5054 return SDValue(); 5055 } 5056 5057 SDValue 5058 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5059 SDValue CompTargetNode, ISD::CondCode Cond, 5060 DAGCombinerInfo &DCI, const SDLoc &DL, 5061 SmallVectorImpl<SDNode *> &Created) const { 5062 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5063 // - D must be constant, with D = D0 * 2^K where D0 is odd 5064 // - P is the multiplicative inverse of D0 modulo 2^W 5065 // - Q = floor(((2^W) - 1) / D) 5066 // where W is the width of the common type of N and D. 5067 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5068 "Only applicable for (in)equality comparisons."); 5069 5070 SelectionDAG &DAG = DCI.DAG; 5071 5072 EVT VT = REMNode.getValueType(); 5073 EVT SVT = VT.getScalarType(); 5074 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5075 EVT ShSVT = ShVT.getScalarType(); 5076 5077 // If MUL is unavailable, we cannot proceed in any case. 5078 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5079 return SDValue(); 5080 5081 bool ComparingWithAllZeros = true; 5082 bool AllComparisonsWithNonZerosAreTautological = true; 5083 bool HadTautologicalLanes = false; 5084 bool AllLanesAreTautological = true; 5085 bool HadEvenDivisor = false; 5086 bool AllDivisorsArePowerOfTwo = true; 5087 bool HadTautologicalInvertedLanes = false; 5088 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5089 5090 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5091 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5092 if (CDiv->isNullValue()) 5093 return false; 5094 5095 const APInt &D = CDiv->getAPIntValue(); 5096 const APInt &Cmp = CCmp->getAPIntValue(); 5097 5098 ComparingWithAllZeros &= Cmp.isNullValue(); 5099 5100 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5101 // if C2 is not less than C1, the comparison is always false. 5102 // But we will only be able to produce the comparison that will give the 5103 // opposive tautological answer. So this lane would need to be fixed up. 5104 bool TautologicalInvertedLane = D.ule(Cmp); 5105 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5106 5107 // If all lanes are tautological (either all divisors are ones, or divisor 5108 // is not greater than the constant we are comparing with), 5109 // we will prefer to avoid the fold. 5110 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5111 HadTautologicalLanes |= TautologicalLane; 5112 AllLanesAreTautological &= TautologicalLane; 5113 5114 // If we are comparing with non-zero, we need'll need to subtract said 5115 // comparison value from the LHS. But there is no point in doing that if 5116 // every lane where we are comparing with non-zero is tautological.. 5117 if (!Cmp.isNullValue()) 5118 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5119 5120 // Decompose D into D0 * 2^K 5121 unsigned K = D.countTrailingZeros(); 5122 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5123 APInt D0 = D.lshr(K); 5124 5125 // D is even if it has trailing zeros. 5126 HadEvenDivisor |= (K != 0); 5127 // D is a power-of-two if D0 is one. 5128 // If all divisors are power-of-two, we will prefer to avoid the fold. 5129 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5130 5131 // P = inv(D0, 2^W) 5132 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5133 unsigned W = D.getBitWidth(); 5134 APInt P = D0.zext(W + 1) 5135 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5136 .trunc(W); 5137 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5138 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5139 5140 // Q = floor((2^W - 1) u/ D) 5141 // R = ((2^W - 1) u% D) 5142 APInt Q, R; 5143 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5144 5145 // If we are comparing with zero, then that comparison constant is okay, 5146 // else it may need to be one less than that. 5147 if (Cmp.ugt(R)) 5148 Q -= 1; 5149 5150 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5151 "We are expecting that K is always less than all-ones for ShSVT"); 5152 5153 // If the lane is tautological the result can be constant-folded. 5154 if (TautologicalLane) { 5155 // Set P and K amount to a bogus values so we can try to splat them. 5156 P = 0; 5157 K = -1; 5158 // And ensure that comparison constant is tautological, 5159 // it will always compare true/false. 5160 Q = -1; 5161 } 5162 5163 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5164 KAmts.push_back( 5165 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5166 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5167 return true; 5168 }; 5169 5170 SDValue N = REMNode.getOperand(0); 5171 SDValue D = REMNode.getOperand(1); 5172 5173 // Collect the values from each element. 5174 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5175 return SDValue(); 5176 5177 // If all lanes are tautological, the result can be constant-folded. 5178 if (AllLanesAreTautological) 5179 return SDValue(); 5180 5181 // If this is a urem by a powers-of-two, avoid the fold since it can be 5182 // best implemented as a bit test. 5183 if (AllDivisorsArePowerOfTwo) 5184 return SDValue(); 5185 5186 SDValue PVal, KVal, QVal; 5187 if (VT.isVector()) { 5188 if (HadTautologicalLanes) { 5189 // Try to turn PAmts into a splat, since we don't care about the values 5190 // that are currently '0'. If we can't, just keep '0'`s. 5191 turnVectorIntoSplatVector(PAmts, isNullConstant); 5192 // Try to turn KAmts into a splat, since we don't care about the values 5193 // that are currently '-1'. If we can't, change them to '0'`s. 5194 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5195 DAG.getConstant(0, DL, ShSVT)); 5196 } 5197 5198 PVal = DAG.getBuildVector(VT, DL, PAmts); 5199 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5200 QVal = DAG.getBuildVector(VT, DL, QAmts); 5201 } else { 5202 PVal = PAmts[0]; 5203 KVal = KAmts[0]; 5204 QVal = QAmts[0]; 5205 } 5206 5207 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5208 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5209 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5210 assert(CompTargetNode.getValueType() == N.getValueType() && 5211 "Expecting that the types on LHS and RHS of comparisons match."); 5212 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5213 } 5214 5215 // (mul N, P) 5216 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5217 Created.push_back(Op0.getNode()); 5218 5219 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5220 // divisors as a performance improvement, since rotating by 0 is a no-op. 5221 if (HadEvenDivisor) { 5222 // We need ROTR to do this. 5223 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5224 return SDValue(); 5225 SDNodeFlags Flags; 5226 Flags.setExact(true); 5227 // UREM: (rotr (mul N, P), K) 5228 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5229 Created.push_back(Op0.getNode()); 5230 } 5231 5232 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5233 SDValue NewCC = 5234 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5235 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5236 if (!HadTautologicalInvertedLanes) 5237 return NewCC; 5238 5239 // If any lanes previously compared always-false, the NewCC will give 5240 // always-true result for them, so we need to fixup those lanes. 5241 // Or the other way around for inequality predicate. 5242 assert(VT.isVector() && "Can/should only get here for vectors."); 5243 Created.push_back(NewCC.getNode()); 5244 5245 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5246 // if C2 is not less than C1, the comparison is always false. 5247 // But we have produced the comparison that will give the 5248 // opposive tautological answer. So these lanes would need to be fixed up. 5249 SDValue TautologicalInvertedChannels = 5250 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5251 Created.push_back(TautologicalInvertedChannels.getNode()); 5252 5253 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5254 // If we have a vector select, let's replace the comparison results in the 5255 // affected lanes with the correct tautological result. 5256 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5257 DL, SETCCVT, SETCCVT); 5258 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5259 Replacement, NewCC); 5260 } 5261 5262 // Else, we can just invert the comparison result in the appropriate lanes. 5263 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5264 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5265 TautologicalInvertedChannels); 5266 5267 return SDValue(); // Don't know how to lower. 5268 } 5269 5270 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5271 /// where the divisor is constant and the comparison target is zero, 5272 /// return a DAG expression that will generate the same comparison result 5273 /// using only multiplications, additions and shifts/rotations. 5274 /// Ref: "Hacker's Delight" 10-17. 5275 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5276 SDValue CompTargetNode, 5277 ISD::CondCode Cond, 5278 DAGCombinerInfo &DCI, 5279 const SDLoc &DL) const { 5280 SmallVector<SDNode *, 7> Built; 5281 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5282 DCI, DL, Built)) { 5283 assert(Built.size() <= 7 && "Max size prediction failed."); 5284 for (SDNode *N : Built) 5285 DCI.AddToWorklist(N); 5286 return Folded; 5287 } 5288 5289 return SDValue(); 5290 } 5291 5292 SDValue 5293 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5294 SDValue CompTargetNode, ISD::CondCode Cond, 5295 DAGCombinerInfo &DCI, const SDLoc &DL, 5296 SmallVectorImpl<SDNode *> &Created) const { 5297 // Fold: 5298 // (seteq/ne (srem N, D), 0) 5299 // To: 5300 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5301 // 5302 // - D must be constant, with D = D0 * 2^K where D0 is odd 5303 // - P is the multiplicative inverse of D0 modulo 2^W 5304 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5305 // - Q = floor((2 * A) / (2^K)) 5306 // where W is the width of the common type of N and D. 5307 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5308 "Only applicable for (in)equality comparisons."); 5309 5310 SelectionDAG &DAG = DCI.DAG; 5311 5312 EVT VT = REMNode.getValueType(); 5313 EVT SVT = VT.getScalarType(); 5314 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5315 EVT ShSVT = ShVT.getScalarType(); 5316 5317 // If MUL is unavailable, we cannot proceed in any case. 5318 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5319 return SDValue(); 5320 5321 // TODO: Could support comparing with non-zero too. 5322 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5323 if (!CompTarget || !CompTarget->isNullValue()) 5324 return SDValue(); 5325 5326 bool HadIntMinDivisor = false; 5327 bool HadOneDivisor = false; 5328 bool AllDivisorsAreOnes = true; 5329 bool HadEvenDivisor = false; 5330 bool NeedToApplyOffset = false; 5331 bool AllDivisorsArePowerOfTwo = true; 5332 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5333 5334 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5335 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5336 if (C->isNullValue()) 5337 return false; 5338 5339 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5340 5341 // WARNING: this fold is only valid for positive divisors! 5342 APInt D = C->getAPIntValue(); 5343 if (D.isNegative()) 5344 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5345 5346 HadIntMinDivisor |= D.isMinSignedValue(); 5347 5348 // If all divisors are ones, we will prefer to avoid the fold. 5349 HadOneDivisor |= D.isOneValue(); 5350 AllDivisorsAreOnes &= D.isOneValue(); 5351 5352 // Decompose D into D0 * 2^K 5353 unsigned K = D.countTrailingZeros(); 5354 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5355 APInt D0 = D.lshr(K); 5356 5357 if (!D.isMinSignedValue()) { 5358 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5359 // we don't care about this lane in this fold, we'll special-handle it. 5360 HadEvenDivisor |= (K != 0); 5361 } 5362 5363 // D is a power-of-two if D0 is one. This includes INT_MIN. 5364 // If all divisors are power-of-two, we will prefer to avoid the fold. 5365 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5366 5367 // P = inv(D0, 2^W) 5368 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5369 unsigned W = D.getBitWidth(); 5370 APInt P = D0.zext(W + 1) 5371 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5372 .trunc(W); 5373 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5374 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5375 5376 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5377 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5378 A.clearLowBits(K); 5379 5380 if (!D.isMinSignedValue()) { 5381 // If divisor INT_MIN, then we don't care about this lane in this fold, 5382 // we'll special-handle it. 5383 NeedToApplyOffset |= A != 0; 5384 } 5385 5386 // Q = floor((2 * A) / (2^K)) 5387 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5388 5389 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5390 "We are expecting that A is always less than all-ones for SVT"); 5391 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5392 "We are expecting that K is always less than all-ones for ShSVT"); 5393 5394 // If the divisor is 1 the result can be constant-folded. Likewise, we 5395 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5396 if (D.isOneValue()) { 5397 // Set P, A and K to a bogus values so we can try to splat them. 5398 P = 0; 5399 A = -1; 5400 K = -1; 5401 5402 // x ?% 1 == 0 <--> true <--> x u<= -1 5403 Q = -1; 5404 } 5405 5406 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5407 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5408 KAmts.push_back( 5409 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5410 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5411 return true; 5412 }; 5413 5414 SDValue N = REMNode.getOperand(0); 5415 SDValue D = REMNode.getOperand(1); 5416 5417 // Collect the values from each element. 5418 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5419 return SDValue(); 5420 5421 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5422 if (AllDivisorsAreOnes) 5423 return SDValue(); 5424 5425 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5426 // since it can be best implemented as a bit test. 5427 if (AllDivisorsArePowerOfTwo) 5428 return SDValue(); 5429 5430 SDValue PVal, AVal, KVal, QVal; 5431 if (VT.isVector()) { 5432 if (HadOneDivisor) { 5433 // Try to turn PAmts into a splat, since we don't care about the values 5434 // that are currently '0'. If we can't, just keep '0'`s. 5435 turnVectorIntoSplatVector(PAmts, isNullConstant); 5436 // Try to turn AAmts into a splat, since we don't care about the 5437 // values that are currently '-1'. If we can't, change them to '0'`s. 5438 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5439 DAG.getConstant(0, DL, SVT)); 5440 // Try to turn KAmts into a splat, since we don't care about the values 5441 // that are currently '-1'. If we can't, change them to '0'`s. 5442 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5443 DAG.getConstant(0, DL, ShSVT)); 5444 } 5445 5446 PVal = DAG.getBuildVector(VT, DL, PAmts); 5447 AVal = DAG.getBuildVector(VT, DL, AAmts); 5448 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5449 QVal = DAG.getBuildVector(VT, DL, QAmts); 5450 } else { 5451 PVal = PAmts[0]; 5452 AVal = AAmts[0]; 5453 KVal = KAmts[0]; 5454 QVal = QAmts[0]; 5455 } 5456 5457 // (mul N, P) 5458 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5459 Created.push_back(Op0.getNode()); 5460 5461 if (NeedToApplyOffset) { 5462 // We need ADD to do this. 5463 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5464 return SDValue(); 5465 5466 // (add (mul N, P), A) 5467 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5468 Created.push_back(Op0.getNode()); 5469 } 5470 5471 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5472 // divisors as a performance improvement, since rotating by 0 is a no-op. 5473 if (HadEvenDivisor) { 5474 // We need ROTR to do this. 5475 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5476 return SDValue(); 5477 SDNodeFlags Flags; 5478 Flags.setExact(true); 5479 // SREM: (rotr (add (mul N, P), A), K) 5480 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5481 Created.push_back(Op0.getNode()); 5482 } 5483 5484 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5485 SDValue Fold = 5486 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5487 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5488 5489 // If we didn't have lanes with INT_MIN divisor, then we're done. 5490 if (!HadIntMinDivisor) 5491 return Fold; 5492 5493 // That fold is only valid for positive divisors. Which effectively means, 5494 // it is invalid for INT_MIN divisors. So if we have such a lane, 5495 // we must fix-up results for said lanes. 5496 assert(VT.isVector() && "Can/should only get here for vectors."); 5497 5498 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5499 !isOperationLegalOrCustom(ISD::AND, VT) || 5500 !isOperationLegalOrCustom(Cond, VT) || 5501 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5502 return SDValue(); 5503 5504 Created.push_back(Fold.getNode()); 5505 5506 SDValue IntMin = DAG.getConstant( 5507 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5508 SDValue IntMax = DAG.getConstant( 5509 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5510 SDValue Zero = 5511 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5512 5513 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5514 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5515 Created.push_back(DivisorIsIntMin.getNode()); 5516 5517 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5518 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5519 Created.push_back(Masked.getNode()); 5520 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5521 Created.push_back(MaskedIsZero.getNode()); 5522 5523 // To produce final result we need to blend 2 vectors: 'SetCC' and 5524 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5525 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5526 // constant-folded, select can get lowered to a shuffle with constant mask. 5527 SDValue Blended = 5528 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5529 5530 return Blended; 5531 } 5532 5533 bool TargetLowering:: 5534 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5535 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5536 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5537 "be a constant integer"); 5538 return true; 5539 } 5540 5541 return false; 5542 } 5543 5544 TargetLowering::NegatibleCost 5545 TargetLowering::getNegatibleCost(SDValue Op, SelectionDAG &DAG, 5546 bool LegalOperations, bool ForCodeSize, 5547 unsigned Depth) const { 5548 // fneg is removable even if it has multiple uses. 5549 if (Op.getOpcode() == ISD::FNEG) 5550 return NegatibleCost::Cheaper; 5551 5552 // Don't allow anything with multiple uses unless we know it is free. 5553 EVT VT = Op.getValueType(); 5554 const SDNodeFlags Flags = Op->getFlags(); 5555 const TargetOptions &Options = DAG.getTarget().Options; 5556 if (!Op.hasOneUse()) { 5557 bool IsFreeExtend = Op.getOpcode() == ISD::FP_EXTEND && 5558 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5559 5560 // If we already have the use of the negated floating constant, it is free 5561 // to negate it even it has multiple uses. 5562 bool IsFreeConstant = 5563 Op.getOpcode() == ISD::ConstantFP && 5564 !getNegatedExpression(Op, DAG, LegalOperations, ForCodeSize) 5565 .use_empty(); 5566 5567 if (!IsFreeExtend && !IsFreeConstant) 5568 return NegatibleCost::Expensive; 5569 } 5570 5571 // Don't recurse exponentially. 5572 if (Depth > SelectionDAG::MaxRecursionDepth) 5573 return NegatibleCost::Expensive; 5574 5575 switch (Op.getOpcode()) { 5576 case ISD::ConstantFP: { 5577 if (!LegalOperations) 5578 return NegatibleCost::Neutral; 5579 5580 // Don't invert constant FP values after legalization unless the target says 5581 // the negated constant is legal. 5582 if (isOperationLegal(ISD::ConstantFP, VT) || 5583 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5584 ForCodeSize)) 5585 return NegatibleCost::Neutral; 5586 break; 5587 } 5588 case ISD::BUILD_VECTOR: { 5589 // Only permit BUILD_VECTOR of constants. 5590 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5591 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5592 })) 5593 return NegatibleCost::Expensive; 5594 if (!LegalOperations) 5595 return NegatibleCost::Neutral; 5596 if (isOperationLegal(ISD::ConstantFP, VT) && 5597 isOperationLegal(ISD::BUILD_VECTOR, VT)) 5598 return NegatibleCost::Neutral; 5599 if (llvm::all_of(Op->op_values(), [&](SDValue N) { 5600 return N.isUndef() || 5601 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5602 ForCodeSize); 5603 })) 5604 return NegatibleCost::Neutral; 5605 break; 5606 } 5607 case ISD::FADD: { 5608 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5609 return NegatibleCost::Expensive; 5610 5611 // After operation legalization, it might not be legal to create new FSUBs. 5612 if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5613 return NegatibleCost::Expensive; 5614 5615 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5616 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5617 ForCodeSize, Depth + 1); 5618 if (V0 != NegatibleCost::Expensive) 5619 return V0; 5620 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5621 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5622 Depth + 1); 5623 } 5624 case ISD::FSUB: 5625 // We can't turn -(A-B) into B-A when we honor signed zeros. 5626 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5627 return NegatibleCost::Expensive; 5628 5629 // fold (fneg (fsub A, B)) -> (fsub B, A) 5630 return NegatibleCost::Neutral; 5631 case ISD::FMUL: 5632 case ISD::FDIV: { 5633 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y)) 5634 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5635 ForCodeSize, Depth + 1); 5636 if (V0 != NegatibleCost::Expensive) 5637 return V0; 5638 5639 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5640 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5641 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5642 return NegatibleCost::Expensive; 5643 5644 return getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, ForCodeSize, 5645 Depth + 1); 5646 } 5647 case ISD::FMA: 5648 case ISD::FMAD: { 5649 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5650 return NegatibleCost::Expensive; 5651 5652 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5653 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5654 NegatibleCost V2 = getNegatibleCost(Op.getOperand(2), DAG, LegalOperations, 5655 ForCodeSize, Depth + 1); 5656 if (NegatibleCost::Expensive == V2) 5657 return NegatibleCost::Expensive; 5658 5659 // One of Op0/Op1 must be cheaply negatible, then select the cheapest. 5660 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5661 ForCodeSize, Depth + 1); 5662 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5663 ForCodeSize, Depth + 1); 5664 NegatibleCost V01 = std::max(V0, V1); 5665 if (V01 == NegatibleCost::Expensive) 5666 return NegatibleCost::Expensive; 5667 return std::max(V01, V2); 5668 } 5669 5670 case ISD::FP_EXTEND: 5671 case ISD::FP_ROUND: 5672 case ISD::FSIN: 5673 return getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, ForCodeSize, 5674 Depth + 1); 5675 } 5676 5677 return NegatibleCost::Expensive; 5678 } 5679 5680 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5681 bool LegalOperations, 5682 bool ForCodeSize, 5683 unsigned Depth) const { 5684 // fneg is removable even if it has multiple uses. 5685 if (Op.getOpcode() == ISD::FNEG) 5686 return Op.getOperand(0); 5687 5688 assert(Depth <= SelectionDAG::MaxRecursionDepth && 5689 "getNegatedExpression doesn't match getNegatibleCost"); 5690 const SDNodeFlags Flags = Op->getFlags(); 5691 5692 switch (Op.getOpcode()) { 5693 case ISD::ConstantFP: { 5694 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5695 V.changeSign(); 5696 return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType()); 5697 } 5698 case ISD::BUILD_VECTOR: { 5699 SmallVector<SDValue, 4> Ops; 5700 for (SDValue C : Op->op_values()) { 5701 if (C.isUndef()) { 5702 Ops.push_back(C); 5703 continue; 5704 } 5705 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5706 V.changeSign(); 5707 Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType())); 5708 } 5709 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops); 5710 } 5711 case ISD::FADD: { 5712 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5713 Flags.hasNoSignedZeros()) && 5714 "Expected NSZ fp-flag"); 5715 5716 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B) 5717 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5718 ForCodeSize, Depth + 1); 5719 if (V0 != NegatibleCost::Expensive) 5720 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5721 getNegatedExpression(Op.getOperand(0), DAG, 5722 LegalOperations, ForCodeSize, 5723 Depth + 1), 5724 Op.getOperand(1), Flags); 5725 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A) 5726 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5727 getNegatedExpression(Op.getOperand(1), DAG, 5728 LegalOperations, ForCodeSize, 5729 Depth + 1), 5730 Op.getOperand(0), Flags); 5731 } 5732 case ISD::FSUB: 5733 // fold (fneg (fsub 0, B)) -> B 5734 if (ConstantFPSDNode *N0CFP = 5735 isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true)) 5736 if (N0CFP->isZero()) 5737 return Op.getOperand(1); 5738 5739 // fold (fneg (fsub A, B)) -> (fsub B, A) 5740 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(), 5741 Op.getOperand(1), Op.getOperand(0), Flags); 5742 5743 case ISD::FMUL: 5744 case ISD::FDIV: { 5745 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5746 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5747 ForCodeSize, Depth + 1); 5748 if (V0 != NegatibleCost::Expensive) 5749 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5750 getNegatedExpression(Op.getOperand(0), DAG, 5751 LegalOperations, ForCodeSize, 5752 Depth + 1), 5753 Op.getOperand(1), Flags); 5754 5755 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5756 return DAG.getNode( 5757 Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0), 5758 getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5759 ForCodeSize, Depth + 1), 5760 Flags); 5761 } 5762 case ISD::FMA: 5763 case ISD::FMAD: { 5764 assert((DAG.getTarget().Options.NoSignedZerosFPMath || 5765 Flags.hasNoSignedZeros()) && 5766 "Expected NSZ fp-flag"); 5767 5768 SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations, 5769 ForCodeSize, Depth + 1); 5770 5771 NegatibleCost V0 = getNegatibleCost(Op.getOperand(0), DAG, LegalOperations, 5772 ForCodeSize, Depth + 1); 5773 NegatibleCost V1 = getNegatibleCost(Op.getOperand(1), DAG, LegalOperations, 5774 ForCodeSize, Depth + 1); 5775 if (V0 > V1) { 5776 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5777 SDValue Neg0 = getNegatedExpression( 5778 Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1); 5779 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0, 5780 Op.getOperand(1), Neg2, Flags); 5781 } 5782 5783 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5784 SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations, 5785 ForCodeSize, Depth + 1); 5786 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5787 Op.getOperand(0), Neg1, Neg2, Flags); 5788 } 5789 5790 case ISD::FP_EXTEND: 5791 case ISD::FSIN: 5792 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 5793 getNegatedExpression(Op.getOperand(0), DAG, 5794 LegalOperations, ForCodeSize, 5795 Depth + 1)); 5796 case ISD::FP_ROUND: 5797 return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(), 5798 getNegatedExpression(Op.getOperand(0), DAG, 5799 LegalOperations, ForCodeSize, 5800 Depth + 1), 5801 Op.getOperand(1)); 5802 } 5803 5804 llvm_unreachable("Unknown code"); 5805 } 5806 5807 //===----------------------------------------------------------------------===// 5808 // Legalization Utilities 5809 //===----------------------------------------------------------------------===// 5810 5811 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5812 SDValue LHS, SDValue RHS, 5813 SmallVectorImpl<SDValue> &Result, 5814 EVT HiLoVT, SelectionDAG &DAG, 5815 MulExpansionKind Kind, SDValue LL, 5816 SDValue LH, SDValue RL, SDValue RH) const { 5817 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5818 Opcode == ISD::SMUL_LOHI); 5819 5820 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5821 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5822 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5823 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5824 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5825 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5826 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5827 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5828 5829 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5830 return false; 5831 5832 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5833 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5834 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5835 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5836 5837 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5838 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5839 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5840 5841 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5842 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5843 bool Signed) -> bool { 5844 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5845 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5846 Hi = SDValue(Lo.getNode(), 1); 5847 return true; 5848 } 5849 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5850 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5851 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5852 return true; 5853 } 5854 return false; 5855 }; 5856 5857 SDValue Lo, Hi; 5858 5859 if (!LL.getNode() && !RL.getNode() && 5860 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5861 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5862 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5863 } 5864 5865 if (!LL.getNode()) 5866 return false; 5867 5868 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5869 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5870 DAG.MaskedValueIsZero(RHS, HighMask)) { 5871 // The inputs are both zero-extended. 5872 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5873 Result.push_back(Lo); 5874 Result.push_back(Hi); 5875 if (Opcode != ISD::MUL) { 5876 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5877 Result.push_back(Zero); 5878 Result.push_back(Zero); 5879 } 5880 return true; 5881 } 5882 } 5883 5884 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5885 RHSSB > InnerBitSize) { 5886 // The input values are both sign-extended. 5887 // TODO non-MUL case? 5888 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5889 Result.push_back(Lo); 5890 Result.push_back(Hi); 5891 return true; 5892 } 5893 } 5894 5895 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5896 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5897 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5898 // FIXME getShiftAmountTy does not always return a sensible result when VT 5899 // is an illegal type, and so the type may be too small to fit the shift 5900 // amount. Override it with i32. The shift will have to be legalized. 5901 ShiftAmountTy = MVT::i32; 5902 } 5903 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5904 5905 if (!LH.getNode() && !RH.getNode() && 5906 isOperationLegalOrCustom(ISD::SRL, VT) && 5907 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5908 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5909 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5910 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5911 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5912 } 5913 5914 if (!LH.getNode()) 5915 return false; 5916 5917 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5918 return false; 5919 5920 Result.push_back(Lo); 5921 5922 if (Opcode == ISD::MUL) { 5923 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5924 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5925 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5926 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5927 Result.push_back(Hi); 5928 return true; 5929 } 5930 5931 // Compute the full width result. 5932 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5933 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5934 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5935 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5936 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5937 }; 5938 5939 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5940 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5941 return false; 5942 5943 // This is effectively the add part of a multiply-add of half-sized operands, 5944 // so it cannot overflow. 5945 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5946 5947 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5948 return false; 5949 5950 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5951 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5952 5953 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5954 isOperationLegalOrCustom(ISD::ADDE, VT)); 5955 if (UseGlue) 5956 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5957 Merge(Lo, Hi)); 5958 else 5959 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5960 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5961 5962 SDValue Carry = Next.getValue(1); 5963 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5964 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5965 5966 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5967 return false; 5968 5969 if (UseGlue) 5970 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5971 Carry); 5972 else 5973 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5974 Zero, Carry); 5975 5976 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5977 5978 if (Opcode == ISD::SMUL_LOHI) { 5979 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5980 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5981 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5982 5983 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5984 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5985 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5986 } 5987 5988 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5989 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5990 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5991 return true; 5992 } 5993 5994 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5995 SelectionDAG &DAG, MulExpansionKind Kind, 5996 SDValue LL, SDValue LH, SDValue RL, 5997 SDValue RH) const { 5998 SmallVector<SDValue, 2> Result; 5999 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 6000 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6001 DAG, Kind, LL, LH, RL, RH); 6002 if (Ok) { 6003 assert(Result.size() == 2); 6004 Lo = Result[0]; 6005 Hi = Result[1]; 6006 } 6007 return Ok; 6008 } 6009 6010 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6011 SelectionDAG &DAG) const { 6012 EVT VT = Node->getValueType(0); 6013 6014 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6015 !isOperationLegalOrCustom(ISD::SRL, VT) || 6016 !isOperationLegalOrCustom(ISD::SUB, VT) || 6017 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6018 return false; 6019 6020 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6021 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6022 SDValue X = Node->getOperand(0); 6023 SDValue Y = Node->getOperand(1); 6024 SDValue Z = Node->getOperand(2); 6025 6026 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6027 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6028 SDLoc DL(SDValue(Node, 0)); 6029 6030 EVT ShVT = Z.getValueType(); 6031 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6032 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6033 6034 SDValue ShAmt; 6035 if (isPowerOf2_32(EltSizeInBits)) { 6036 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6037 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6038 } else { 6039 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6040 } 6041 6042 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6043 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6044 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6045 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6046 6047 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6048 // and that is undefined. We must compare and select to avoid UB. 6049 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 6050 6051 // For fshl, 0-shift returns the 1st arg (X). 6052 // For fshr, 0-shift returns the 2nd arg (Y). 6053 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 6054 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 6055 return true; 6056 } 6057 6058 // TODO: Merge with expandFunnelShift. 6059 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6060 SelectionDAG &DAG) const { 6061 EVT VT = Node->getValueType(0); 6062 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6063 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6064 SDValue Op0 = Node->getOperand(0); 6065 SDValue Op1 = Node->getOperand(1); 6066 SDLoc DL(SDValue(Node, 0)); 6067 6068 EVT ShVT = Op1.getValueType(); 6069 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6070 6071 // If a rotate in the other direction is legal, use it. 6072 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6073 if (isOperationLegal(RevRot, VT)) { 6074 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6075 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6076 return true; 6077 } 6078 6079 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6080 !isOperationLegalOrCustom(ISD::SRL, VT) || 6081 !isOperationLegalOrCustom(ISD::SUB, VT) || 6082 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6083 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6084 return false; 6085 6086 // Otherwise, 6087 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 6088 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 6089 // 6090 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 6091 "Expecting the type bitwidth to be a power of 2"); 6092 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6093 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6094 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6095 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 6096 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6097 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6098 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 6099 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 6100 return true; 6101 } 6102 6103 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6104 SelectionDAG &DAG) const { 6105 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6106 SDValue Src = Node->getOperand(OpNo); 6107 EVT SrcVT = Src.getValueType(); 6108 EVT DstVT = Node->getValueType(0); 6109 SDLoc dl(SDValue(Node, 0)); 6110 6111 // FIXME: Only f32 to i64 conversions are supported. 6112 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6113 return false; 6114 6115 if (Node->isStrictFPOpcode()) 6116 // When a NaN is converted to an integer a trap is allowed. We can't 6117 // use this expansion here because it would eliminate that trap. Other 6118 // traps are also allowed and cannot be eliminated. See 6119 // IEEE 754-2008 sec 5.8. 6120 return false; 6121 6122 // Expand f32 -> i64 conversion 6123 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6124 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6125 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6126 EVT IntVT = SrcVT.changeTypeToInteger(); 6127 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6128 6129 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6130 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6131 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6132 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6133 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6134 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6135 6136 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6137 6138 SDValue ExponentBits = DAG.getNode( 6139 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6140 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6141 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6142 6143 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6144 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6145 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6146 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6147 6148 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6149 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6150 DAG.getConstant(0x00800000, dl, IntVT)); 6151 6152 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6153 6154 R = DAG.getSelectCC( 6155 dl, Exponent, ExponentLoBit, 6156 DAG.getNode(ISD::SHL, dl, DstVT, R, 6157 DAG.getZExtOrTrunc( 6158 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6159 dl, IntShVT)), 6160 DAG.getNode(ISD::SRL, dl, DstVT, R, 6161 DAG.getZExtOrTrunc( 6162 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6163 dl, IntShVT)), 6164 ISD::SETGT); 6165 6166 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6167 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6168 6169 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6170 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6171 return true; 6172 } 6173 6174 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6175 SDValue &Chain, 6176 SelectionDAG &DAG) const { 6177 SDLoc dl(SDValue(Node, 0)); 6178 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6179 SDValue Src = Node->getOperand(OpNo); 6180 6181 EVT SrcVT = Src.getValueType(); 6182 EVT DstVT = Node->getValueType(0); 6183 EVT SetCCVT = 6184 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6185 EVT DstSetCCVT = 6186 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6187 6188 // Only expand vector types if we have the appropriate vector bit operations. 6189 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6190 ISD::FP_TO_SINT; 6191 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6192 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6193 return false; 6194 6195 // If the maximum float value is smaller then the signed integer range, 6196 // the destination signmask can't be represented by the float, so we can 6197 // just use FP_TO_SINT directly. 6198 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6199 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6200 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6201 if (APFloat::opOverflow & 6202 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6203 if (Node->isStrictFPOpcode()) { 6204 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6205 { Node->getOperand(0), Src }); 6206 Chain = Result.getValue(1); 6207 } else 6208 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6209 return true; 6210 } 6211 6212 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6213 SDValue Sel; 6214 6215 if (Node->isStrictFPOpcode()) { 6216 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6217 Node->getOperand(0), /*IsSignaling*/ true); 6218 Chain = Sel.getValue(1); 6219 } else { 6220 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6221 } 6222 6223 bool Strict = Node->isStrictFPOpcode() || 6224 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6225 6226 if (Strict) { 6227 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6228 // signmask then offset (the result of which should be fully representable). 6229 // Sel = Src < 0x8000000000000000 6230 // FltOfs = select Sel, 0, 0x8000000000000000 6231 // IntOfs = select Sel, 0, 0x8000000000000000 6232 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6233 6234 // TODO: Should any fast-math-flags be set for the FSUB? 6235 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6236 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6237 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6238 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6239 DAG.getConstant(0, dl, DstVT), 6240 DAG.getConstant(SignMask, dl, DstVT)); 6241 SDValue SInt; 6242 if (Node->isStrictFPOpcode()) { 6243 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6244 { Chain, Src, FltOfs }); 6245 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6246 { Val.getValue(1), Val }); 6247 Chain = SInt.getValue(1); 6248 } else { 6249 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6250 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6251 } 6252 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6253 } else { 6254 // Expand based on maximum range of FP_TO_SINT: 6255 // True = fp_to_sint(Src) 6256 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6257 // Result = select (Src < 0x8000000000000000), True, False 6258 6259 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6260 // TODO: Should any fast-math-flags be set for the FSUB? 6261 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6262 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6263 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6264 DAG.getConstant(SignMask, dl, DstVT)); 6265 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6266 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6267 } 6268 return true; 6269 } 6270 6271 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6272 SDValue &Chain, 6273 SelectionDAG &DAG) const { 6274 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6275 SDValue Src = Node->getOperand(OpNo); 6276 EVT SrcVT = Src.getValueType(); 6277 EVT DstVT = Node->getValueType(0); 6278 6279 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6280 return false; 6281 6282 // Only expand vector types if we have the appropriate vector bit operations. 6283 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6284 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6285 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6286 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6287 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6288 return false; 6289 6290 SDLoc dl(SDValue(Node, 0)); 6291 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6292 6293 // Implementation of unsigned i64 to f64 following the algorithm in 6294 // __floatundidf in compiler_rt. This implementation has the advantage 6295 // of performing rounding correctly, both in the default rounding mode 6296 // and in all alternate rounding modes. 6297 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6298 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6299 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6300 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6301 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6302 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6303 6304 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6305 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6306 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6307 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6308 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6309 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6310 if (Node->isStrictFPOpcode()) { 6311 SDValue HiSub = 6312 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6313 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6314 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6315 {HiSub.getValue(1), LoFlt, HiSub}); 6316 Chain = Result.getValue(1); 6317 } else { 6318 SDValue HiSub = 6319 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6320 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6321 } 6322 return true; 6323 } 6324 6325 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6326 SelectionDAG &DAG) const { 6327 SDLoc dl(Node); 6328 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6329 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6330 EVT VT = Node->getValueType(0); 6331 if (isOperationLegalOrCustom(NewOp, VT)) { 6332 SDValue Quiet0 = Node->getOperand(0); 6333 SDValue Quiet1 = Node->getOperand(1); 6334 6335 if (!Node->getFlags().hasNoNaNs()) { 6336 // Insert canonicalizes if it's possible we need to quiet to get correct 6337 // sNaN behavior. 6338 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6339 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6340 Node->getFlags()); 6341 } 6342 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6343 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6344 Node->getFlags()); 6345 } 6346 } 6347 6348 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6349 } 6350 6351 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6352 // instead if there are no NaNs. 6353 if (Node->getFlags().hasNoNaNs()) { 6354 unsigned IEEE2018Op = 6355 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6356 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6357 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6358 Node->getOperand(1), Node->getFlags()); 6359 } 6360 } 6361 6362 // If none of the above worked, but there are no NaNs, then expand to 6363 // a compare/select sequence. This is required for correctness since 6364 // InstCombine might have canonicalized a fcmp+select sequence to a 6365 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6366 // expansion to libcall, we might introduce a link-time dependency 6367 // on libm into a file that originally did not have one. 6368 if (Node->getFlags().hasNoNaNs()) { 6369 ISD::CondCode Pred = 6370 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6371 SDValue Op1 = Node->getOperand(0); 6372 SDValue Op2 = Node->getOperand(1); 6373 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6374 // Copy FMF flags, but always set the no-signed-zeros flag 6375 // as this is implied by the FMINNUM/FMAXNUM semantics. 6376 SDNodeFlags Flags = Node->getFlags(); 6377 Flags.setNoSignedZeros(true); 6378 SelCC->setFlags(Flags); 6379 return SelCC; 6380 } 6381 6382 return SDValue(); 6383 } 6384 6385 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6386 SelectionDAG &DAG) const { 6387 SDLoc dl(Node); 6388 EVT VT = Node->getValueType(0); 6389 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6390 SDValue Op = Node->getOperand(0); 6391 unsigned Len = VT.getScalarSizeInBits(); 6392 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6393 6394 // TODO: Add support for irregular type lengths. 6395 if (!(Len <= 128 && Len % 8 == 0)) 6396 return false; 6397 6398 // Only expand vector types if we have the appropriate vector bit operations. 6399 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6400 !isOperationLegalOrCustom(ISD::SUB, VT) || 6401 !isOperationLegalOrCustom(ISD::SRL, VT) || 6402 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6403 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6404 return false; 6405 6406 // This is the "best" algorithm from 6407 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6408 SDValue Mask55 = 6409 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6410 SDValue Mask33 = 6411 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6412 SDValue Mask0F = 6413 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6414 SDValue Mask01 = 6415 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6416 6417 // v = v - ((v >> 1) & 0x55555555...) 6418 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6419 DAG.getNode(ISD::AND, dl, VT, 6420 DAG.getNode(ISD::SRL, dl, VT, Op, 6421 DAG.getConstant(1, dl, ShVT)), 6422 Mask55)); 6423 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6424 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6425 DAG.getNode(ISD::AND, dl, VT, 6426 DAG.getNode(ISD::SRL, dl, VT, Op, 6427 DAG.getConstant(2, dl, ShVT)), 6428 Mask33)); 6429 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6430 Op = DAG.getNode(ISD::AND, dl, VT, 6431 DAG.getNode(ISD::ADD, dl, VT, Op, 6432 DAG.getNode(ISD::SRL, dl, VT, Op, 6433 DAG.getConstant(4, dl, ShVT))), 6434 Mask0F); 6435 // v = (v * 0x01010101...) >> (Len - 8) 6436 if (Len > 8) 6437 Op = 6438 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6439 DAG.getConstant(Len - 8, dl, ShVT)); 6440 6441 Result = Op; 6442 return true; 6443 } 6444 6445 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6446 SelectionDAG &DAG) const { 6447 SDLoc dl(Node); 6448 EVT VT = Node->getValueType(0); 6449 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6450 SDValue Op = Node->getOperand(0); 6451 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6452 6453 // If the non-ZERO_UNDEF version is supported we can use that instead. 6454 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6455 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6456 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6457 return true; 6458 } 6459 6460 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6461 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6462 EVT SetCCVT = 6463 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6464 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6465 SDValue Zero = DAG.getConstant(0, dl, VT); 6466 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6467 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6468 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6469 return true; 6470 } 6471 6472 // Only expand vector types if we have the appropriate vector bit operations. 6473 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6474 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6475 !isOperationLegalOrCustom(ISD::SRL, VT) || 6476 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6477 return false; 6478 6479 // for now, we do this: 6480 // x = x | (x >> 1); 6481 // x = x | (x >> 2); 6482 // ... 6483 // x = x | (x >>16); 6484 // x = x | (x >>32); // for 64-bit input 6485 // return popcount(~x); 6486 // 6487 // Ref: "Hacker's Delight" by Henry Warren 6488 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6489 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6490 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6491 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6492 } 6493 Op = DAG.getNOT(dl, Op, VT); 6494 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6495 return true; 6496 } 6497 6498 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6499 SelectionDAG &DAG) const { 6500 SDLoc dl(Node); 6501 EVT VT = Node->getValueType(0); 6502 SDValue Op = Node->getOperand(0); 6503 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6504 6505 // If the non-ZERO_UNDEF version is supported we can use that instead. 6506 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6507 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6508 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6509 return true; 6510 } 6511 6512 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6513 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6514 EVT SetCCVT = 6515 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6516 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6517 SDValue Zero = DAG.getConstant(0, dl, VT); 6518 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6519 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6520 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6521 return true; 6522 } 6523 6524 // Only expand vector types if we have the appropriate vector bit operations. 6525 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6526 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6527 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6528 !isOperationLegalOrCustom(ISD::SUB, VT) || 6529 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6530 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6531 return false; 6532 6533 // for now, we use: { return popcount(~x & (x - 1)); } 6534 // unless the target has ctlz but not ctpop, in which case we use: 6535 // { return 32 - nlz(~x & (x-1)); } 6536 // Ref: "Hacker's Delight" by Henry Warren 6537 SDValue Tmp = DAG.getNode( 6538 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6539 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6540 6541 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6542 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6543 Result = 6544 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6545 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6546 return true; 6547 } 6548 6549 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6550 return true; 6551 } 6552 6553 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6554 SelectionDAG &DAG) const { 6555 SDLoc dl(N); 6556 EVT VT = N->getValueType(0); 6557 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6558 SDValue Op = N->getOperand(0); 6559 6560 // Only expand vector types if we have the appropriate vector operations. 6561 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6562 !isOperationLegalOrCustom(ISD::ADD, VT) || 6563 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6564 return false; 6565 6566 SDValue Shift = 6567 DAG.getNode(ISD::SRA, dl, VT, Op, 6568 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6569 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6570 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6571 return true; 6572 } 6573 6574 std::pair<SDValue, SDValue> 6575 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6576 SelectionDAG &DAG) const { 6577 SDLoc SL(LD); 6578 SDValue Chain = LD->getChain(); 6579 SDValue BasePTR = LD->getBasePtr(); 6580 EVT SrcVT = LD->getMemoryVT(); 6581 EVT DstVT = LD->getValueType(0); 6582 ISD::LoadExtType ExtType = LD->getExtensionType(); 6583 6584 unsigned NumElem = SrcVT.getVectorNumElements(); 6585 6586 EVT SrcEltVT = SrcVT.getScalarType(); 6587 EVT DstEltVT = DstVT.getScalarType(); 6588 6589 // A vector must always be stored in memory as-is, i.e. without any padding 6590 // between the elements, since various code depend on it, e.g. in the 6591 // handling of a bitcast of a vector type to int, which may be done with a 6592 // vector store followed by an integer load. A vector that does not have 6593 // elements that are byte-sized must therefore be stored as an integer 6594 // built out of the extracted vector elements. 6595 if (!SrcEltVT.isByteSized()) { 6596 unsigned NumBits = SrcVT.getSizeInBits(); 6597 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6598 6599 SDValue Load = DAG.getLoad(IntVT, SL, Chain, BasePTR, LD->getPointerInfo(), 6600 LD->getAlignment(), 6601 LD->getMemOperand()->getFlags(), 6602 LD->getAAInfo()); 6603 6604 SmallVector<SDValue, 8> Vals; 6605 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6606 unsigned ShiftIntoIdx = 6607 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6608 SDValue ShiftAmount = 6609 DAG.getConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), SL, IntVT); 6610 SDValue ShiftedElt = 6611 DAG.getNode(ISD::SRL, SL, IntVT, Load, ShiftAmount); 6612 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, ShiftedElt); 6613 if (ExtType != ISD::NON_EXTLOAD) { 6614 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6615 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6616 } 6617 Vals.push_back(Scalar); 6618 } 6619 6620 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6621 return std::make_pair(Value, Load.getValue(1)); 6622 } 6623 6624 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6625 assert(SrcEltVT.isByteSized()); 6626 6627 SmallVector<SDValue, 8> Vals; 6628 SmallVector<SDValue, 8> LoadChains; 6629 6630 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6631 SDValue ScalarLoad = 6632 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6633 LD->getPointerInfo().getWithOffset(Idx * Stride), 6634 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6635 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6636 6637 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6638 6639 Vals.push_back(ScalarLoad.getValue(0)); 6640 LoadChains.push_back(ScalarLoad.getValue(1)); 6641 } 6642 6643 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6644 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6645 6646 return std::make_pair(Value, NewChain); 6647 } 6648 6649 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6650 SelectionDAG &DAG) const { 6651 SDLoc SL(ST); 6652 6653 SDValue Chain = ST->getChain(); 6654 SDValue BasePtr = ST->getBasePtr(); 6655 SDValue Value = ST->getValue(); 6656 EVT StVT = ST->getMemoryVT(); 6657 6658 // The type of the data we want to save 6659 EVT RegVT = Value.getValueType(); 6660 EVT RegSclVT = RegVT.getScalarType(); 6661 6662 // The type of data as saved in memory. 6663 EVT MemSclVT = StVT.getScalarType(); 6664 6665 unsigned NumElem = StVT.getVectorNumElements(); 6666 6667 // A vector must always be stored in memory as-is, i.e. without any padding 6668 // between the elements, since various code depend on it, e.g. in the 6669 // handling of a bitcast of a vector type to int, which may be done with a 6670 // vector store followed by an integer load. A vector that does not have 6671 // elements that are byte-sized must therefore be stored as an integer 6672 // built out of the extracted vector elements. 6673 if (!MemSclVT.isByteSized()) { 6674 unsigned NumBits = StVT.getSizeInBits(); 6675 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6676 6677 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6678 6679 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6680 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6681 DAG.getVectorIdxConstant(Idx, SL)); 6682 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6683 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6684 unsigned ShiftIntoIdx = 6685 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6686 SDValue ShiftAmount = 6687 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6688 SDValue ShiftedElt = 6689 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6690 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6691 } 6692 6693 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6694 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6695 ST->getAAInfo()); 6696 } 6697 6698 // Store Stride in bytes 6699 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6700 assert(Stride && "Zero stride!"); 6701 // Extract each of the elements from the original vector and save them into 6702 // memory individually. 6703 SmallVector<SDValue, 8> Stores; 6704 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6705 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6706 DAG.getVectorIdxConstant(Idx, SL)); 6707 6708 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6709 6710 // This scalar TruncStore may be illegal, but we legalize it later. 6711 SDValue Store = DAG.getTruncStore( 6712 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6713 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6714 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6715 6716 Stores.push_back(Store); 6717 } 6718 6719 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6720 } 6721 6722 std::pair<SDValue, SDValue> 6723 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6724 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6725 "unaligned indexed loads not implemented!"); 6726 SDValue Chain = LD->getChain(); 6727 SDValue Ptr = LD->getBasePtr(); 6728 EVT VT = LD->getValueType(0); 6729 EVT LoadedVT = LD->getMemoryVT(); 6730 SDLoc dl(LD); 6731 auto &MF = DAG.getMachineFunction(); 6732 6733 if (VT.isFloatingPoint() || VT.isVector()) { 6734 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6735 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6736 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6737 LoadedVT.isVector()) { 6738 // Scalarize the load and let the individual components be handled. 6739 return scalarizeVectorLoad(LD, DAG); 6740 } 6741 6742 // Expand to a (misaligned) integer load of the same size, 6743 // then bitconvert to floating point or vector. 6744 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6745 LD->getMemOperand()); 6746 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6747 if (LoadedVT != VT) 6748 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6749 ISD::ANY_EXTEND, dl, VT, Result); 6750 6751 return std::make_pair(Result, newLoad.getValue(1)); 6752 } 6753 6754 // Copy the value to a (aligned) stack slot using (unaligned) integer 6755 // loads and stores, then do a (aligned) load from the stack slot. 6756 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6757 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6758 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6759 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6760 6761 // Make sure the stack slot is also aligned for the register type. 6762 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6763 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6764 SmallVector<SDValue, 8> Stores; 6765 SDValue StackPtr = StackBase; 6766 unsigned Offset = 0; 6767 6768 EVT PtrVT = Ptr.getValueType(); 6769 EVT StackPtrVT = StackPtr.getValueType(); 6770 6771 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6772 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6773 6774 // Do all but one copies using the full register width. 6775 for (unsigned i = 1; i < NumRegs; i++) { 6776 // Load one integer register's worth from the original location. 6777 SDValue Load = DAG.getLoad( 6778 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6779 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6780 LD->getAAInfo()); 6781 // Follow the load with a store to the stack slot. Remember the store. 6782 Stores.push_back(DAG.getStore( 6783 Load.getValue(1), dl, Load, StackPtr, 6784 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6785 // Increment the pointers. 6786 Offset += RegBytes; 6787 6788 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6789 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6790 } 6791 6792 // The last copy may be partial. Do an extending load. 6793 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6794 8 * (LoadedBytes - Offset)); 6795 SDValue Load = 6796 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6797 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6798 MinAlign(LD->getAlignment(), Offset), 6799 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6800 // Follow the load with a store to the stack slot. Remember the store. 6801 // On big-endian machines this requires a truncating store to ensure 6802 // that the bits end up in the right place. 6803 Stores.push_back(DAG.getTruncStore( 6804 Load.getValue(1), dl, Load, StackPtr, 6805 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6806 6807 // The order of the stores doesn't matter - say it with a TokenFactor. 6808 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6809 6810 // Finally, perform the original load only redirected to the stack slot. 6811 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6812 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6813 LoadedVT); 6814 6815 // Callers expect a MERGE_VALUES node. 6816 return std::make_pair(Load, TF); 6817 } 6818 6819 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6820 "Unaligned load of unsupported type."); 6821 6822 // Compute the new VT that is half the size of the old one. This is an 6823 // integer MVT. 6824 unsigned NumBits = LoadedVT.getSizeInBits(); 6825 EVT NewLoadedVT; 6826 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6827 NumBits >>= 1; 6828 6829 unsigned Alignment = LD->getAlignment(); 6830 unsigned IncrementSize = NumBits / 8; 6831 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6832 6833 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6834 if (HiExtType == ISD::NON_EXTLOAD) 6835 HiExtType = ISD::ZEXTLOAD; 6836 6837 // Load the value in two parts 6838 SDValue Lo, Hi; 6839 if (DAG.getDataLayout().isLittleEndian()) { 6840 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6841 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6842 LD->getAAInfo()); 6843 6844 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6845 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6846 LD->getPointerInfo().getWithOffset(IncrementSize), 6847 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6848 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6849 } else { 6850 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6851 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6852 LD->getAAInfo()); 6853 6854 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6855 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6856 LD->getPointerInfo().getWithOffset(IncrementSize), 6857 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6858 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6859 } 6860 6861 // aggregate the two parts 6862 SDValue ShiftAmount = 6863 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6864 DAG.getDataLayout())); 6865 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6866 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6867 6868 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6869 Hi.getValue(1)); 6870 6871 return std::make_pair(Result, TF); 6872 } 6873 6874 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6875 SelectionDAG &DAG) const { 6876 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6877 "unaligned indexed stores not implemented!"); 6878 SDValue Chain = ST->getChain(); 6879 SDValue Ptr = ST->getBasePtr(); 6880 SDValue Val = ST->getValue(); 6881 EVT VT = Val.getValueType(); 6882 int Alignment = ST->getAlignment(); 6883 auto &MF = DAG.getMachineFunction(); 6884 EVT StoreMemVT = ST->getMemoryVT(); 6885 6886 SDLoc dl(ST); 6887 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6888 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6889 if (isTypeLegal(intVT)) { 6890 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6891 StoreMemVT.isVector()) { 6892 // Scalarize the store and let the individual components be handled. 6893 SDValue Result = scalarizeVectorStore(ST, DAG); 6894 return Result; 6895 } 6896 // Expand to a bitconvert of the value to the integer type of the 6897 // same size, then a (misaligned) int store. 6898 // FIXME: Does not handle truncating floating point stores! 6899 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6900 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6901 Alignment, ST->getMemOperand()->getFlags()); 6902 return Result; 6903 } 6904 // Do a (aligned) store to a stack slot, then copy from the stack slot 6905 // to the final destination using (unaligned) integer loads and stores. 6906 MVT RegVT = getRegisterType( 6907 *DAG.getContext(), 6908 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6909 EVT PtrVT = Ptr.getValueType(); 6910 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6911 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6912 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6913 6914 // Make sure the stack slot is also aligned for the register type. 6915 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6916 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6917 6918 // Perform the original store, only redirected to the stack slot. 6919 SDValue Store = DAG.getTruncStore( 6920 Chain, dl, Val, StackPtr, 6921 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6922 6923 EVT StackPtrVT = StackPtr.getValueType(); 6924 6925 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6926 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6927 SmallVector<SDValue, 8> Stores; 6928 unsigned Offset = 0; 6929 6930 // Do all but one copies using the full register width. 6931 for (unsigned i = 1; i < NumRegs; i++) { 6932 // Load one integer register's worth from the stack slot. 6933 SDValue Load = DAG.getLoad( 6934 RegVT, dl, Store, StackPtr, 6935 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6936 // Store it to the final location. Remember the store. 6937 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6938 ST->getPointerInfo().getWithOffset(Offset), 6939 MinAlign(ST->getAlignment(), Offset), 6940 ST->getMemOperand()->getFlags())); 6941 // Increment the pointers. 6942 Offset += RegBytes; 6943 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6944 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6945 } 6946 6947 // The last store may be partial. Do a truncating store. On big-endian 6948 // machines this requires an extending load from the stack slot to ensure 6949 // that the bits are in the right place. 6950 EVT LoadMemVT = 6951 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6952 6953 // Load from the stack slot. 6954 SDValue Load = DAG.getExtLoad( 6955 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6956 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6957 6958 Stores.push_back( 6959 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6960 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6961 MinAlign(ST->getAlignment(), Offset), 6962 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6963 // The order of the stores doesn't matter - say it with a TokenFactor. 6964 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6965 return Result; 6966 } 6967 6968 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6969 "Unaligned store of unknown type."); 6970 // Get the half-size VT 6971 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6972 int NumBits = NewStoredVT.getSizeInBits(); 6973 int IncrementSize = NumBits / 8; 6974 6975 // Divide the stored value in two parts. 6976 SDValue ShiftAmount = DAG.getConstant( 6977 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6978 SDValue Lo = Val; 6979 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6980 6981 // Store the two parts 6982 SDValue Store1, Store2; 6983 Store1 = DAG.getTruncStore(Chain, dl, 6984 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6985 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6986 ST->getMemOperand()->getFlags()); 6987 6988 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6989 Alignment = MinAlign(Alignment, IncrementSize); 6990 Store2 = DAG.getTruncStore( 6991 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6992 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6993 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6994 6995 SDValue Result = 6996 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6997 return Result; 6998 } 6999 7000 SDValue 7001 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7002 const SDLoc &DL, EVT DataVT, 7003 SelectionDAG &DAG, 7004 bool IsCompressedMemory) const { 7005 SDValue Increment; 7006 EVT AddrVT = Addr.getValueType(); 7007 EVT MaskVT = Mask.getValueType(); 7008 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 7009 "Incompatible types of Data and Mask"); 7010 if (IsCompressedMemory) { 7011 // Incrementing the pointer according to number of '1's in the mask. 7012 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7013 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7014 if (MaskIntVT.getSizeInBits() < 32) { 7015 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7016 MaskIntVT = MVT::i32; 7017 } 7018 7019 // Count '1's with POPCNT. 7020 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7021 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7022 // Scale is an element size in bytes. 7023 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7024 AddrVT); 7025 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7026 } else 7027 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7028 7029 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7030 } 7031 7032 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7033 SDValue Idx, 7034 EVT VecVT, 7035 const SDLoc &dl) { 7036 if (isa<ConstantSDNode>(Idx)) 7037 return Idx; 7038 7039 EVT IdxVT = Idx.getValueType(); 7040 unsigned NElts = VecVT.getVectorNumElements(); 7041 if (isPowerOf2_32(NElts)) { 7042 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7043 Log2_32(NElts)); 7044 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7045 DAG.getConstant(Imm, dl, IdxVT)); 7046 } 7047 7048 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7049 DAG.getConstant(NElts - 1, dl, IdxVT)); 7050 } 7051 7052 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7053 SDValue VecPtr, EVT VecVT, 7054 SDValue Index) const { 7055 SDLoc dl(Index); 7056 // Make sure the index type is big enough to compute in. 7057 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7058 7059 EVT EltVT = VecVT.getVectorElementType(); 7060 7061 // Calculate the element offset and add it to the pointer. 7062 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 7063 assert(EltSize * 8 == EltVT.getSizeInBits() && 7064 "Converting bits to bytes lost precision"); 7065 7066 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7067 7068 EVT IdxVT = Index.getValueType(); 7069 7070 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7071 DAG.getConstant(EltSize, dl, IdxVT)); 7072 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7073 } 7074 7075 //===----------------------------------------------------------------------===// 7076 // Implementation of Emulated TLS Model 7077 //===----------------------------------------------------------------------===// 7078 7079 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7080 SelectionDAG &DAG) const { 7081 // Access to address of TLS varialbe xyz is lowered to a function call: 7082 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7083 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7084 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7085 SDLoc dl(GA); 7086 7087 ArgListTy Args; 7088 ArgListEntry Entry; 7089 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7090 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7091 StringRef EmuTlsVarName(NameString); 7092 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7093 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7094 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7095 Entry.Ty = VoidPtrType; 7096 Args.push_back(Entry); 7097 7098 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7099 7100 TargetLowering::CallLoweringInfo CLI(DAG); 7101 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7102 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7103 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7104 7105 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7106 // At last for X86 targets, maybe good for other targets too? 7107 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7108 MFI.setAdjustsStack(true); // Is this only for X86 target? 7109 MFI.setHasCalls(true); 7110 7111 assert((GA->getOffset() == 0) && 7112 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7113 return CallResult.first; 7114 } 7115 7116 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7117 SelectionDAG &DAG) const { 7118 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7119 if (!isCtlzFast()) 7120 return SDValue(); 7121 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7122 SDLoc dl(Op); 7123 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7124 if (C->isNullValue() && CC == ISD::SETEQ) { 7125 EVT VT = Op.getOperand(0).getValueType(); 7126 SDValue Zext = Op.getOperand(0); 7127 if (VT.bitsLT(MVT::i32)) { 7128 VT = MVT::i32; 7129 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7130 } 7131 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7132 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7133 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7134 DAG.getConstant(Log2b, dl, MVT::i32)); 7135 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7136 } 7137 } 7138 return SDValue(); 7139 } 7140 7141 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7142 unsigned Opcode = Node->getOpcode(); 7143 SDValue LHS = Node->getOperand(0); 7144 SDValue RHS = Node->getOperand(1); 7145 EVT VT = LHS.getValueType(); 7146 SDLoc dl(Node); 7147 7148 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7149 assert(VT.isInteger() && "Expected operands to be integers"); 7150 7151 // usub.sat(a, b) -> umax(a, b) - b 7152 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7153 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7154 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7155 } 7156 7157 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7158 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7159 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7160 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7161 } 7162 7163 unsigned OverflowOp; 7164 switch (Opcode) { 7165 case ISD::SADDSAT: 7166 OverflowOp = ISD::SADDO; 7167 break; 7168 case ISD::UADDSAT: 7169 OverflowOp = ISD::UADDO; 7170 break; 7171 case ISD::SSUBSAT: 7172 OverflowOp = ISD::SSUBO; 7173 break; 7174 case ISD::USUBSAT: 7175 OverflowOp = ISD::USUBO; 7176 break; 7177 default: 7178 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7179 "addition or subtraction node."); 7180 } 7181 7182 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7183 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7184 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7185 LHS, RHS); 7186 SDValue SumDiff = Result.getValue(0); 7187 SDValue Overflow = Result.getValue(1); 7188 SDValue Zero = DAG.getConstant(0, dl, VT); 7189 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7190 7191 if (Opcode == ISD::UADDSAT) { 7192 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7193 // (LHS + RHS) | OverflowMask 7194 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7195 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7196 } 7197 // Overflow ? 0xffff.... : (LHS + RHS) 7198 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7199 } else if (Opcode == ISD::USUBSAT) { 7200 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7201 // (LHS - RHS) & ~OverflowMask 7202 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7203 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7204 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7205 } 7206 // Overflow ? 0 : (LHS - RHS) 7207 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7208 } else { 7209 // SatMax -> Overflow && SumDiff < 0 7210 // SatMin -> Overflow && SumDiff >= 0 7211 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7212 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7213 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7214 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7215 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7216 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7217 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7218 } 7219 } 7220 7221 SDValue 7222 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7223 assert((Node->getOpcode() == ISD::SMULFIX || 7224 Node->getOpcode() == ISD::UMULFIX || 7225 Node->getOpcode() == ISD::SMULFIXSAT || 7226 Node->getOpcode() == ISD::UMULFIXSAT) && 7227 "Expected a fixed point multiplication opcode"); 7228 7229 SDLoc dl(Node); 7230 SDValue LHS = Node->getOperand(0); 7231 SDValue RHS = Node->getOperand(1); 7232 EVT VT = LHS.getValueType(); 7233 unsigned Scale = Node->getConstantOperandVal(2); 7234 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7235 Node->getOpcode() == ISD::UMULFIXSAT); 7236 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7237 Node->getOpcode() == ISD::SMULFIXSAT); 7238 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7239 unsigned VTSize = VT.getScalarSizeInBits(); 7240 7241 if (!Scale) { 7242 // [us]mul.fix(a, b, 0) -> mul(a, b) 7243 if (!Saturating) { 7244 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7245 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7246 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7247 SDValue Result = 7248 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7249 SDValue Product = Result.getValue(0); 7250 SDValue Overflow = Result.getValue(1); 7251 SDValue Zero = DAG.getConstant(0, dl, VT); 7252 7253 APInt MinVal = APInt::getSignedMinValue(VTSize); 7254 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7255 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7256 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7257 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7258 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7259 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7260 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7261 SDValue Result = 7262 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7263 SDValue Product = Result.getValue(0); 7264 SDValue Overflow = Result.getValue(1); 7265 7266 APInt MaxVal = APInt::getMaxValue(VTSize); 7267 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7268 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7269 } 7270 } 7271 7272 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7273 "Expected scale to be less than the number of bits if signed or at " 7274 "most the number of bits if unsigned."); 7275 assert(LHS.getValueType() == RHS.getValueType() && 7276 "Expected both operands to be the same type"); 7277 7278 // Get the upper and lower bits of the result. 7279 SDValue Lo, Hi; 7280 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7281 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7282 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7283 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7284 Lo = Result.getValue(0); 7285 Hi = Result.getValue(1); 7286 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7287 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7288 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7289 } else if (VT.isVector()) { 7290 return SDValue(); 7291 } else { 7292 report_fatal_error("Unable to expand fixed point multiplication."); 7293 } 7294 7295 if (Scale == VTSize) 7296 // Result is just the top half since we'd be shifting by the width of the 7297 // operand. Overflow impossible so this works for both UMULFIX and 7298 // UMULFIXSAT. 7299 return Hi; 7300 7301 // The result will need to be shifted right by the scale since both operands 7302 // are scaled. The result is given to us in 2 halves, so we only want part of 7303 // both in the result. 7304 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7305 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7306 DAG.getConstant(Scale, dl, ShiftTy)); 7307 if (!Saturating) 7308 return Result; 7309 7310 if (!Signed) { 7311 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7312 // widened multiplication) aren't all zeroes. 7313 7314 // Saturate to max if ((Hi >> Scale) != 0), 7315 // which is the same as if (Hi > ((1 << Scale) - 1)) 7316 APInt MaxVal = APInt::getMaxValue(VTSize); 7317 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7318 dl, VT); 7319 Result = DAG.getSelectCC(dl, Hi, LowMask, 7320 DAG.getConstant(MaxVal, dl, VT), Result, 7321 ISD::SETUGT); 7322 7323 return Result; 7324 } 7325 7326 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7327 // widened multiplication) aren't all ones or all zeroes. 7328 7329 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7330 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7331 7332 if (Scale == 0) { 7333 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7334 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7335 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7336 // Saturated to SatMin if wide product is negative, and SatMax if wide 7337 // product is positive ... 7338 SDValue Zero = DAG.getConstant(0, dl, VT); 7339 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7340 ISD::SETLT); 7341 // ... but only if we overflowed. 7342 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7343 } 7344 7345 // We handled Scale==0 above so all the bits to examine is in Hi. 7346 7347 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7348 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7349 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7350 dl, VT); 7351 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7352 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7353 // which is the same as if (HI < (-1 << (Scale - 1)) 7354 SDValue HighMask = 7355 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7356 dl, VT); 7357 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7358 return Result; 7359 } 7360 7361 SDValue 7362 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7363 SDValue LHS, SDValue RHS, 7364 unsigned Scale, SelectionDAG &DAG) const { 7365 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7366 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7367 "Expected a fixed point division opcode"); 7368 7369 EVT VT = LHS.getValueType(); 7370 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7371 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7372 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7373 7374 // If there is enough room in the type to upscale the LHS or downscale the 7375 // RHS before the division, we can perform it in this type without having to 7376 // resize. For signed operations, the LHS headroom is the number of 7377 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7378 // The headroom for the RHS is the number of trailing zeroes. 7379 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7380 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7381 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7382 7383 // For signed saturating operations, we need to be able to detect true integer 7384 // division overflow; that is, when you have MIN / -EPS. However, this 7385 // is undefined behavior and if we emit divisions that could take such 7386 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7387 // example). 7388 // Avoid this by requiring an extra bit so that we never get this case. 7389 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7390 // signed saturating division, we need to emit a whopping 32-bit division. 7391 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7392 return SDValue(); 7393 7394 unsigned LHSShift = std::min(LHSLead, Scale); 7395 unsigned RHSShift = Scale - LHSShift; 7396 7397 // At this point, we know that if we shift the LHS up by LHSShift and the 7398 // RHS down by RHSShift, we can emit a regular division with a final scaling 7399 // factor of Scale. 7400 7401 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7402 if (LHSShift) 7403 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7404 DAG.getConstant(LHSShift, dl, ShiftTy)); 7405 if (RHSShift) 7406 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7407 DAG.getConstant(RHSShift, dl, ShiftTy)); 7408 7409 SDValue Quot; 7410 if (Signed) { 7411 // For signed operations, if the resulting quotient is negative and the 7412 // remainder is nonzero, subtract 1 from the quotient to round towards 7413 // negative infinity. 7414 SDValue Rem; 7415 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7416 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7417 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7418 if (isTypeLegal(VT) && 7419 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7420 Quot = DAG.getNode(ISD::SDIVREM, dl, 7421 DAG.getVTList(VT, VT), 7422 LHS, RHS); 7423 Rem = Quot.getValue(1); 7424 Quot = Quot.getValue(0); 7425 } else { 7426 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7427 LHS, RHS); 7428 Rem = DAG.getNode(ISD::SREM, dl, VT, 7429 LHS, RHS); 7430 } 7431 SDValue Zero = DAG.getConstant(0, dl, VT); 7432 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7433 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7434 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7435 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7436 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7437 DAG.getConstant(1, dl, VT)); 7438 Quot = DAG.getSelect(dl, VT, 7439 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7440 Sub1, Quot); 7441 } else 7442 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7443 LHS, RHS); 7444 7445 return Quot; 7446 } 7447 7448 void TargetLowering::expandUADDSUBO( 7449 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7450 SDLoc dl(Node); 7451 SDValue LHS = Node->getOperand(0); 7452 SDValue RHS = Node->getOperand(1); 7453 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7454 7455 // If ADD/SUBCARRY is legal, use that instead. 7456 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7457 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7458 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7459 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7460 { LHS, RHS, CarryIn }); 7461 Result = SDValue(NodeCarry.getNode(), 0); 7462 Overflow = SDValue(NodeCarry.getNode(), 1); 7463 return; 7464 } 7465 7466 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7467 LHS.getValueType(), LHS, RHS); 7468 7469 EVT ResultType = Node->getValueType(1); 7470 EVT SetCCType = getSetCCResultType( 7471 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7472 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7473 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7474 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7475 } 7476 7477 void TargetLowering::expandSADDSUBO( 7478 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7479 SDLoc dl(Node); 7480 SDValue LHS = Node->getOperand(0); 7481 SDValue RHS = Node->getOperand(1); 7482 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7483 7484 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7485 LHS.getValueType(), LHS, RHS); 7486 7487 EVT ResultType = Node->getValueType(1); 7488 EVT OType = getSetCCResultType( 7489 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7490 7491 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7492 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7493 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7494 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7495 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7496 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7497 return; 7498 } 7499 7500 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7501 7502 // For an addition, the result should be less than one of the operands (LHS) 7503 // if and only if the other operand (RHS) is negative, otherwise there will 7504 // be overflow. 7505 // For a subtraction, the result should be less than one of the operands 7506 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7507 // otherwise there will be overflow. 7508 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7509 SDValue ConditionRHS = 7510 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7511 7512 Overflow = DAG.getBoolExtOrTrunc( 7513 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7514 ResultType, ResultType); 7515 } 7516 7517 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7518 SDValue &Overflow, SelectionDAG &DAG) const { 7519 SDLoc dl(Node); 7520 EVT VT = Node->getValueType(0); 7521 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7522 SDValue LHS = Node->getOperand(0); 7523 SDValue RHS = Node->getOperand(1); 7524 bool isSigned = Node->getOpcode() == ISD::SMULO; 7525 7526 // For power-of-two multiplications we can use a simpler shift expansion. 7527 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7528 const APInt &C = RHSC->getAPIntValue(); 7529 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7530 if (C.isPowerOf2()) { 7531 // smulo(x, signed_min) is same as umulo(x, signed_min). 7532 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7533 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7534 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7535 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7536 Overflow = DAG.getSetCC(dl, SetCCVT, 7537 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7538 dl, VT, Result, ShiftAmt), 7539 LHS, ISD::SETNE); 7540 return true; 7541 } 7542 } 7543 7544 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7545 if (VT.isVector()) 7546 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7547 VT.getVectorNumElements()); 7548 7549 SDValue BottomHalf; 7550 SDValue TopHalf; 7551 static const unsigned Ops[2][3] = 7552 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7553 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7554 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7555 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7556 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7557 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7558 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7559 RHS); 7560 TopHalf = BottomHalf.getValue(1); 7561 } else if (isTypeLegal(WideVT)) { 7562 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7563 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7564 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7565 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7566 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7567 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7568 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7569 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7570 } else { 7571 if (VT.isVector()) 7572 return false; 7573 7574 // We can fall back to a libcall with an illegal type for the MUL if we 7575 // have a libcall big enough. 7576 // Also, we can fall back to a division in some cases, but that's a big 7577 // performance hit in the general case. 7578 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7579 if (WideVT == MVT::i16) 7580 LC = RTLIB::MUL_I16; 7581 else if (WideVT == MVT::i32) 7582 LC = RTLIB::MUL_I32; 7583 else if (WideVT == MVT::i64) 7584 LC = RTLIB::MUL_I64; 7585 else if (WideVT == MVT::i128) 7586 LC = RTLIB::MUL_I128; 7587 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7588 7589 SDValue HiLHS; 7590 SDValue HiRHS; 7591 if (isSigned) { 7592 // The high part is obtained by SRA'ing all but one of the bits of low 7593 // part. 7594 unsigned LoSize = VT.getSizeInBits(); 7595 HiLHS = 7596 DAG.getNode(ISD::SRA, dl, VT, LHS, 7597 DAG.getConstant(LoSize - 1, dl, 7598 getPointerTy(DAG.getDataLayout()))); 7599 HiRHS = 7600 DAG.getNode(ISD::SRA, dl, VT, RHS, 7601 DAG.getConstant(LoSize - 1, dl, 7602 getPointerTy(DAG.getDataLayout()))); 7603 } else { 7604 HiLHS = DAG.getConstant(0, dl, VT); 7605 HiRHS = DAG.getConstant(0, dl, VT); 7606 } 7607 7608 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7609 // pre-lowered to the correct types. This all depends upon WideVT not 7610 // being a legal type for the architecture and thus has to be split to 7611 // two arguments. 7612 SDValue Ret; 7613 TargetLowering::MakeLibCallOptions CallOptions; 7614 CallOptions.setSExt(isSigned); 7615 CallOptions.setIsPostTypeLegalization(true); 7616 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7617 // Halves of WideVT are packed into registers in different order 7618 // depending on platform endianness. This is usually handled by 7619 // the C calling convention, but we can't defer to it in 7620 // the legalizer. 7621 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7622 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7623 } else { 7624 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7625 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7626 } 7627 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7628 "Ret value is a collection of constituent nodes holding result."); 7629 if (DAG.getDataLayout().isLittleEndian()) { 7630 // Same as above. 7631 BottomHalf = Ret.getOperand(0); 7632 TopHalf = Ret.getOperand(1); 7633 } else { 7634 BottomHalf = Ret.getOperand(1); 7635 TopHalf = Ret.getOperand(0); 7636 } 7637 } 7638 7639 Result = BottomHalf; 7640 if (isSigned) { 7641 SDValue ShiftAmt = DAG.getConstant( 7642 VT.getScalarSizeInBits() - 1, dl, 7643 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7644 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7645 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7646 } else { 7647 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7648 DAG.getConstant(0, dl, VT), ISD::SETNE); 7649 } 7650 7651 // Truncate the result if SetCC returns a larger type than needed. 7652 EVT RType = Node->getValueType(1); 7653 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7654 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7655 7656 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7657 "Unexpected result type for S/UMULO legalization"); 7658 return true; 7659 } 7660 7661 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7662 SDLoc dl(Node); 7663 bool NoNaN = Node->getFlags().hasNoNaNs(); 7664 unsigned BaseOpcode = 0; 7665 switch (Node->getOpcode()) { 7666 default: llvm_unreachable("Expected VECREDUCE opcode"); 7667 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7668 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7669 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7670 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7671 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7672 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7673 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7674 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7675 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7676 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7677 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7678 case ISD::VECREDUCE_FMAX: 7679 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7680 break; 7681 case ISD::VECREDUCE_FMIN: 7682 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7683 break; 7684 } 7685 7686 SDValue Op = Node->getOperand(0); 7687 EVT VT = Op.getValueType(); 7688 7689 // Try to use a shuffle reduction for power of two vectors. 7690 if (VT.isPow2VectorType()) { 7691 while (VT.getVectorNumElements() > 1) { 7692 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7693 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7694 break; 7695 7696 SDValue Lo, Hi; 7697 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7698 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7699 VT = HalfVT; 7700 } 7701 } 7702 7703 EVT EltVT = VT.getVectorElementType(); 7704 unsigned NumElts = VT.getVectorNumElements(); 7705 7706 SmallVector<SDValue, 8> Ops; 7707 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7708 7709 SDValue Res = Ops[0]; 7710 for (unsigned i = 1; i < NumElts; i++) 7711 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7712 7713 // Result type may be wider than element type. 7714 if (EltVT != Node->getValueType(0)) 7715 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7716 return Res; 7717 } 7718