1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function *F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore noalias because it doesn't affect the call sequence.
58   AttributeSet CallerAttrs = F->getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
60       .removeAttribute(Attribute::NoAlias).hasAttributes())
61     return false;
62 
63   // It's not safe to eliminate the sign / zero extension of the return value.
64   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
65       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
66     return false;
67 
68   // Check if the only use is a function return node.
69   return isUsedByReturnOnly(Node, Chain);
70 }
71 
72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
73     const uint32_t *CallerPreservedMask,
74     const SmallVectorImpl<CCValAssign> &ArgLocs,
75     const SmallVectorImpl<SDValue> &OutVals) const {
76   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
77     const CCValAssign &ArgLoc = ArgLocs[I];
78     if (!ArgLoc.isRegLoc())
79       continue;
80     unsigned Reg = ArgLoc.getLocReg();
81     // Only look at callee saved registers.
82     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
83       continue;
84     // Check that we pass the value used for the caller.
85     // (We look for a CopyFromReg reading a virtual register that is used
86     //  for the function live-in value of register Reg)
87     SDValue Value = OutVals[I];
88     if (Value->getOpcode() != ISD::CopyFromReg)
89       return false;
90     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
91     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
92       return false;
93   }
94   return true;
95 }
96 
97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
98 /// and called function attributes.
99 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
100                                                      unsigned AttrIdx) {
101   IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
102   IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
103   IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
104   IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
105   IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
106   IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
107   IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
108   IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
109   IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
110   IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
111   Alignment  = CS->getParamAlignment(AttrIdx);
112 }
113 
114 /// Generate a libcall taking the given operands as arguments and returning a
115 /// result of type RetVT.
116 std::pair<SDValue, SDValue>
117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
118                             ArrayRef<SDValue> Ops, bool isSigned,
119                             const SDLoc &dl, bool doesNotReturn,
120                             bool isReturnValueUsed) const {
121   TargetLowering::ArgListTy Args;
122   Args.reserve(Ops.size());
123 
124   TargetLowering::ArgListEntry Entry;
125   for (SDValue Op : Ops) {
126     Entry.Node = Op;
127     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
128     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
129     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
130     Args.push_back(Entry);
131   }
132 
133   if (LC == RTLIB::UNKNOWN_LIBCALL)
134     report_fatal_error("Unsupported library call operation!");
135   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
136                                          getPointerTy(DAG.getDataLayout()));
137 
138   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
139   TargetLowering::CallLoweringInfo CLI(DAG);
140   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
141   CLI.setDebugLoc(dl)
142       .setChain(DAG.getEntryNode())
143       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
144       .setNoReturn(doesNotReturn)
145       .setDiscardResult(!isReturnValueUsed)
146       .setSExtResult(signExtend)
147       .setZExtResult(!signExtend);
148   return LowerCallTo(CLI);
149 }
150 
151 /// Soften the operands of a comparison. This code is shared among BR_CC,
152 /// SELECT_CC, and SETCC handlers.
153 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
154                                          SDValue &NewLHS, SDValue &NewRHS,
155                                          ISD::CondCode &CCCode,
156                                          const SDLoc &dl) const {
157   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
158          && "Unsupported setcc type!");
159 
160   // Expand into one or more soft-fp libcall(s).
161   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
162   bool ShouldInvertCC = false;
163   switch (CCCode) {
164   case ISD::SETEQ:
165   case ISD::SETOEQ:
166     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
167           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
168           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
169     break;
170   case ISD::SETNE:
171   case ISD::SETUNE:
172     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
173           (VT == MVT::f64) ? RTLIB::UNE_F64 :
174           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
175     break;
176   case ISD::SETGE:
177   case ISD::SETOGE:
178     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
179           (VT == MVT::f64) ? RTLIB::OGE_F64 :
180           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
181     break;
182   case ISD::SETLT:
183   case ISD::SETOLT:
184     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
185           (VT == MVT::f64) ? RTLIB::OLT_F64 :
186           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
187     break;
188   case ISD::SETLE:
189   case ISD::SETOLE:
190     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
191           (VT == MVT::f64) ? RTLIB::OLE_F64 :
192           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
193     break;
194   case ISD::SETGT:
195   case ISD::SETOGT:
196     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
197           (VT == MVT::f64) ? RTLIB::OGT_F64 :
198           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
199     break;
200   case ISD::SETUO:
201     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
202           (VT == MVT::f64) ? RTLIB::UO_F64 :
203           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
204     break;
205   case ISD::SETO:
206     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
207           (VT == MVT::f64) ? RTLIB::O_F64 :
208           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
209     break;
210   case ISD::SETONE:
211     // SETONE = SETOLT | SETOGT
212     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
213           (VT == MVT::f64) ? RTLIB::OLT_F64 :
214           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
215     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
216           (VT == MVT::f64) ? RTLIB::OGT_F64 :
217           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
218     break;
219   case ISD::SETUEQ:
220     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
221           (VT == MVT::f64) ? RTLIB::UO_F64 :
222           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
223     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
224           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
225           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
226     break;
227   default:
228     // Invert CC for unordered comparisons
229     ShouldInvertCC = true;
230     switch (CCCode) {
231     case ISD::SETULT:
232       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
233             (VT == MVT::f64) ? RTLIB::OGE_F64 :
234             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
235       break;
236     case ISD::SETULE:
237       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
238             (VT == MVT::f64) ? RTLIB::OGT_F64 :
239             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
240       break;
241     case ISD::SETUGT:
242       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
243             (VT == MVT::f64) ? RTLIB::OLE_F64 :
244             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
245       break;
246     case ISD::SETUGE:
247       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
248             (VT == MVT::f64) ? RTLIB::OLT_F64 :
249             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
250       break;
251     default: llvm_unreachable("Do not know how to soften this setcc!");
252     }
253   }
254 
255   // Use the target specific return value for comparions lib calls.
256   EVT RetVT = getCmpLibcallReturnType();
257   SDValue Ops[2] = {NewLHS, NewRHS};
258   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
259                        dl).first;
260   NewRHS = DAG.getConstant(0, dl, RetVT);
261 
262   CCCode = getCmpLibcallCC(LC1);
263   if (ShouldInvertCC)
264     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
265 
266   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
267     SDValue Tmp = DAG.getNode(
268         ISD::SETCC, dl,
269         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
270         NewLHS, NewRHS, DAG.getCondCode(CCCode));
271     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
272                          dl).first;
273     NewLHS = DAG.getNode(
274         ISD::SETCC, dl,
275         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
276         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
277     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
278     NewRHS = SDValue();
279   }
280 }
281 
282 /// Return the entry encoding for a jump table in the current function. The
283 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
284 unsigned TargetLowering::getJumpTableEncoding() const {
285   // In non-pic modes, just use the address of a block.
286   if (!isPositionIndependent())
287     return MachineJumpTableInfo::EK_BlockAddress;
288 
289   // In PIC mode, if the target supports a GPRel32 directive, use it.
290   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
291     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
292 
293   // Otherwise, use a label difference.
294   return MachineJumpTableInfo::EK_LabelDifference32;
295 }
296 
297 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
298                                                  SelectionDAG &DAG) const {
299   // If our PIC model is GP relative, use the global offset table as the base.
300   unsigned JTEncoding = getJumpTableEncoding();
301 
302   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
303       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
304     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
305 
306   return Table;
307 }
308 
309 /// This returns the relocation base for the given PIC jumptable, the same as
310 /// getPICJumpTableRelocBase, but as an MCExpr.
311 const MCExpr *
312 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
313                                              unsigned JTI,MCContext &Ctx) const{
314   // The normal PIC reloc base is the label at the start of the jump table.
315   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
316 }
317 
318 bool
319 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
320   const TargetMachine &TM = getTargetMachine();
321   const GlobalValue *GV = GA->getGlobal();
322 
323   // If the address is not even local to this DSO we will have to load it from
324   // a got and then add the offset.
325   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
326     return false;
327 
328   // If the code is position independent we will have to add a base register.
329   if (isPositionIndependent())
330     return false;
331 
332   // Otherwise we can do it.
333   return true;
334 }
335 
336 //===----------------------------------------------------------------------===//
337 //  Optimization Methods
338 //===----------------------------------------------------------------------===//
339 
340 /// If the specified instruction has a constant integer operand and there are
341 /// bits set in that constant that are not demanded, then clear those bits and
342 /// return true.
343 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(
344     SDValue Op, const APInt &Demanded) {
345   SDLoc DL(Op);
346   unsigned Opcode = Op.getOpcode();
347 
348   // FIXME: ISD::SELECT, ISD::SELECT_CC
349   switch (Opcode) {
350   default:
351     break;
352   case ISD::XOR:
353   case ISD::AND:
354   case ISD::OR: {
355     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
356     if (!Op1C)
357       return false;
358 
359     // If this is a 'not' op, don't touch it because that's a canonical form.
360     const APInt &C = Op1C->getAPIntValue();
361     if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue())
362       return false;
363 
364     if (C.intersects(~Demanded)) {
365       EVT VT = Op.getValueType();
366       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
367       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
368       return CombineTo(Op, NewOp);
369     }
370 
371     break;
372   }
373   }
374 
375   return false;
376 }
377 
378 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
379 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
380 /// generalized for targets with other types of implicit widening casts.
381 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
382                                                          unsigned BitWidth,
383                                                          const APInt &Demanded,
384                                                          const SDLoc &dl) {
385   assert(Op.getNumOperands() == 2 &&
386          "ShrinkDemandedOp only supports binary operators!");
387   assert(Op.getNode()->getNumValues() == 1 &&
388          "ShrinkDemandedOp only supports nodes with one result!");
389 
390   // Early return, as this function cannot handle vector types.
391   if (Op.getValueType().isVector())
392     return false;
393 
394   // Don't do this if the node has another user, which may require the
395   // full value.
396   if (!Op.getNode()->hasOneUse())
397     return false;
398 
399   // Search for the smallest integer type with free casts to and from
400   // Op's type. For expedience, just check power-of-2 integer types.
401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
402   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
403   unsigned SmallVTBits = DemandedSize;
404   if (!isPowerOf2_32(SmallVTBits))
405     SmallVTBits = NextPowerOf2(SmallVTBits);
406   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
407     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
408     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
409         TLI.isZExtFree(SmallVT, Op.getValueType())) {
410       // We found a type with free casts.
411       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
412                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
413                                           Op.getNode()->getOperand(0)),
414                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
415                                           Op.getNode()->getOperand(1)));
416       bool NeedZext = DemandedSize > SmallVTBits;
417       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
418                               dl, Op.getValueType(), X);
419       return CombineTo(Op, Z);
420     }
421   }
422   return false;
423 }
424 
425 bool
426 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User,
427                                                         unsigned OpIdx,
428                                                         const APInt &Demanded,
429                                                         DAGCombinerInfo &DCI) {
430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
431   SDValue Op = User->getOperand(OpIdx);
432   APInt KnownZero, KnownOne;
433 
434   if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne,
435                                 *this, 0, true))
436     return false;
437 
438 
439   // Old will not always be the same as Op.  For example:
440   //
441   // Demanded = 0xffffff
442   // Op = i64 truncate (i32 and x, 0xffffff)
443   // In this case simplify demand bits will want to replace the 'and' node
444   // with the value 'x', which will give us:
445   // Old = i32 and x, 0xffffff
446   // New = x
447   if (Old.hasOneUse()) {
448     // For the one use case, we just commit the change.
449     DCI.CommitTargetLoweringOpt(*this);
450     return true;
451   }
452 
453   // If Old has more than one use then it must be Op, because the
454   // AssumeSingleUse flag is not propogated to recursive calls of
455   // SimplifyDemanded bits, so the only node with multiple use that
456   // it will attempt to combine will be opt.
457   assert(Old == Op);
458 
459   SmallVector <SDValue, 4> NewOps;
460   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
461     if (i == OpIdx) {
462       NewOps.push_back(New);
463       continue;
464     }
465     NewOps.push_back(User->getOperand(i));
466   }
467   DAG.UpdateNodeOperands(User, NewOps);
468   // Op has less users now, so we may be able to perform additional combines
469   // with it.
470   DCI.AddToWorklist(Op.getNode());
471   // User's operands have been updated, so we may be able to do new combines
472   // with it.
473   DCI.AddToWorklist(User);
474   return true;
475 }
476 
477 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask,
478                                           DAGCombinerInfo &DCI) const {
479 
480   SelectionDAG &DAG = DCI.DAG;
481   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
482                         !DCI.isBeforeLegalizeOps());
483   APInt KnownZero, KnownOne;
484 
485   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne,
486                                          TLO);
487   if (Simplified)
488     DCI.CommitTargetLoweringOpt(TLO);
489   return Simplified;
490 }
491 
492 /// Look at Op. At this point, we know that only the DemandedMask bits of the
493 /// result of Op are ever used downstream. If we can use this information to
494 /// simplify Op, create a new simplified DAG node and return true, returning the
495 /// original and new nodes in Old and New. Otherwise, analyze the expression and
496 /// return a mask of KnownOne and KnownZero bits for the expression (used to
497 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
498 /// bits in the DemandedMask.
499 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
500                                           const APInt &DemandedMask,
501                                           APInt &KnownZero,
502                                           APInt &KnownOne,
503                                           TargetLoweringOpt &TLO,
504                                           unsigned Depth,
505                                           bool AssumeSingleUse) const {
506   unsigned BitWidth = DemandedMask.getBitWidth();
507   assert(Op.getScalarValueSizeInBits() == BitWidth &&
508          "Mask size mismatches value type size!");
509   APInt NewMask = DemandedMask;
510   SDLoc dl(Op);
511   auto &DL = TLO.DAG.getDataLayout();
512 
513   // Don't know anything.
514   KnownZero = KnownOne = APInt(BitWidth, 0);
515 
516   // Other users may use these bits.
517   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
518     if (Depth != 0) {
519       // If not at the root, Just compute the KnownZero/KnownOne bits to
520       // simplify things downstream.
521       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
522       return false;
523     }
524     // If this is the root being simplified, allow it to have multiple uses,
525     // just set the NewMask to all bits.
526     NewMask = APInt::getAllOnesValue(BitWidth);
527   } else if (DemandedMask == 0) {
528     // Not demanding any bits from Op.
529     if (!Op.isUndef())
530       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
531     return false;
532   } else if (Depth == 6) {        // Limit search depth.
533     return false;
534   }
535 
536   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
537   switch (Op.getOpcode()) {
538   case ISD::Constant:
539     // We know all of the bits for a constant!
540     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
541     KnownZero = ~KnownOne;
542     return false;   // Don't fall through, will infinitely loop.
543   case ISD::BUILD_VECTOR:
544     // Collect the known bits that are shared by every constant vector element.
545     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
546     for (SDValue SrcOp : Op->ops()) {
547       if (!isa<ConstantSDNode>(SrcOp)) {
548         // We can only handle all constant values - bail out with no known bits.
549         KnownZero = KnownOne = APInt(BitWidth, 0);
550         return false;
551       }
552       KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
553       KnownZero2 = ~KnownOne2;
554 
555       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
556       if (KnownOne2.getBitWidth() != BitWidth) {
557         assert(KnownOne2.getBitWidth() > BitWidth &&
558                KnownZero2.getBitWidth() > BitWidth &&
559                "Expected BUILD_VECTOR implicit truncation");
560         KnownOne2 = KnownOne2.trunc(BitWidth);
561         KnownZero2 = KnownZero2.trunc(BitWidth);
562       }
563 
564       // Known bits are the values that are shared by every element.
565       // TODO: support per-element known bits.
566       KnownOne &= KnownOne2;
567       KnownZero &= KnownZero2;
568     }
569     return false;   // Don't fall through, will infinitely loop.
570   case ISD::AND:
571     // If the RHS is a constant, check to see if the LHS would be zero without
572     // using the bits from the RHS.  Below, we use knowledge about the RHS to
573     // simplify the LHS, here we're using information from the LHS to simplify
574     // the RHS.
575     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
576       SDValue Op0 = Op.getOperand(0);
577       APInt LHSZero, LHSOne;
578       // Do not increment Depth here; that can cause an infinite loop.
579       TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth);
580       // If the LHS already has zeros where RHSC does, this and is dead.
581       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
582         return TLO.CombineTo(Op, Op0);
583 
584       // If any of the set bits in the RHS are known zero on the LHS, shrink
585       // the constant.
586       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
587         return true;
588 
589       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
590       // constant, but if this 'and' is only clearing bits that were just set by
591       // the xor, then this 'and' can be eliminated by shrinking the mask of
592       // the xor. For example, for a 32-bit X:
593       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
594       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
595           LHSOne == ~RHSC->getAPIntValue()) {
596         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
597                                       Op0.getOperand(0), Op.getOperand(1));
598         return TLO.CombineTo(Op, Xor);
599       }
600     }
601 
602     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
603                              KnownOne, TLO, Depth+1))
604       return true;
605     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
606     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
607                              KnownZero2, KnownOne2, TLO, Depth+1))
608       return true;
609     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
610 
611     // If all of the demanded bits are known one on one side, return the other.
612     // These bits cannot contribute to the result of the 'and'.
613     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
614       return TLO.CombineTo(Op, Op.getOperand(0));
615     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
616       return TLO.CombineTo(Op, Op.getOperand(1));
617     // If all of the demanded bits in the inputs are known zeros, return zero.
618     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
619       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
620     // If the RHS is a constant, see if we can simplify it.
621     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
622       return true;
623     // If the operation can be done in a smaller type, do so.
624     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
625       return true;
626 
627     // Output known-1 bits are only known if set in both the LHS & RHS.
628     KnownOne &= KnownOne2;
629     // Output known-0 are known to be clear if zero in either the LHS | RHS.
630     KnownZero |= KnownZero2;
631     break;
632   case ISD::OR:
633     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
634                              KnownOne, TLO, Depth+1))
635       return true;
636     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
637     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
638                              KnownZero2, KnownOne2, TLO, Depth+1))
639       return true;
640     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
641 
642     // If all of the demanded bits are known zero on one side, return the other.
643     // These bits cannot contribute to the result of the 'or'.
644     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
645       return TLO.CombineTo(Op, Op.getOperand(0));
646     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
647       return TLO.CombineTo(Op, Op.getOperand(1));
648     // If all of the potentially set bits on one side are known to be set on
649     // the other side, just use the 'other' side.
650     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
651       return TLO.CombineTo(Op, Op.getOperand(0));
652     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
653       return TLO.CombineTo(Op, Op.getOperand(1));
654     // If the RHS is a constant, see if we can simplify it.
655     if (TLO.ShrinkDemandedConstant(Op, NewMask))
656       return true;
657     // If the operation can be done in a smaller type, do so.
658     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
659       return true;
660 
661     // Output known-0 bits are only known if clear in both the LHS & RHS.
662     KnownZero &= KnownZero2;
663     // Output known-1 are known to be set if set in either the LHS | RHS.
664     KnownOne |= KnownOne2;
665     break;
666   case ISD::XOR:
667     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
668                              KnownOne, TLO, Depth+1))
669       return true;
670     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
671     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
672                              KnownOne2, TLO, Depth+1))
673       return true;
674     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
675 
676     // If all of the demanded bits are known zero on one side, return the other.
677     // These bits cannot contribute to the result of the 'xor'.
678     if ((KnownZero & NewMask) == NewMask)
679       return TLO.CombineTo(Op, Op.getOperand(0));
680     if ((KnownZero2 & NewMask) == NewMask)
681       return TLO.CombineTo(Op, Op.getOperand(1));
682     // If the operation can be done in a smaller type, do so.
683     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
684       return true;
685 
686     // If all of the unknown bits are known to be zero on one side or the other
687     // (but not both) turn this into an *inclusive* or.
688     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
689     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
690       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
691                                                Op.getOperand(0),
692                                                Op.getOperand(1)));
693 
694     // Output known-0 bits are known if clear or set in both the LHS & RHS.
695     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
696     // Output known-1 are known to be set if set in only one of the LHS, RHS.
697     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
698 
699     // If all of the demanded bits on one side are known, and all of the set
700     // bits on that side are also known to be set on the other side, turn this
701     // into an AND, as we know the bits will be cleared.
702     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
703     // NB: it is okay if more bits are known than are requested
704     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
705       if (KnownOne == KnownOne2) { // set bits are the same on both sides
706         EVT VT = Op.getValueType();
707         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
708         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
709                                                  Op.getOperand(0), ANDC));
710       }
711     }
712 
713     // If the RHS is a constant, see if we can simplify it.
714     // for XOR, we prefer to force bits to 1 if they will make a -1.
715     // If we can't force bits, try to shrink the constant.
716     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
717       APInt Expanded = C->getAPIntValue() | (~NewMask);
718       // If we can expand it to have all bits set, do it.
719       if (Expanded.isAllOnesValue()) {
720         if (Expanded != C->getAPIntValue()) {
721           EVT VT = Op.getValueType();
722           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
723                                         TLO.DAG.getConstant(Expanded, dl, VT));
724           return TLO.CombineTo(Op, New);
725         }
726         // If it already has all the bits set, nothing to change
727         // but don't shrink either!
728       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
729         return true;
730       }
731     }
732 
733     KnownZero = KnownZeroOut;
734     KnownOne  = KnownOneOut;
735     break;
736   case ISD::SELECT:
737     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
738                              KnownOne, TLO, Depth+1))
739       return true;
740     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
741                              KnownOne2, TLO, Depth+1))
742       return true;
743     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
744     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
745 
746     // If the operands are constants, see if we can simplify them.
747     if (TLO.ShrinkDemandedConstant(Op, NewMask))
748       return true;
749 
750     // Only known if known in both the LHS and RHS.
751     KnownOne &= KnownOne2;
752     KnownZero &= KnownZero2;
753     break;
754   case ISD::SELECT_CC:
755     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
756                              KnownOne, TLO, Depth+1))
757       return true;
758     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
759                              KnownOne2, TLO, Depth+1))
760       return true;
761     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
762     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
763 
764     // If the operands are constants, see if we can simplify them.
765     if (TLO.ShrinkDemandedConstant(Op, NewMask))
766       return true;
767 
768     // Only known if known in both the LHS and RHS.
769     KnownOne &= KnownOne2;
770     KnownZero &= KnownZero2;
771     break;
772   case ISD::SETCC: {
773     SDValue Op0 = Op.getOperand(0);
774     SDValue Op1 = Op.getOperand(1);
775     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
776     // If (1) we only need the sign-bit, (2) the setcc operands are the same
777     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
778     // -1, we may be able to bypass the setcc.
779     if (NewMask.isSignBit() && Op0.getScalarValueSizeInBits() == BitWidth &&
780         getBooleanContents(Op.getValueType()) ==
781             BooleanContent::ZeroOrNegativeOneBooleanContent) {
782       // If we're testing X < 0, then this compare isn't needed - just use X!
783       // FIXME: We're limiting to integer types here, but this should also work
784       // if we don't care about FP signed-zero. The use of SETLT with FP means
785       // that we don't care about NaNs.
786       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
787           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
788         return TLO.CombineTo(Op, Op0);
789 
790       // TODO: Should we check for other forms of sign-bit comparisons?
791       // Examples: X <= -1, X >= 0
792     }
793     break;
794   }
795   case ISD::SHL:
796     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
797       unsigned ShAmt = SA->getZExtValue();
798       SDValue InOp = Op.getOperand(0);
799 
800       // If the shift count is an invalid immediate, don't do anything.
801       if (ShAmt >= BitWidth)
802         break;
803 
804       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
805       // single shift.  We can do this if the bottom bits (which are shifted
806       // out) are never demanded.
807       if (InOp.getOpcode() == ISD::SRL &&
808           isa<ConstantSDNode>(InOp.getOperand(1))) {
809         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
810           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
811           unsigned Opc = ISD::SHL;
812           int Diff = ShAmt-C1;
813           if (Diff < 0) {
814             Diff = -Diff;
815             Opc = ISD::SRL;
816           }
817 
818           SDValue NewSA =
819             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
820           EVT VT = Op.getValueType();
821           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
822                                                    InOp.getOperand(0), NewSA));
823         }
824       }
825 
826       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
827                                KnownZero, KnownOne, TLO, Depth+1))
828         return true;
829 
830       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
831       // are not demanded. This will likely allow the anyext to be folded away.
832       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
833         SDValue InnerOp = InOp.getNode()->getOperand(0);
834         EVT InnerVT = InnerOp.getValueType();
835         unsigned InnerBits = InnerVT.getSizeInBits();
836         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
837             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
838           EVT ShTy = getShiftAmountTy(InnerVT, DL);
839           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
840             ShTy = InnerVT;
841           SDValue NarrowShl =
842             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
843                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
844           return
845             TLO.CombineTo(Op,
846                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
847                                           NarrowShl));
848         }
849         // Repeat the SHL optimization above in cases where an extension
850         // intervenes: (shl (anyext (shr x, c1)), c2) to
851         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
852         // aren't demanded (as above) and that the shifted upper c1 bits of
853         // x aren't demanded.
854         if (InOp.hasOneUse() &&
855             InnerOp.getOpcode() == ISD::SRL &&
856             InnerOp.hasOneUse() &&
857             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
858           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
859             ->getZExtValue();
860           if (InnerShAmt < ShAmt &&
861               InnerShAmt < InnerBits &&
862               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
863               NewMask.trunc(ShAmt) == 0) {
864             SDValue NewSA =
865               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
866                                   Op.getOperand(1).getValueType());
867             EVT VT = Op.getValueType();
868             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
869                                              InnerOp.getOperand(0));
870             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
871                                                      NewExt, NewSA));
872           }
873         }
874       }
875 
876       KnownZero <<= SA->getZExtValue();
877       KnownOne  <<= SA->getZExtValue();
878       // low bits known zero.
879       KnownZero.setLowBits(SA->getZExtValue());
880     }
881     break;
882   case ISD::SRL:
883     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
884       EVT VT = Op.getValueType();
885       unsigned ShAmt = SA->getZExtValue();
886       unsigned VTSize = VT.getSizeInBits();
887       SDValue InOp = Op.getOperand(0);
888 
889       // If the shift count is an invalid immediate, don't do anything.
890       if (ShAmt >= BitWidth)
891         break;
892 
893       APInt InDemandedMask = (NewMask << ShAmt);
894 
895       // If the shift is exact, then it does demand the low bits (and knows that
896       // they are zero).
897       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
898         InDemandedMask.setLowBits(ShAmt);
899 
900       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
901       // single shift.  We can do this if the top bits (which are shifted out)
902       // are never demanded.
903       if (InOp.getOpcode() == ISD::SHL &&
904           isa<ConstantSDNode>(InOp.getOperand(1))) {
905         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
906           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
907           unsigned Opc = ISD::SRL;
908           int Diff = ShAmt-C1;
909           if (Diff < 0) {
910             Diff = -Diff;
911             Opc = ISD::SHL;
912           }
913 
914           SDValue NewSA =
915             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
916           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
917                                                    InOp.getOperand(0), NewSA));
918         }
919       }
920 
921       // Compute the new bits that are at the top now.
922       if (SimplifyDemandedBits(InOp, InDemandedMask,
923                                KnownZero, KnownOne, TLO, Depth+1))
924         return true;
925       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
926       KnownZero = KnownZero.lshr(ShAmt);
927       KnownOne  = KnownOne.lshr(ShAmt);
928 
929       KnownZero.setHighBits(ShAmt);  // High bits known zero.
930     }
931     break;
932   case ISD::SRA:
933     // If this is an arithmetic shift right and only the low-bit is set, we can
934     // always convert this into a logical shr, even if the shift amount is
935     // variable.  The low bit of the shift cannot be an input sign bit unless
936     // the shift amount is >= the size of the datatype, which is undefined.
937     if (NewMask == 1)
938       return TLO.CombineTo(Op,
939                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
940                                            Op.getOperand(0), Op.getOperand(1)));
941 
942     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
943       EVT VT = Op.getValueType();
944       unsigned ShAmt = SA->getZExtValue();
945 
946       // If the shift count is an invalid immediate, don't do anything.
947       if (ShAmt >= BitWidth)
948         break;
949 
950       APInt InDemandedMask = (NewMask << ShAmt);
951 
952       // If the shift is exact, then it does demand the low bits (and knows that
953       // they are zero).
954       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
955         InDemandedMask.setLowBits(ShAmt);
956 
957       // If any of the demanded bits are produced by the sign extension, we also
958       // demand the input sign bit.
959       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
960       if (HighBits.intersects(NewMask))
961         InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits());
962 
963       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
964                                KnownZero, KnownOne, TLO, Depth+1))
965         return true;
966       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
967       KnownZero = KnownZero.lshr(ShAmt);
968       KnownOne  = KnownOne.lshr(ShAmt);
969 
970       // Handle the sign bit, adjusted to where it is now in the mask.
971       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
972 
973       // If the input sign bit is known to be zero, or if none of the top bits
974       // are demanded, turn this into an unsigned shift right.
975       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
976         SDNodeFlags Flags;
977         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
978         return TLO.CombineTo(Op,
979                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
980                                              Op.getOperand(1), &Flags));
981       }
982 
983       int Log2 = NewMask.exactLogBase2();
984       if (Log2 >= 0) {
985         // The bit must come from the sign.
986         SDValue NewSA =
987           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
988                               Op.getOperand(1).getValueType());
989         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
990                                                  Op.getOperand(0), NewSA));
991       }
992 
993       if (KnownOne.intersects(SignBit))
994         // New bits are known one.
995         KnownOne |= HighBits;
996     }
997     break;
998   case ISD::SIGN_EXTEND_INREG: {
999     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1000 
1001     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1002     // If we only care about the highest bit, don't bother shifting right.
1003     if (MsbMask == NewMask) {
1004       unsigned ShAmt = ExVT.getScalarSizeInBits();
1005       SDValue InOp = Op.getOperand(0);
1006       unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
1007       bool AlreadySignExtended =
1008         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
1009       // However if the input is already sign extended we expect the sign
1010       // extension to be dropped altogether later and do not simplify.
1011       if (!AlreadySignExtended) {
1012         // Compute the correct shift amount type, which must be getShiftAmountTy
1013         // for scalar types after legalization.
1014         EVT ShiftAmtTy = Op.getValueType();
1015         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1016           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1017 
1018         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
1019                                                ShiftAmtTy);
1020         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1021                                                  Op.getValueType(), InOp,
1022                                                  ShiftAmt));
1023       }
1024     }
1025 
1026     // Sign extension.  Compute the demanded bits in the result that are not
1027     // present in the input.
1028     APInt NewBits =
1029       APInt::getHighBitsSet(BitWidth,
1030                             BitWidth - ExVT.getScalarSizeInBits());
1031 
1032     // If none of the extended bits are demanded, eliminate the sextinreg.
1033     if ((NewBits & NewMask) == 0)
1034       return TLO.CombineTo(Op, Op.getOperand(0));
1035 
1036     APInt InSignBit =
1037       APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth);
1038     APInt InputDemandedBits =
1039       APInt::getLowBitsSet(BitWidth,
1040                            ExVT.getScalarSizeInBits()) &
1041       NewMask;
1042 
1043     // Since the sign extended bits are demanded, we know that the sign
1044     // bit is demanded.
1045     InputDemandedBits |= InSignBit;
1046 
1047     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1048                              KnownZero, KnownOne, TLO, Depth+1))
1049       return true;
1050     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1051 
1052     // If the sign bit of the input is known set or clear, then we know the
1053     // top bits of the result.
1054 
1055     // If the input sign bit is known zero, convert this into a zero extension.
1056     if (KnownZero.intersects(InSignBit))
1057       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1058                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1059 
1060     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1061       KnownOne |= NewBits;
1062       KnownZero &= ~NewBits;
1063     } else {                       // Input sign bit unknown
1064       KnownZero &= ~NewBits;
1065       KnownOne &= ~NewBits;
1066     }
1067     break;
1068   }
1069   case ISD::BUILD_PAIR: {
1070     EVT HalfVT = Op.getOperand(0).getValueType();
1071     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1072 
1073     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1074     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1075 
1076     APInt KnownZeroLo, KnownOneLo;
1077     APInt KnownZeroHi, KnownOneHi;
1078 
1079     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
1080                              KnownOneLo, TLO, Depth + 1))
1081       return true;
1082 
1083     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
1084                              KnownOneHi, TLO, Depth + 1))
1085       return true;
1086 
1087     KnownZero = KnownZeroLo.zext(BitWidth) |
1088                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
1089 
1090     KnownOne = KnownOneLo.zext(BitWidth) |
1091                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
1092     break;
1093   }
1094   case ISD::ZERO_EXTEND: {
1095     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1096     APInt InMask = NewMask.trunc(OperandBitWidth);
1097 
1098     // If none of the top bits are demanded, convert this into an any_extend.
1099     APInt NewBits =
1100       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1101     if (!NewBits.intersects(NewMask))
1102       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1103                                                Op.getValueType(),
1104                                                Op.getOperand(0)));
1105 
1106     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1107                              KnownZero, KnownOne, TLO, Depth+1))
1108       return true;
1109     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110     KnownZero = KnownZero.zext(BitWidth);
1111     KnownOne = KnownOne.zext(BitWidth);
1112     KnownZero |= NewBits;
1113     break;
1114   }
1115   case ISD::SIGN_EXTEND: {
1116     EVT InVT = Op.getOperand(0).getValueType();
1117     unsigned InBits = InVT.getScalarSizeInBits();
1118     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1119     APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1);
1120     APInt NewBits   = ~InMask & NewMask;
1121 
1122     // If none of the top bits are demanded, convert this into an any_extend.
1123     if (NewBits == 0)
1124       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1125                                               Op.getValueType(),
1126                                               Op.getOperand(0)));
1127 
1128     // Since some of the sign extended bits are demanded, we know that the sign
1129     // bit is demanded.
1130     APInt InDemandedBits = InMask & NewMask;
1131     InDemandedBits |= InSignBit;
1132     InDemandedBits = InDemandedBits.trunc(InBits);
1133 
1134     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1135                              KnownOne, TLO, Depth+1))
1136       return true;
1137     KnownZero = KnownZero.zext(BitWidth);
1138     KnownOne = KnownOne.zext(BitWidth);
1139 
1140     // If the sign bit is known zero, convert this to a zero extend.
1141     if (KnownZero.intersects(InSignBit))
1142       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1143                                                Op.getValueType(),
1144                                                Op.getOperand(0)));
1145 
1146     // If the sign bit is known one, the top bits match.
1147     if (KnownOne.intersects(InSignBit)) {
1148       KnownOne |= NewBits;
1149       assert((KnownZero & NewBits) == 0);
1150     } else {   // Otherwise, top bits aren't known.
1151       assert((KnownOne & NewBits) == 0);
1152       assert((KnownZero & NewBits) == 0);
1153     }
1154     break;
1155   }
1156   case ISD::ANY_EXTEND: {
1157     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1158     APInt InMask = NewMask.trunc(OperandBitWidth);
1159     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1160                              KnownZero, KnownOne, TLO, Depth+1))
1161       return true;
1162     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1163     KnownZero = KnownZero.zext(BitWidth);
1164     KnownOne = KnownOne.zext(BitWidth);
1165     break;
1166   }
1167   case ISD::TRUNCATE: {
1168     // Simplify the input, using demanded bit information, and compute the known
1169     // zero/one bits live out.
1170     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1171     APInt TruncMask = NewMask.zext(OperandBitWidth);
1172     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1173                              KnownZero, KnownOne, TLO, Depth+1))
1174       return true;
1175     KnownZero = KnownZero.trunc(BitWidth);
1176     KnownOne = KnownOne.trunc(BitWidth);
1177 
1178     // If the input is only used by this truncate, see if we can shrink it based
1179     // on the known demanded bits.
1180     if (Op.getOperand(0).getNode()->hasOneUse()) {
1181       SDValue In = Op.getOperand(0);
1182       switch (In.getOpcode()) {
1183       default: break;
1184       case ISD::SRL:
1185         // Shrink SRL by a constant if none of the high bits shifted in are
1186         // demanded.
1187         if (TLO.LegalTypes() &&
1188             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1189           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1190           // undesirable.
1191           break;
1192         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1193         if (!ShAmt)
1194           break;
1195         SDValue Shift = In.getOperand(1);
1196         if (TLO.LegalTypes()) {
1197           uint64_t ShVal = ShAmt->getZExtValue();
1198           Shift = TLO.DAG.getConstant(ShVal, dl,
1199                                       getShiftAmountTy(Op.getValueType(), DL));
1200         }
1201 
1202         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1203                                                OperandBitWidth - BitWidth);
1204         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1205 
1206         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1207           // None of the shifted in bits are needed.  Add a truncate of the
1208           // shift input, then shift it.
1209           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1210                                              Op.getValueType(),
1211                                              In.getOperand(0));
1212           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1213                                                    Op.getValueType(),
1214                                                    NewTrunc,
1215                                                    Shift));
1216         }
1217         break;
1218       }
1219     }
1220 
1221     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222     break;
1223   }
1224   case ISD::AssertZext: {
1225     // AssertZext demands all of the high bits, plus any of the low bits
1226     // demanded by its users.
1227     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1228     APInt InMask = APInt::getLowBitsSet(BitWidth,
1229                                         VT.getSizeInBits());
1230     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1231                              KnownZero, KnownOne, TLO, Depth+1))
1232       return true;
1233     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1234 
1235     KnownZero |= ~InMask & NewMask;
1236     break;
1237   }
1238   case ISD::BITCAST:
1239     // If this is an FP->Int bitcast and if the sign bit is the only
1240     // thing demanded, turn this into a FGETSIGN.
1241     if (!TLO.LegalOperations() &&
1242         !Op.getValueType().isVector() &&
1243         !Op.getOperand(0).getValueType().isVector() &&
1244         NewMask == APInt::getSignBit(Op.getValueSizeInBits()) &&
1245         Op.getOperand(0).getValueType().isFloatingPoint()) {
1246       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1247       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1248       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1249            Op.getOperand(0).getValueType() != MVT::f128) {
1250         // Cannot eliminate/lower SHL for f128 yet.
1251         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1252         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1253         // place.  We expect the SHL to be eliminated by other optimizations.
1254         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1255         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1256         if (!OpVTLegal && OpVTSizeInBits > 32)
1257           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1258         unsigned ShVal = Op.getValueSizeInBits() - 1;
1259         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1260         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1261                                                  Op.getValueType(),
1262                                                  Sign, ShAmt));
1263       }
1264     }
1265     break;
1266   case ISD::ADD:
1267   case ISD::MUL:
1268   case ISD::SUB: {
1269     // Add, Sub, and Mul don't demand any bits in positions beyond that
1270     // of the highest bit demanded of them.
1271     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1272                                         BitWidth - NewMask.countLeadingZeros());
1273     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1274                              KnownOne2, TLO, Depth+1) ||
1275         SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1276                              KnownOne2, TLO, Depth+1) ||
1277         // See if the operation should be performed at a smaller bit width.
1278         TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) {
1279       const SDNodeFlags *Flags = Op.getNode()->getFlags();
1280       if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) {
1281         // Disable the nsw and nuw flags. We can no longer guarantee that we
1282         // won't wrap after simplification.
1283         SDNodeFlags NewFlags = *Flags;
1284         NewFlags.setNoSignedWrap(false);
1285         NewFlags.setNoUnsignedWrap(false);
1286         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1287                                         Op.getOperand(0), Op.getOperand(1),
1288                                         &NewFlags);
1289         return TLO.CombineTo(Op, NewOp);
1290       }
1291       return true;
1292     }
1293     LLVM_FALLTHROUGH;
1294   }
1295   default:
1296     // Just use computeKnownBits to compute output bits.
1297     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1298     break;
1299   }
1300 
1301   // If we know the value of all of the demanded bits, return this as a
1302   // constant.
1303   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1304     // Avoid folding to a constant if any OpaqueConstant is involved.
1305     const SDNode *N = Op.getNode();
1306     for (SDNodeIterator I = SDNodeIterator::begin(N),
1307          E = SDNodeIterator::end(N); I != E; ++I) {
1308       SDNode *Op = *I;
1309       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1310         if (C->isOpaque())
1311           return false;
1312     }
1313     return TLO.CombineTo(Op,
1314                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1315   }
1316 
1317   return false;
1318 }
1319 
1320 /// Determine which of the bits specified in Mask are known to be either zero or
1321 /// one and return them in the KnownZero/KnownOne bitsets.
1322 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1323                                                    APInt &KnownZero,
1324                                                    APInt &KnownOne,
1325                                                    const SelectionDAG &DAG,
1326                                                    unsigned Depth) const {
1327   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1328           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1329           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1330           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1331          "Should use MaskedValueIsZero if you don't know whether Op"
1332          " is a target node!");
1333   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1334 }
1335 
1336 /// This method can be implemented by targets that want to expose additional
1337 /// information about sign bits to the DAG Combiner.
1338 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1339                                                          const SelectionDAG &,
1340                                                          unsigned Depth) const {
1341   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1342           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1343           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1344           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1345          "Should use ComputeNumSignBits if you don't know whether Op"
1346          " is a target node!");
1347   return 1;
1348 }
1349 
1350 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1351   if (!N)
1352     return false;
1353 
1354   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1355   if (!CN) {
1356     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1357     if (!BV)
1358       return false;
1359 
1360     // Only interested in constant splats, we don't care about undef
1361     // elements in identifying boolean constants and getConstantSplatNode
1362     // returns NULL if all ops are undef;
1363     CN = BV->getConstantSplatNode();
1364     if (!CN)
1365       return false;
1366   }
1367 
1368   switch (getBooleanContents(N->getValueType(0))) {
1369   case UndefinedBooleanContent:
1370     return CN->getAPIntValue()[0];
1371   case ZeroOrOneBooleanContent:
1372     return CN->isOne();
1373   case ZeroOrNegativeOneBooleanContent:
1374     return CN->isAllOnesValue();
1375   }
1376 
1377   llvm_unreachable("Invalid boolean contents");
1378 }
1379 
1380 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1381                                         const SDLoc &DL) const {
1382   unsigned ElementWidth = VT.getScalarSizeInBits();
1383   APInt TrueInt =
1384       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1385           ? APInt(ElementWidth, 1)
1386           : APInt::getAllOnesValue(ElementWidth);
1387   return DAG.getConstant(TrueInt, DL, VT);
1388 }
1389 
1390 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1391   if (!N)
1392     return false;
1393 
1394   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1395   if (!CN) {
1396     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1397     if (!BV)
1398       return false;
1399 
1400     // Only interested in constant splats, we don't care about undef
1401     // elements in identifying boolean constants and getConstantSplatNode
1402     // returns NULL if all ops are undef;
1403     CN = BV->getConstantSplatNode();
1404     if (!CN)
1405       return false;
1406   }
1407 
1408   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1409     return !CN->getAPIntValue()[0];
1410 
1411   return CN->isNullValue();
1412 }
1413 
1414 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1415                                        bool SExt) const {
1416   if (VT == MVT::i1)
1417     return N->isOne();
1418 
1419   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1420   switch (Cnt) {
1421   case TargetLowering::ZeroOrOneBooleanContent:
1422     // An extended value of 1 is always true, unless its original type is i1,
1423     // in which case it will be sign extended to -1.
1424     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1425   case TargetLowering::UndefinedBooleanContent:
1426   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1427     return N->isAllOnesValue() && SExt;
1428   }
1429   llvm_unreachable("Unexpected enumeration.");
1430 }
1431 
1432 /// This helper function of SimplifySetCC tries to optimize the comparison when
1433 /// either operand of the SetCC node is a bitwise-and instruction.
1434 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1435                                              ISD::CondCode Cond,
1436                                              DAGCombinerInfo &DCI,
1437                                              const SDLoc &DL) const {
1438   // Match these patterns in any of their permutations:
1439   // (X & Y) == Y
1440   // (X & Y) != Y
1441   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1442     std::swap(N0, N1);
1443 
1444   EVT OpVT = N0.getValueType();
1445   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1446       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1447     return SDValue();
1448 
1449   SDValue X, Y;
1450   if (N0.getOperand(0) == N1) {
1451     X = N0.getOperand(1);
1452     Y = N0.getOperand(0);
1453   } else if (N0.getOperand(1) == N1) {
1454     X = N0.getOperand(0);
1455     Y = N0.getOperand(1);
1456   } else {
1457     return SDValue();
1458   }
1459 
1460   SelectionDAG &DAG = DCI.DAG;
1461   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1462   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1463     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1464     // Note that where Y is variable and is known to have at most one bit set
1465     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1466     // equivalent when Y == 0.
1467     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1468     if (DCI.isBeforeLegalizeOps() ||
1469         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1470       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1471   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1472     // If the target supports an 'and-not' or 'and-complement' logic operation,
1473     // try to use that to make a comparison operation more efficient.
1474     // But don't do this transform if the mask is a single bit because there are
1475     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1476     // 'rlwinm' on PPC).
1477 
1478     // Bail out if the compare operand that we want to turn into a zero is
1479     // already a zero (otherwise, infinite loop).
1480     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1481     if (YConst && YConst->isNullValue())
1482       return SDValue();
1483 
1484     // Transform this into: ~X & Y == 0.
1485     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1486     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1487     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1488   }
1489 
1490   return SDValue();
1491 }
1492 
1493 /// Try to simplify a setcc built with the specified operands and cc. If it is
1494 /// unable to simplify it, return a null SDValue.
1495 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1496                                       ISD::CondCode Cond, bool foldBooleans,
1497                                       DAGCombinerInfo &DCI,
1498                                       const SDLoc &dl) const {
1499   SelectionDAG &DAG = DCI.DAG;
1500 
1501   // These setcc operations always fold.
1502   switch (Cond) {
1503   default: break;
1504   case ISD::SETFALSE:
1505   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1506   case ISD::SETTRUE:
1507   case ISD::SETTRUE2: {
1508     TargetLowering::BooleanContent Cnt =
1509         getBooleanContents(N0->getValueType(0));
1510     return DAG.getConstant(
1511         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1512         VT);
1513   }
1514   }
1515 
1516   // Ensure that the constant occurs on the RHS, and fold constant
1517   // comparisons.
1518   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1519   if (isa<ConstantSDNode>(N0.getNode()) &&
1520       (DCI.isBeforeLegalizeOps() ||
1521        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1522     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1523 
1524   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1525     const APInt &C1 = N1C->getAPIntValue();
1526 
1527     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1528     // equality comparison, then we're just comparing whether X itself is
1529     // zero.
1530     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1531         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1532         N0.getOperand(1).getOpcode() == ISD::Constant) {
1533       const APInt &ShAmt
1534         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1535       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1536           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1537         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1538           // (srl (ctlz x), 5) == 0  -> X != 0
1539           // (srl (ctlz x), 5) != 1  -> X != 0
1540           Cond = ISD::SETNE;
1541         } else {
1542           // (srl (ctlz x), 5) != 0  -> X == 0
1543           // (srl (ctlz x), 5) == 1  -> X == 0
1544           Cond = ISD::SETEQ;
1545         }
1546         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1547         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1548                             Zero, Cond);
1549       }
1550     }
1551 
1552     SDValue CTPOP = N0;
1553     // Look through truncs that don't change the value of a ctpop.
1554     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1555       CTPOP = N0.getOperand(0);
1556 
1557     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1558         (N0 == CTPOP ||
1559          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1560       EVT CTVT = CTPOP.getValueType();
1561       SDValue CTOp = CTPOP.getOperand(0);
1562 
1563       // (ctpop x) u< 2 -> (x & x-1) == 0
1564       // (ctpop x) u> 1 -> (x & x-1) != 0
1565       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1566         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1567                                   DAG.getConstant(1, dl, CTVT));
1568         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1569         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1570         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1571       }
1572 
1573       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1574     }
1575 
1576     // (zext x) == C --> x == (trunc C)
1577     // (sext x) == C --> x == (trunc C)
1578     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1579         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1580       unsigned MinBits = N0.getValueSizeInBits();
1581       SDValue PreExt;
1582       bool Signed = false;
1583       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1584         // ZExt
1585         MinBits = N0->getOperand(0).getValueSizeInBits();
1586         PreExt = N0->getOperand(0);
1587       } else if (N0->getOpcode() == ISD::AND) {
1588         // DAGCombine turns costly ZExts into ANDs
1589         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1590           if ((C->getAPIntValue()+1).isPowerOf2()) {
1591             MinBits = C->getAPIntValue().countTrailingOnes();
1592             PreExt = N0->getOperand(0);
1593           }
1594       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1595         // SExt
1596         MinBits = N0->getOperand(0).getValueSizeInBits();
1597         PreExt = N0->getOperand(0);
1598         Signed = true;
1599       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1600         // ZEXTLOAD / SEXTLOAD
1601         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1602           MinBits = LN0->getMemoryVT().getSizeInBits();
1603           PreExt = N0;
1604         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1605           Signed = true;
1606           MinBits = LN0->getMemoryVT().getSizeInBits();
1607           PreExt = N0;
1608         }
1609       }
1610 
1611       // Figure out how many bits we need to preserve this constant.
1612       unsigned ReqdBits = Signed ?
1613         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1614         C1.getActiveBits();
1615 
1616       // Make sure we're not losing bits from the constant.
1617       if (MinBits > 0 &&
1618           MinBits < C1.getBitWidth() &&
1619           MinBits >= ReqdBits) {
1620         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1621         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1622           // Will get folded away.
1623           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1624           if (MinBits == 1 && C1 == 1)
1625             // Invert the condition.
1626             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1627                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1628           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1629           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1630         }
1631 
1632         // If truncating the setcc operands is not desirable, we can still
1633         // simplify the expression in some cases:
1634         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1635         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1636         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1637         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1638         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1639         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1640         SDValue TopSetCC = N0->getOperand(0);
1641         unsigned N0Opc = N0->getOpcode();
1642         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1643         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1644             TopSetCC.getOpcode() == ISD::SETCC &&
1645             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1646             (isConstFalseVal(N1C) ||
1647              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1648 
1649           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1650                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1651 
1652           if (!Inverse)
1653             return TopSetCC;
1654 
1655           ISD::CondCode InvCond = ISD::getSetCCInverse(
1656               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1657               TopSetCC.getOperand(0).getValueType().isInteger());
1658           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1659                                       TopSetCC.getOperand(1),
1660                                       InvCond);
1661 
1662         }
1663       }
1664     }
1665 
1666     // If the LHS is '(and load, const)', the RHS is 0,
1667     // the test is for equality or unsigned, and all 1 bits of the const are
1668     // in the same partial word, see if we can shorten the load.
1669     if (DCI.isBeforeLegalize() &&
1670         !ISD::isSignedIntSetCC(Cond) &&
1671         N0.getOpcode() == ISD::AND && C1 == 0 &&
1672         N0.getNode()->hasOneUse() &&
1673         isa<LoadSDNode>(N0.getOperand(0)) &&
1674         N0.getOperand(0).getNode()->hasOneUse() &&
1675         isa<ConstantSDNode>(N0.getOperand(1))) {
1676       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1677       APInt bestMask;
1678       unsigned bestWidth = 0, bestOffset = 0;
1679       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1680         unsigned origWidth = N0.getValueSizeInBits();
1681         unsigned maskWidth = origWidth;
1682         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1683         // 8 bits, but have to be careful...
1684         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1685           origWidth = Lod->getMemoryVT().getSizeInBits();
1686         const APInt &Mask =
1687           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1688         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1689           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1690           for (unsigned offset=0; offset<origWidth/width; offset++) {
1691             if ((newMask & Mask) == Mask) {
1692               if (!DAG.getDataLayout().isLittleEndian())
1693                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1694               else
1695                 bestOffset = (uint64_t)offset * (width/8);
1696               bestMask = Mask.lshr(offset * (width/8) * 8);
1697               bestWidth = width;
1698               break;
1699             }
1700             newMask = newMask << width;
1701           }
1702         }
1703       }
1704       if (bestWidth) {
1705         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1706         if (newVT.isRound()) {
1707           EVT PtrType = Lod->getOperand(1).getValueType();
1708           SDValue Ptr = Lod->getBasePtr();
1709           if (bestOffset != 0)
1710             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1711                               DAG.getConstant(bestOffset, dl, PtrType));
1712           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1713           SDValue NewLoad = DAG.getLoad(
1714               newVT, dl, Lod->getChain(), Ptr,
1715               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1716           return DAG.getSetCC(dl, VT,
1717                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1718                                       DAG.getConstant(bestMask.trunc(bestWidth),
1719                                                       dl, newVT)),
1720                               DAG.getConstant(0LL, dl, newVT), Cond);
1721         }
1722       }
1723     }
1724 
1725     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1726     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1727       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1728 
1729       // If the comparison constant has bits in the upper part, the
1730       // zero-extended value could never match.
1731       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1732                                               C1.getBitWidth() - InSize))) {
1733         switch (Cond) {
1734         case ISD::SETUGT:
1735         case ISD::SETUGE:
1736         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1737         case ISD::SETULT:
1738         case ISD::SETULE:
1739         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1740         case ISD::SETGT:
1741         case ISD::SETGE:
1742           // True if the sign bit of C1 is set.
1743           return DAG.getConstant(C1.isNegative(), dl, VT);
1744         case ISD::SETLT:
1745         case ISD::SETLE:
1746           // True if the sign bit of C1 isn't set.
1747           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1748         default:
1749           break;
1750         }
1751       }
1752 
1753       // Otherwise, we can perform the comparison with the low bits.
1754       switch (Cond) {
1755       case ISD::SETEQ:
1756       case ISD::SETNE:
1757       case ISD::SETUGT:
1758       case ISD::SETUGE:
1759       case ISD::SETULT:
1760       case ISD::SETULE: {
1761         EVT newVT = N0.getOperand(0).getValueType();
1762         if (DCI.isBeforeLegalizeOps() ||
1763             (isOperationLegal(ISD::SETCC, newVT) &&
1764              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1765           EVT NewSetCCVT =
1766               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1767           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1768 
1769           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1770                                           NewConst, Cond);
1771           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1772         }
1773         break;
1774       }
1775       default:
1776         break;   // todo, be more careful with signed comparisons
1777       }
1778     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1779                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1780       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1781       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1782       EVT ExtDstTy = N0.getValueType();
1783       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1784 
1785       // If the constant doesn't fit into the number of bits for the source of
1786       // the sign extension, it is impossible for both sides to be equal.
1787       if (C1.getMinSignedBits() > ExtSrcTyBits)
1788         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1789 
1790       SDValue ZextOp;
1791       EVT Op0Ty = N0.getOperand(0).getValueType();
1792       if (Op0Ty == ExtSrcTy) {
1793         ZextOp = N0.getOperand(0);
1794       } else {
1795         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1796         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1797                               DAG.getConstant(Imm, dl, Op0Ty));
1798       }
1799       if (!DCI.isCalledByLegalizer())
1800         DCI.AddToWorklist(ZextOp.getNode());
1801       // Otherwise, make this a use of a zext.
1802       return DAG.getSetCC(dl, VT, ZextOp,
1803                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1804                                                               ExtDstTyBits,
1805                                                               ExtSrcTyBits),
1806                                           dl, ExtDstTy),
1807                           Cond);
1808     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1809                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1810       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1811       if (N0.getOpcode() == ISD::SETCC &&
1812           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1813         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1814         if (TrueWhenTrue)
1815           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1816         // Invert the condition.
1817         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1818         CC = ISD::getSetCCInverse(CC,
1819                                   N0.getOperand(0).getValueType().isInteger());
1820         if (DCI.isBeforeLegalizeOps() ||
1821             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1822           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1823       }
1824 
1825       if ((N0.getOpcode() == ISD::XOR ||
1826            (N0.getOpcode() == ISD::AND &&
1827             N0.getOperand(0).getOpcode() == ISD::XOR &&
1828             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1829           isa<ConstantSDNode>(N0.getOperand(1)) &&
1830           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1831         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1832         // can only do this if the top bits are known zero.
1833         unsigned BitWidth = N0.getValueSizeInBits();
1834         if (DAG.MaskedValueIsZero(N0,
1835                                   APInt::getHighBitsSet(BitWidth,
1836                                                         BitWidth-1))) {
1837           // Okay, get the un-inverted input value.
1838           SDValue Val;
1839           if (N0.getOpcode() == ISD::XOR)
1840             Val = N0.getOperand(0);
1841           else {
1842             assert(N0.getOpcode() == ISD::AND &&
1843                     N0.getOperand(0).getOpcode() == ISD::XOR);
1844             // ((X^1)&1)^1 -> X & 1
1845             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1846                               N0.getOperand(0).getOperand(0),
1847                               N0.getOperand(1));
1848           }
1849 
1850           return DAG.getSetCC(dl, VT, Val, N1,
1851                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1852         }
1853       } else if (N1C->getAPIntValue() == 1 &&
1854                  (VT == MVT::i1 ||
1855                   getBooleanContents(N0->getValueType(0)) ==
1856                       ZeroOrOneBooleanContent)) {
1857         SDValue Op0 = N0;
1858         if (Op0.getOpcode() == ISD::TRUNCATE)
1859           Op0 = Op0.getOperand(0);
1860 
1861         if ((Op0.getOpcode() == ISD::XOR) &&
1862             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1863             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1864           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1865           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1866           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1867                               Cond);
1868         }
1869         if (Op0.getOpcode() == ISD::AND &&
1870             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1871             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1872           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1873           if (Op0.getValueType().bitsGT(VT))
1874             Op0 = DAG.getNode(ISD::AND, dl, VT,
1875                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1876                           DAG.getConstant(1, dl, VT));
1877           else if (Op0.getValueType().bitsLT(VT))
1878             Op0 = DAG.getNode(ISD::AND, dl, VT,
1879                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1880                         DAG.getConstant(1, dl, VT));
1881 
1882           return DAG.getSetCC(dl, VT, Op0,
1883                               DAG.getConstant(0, dl, Op0.getValueType()),
1884                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1885         }
1886         if (Op0.getOpcode() == ISD::AssertZext &&
1887             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1888           return DAG.getSetCC(dl, VT, Op0,
1889                               DAG.getConstant(0, dl, Op0.getValueType()),
1890                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1891       }
1892     }
1893 
1894     APInt MinVal, MaxVal;
1895     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1896     if (ISD::isSignedIntSetCC(Cond)) {
1897       MinVal = APInt::getSignedMinValue(OperandBitSize);
1898       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1899     } else {
1900       MinVal = APInt::getMinValue(OperandBitSize);
1901       MaxVal = APInt::getMaxValue(OperandBitSize);
1902     }
1903 
1904     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1905     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1906       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1907       // X >= C0 --> X > (C0 - 1)
1908       APInt C = C1 - 1;
1909       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1910       if ((DCI.isBeforeLegalizeOps() ||
1911            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1912           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1913                                 isLegalICmpImmediate(C.getSExtValue())))) {
1914         return DAG.getSetCC(dl, VT, N0,
1915                             DAG.getConstant(C, dl, N1.getValueType()),
1916                             NewCC);
1917       }
1918     }
1919 
1920     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1921       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1922       // X <= C0 --> X < (C0 + 1)
1923       APInt C = C1 + 1;
1924       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1925       if ((DCI.isBeforeLegalizeOps() ||
1926            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1927           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1928                                 isLegalICmpImmediate(C.getSExtValue())))) {
1929         return DAG.getSetCC(dl, VT, N0,
1930                             DAG.getConstant(C, dl, N1.getValueType()),
1931                             NewCC);
1932       }
1933     }
1934 
1935     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1936       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1937     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1938       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1939     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1940       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1941     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1942       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1943 
1944     // Canonicalize setgt X, Min --> setne X, Min
1945     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1946       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1947     // Canonicalize setlt X, Max --> setne X, Max
1948     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1949       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1950 
1951     // If we have setult X, 1, turn it into seteq X, 0
1952     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1953       return DAG.getSetCC(dl, VT, N0,
1954                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1955                           ISD::SETEQ);
1956     // If we have setugt X, Max-1, turn it into seteq X, Max
1957     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1958       return DAG.getSetCC(dl, VT, N0,
1959                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1960                           ISD::SETEQ);
1961 
1962     // If we have "setcc X, C0", check to see if we can shrink the immediate
1963     // by changing cc.
1964 
1965     // SETUGT X, SINTMAX  -> SETLT X, 0
1966     if (Cond == ISD::SETUGT &&
1967         C1 == APInt::getSignedMaxValue(OperandBitSize))
1968       return DAG.getSetCC(dl, VT, N0,
1969                           DAG.getConstant(0, dl, N1.getValueType()),
1970                           ISD::SETLT);
1971 
1972     // SETULT X, SINTMIN  -> SETGT X, -1
1973     if (Cond == ISD::SETULT &&
1974         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1975       SDValue ConstMinusOne =
1976           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1977                           N1.getValueType());
1978       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1979     }
1980 
1981     // Fold bit comparisons when we can.
1982     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1983         (VT == N0.getValueType() ||
1984          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1985         N0.getOpcode() == ISD::AND) {
1986       auto &DL = DAG.getDataLayout();
1987       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1988         EVT ShiftTy = DCI.isBeforeLegalize()
1989                           ? getPointerTy(DL)
1990                           : getShiftAmountTy(N0.getValueType(), DL);
1991         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1992           // Perform the xform if the AND RHS is a single bit.
1993           if (AndRHS->getAPIntValue().isPowerOf2()) {
1994             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1995                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1996                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1997                                    ShiftTy)));
1998           }
1999         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2000           // (X & 8) == 8  -->  (X & 8) >> 3
2001           // Perform the xform if C1 is a single bit.
2002           if (C1.isPowerOf2()) {
2003             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2004                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2005                                       DAG.getConstant(C1.logBase2(), dl,
2006                                                       ShiftTy)));
2007           }
2008         }
2009       }
2010     }
2011 
2012     if (C1.getMinSignedBits() <= 64 &&
2013         !isLegalICmpImmediate(C1.getSExtValue())) {
2014       // (X & -256) == 256 -> (X >> 8) == 1
2015       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2016           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2017         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2018           const APInt &AndRHSC = AndRHS->getAPIntValue();
2019           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2020             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2021             auto &DL = DAG.getDataLayout();
2022             EVT ShiftTy = DCI.isBeforeLegalize()
2023                               ? getPointerTy(DL)
2024                               : getShiftAmountTy(N0.getValueType(), DL);
2025             EVT CmpTy = N0.getValueType();
2026             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2027                                         DAG.getConstant(ShiftBits, dl,
2028                                                         ShiftTy));
2029             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2030             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2031           }
2032         }
2033       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2034                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2035         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2036         // X <  0x100000000 -> (X >> 32) <  1
2037         // X >= 0x100000000 -> (X >> 32) >= 1
2038         // X <= 0x0ffffffff -> (X >> 32) <  1
2039         // X >  0x0ffffffff -> (X >> 32) >= 1
2040         unsigned ShiftBits;
2041         APInt NewC = C1;
2042         ISD::CondCode NewCond = Cond;
2043         if (AdjOne) {
2044           ShiftBits = C1.countTrailingOnes();
2045           NewC = NewC + 1;
2046           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2047         } else {
2048           ShiftBits = C1.countTrailingZeros();
2049         }
2050         NewC = NewC.lshr(ShiftBits);
2051         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2052           isLegalICmpImmediate(NewC.getSExtValue())) {
2053           auto &DL = DAG.getDataLayout();
2054           EVT ShiftTy = DCI.isBeforeLegalize()
2055                             ? getPointerTy(DL)
2056                             : getShiftAmountTy(N0.getValueType(), DL);
2057           EVT CmpTy = N0.getValueType();
2058           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2059                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2060           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2061           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2062         }
2063       }
2064     }
2065   }
2066 
2067   if (isa<ConstantFPSDNode>(N0.getNode())) {
2068     // Constant fold or commute setcc.
2069     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2070     if (O.getNode()) return O;
2071   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2072     // If the RHS of an FP comparison is a constant, simplify it away in
2073     // some cases.
2074     if (CFP->getValueAPF().isNaN()) {
2075       // If an operand is known to be a nan, we can fold it.
2076       switch (ISD::getUnorderedFlavor(Cond)) {
2077       default: llvm_unreachable("Unknown flavor!");
2078       case 0:  // Known false.
2079         return DAG.getConstant(0, dl, VT);
2080       case 1:  // Known true.
2081         return DAG.getConstant(1, dl, VT);
2082       case 2:  // Undefined.
2083         return DAG.getUNDEF(VT);
2084       }
2085     }
2086 
2087     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2088     // constant if knowing that the operand is non-nan is enough.  We prefer to
2089     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2090     // materialize 0.0.
2091     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2092       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2093 
2094     // setcc (fneg x), C -> setcc swap(pred) x, -C
2095     if (N0.getOpcode() == ISD::FNEG) {
2096       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2097       if (DCI.isBeforeLegalizeOps() ||
2098           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2099         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2100         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2101       }
2102     }
2103 
2104     // If the condition is not legal, see if we can find an equivalent one
2105     // which is legal.
2106     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2107       // If the comparison was an awkward floating-point == or != and one of
2108       // the comparison operands is infinity or negative infinity, convert the
2109       // condition to a less-awkward <= or >=.
2110       if (CFP->getValueAPF().isInfinity()) {
2111         if (CFP->getValueAPF().isNegative()) {
2112           if (Cond == ISD::SETOEQ &&
2113               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2114             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2115           if (Cond == ISD::SETUEQ &&
2116               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2117             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2118           if (Cond == ISD::SETUNE &&
2119               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2120             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2121           if (Cond == ISD::SETONE &&
2122               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2123             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2124         } else {
2125           if (Cond == ISD::SETOEQ &&
2126               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2127             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2128           if (Cond == ISD::SETUEQ &&
2129               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2130             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2131           if (Cond == ISD::SETUNE &&
2132               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2133             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2134           if (Cond == ISD::SETONE &&
2135               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2136             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2137         }
2138       }
2139     }
2140   }
2141 
2142   if (N0 == N1) {
2143     // The sext(setcc()) => setcc() optimization relies on the appropriate
2144     // constant being emitted.
2145     uint64_t EqVal = 0;
2146     switch (getBooleanContents(N0.getValueType())) {
2147     case UndefinedBooleanContent:
2148     case ZeroOrOneBooleanContent:
2149       EqVal = ISD::isTrueWhenEqual(Cond);
2150       break;
2151     case ZeroOrNegativeOneBooleanContent:
2152       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2153       break;
2154     }
2155 
2156     // We can always fold X == X for integer setcc's.
2157     if (N0.getValueType().isInteger()) {
2158       return DAG.getConstant(EqVal, dl, VT);
2159     }
2160     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2161     if (UOF == 2)   // FP operators that are undefined on NaNs.
2162       return DAG.getConstant(EqVal, dl, VT);
2163     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2164       return DAG.getConstant(EqVal, dl, VT);
2165     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2166     // if it is not already.
2167     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2168     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2169           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2170       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2171   }
2172 
2173   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2174       N0.getValueType().isInteger()) {
2175     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2176         N0.getOpcode() == ISD::XOR) {
2177       // Simplify (X+Y) == (X+Z) -->  Y == Z
2178       if (N0.getOpcode() == N1.getOpcode()) {
2179         if (N0.getOperand(0) == N1.getOperand(0))
2180           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2181         if (N0.getOperand(1) == N1.getOperand(1))
2182           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2183         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2184           // If X op Y == Y op X, try other combinations.
2185           if (N0.getOperand(0) == N1.getOperand(1))
2186             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2187                                 Cond);
2188           if (N0.getOperand(1) == N1.getOperand(0))
2189             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2190                                 Cond);
2191         }
2192       }
2193 
2194       // If RHS is a legal immediate value for a compare instruction, we need
2195       // to be careful about increasing register pressure needlessly.
2196       bool LegalRHSImm = false;
2197 
2198       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2199         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2200           // Turn (X+C1) == C2 --> X == C2-C1
2201           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2202             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2203                                 DAG.getConstant(RHSC->getAPIntValue()-
2204                                                 LHSR->getAPIntValue(),
2205                                 dl, N0.getValueType()), Cond);
2206           }
2207 
2208           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2209           if (N0.getOpcode() == ISD::XOR)
2210             // If we know that all of the inverted bits are zero, don't bother
2211             // performing the inversion.
2212             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2213               return
2214                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2215                              DAG.getConstant(LHSR->getAPIntValue() ^
2216                                                RHSC->getAPIntValue(),
2217                                              dl, N0.getValueType()),
2218                              Cond);
2219         }
2220 
2221         // Turn (C1-X) == C2 --> X == C1-C2
2222         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2223           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2224             return
2225               DAG.getSetCC(dl, VT, N0.getOperand(1),
2226                            DAG.getConstant(SUBC->getAPIntValue() -
2227                                              RHSC->getAPIntValue(),
2228                                            dl, N0.getValueType()),
2229                            Cond);
2230           }
2231         }
2232 
2233         // Could RHSC fold directly into a compare?
2234         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2235           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2236       }
2237 
2238       // Simplify (X+Z) == X -->  Z == 0
2239       // Don't do this if X is an immediate that can fold into a cmp
2240       // instruction and X+Z has other uses. It could be an induction variable
2241       // chain, and the transform would increase register pressure.
2242       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2243         if (N0.getOperand(0) == N1)
2244           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2245                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2246         if (N0.getOperand(1) == N1) {
2247           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2248             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2249                                 DAG.getConstant(0, dl, N0.getValueType()),
2250                                 Cond);
2251           if (N0.getNode()->hasOneUse()) {
2252             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2253             auto &DL = DAG.getDataLayout();
2254             // (Z-X) == X  --> Z == X<<1
2255             SDValue SH = DAG.getNode(
2256                 ISD::SHL, dl, N1.getValueType(), N1,
2257                 DAG.getConstant(1, dl,
2258                                 getShiftAmountTy(N1.getValueType(), DL)));
2259             if (!DCI.isCalledByLegalizer())
2260               DCI.AddToWorklist(SH.getNode());
2261             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2262           }
2263         }
2264       }
2265     }
2266 
2267     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2268         N1.getOpcode() == ISD::XOR) {
2269       // Simplify  X == (X+Z) -->  Z == 0
2270       if (N1.getOperand(0) == N0)
2271         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2272                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2273       if (N1.getOperand(1) == N0) {
2274         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2275           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2276                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2277         if (N1.getNode()->hasOneUse()) {
2278           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2279           auto &DL = DAG.getDataLayout();
2280           // X == (Z-X)  --> X<<1 == Z
2281           SDValue SH = DAG.getNode(
2282               ISD::SHL, dl, N1.getValueType(), N0,
2283               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2284           if (!DCI.isCalledByLegalizer())
2285             DCI.AddToWorklist(SH.getNode());
2286           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2287         }
2288       }
2289     }
2290 
2291     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2292       return V;
2293   }
2294 
2295   // Fold away ALL boolean setcc's.
2296   SDValue Temp;
2297   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2298     switch (Cond) {
2299     default: llvm_unreachable("Unknown integer setcc!");
2300     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2301       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2302       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2303       if (!DCI.isCalledByLegalizer())
2304         DCI.AddToWorklist(Temp.getNode());
2305       break;
2306     case ISD::SETNE:  // X != Y   -->  (X^Y)
2307       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2308       break;
2309     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2310     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2311       Temp = DAG.getNOT(dl, N0, MVT::i1);
2312       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2313       if (!DCI.isCalledByLegalizer())
2314         DCI.AddToWorklist(Temp.getNode());
2315       break;
2316     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2317     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2318       Temp = DAG.getNOT(dl, N1, MVT::i1);
2319       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2320       if (!DCI.isCalledByLegalizer())
2321         DCI.AddToWorklist(Temp.getNode());
2322       break;
2323     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2324     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2325       Temp = DAG.getNOT(dl, N0, MVT::i1);
2326       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2327       if (!DCI.isCalledByLegalizer())
2328         DCI.AddToWorklist(Temp.getNode());
2329       break;
2330     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2331     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2332       Temp = DAG.getNOT(dl, N1, MVT::i1);
2333       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2334       break;
2335     }
2336     if (VT != MVT::i1) {
2337       if (!DCI.isCalledByLegalizer())
2338         DCI.AddToWorklist(N0.getNode());
2339       // FIXME: If running after legalize, we probably can't do this.
2340       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2341     }
2342     return N0;
2343   }
2344 
2345   // Could not fold it.
2346   return SDValue();
2347 }
2348 
2349 /// Returns true (and the GlobalValue and the offset) if the node is a
2350 /// GlobalAddress + offset.
2351 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2352                                     int64_t &Offset) const {
2353   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2354     GA = GASD->getGlobal();
2355     Offset += GASD->getOffset();
2356     return true;
2357   }
2358 
2359   if (N->getOpcode() == ISD::ADD) {
2360     SDValue N1 = N->getOperand(0);
2361     SDValue N2 = N->getOperand(1);
2362     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2363       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2364         Offset += V->getSExtValue();
2365         return true;
2366       }
2367     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2368       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2369         Offset += V->getSExtValue();
2370         return true;
2371       }
2372     }
2373   }
2374 
2375   return false;
2376 }
2377 
2378 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2379                                           DAGCombinerInfo &DCI) const {
2380   // Default implementation: no optimization.
2381   return SDValue();
2382 }
2383 
2384 //===----------------------------------------------------------------------===//
2385 //  Inline Assembler Implementation Methods
2386 //===----------------------------------------------------------------------===//
2387 
2388 TargetLowering::ConstraintType
2389 TargetLowering::getConstraintType(StringRef Constraint) const {
2390   unsigned S = Constraint.size();
2391 
2392   if (S == 1) {
2393     switch (Constraint[0]) {
2394     default: break;
2395     case 'r': return C_RegisterClass;
2396     case 'm':    // memory
2397     case 'o':    // offsetable
2398     case 'V':    // not offsetable
2399       return C_Memory;
2400     case 'i':    // Simple Integer or Relocatable Constant
2401     case 'n':    // Simple Integer
2402     case 'E':    // Floating Point Constant
2403     case 'F':    // Floating Point Constant
2404     case 's':    // Relocatable Constant
2405     case 'p':    // Address.
2406     case 'X':    // Allow ANY value.
2407     case 'I':    // Target registers.
2408     case 'J':
2409     case 'K':
2410     case 'L':
2411     case 'M':
2412     case 'N':
2413     case 'O':
2414     case 'P':
2415     case '<':
2416     case '>':
2417       return C_Other;
2418     }
2419   }
2420 
2421   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2422     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2423       return C_Memory;
2424     return C_Register;
2425   }
2426   return C_Unknown;
2427 }
2428 
2429 /// Try to replace an X constraint, which matches anything, with another that
2430 /// has more specific requirements based on the type of the corresponding
2431 /// operand.
2432 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2433   if (ConstraintVT.isInteger())
2434     return "r";
2435   if (ConstraintVT.isFloatingPoint())
2436     return "f";      // works for many targets
2437   return nullptr;
2438 }
2439 
2440 /// Lower the specified operand into the Ops vector.
2441 /// If it is invalid, don't add anything to Ops.
2442 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2443                                                   std::string &Constraint,
2444                                                   std::vector<SDValue> &Ops,
2445                                                   SelectionDAG &DAG) const {
2446 
2447   if (Constraint.length() > 1) return;
2448 
2449   char ConstraintLetter = Constraint[0];
2450   switch (ConstraintLetter) {
2451   default: break;
2452   case 'X':     // Allows any operand; labels (basic block) use this.
2453     if (Op.getOpcode() == ISD::BasicBlock) {
2454       Ops.push_back(Op);
2455       return;
2456     }
2457     LLVM_FALLTHROUGH;
2458   case 'i':    // Simple Integer or Relocatable Constant
2459   case 'n':    // Simple Integer
2460   case 's': {  // Relocatable Constant
2461     // These operands are interested in values of the form (GV+C), where C may
2462     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2463     // is possible and fine if either GV or C are missing.
2464     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2465     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2466 
2467     // If we have "(add GV, C)", pull out GV/C
2468     if (Op.getOpcode() == ISD::ADD) {
2469       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2470       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2471       if (!C || !GA) {
2472         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2473         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2474       }
2475       if (!C || !GA) {
2476         C = nullptr;
2477         GA = nullptr;
2478       }
2479     }
2480 
2481     // If we find a valid operand, map to the TargetXXX version so that the
2482     // value itself doesn't get selected.
2483     if (GA) {   // Either &GV   or   &GV+C
2484       if (ConstraintLetter != 'n') {
2485         int64_t Offs = GA->getOffset();
2486         if (C) Offs += C->getZExtValue();
2487         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2488                                                  C ? SDLoc(C) : SDLoc(),
2489                                                  Op.getValueType(), Offs));
2490       }
2491       return;
2492     }
2493     if (C) {   // just C, no GV.
2494       // Simple constants are not allowed for 's'.
2495       if (ConstraintLetter != 's') {
2496         // gcc prints these as sign extended.  Sign extend value to 64 bits
2497         // now; without this it would get ZExt'd later in
2498         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2499         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2500                                             SDLoc(C), MVT::i64));
2501       }
2502       return;
2503     }
2504     break;
2505   }
2506   }
2507 }
2508 
2509 std::pair<unsigned, const TargetRegisterClass *>
2510 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2511                                              StringRef Constraint,
2512                                              MVT VT) const {
2513   if (Constraint.empty() || Constraint[0] != '{')
2514     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2515   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2516 
2517   // Remove the braces from around the name.
2518   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2519 
2520   std::pair<unsigned, const TargetRegisterClass*> R =
2521     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2522 
2523   // Figure out which register class contains this reg.
2524   for (const TargetRegisterClass *RC : RI->regclasses()) {
2525     // If none of the value types for this register class are valid, we
2526     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2527     if (!isLegalRC(RC))
2528       continue;
2529 
2530     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2531          I != E; ++I) {
2532       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2533         std::pair<unsigned, const TargetRegisterClass*> S =
2534           std::make_pair(*I, RC);
2535 
2536         // If this register class has the requested value type, return it,
2537         // otherwise keep searching and return the first class found
2538         // if no other is found which explicitly has the requested type.
2539         if (RC->hasType(VT))
2540           return S;
2541         else if (!R.second)
2542           R = S;
2543       }
2544     }
2545   }
2546 
2547   return R;
2548 }
2549 
2550 //===----------------------------------------------------------------------===//
2551 // Constraint Selection.
2552 
2553 /// Return true of this is an input operand that is a matching constraint like
2554 /// "4".
2555 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2556   assert(!ConstraintCode.empty() && "No known constraint!");
2557   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2558 }
2559 
2560 /// If this is an input matching constraint, this method returns the output
2561 /// operand it matches.
2562 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2563   assert(!ConstraintCode.empty() && "No known constraint!");
2564   return atoi(ConstraintCode.c_str());
2565 }
2566 
2567 /// Split up the constraint string from the inline assembly value into the
2568 /// specific constraints and their prefixes, and also tie in the associated
2569 /// operand values.
2570 /// If this returns an empty vector, and if the constraint string itself
2571 /// isn't empty, there was an error parsing.
2572 TargetLowering::AsmOperandInfoVector
2573 TargetLowering::ParseConstraints(const DataLayout &DL,
2574                                  const TargetRegisterInfo *TRI,
2575                                  ImmutableCallSite CS) const {
2576   /// Information about all of the constraints.
2577   AsmOperandInfoVector ConstraintOperands;
2578   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2579   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2580 
2581   // Do a prepass over the constraints, canonicalizing them, and building up the
2582   // ConstraintOperands list.
2583   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2584   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2585 
2586   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2587     ConstraintOperands.emplace_back(std::move(CI));
2588     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2589 
2590     // Update multiple alternative constraint count.
2591     if (OpInfo.multipleAlternatives.size() > maCount)
2592       maCount = OpInfo.multipleAlternatives.size();
2593 
2594     OpInfo.ConstraintVT = MVT::Other;
2595 
2596     // Compute the value type for each operand.
2597     switch (OpInfo.Type) {
2598     case InlineAsm::isOutput:
2599       // Indirect outputs just consume an argument.
2600       if (OpInfo.isIndirect) {
2601         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2602         break;
2603       }
2604 
2605       // The return value of the call is this value.  As such, there is no
2606       // corresponding argument.
2607       assert(!CS.getType()->isVoidTy() &&
2608              "Bad inline asm!");
2609       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2610         OpInfo.ConstraintVT =
2611             getSimpleValueType(DL, STy->getElementType(ResNo));
2612       } else {
2613         assert(ResNo == 0 && "Asm only has one result!");
2614         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2615       }
2616       ++ResNo;
2617       break;
2618     case InlineAsm::isInput:
2619       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2620       break;
2621     case InlineAsm::isClobber:
2622       // Nothing to do.
2623       break;
2624     }
2625 
2626     if (OpInfo.CallOperandVal) {
2627       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2628       if (OpInfo.isIndirect) {
2629         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2630         if (!PtrTy)
2631           report_fatal_error("Indirect operand for inline asm not a pointer!");
2632         OpTy = PtrTy->getElementType();
2633       }
2634 
2635       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2636       if (StructType *STy = dyn_cast<StructType>(OpTy))
2637         if (STy->getNumElements() == 1)
2638           OpTy = STy->getElementType(0);
2639 
2640       // If OpTy is not a single value, it may be a struct/union that we
2641       // can tile with integers.
2642       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2643         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2644         switch (BitSize) {
2645         default: break;
2646         case 1:
2647         case 8:
2648         case 16:
2649         case 32:
2650         case 64:
2651         case 128:
2652           OpInfo.ConstraintVT =
2653             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2654           break;
2655         }
2656       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2657         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2658         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2659       } else {
2660         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2661       }
2662     }
2663   }
2664 
2665   // If we have multiple alternative constraints, select the best alternative.
2666   if (!ConstraintOperands.empty()) {
2667     if (maCount) {
2668       unsigned bestMAIndex = 0;
2669       int bestWeight = -1;
2670       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2671       int weight = -1;
2672       unsigned maIndex;
2673       // Compute the sums of the weights for each alternative, keeping track
2674       // of the best (highest weight) one so far.
2675       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2676         int weightSum = 0;
2677         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2678             cIndex != eIndex; ++cIndex) {
2679           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2680           if (OpInfo.Type == InlineAsm::isClobber)
2681             continue;
2682 
2683           // If this is an output operand with a matching input operand,
2684           // look up the matching input. If their types mismatch, e.g. one
2685           // is an integer, the other is floating point, or their sizes are
2686           // different, flag it as an maCantMatch.
2687           if (OpInfo.hasMatchingInput()) {
2688             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2689             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2690               if ((OpInfo.ConstraintVT.isInteger() !=
2691                    Input.ConstraintVT.isInteger()) ||
2692                   (OpInfo.ConstraintVT.getSizeInBits() !=
2693                    Input.ConstraintVT.getSizeInBits())) {
2694                 weightSum = -1;  // Can't match.
2695                 break;
2696               }
2697             }
2698           }
2699           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2700           if (weight == -1) {
2701             weightSum = -1;
2702             break;
2703           }
2704           weightSum += weight;
2705         }
2706         // Update best.
2707         if (weightSum > bestWeight) {
2708           bestWeight = weightSum;
2709           bestMAIndex = maIndex;
2710         }
2711       }
2712 
2713       // Now select chosen alternative in each constraint.
2714       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2715           cIndex != eIndex; ++cIndex) {
2716         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2717         if (cInfo.Type == InlineAsm::isClobber)
2718           continue;
2719         cInfo.selectAlternative(bestMAIndex);
2720       }
2721     }
2722   }
2723 
2724   // Check and hook up tied operands, choose constraint code to use.
2725   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2726       cIndex != eIndex; ++cIndex) {
2727     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2728 
2729     // If this is an output operand with a matching input operand, look up the
2730     // matching input. If their types mismatch, e.g. one is an integer, the
2731     // other is floating point, or their sizes are different, flag it as an
2732     // error.
2733     if (OpInfo.hasMatchingInput()) {
2734       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2735 
2736       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2737         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2738             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2739                                          OpInfo.ConstraintVT);
2740         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2741             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2742                                          Input.ConstraintVT);
2743         if ((OpInfo.ConstraintVT.isInteger() !=
2744              Input.ConstraintVT.isInteger()) ||
2745             (MatchRC.second != InputRC.second)) {
2746           report_fatal_error("Unsupported asm: input constraint"
2747                              " with a matching output constraint of"
2748                              " incompatible type!");
2749         }
2750       }
2751     }
2752   }
2753 
2754   return ConstraintOperands;
2755 }
2756 
2757 /// Return an integer indicating how general CT is.
2758 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2759   switch (CT) {
2760   case TargetLowering::C_Other:
2761   case TargetLowering::C_Unknown:
2762     return 0;
2763   case TargetLowering::C_Register:
2764     return 1;
2765   case TargetLowering::C_RegisterClass:
2766     return 2;
2767   case TargetLowering::C_Memory:
2768     return 3;
2769   }
2770   llvm_unreachable("Invalid constraint type");
2771 }
2772 
2773 /// Examine constraint type and operand type and determine a weight value.
2774 /// This object must already have been set up with the operand type
2775 /// and the current alternative constraint selected.
2776 TargetLowering::ConstraintWeight
2777   TargetLowering::getMultipleConstraintMatchWeight(
2778     AsmOperandInfo &info, int maIndex) const {
2779   InlineAsm::ConstraintCodeVector *rCodes;
2780   if (maIndex >= (int)info.multipleAlternatives.size())
2781     rCodes = &info.Codes;
2782   else
2783     rCodes = &info.multipleAlternatives[maIndex].Codes;
2784   ConstraintWeight BestWeight = CW_Invalid;
2785 
2786   // Loop over the options, keeping track of the most general one.
2787   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2788     ConstraintWeight weight =
2789       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2790     if (weight > BestWeight)
2791       BestWeight = weight;
2792   }
2793 
2794   return BestWeight;
2795 }
2796 
2797 /// Examine constraint type and operand type and determine a weight value.
2798 /// This object must already have been set up with the operand type
2799 /// and the current alternative constraint selected.
2800 TargetLowering::ConstraintWeight
2801   TargetLowering::getSingleConstraintMatchWeight(
2802     AsmOperandInfo &info, const char *constraint) const {
2803   ConstraintWeight weight = CW_Invalid;
2804   Value *CallOperandVal = info.CallOperandVal;
2805     // If we don't have a value, we can't do a match,
2806     // but allow it at the lowest weight.
2807   if (!CallOperandVal)
2808     return CW_Default;
2809   // Look at the constraint type.
2810   switch (*constraint) {
2811     case 'i': // immediate integer.
2812     case 'n': // immediate integer with a known value.
2813       if (isa<ConstantInt>(CallOperandVal))
2814         weight = CW_Constant;
2815       break;
2816     case 's': // non-explicit intregal immediate.
2817       if (isa<GlobalValue>(CallOperandVal))
2818         weight = CW_Constant;
2819       break;
2820     case 'E': // immediate float if host format.
2821     case 'F': // immediate float.
2822       if (isa<ConstantFP>(CallOperandVal))
2823         weight = CW_Constant;
2824       break;
2825     case '<': // memory operand with autodecrement.
2826     case '>': // memory operand with autoincrement.
2827     case 'm': // memory operand.
2828     case 'o': // offsettable memory operand
2829     case 'V': // non-offsettable memory operand
2830       weight = CW_Memory;
2831       break;
2832     case 'r': // general register.
2833     case 'g': // general register, memory operand or immediate integer.
2834               // note: Clang converts "g" to "imr".
2835       if (CallOperandVal->getType()->isIntegerTy())
2836         weight = CW_Register;
2837       break;
2838     case 'X': // any operand.
2839     default:
2840       weight = CW_Default;
2841       break;
2842   }
2843   return weight;
2844 }
2845 
2846 /// If there are multiple different constraints that we could pick for this
2847 /// operand (e.g. "imr") try to pick the 'best' one.
2848 /// This is somewhat tricky: constraints fall into four classes:
2849 ///    Other         -> immediates and magic values
2850 ///    Register      -> one specific register
2851 ///    RegisterClass -> a group of regs
2852 ///    Memory        -> memory
2853 /// Ideally, we would pick the most specific constraint possible: if we have
2854 /// something that fits into a register, we would pick it.  The problem here
2855 /// is that if we have something that could either be in a register or in
2856 /// memory that use of the register could cause selection of *other*
2857 /// operands to fail: they might only succeed if we pick memory.  Because of
2858 /// this the heuristic we use is:
2859 ///
2860 ///  1) If there is an 'other' constraint, and if the operand is valid for
2861 ///     that constraint, use it.  This makes us take advantage of 'i'
2862 ///     constraints when available.
2863 ///  2) Otherwise, pick the most general constraint present.  This prefers
2864 ///     'm' over 'r', for example.
2865 ///
2866 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2867                              const TargetLowering &TLI,
2868                              SDValue Op, SelectionDAG *DAG) {
2869   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2870   unsigned BestIdx = 0;
2871   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2872   int BestGenerality = -1;
2873 
2874   // Loop over the options, keeping track of the most general one.
2875   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2876     TargetLowering::ConstraintType CType =
2877       TLI.getConstraintType(OpInfo.Codes[i]);
2878 
2879     // If this is an 'other' constraint, see if the operand is valid for it.
2880     // For example, on X86 we might have an 'rI' constraint.  If the operand
2881     // is an integer in the range [0..31] we want to use I (saving a load
2882     // of a register), otherwise we must use 'r'.
2883     if (CType == TargetLowering::C_Other && Op.getNode()) {
2884       assert(OpInfo.Codes[i].size() == 1 &&
2885              "Unhandled multi-letter 'other' constraint");
2886       std::vector<SDValue> ResultOps;
2887       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2888                                        ResultOps, *DAG);
2889       if (!ResultOps.empty()) {
2890         BestType = CType;
2891         BestIdx = i;
2892         break;
2893       }
2894     }
2895 
2896     // Things with matching constraints can only be registers, per gcc
2897     // documentation.  This mainly affects "g" constraints.
2898     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2899       continue;
2900 
2901     // This constraint letter is more general than the previous one, use it.
2902     int Generality = getConstraintGenerality(CType);
2903     if (Generality > BestGenerality) {
2904       BestType = CType;
2905       BestIdx = i;
2906       BestGenerality = Generality;
2907     }
2908   }
2909 
2910   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2911   OpInfo.ConstraintType = BestType;
2912 }
2913 
2914 /// Determines the constraint code and constraint type to use for the specific
2915 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2916 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2917                                             SDValue Op,
2918                                             SelectionDAG *DAG) const {
2919   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2920 
2921   // Single-letter constraints ('r') are very common.
2922   if (OpInfo.Codes.size() == 1) {
2923     OpInfo.ConstraintCode = OpInfo.Codes[0];
2924     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2925   } else {
2926     ChooseConstraint(OpInfo, *this, Op, DAG);
2927   }
2928 
2929   // 'X' matches anything.
2930   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2931     // Labels and constants are handled elsewhere ('X' is the only thing
2932     // that matches labels).  For Functions, the type here is the type of
2933     // the result, which is not what we want to look at; leave them alone.
2934     Value *v = OpInfo.CallOperandVal;
2935     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2936       OpInfo.CallOperandVal = v;
2937       return;
2938     }
2939 
2940     // Otherwise, try to resolve it to something we know about by looking at
2941     // the actual operand type.
2942     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2943       OpInfo.ConstraintCode = Repl;
2944       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2945     }
2946   }
2947 }
2948 
2949 /// \brief Given an exact SDIV by a constant, create a multiplication
2950 /// with the multiplicative inverse of the constant.
2951 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2952                               const SDLoc &dl, SelectionDAG &DAG,
2953                               std::vector<SDNode *> &Created) {
2954   assert(d != 0 && "Division by zero!");
2955 
2956   // Shift the value upfront if it is even, so the LSB is one.
2957   unsigned ShAmt = d.countTrailingZeros();
2958   if (ShAmt) {
2959     // TODO: For UDIV use SRL instead of SRA.
2960     SDValue Amt =
2961         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2962                                                         DAG.getDataLayout()));
2963     SDNodeFlags Flags;
2964     Flags.setExact(true);
2965     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2966     Created.push_back(Op1.getNode());
2967     d = d.ashr(ShAmt);
2968   }
2969 
2970   // Calculate the multiplicative inverse, using Newton's method.
2971   APInt t, xn = d;
2972   while ((t = d*xn) != 1)
2973     xn *= APInt(d.getBitWidth(), 2) - t;
2974 
2975   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2976   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2977   Created.push_back(Mul.getNode());
2978   return Mul;
2979 }
2980 
2981 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2982                                       SelectionDAG &DAG,
2983                                       std::vector<SDNode *> *Created) const {
2984   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2986   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2987     return SDValue(N,0); // Lower SDIV as SDIV
2988   return SDValue();
2989 }
2990 
2991 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2992 /// return a DAG expression to select that will generate the same value by
2993 /// multiplying by a magic number.
2994 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2995 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2996                                   SelectionDAG &DAG, bool IsAfterLegalization,
2997                                   std::vector<SDNode *> *Created) const {
2998   assert(Created && "No vector to hold sdiv ops.");
2999 
3000   EVT VT = N->getValueType(0);
3001   SDLoc dl(N);
3002 
3003   // Check to see if we can do this.
3004   // FIXME: We should be more aggressive here.
3005   if (!isTypeLegal(VT))
3006     return SDValue();
3007 
3008   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3009   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
3010     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
3011 
3012   APInt::ms magics = Divisor.magic();
3013 
3014   // Multiply the numerator (operand 0) by the magic value
3015   // FIXME: We should support doing a MUL in a wider type
3016   SDValue Q;
3017   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3018                             isOperationLegalOrCustom(ISD::MULHS, VT))
3019     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3020                     DAG.getConstant(magics.m, dl, VT));
3021   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3022                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3023     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3024                               N->getOperand(0),
3025                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3026   else
3027     return SDValue();       // No mulhs or equvialent
3028   // If d > 0 and m < 0, add the numerator
3029   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3030     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3031     Created->push_back(Q.getNode());
3032   }
3033   // If d < 0 and m > 0, subtract the numerator.
3034   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3035     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3036     Created->push_back(Q.getNode());
3037   }
3038   auto &DL = DAG.getDataLayout();
3039   // Shift right algebraic if shift value is nonzero
3040   if (magics.s > 0) {
3041     Q = DAG.getNode(
3042         ISD::SRA, dl, VT, Q,
3043         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3044     Created->push_back(Q.getNode());
3045   }
3046   // Extract the sign bit and add it to the quotient
3047   SDValue T =
3048       DAG.getNode(ISD::SRL, dl, VT, Q,
3049                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3050                                   getShiftAmountTy(Q.getValueType(), DL)));
3051   Created->push_back(T.getNode());
3052   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3053 }
3054 
3055 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3056 /// return a DAG expression to select that will generate the same value by
3057 /// multiplying by a magic number.
3058 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3059 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3060                                   SelectionDAG &DAG, bool IsAfterLegalization,
3061                                   std::vector<SDNode *> *Created) const {
3062   assert(Created && "No vector to hold udiv ops.");
3063 
3064   EVT VT = N->getValueType(0);
3065   SDLoc dl(N);
3066   auto &DL = DAG.getDataLayout();
3067 
3068   // Check to see if we can do this.
3069   // FIXME: We should be more aggressive here.
3070   if (!isTypeLegal(VT))
3071     return SDValue();
3072 
3073   // FIXME: We should use a narrower constant when the upper
3074   // bits are known to be zero.
3075   APInt::mu magics = Divisor.magicu();
3076 
3077   SDValue Q = N->getOperand(0);
3078 
3079   // If the divisor is even, we can avoid using the expensive fixup by shifting
3080   // the divided value upfront.
3081   if (magics.a != 0 && !Divisor[0]) {
3082     unsigned Shift = Divisor.countTrailingZeros();
3083     Q = DAG.getNode(
3084         ISD::SRL, dl, VT, Q,
3085         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3086     Created->push_back(Q.getNode());
3087 
3088     // Get magic number for the shifted divisor.
3089     magics = Divisor.lshr(Shift).magicu(Shift);
3090     assert(magics.a == 0 && "Should use cheap fixup now");
3091   }
3092 
3093   // Multiply the numerator (operand 0) by the magic value
3094   // FIXME: We should support doing a MUL in a wider type
3095   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3096                             isOperationLegalOrCustom(ISD::MULHU, VT))
3097     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3098   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3099                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3100     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3101                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3102   else
3103     return SDValue();       // No mulhu or equivalent
3104 
3105   Created->push_back(Q.getNode());
3106 
3107   if (magics.a == 0) {
3108     assert(magics.s < Divisor.getBitWidth() &&
3109            "We shouldn't generate an undefined shift!");
3110     return DAG.getNode(
3111         ISD::SRL, dl, VT, Q,
3112         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3113   } else {
3114     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3115     Created->push_back(NPQ.getNode());
3116     NPQ = DAG.getNode(
3117         ISD::SRL, dl, VT, NPQ,
3118         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3119     Created->push_back(NPQ.getNode());
3120     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3121     Created->push_back(NPQ.getNode());
3122     return DAG.getNode(
3123         ISD::SRL, dl, VT, NPQ,
3124         DAG.getConstant(magics.s - 1, dl,
3125                         getShiftAmountTy(NPQ.getValueType(), DL)));
3126   }
3127 }
3128 
3129 bool TargetLowering::
3130 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3131   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3132     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3133                                 "be a constant integer");
3134     return true;
3135   }
3136 
3137   return false;
3138 }
3139 
3140 //===----------------------------------------------------------------------===//
3141 // Legalization Utilities
3142 //===----------------------------------------------------------------------===//
3143 
3144 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3145                                     SDValue LHS, SDValue RHS,
3146                                     SmallVectorImpl<SDValue> &Result,
3147                                     EVT HiLoVT, SelectionDAG &DAG,
3148                                     MulExpansionKind Kind, SDValue LL,
3149                                     SDValue LH, SDValue RL, SDValue RH) const {
3150   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3151          Opcode == ISD::SMUL_LOHI);
3152 
3153   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3154                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3155   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3156                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3157   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3158                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3159   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3160                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3161 
3162   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3163     return false;
3164 
3165   unsigned OuterBitSize = VT.getScalarSizeInBits();
3166   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3167   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3168   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3169 
3170   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3171   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3172          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3173 
3174   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3175   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3176                           bool Signed) -> bool {
3177     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3178       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3179       Hi = SDValue(Lo.getNode(), 1);
3180       return true;
3181     }
3182     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3183       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3184       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3185       return true;
3186     }
3187     return false;
3188   };
3189 
3190   SDValue Lo, Hi;
3191 
3192   if (!LL.getNode() && !RL.getNode() &&
3193       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3194     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3195     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3196   }
3197 
3198   if (!LL.getNode())
3199     return false;
3200 
3201   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3202   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3203       DAG.MaskedValueIsZero(RHS, HighMask)) {
3204     // The inputs are both zero-extended.
3205     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3206       Result.push_back(Lo);
3207       Result.push_back(Hi);
3208       if (Opcode != ISD::MUL) {
3209         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3210         Result.push_back(Zero);
3211         Result.push_back(Zero);
3212       }
3213       return true;
3214     }
3215   }
3216 
3217   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3218       RHSSB > InnerBitSize) {
3219     // The input values are both sign-extended.
3220     // TODO non-MUL case?
3221     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3222       Result.push_back(Lo);
3223       Result.push_back(Hi);
3224       return true;
3225     }
3226   }
3227 
3228   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3229   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3230   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3231     // FIXME getShiftAmountTy does not always return a sensible result when VT
3232     // is an illegal type, and so the type may be too small to fit the shift
3233     // amount. Override it with i32. The shift will have to be legalized.
3234     ShiftAmountTy = MVT::i32;
3235   }
3236   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3237 
3238   if (!LH.getNode() && !RH.getNode() &&
3239       isOperationLegalOrCustom(ISD::SRL, VT) &&
3240       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3241     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3242     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3243     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3244     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3245   }
3246 
3247   if (!LH.getNode())
3248     return false;
3249 
3250   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3251     return false;
3252 
3253   Result.push_back(Lo);
3254 
3255   if (Opcode == ISD::MUL) {
3256     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3257     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3258     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3259     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3260     Result.push_back(Hi);
3261     return true;
3262   }
3263 
3264   // Compute the full width result.
3265   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3266     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3267     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3268     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3269     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3270   };
3271 
3272   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3273   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3274     return false;
3275 
3276   // This is effectively the add part of a multiply-add of half-sized operands,
3277   // so it cannot overflow.
3278   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3279 
3280   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3281     return false;
3282 
3283   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3284                      Merge(Lo, Hi));
3285 
3286   SDValue Carry = Next.getValue(1);
3287   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3288   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3289 
3290   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3291     return false;
3292 
3293   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3294   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3295                    Carry);
3296   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3297 
3298   if (Opcode == ISD::SMUL_LOHI) {
3299     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3300                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3301     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3302 
3303     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3304                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3305     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3306   }
3307 
3308   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3309   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3310   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3311   return true;
3312 }
3313 
3314 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3315                                SelectionDAG &DAG, MulExpansionKind Kind,
3316                                SDValue LL, SDValue LH, SDValue RL,
3317                                SDValue RH) const {
3318   SmallVector<SDValue, 2> Result;
3319   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3320                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3321                            DAG, Kind, LL, LH, RL, RH);
3322   if (Ok) {
3323     assert(Result.size() == 2);
3324     Lo = Result[0];
3325     Hi = Result[1];
3326   }
3327   return Ok;
3328 }
3329 
3330 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3331                                SelectionDAG &DAG) const {
3332   EVT VT = Node->getOperand(0).getValueType();
3333   EVT NVT = Node->getValueType(0);
3334   SDLoc dl(SDValue(Node, 0));
3335 
3336   // FIXME: Only f32 to i64 conversions are supported.
3337   if (VT != MVT::f32 || NVT != MVT::i64)
3338     return false;
3339 
3340   // Expand f32 -> i64 conversion
3341   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3342   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3343   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3344                                 VT.getSizeInBits());
3345   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3346   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3347   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3348   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3349                                      IntVT);
3350   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3351   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3352 
3353   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3354 
3355   auto &DL = DAG.getDataLayout();
3356   SDValue ExponentBits = DAG.getNode(
3357       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3358       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3359   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3360 
3361   SDValue Sign = DAG.getNode(
3362       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3363       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3364   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3365 
3366   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3367       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3368       DAG.getConstant(0x00800000, dl, IntVT));
3369 
3370   R = DAG.getZExtOrTrunc(R, dl, NVT);
3371 
3372   R = DAG.getSelectCC(
3373       dl, Exponent, ExponentLoBit,
3374       DAG.getNode(ISD::SHL, dl, NVT, R,
3375                   DAG.getZExtOrTrunc(
3376                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3377                       dl, getShiftAmountTy(IntVT, DL))),
3378       DAG.getNode(ISD::SRL, dl, NVT, R,
3379                   DAG.getZExtOrTrunc(
3380                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3381                       dl, getShiftAmountTy(IntVT, DL))),
3382       ISD::SETGT);
3383 
3384   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3385       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3386       Sign);
3387 
3388   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3389       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3390   return true;
3391 }
3392 
3393 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3394                                             SelectionDAG &DAG) const {
3395   SDLoc SL(LD);
3396   SDValue Chain = LD->getChain();
3397   SDValue BasePTR = LD->getBasePtr();
3398   EVT SrcVT = LD->getMemoryVT();
3399   ISD::LoadExtType ExtType = LD->getExtensionType();
3400 
3401   unsigned NumElem = SrcVT.getVectorNumElements();
3402 
3403   EVT SrcEltVT = SrcVT.getScalarType();
3404   EVT DstEltVT = LD->getValueType(0).getScalarType();
3405 
3406   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3407   assert(SrcEltVT.isByteSized());
3408 
3409   EVT PtrVT = BasePTR.getValueType();
3410 
3411   SmallVector<SDValue, 8> Vals;
3412   SmallVector<SDValue, 8> LoadChains;
3413 
3414   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3415     SDValue ScalarLoad =
3416         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3417                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3418                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3419                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3420 
3421     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3422                           DAG.getConstant(Stride, SL, PtrVT));
3423 
3424     Vals.push_back(ScalarLoad.getValue(0));
3425     LoadChains.push_back(ScalarLoad.getValue(1));
3426   }
3427 
3428   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3429   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3430 
3431   return DAG.getMergeValues({ Value, NewChain }, SL);
3432 }
3433 
3434 // FIXME: This relies on each element having a byte size, otherwise the stride
3435 // is 0 and just overwrites the same location. ExpandStore currently expects
3436 // this broken behavior.
3437 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3438                                              SelectionDAG &DAG) const {
3439   SDLoc SL(ST);
3440 
3441   SDValue Chain = ST->getChain();
3442   SDValue BasePtr = ST->getBasePtr();
3443   SDValue Value = ST->getValue();
3444   EVT StVT = ST->getMemoryVT();
3445 
3446   // The type of the data we want to save
3447   EVT RegVT = Value.getValueType();
3448   EVT RegSclVT = RegVT.getScalarType();
3449 
3450   // The type of data as saved in memory.
3451   EVT MemSclVT = StVT.getScalarType();
3452 
3453   EVT PtrVT = BasePtr.getValueType();
3454 
3455   // Store Stride in bytes
3456   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3457   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3458   unsigned NumElem = StVT.getVectorNumElements();
3459 
3460   // Extract each of the elements from the original vector and save them into
3461   // memory individually.
3462   SmallVector<SDValue, 8> Stores;
3463   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3464     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3465                               DAG.getConstant(Idx, SL, IdxVT));
3466 
3467     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3468                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3469 
3470     // This scalar TruncStore may be illegal, but we legalize it later.
3471     SDValue Store = DAG.getTruncStore(
3472         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3473         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3474         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3475 
3476     Stores.push_back(Store);
3477   }
3478 
3479   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3480 }
3481 
3482 std::pair<SDValue, SDValue>
3483 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3484   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3485          "unaligned indexed loads not implemented!");
3486   SDValue Chain = LD->getChain();
3487   SDValue Ptr = LD->getBasePtr();
3488   EVT VT = LD->getValueType(0);
3489   EVT LoadedVT = LD->getMemoryVT();
3490   SDLoc dl(LD);
3491   if (VT.isFloatingPoint() || VT.isVector()) {
3492     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3493     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3494       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3495         // Scalarize the load and let the individual components be handled.
3496         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3497         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3498       }
3499 
3500       // Expand to a (misaligned) integer load of the same size,
3501       // then bitconvert to floating point or vector.
3502       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3503                                     LD->getMemOperand());
3504       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3505       if (LoadedVT != VT)
3506         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3507                              ISD::ANY_EXTEND, dl, VT, Result);
3508 
3509       return std::make_pair(Result, newLoad.getValue(1));
3510     }
3511 
3512     // Copy the value to a (aligned) stack slot using (unaligned) integer
3513     // loads and stores, then do a (aligned) load from the stack slot.
3514     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3515     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3516     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3517     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3518 
3519     // Make sure the stack slot is also aligned for the register type.
3520     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3521 
3522     SmallVector<SDValue, 8> Stores;
3523     SDValue StackPtr = StackBase;
3524     unsigned Offset = 0;
3525 
3526     EVT PtrVT = Ptr.getValueType();
3527     EVT StackPtrVT = StackPtr.getValueType();
3528 
3529     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3530     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3531 
3532     // Do all but one copies using the full register width.
3533     for (unsigned i = 1; i < NumRegs; i++) {
3534       // Load one integer register's worth from the original location.
3535       SDValue Load = DAG.getLoad(
3536           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3537           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3538           LD->getAAInfo());
3539       // Follow the load with a store to the stack slot.  Remember the store.
3540       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3541                                     MachinePointerInfo()));
3542       // Increment the pointers.
3543       Offset += RegBytes;
3544       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3545       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3546                              StackPtrIncrement);
3547     }
3548 
3549     // The last copy may be partial.  Do an extending load.
3550     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3551                                   8 * (LoadedBytes - Offset));
3552     SDValue Load =
3553         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3554                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3555                        MinAlign(LD->getAlignment(), Offset),
3556                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3557     // Follow the load with a store to the stack slot.  Remember the store.
3558     // On big-endian machines this requires a truncating store to ensure
3559     // that the bits end up in the right place.
3560     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3561                                        MachinePointerInfo(), MemVT));
3562 
3563     // The order of the stores doesn't matter - say it with a TokenFactor.
3564     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3565 
3566     // Finally, perform the original load only redirected to the stack slot.
3567     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3568                           MachinePointerInfo(), LoadedVT);
3569 
3570     // Callers expect a MERGE_VALUES node.
3571     return std::make_pair(Load, TF);
3572   }
3573 
3574   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3575          "Unaligned load of unsupported type.");
3576 
3577   // Compute the new VT that is half the size of the old one.  This is an
3578   // integer MVT.
3579   unsigned NumBits = LoadedVT.getSizeInBits();
3580   EVT NewLoadedVT;
3581   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3582   NumBits >>= 1;
3583 
3584   unsigned Alignment = LD->getAlignment();
3585   unsigned IncrementSize = NumBits / 8;
3586   ISD::LoadExtType HiExtType = LD->getExtensionType();
3587 
3588   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3589   if (HiExtType == ISD::NON_EXTLOAD)
3590     HiExtType = ISD::ZEXTLOAD;
3591 
3592   // Load the value in two parts
3593   SDValue Lo, Hi;
3594   if (DAG.getDataLayout().isLittleEndian()) {
3595     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3596                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3597                         LD->getAAInfo());
3598     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3599                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3600     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3601                         LD->getPointerInfo().getWithOffset(IncrementSize),
3602                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3603                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3604   } else {
3605     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3606                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3607                         LD->getAAInfo());
3608     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3609                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3610     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3611                         LD->getPointerInfo().getWithOffset(IncrementSize),
3612                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3613                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3614   }
3615 
3616   // aggregate the two parts
3617   SDValue ShiftAmount =
3618       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3619                                                     DAG.getDataLayout()));
3620   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3621   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3622 
3623   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3624                              Hi.getValue(1));
3625 
3626   return std::make_pair(Result, TF);
3627 }
3628 
3629 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3630                                              SelectionDAG &DAG) const {
3631   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3632          "unaligned indexed stores not implemented!");
3633   SDValue Chain = ST->getChain();
3634   SDValue Ptr = ST->getBasePtr();
3635   SDValue Val = ST->getValue();
3636   EVT VT = Val.getValueType();
3637   int Alignment = ST->getAlignment();
3638 
3639   SDLoc dl(ST);
3640   if (ST->getMemoryVT().isFloatingPoint() ||
3641       ST->getMemoryVT().isVector()) {
3642     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3643     if (isTypeLegal(intVT)) {
3644       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3645         // Scalarize the store and let the individual components be handled.
3646         SDValue Result = scalarizeVectorStore(ST, DAG);
3647 
3648         return Result;
3649       }
3650       // Expand to a bitconvert of the value to the integer type of the
3651       // same size, then a (misaligned) int store.
3652       // FIXME: Does not handle truncating floating point stores!
3653       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3654       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3655                             Alignment, ST->getMemOperand()->getFlags());
3656       return Result;
3657     }
3658     // Do a (aligned) store to a stack slot, then copy from the stack slot
3659     // to the final destination using (unaligned) integer loads and stores.
3660     EVT StoredVT = ST->getMemoryVT();
3661     MVT RegVT =
3662       getRegisterType(*DAG.getContext(),
3663                       EVT::getIntegerVT(*DAG.getContext(),
3664                                         StoredVT.getSizeInBits()));
3665     EVT PtrVT = Ptr.getValueType();
3666     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3667     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3668     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3669 
3670     // Make sure the stack slot is also aligned for the register type.
3671     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3672 
3673     // Perform the original store, only redirected to the stack slot.
3674     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
3675                                       MachinePointerInfo(), StoredVT);
3676 
3677     EVT StackPtrVT = StackPtr.getValueType();
3678 
3679     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3680     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3681     SmallVector<SDValue, 8> Stores;
3682     unsigned Offset = 0;
3683 
3684     // Do all but one copies using the full register width.
3685     for (unsigned i = 1; i < NumRegs; i++) {
3686       // Load one integer register's worth from the stack slot.
3687       SDValue Load =
3688           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
3689       // Store it to the final location.  Remember the store.
3690       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3691                                     ST->getPointerInfo().getWithOffset(Offset),
3692                                     MinAlign(ST->getAlignment(), Offset),
3693                                     ST->getMemOperand()->getFlags()));
3694       // Increment the pointers.
3695       Offset += RegBytes;
3696       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3697                              StackPtr, StackPtrIncrement);
3698       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3699     }
3700 
3701     // The last store may be partial.  Do a truncating store.  On big-endian
3702     // machines this requires an extending load from the stack slot to ensure
3703     // that the bits are in the right place.
3704     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3705                                   8 * (StoredBytes - Offset));
3706 
3707     // Load from the stack slot.
3708     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3709                                   MachinePointerInfo(), MemVT);
3710 
3711     Stores.push_back(
3712         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3713                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3714                           MinAlign(ST->getAlignment(), Offset),
3715                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3716     // The order of the stores doesn't matter - say it with a TokenFactor.
3717     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3718     return Result;
3719   }
3720 
3721   assert(ST->getMemoryVT().isInteger() &&
3722          !ST->getMemoryVT().isVector() &&
3723          "Unaligned store of unknown type.");
3724   // Get the half-size VT
3725   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3726   int NumBits = NewStoredVT.getSizeInBits();
3727   int IncrementSize = NumBits / 8;
3728 
3729   // Divide the stored value in two parts.
3730   SDValue ShiftAmount =
3731       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3732                                                     DAG.getDataLayout()));
3733   SDValue Lo = Val;
3734   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3735 
3736   // Store the two parts
3737   SDValue Store1, Store2;
3738   Store1 = DAG.getTruncStore(Chain, dl,
3739                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3740                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3741                              ST->getMemOperand()->getFlags());
3742 
3743   EVT PtrVT = Ptr.getValueType();
3744   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3745                     DAG.getConstant(IncrementSize, dl, PtrVT));
3746   Alignment = MinAlign(Alignment, IncrementSize);
3747   Store2 = DAG.getTruncStore(
3748       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3749       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3750       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3751 
3752   SDValue Result =
3753     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3754   return Result;
3755 }
3756 
3757 SDValue
3758 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3759                                        const SDLoc &DL, EVT DataVT,
3760                                        SelectionDAG &DAG,
3761                                        bool IsCompressedMemory) const {
3762   SDValue Increment;
3763   EVT AddrVT = Addr.getValueType();
3764   EVT MaskVT = Mask.getValueType();
3765   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3766          "Incompatible types of Data and Mask");
3767   if (IsCompressedMemory) {
3768     // Incrementing the pointer according to number of '1's in the mask.
3769     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3770     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3771     if (MaskIntVT.getSizeInBits() < 32) {
3772       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3773       MaskIntVT = MVT::i32;
3774     }
3775 
3776     // Count '1's with POPCNT.
3777     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3778     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3779     // Scale is an element size in bytes.
3780     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3781                                     AddrVT);
3782     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3783   } else
3784     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
3785 
3786   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3787 }
3788 
3789 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3790                                        SDValue Idx,
3791                                        EVT VecVT,
3792                                        const SDLoc &dl) {
3793   if (isa<ConstantSDNode>(Idx))
3794     return Idx;
3795 
3796   EVT IdxVT = Idx.getValueType();
3797   unsigned NElts = VecVT.getVectorNumElements();
3798   if (isPowerOf2_32(NElts)) {
3799     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3800                                      Log2_32(NElts));
3801     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3802                        DAG.getConstant(Imm, dl, IdxVT));
3803   }
3804 
3805   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3806                      DAG.getConstant(NElts - 1, dl, IdxVT));
3807 }
3808 
3809 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3810                                                 SDValue VecPtr, EVT VecVT,
3811                                                 SDValue Index) const {
3812   SDLoc dl(Index);
3813   // Make sure the index type is big enough to compute in.
3814   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
3815 
3816   EVT EltVT = VecVT.getVectorElementType();
3817 
3818   // Calculate the element offset and add it to the pointer.
3819   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3820   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3821          "Converting bits to bytes lost precision");
3822 
3823   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3824 
3825   EVT IdxVT = Index.getValueType();
3826 
3827   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3828                       DAG.getConstant(EltSize, dl, IdxVT));
3829   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
3830 }
3831 
3832 //===----------------------------------------------------------------------===//
3833 // Implementation of Emulated TLS Model
3834 //===----------------------------------------------------------------------===//
3835 
3836 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3837                                                 SelectionDAG &DAG) const {
3838   // Access to address of TLS varialbe xyz is lowered to a function call:
3839   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3840   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3841   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3842   SDLoc dl(GA);
3843 
3844   ArgListTy Args;
3845   ArgListEntry Entry;
3846   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3847   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3848   StringRef EmuTlsVarName(NameString);
3849   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3850   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3851   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3852   Entry.Ty = VoidPtrType;
3853   Args.push_back(Entry);
3854 
3855   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3856 
3857   TargetLowering::CallLoweringInfo CLI(DAG);
3858   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3859   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3860   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3861 
3862   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3863   // At last for X86 targets, maybe good for other targets too?
3864   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3865   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3866   MFI.setHasCalls(true);
3867 
3868   assert((GA->getOffset() == 0) &&
3869          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3870   return CallResult.first;
3871 }
3872 
3873 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3874                                                 SelectionDAG &DAG) const {
3875   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3876   if (!isCtlzFast())
3877     return SDValue();
3878   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3879   SDLoc dl(Op);
3880   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3881     if (C->isNullValue() && CC == ISD::SETEQ) {
3882       EVT VT = Op.getOperand(0).getValueType();
3883       SDValue Zext = Op.getOperand(0);
3884       if (VT.bitsLT(MVT::i32)) {
3885         VT = MVT::i32;
3886         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3887       }
3888       unsigned Log2b = Log2_32(VT.getSizeInBits());
3889       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3890       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3891                                 DAG.getConstant(Log2b, dl, MVT::i32));
3892       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3893     }
3894   }
3895   return SDValue();
3896 }
3897