1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
487                                             TargetLoweringOpt &TLO) const {
488   SDLoc DL(Op);
489   unsigned Opcode = Op.getOpcode();
490 
491   // Do target-specific constant optimization.
492   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
493     return TLO.New.getNode();
494 
495   // FIXME: ISD::SELECT, ISD::SELECT_CC
496   switch (Opcode) {
497   default:
498     break;
499   case ISD::XOR:
500   case ISD::AND:
501   case ISD::OR: {
502     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
503     if (!Op1C)
504       return false;
505 
506     // If this is a 'not' op, don't touch it because that's a canonical form.
507     const APInt &C = Op1C->getAPIntValue();
508     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
509       return false;
510 
511     if (!C.isSubsetOf(Demanded)) {
512       EVT VT = Op.getValueType();
513       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
514       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
515       return TLO.CombineTo(Op, NewOp);
516     }
517 
518     break;
519   }
520   }
521 
522   return false;
523 }
524 
525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
527 /// generalized for targets with other types of implicit widening casts.
528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
529                                       const APInt &Demanded,
530                                       TargetLoweringOpt &TLO) const {
531   assert(Op.getNumOperands() == 2 &&
532          "ShrinkDemandedOp only supports binary operators!");
533   assert(Op.getNode()->getNumValues() == 1 &&
534          "ShrinkDemandedOp only supports nodes with one result!");
535 
536   SelectionDAG &DAG = TLO.DAG;
537   SDLoc dl(Op);
538 
539   // Early return, as this function cannot handle vector types.
540   if (Op.getValueType().isVector())
541     return false;
542 
543   // Don't do this if the node has another user, which may require the
544   // full value.
545   if (!Op.getNode()->hasOneUse())
546     return false;
547 
548   // Search for the smallest integer type with free casts to and from
549   // Op's type. For expedience, just check power-of-2 integer types.
550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
551   unsigned DemandedSize = Demanded.getActiveBits();
552   unsigned SmallVTBits = DemandedSize;
553   if (!isPowerOf2_32(SmallVTBits))
554     SmallVTBits = NextPowerOf2(SmallVTBits);
555   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
556     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
557     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
558         TLI.isZExtFree(SmallVT, Op.getValueType())) {
559       // We found a type with free casts.
560       SDValue X = DAG.getNode(
561           Op.getOpcode(), dl, SmallVT,
562           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
563           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
564       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
565       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
566       return TLO.CombineTo(Op, Z);
567     }
568   }
569   return false;
570 }
571 
572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
573                                           DAGCombinerInfo &DCI) const {
574   SelectionDAG &DAG = DCI.DAG;
575   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
576                         !DCI.isBeforeLegalizeOps());
577   KnownBits Known;
578 
579   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
580   if (Simplified) {
581     DCI.AddToWorklist(Op.getNode());
582     DCI.CommitTargetLoweringOpt(TLO);
583   }
584   return Simplified;
585 }
586 
587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
588                                           KnownBits &Known,
589                                           TargetLoweringOpt &TLO,
590                                           unsigned Depth,
591                                           bool AssumeSingleUse) const {
592   EVT VT = Op.getValueType();
593   APInt DemandedElts = VT.isVector()
594                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
595                            : APInt(1, 1);
596   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
597                               AssumeSingleUse);
598 }
599 
600 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
601 // TODO: Under what circumstances can we create nodes? Constant folding?
602 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
603     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
604     SelectionDAG &DAG, unsigned Depth) const {
605   // Limit search depth.
606   if (Depth >= SelectionDAG::MaxRecursionDepth)
607     return SDValue();
608 
609   // Ignore UNDEFs.
610   if (Op.isUndef())
611     return SDValue();
612 
613   // Not demanding any bits/elts from Op.
614   if (DemandedBits == 0 || DemandedElts == 0)
615     return DAG.getUNDEF(Op.getValueType());
616 
617   unsigned NumElts = DemandedElts.getBitWidth();
618   KnownBits LHSKnown, RHSKnown;
619   switch (Op.getOpcode()) {
620   case ISD::BITCAST: {
621     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
622     EVT SrcVT = Src.getValueType();
623     EVT DstVT = Op.getValueType();
624     if (SrcVT == DstVT)
625       return Src;
626 
627     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
628     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
629     if (NumSrcEltBits == NumDstEltBits)
630       if (SDValue V = SimplifyMultipleUseDemandedBits(
631               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
632         return DAG.getBitcast(DstVT, V);
633 
634     // TODO - bigendian once we have test coverage.
635     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
636         DAG.getDataLayout().isLittleEndian()) {
637       unsigned Scale = NumDstEltBits / NumSrcEltBits;
638       unsigned NumSrcElts = SrcVT.getVectorNumElements();
639       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
640       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
641       for (unsigned i = 0; i != Scale; ++i) {
642         unsigned Offset = i * NumSrcEltBits;
643         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
644         if (!Sub.isNullValue()) {
645           DemandedSrcBits |= Sub;
646           for (unsigned j = 0; j != NumElts; ++j)
647             if (DemandedElts[j])
648               DemandedSrcElts.setBit((j * Scale) + i);
649         }
650       }
651 
652       if (SDValue V = SimplifyMultipleUseDemandedBits(
653               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
654         return DAG.getBitcast(DstVT, V);
655     }
656 
657     // TODO - bigendian once we have test coverage.
658     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumSrcEltBits / NumDstEltBits;
661       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != NumElts; ++i)
665         if (DemandedElts[i]) {
666           unsigned Offset = (i % Scale) * NumDstEltBits;
667           DemandedSrcBits.insertBits(DemandedBits, Offset);
668           DemandedSrcElts.setBit(i / Scale);
669         }
670 
671       if (SDValue V = SimplifyMultipleUseDemandedBits(
672               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
673         return DAG.getBitcast(DstVT, V);
674     }
675 
676     break;
677   }
678   case ISD::AND: {
679     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
680     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
681 
682     // If all of the demanded bits are known 1 on one side, return the other.
683     // These bits cannot contribute to the result of the 'and' in this
684     // context.
685     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
686       return Op.getOperand(0);
687     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
688       return Op.getOperand(1);
689     break;
690   }
691   case ISD::OR: {
692     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
693     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
694 
695     // If all of the demanded bits are known zero on one side, return the
696     // other.  These bits cannot contribute to the result of the 'or' in this
697     // context.
698     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
699       return Op.getOperand(0);
700     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
701       return Op.getOperand(1);
702     break;
703   }
704   case ISD::XOR: {
705     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
706     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
707 
708     // If all of the demanded bits are known zero on one side, return the
709     // other.
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
711       return Op.getOperand(0);
712     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
713       return Op.getOperand(1);
714     break;
715   }
716   case ISD::SETCC: {
717     SDValue Op0 = Op.getOperand(0);
718     SDValue Op1 = Op.getOperand(1);
719     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
720     // If (1) we only need the sign-bit, (2) the setcc operands are the same
721     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
722     // -1, we may be able to bypass the setcc.
723     if (DemandedBits.isSignMask() &&
724         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
725         getBooleanContents(Op0.getValueType()) ==
726             BooleanContent::ZeroOrNegativeOneBooleanContent) {
727       // If we're testing X < 0, then this compare isn't needed - just use X!
728       // FIXME: We're limiting to integer types here, but this should also work
729       // if we don't care about FP signed-zero. The use of SETLT with FP means
730       // that we don't care about NaNs.
731       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
732           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
733         return Op0;
734     }
735     break;
736   }
737   case ISD::SIGN_EXTEND_INREG: {
738     // If none of the extended bits are demanded, eliminate the sextinreg.
739     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
740     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
741       return Op.getOperand(0);
742     break;
743   }
744   case ISD::INSERT_VECTOR_ELT: {
745     // If we don't demand the inserted element, return the base vector.
746     SDValue Vec = Op.getOperand(0);
747     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
748     EVT VecVT = Vec.getValueType();
749     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
750         !DemandedElts[CIdx->getZExtValue()])
751       return Vec;
752     break;
753   }
754   case ISD::INSERT_SUBVECTOR: {
755     // If we don't demand the inserted subvector, return the base vector.
756     SDValue Vec = Op.getOperand(0);
757     SDValue Sub = Op.getOperand(1);
758     uint64_t Idx = Op.getConstantOperandVal(2);
759     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
760     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
761       return Vec;
762     break;
763   }
764   case ISD::VECTOR_SHUFFLE: {
765     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
766 
767     // If all the demanded elts are from one operand and are inline,
768     // then we can use the operand directly.
769     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
770     for (unsigned i = 0; i != NumElts; ++i) {
771       int M = ShuffleMask[i];
772       if (M < 0 || !DemandedElts[i])
773         continue;
774       AllUndef = false;
775       IdentityLHS &= (M == (int)i);
776       IdentityRHS &= ((M - NumElts) == i);
777     }
778 
779     if (AllUndef)
780       return DAG.getUNDEF(Op.getValueType());
781     if (IdentityLHS)
782       return Op.getOperand(0);
783     if (IdentityRHS)
784       return Op.getOperand(1);
785     break;
786   }
787   default:
788     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
789       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
790               Op, DemandedBits, DemandedElts, DAG, Depth))
791         return V;
792     break;
793   }
794   return SDValue();
795 }
796 
797 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
798     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
799     unsigned Depth) const {
800   EVT VT = Op.getValueType();
801   APInt DemandedElts = VT.isVector()
802                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
803                            : APInt(1, 1);
804   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
805                                          Depth);
806 }
807 
808 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
809 /// result of Op are ever used downstream. If we can use this information to
810 /// simplify Op, create a new simplified DAG node and return true, returning the
811 /// original and new nodes in Old and New. Otherwise, analyze the expression and
812 /// return a mask of Known bits for the expression (used to simplify the
813 /// caller).  The Known bits may only be accurate for those bits in the
814 /// OriginalDemandedBits and OriginalDemandedElts.
815 bool TargetLowering::SimplifyDemandedBits(
816     SDValue Op, const APInt &OriginalDemandedBits,
817     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
818     unsigned Depth, bool AssumeSingleUse) const {
819   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
820   assert(Op.getScalarValueSizeInBits() == BitWidth &&
821          "Mask size mismatches value type size!");
822 
823   unsigned NumElts = OriginalDemandedElts.getBitWidth();
824   assert((!Op.getValueType().isVector() ||
825           NumElts == Op.getValueType().getVectorNumElements()) &&
826          "Unexpected vector size");
827 
828   APInt DemandedBits = OriginalDemandedBits;
829   APInt DemandedElts = OriginalDemandedElts;
830   SDLoc dl(Op);
831   auto &DL = TLO.DAG.getDataLayout();
832 
833   // Don't know anything.
834   Known = KnownBits(BitWidth);
835 
836   // Undef operand.
837   if (Op.isUndef())
838     return false;
839 
840   if (Op.getOpcode() == ISD::Constant) {
841     // We know all of the bits for a constant!
842     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
843     Known.Zero = ~Known.One;
844     return false;
845   }
846 
847   // Other users may use these bits.
848   EVT VT = Op.getValueType();
849   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
850     if (Depth != 0) {
851       // If not at the root, Just compute the Known bits to
852       // simplify things downstream.
853       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
854       return false;
855     }
856     // If this is the root being simplified, allow it to have multiple uses,
857     // just set the DemandedBits/Elts to all bits.
858     DemandedBits = APInt::getAllOnesValue(BitWidth);
859     DemandedElts = APInt::getAllOnesValue(NumElts);
860   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
861     // Not demanding any bits/elts from Op.
862     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
863   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
864     // Limit search depth.
865     return false;
866   }
867 
868   KnownBits Known2;
869   switch (Op.getOpcode()) {
870   case ISD::TargetConstant:
871     llvm_unreachable("Can't simplify this node");
872   case ISD::SCALAR_TO_VECTOR: {
873     if (!DemandedElts[0])
874       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
875 
876     KnownBits SrcKnown;
877     SDValue Src = Op.getOperand(0);
878     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
879     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
880     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
881       return true;
882 
883     // Upper elements are undef, so only get the knownbits if we just demand
884     // the bottom element.
885     if (DemandedElts == 1)
886       Known = SrcKnown.anyextOrTrunc(BitWidth);
887     break;
888   }
889   case ISD::BUILD_VECTOR:
890     // Collect the known bits that are shared by every demanded element.
891     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
892     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
893     return false; // Don't fall through, will infinitely loop.
894   case ISD::LOAD: {
895     LoadSDNode *LD = cast<LoadSDNode>(Op);
896     if (getTargetConstantFromLoad(LD)) {
897       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
898       return false; // Don't fall through, will infinitely loop.
899     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
900       // If this is a ZEXTLoad and we are looking at the loaded value.
901       EVT MemVT = LD->getMemoryVT();
902       unsigned MemBits = MemVT.getScalarSizeInBits();
903       Known.Zero.setBitsFrom(MemBits);
904       return false; // Don't fall through, will infinitely loop.
905     }
906     break;
907   }
908   case ISD::INSERT_VECTOR_ELT: {
909     SDValue Vec = Op.getOperand(0);
910     SDValue Scl = Op.getOperand(1);
911     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
912     EVT VecVT = Vec.getValueType();
913 
914     // If index isn't constant, assume we need all vector elements AND the
915     // inserted element.
916     APInt DemandedVecElts(DemandedElts);
917     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
918       unsigned Idx = CIdx->getZExtValue();
919       DemandedVecElts.clearBit(Idx);
920 
921       // Inserted element is not required.
922       if (!DemandedElts[Idx])
923         return TLO.CombineTo(Op, Vec);
924     }
925 
926     KnownBits KnownScl;
927     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
928     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
929     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
930       return true;
931 
932     Known = KnownScl.anyextOrTrunc(BitWidth);
933 
934     KnownBits KnownVec;
935     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
936                              Depth + 1))
937       return true;
938 
939     if (!!DemandedVecElts) {
940       Known.One &= KnownVec.One;
941       Known.Zero &= KnownVec.Zero;
942     }
943 
944     return false;
945   }
946   case ISD::INSERT_SUBVECTOR: {
947     // Demand any elements from the subvector and the remainder from the src its
948     // inserted into.
949     SDValue Src = Op.getOperand(0);
950     SDValue Sub = Op.getOperand(1);
951     uint64_t Idx = Op.getConstantOperandVal(2);
952     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
953     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
954     APInt DemandedSrcElts = DemandedElts;
955     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
956 
957     KnownBits KnownSub, KnownSrc;
958     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
959                              Depth + 1))
960       return true;
961     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
962                              Depth + 1))
963       return true;
964 
965     Known.Zero.setAllBits();
966     Known.One.setAllBits();
967     if (!!DemandedSubElts) {
968       Known.One &= KnownSub.One;
969       Known.Zero &= KnownSub.Zero;
970     }
971     if (!!DemandedSrcElts) {
972       Known.One &= KnownSrc.One;
973       Known.Zero &= KnownSrc.Zero;
974     }
975 
976     // Attempt to avoid multi-use src if we don't need anything from it.
977     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
978         !DemandedSrcElts.isAllOnesValue()) {
979       SDValue NewSub = SimplifyMultipleUseDemandedBits(
980           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
981       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
982           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
983       if (NewSub || NewSrc) {
984         NewSub = NewSub ? NewSub : Sub;
985         NewSrc = NewSrc ? NewSrc : Src;
986         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
987                                         Op.getOperand(2));
988         return TLO.CombineTo(Op, NewOp);
989       }
990     }
991     break;
992   }
993   case ISD::EXTRACT_SUBVECTOR: {
994     // Offset the demanded elts by the subvector index.
995     SDValue Src = Op.getOperand(0);
996     uint64_t Idx = Op.getConstantOperandVal(1);
997     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
998     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
999 
1000     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1001                              Depth + 1))
1002       return true;
1003 
1004     // Attempt to avoid multi-use src if we don't need anything from it.
1005     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1006       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1007           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1008       if (DemandedSrc) {
1009         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1010                                         Op.getOperand(1));
1011         return TLO.CombineTo(Op, NewOp);
1012       }
1013     }
1014     break;
1015   }
1016   case ISD::CONCAT_VECTORS: {
1017     Known.Zero.setAllBits();
1018     Known.One.setAllBits();
1019     EVT SubVT = Op.getOperand(0).getValueType();
1020     unsigned NumSubVecs = Op.getNumOperands();
1021     unsigned NumSubElts = SubVT.getVectorNumElements();
1022     for (unsigned i = 0; i != NumSubVecs; ++i) {
1023       APInt DemandedSubElts =
1024           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1025       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1026                                Known2, TLO, Depth + 1))
1027         return true;
1028       // Known bits are shared by every demanded subvector element.
1029       if (!!DemandedSubElts) {
1030         Known.One &= Known2.One;
1031         Known.Zero &= Known2.Zero;
1032       }
1033     }
1034     break;
1035   }
1036   case ISD::VECTOR_SHUFFLE: {
1037     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1038 
1039     // Collect demanded elements from shuffle operands..
1040     APInt DemandedLHS(NumElts, 0);
1041     APInt DemandedRHS(NumElts, 0);
1042     for (unsigned i = 0; i != NumElts; ++i) {
1043       if (!DemandedElts[i])
1044         continue;
1045       int M = ShuffleMask[i];
1046       if (M < 0) {
1047         // For UNDEF elements, we don't know anything about the common state of
1048         // the shuffle result.
1049         DemandedLHS.clearAllBits();
1050         DemandedRHS.clearAllBits();
1051         break;
1052       }
1053       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1054       if (M < (int)NumElts)
1055         DemandedLHS.setBit(M);
1056       else
1057         DemandedRHS.setBit(M - NumElts);
1058     }
1059 
1060     if (!!DemandedLHS || !!DemandedRHS) {
1061       SDValue Op0 = Op.getOperand(0);
1062       SDValue Op1 = Op.getOperand(1);
1063 
1064       Known.Zero.setAllBits();
1065       Known.One.setAllBits();
1066       if (!!DemandedLHS) {
1067         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1068                                  Depth + 1))
1069           return true;
1070         Known.One &= Known2.One;
1071         Known.Zero &= Known2.Zero;
1072       }
1073       if (!!DemandedRHS) {
1074         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080 
1081       // Attempt to avoid multi-use ops if we don't need anything from them.
1082       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1083           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1084       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1085           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1086       if (DemandedOp0 || DemandedOp1) {
1087         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1088         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1089         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1090         return TLO.CombineTo(Op, NewOp);
1091       }
1092     }
1093     break;
1094   }
1095   case ISD::AND: {
1096     SDValue Op0 = Op.getOperand(0);
1097     SDValue Op1 = Op.getOperand(1);
1098 
1099     // If the RHS is a constant, check to see if the LHS would be zero without
1100     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1101     // simplify the LHS, here we're using information from the LHS to simplify
1102     // the RHS.
1103     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1104       // Do not increment Depth here; that can cause an infinite loop.
1105       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1106       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1107       if ((LHSKnown.Zero & DemandedBits) ==
1108           (~RHSC->getAPIntValue() & DemandedBits))
1109         return TLO.CombineTo(Op, Op0);
1110 
1111       // If any of the set bits in the RHS are known zero on the LHS, shrink
1112       // the constant.
1113       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1114         return true;
1115 
1116       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1117       // constant, but if this 'and' is only clearing bits that were just set by
1118       // the xor, then this 'and' can be eliminated by shrinking the mask of
1119       // the xor. For example, for a 32-bit X:
1120       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1121       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1122           LHSKnown.One == ~RHSC->getAPIntValue()) {
1123         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1124         return TLO.CombineTo(Op, Xor);
1125       }
1126     }
1127 
1128     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1129                              Depth + 1))
1130       return true;
1131     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1132     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1133                              Known2, TLO, Depth + 1))
1134       return true;
1135     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1136 
1137     // Attempt to avoid multi-use ops if we don't need anything from them.
1138     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1139       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1140           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1141       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1142           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1143       if (DemandedOp0 || DemandedOp1) {
1144         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1145         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1146         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1147         return TLO.CombineTo(Op, NewOp);
1148       }
1149     }
1150 
1151     // If all of the demanded bits are known one on one side, return the other.
1152     // These bits cannot contribute to the result of the 'and'.
1153     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1154       return TLO.CombineTo(Op, Op0);
1155     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1156       return TLO.CombineTo(Op, Op1);
1157     // If all of the demanded bits in the inputs are known zeros, return zero.
1158     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1159       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1160     // If the RHS is a constant, see if we can simplify it.
1161     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1162       return true;
1163     // If the operation can be done in a smaller type, do so.
1164     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1165       return true;
1166 
1167     Known &= Known2;
1168     break;
1169   }
1170   case ISD::OR: {
1171     SDValue Op0 = Op.getOperand(0);
1172     SDValue Op1 = Op.getOperand(1);
1173 
1174     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1175                              Depth + 1))
1176       return true;
1177     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1178     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1179                              Known2, TLO, Depth + 1))
1180       return true;
1181     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1182 
1183     // Attempt to avoid multi-use ops if we don't need anything from them.
1184     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1185       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1186           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1187       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1188           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1189       if (DemandedOp0 || DemandedOp1) {
1190         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1191         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1192         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1193         return TLO.CombineTo(Op, NewOp);
1194       }
1195     }
1196 
1197     // If all of the demanded bits are known zero on one side, return the other.
1198     // These bits cannot contribute to the result of the 'or'.
1199     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1200       return TLO.CombineTo(Op, Op0);
1201     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1202       return TLO.CombineTo(Op, Op1);
1203     // If the RHS is a constant, see if we can simplify it.
1204     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1205       return true;
1206     // If the operation can be done in a smaller type, do so.
1207     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1208       return true;
1209 
1210     Known |= Known2;
1211     break;
1212   }
1213   case ISD::XOR: {
1214     SDValue Op0 = Op.getOperand(0);
1215     SDValue Op1 = Op.getOperand(1);
1216 
1217     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1218                              Depth + 1))
1219       return true;
1220     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1221     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1222                              Depth + 1))
1223       return true;
1224     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1225 
1226     // Attempt to avoid multi-use ops if we don't need anything from them.
1227     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1228       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1229           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1230       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1231           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1232       if (DemandedOp0 || DemandedOp1) {
1233         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1234         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1235         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1236         return TLO.CombineTo(Op, NewOp);
1237       }
1238     }
1239 
1240     // If all of the demanded bits are known zero on one side, return the other.
1241     // These bits cannot contribute to the result of the 'xor'.
1242     if (DemandedBits.isSubsetOf(Known.Zero))
1243       return TLO.CombineTo(Op, Op0);
1244     if (DemandedBits.isSubsetOf(Known2.Zero))
1245       return TLO.CombineTo(Op, Op1);
1246     // If the operation can be done in a smaller type, do so.
1247     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1248       return true;
1249 
1250     // If all of the unknown bits are known to be zero on one side or the other
1251     // (but not both) turn this into an *inclusive* or.
1252     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1253     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1254       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1255 
1256     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1257       // If one side is a constant, and all of the known set bits on the other
1258       // side are also set in the constant, turn this into an AND, as we know
1259       // the bits will be cleared.
1260       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1261       // NB: it is okay if more bits are known than are requested
1262       if (C->getAPIntValue() == Known2.One) {
1263         SDValue ANDC =
1264             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1265         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1266       }
1267 
1268       // If the RHS is a constant, see if we can change it. Don't alter a -1
1269       // constant because that's a 'not' op, and that is better for combining
1270       // and codegen.
1271       if (!C->isAllOnesValue()) {
1272         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1273           // We're flipping all demanded bits. Flip the undemanded bits too.
1274           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1275           return TLO.CombineTo(Op, New);
1276         }
1277         // If we can't turn this into a 'not', try to shrink the constant.
1278         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1279           return true;
1280       }
1281     }
1282 
1283     Known ^= Known2;
1284     break;
1285   }
1286   case ISD::SELECT:
1287     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1288                              Depth + 1))
1289       return true;
1290     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1291                              Depth + 1))
1292       return true;
1293     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1294     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1295 
1296     // If the operands are constants, see if we can simplify them.
1297     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1298       return true;
1299 
1300     // Only known if known in both the LHS and RHS.
1301     Known.One &= Known2.One;
1302     Known.Zero &= Known2.Zero;
1303     break;
1304   case ISD::SELECT_CC:
1305     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1306                              Depth + 1))
1307       return true;
1308     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1313 
1314     // If the operands are constants, see if we can simplify them.
1315     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1316       return true;
1317 
1318     // Only known if known in both the LHS and RHS.
1319     Known.One &= Known2.One;
1320     Known.Zero &= Known2.Zero;
1321     break;
1322   case ISD::SETCC: {
1323     SDValue Op0 = Op.getOperand(0);
1324     SDValue Op1 = Op.getOperand(1);
1325     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1326     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1327     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1328     // -1, we may be able to bypass the setcc.
1329     if (DemandedBits.isSignMask() &&
1330         Op0.getScalarValueSizeInBits() == BitWidth &&
1331         getBooleanContents(Op0.getValueType()) ==
1332             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1333       // If we're testing X < 0, then this compare isn't needed - just use X!
1334       // FIXME: We're limiting to integer types here, but this should also work
1335       // if we don't care about FP signed-zero. The use of SETLT with FP means
1336       // that we don't care about NaNs.
1337       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1338           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1339         return TLO.CombineTo(Op, Op0);
1340 
1341       // TODO: Should we check for other forms of sign-bit comparisons?
1342       // Examples: X <= -1, X >= 0
1343     }
1344     if (getBooleanContents(Op0.getValueType()) ==
1345             TargetLowering::ZeroOrOneBooleanContent &&
1346         BitWidth > 1)
1347       Known.Zero.setBitsFrom(1);
1348     break;
1349   }
1350   case ISD::SHL: {
1351     SDValue Op0 = Op.getOperand(0);
1352     SDValue Op1 = Op.getOperand(1);
1353     EVT ShiftVT = Op1.getValueType();
1354 
1355     if (const APInt *SA =
1356             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1357       unsigned ShAmt = SA->getZExtValue();
1358       if (ShAmt == 0)
1359         return TLO.CombineTo(Op, Op0);
1360 
1361       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1362       // single shift.  We can do this if the bottom bits (which are shifted
1363       // out) are never demanded.
1364       // TODO - support non-uniform vector amounts.
1365       if (Op0.getOpcode() == ISD::SRL) {
1366         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1367           if (const APInt *SA2 =
1368                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1369             if (SA2->ult(BitWidth)) {
1370               unsigned C1 = SA2->getZExtValue();
1371               unsigned Opc = ISD::SHL;
1372               int Diff = ShAmt - C1;
1373               if (Diff < 0) {
1374                 Diff = -Diff;
1375                 Opc = ISD::SRL;
1376               }
1377 
1378               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1379               return TLO.CombineTo(
1380                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1381             }
1382           }
1383         }
1384       }
1385 
1386       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1387       // are not demanded. This will likely allow the anyext to be folded away.
1388       // TODO - support non-uniform vector amounts.
1389       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1390         SDValue InnerOp = Op0.getOperand(0);
1391         EVT InnerVT = InnerOp.getValueType();
1392         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1393         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1394             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1395           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1396           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1397             ShTy = InnerVT;
1398           SDValue NarrowShl =
1399               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1400                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1401           return TLO.CombineTo(
1402               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1403         }
1404 
1405         // Repeat the SHL optimization above in cases where an extension
1406         // intervenes: (shl (anyext (shr x, c1)), c2) to
1407         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1408         // aren't demanded (as above) and that the shifted upper c1 bits of
1409         // x aren't demanded.
1410         // TODO - support non-uniform vector amounts.
1411         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1412             InnerOp.hasOneUse()) {
1413           if (const APInt *SA2 =
1414                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1415             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1416             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1417                 DemandedBits.getActiveBits() <=
1418                     (InnerBits - InnerShAmt + ShAmt) &&
1419                 DemandedBits.countTrailingZeros() >= ShAmt) {
1420               SDValue NewSA =
1421                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1422               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1423                                                InnerOp.getOperand(0));
1424               return TLO.CombineTo(
1425                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1426             }
1427           }
1428         }
1429       }
1430 
1431       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1432       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1433                                Depth + 1))
1434         return true;
1435       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1436       Known.Zero <<= ShAmt;
1437       Known.One <<= ShAmt;
1438       // low bits known zero.
1439       Known.Zero.setLowBits(ShAmt);
1440 
1441       // Try shrinking the operation as long as the shift amount will still be
1442       // in range.
1443       if ((ShAmt < DemandedBits.getActiveBits()) &&
1444           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1445         return true;
1446     }
1447     break;
1448   }
1449   case ISD::SRL: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452     EVT ShiftVT = Op1.getValueType();
1453 
1454     if (const APInt *SA =
1455             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1456       unsigned ShAmt = SA->getZExtValue();
1457       if (ShAmt == 0)
1458         return TLO.CombineTo(Op, Op0);
1459 
1460       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1461       // single shift.  We can do this if the top bits (which are shifted out)
1462       // are never demanded.
1463       // TODO - support non-uniform vector amounts.
1464       if (Op0.getOpcode() == ISD::SHL) {
1465         if (const APInt *SA2 =
1466                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1467           if (!DemandedBits.intersects(
1468                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1469             if (SA2->ult(BitWidth)) {
1470               unsigned C1 = SA2->getZExtValue();
1471               unsigned Opc = ISD::SRL;
1472               int Diff = ShAmt - C1;
1473               if (Diff < 0) {
1474                 Diff = -Diff;
1475                 Opc = ISD::SHL;
1476               }
1477 
1478               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1479               return TLO.CombineTo(
1480                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1481             }
1482           }
1483         }
1484       }
1485 
1486       APInt InDemandedMask = (DemandedBits << ShAmt);
1487 
1488       // If the shift is exact, then it does demand the low bits (and knows that
1489       // they are zero).
1490       if (Op->getFlags().hasExact())
1491         InDemandedMask.setLowBits(ShAmt);
1492 
1493       // Compute the new bits that are at the top now.
1494       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1495                                Depth + 1))
1496         return true;
1497       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1498       Known.Zero.lshrInPlace(ShAmt);
1499       Known.One.lshrInPlace(ShAmt);
1500       // High bits known zero.
1501       Known.Zero.setHighBits(ShAmt);
1502     }
1503     break;
1504   }
1505   case ISD::SRA: {
1506     SDValue Op0 = Op.getOperand(0);
1507     SDValue Op1 = Op.getOperand(1);
1508     EVT ShiftVT = Op1.getValueType();
1509 
1510     // If we only want bits that already match the signbit then we don't need
1511     // to shift.
1512     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1513     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1514         NumHiDemandedBits)
1515       return TLO.CombineTo(Op, Op0);
1516 
1517     // If this is an arithmetic shift right and only the low-bit is set, we can
1518     // always convert this into a logical shr, even if the shift amount is
1519     // variable.  The low bit of the shift cannot be an input sign bit unless
1520     // the shift amount is >= the size of the datatype, which is undefined.
1521     if (DemandedBits.isOneValue())
1522       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1523 
1524     if (const APInt *SA =
1525             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1526       unsigned ShAmt = SA->getZExtValue();
1527       if (ShAmt == 0)
1528         return TLO.CombineTo(Op, Op0);
1529 
1530       APInt InDemandedMask = (DemandedBits << ShAmt);
1531 
1532       // If the shift is exact, then it does demand the low bits (and knows that
1533       // they are zero).
1534       if (Op->getFlags().hasExact())
1535         InDemandedMask.setLowBits(ShAmt);
1536 
1537       // If any of the demanded bits are produced by the sign extension, we also
1538       // demand the input sign bit.
1539       if (DemandedBits.countLeadingZeros() < ShAmt)
1540         InDemandedMask.setSignBit();
1541 
1542       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1543                                Depth + 1))
1544         return true;
1545       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1546       Known.Zero.lshrInPlace(ShAmt);
1547       Known.One.lshrInPlace(ShAmt);
1548 
1549       // If the input sign bit is known to be zero, or if none of the top bits
1550       // are demanded, turn this into an unsigned shift right.
1551       if (Known.Zero[BitWidth - ShAmt - 1] ||
1552           DemandedBits.countLeadingZeros() >= ShAmt) {
1553         SDNodeFlags Flags;
1554         Flags.setExact(Op->getFlags().hasExact());
1555         return TLO.CombineTo(
1556             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1557       }
1558 
1559       int Log2 = DemandedBits.exactLogBase2();
1560       if (Log2 >= 0) {
1561         // The bit must come from the sign.
1562         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1563         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1564       }
1565 
1566       if (Known.One[BitWidth - ShAmt - 1])
1567         // New bits are known one.
1568         Known.One.setHighBits(ShAmt);
1569 
1570       // Attempt to avoid multi-use ops if we don't need anything from them.
1571       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1572         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1573             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1574         if (DemandedOp0) {
1575           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1576           return TLO.CombineTo(Op, NewOp);
1577         }
1578       }
1579     }
1580     break;
1581   }
1582   case ISD::FSHL:
1583   case ISD::FSHR: {
1584     SDValue Op0 = Op.getOperand(0);
1585     SDValue Op1 = Op.getOperand(1);
1586     SDValue Op2 = Op.getOperand(2);
1587     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1588 
1589     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1590       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1591 
1592       // For fshl, 0-shift returns the 1st arg.
1593       // For fshr, 0-shift returns the 2nd arg.
1594       if (Amt == 0) {
1595         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1596                                  Known, TLO, Depth + 1))
1597           return true;
1598         break;
1599       }
1600 
1601       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1602       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1603       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1604       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1605       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1606                                Depth + 1))
1607         return true;
1608       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1609                                Depth + 1))
1610         return true;
1611 
1612       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1613       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1614       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1615       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1616       Known.One |= Known2.One;
1617       Known.Zero |= Known2.Zero;
1618     }
1619 
1620     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1621     if (isPowerOf2_32(BitWidth)) {
1622       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1623       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1624                                Known2, TLO, Depth + 1))
1625         return true;
1626     }
1627     break;
1628   }
1629   case ISD::ROTL:
1630   case ISD::ROTR: {
1631     SDValue Op0 = Op.getOperand(0);
1632     SDValue Op1 = Op.getOperand(1);
1633 
1634     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1635     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1636       return TLO.CombineTo(Op, Op0);
1637 
1638     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1639     if (isPowerOf2_32(BitWidth)) {
1640       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1641       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1642                                Depth + 1))
1643         return true;
1644     }
1645     break;
1646   }
1647   case ISD::BITREVERSE: {
1648     SDValue Src = Op.getOperand(0);
1649     APInt DemandedSrcBits = DemandedBits.reverseBits();
1650     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1651                              Depth + 1))
1652       return true;
1653     Known.One = Known2.One.reverseBits();
1654     Known.Zero = Known2.Zero.reverseBits();
1655     break;
1656   }
1657   case ISD::BSWAP: {
1658     SDValue Src = Op.getOperand(0);
1659     APInt DemandedSrcBits = DemandedBits.byteSwap();
1660     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1661                              Depth + 1))
1662       return true;
1663     Known.One = Known2.One.byteSwap();
1664     Known.Zero = Known2.Zero.byteSwap();
1665     break;
1666   }
1667   case ISD::SIGN_EXTEND_INREG: {
1668     SDValue Op0 = Op.getOperand(0);
1669     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1670     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1671 
1672     // If we only care about the highest bit, don't bother shifting right.
1673     if (DemandedBits.isSignMask()) {
1674       unsigned NumSignBits =
1675           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1676       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1677       // However if the input is already sign extended we expect the sign
1678       // extension to be dropped altogether later and do not simplify.
1679       if (!AlreadySignExtended) {
1680         // Compute the correct shift amount type, which must be getShiftAmountTy
1681         // for scalar types after legalization.
1682         EVT ShiftAmtTy = VT;
1683         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1684           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1685 
1686         SDValue ShiftAmt =
1687             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1688         return TLO.CombineTo(Op,
1689                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1690       }
1691     }
1692 
1693     // If none of the extended bits are demanded, eliminate the sextinreg.
1694     if (DemandedBits.getActiveBits() <= ExVTBits)
1695       return TLO.CombineTo(Op, Op0);
1696 
1697     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1698 
1699     // Since the sign extended bits are demanded, we know that the sign
1700     // bit is demanded.
1701     InputDemandedBits.setBit(ExVTBits - 1);
1702 
1703     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1704       return true;
1705     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1706 
1707     // If the sign bit of the input is known set or clear, then we know the
1708     // top bits of the result.
1709 
1710     // If the input sign bit is known zero, convert this into a zero extension.
1711     if (Known.Zero[ExVTBits - 1])
1712       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1713 
1714     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1715     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1716       Known.One.setBitsFrom(ExVTBits);
1717       Known.Zero &= Mask;
1718     } else { // Input sign bit unknown
1719       Known.Zero &= Mask;
1720       Known.One &= Mask;
1721     }
1722     break;
1723   }
1724   case ISD::BUILD_PAIR: {
1725     EVT HalfVT = Op.getOperand(0).getValueType();
1726     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1727 
1728     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1729     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1730 
1731     KnownBits KnownLo, KnownHi;
1732 
1733     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1734       return true;
1735 
1736     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1737       return true;
1738 
1739     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1740                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1741 
1742     Known.One = KnownLo.One.zext(BitWidth) |
1743                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1744     break;
1745   }
1746   case ISD::ZERO_EXTEND:
1747   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1748     SDValue Src = Op.getOperand(0);
1749     EVT SrcVT = Src.getValueType();
1750     unsigned InBits = SrcVT.getScalarSizeInBits();
1751     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1752     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1753 
1754     // If none of the top bits are demanded, convert this into an any_extend.
1755     if (DemandedBits.getActiveBits() <= InBits) {
1756       // If we only need the non-extended bits of the bottom element
1757       // then we can just bitcast to the result.
1758       if (IsVecInReg && DemandedElts == 1 &&
1759           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1760           TLO.DAG.getDataLayout().isLittleEndian())
1761         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1762 
1763       unsigned Opc =
1764           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1765       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1766         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1767     }
1768 
1769     APInt InDemandedBits = DemandedBits.trunc(InBits);
1770     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1771     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1772                              Depth + 1))
1773       return true;
1774     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1775     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1776     Known = Known.zext(BitWidth);
1777     break;
1778   }
1779   case ISD::SIGN_EXTEND:
1780   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1781     SDValue Src = Op.getOperand(0);
1782     EVT SrcVT = Src.getValueType();
1783     unsigned InBits = SrcVT.getScalarSizeInBits();
1784     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1785     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1786 
1787     // If none of the top bits are demanded, convert this into an any_extend.
1788     if (DemandedBits.getActiveBits() <= InBits) {
1789       // If we only need the non-extended bits of the bottom element
1790       // then we can just bitcast to the result.
1791       if (IsVecInReg && DemandedElts == 1 &&
1792           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1793           TLO.DAG.getDataLayout().isLittleEndian())
1794         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1795 
1796       unsigned Opc =
1797           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1798       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1799         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1800     }
1801 
1802     APInt InDemandedBits = DemandedBits.trunc(InBits);
1803     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1804 
1805     // Since some of the sign extended bits are demanded, we know that the sign
1806     // bit is demanded.
1807     InDemandedBits.setBit(InBits - 1);
1808 
1809     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1810                              Depth + 1))
1811       return true;
1812     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1813     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1814 
1815     // If the sign bit is known one, the top bits match.
1816     Known = Known.sext(BitWidth);
1817 
1818     // If the sign bit is known zero, convert this to a zero extend.
1819     if (Known.isNonNegative()) {
1820       unsigned Opc =
1821           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1822       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1823         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1824     }
1825     break;
1826   }
1827   case ISD::ANY_EXTEND:
1828   case ISD::ANY_EXTEND_VECTOR_INREG: {
1829     SDValue Src = Op.getOperand(0);
1830     EVT SrcVT = Src.getValueType();
1831     unsigned InBits = SrcVT.getScalarSizeInBits();
1832     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1833     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1834 
1835     // If we only need the bottom element then we can just bitcast.
1836     // TODO: Handle ANY_EXTEND?
1837     if (IsVecInReg && DemandedElts == 1 &&
1838         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1839         TLO.DAG.getDataLayout().isLittleEndian())
1840       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1841 
1842     APInt InDemandedBits = DemandedBits.trunc(InBits);
1843     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1844     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1845                              Depth + 1))
1846       return true;
1847     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1848     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1849     Known = Known.anyext(BitWidth);
1850 
1851     // Attempt to avoid multi-use ops if we don't need anything from them.
1852     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1853             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1854       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1855     break;
1856   }
1857   case ISD::TRUNCATE: {
1858     SDValue Src = Op.getOperand(0);
1859 
1860     // Simplify the input, using demanded bit information, and compute the known
1861     // zero/one bits live out.
1862     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1863     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1864     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1865       return true;
1866     Known = Known.trunc(BitWidth);
1867 
1868     // Attempt to avoid multi-use ops if we don't need anything from them.
1869     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1870             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1871       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1872 
1873     // If the input is only used by this truncate, see if we can shrink it based
1874     // on the known demanded bits.
1875     if (Src.getNode()->hasOneUse()) {
1876       switch (Src.getOpcode()) {
1877       default:
1878         break;
1879       case ISD::SRL:
1880         // Shrink SRL by a constant if none of the high bits shifted in are
1881         // demanded.
1882         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1883           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1884           // undesirable.
1885           break;
1886 
1887         SDValue ShAmt = Src.getOperand(1);
1888         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1889         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1890           break;
1891         uint64_t ShVal = ShAmtC->getZExtValue();
1892 
1893         APInt HighBits =
1894             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1895         HighBits.lshrInPlace(ShVal);
1896         HighBits = HighBits.trunc(BitWidth);
1897 
1898         if (!(HighBits & DemandedBits)) {
1899           // None of the shifted in bits are needed.  Add a truncate of the
1900           // shift input, then shift it.
1901           if (TLO.LegalTypes())
1902             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1903           SDValue NewTrunc =
1904               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1905           return TLO.CombineTo(
1906               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1907         }
1908         break;
1909       }
1910     }
1911 
1912     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1913     break;
1914   }
1915   case ISD::AssertZext: {
1916     // AssertZext demands all of the high bits, plus any of the low bits
1917     // demanded by its users.
1918     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1919     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1920     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1921                              TLO, Depth + 1))
1922       return true;
1923     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1924 
1925     Known.Zero |= ~InMask;
1926     break;
1927   }
1928   case ISD::EXTRACT_VECTOR_ELT: {
1929     SDValue Src = Op.getOperand(0);
1930     SDValue Idx = Op.getOperand(1);
1931     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1932     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1933 
1934     // Demand the bits from every vector element without a constant index.
1935     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1936     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1937       if (CIdx->getAPIntValue().ult(NumSrcElts))
1938         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1939 
1940     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1941     // anything about the extended bits.
1942     APInt DemandedSrcBits = DemandedBits;
1943     if (BitWidth > EltBitWidth)
1944       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1945 
1946     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1947                              Depth + 1))
1948       return true;
1949 
1950     // Attempt to avoid multi-use ops if we don't need anything from them.
1951     if (!DemandedSrcBits.isAllOnesValue() ||
1952         !DemandedSrcElts.isAllOnesValue()) {
1953       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1954               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1955         SDValue NewOp =
1956             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1957         return TLO.CombineTo(Op, NewOp);
1958       }
1959     }
1960 
1961     Known = Known2;
1962     if (BitWidth > EltBitWidth)
1963       Known = Known.anyext(BitWidth);
1964     break;
1965   }
1966   case ISD::BITCAST: {
1967     SDValue Src = Op.getOperand(0);
1968     EVT SrcVT = Src.getValueType();
1969     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1970 
1971     // If this is an FP->Int bitcast and if the sign bit is the only
1972     // thing demanded, turn this into a FGETSIGN.
1973     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1974         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1975         SrcVT.isFloatingPoint()) {
1976       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1977       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1978       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1979           SrcVT != MVT::f128) {
1980         // Cannot eliminate/lower SHL for f128 yet.
1981         EVT Ty = OpVTLegal ? VT : MVT::i32;
1982         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1983         // place.  We expect the SHL to be eliminated by other optimizations.
1984         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1985         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1986         if (!OpVTLegal && OpVTSizeInBits > 32)
1987           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1988         unsigned ShVal = Op.getValueSizeInBits() - 1;
1989         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1990         return TLO.CombineTo(Op,
1991                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1992       }
1993     }
1994 
1995     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1996     // Demand the elt/bit if any of the original elts/bits are demanded.
1997     // TODO - bigendian once we have test coverage.
1998     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1999         TLO.DAG.getDataLayout().isLittleEndian()) {
2000       unsigned Scale = BitWidth / NumSrcEltBits;
2001       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2002       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2003       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2004       for (unsigned i = 0; i != Scale; ++i) {
2005         unsigned Offset = i * NumSrcEltBits;
2006         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2007         if (!Sub.isNullValue()) {
2008           DemandedSrcBits |= Sub;
2009           for (unsigned j = 0; j != NumElts; ++j)
2010             if (DemandedElts[j])
2011               DemandedSrcElts.setBit((j * Scale) + i);
2012         }
2013       }
2014 
2015       APInt KnownSrcUndef, KnownSrcZero;
2016       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2017                                      KnownSrcZero, TLO, Depth + 1))
2018         return true;
2019 
2020       KnownBits KnownSrcBits;
2021       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2022                                KnownSrcBits, TLO, Depth + 1))
2023         return true;
2024     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2025                TLO.DAG.getDataLayout().isLittleEndian()) {
2026       unsigned Scale = NumSrcEltBits / BitWidth;
2027       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2028       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2029       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2030       for (unsigned i = 0; i != NumElts; ++i)
2031         if (DemandedElts[i]) {
2032           unsigned Offset = (i % Scale) * BitWidth;
2033           DemandedSrcBits.insertBits(DemandedBits, Offset);
2034           DemandedSrcElts.setBit(i / Scale);
2035         }
2036 
2037       if (SrcVT.isVector()) {
2038         APInt KnownSrcUndef, KnownSrcZero;
2039         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2040                                        KnownSrcZero, TLO, Depth + 1))
2041           return true;
2042       }
2043 
2044       KnownBits KnownSrcBits;
2045       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2046                                KnownSrcBits, TLO, Depth + 1))
2047         return true;
2048     }
2049 
2050     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2051     // recursive call where Known may be useful to the caller.
2052     if (Depth > 0) {
2053       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2054       return false;
2055     }
2056     break;
2057   }
2058   case ISD::ADD:
2059   case ISD::MUL:
2060   case ISD::SUB: {
2061     // Add, Sub, and Mul don't demand any bits in positions beyond that
2062     // of the highest bit demanded of them.
2063     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2064     SDNodeFlags Flags = Op.getNode()->getFlags();
2065     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2066     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2067     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2068                              Depth + 1) ||
2069         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2070                              Depth + 1) ||
2071         // See if the operation should be performed at a smaller bit width.
2072         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2073       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2074         // Disable the nsw and nuw flags. We can no longer guarantee that we
2075         // won't wrap after simplification.
2076         Flags.setNoSignedWrap(false);
2077         Flags.setNoUnsignedWrap(false);
2078         SDValue NewOp =
2079             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2080         return TLO.CombineTo(Op, NewOp);
2081       }
2082       return true;
2083     }
2084 
2085     // Attempt to avoid multi-use ops if we don't need anything from them.
2086     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2087       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2088           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2089       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2090           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2091       if (DemandedOp0 || DemandedOp1) {
2092         Flags.setNoSignedWrap(false);
2093         Flags.setNoUnsignedWrap(false);
2094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2096         SDValue NewOp =
2097             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2098         return TLO.CombineTo(Op, NewOp);
2099       }
2100     }
2101 
2102     // If we have a constant operand, we may be able to turn it into -1 if we
2103     // do not demand the high bits. This can make the constant smaller to
2104     // encode, allow more general folding, or match specialized instruction
2105     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2106     // is probably not useful (and could be detrimental).
2107     ConstantSDNode *C = isConstOrConstSplat(Op1);
2108     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2109     if (C && !C->isAllOnesValue() && !C->isOne() &&
2110         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2111       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2112       // Disable the nsw and nuw flags. We can no longer guarantee that we
2113       // won't wrap after simplification.
2114       Flags.setNoSignedWrap(false);
2115       Flags.setNoUnsignedWrap(false);
2116       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2117       return TLO.CombineTo(Op, NewOp);
2118     }
2119 
2120     LLVM_FALLTHROUGH;
2121   }
2122   default:
2123     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2124       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2125                                             Known, TLO, Depth))
2126         return true;
2127       break;
2128     }
2129 
2130     // Just use computeKnownBits to compute output bits.
2131     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2132     break;
2133   }
2134 
2135   // If we know the value of all of the demanded bits, return this as a
2136   // constant.
2137   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2138     // Avoid folding to a constant if any OpaqueConstant is involved.
2139     const SDNode *N = Op.getNode();
2140     for (SDNodeIterator I = SDNodeIterator::begin(N),
2141                         E = SDNodeIterator::end(N);
2142          I != E; ++I) {
2143       SDNode *Op = *I;
2144       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2145         if (C->isOpaque())
2146           return false;
2147     }
2148     // TODO: Handle float bits as well.
2149     if (VT.isInteger())
2150       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2151   }
2152 
2153   return false;
2154 }
2155 
2156 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2157                                                 const APInt &DemandedElts,
2158                                                 APInt &KnownUndef,
2159                                                 APInt &KnownZero,
2160                                                 DAGCombinerInfo &DCI) const {
2161   SelectionDAG &DAG = DCI.DAG;
2162   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2163                         !DCI.isBeforeLegalizeOps());
2164 
2165   bool Simplified =
2166       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2167   if (Simplified) {
2168     DCI.AddToWorklist(Op.getNode());
2169     DCI.CommitTargetLoweringOpt(TLO);
2170   }
2171 
2172   return Simplified;
2173 }
2174 
2175 /// Given a vector binary operation and known undefined elements for each input
2176 /// operand, compute whether each element of the output is undefined.
2177 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2178                                          const APInt &UndefOp0,
2179                                          const APInt &UndefOp1) {
2180   EVT VT = BO.getValueType();
2181   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2182          "Vector binop only");
2183 
2184   EVT EltVT = VT.getVectorElementType();
2185   unsigned NumElts = VT.getVectorNumElements();
2186   assert(UndefOp0.getBitWidth() == NumElts &&
2187          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2188 
2189   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2190                                    const APInt &UndefVals) {
2191     if (UndefVals[Index])
2192       return DAG.getUNDEF(EltVT);
2193 
2194     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2195       // Try hard to make sure that the getNode() call is not creating temporary
2196       // nodes. Ignore opaque integers because they do not constant fold.
2197       SDValue Elt = BV->getOperand(Index);
2198       auto *C = dyn_cast<ConstantSDNode>(Elt);
2199       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2200         return Elt;
2201     }
2202 
2203     return SDValue();
2204   };
2205 
2206   APInt KnownUndef = APInt::getNullValue(NumElts);
2207   for (unsigned i = 0; i != NumElts; ++i) {
2208     // If both inputs for this element are either constant or undef and match
2209     // the element type, compute the constant/undef result for this element of
2210     // the vector.
2211     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2212     // not handle FP constants. The code within getNode() should be refactored
2213     // to avoid the danger of creating a bogus temporary node here.
2214     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2215     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2216     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2217       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2218         KnownUndef.setBit(i);
2219   }
2220   return KnownUndef;
2221 }
2222 
2223 bool TargetLowering::SimplifyDemandedVectorElts(
2224     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2225     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2226     bool AssumeSingleUse) const {
2227   EVT VT = Op.getValueType();
2228   unsigned Opcode = Op.getOpcode();
2229   APInt DemandedElts = OriginalDemandedElts;
2230   unsigned NumElts = DemandedElts.getBitWidth();
2231   assert(VT.isVector() && "Expected vector op");
2232   assert(VT.getVectorNumElements() == NumElts &&
2233          "Mask size mismatches value type element count!");
2234 
2235   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2236 
2237   // Undef operand.
2238   if (Op.isUndef()) {
2239     KnownUndef.setAllBits();
2240     return false;
2241   }
2242 
2243   // If Op has other users, assume that all elements are needed.
2244   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2245     DemandedElts.setAllBits();
2246 
2247   // Not demanding any elements from Op.
2248   if (DemandedElts == 0) {
2249     KnownUndef.setAllBits();
2250     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2251   }
2252 
2253   // Limit search depth.
2254   if (Depth >= SelectionDAG::MaxRecursionDepth)
2255     return false;
2256 
2257   SDLoc DL(Op);
2258   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2259 
2260   // Helper for demanding the specified elements and all the bits of both binary
2261   // operands.
2262   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2263     unsigned NumBits0 = Op0.getScalarValueSizeInBits();
2264     unsigned NumBits1 = Op1.getScalarValueSizeInBits();
2265     APInt DemandedBits0 = APInt::getAllOnesValue(NumBits0);
2266     APInt DemandedBits1 = APInt::getAllOnesValue(NumBits1);
2267     SDValue NewOp0 = SimplifyMultipleUseDemandedBits(
2268         Op0, DemandedBits0, DemandedElts, TLO.DAG, Depth + 1);
2269     SDValue NewOp1 = SimplifyMultipleUseDemandedBits(
2270         Op1, DemandedBits1, DemandedElts, TLO.DAG, Depth + 1);
2271     if (NewOp0 || NewOp1) {
2272       SDValue NewOp = TLO.DAG.getNode(
2273           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2274       return TLO.CombineTo(Op, NewOp);
2275     }
2276     return false;
2277   };
2278 
2279   switch (Opcode) {
2280   case ISD::SCALAR_TO_VECTOR: {
2281     if (!DemandedElts[0]) {
2282       KnownUndef.setAllBits();
2283       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2284     }
2285     KnownUndef.setHighBits(NumElts - 1);
2286     break;
2287   }
2288   case ISD::BITCAST: {
2289     SDValue Src = Op.getOperand(0);
2290     EVT SrcVT = Src.getValueType();
2291 
2292     // We only handle vectors here.
2293     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2294     if (!SrcVT.isVector())
2295       break;
2296 
2297     // Fast handling of 'identity' bitcasts.
2298     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2299     if (NumSrcElts == NumElts)
2300       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2301                                         KnownZero, TLO, Depth + 1);
2302 
2303     APInt SrcZero, SrcUndef;
2304     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2305 
2306     // Bitcast from 'large element' src vector to 'small element' vector, we
2307     // must demand a source element if any DemandedElt maps to it.
2308     if ((NumElts % NumSrcElts) == 0) {
2309       unsigned Scale = NumElts / NumSrcElts;
2310       for (unsigned i = 0; i != NumElts; ++i)
2311         if (DemandedElts[i])
2312           SrcDemandedElts.setBit(i / Scale);
2313 
2314       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2315                                      TLO, Depth + 1))
2316         return true;
2317 
2318       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2319       // of the large element.
2320       // TODO - bigendian once we have test coverage.
2321       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2322         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2323         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2324         for (unsigned i = 0; i != NumElts; ++i)
2325           if (DemandedElts[i]) {
2326             unsigned Ofs = (i % Scale) * EltSizeInBits;
2327             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2328           }
2329 
2330         KnownBits Known;
2331         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2332                                  TLO, Depth + 1))
2333           return true;
2334       }
2335 
2336       // If the src element is zero/undef then all the output elements will be -
2337       // only demanded elements are guaranteed to be correct.
2338       for (unsigned i = 0; i != NumSrcElts; ++i) {
2339         if (SrcDemandedElts[i]) {
2340           if (SrcZero[i])
2341             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2342           if (SrcUndef[i])
2343             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2344         }
2345       }
2346     }
2347 
2348     // Bitcast from 'small element' src vector to 'large element' vector, we
2349     // demand all smaller source elements covered by the larger demanded element
2350     // of this vector.
2351     if ((NumSrcElts % NumElts) == 0) {
2352       unsigned Scale = NumSrcElts / NumElts;
2353       for (unsigned i = 0; i != NumElts; ++i)
2354         if (DemandedElts[i])
2355           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2356 
2357       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2358                                      TLO, Depth + 1))
2359         return true;
2360 
2361       // If all the src elements covering an output element are zero/undef, then
2362       // the output element will be as well, assuming it was demanded.
2363       for (unsigned i = 0; i != NumElts; ++i) {
2364         if (DemandedElts[i]) {
2365           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2366             KnownZero.setBit(i);
2367           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2368             KnownUndef.setBit(i);
2369         }
2370       }
2371     }
2372     break;
2373   }
2374   case ISD::BUILD_VECTOR: {
2375     // Check all elements and simplify any unused elements with UNDEF.
2376     if (!DemandedElts.isAllOnesValue()) {
2377       // Don't simplify BROADCASTS.
2378       if (llvm::any_of(Op->op_values(),
2379                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2380         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2381         bool Updated = false;
2382         for (unsigned i = 0; i != NumElts; ++i) {
2383           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2384             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2385             KnownUndef.setBit(i);
2386             Updated = true;
2387           }
2388         }
2389         if (Updated)
2390           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2391       }
2392     }
2393     for (unsigned i = 0; i != NumElts; ++i) {
2394       SDValue SrcOp = Op.getOperand(i);
2395       if (SrcOp.isUndef()) {
2396         KnownUndef.setBit(i);
2397       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2398                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2399         KnownZero.setBit(i);
2400       }
2401     }
2402     break;
2403   }
2404   case ISD::CONCAT_VECTORS: {
2405     EVT SubVT = Op.getOperand(0).getValueType();
2406     unsigned NumSubVecs = Op.getNumOperands();
2407     unsigned NumSubElts = SubVT.getVectorNumElements();
2408     for (unsigned i = 0; i != NumSubVecs; ++i) {
2409       SDValue SubOp = Op.getOperand(i);
2410       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2411       APInt SubUndef, SubZero;
2412       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2413                                      Depth + 1))
2414         return true;
2415       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2416       KnownZero.insertBits(SubZero, i * NumSubElts);
2417     }
2418     break;
2419   }
2420   case ISD::INSERT_SUBVECTOR: {
2421     // Demand any elements from the subvector and the remainder from the src its
2422     // inserted into.
2423     SDValue Src = Op.getOperand(0);
2424     SDValue Sub = Op.getOperand(1);
2425     uint64_t Idx = Op.getConstantOperandVal(2);
2426     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2427     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2428     APInt DemandedSrcElts = DemandedElts;
2429     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2430 
2431     APInt SubUndef, SubZero;
2432     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2433                                    Depth + 1))
2434       return true;
2435 
2436     // If none of the src operand elements are demanded, replace it with undef.
2437     if (!DemandedSrcElts && !Src.isUndef())
2438       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2439                                                TLO.DAG.getUNDEF(VT), Sub,
2440                                                Op.getOperand(2)));
2441 
2442     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2443                                    TLO, Depth + 1))
2444       return true;
2445     KnownUndef.insertBits(SubUndef, Idx);
2446     KnownZero.insertBits(SubZero, Idx);
2447 
2448     // Attempt to avoid multi-use ops if we don't need anything from them.
2449     if (!DemandedSrcElts.isAllOnesValue() ||
2450         !DemandedSubElts.isAllOnesValue()) {
2451       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2452       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2453           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2454       SDValue NewSub = SimplifyMultipleUseDemandedBits(
2455           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
2456       if (NewSrc || NewSub) {
2457         NewSrc = NewSrc ? NewSrc : Src;
2458         NewSub = NewSub ? NewSub : Sub;
2459         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2460                                         NewSub, Op.getOperand(2));
2461         return TLO.CombineTo(Op, NewOp);
2462       }
2463     }
2464     break;
2465   }
2466   case ISD::EXTRACT_SUBVECTOR: {
2467     // Offset the demanded elts by the subvector index.
2468     SDValue Src = Op.getOperand(0);
2469     uint64_t Idx = Op.getConstantOperandVal(1);
2470     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2471     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2472 
2473     APInt SrcUndef, SrcZero;
2474     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2475                                    Depth + 1))
2476       return true;
2477     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2478     KnownZero = SrcZero.extractBits(NumElts, Idx);
2479 
2480     // Attempt to avoid multi-use ops if we don't need anything from them.
2481     if (!DemandedElts.isAllOnesValue()) {
2482       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2483       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2484           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2485       if (NewSrc) {
2486         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2487                                         Op.getOperand(1));
2488         return TLO.CombineTo(Op, NewOp);
2489       }
2490     }
2491     break;
2492   }
2493   case ISD::INSERT_VECTOR_ELT: {
2494     SDValue Vec = Op.getOperand(0);
2495     SDValue Scl = Op.getOperand(1);
2496     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2497 
2498     // For a legal, constant insertion index, if we don't need this insertion
2499     // then strip it, else remove it from the demanded elts.
2500     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2501       unsigned Idx = CIdx->getZExtValue();
2502       if (!DemandedElts[Idx])
2503         return TLO.CombineTo(Op, Vec);
2504 
2505       APInt DemandedVecElts(DemandedElts);
2506       DemandedVecElts.clearBit(Idx);
2507       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2508                                      KnownZero, TLO, Depth + 1))
2509         return true;
2510 
2511       KnownUndef.clearBit(Idx);
2512       if (Scl.isUndef())
2513         KnownUndef.setBit(Idx);
2514 
2515       KnownZero.clearBit(Idx);
2516       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2517         KnownZero.setBit(Idx);
2518       break;
2519     }
2520 
2521     APInt VecUndef, VecZero;
2522     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2523                                    Depth + 1))
2524       return true;
2525     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2526     break;
2527   }
2528   case ISD::VSELECT: {
2529     // Try to transform the select condition based on the current demanded
2530     // elements.
2531     // TODO: If a condition element is undef, we can choose from one arm of the
2532     //       select (and if one arm is undef, then we can propagate that to the
2533     //       result).
2534     // TODO - add support for constant vselect masks (see IR version of this).
2535     APInt UnusedUndef, UnusedZero;
2536     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2537                                    UnusedZero, TLO, Depth + 1))
2538       return true;
2539 
2540     // See if we can simplify either vselect operand.
2541     APInt DemandedLHS(DemandedElts);
2542     APInt DemandedRHS(DemandedElts);
2543     APInt UndefLHS, ZeroLHS;
2544     APInt UndefRHS, ZeroRHS;
2545     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2546                                    ZeroLHS, TLO, Depth + 1))
2547       return true;
2548     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2549                                    ZeroRHS, TLO, Depth + 1))
2550       return true;
2551 
2552     KnownUndef = UndefLHS & UndefRHS;
2553     KnownZero = ZeroLHS & ZeroRHS;
2554     break;
2555   }
2556   case ISD::VECTOR_SHUFFLE: {
2557     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2558 
2559     // Collect demanded elements from shuffle operands..
2560     APInt DemandedLHS(NumElts, 0);
2561     APInt DemandedRHS(NumElts, 0);
2562     for (unsigned i = 0; i != NumElts; ++i) {
2563       int M = ShuffleMask[i];
2564       if (M < 0 || !DemandedElts[i])
2565         continue;
2566       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2567       if (M < (int)NumElts)
2568         DemandedLHS.setBit(M);
2569       else
2570         DemandedRHS.setBit(M - NumElts);
2571     }
2572 
2573     // See if we can simplify either shuffle operand.
2574     APInt UndefLHS, ZeroLHS;
2575     APInt UndefRHS, ZeroRHS;
2576     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2577                                    ZeroLHS, TLO, Depth + 1))
2578       return true;
2579     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2580                                    ZeroRHS, TLO, Depth + 1))
2581       return true;
2582 
2583     // Simplify mask using undef elements from LHS/RHS.
2584     bool Updated = false;
2585     bool IdentityLHS = true, IdentityRHS = true;
2586     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2587     for (unsigned i = 0; i != NumElts; ++i) {
2588       int &M = NewMask[i];
2589       if (M < 0)
2590         continue;
2591       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2592           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2593         Updated = true;
2594         M = -1;
2595       }
2596       IdentityLHS &= (M < 0) || (M == (int)i);
2597       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2598     }
2599 
2600     // Update legal shuffle masks based on demanded elements if it won't reduce
2601     // to Identity which can cause premature removal of the shuffle mask.
2602     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2603       SDValue LegalShuffle =
2604           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2605                                   NewMask, TLO.DAG);
2606       if (LegalShuffle)
2607         return TLO.CombineTo(Op, LegalShuffle);
2608     }
2609 
2610     // Propagate undef/zero elements from LHS/RHS.
2611     for (unsigned i = 0; i != NumElts; ++i) {
2612       int M = ShuffleMask[i];
2613       if (M < 0) {
2614         KnownUndef.setBit(i);
2615       } else if (M < (int)NumElts) {
2616         if (UndefLHS[M])
2617           KnownUndef.setBit(i);
2618         if (ZeroLHS[M])
2619           KnownZero.setBit(i);
2620       } else {
2621         if (UndefRHS[M - NumElts])
2622           KnownUndef.setBit(i);
2623         if (ZeroRHS[M - NumElts])
2624           KnownZero.setBit(i);
2625       }
2626     }
2627     break;
2628   }
2629   case ISD::ANY_EXTEND_VECTOR_INREG:
2630   case ISD::SIGN_EXTEND_VECTOR_INREG:
2631   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2632     APInt SrcUndef, SrcZero;
2633     SDValue Src = Op.getOperand(0);
2634     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2635     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2636     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2637                                    Depth + 1))
2638       return true;
2639     KnownZero = SrcZero.zextOrTrunc(NumElts);
2640     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2641 
2642     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2643         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2644         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2645       // aext - if we just need the bottom element then we can bitcast.
2646       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2647     }
2648 
2649     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2650       // zext(undef) upper bits are guaranteed to be zero.
2651       if (DemandedElts.isSubsetOf(KnownUndef))
2652         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2653       KnownUndef.clearAllBits();
2654     }
2655     break;
2656   }
2657 
2658   // TODO: There are more binop opcodes that could be handled here - MIN,
2659   // MAX, saturated math, etc.
2660   case ISD::OR:
2661   case ISD::XOR:
2662   case ISD::ADD:
2663   case ISD::SUB:
2664   case ISD::FADD:
2665   case ISD::FSUB:
2666   case ISD::FMUL:
2667   case ISD::FDIV:
2668   case ISD::FREM: {
2669     SDValue Op0 = Op.getOperand(0);
2670     SDValue Op1 = Op.getOperand(1);
2671 
2672     APInt UndefRHS, ZeroRHS;
2673     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2674                                    Depth + 1))
2675       return true;
2676     APInt UndefLHS, ZeroLHS;
2677     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2678                                    Depth + 1))
2679       return true;
2680 
2681     KnownZero = ZeroLHS & ZeroRHS;
2682     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2683 
2684     // Attempt to avoid multi-use ops if we don't need anything from them.
2685     // TODO - use KnownUndef to relax the demandedelts?
2686     if (!DemandedElts.isAllOnesValue())
2687       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2688         return true;
2689     break;
2690   }
2691   case ISD::SHL:
2692   case ISD::SRL:
2693   case ISD::SRA:
2694   case ISD::ROTL:
2695   case ISD::ROTR: {
2696     SDValue Op0 = Op.getOperand(0);
2697     SDValue Op1 = Op.getOperand(1);
2698 
2699     APInt UndefRHS, ZeroRHS;
2700     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2701                                    Depth + 1))
2702       return true;
2703     APInt UndefLHS, ZeroLHS;
2704     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2705                                    Depth + 1))
2706       return true;
2707 
2708     KnownZero = ZeroLHS;
2709     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2710 
2711     // Attempt to avoid multi-use ops if we don't need anything from them.
2712     // TODO - use KnownUndef to relax the demandedelts?
2713     if (!DemandedElts.isAllOnesValue())
2714       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2715         return true;
2716     break;
2717   }
2718   case ISD::MUL:
2719   case ISD::AND: {
2720     SDValue Op0 = Op.getOperand(0);
2721     SDValue Op1 = Op.getOperand(1);
2722 
2723     APInt SrcUndef, SrcZero;
2724     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2725                                    Depth + 1))
2726       return true;
2727     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2728                                    TLO, Depth + 1))
2729       return true;
2730 
2731     // If either side has a zero element, then the result element is zero, even
2732     // if the other is an UNDEF.
2733     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2734     // and then handle 'and' nodes with the rest of the binop opcodes.
2735     KnownZero |= SrcZero;
2736     KnownUndef &= SrcUndef;
2737     KnownUndef &= ~KnownZero;
2738 
2739     // Attempt to avoid multi-use ops if we don't need anything from them.
2740     // TODO - use KnownUndef to relax the demandedelts?
2741     if (!DemandedElts.isAllOnesValue())
2742       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2743         return true;
2744     break;
2745   }
2746   case ISD::TRUNCATE:
2747   case ISD::SIGN_EXTEND:
2748   case ISD::ZERO_EXTEND:
2749     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2750                                    KnownZero, TLO, Depth + 1))
2751       return true;
2752 
2753     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2754       // zext(undef) upper bits are guaranteed to be zero.
2755       if (DemandedElts.isSubsetOf(KnownUndef))
2756         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2757       KnownUndef.clearAllBits();
2758     }
2759     break;
2760   default: {
2761     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2762       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2763                                                   KnownZero, TLO, Depth))
2764         return true;
2765     } else {
2766       KnownBits Known;
2767       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2768       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2769                                TLO, Depth, AssumeSingleUse))
2770         return true;
2771     }
2772     break;
2773   }
2774   }
2775   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2776 
2777   // Constant fold all undef cases.
2778   // TODO: Handle zero cases as well.
2779   if (DemandedElts.isSubsetOf(KnownUndef))
2780     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2781 
2782   return false;
2783 }
2784 
2785 /// Determine which of the bits specified in Mask are known to be either zero or
2786 /// one and return them in the Known.
2787 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2788                                                    KnownBits &Known,
2789                                                    const APInt &DemandedElts,
2790                                                    const SelectionDAG &DAG,
2791                                                    unsigned Depth) const {
2792   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2793           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2794           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2795           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2796          "Should use MaskedValueIsZero if you don't know whether Op"
2797          " is a target node!");
2798   Known.resetAll();
2799 }
2800 
2801 void TargetLowering::computeKnownBitsForTargetInstr(
2802     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2803     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2804     unsigned Depth) const {
2805   Known.resetAll();
2806 }
2807 
2808 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2809                                                    KnownBits &Known,
2810                                                    const APInt &DemandedElts,
2811                                                    const SelectionDAG &DAG,
2812                                                    unsigned Depth) const {
2813   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2814 
2815   if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) {
2816     // The low bits are known zero if the pointer is aligned.
2817     Known.Zero.setLowBits(Log2(*Alignment));
2818   }
2819 }
2820 
2821 /// This method can be implemented by targets that want to expose additional
2822 /// information about sign bits to the DAG Combiner.
2823 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2824                                                          const APInt &,
2825                                                          const SelectionDAG &,
2826                                                          unsigned Depth) const {
2827   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2828           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2829           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2830           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2831          "Should use ComputeNumSignBits if you don't know whether Op"
2832          " is a target node!");
2833   return 1;
2834 }
2835 
2836 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2837   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2838   const MachineRegisterInfo &MRI, unsigned Depth) const {
2839   return 1;
2840 }
2841 
2842 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2843     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2844     TargetLoweringOpt &TLO, unsigned Depth) const {
2845   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2846           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2847           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2848           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2849          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2850          " is a target node!");
2851   return false;
2852 }
2853 
2854 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2855     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2856     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2857   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2858           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2859           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2860           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2861          "Should use SimplifyDemandedBits if you don't know whether Op"
2862          " is a target node!");
2863   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2864   return false;
2865 }
2866 
2867 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2868     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2869     SelectionDAG &DAG, unsigned Depth) const {
2870   assert(
2871       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2872        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2873        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2874        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2875       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2876       " is a target node!");
2877   return SDValue();
2878 }
2879 
2880 SDValue
2881 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2882                                         SDValue N1, MutableArrayRef<int> Mask,
2883                                         SelectionDAG &DAG) const {
2884   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2885   if (!LegalMask) {
2886     std::swap(N0, N1);
2887     ShuffleVectorSDNode::commuteMask(Mask);
2888     LegalMask = isShuffleMaskLegal(Mask, VT);
2889   }
2890 
2891   if (!LegalMask)
2892     return SDValue();
2893 
2894   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2895 }
2896 
2897 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2898   return nullptr;
2899 }
2900 
2901 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2902                                                   const SelectionDAG &DAG,
2903                                                   bool SNaN,
2904                                                   unsigned Depth) const {
2905   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2906           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2907           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2908           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2909          "Should use isKnownNeverNaN if you don't know whether Op"
2910          " is a target node!");
2911   return false;
2912 }
2913 
2914 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2915 // work with truncating build vectors and vectors with elements of less than
2916 // 8 bits.
2917 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2918   if (!N)
2919     return false;
2920 
2921   APInt CVal;
2922   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2923     CVal = CN->getAPIntValue();
2924   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2925     auto *CN = BV->getConstantSplatNode();
2926     if (!CN)
2927       return false;
2928 
2929     // If this is a truncating build vector, truncate the splat value.
2930     // Otherwise, we may fail to match the expected values below.
2931     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2932     CVal = CN->getAPIntValue();
2933     if (BVEltWidth < CVal.getBitWidth())
2934       CVal = CVal.trunc(BVEltWidth);
2935   } else {
2936     return false;
2937   }
2938 
2939   switch (getBooleanContents(N->getValueType(0))) {
2940   case UndefinedBooleanContent:
2941     return CVal[0];
2942   case ZeroOrOneBooleanContent:
2943     return CVal.isOneValue();
2944   case ZeroOrNegativeOneBooleanContent:
2945     return CVal.isAllOnesValue();
2946   }
2947 
2948   llvm_unreachable("Invalid boolean contents");
2949 }
2950 
2951 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2952   if (!N)
2953     return false;
2954 
2955   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2956   if (!CN) {
2957     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2958     if (!BV)
2959       return false;
2960 
2961     // Only interested in constant splats, we don't care about undef
2962     // elements in identifying boolean constants and getConstantSplatNode
2963     // returns NULL if all ops are undef;
2964     CN = BV->getConstantSplatNode();
2965     if (!CN)
2966       return false;
2967   }
2968 
2969   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2970     return !CN->getAPIntValue()[0];
2971 
2972   return CN->isNullValue();
2973 }
2974 
2975 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2976                                        bool SExt) const {
2977   if (VT == MVT::i1)
2978     return N->isOne();
2979 
2980   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2981   switch (Cnt) {
2982   case TargetLowering::ZeroOrOneBooleanContent:
2983     // An extended value of 1 is always true, unless its original type is i1,
2984     // in which case it will be sign extended to -1.
2985     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2986   case TargetLowering::UndefinedBooleanContent:
2987   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2988     return N->isAllOnesValue() && SExt;
2989   }
2990   llvm_unreachable("Unexpected enumeration.");
2991 }
2992 
2993 /// This helper function of SimplifySetCC tries to optimize the comparison when
2994 /// either operand of the SetCC node is a bitwise-and instruction.
2995 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2996                                          ISD::CondCode Cond, const SDLoc &DL,
2997                                          DAGCombinerInfo &DCI) const {
2998   // Match these patterns in any of their permutations:
2999   // (X & Y) == Y
3000   // (X & Y) != Y
3001   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3002     std::swap(N0, N1);
3003 
3004   EVT OpVT = N0.getValueType();
3005   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3006       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3007     return SDValue();
3008 
3009   SDValue X, Y;
3010   if (N0.getOperand(0) == N1) {
3011     X = N0.getOperand(1);
3012     Y = N0.getOperand(0);
3013   } else if (N0.getOperand(1) == N1) {
3014     X = N0.getOperand(0);
3015     Y = N0.getOperand(1);
3016   } else {
3017     return SDValue();
3018   }
3019 
3020   SelectionDAG &DAG = DCI.DAG;
3021   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3022   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3023     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3024     // Note that where Y is variable and is known to have at most one bit set
3025     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3026     // equivalent when Y == 0.
3027     assert(OpVT.isInteger());
3028     Cond = ISD::getSetCCInverse(Cond, OpVT);
3029     if (DCI.isBeforeLegalizeOps() ||
3030         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3031       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3032   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3033     // If the target supports an 'and-not' or 'and-complement' logic operation,
3034     // try to use that to make a comparison operation more efficient.
3035     // But don't do this transform if the mask is a single bit because there are
3036     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3037     // 'rlwinm' on PPC).
3038 
3039     // Bail out if the compare operand that we want to turn into a zero is
3040     // already a zero (otherwise, infinite loop).
3041     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3042     if (YConst && YConst->isNullValue())
3043       return SDValue();
3044 
3045     // Transform this into: ~X & Y == 0.
3046     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3047     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3048     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3049   }
3050 
3051   return SDValue();
3052 }
3053 
3054 /// There are multiple IR patterns that could be checking whether certain
3055 /// truncation of a signed number would be lossy or not. The pattern which is
3056 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3057 /// We are looking for the following pattern: (KeptBits is a constant)
3058 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3059 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3060 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3061 /// We will unfold it into the natural trunc+sext pattern:
3062 ///   ((%x << C) a>> C) dstcond %x
3063 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3064 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3065     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3066     const SDLoc &DL) const {
3067   // We must be comparing with a constant.
3068   ConstantSDNode *C1;
3069   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3070     return SDValue();
3071 
3072   // N0 should be:  add %x, (1 << (KeptBits-1))
3073   if (N0->getOpcode() != ISD::ADD)
3074     return SDValue();
3075 
3076   // And we must be 'add'ing a constant.
3077   ConstantSDNode *C01;
3078   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3079     return SDValue();
3080 
3081   SDValue X = N0->getOperand(0);
3082   EVT XVT = X.getValueType();
3083 
3084   // Validate constants ...
3085 
3086   APInt I1 = C1->getAPIntValue();
3087 
3088   ISD::CondCode NewCond;
3089   if (Cond == ISD::CondCode::SETULT) {
3090     NewCond = ISD::CondCode::SETEQ;
3091   } else if (Cond == ISD::CondCode::SETULE) {
3092     NewCond = ISD::CondCode::SETEQ;
3093     // But need to 'canonicalize' the constant.
3094     I1 += 1;
3095   } else if (Cond == ISD::CondCode::SETUGT) {
3096     NewCond = ISD::CondCode::SETNE;
3097     // But need to 'canonicalize' the constant.
3098     I1 += 1;
3099   } else if (Cond == ISD::CondCode::SETUGE) {
3100     NewCond = ISD::CondCode::SETNE;
3101   } else
3102     return SDValue();
3103 
3104   APInt I01 = C01->getAPIntValue();
3105 
3106   auto checkConstants = [&I1, &I01]() -> bool {
3107     // Both of them must be power-of-two, and the constant from setcc is bigger.
3108     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3109   };
3110 
3111   if (checkConstants()) {
3112     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3113   } else {
3114     // What if we invert constants? (and the target predicate)
3115     I1.negate();
3116     I01.negate();
3117     assert(XVT.isInteger());
3118     NewCond = getSetCCInverse(NewCond, XVT);
3119     if (!checkConstants())
3120       return SDValue();
3121     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3122   }
3123 
3124   // They are power-of-two, so which bit is set?
3125   const unsigned KeptBits = I1.logBase2();
3126   const unsigned KeptBitsMinusOne = I01.logBase2();
3127 
3128   // Magic!
3129   if (KeptBits != (KeptBitsMinusOne + 1))
3130     return SDValue();
3131   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3132 
3133   // We don't want to do this in every single case.
3134   SelectionDAG &DAG = DCI.DAG;
3135   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3136           XVT, KeptBits))
3137     return SDValue();
3138 
3139   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3140   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3141 
3142   // Unfold into:  ((%x << C) a>> C) cond %x
3143   // Where 'cond' will be either 'eq' or 'ne'.
3144   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3145   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3146   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3147   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3148 
3149   return T2;
3150 }
3151 
3152 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3153 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3154     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3155     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3156   assert(isConstOrConstSplat(N1C) &&
3157          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3158          "Should be a comparison with 0.");
3159   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3160          "Valid only for [in]equality comparisons.");
3161 
3162   unsigned NewShiftOpcode;
3163   SDValue X, C, Y;
3164 
3165   SelectionDAG &DAG = DCI.DAG;
3166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3167 
3168   // Look for '(C l>>/<< Y)'.
3169   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3170     // The shift should be one-use.
3171     if (!V.hasOneUse())
3172       return false;
3173     unsigned OldShiftOpcode = V.getOpcode();
3174     switch (OldShiftOpcode) {
3175     case ISD::SHL:
3176       NewShiftOpcode = ISD::SRL;
3177       break;
3178     case ISD::SRL:
3179       NewShiftOpcode = ISD::SHL;
3180       break;
3181     default:
3182       return false; // must be a logical shift.
3183     }
3184     // We should be shifting a constant.
3185     // FIXME: best to use isConstantOrConstantVector().
3186     C = V.getOperand(0);
3187     ConstantSDNode *CC =
3188         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3189     if (!CC)
3190       return false;
3191     Y = V.getOperand(1);
3192 
3193     ConstantSDNode *XC =
3194         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3195     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3196         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3197   };
3198 
3199   // LHS of comparison should be an one-use 'and'.
3200   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3201     return SDValue();
3202 
3203   X = N0.getOperand(0);
3204   SDValue Mask = N0.getOperand(1);
3205 
3206   // 'and' is commutative!
3207   if (!Match(Mask)) {
3208     std::swap(X, Mask);
3209     if (!Match(Mask))
3210       return SDValue();
3211   }
3212 
3213   EVT VT = X.getValueType();
3214 
3215   // Produce:
3216   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3217   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3218   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3219   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3220   return T2;
3221 }
3222 
3223 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3224 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3225 /// handle the commuted versions of these patterns.
3226 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3227                                            ISD::CondCode Cond, const SDLoc &DL,
3228                                            DAGCombinerInfo &DCI) const {
3229   unsigned BOpcode = N0.getOpcode();
3230   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3231          "Unexpected binop");
3232   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3233 
3234   // (X + Y) == X --> Y == 0
3235   // (X - Y) == X --> Y == 0
3236   // (X ^ Y) == X --> Y == 0
3237   SelectionDAG &DAG = DCI.DAG;
3238   EVT OpVT = N0.getValueType();
3239   SDValue X = N0.getOperand(0);
3240   SDValue Y = N0.getOperand(1);
3241   if (X == N1)
3242     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3243 
3244   if (Y != N1)
3245     return SDValue();
3246 
3247   // (X + Y) == Y --> X == 0
3248   // (X ^ Y) == Y --> X == 0
3249   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3250     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3251 
3252   // The shift would not be valid if the operands are boolean (i1).
3253   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3254     return SDValue();
3255 
3256   // (X - Y) == Y --> X == Y << 1
3257   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3258                                  !DCI.isBeforeLegalize());
3259   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3260   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3261   if (!DCI.isCalledByLegalizer())
3262     DCI.AddToWorklist(YShl1.getNode());
3263   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3264 }
3265 
3266 /// Try to simplify a setcc built with the specified operands and cc. If it is
3267 /// unable to simplify it, return a null SDValue.
3268 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3269                                       ISD::CondCode Cond, bool foldBooleans,
3270                                       DAGCombinerInfo &DCI,
3271                                       const SDLoc &dl) const {
3272   SelectionDAG &DAG = DCI.DAG;
3273   const DataLayout &Layout = DAG.getDataLayout();
3274   EVT OpVT = N0.getValueType();
3275 
3276   // Constant fold or commute setcc.
3277   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3278     return Fold;
3279 
3280   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3281   // TODO: Handle non-splat vector constants. All undef causes trouble.
3282   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3283   if (isConstOrConstSplat(N0) &&
3284       (DCI.isBeforeLegalizeOps() ||
3285        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3286     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3287 
3288   // If we have a subtract with the same 2 non-constant operands as this setcc
3289   // -- but in reverse order -- then try to commute the operands of this setcc
3290   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3291   // instruction on some targets.
3292   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3293       (DCI.isBeforeLegalizeOps() ||
3294        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3295       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3296       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3297     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3298 
3299   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3300     const APInt &C1 = N1C->getAPIntValue();
3301 
3302     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3303     // equality comparison, then we're just comparing whether X itself is
3304     // zero.
3305     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3306         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3307         N0.getOperand(1).getOpcode() == ISD::Constant) {
3308       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3309       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3310           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3311         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3312           // (srl (ctlz x), 5) == 0  -> X != 0
3313           // (srl (ctlz x), 5) != 1  -> X != 0
3314           Cond = ISD::SETNE;
3315         } else {
3316           // (srl (ctlz x), 5) != 0  -> X == 0
3317           // (srl (ctlz x), 5) == 1  -> X == 0
3318           Cond = ISD::SETEQ;
3319         }
3320         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3321         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3322                             Zero, Cond);
3323       }
3324     }
3325 
3326     SDValue CTPOP = N0;
3327     // Look through truncs that don't change the value of a ctpop.
3328     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3329       CTPOP = N0.getOperand(0);
3330 
3331     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3332         (N0 == CTPOP ||
3333          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3334       EVT CTVT = CTPOP.getValueType();
3335       SDValue CTOp = CTPOP.getOperand(0);
3336 
3337       // (ctpop x) u< 2 -> (x & x-1) == 0
3338       // (ctpop x) u> 1 -> (x & x-1) != 0
3339       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3340         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3341         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3342         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3343         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3344         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3345       }
3346 
3347       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3348       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3349           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3350         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3351         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3352         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3353         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3354         assert(CTVT.isInteger());
3355         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3356         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3357         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3358         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3359         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3360         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3361         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3362       }
3363     }
3364 
3365     // (zext x) == C --> x == (trunc C)
3366     // (sext x) == C --> x == (trunc C)
3367     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3368         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3369       unsigned MinBits = N0.getValueSizeInBits();
3370       SDValue PreExt;
3371       bool Signed = false;
3372       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3373         // ZExt
3374         MinBits = N0->getOperand(0).getValueSizeInBits();
3375         PreExt = N0->getOperand(0);
3376       } else if (N0->getOpcode() == ISD::AND) {
3377         // DAGCombine turns costly ZExts into ANDs
3378         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3379           if ((C->getAPIntValue()+1).isPowerOf2()) {
3380             MinBits = C->getAPIntValue().countTrailingOnes();
3381             PreExt = N0->getOperand(0);
3382           }
3383       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3384         // SExt
3385         MinBits = N0->getOperand(0).getValueSizeInBits();
3386         PreExt = N0->getOperand(0);
3387         Signed = true;
3388       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3389         // ZEXTLOAD / SEXTLOAD
3390         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3391           MinBits = LN0->getMemoryVT().getSizeInBits();
3392           PreExt = N0;
3393         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3394           Signed = true;
3395           MinBits = LN0->getMemoryVT().getSizeInBits();
3396           PreExt = N0;
3397         }
3398       }
3399 
3400       // Figure out how many bits we need to preserve this constant.
3401       unsigned ReqdBits = Signed ?
3402         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3403         C1.getActiveBits();
3404 
3405       // Make sure we're not losing bits from the constant.
3406       if (MinBits > 0 &&
3407           MinBits < C1.getBitWidth() &&
3408           MinBits >= ReqdBits) {
3409         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3410         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3411           // Will get folded away.
3412           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3413           if (MinBits == 1 && C1 == 1)
3414             // Invert the condition.
3415             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3416                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3417           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3418           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3419         }
3420 
3421         // If truncating the setcc operands is not desirable, we can still
3422         // simplify the expression in some cases:
3423         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3424         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3425         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3426         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3427         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3428         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3429         SDValue TopSetCC = N0->getOperand(0);
3430         unsigned N0Opc = N0->getOpcode();
3431         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3432         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3433             TopSetCC.getOpcode() == ISD::SETCC &&
3434             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3435             (isConstFalseVal(N1C) ||
3436              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3437 
3438           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3439                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3440 
3441           if (!Inverse)
3442             return TopSetCC;
3443 
3444           ISD::CondCode InvCond = ISD::getSetCCInverse(
3445               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3446               TopSetCC.getOperand(0).getValueType());
3447           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3448                                       TopSetCC.getOperand(1),
3449                                       InvCond);
3450         }
3451       }
3452     }
3453 
3454     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3455     // equality or unsigned, and all 1 bits of the const are in the same
3456     // partial word, see if we can shorten the load.
3457     if (DCI.isBeforeLegalize() &&
3458         !ISD::isSignedIntSetCC(Cond) &&
3459         N0.getOpcode() == ISD::AND && C1 == 0 &&
3460         N0.getNode()->hasOneUse() &&
3461         isa<LoadSDNode>(N0.getOperand(0)) &&
3462         N0.getOperand(0).getNode()->hasOneUse() &&
3463         isa<ConstantSDNode>(N0.getOperand(1))) {
3464       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3465       APInt bestMask;
3466       unsigned bestWidth = 0, bestOffset = 0;
3467       if (Lod->isSimple() && Lod->isUnindexed()) {
3468         unsigned origWidth = N0.getValueSizeInBits();
3469         unsigned maskWidth = origWidth;
3470         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3471         // 8 bits, but have to be careful...
3472         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3473           origWidth = Lod->getMemoryVT().getSizeInBits();
3474         const APInt &Mask = N0.getConstantOperandAPInt(1);
3475         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3476           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3477           for (unsigned offset=0; offset<origWidth/width; offset++) {
3478             if (Mask.isSubsetOf(newMask)) {
3479               if (Layout.isLittleEndian())
3480                 bestOffset = (uint64_t)offset * (width/8);
3481               else
3482                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3483               bestMask = Mask.lshr(offset * (width/8) * 8);
3484               bestWidth = width;
3485               break;
3486             }
3487             newMask <<= width;
3488           }
3489         }
3490       }
3491       if (bestWidth) {
3492         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3493         if (newVT.isRound() &&
3494             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3495           SDValue Ptr = Lod->getBasePtr();
3496           if (bestOffset != 0)
3497             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3498           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3499           SDValue NewLoad = DAG.getLoad(
3500               newVT, dl, Lod->getChain(), Ptr,
3501               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3502           return DAG.getSetCC(dl, VT,
3503                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3504                                       DAG.getConstant(bestMask.trunc(bestWidth),
3505                                                       dl, newVT)),
3506                               DAG.getConstant(0LL, dl, newVT), Cond);
3507         }
3508       }
3509     }
3510 
3511     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3512     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3513       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3514 
3515       // If the comparison constant has bits in the upper part, the
3516       // zero-extended value could never match.
3517       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3518                                               C1.getBitWidth() - InSize))) {
3519         switch (Cond) {
3520         case ISD::SETUGT:
3521         case ISD::SETUGE:
3522         case ISD::SETEQ:
3523           return DAG.getConstant(0, dl, VT);
3524         case ISD::SETULT:
3525         case ISD::SETULE:
3526         case ISD::SETNE:
3527           return DAG.getConstant(1, dl, VT);
3528         case ISD::SETGT:
3529         case ISD::SETGE:
3530           // True if the sign bit of C1 is set.
3531           return DAG.getConstant(C1.isNegative(), dl, VT);
3532         case ISD::SETLT:
3533         case ISD::SETLE:
3534           // True if the sign bit of C1 isn't set.
3535           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3536         default:
3537           break;
3538         }
3539       }
3540 
3541       // Otherwise, we can perform the comparison with the low bits.
3542       switch (Cond) {
3543       case ISD::SETEQ:
3544       case ISD::SETNE:
3545       case ISD::SETUGT:
3546       case ISD::SETUGE:
3547       case ISD::SETULT:
3548       case ISD::SETULE: {
3549         EVT newVT = N0.getOperand(0).getValueType();
3550         if (DCI.isBeforeLegalizeOps() ||
3551             (isOperationLegal(ISD::SETCC, newVT) &&
3552              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3553           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3554           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3555 
3556           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3557                                           NewConst, Cond);
3558           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3559         }
3560         break;
3561       }
3562       default:
3563         break; // todo, be more careful with signed comparisons
3564       }
3565     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3566                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3567       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3568       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3569       EVT ExtDstTy = N0.getValueType();
3570       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3571 
3572       // If the constant doesn't fit into the number of bits for the source of
3573       // the sign extension, it is impossible for both sides to be equal.
3574       if (C1.getMinSignedBits() > ExtSrcTyBits)
3575         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3576 
3577       SDValue ZextOp;
3578       EVT Op0Ty = N0.getOperand(0).getValueType();
3579       if (Op0Ty == ExtSrcTy) {
3580         ZextOp = N0.getOperand(0);
3581       } else {
3582         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3583         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3584                              DAG.getConstant(Imm, dl, Op0Ty));
3585       }
3586       if (!DCI.isCalledByLegalizer())
3587         DCI.AddToWorklist(ZextOp.getNode());
3588       // Otherwise, make this a use of a zext.
3589       return DAG.getSetCC(dl, VT, ZextOp,
3590                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3591                                                               ExtDstTyBits,
3592                                                               ExtSrcTyBits),
3593                                           dl, ExtDstTy),
3594                           Cond);
3595     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3596                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3597       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3598       if (N0.getOpcode() == ISD::SETCC &&
3599           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3600           (N0.getValueType() == MVT::i1 ||
3601            getBooleanContents(N0.getOperand(0).getValueType()) ==
3602                        ZeroOrOneBooleanContent)) {
3603         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3604         if (TrueWhenTrue)
3605           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3606         // Invert the condition.
3607         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3608         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3609         if (DCI.isBeforeLegalizeOps() ||
3610             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3611           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3612       }
3613 
3614       if ((N0.getOpcode() == ISD::XOR ||
3615            (N0.getOpcode() == ISD::AND &&
3616             N0.getOperand(0).getOpcode() == ISD::XOR &&
3617             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3618           isa<ConstantSDNode>(N0.getOperand(1)) &&
3619           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3620         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3621         // can only do this if the top bits are known zero.
3622         unsigned BitWidth = N0.getValueSizeInBits();
3623         if (DAG.MaskedValueIsZero(N0,
3624                                   APInt::getHighBitsSet(BitWidth,
3625                                                         BitWidth-1))) {
3626           // Okay, get the un-inverted input value.
3627           SDValue Val;
3628           if (N0.getOpcode() == ISD::XOR) {
3629             Val = N0.getOperand(0);
3630           } else {
3631             assert(N0.getOpcode() == ISD::AND &&
3632                     N0.getOperand(0).getOpcode() == ISD::XOR);
3633             // ((X^1)&1)^1 -> X & 1
3634             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3635                               N0.getOperand(0).getOperand(0),
3636                               N0.getOperand(1));
3637           }
3638 
3639           return DAG.getSetCC(dl, VT, Val, N1,
3640                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3641         }
3642       } else if (N1C->isOne()) {
3643         SDValue Op0 = N0;
3644         if (Op0.getOpcode() == ISD::TRUNCATE)
3645           Op0 = Op0.getOperand(0);
3646 
3647         if ((Op0.getOpcode() == ISD::XOR) &&
3648             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3649             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3650           SDValue XorLHS = Op0.getOperand(0);
3651           SDValue XorRHS = Op0.getOperand(1);
3652           // Ensure that the input setccs return an i1 type or 0/1 value.
3653           if (Op0.getValueType() == MVT::i1 ||
3654               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3655                       ZeroOrOneBooleanContent &&
3656                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3657                         ZeroOrOneBooleanContent)) {
3658             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3659             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3660             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3661           }
3662         }
3663         if (Op0.getOpcode() == ISD::AND &&
3664             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3665             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3666           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3667           if (Op0.getValueType().bitsGT(VT))
3668             Op0 = DAG.getNode(ISD::AND, dl, VT,
3669                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3670                           DAG.getConstant(1, dl, VT));
3671           else if (Op0.getValueType().bitsLT(VT))
3672             Op0 = DAG.getNode(ISD::AND, dl, VT,
3673                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3674                         DAG.getConstant(1, dl, VT));
3675 
3676           return DAG.getSetCC(dl, VT, Op0,
3677                               DAG.getConstant(0, dl, Op0.getValueType()),
3678                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3679         }
3680         if (Op0.getOpcode() == ISD::AssertZext &&
3681             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3682           return DAG.getSetCC(dl, VT, Op0,
3683                               DAG.getConstant(0, dl, Op0.getValueType()),
3684                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3685       }
3686     }
3687 
3688     // Given:
3689     //   icmp eq/ne (urem %x, %y), 0
3690     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3691     //   icmp eq/ne %x, 0
3692     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3693         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3694       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3695       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3696       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3697         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3698     }
3699 
3700     if (SDValue V =
3701             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3702       return V;
3703   }
3704 
3705   // These simplifications apply to splat vectors as well.
3706   // TODO: Handle more splat vector cases.
3707   if (auto *N1C = isConstOrConstSplat(N1)) {
3708     const APInt &C1 = N1C->getAPIntValue();
3709 
3710     APInt MinVal, MaxVal;
3711     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3712     if (ISD::isSignedIntSetCC(Cond)) {
3713       MinVal = APInt::getSignedMinValue(OperandBitSize);
3714       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3715     } else {
3716       MinVal = APInt::getMinValue(OperandBitSize);
3717       MaxVal = APInt::getMaxValue(OperandBitSize);
3718     }
3719 
3720     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3721     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3722       // X >= MIN --> true
3723       if (C1 == MinVal)
3724         return DAG.getBoolConstant(true, dl, VT, OpVT);
3725 
3726       if (!VT.isVector()) { // TODO: Support this for vectors.
3727         // X >= C0 --> X > (C0 - 1)
3728         APInt C = C1 - 1;
3729         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3730         if ((DCI.isBeforeLegalizeOps() ||
3731              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3732             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3733                                   isLegalICmpImmediate(C.getSExtValue())))) {
3734           return DAG.getSetCC(dl, VT, N0,
3735                               DAG.getConstant(C, dl, N1.getValueType()),
3736                               NewCC);
3737         }
3738       }
3739     }
3740 
3741     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3742       // X <= MAX --> true
3743       if (C1 == MaxVal)
3744         return DAG.getBoolConstant(true, dl, VT, OpVT);
3745 
3746       // X <= C0 --> X < (C0 + 1)
3747       if (!VT.isVector()) { // TODO: Support this for vectors.
3748         APInt C = C1 + 1;
3749         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3750         if ((DCI.isBeforeLegalizeOps() ||
3751              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3752             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3753                                   isLegalICmpImmediate(C.getSExtValue())))) {
3754           return DAG.getSetCC(dl, VT, N0,
3755                               DAG.getConstant(C, dl, N1.getValueType()),
3756                               NewCC);
3757         }
3758       }
3759     }
3760 
3761     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3762       if (C1 == MinVal)
3763         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3764 
3765       // TODO: Support this for vectors after legalize ops.
3766       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3767         // Canonicalize setlt X, Max --> setne X, Max
3768         if (C1 == MaxVal)
3769           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3770 
3771         // If we have setult X, 1, turn it into seteq X, 0
3772         if (C1 == MinVal+1)
3773           return DAG.getSetCC(dl, VT, N0,
3774                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3775                               ISD::SETEQ);
3776       }
3777     }
3778 
3779     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3780       if (C1 == MaxVal)
3781         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3782 
3783       // TODO: Support this for vectors after legalize ops.
3784       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3785         // Canonicalize setgt X, Min --> setne X, Min
3786         if (C1 == MinVal)
3787           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3788 
3789         // If we have setugt X, Max-1, turn it into seteq X, Max
3790         if (C1 == MaxVal-1)
3791           return DAG.getSetCC(dl, VT, N0,
3792                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3793                               ISD::SETEQ);
3794       }
3795     }
3796 
3797     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3798       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3799       if (C1.isNullValue())
3800         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3801                 VT, N0, N1, Cond, DCI, dl))
3802           return CC;
3803     }
3804 
3805     // If we have "setcc X, C0", check to see if we can shrink the immediate
3806     // by changing cc.
3807     // TODO: Support this for vectors after legalize ops.
3808     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3809       // SETUGT X, SINTMAX  -> SETLT X, 0
3810       if (Cond == ISD::SETUGT &&
3811           C1 == APInt::getSignedMaxValue(OperandBitSize))
3812         return DAG.getSetCC(dl, VT, N0,
3813                             DAG.getConstant(0, dl, N1.getValueType()),
3814                             ISD::SETLT);
3815 
3816       // SETULT X, SINTMIN  -> SETGT X, -1
3817       if (Cond == ISD::SETULT &&
3818           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3819         SDValue ConstMinusOne =
3820             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3821                             N1.getValueType());
3822         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3823       }
3824     }
3825   }
3826 
3827   // Back to non-vector simplifications.
3828   // TODO: Can we do these for vector splats?
3829   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3830     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3831     const APInt &C1 = N1C->getAPIntValue();
3832     EVT ShValTy = N0.getValueType();
3833 
3834     // Fold bit comparisons when we can.
3835     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3836         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3837         N0.getOpcode() == ISD::AND) {
3838       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3839         EVT ShiftTy =
3840             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3841         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3842           // Perform the xform if the AND RHS is a single bit.
3843           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3844           if (AndRHS->getAPIntValue().isPowerOf2() &&
3845               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3846             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3847                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3848                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3849           }
3850         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3851           // (X & 8) == 8  -->  (X & 8) >> 3
3852           // Perform the xform if C1 is a single bit.
3853           unsigned ShCt = C1.logBase2();
3854           if (C1.isPowerOf2() &&
3855               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3856             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3857                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3858                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3859           }
3860         }
3861       }
3862     }
3863 
3864     if (C1.getMinSignedBits() <= 64 &&
3865         !isLegalICmpImmediate(C1.getSExtValue())) {
3866       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3867       // (X & -256) == 256 -> (X >> 8) == 1
3868       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3869           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3870         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3871           const APInt &AndRHSC = AndRHS->getAPIntValue();
3872           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3873             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3874             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3875               SDValue Shift =
3876                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3877                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3878               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3879               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3880             }
3881           }
3882         }
3883       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3884                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3885         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3886         // X <  0x100000000 -> (X >> 32) <  1
3887         // X >= 0x100000000 -> (X >> 32) >= 1
3888         // X <= 0x0ffffffff -> (X >> 32) <  1
3889         // X >  0x0ffffffff -> (X >> 32) >= 1
3890         unsigned ShiftBits;
3891         APInt NewC = C1;
3892         ISD::CondCode NewCond = Cond;
3893         if (AdjOne) {
3894           ShiftBits = C1.countTrailingOnes();
3895           NewC = NewC + 1;
3896           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3897         } else {
3898           ShiftBits = C1.countTrailingZeros();
3899         }
3900         NewC.lshrInPlace(ShiftBits);
3901         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3902             isLegalICmpImmediate(NewC.getSExtValue()) &&
3903             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3904           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3905                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3906           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3907           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3908         }
3909       }
3910     }
3911   }
3912 
3913   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3914     auto *CFP = cast<ConstantFPSDNode>(N1);
3915     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3916 
3917     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3918     // constant if knowing that the operand is non-nan is enough.  We prefer to
3919     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3920     // materialize 0.0.
3921     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3922       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3923 
3924     // setcc (fneg x), C -> setcc swap(pred) x, -C
3925     if (N0.getOpcode() == ISD::FNEG) {
3926       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3927       if (DCI.isBeforeLegalizeOps() ||
3928           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3929         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3930         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3931       }
3932     }
3933 
3934     // If the condition is not legal, see if we can find an equivalent one
3935     // which is legal.
3936     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3937       // If the comparison was an awkward floating-point == or != and one of
3938       // the comparison operands is infinity or negative infinity, convert the
3939       // condition to a less-awkward <= or >=.
3940       if (CFP->getValueAPF().isInfinity()) {
3941         bool IsNegInf = CFP->getValueAPF().isNegative();
3942         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3943         switch (Cond) {
3944         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3945         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3946         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3947         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3948         default: break;
3949         }
3950         if (NewCond != ISD::SETCC_INVALID &&
3951             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3952           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3953       }
3954     }
3955   }
3956 
3957   if (N0 == N1) {
3958     // The sext(setcc()) => setcc() optimization relies on the appropriate
3959     // constant being emitted.
3960     assert(!N0.getValueType().isInteger() &&
3961            "Integer types should be handled by FoldSetCC");
3962 
3963     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3964     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3965     if (UOF == 2) // FP operators that are undefined on NaNs.
3966       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3967     if (UOF == unsigned(EqTrue))
3968       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3969     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3970     // if it is not already.
3971     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3972     if (NewCond != Cond &&
3973         (DCI.isBeforeLegalizeOps() ||
3974                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3975       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3976   }
3977 
3978   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3979       N0.getValueType().isInteger()) {
3980     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3981         N0.getOpcode() == ISD::XOR) {
3982       // Simplify (X+Y) == (X+Z) -->  Y == Z
3983       if (N0.getOpcode() == N1.getOpcode()) {
3984         if (N0.getOperand(0) == N1.getOperand(0))
3985           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3986         if (N0.getOperand(1) == N1.getOperand(1))
3987           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3988         if (isCommutativeBinOp(N0.getOpcode())) {
3989           // If X op Y == Y op X, try other combinations.
3990           if (N0.getOperand(0) == N1.getOperand(1))
3991             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3992                                 Cond);
3993           if (N0.getOperand(1) == N1.getOperand(0))
3994             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3995                                 Cond);
3996         }
3997       }
3998 
3999       // If RHS is a legal immediate value for a compare instruction, we need
4000       // to be careful about increasing register pressure needlessly.
4001       bool LegalRHSImm = false;
4002 
4003       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4004         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4005           // Turn (X+C1) == C2 --> X == C2-C1
4006           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4007             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4008                                 DAG.getConstant(RHSC->getAPIntValue()-
4009                                                 LHSR->getAPIntValue(),
4010                                 dl, N0.getValueType()), Cond);
4011           }
4012 
4013           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4014           if (N0.getOpcode() == ISD::XOR)
4015             // If we know that all of the inverted bits are zero, don't bother
4016             // performing the inversion.
4017             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4018               return
4019                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4020                              DAG.getConstant(LHSR->getAPIntValue() ^
4021                                                RHSC->getAPIntValue(),
4022                                              dl, N0.getValueType()),
4023                              Cond);
4024         }
4025 
4026         // Turn (C1-X) == C2 --> X == C1-C2
4027         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4028           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4029             return
4030               DAG.getSetCC(dl, VT, N0.getOperand(1),
4031                            DAG.getConstant(SUBC->getAPIntValue() -
4032                                              RHSC->getAPIntValue(),
4033                                            dl, N0.getValueType()),
4034                            Cond);
4035           }
4036         }
4037 
4038         // Could RHSC fold directly into a compare?
4039         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4040           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4041       }
4042 
4043       // (X+Y) == X --> Y == 0 and similar folds.
4044       // Don't do this if X is an immediate that can fold into a cmp
4045       // instruction and X+Y has other uses. It could be an induction variable
4046       // chain, and the transform would increase register pressure.
4047       if (!LegalRHSImm || N0.hasOneUse())
4048         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4049           return V;
4050     }
4051 
4052     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4053         N1.getOpcode() == ISD::XOR)
4054       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4055         return V;
4056 
4057     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4058       return V;
4059   }
4060 
4061   // Fold remainder of division by a constant.
4062   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4063       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4064     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4065 
4066     // When division is cheap or optimizing for minimum size,
4067     // fall through to DIVREM creation by skipping this fold.
4068     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4069       if (N0.getOpcode() == ISD::UREM) {
4070         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4071           return Folded;
4072       } else if (N0.getOpcode() == ISD::SREM) {
4073         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4074           return Folded;
4075       }
4076     }
4077   }
4078 
4079   // Fold away ALL boolean setcc's.
4080   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4081     SDValue Temp;
4082     switch (Cond) {
4083     default: llvm_unreachable("Unknown integer setcc!");
4084     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4085       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4086       N0 = DAG.getNOT(dl, Temp, OpVT);
4087       if (!DCI.isCalledByLegalizer())
4088         DCI.AddToWorklist(Temp.getNode());
4089       break;
4090     case ISD::SETNE:  // X != Y   -->  (X^Y)
4091       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4092       break;
4093     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4094     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4095       Temp = DAG.getNOT(dl, N0, OpVT);
4096       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4097       if (!DCI.isCalledByLegalizer())
4098         DCI.AddToWorklist(Temp.getNode());
4099       break;
4100     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4101     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4102       Temp = DAG.getNOT(dl, N1, OpVT);
4103       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4104       if (!DCI.isCalledByLegalizer())
4105         DCI.AddToWorklist(Temp.getNode());
4106       break;
4107     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4108     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4109       Temp = DAG.getNOT(dl, N0, OpVT);
4110       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4111       if (!DCI.isCalledByLegalizer())
4112         DCI.AddToWorklist(Temp.getNode());
4113       break;
4114     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4115     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4116       Temp = DAG.getNOT(dl, N1, OpVT);
4117       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4118       break;
4119     }
4120     if (VT.getScalarType() != MVT::i1) {
4121       if (!DCI.isCalledByLegalizer())
4122         DCI.AddToWorklist(N0.getNode());
4123       // FIXME: If running after legalize, we probably can't do this.
4124       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4125       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4126     }
4127     return N0;
4128   }
4129 
4130   // Could not fold it.
4131   return SDValue();
4132 }
4133 
4134 /// Returns true (and the GlobalValue and the offset) if the node is a
4135 /// GlobalAddress + offset.
4136 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4137                                     int64_t &Offset) const {
4138 
4139   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4140 
4141   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4142     GA = GASD->getGlobal();
4143     Offset += GASD->getOffset();
4144     return true;
4145   }
4146 
4147   if (N->getOpcode() == ISD::ADD) {
4148     SDValue N1 = N->getOperand(0);
4149     SDValue N2 = N->getOperand(1);
4150     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4151       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4152         Offset += V->getSExtValue();
4153         return true;
4154       }
4155     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4156       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4157         Offset += V->getSExtValue();
4158         return true;
4159       }
4160     }
4161   }
4162 
4163   return false;
4164 }
4165 
4166 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4167                                           DAGCombinerInfo &DCI) const {
4168   // Default implementation: no optimization.
4169   return SDValue();
4170 }
4171 
4172 //===----------------------------------------------------------------------===//
4173 //  Inline Assembler Implementation Methods
4174 //===----------------------------------------------------------------------===//
4175 
4176 TargetLowering::ConstraintType
4177 TargetLowering::getConstraintType(StringRef Constraint) const {
4178   unsigned S = Constraint.size();
4179 
4180   if (S == 1) {
4181     switch (Constraint[0]) {
4182     default: break;
4183     case 'r':
4184       return C_RegisterClass;
4185     case 'm': // memory
4186     case 'o': // offsetable
4187     case 'V': // not offsetable
4188       return C_Memory;
4189     case 'n': // Simple Integer
4190     case 'E': // Floating Point Constant
4191     case 'F': // Floating Point Constant
4192       return C_Immediate;
4193     case 'i': // Simple Integer or Relocatable Constant
4194     case 's': // Relocatable Constant
4195     case 'p': // Address.
4196     case 'X': // Allow ANY value.
4197     case 'I': // Target registers.
4198     case 'J':
4199     case 'K':
4200     case 'L':
4201     case 'M':
4202     case 'N':
4203     case 'O':
4204     case 'P':
4205     case '<':
4206     case '>':
4207       return C_Other;
4208     }
4209   }
4210 
4211   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4212     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4213       return C_Memory;
4214     return C_Register;
4215   }
4216   return C_Unknown;
4217 }
4218 
4219 /// Try to replace an X constraint, which matches anything, with another that
4220 /// has more specific requirements based on the type of the corresponding
4221 /// operand.
4222 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4223   if (ConstraintVT.isInteger())
4224     return "r";
4225   if (ConstraintVT.isFloatingPoint())
4226     return "f"; // works for many targets
4227   return nullptr;
4228 }
4229 
4230 SDValue TargetLowering::LowerAsmOutputForConstraint(
4231     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4232     SelectionDAG &DAG) const {
4233   return SDValue();
4234 }
4235 
4236 /// Lower the specified operand into the Ops vector.
4237 /// If it is invalid, don't add anything to Ops.
4238 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4239                                                   std::string &Constraint,
4240                                                   std::vector<SDValue> &Ops,
4241                                                   SelectionDAG &DAG) const {
4242 
4243   if (Constraint.length() > 1) return;
4244 
4245   char ConstraintLetter = Constraint[0];
4246   switch (ConstraintLetter) {
4247   default: break;
4248   case 'X':     // Allows any operand; labels (basic block) use this.
4249     if (Op.getOpcode() == ISD::BasicBlock ||
4250         Op.getOpcode() == ISD::TargetBlockAddress) {
4251       Ops.push_back(Op);
4252       return;
4253     }
4254     LLVM_FALLTHROUGH;
4255   case 'i':    // Simple Integer or Relocatable Constant
4256   case 'n':    // Simple Integer
4257   case 's': {  // Relocatable Constant
4258 
4259     GlobalAddressSDNode *GA;
4260     ConstantSDNode *C;
4261     BlockAddressSDNode *BA;
4262     uint64_t Offset = 0;
4263 
4264     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4265     // etc., since getelementpointer is variadic. We can't use
4266     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4267     // while in this case the GA may be furthest from the root node which is
4268     // likely an ISD::ADD.
4269     while (1) {
4270       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4271         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4272                                                  GA->getValueType(0),
4273                                                  Offset + GA->getOffset()));
4274         return;
4275       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4276                  ConstraintLetter != 's') {
4277         // gcc prints these as sign extended.  Sign extend value to 64 bits
4278         // now; without this it would get ZExt'd later in
4279         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4280         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4281         BooleanContent BCont = getBooleanContents(MVT::i64);
4282         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4283                                       : ISD::SIGN_EXTEND;
4284         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4285                                                     : C->getSExtValue();
4286         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4287                                             SDLoc(C), MVT::i64));
4288         return;
4289       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4290                  ConstraintLetter != 'n') {
4291         Ops.push_back(DAG.getTargetBlockAddress(
4292             BA->getBlockAddress(), BA->getValueType(0),
4293             Offset + BA->getOffset(), BA->getTargetFlags()));
4294         return;
4295       } else {
4296         const unsigned OpCode = Op.getOpcode();
4297         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4298           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4299             Op = Op.getOperand(1);
4300           // Subtraction is not commutative.
4301           else if (OpCode == ISD::ADD &&
4302                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4303             Op = Op.getOperand(0);
4304           else
4305             return;
4306           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4307           continue;
4308         }
4309       }
4310       return;
4311     }
4312     break;
4313   }
4314   }
4315 }
4316 
4317 std::pair<unsigned, const TargetRegisterClass *>
4318 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4319                                              StringRef Constraint,
4320                                              MVT VT) const {
4321   if (Constraint.empty() || Constraint[0] != '{')
4322     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4323   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4324 
4325   // Remove the braces from around the name.
4326   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4327 
4328   std::pair<unsigned, const TargetRegisterClass *> R =
4329       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4330 
4331   // Figure out which register class contains this reg.
4332   for (const TargetRegisterClass *RC : RI->regclasses()) {
4333     // If none of the value types for this register class are valid, we
4334     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4335     if (!isLegalRC(*RI, *RC))
4336       continue;
4337 
4338     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4339          I != E; ++I) {
4340       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4341         std::pair<unsigned, const TargetRegisterClass *> S =
4342             std::make_pair(*I, RC);
4343 
4344         // If this register class has the requested value type, return it,
4345         // otherwise keep searching and return the first class found
4346         // if no other is found which explicitly has the requested type.
4347         if (RI->isTypeLegalForClass(*RC, VT))
4348           return S;
4349         if (!R.second)
4350           R = S;
4351       }
4352     }
4353   }
4354 
4355   return R;
4356 }
4357 
4358 //===----------------------------------------------------------------------===//
4359 // Constraint Selection.
4360 
4361 /// Return true of this is an input operand that is a matching constraint like
4362 /// "4".
4363 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4364   assert(!ConstraintCode.empty() && "No known constraint!");
4365   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4366 }
4367 
4368 /// If this is an input matching constraint, this method returns the output
4369 /// operand it matches.
4370 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4371   assert(!ConstraintCode.empty() && "No known constraint!");
4372   return atoi(ConstraintCode.c_str());
4373 }
4374 
4375 /// Split up the constraint string from the inline assembly value into the
4376 /// specific constraints and their prefixes, and also tie in the associated
4377 /// operand values.
4378 /// If this returns an empty vector, and if the constraint string itself
4379 /// isn't empty, there was an error parsing.
4380 TargetLowering::AsmOperandInfoVector
4381 TargetLowering::ParseConstraints(const DataLayout &DL,
4382                                  const TargetRegisterInfo *TRI,
4383                                  const CallBase &Call) const {
4384   /// Information about all of the constraints.
4385   AsmOperandInfoVector ConstraintOperands;
4386   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4387   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4388 
4389   // Do a prepass over the constraints, canonicalizing them, and building up the
4390   // ConstraintOperands list.
4391   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4392   unsigned ResNo = 0; // ResNo - The result number of the next output.
4393 
4394   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4395     ConstraintOperands.emplace_back(std::move(CI));
4396     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4397 
4398     // Update multiple alternative constraint count.
4399     if (OpInfo.multipleAlternatives.size() > maCount)
4400       maCount = OpInfo.multipleAlternatives.size();
4401 
4402     OpInfo.ConstraintVT = MVT::Other;
4403 
4404     // Compute the value type for each operand.
4405     switch (OpInfo.Type) {
4406     case InlineAsm::isOutput:
4407       // Indirect outputs just consume an argument.
4408       if (OpInfo.isIndirect) {
4409         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4410         break;
4411       }
4412 
4413       // The return value of the call is this value.  As such, there is no
4414       // corresponding argument.
4415       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4416       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4417         OpInfo.ConstraintVT =
4418             getSimpleValueType(DL, STy->getElementType(ResNo));
4419       } else {
4420         assert(ResNo == 0 && "Asm only has one result!");
4421         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4422       }
4423       ++ResNo;
4424       break;
4425     case InlineAsm::isInput:
4426       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4427       break;
4428     case InlineAsm::isClobber:
4429       // Nothing to do.
4430       break;
4431     }
4432 
4433     if (OpInfo.CallOperandVal) {
4434       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4435       if (OpInfo.isIndirect) {
4436         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4437         if (!PtrTy)
4438           report_fatal_error("Indirect operand for inline asm not a pointer!");
4439         OpTy = PtrTy->getElementType();
4440       }
4441 
4442       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4443       if (StructType *STy = dyn_cast<StructType>(OpTy))
4444         if (STy->getNumElements() == 1)
4445           OpTy = STy->getElementType(0);
4446 
4447       // If OpTy is not a single value, it may be a struct/union that we
4448       // can tile with integers.
4449       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4450         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4451         switch (BitSize) {
4452         default: break;
4453         case 1:
4454         case 8:
4455         case 16:
4456         case 32:
4457         case 64:
4458         case 128:
4459           OpInfo.ConstraintVT =
4460               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4461           break;
4462         }
4463       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4464         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4465         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4466       } else {
4467         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4468       }
4469     }
4470   }
4471 
4472   // If we have multiple alternative constraints, select the best alternative.
4473   if (!ConstraintOperands.empty()) {
4474     if (maCount) {
4475       unsigned bestMAIndex = 0;
4476       int bestWeight = -1;
4477       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4478       int weight = -1;
4479       unsigned maIndex;
4480       // Compute the sums of the weights for each alternative, keeping track
4481       // of the best (highest weight) one so far.
4482       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4483         int weightSum = 0;
4484         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4485              cIndex != eIndex; ++cIndex) {
4486           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4487           if (OpInfo.Type == InlineAsm::isClobber)
4488             continue;
4489 
4490           // If this is an output operand with a matching input operand,
4491           // look up the matching input. If their types mismatch, e.g. one
4492           // is an integer, the other is floating point, or their sizes are
4493           // different, flag it as an maCantMatch.
4494           if (OpInfo.hasMatchingInput()) {
4495             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4496             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4497               if ((OpInfo.ConstraintVT.isInteger() !=
4498                    Input.ConstraintVT.isInteger()) ||
4499                   (OpInfo.ConstraintVT.getSizeInBits() !=
4500                    Input.ConstraintVT.getSizeInBits())) {
4501                 weightSum = -1; // Can't match.
4502                 break;
4503               }
4504             }
4505           }
4506           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4507           if (weight == -1) {
4508             weightSum = -1;
4509             break;
4510           }
4511           weightSum += weight;
4512         }
4513         // Update best.
4514         if (weightSum > bestWeight) {
4515           bestWeight = weightSum;
4516           bestMAIndex = maIndex;
4517         }
4518       }
4519 
4520       // Now select chosen alternative in each constraint.
4521       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4522            cIndex != eIndex; ++cIndex) {
4523         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4524         if (cInfo.Type == InlineAsm::isClobber)
4525           continue;
4526         cInfo.selectAlternative(bestMAIndex);
4527       }
4528     }
4529   }
4530 
4531   // Check and hook up tied operands, choose constraint code to use.
4532   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4533        cIndex != eIndex; ++cIndex) {
4534     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4535 
4536     // If this is an output operand with a matching input operand, look up the
4537     // matching input. If their types mismatch, e.g. one is an integer, the
4538     // other is floating point, or their sizes are different, flag it as an
4539     // error.
4540     if (OpInfo.hasMatchingInput()) {
4541       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4542 
4543       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4544         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4545             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4546                                          OpInfo.ConstraintVT);
4547         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4548             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4549                                          Input.ConstraintVT);
4550         if ((OpInfo.ConstraintVT.isInteger() !=
4551              Input.ConstraintVT.isInteger()) ||
4552             (MatchRC.second != InputRC.second)) {
4553           report_fatal_error("Unsupported asm: input constraint"
4554                              " with a matching output constraint of"
4555                              " incompatible type!");
4556         }
4557       }
4558     }
4559   }
4560 
4561   return ConstraintOperands;
4562 }
4563 
4564 /// Return an integer indicating how general CT is.
4565 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4566   switch (CT) {
4567   case TargetLowering::C_Immediate:
4568   case TargetLowering::C_Other:
4569   case TargetLowering::C_Unknown:
4570     return 0;
4571   case TargetLowering::C_Register:
4572     return 1;
4573   case TargetLowering::C_RegisterClass:
4574     return 2;
4575   case TargetLowering::C_Memory:
4576     return 3;
4577   }
4578   llvm_unreachable("Invalid constraint type");
4579 }
4580 
4581 /// Examine constraint type and operand type and determine a weight value.
4582 /// This object must already have been set up with the operand type
4583 /// and the current alternative constraint selected.
4584 TargetLowering::ConstraintWeight
4585   TargetLowering::getMultipleConstraintMatchWeight(
4586     AsmOperandInfo &info, int maIndex) const {
4587   InlineAsm::ConstraintCodeVector *rCodes;
4588   if (maIndex >= (int)info.multipleAlternatives.size())
4589     rCodes = &info.Codes;
4590   else
4591     rCodes = &info.multipleAlternatives[maIndex].Codes;
4592   ConstraintWeight BestWeight = CW_Invalid;
4593 
4594   // Loop over the options, keeping track of the most general one.
4595   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4596     ConstraintWeight weight =
4597       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4598     if (weight > BestWeight)
4599       BestWeight = weight;
4600   }
4601 
4602   return BestWeight;
4603 }
4604 
4605 /// Examine constraint type and operand type and determine a weight value.
4606 /// This object must already have been set up with the operand type
4607 /// and the current alternative constraint selected.
4608 TargetLowering::ConstraintWeight
4609   TargetLowering::getSingleConstraintMatchWeight(
4610     AsmOperandInfo &info, const char *constraint) const {
4611   ConstraintWeight weight = CW_Invalid;
4612   Value *CallOperandVal = info.CallOperandVal;
4613     // If we don't have a value, we can't do a match,
4614     // but allow it at the lowest weight.
4615   if (!CallOperandVal)
4616     return CW_Default;
4617   // Look at the constraint type.
4618   switch (*constraint) {
4619     case 'i': // immediate integer.
4620     case 'n': // immediate integer with a known value.
4621       if (isa<ConstantInt>(CallOperandVal))
4622         weight = CW_Constant;
4623       break;
4624     case 's': // non-explicit intregal immediate.
4625       if (isa<GlobalValue>(CallOperandVal))
4626         weight = CW_Constant;
4627       break;
4628     case 'E': // immediate float if host format.
4629     case 'F': // immediate float.
4630       if (isa<ConstantFP>(CallOperandVal))
4631         weight = CW_Constant;
4632       break;
4633     case '<': // memory operand with autodecrement.
4634     case '>': // memory operand with autoincrement.
4635     case 'm': // memory operand.
4636     case 'o': // offsettable memory operand
4637     case 'V': // non-offsettable memory operand
4638       weight = CW_Memory;
4639       break;
4640     case 'r': // general register.
4641     case 'g': // general register, memory operand or immediate integer.
4642               // note: Clang converts "g" to "imr".
4643       if (CallOperandVal->getType()->isIntegerTy())
4644         weight = CW_Register;
4645       break;
4646     case 'X': // any operand.
4647   default:
4648     weight = CW_Default;
4649     break;
4650   }
4651   return weight;
4652 }
4653 
4654 /// If there are multiple different constraints that we could pick for this
4655 /// operand (e.g. "imr") try to pick the 'best' one.
4656 /// This is somewhat tricky: constraints fall into four classes:
4657 ///    Other         -> immediates and magic values
4658 ///    Register      -> one specific register
4659 ///    RegisterClass -> a group of regs
4660 ///    Memory        -> memory
4661 /// Ideally, we would pick the most specific constraint possible: if we have
4662 /// something that fits into a register, we would pick it.  The problem here
4663 /// is that if we have something that could either be in a register or in
4664 /// memory that use of the register could cause selection of *other*
4665 /// operands to fail: they might only succeed if we pick memory.  Because of
4666 /// this the heuristic we use is:
4667 ///
4668 ///  1) If there is an 'other' constraint, and if the operand is valid for
4669 ///     that constraint, use it.  This makes us take advantage of 'i'
4670 ///     constraints when available.
4671 ///  2) Otherwise, pick the most general constraint present.  This prefers
4672 ///     'm' over 'r', for example.
4673 ///
4674 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4675                              const TargetLowering &TLI,
4676                              SDValue Op, SelectionDAG *DAG) {
4677   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4678   unsigned BestIdx = 0;
4679   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4680   int BestGenerality = -1;
4681 
4682   // Loop over the options, keeping track of the most general one.
4683   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4684     TargetLowering::ConstraintType CType =
4685       TLI.getConstraintType(OpInfo.Codes[i]);
4686 
4687     // Indirect 'other' or 'immediate' constraints are not allowed.
4688     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4689                                CType == TargetLowering::C_Register ||
4690                                CType == TargetLowering::C_RegisterClass))
4691       continue;
4692 
4693     // If this is an 'other' or 'immediate' constraint, see if the operand is
4694     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4695     // the operand is an integer in the range [0..31] we want to use I (saving a
4696     // load of a register), otherwise we must use 'r'.
4697     if ((CType == TargetLowering::C_Other ||
4698          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4699       assert(OpInfo.Codes[i].size() == 1 &&
4700              "Unhandled multi-letter 'other' constraint");
4701       std::vector<SDValue> ResultOps;
4702       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4703                                        ResultOps, *DAG);
4704       if (!ResultOps.empty()) {
4705         BestType = CType;
4706         BestIdx = i;
4707         break;
4708       }
4709     }
4710 
4711     // Things with matching constraints can only be registers, per gcc
4712     // documentation.  This mainly affects "g" constraints.
4713     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4714       continue;
4715 
4716     // This constraint letter is more general than the previous one, use it.
4717     int Generality = getConstraintGenerality(CType);
4718     if (Generality > BestGenerality) {
4719       BestType = CType;
4720       BestIdx = i;
4721       BestGenerality = Generality;
4722     }
4723   }
4724 
4725   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4726   OpInfo.ConstraintType = BestType;
4727 }
4728 
4729 /// Determines the constraint code and constraint type to use for the specific
4730 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4731 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4732                                             SDValue Op,
4733                                             SelectionDAG *DAG) const {
4734   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4735 
4736   // Single-letter constraints ('r') are very common.
4737   if (OpInfo.Codes.size() == 1) {
4738     OpInfo.ConstraintCode = OpInfo.Codes[0];
4739     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4740   } else {
4741     ChooseConstraint(OpInfo, *this, Op, DAG);
4742   }
4743 
4744   // 'X' matches anything.
4745   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4746     // Labels and constants are handled elsewhere ('X' is the only thing
4747     // that matches labels).  For Functions, the type here is the type of
4748     // the result, which is not what we want to look at; leave them alone.
4749     Value *v = OpInfo.CallOperandVal;
4750     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4751       OpInfo.CallOperandVal = v;
4752       return;
4753     }
4754 
4755     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4756       return;
4757 
4758     // Otherwise, try to resolve it to something we know about by looking at
4759     // the actual operand type.
4760     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4761       OpInfo.ConstraintCode = Repl;
4762       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4763     }
4764   }
4765 }
4766 
4767 /// Given an exact SDIV by a constant, create a multiplication
4768 /// with the multiplicative inverse of the constant.
4769 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4770                               const SDLoc &dl, SelectionDAG &DAG,
4771                               SmallVectorImpl<SDNode *> &Created) {
4772   SDValue Op0 = N->getOperand(0);
4773   SDValue Op1 = N->getOperand(1);
4774   EVT VT = N->getValueType(0);
4775   EVT SVT = VT.getScalarType();
4776   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4777   EVT ShSVT = ShVT.getScalarType();
4778 
4779   bool UseSRA = false;
4780   SmallVector<SDValue, 16> Shifts, Factors;
4781 
4782   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4783     if (C->isNullValue())
4784       return false;
4785     APInt Divisor = C->getAPIntValue();
4786     unsigned Shift = Divisor.countTrailingZeros();
4787     if (Shift) {
4788       Divisor.ashrInPlace(Shift);
4789       UseSRA = true;
4790     }
4791     // Calculate the multiplicative inverse, using Newton's method.
4792     APInt t;
4793     APInt Factor = Divisor;
4794     while ((t = Divisor * Factor) != 1)
4795       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4796     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4797     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4798     return true;
4799   };
4800 
4801   // Collect all magic values from the build vector.
4802   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4803     return SDValue();
4804 
4805   SDValue Shift, Factor;
4806   if (VT.isVector()) {
4807     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4808     Factor = DAG.getBuildVector(VT, dl, Factors);
4809   } else {
4810     Shift = Shifts[0];
4811     Factor = Factors[0];
4812   }
4813 
4814   SDValue Res = Op0;
4815 
4816   // Shift the value upfront if it is even, so the LSB is one.
4817   if (UseSRA) {
4818     // TODO: For UDIV use SRL instead of SRA.
4819     SDNodeFlags Flags;
4820     Flags.setExact(true);
4821     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4822     Created.push_back(Res.getNode());
4823   }
4824 
4825   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4826 }
4827 
4828 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4829                               SelectionDAG &DAG,
4830                               SmallVectorImpl<SDNode *> &Created) const {
4831   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4833   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4834     return SDValue(N, 0); // Lower SDIV as SDIV
4835   return SDValue();
4836 }
4837 
4838 /// Given an ISD::SDIV node expressing a divide by constant,
4839 /// return a DAG expression to select that will generate the same value by
4840 /// multiplying by a magic number.
4841 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4842 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4843                                   bool IsAfterLegalization,
4844                                   SmallVectorImpl<SDNode *> &Created) const {
4845   SDLoc dl(N);
4846   EVT VT = N->getValueType(0);
4847   EVT SVT = VT.getScalarType();
4848   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4849   EVT ShSVT = ShVT.getScalarType();
4850   unsigned EltBits = VT.getScalarSizeInBits();
4851 
4852   // Check to see if we can do this.
4853   // FIXME: We should be more aggressive here.
4854   if (!isTypeLegal(VT))
4855     return SDValue();
4856 
4857   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4858   if (N->getFlags().hasExact())
4859     return BuildExactSDIV(*this, N, dl, DAG, Created);
4860 
4861   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4862 
4863   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4864     if (C->isNullValue())
4865       return false;
4866 
4867     const APInt &Divisor = C->getAPIntValue();
4868     APInt::ms magics = Divisor.magic();
4869     int NumeratorFactor = 0;
4870     int ShiftMask = -1;
4871 
4872     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4873       // If d is +1/-1, we just multiply the numerator by +1/-1.
4874       NumeratorFactor = Divisor.getSExtValue();
4875       magics.m = 0;
4876       magics.s = 0;
4877       ShiftMask = 0;
4878     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4879       // If d > 0 and m < 0, add the numerator.
4880       NumeratorFactor = 1;
4881     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4882       // If d < 0 and m > 0, subtract the numerator.
4883       NumeratorFactor = -1;
4884     }
4885 
4886     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4887     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4888     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4889     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4890     return true;
4891   };
4892 
4893   SDValue N0 = N->getOperand(0);
4894   SDValue N1 = N->getOperand(1);
4895 
4896   // Collect the shifts / magic values from each element.
4897   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4898     return SDValue();
4899 
4900   SDValue MagicFactor, Factor, Shift, ShiftMask;
4901   if (VT.isVector()) {
4902     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4903     Factor = DAG.getBuildVector(VT, dl, Factors);
4904     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4905     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4906   } else {
4907     MagicFactor = MagicFactors[0];
4908     Factor = Factors[0];
4909     Shift = Shifts[0];
4910     ShiftMask = ShiftMasks[0];
4911   }
4912 
4913   // Multiply the numerator (operand 0) by the magic value.
4914   // FIXME: We should support doing a MUL in a wider type.
4915   SDValue Q;
4916   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4917                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4918     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4919   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4920                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4921     SDValue LoHi =
4922         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4923     Q = SDValue(LoHi.getNode(), 1);
4924   } else
4925     return SDValue(); // No mulhs or equivalent.
4926   Created.push_back(Q.getNode());
4927 
4928   // (Optionally) Add/subtract the numerator using Factor.
4929   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4930   Created.push_back(Factor.getNode());
4931   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4932   Created.push_back(Q.getNode());
4933 
4934   // Shift right algebraic by shift value.
4935   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4936   Created.push_back(Q.getNode());
4937 
4938   // Extract the sign bit, mask it and add it to the quotient.
4939   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4940   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4941   Created.push_back(T.getNode());
4942   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4943   Created.push_back(T.getNode());
4944   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4945 }
4946 
4947 /// Given an ISD::UDIV node expressing a divide by constant,
4948 /// return a DAG expression to select that will generate the same value by
4949 /// multiplying by a magic number.
4950 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4951 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4952                                   bool IsAfterLegalization,
4953                                   SmallVectorImpl<SDNode *> &Created) const {
4954   SDLoc dl(N);
4955   EVT VT = N->getValueType(0);
4956   EVT SVT = VT.getScalarType();
4957   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4958   EVT ShSVT = ShVT.getScalarType();
4959   unsigned EltBits = VT.getScalarSizeInBits();
4960 
4961   // Check to see if we can do this.
4962   // FIXME: We should be more aggressive here.
4963   if (!isTypeLegal(VT))
4964     return SDValue();
4965 
4966   bool UseNPQ = false;
4967   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4968 
4969   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4970     if (C->isNullValue())
4971       return false;
4972     // FIXME: We should use a narrower constant when the upper
4973     // bits are known to be zero.
4974     APInt Divisor = C->getAPIntValue();
4975     APInt::mu magics = Divisor.magicu();
4976     unsigned PreShift = 0, PostShift = 0;
4977 
4978     // If the divisor is even, we can avoid using the expensive fixup by
4979     // shifting the divided value upfront.
4980     if (magics.a != 0 && !Divisor[0]) {
4981       PreShift = Divisor.countTrailingZeros();
4982       // Get magic number for the shifted divisor.
4983       magics = Divisor.lshr(PreShift).magicu(PreShift);
4984       assert(magics.a == 0 && "Should use cheap fixup now");
4985     }
4986 
4987     APInt Magic = magics.m;
4988 
4989     unsigned SelNPQ;
4990     if (magics.a == 0 || Divisor.isOneValue()) {
4991       assert(magics.s < Divisor.getBitWidth() &&
4992              "We shouldn't generate an undefined shift!");
4993       PostShift = magics.s;
4994       SelNPQ = false;
4995     } else {
4996       PostShift = magics.s - 1;
4997       SelNPQ = true;
4998     }
4999 
5000     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5001     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5002     NPQFactors.push_back(
5003         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5004                                : APInt::getNullValue(EltBits),
5005                         dl, SVT));
5006     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5007     UseNPQ |= SelNPQ;
5008     return true;
5009   };
5010 
5011   SDValue N0 = N->getOperand(0);
5012   SDValue N1 = N->getOperand(1);
5013 
5014   // Collect the shifts/magic values from each element.
5015   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5016     return SDValue();
5017 
5018   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5019   if (VT.isVector()) {
5020     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5021     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5022     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5023     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5024   } else {
5025     PreShift = PreShifts[0];
5026     MagicFactor = MagicFactors[0];
5027     PostShift = PostShifts[0];
5028   }
5029 
5030   SDValue Q = N0;
5031   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5032   Created.push_back(Q.getNode());
5033 
5034   // FIXME: We should support doing a MUL in a wider type.
5035   auto GetMULHU = [&](SDValue X, SDValue Y) {
5036     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5037                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5038       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5039     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5040                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5041       SDValue LoHi =
5042           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5043       return SDValue(LoHi.getNode(), 1);
5044     }
5045     return SDValue(); // No mulhu or equivalent
5046   };
5047 
5048   // Multiply the numerator (operand 0) by the magic value.
5049   Q = GetMULHU(Q, MagicFactor);
5050   if (!Q)
5051     return SDValue();
5052 
5053   Created.push_back(Q.getNode());
5054 
5055   if (UseNPQ) {
5056     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5057     Created.push_back(NPQ.getNode());
5058 
5059     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5060     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5061     if (VT.isVector())
5062       NPQ = GetMULHU(NPQ, NPQFactor);
5063     else
5064       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5065 
5066     Created.push_back(NPQ.getNode());
5067 
5068     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5069     Created.push_back(Q.getNode());
5070   }
5071 
5072   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5073   Created.push_back(Q.getNode());
5074 
5075   SDValue One = DAG.getConstant(1, dl, VT);
5076   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5077   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5078 }
5079 
5080 /// If all values in Values that *don't* match the predicate are same 'splat'
5081 /// value, then replace all values with that splat value.
5082 /// Else, if AlternativeReplacement was provided, then replace all values that
5083 /// do match predicate with AlternativeReplacement value.
5084 static void
5085 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5086                           std::function<bool(SDValue)> Predicate,
5087                           SDValue AlternativeReplacement = SDValue()) {
5088   SDValue Replacement;
5089   // Is there a value for which the Predicate does *NOT* match? What is it?
5090   auto SplatValue = llvm::find_if_not(Values, Predicate);
5091   if (SplatValue != Values.end()) {
5092     // Does Values consist only of SplatValue's and values matching Predicate?
5093     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5094           return Value == *SplatValue || Predicate(Value);
5095         })) // Then we shall replace values matching predicate with SplatValue.
5096       Replacement = *SplatValue;
5097   }
5098   if (!Replacement) {
5099     // Oops, we did not find the "baseline" splat value.
5100     if (!AlternativeReplacement)
5101       return; // Nothing to do.
5102     // Let's replace with provided value then.
5103     Replacement = AlternativeReplacement;
5104   }
5105   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5106 }
5107 
5108 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5109 /// where the divisor is constant and the comparison target is zero,
5110 /// return a DAG expression that will generate the same comparison result
5111 /// using only multiplications, additions and shifts/rotations.
5112 /// Ref: "Hacker's Delight" 10-17.
5113 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5114                                         SDValue CompTargetNode,
5115                                         ISD::CondCode Cond,
5116                                         DAGCombinerInfo &DCI,
5117                                         const SDLoc &DL) const {
5118   SmallVector<SDNode *, 5> Built;
5119   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5120                                          DCI, DL, Built)) {
5121     for (SDNode *N : Built)
5122       DCI.AddToWorklist(N);
5123     return Folded;
5124   }
5125 
5126   return SDValue();
5127 }
5128 
5129 SDValue
5130 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5131                                   SDValue CompTargetNode, ISD::CondCode Cond,
5132                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5133                                   SmallVectorImpl<SDNode *> &Created) const {
5134   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5135   // - D must be constant, with D = D0 * 2^K where D0 is odd
5136   // - P is the multiplicative inverse of D0 modulo 2^W
5137   // - Q = floor(((2^W) - 1) / D)
5138   // where W is the width of the common type of N and D.
5139   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5140          "Only applicable for (in)equality comparisons.");
5141 
5142   SelectionDAG &DAG = DCI.DAG;
5143 
5144   EVT VT = REMNode.getValueType();
5145   EVT SVT = VT.getScalarType();
5146   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5147   EVT ShSVT = ShVT.getScalarType();
5148 
5149   // If MUL is unavailable, we cannot proceed in any case.
5150   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5151     return SDValue();
5152 
5153   bool ComparingWithAllZeros = true;
5154   bool AllComparisonsWithNonZerosAreTautological = true;
5155   bool HadTautologicalLanes = false;
5156   bool AllLanesAreTautological = true;
5157   bool HadEvenDivisor = false;
5158   bool AllDivisorsArePowerOfTwo = true;
5159   bool HadTautologicalInvertedLanes = false;
5160   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5161 
5162   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5163     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5164     if (CDiv->isNullValue())
5165       return false;
5166 
5167     const APInt &D = CDiv->getAPIntValue();
5168     const APInt &Cmp = CCmp->getAPIntValue();
5169 
5170     ComparingWithAllZeros &= Cmp.isNullValue();
5171 
5172     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5173     // if C2 is not less than C1, the comparison is always false.
5174     // But we will only be able to produce the comparison that will give the
5175     // opposive tautological answer. So this lane would need to be fixed up.
5176     bool TautologicalInvertedLane = D.ule(Cmp);
5177     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5178 
5179     // If all lanes are tautological (either all divisors are ones, or divisor
5180     // is not greater than the constant we are comparing with),
5181     // we will prefer to avoid the fold.
5182     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5183     HadTautologicalLanes |= TautologicalLane;
5184     AllLanesAreTautological &= TautologicalLane;
5185 
5186     // If we are comparing with non-zero, we need'll need  to subtract said
5187     // comparison value from the LHS. But there is no point in doing that if
5188     // every lane where we are comparing with non-zero is tautological..
5189     if (!Cmp.isNullValue())
5190       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5191 
5192     // Decompose D into D0 * 2^K
5193     unsigned K = D.countTrailingZeros();
5194     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5195     APInt D0 = D.lshr(K);
5196 
5197     // D is even if it has trailing zeros.
5198     HadEvenDivisor |= (K != 0);
5199     // D is a power-of-two if D0 is one.
5200     // If all divisors are power-of-two, we will prefer to avoid the fold.
5201     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5202 
5203     // P = inv(D0, 2^W)
5204     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5205     unsigned W = D.getBitWidth();
5206     APInt P = D0.zext(W + 1)
5207                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5208                   .trunc(W);
5209     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5210     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5211 
5212     // Q = floor((2^W - 1) u/ D)
5213     // R = ((2^W - 1) u% D)
5214     APInt Q, R;
5215     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5216 
5217     // If we are comparing with zero, then that comparison constant is okay,
5218     // else it may need to be one less than that.
5219     if (Cmp.ugt(R))
5220       Q -= 1;
5221 
5222     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5223            "We are expecting that K is always less than all-ones for ShSVT");
5224 
5225     // If the lane is tautological the result can be constant-folded.
5226     if (TautologicalLane) {
5227       // Set P and K amount to a bogus values so we can try to splat them.
5228       P = 0;
5229       K = -1;
5230       // And ensure that comparison constant is tautological,
5231       // it will always compare true/false.
5232       Q = -1;
5233     }
5234 
5235     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5236     KAmts.push_back(
5237         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5238     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5239     return true;
5240   };
5241 
5242   SDValue N = REMNode.getOperand(0);
5243   SDValue D = REMNode.getOperand(1);
5244 
5245   // Collect the values from each element.
5246   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5247     return SDValue();
5248 
5249   // If all lanes are tautological, the result can be constant-folded.
5250   if (AllLanesAreTautological)
5251     return SDValue();
5252 
5253   // If this is a urem by a powers-of-two, avoid the fold since it can be
5254   // best implemented as a bit test.
5255   if (AllDivisorsArePowerOfTwo)
5256     return SDValue();
5257 
5258   SDValue PVal, KVal, QVal;
5259   if (VT.isVector()) {
5260     if (HadTautologicalLanes) {
5261       // Try to turn PAmts into a splat, since we don't care about the values
5262       // that are currently '0'. If we can't, just keep '0'`s.
5263       turnVectorIntoSplatVector(PAmts, isNullConstant);
5264       // Try to turn KAmts into a splat, since we don't care about the values
5265       // that are currently '-1'. If we can't, change them to '0'`s.
5266       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5267                                 DAG.getConstant(0, DL, ShSVT));
5268     }
5269 
5270     PVal = DAG.getBuildVector(VT, DL, PAmts);
5271     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5272     QVal = DAG.getBuildVector(VT, DL, QAmts);
5273   } else {
5274     PVal = PAmts[0];
5275     KVal = KAmts[0];
5276     QVal = QAmts[0];
5277   }
5278 
5279   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5280     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5281       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5282     assert(CompTargetNode.getValueType() == N.getValueType() &&
5283            "Expecting that the types on LHS and RHS of comparisons match.");
5284     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5285   }
5286 
5287   // (mul N, P)
5288   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5289   Created.push_back(Op0.getNode());
5290 
5291   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5292   // divisors as a performance improvement, since rotating by 0 is a no-op.
5293   if (HadEvenDivisor) {
5294     // We need ROTR to do this.
5295     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5296       return SDValue();
5297     SDNodeFlags Flags;
5298     Flags.setExact(true);
5299     // UREM: (rotr (mul N, P), K)
5300     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5301     Created.push_back(Op0.getNode());
5302   }
5303 
5304   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5305   SDValue NewCC =
5306       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5307                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5308   if (!HadTautologicalInvertedLanes)
5309     return NewCC;
5310 
5311   // If any lanes previously compared always-false, the NewCC will give
5312   // always-true result for them, so we need to fixup those lanes.
5313   // Or the other way around for inequality predicate.
5314   assert(VT.isVector() && "Can/should only get here for vectors.");
5315   Created.push_back(NewCC.getNode());
5316 
5317   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5318   // if C2 is not less than C1, the comparison is always false.
5319   // But we have produced the comparison that will give the
5320   // opposive tautological answer. So these lanes would need to be fixed up.
5321   SDValue TautologicalInvertedChannels =
5322       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5323   Created.push_back(TautologicalInvertedChannels.getNode());
5324 
5325   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5326     // If we have a vector select, let's replace the comparison results in the
5327     // affected lanes with the correct tautological result.
5328     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5329                                               DL, SETCCVT, SETCCVT);
5330     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5331                        Replacement, NewCC);
5332   }
5333 
5334   // Else, we can just invert the comparison result in the appropriate lanes.
5335   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5336     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5337                        TautologicalInvertedChannels);
5338 
5339   return SDValue(); // Don't know how to lower.
5340 }
5341 
5342 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5343 /// where the divisor is constant and the comparison target is zero,
5344 /// return a DAG expression that will generate the same comparison result
5345 /// using only multiplications, additions and shifts/rotations.
5346 /// Ref: "Hacker's Delight" 10-17.
5347 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5348                                         SDValue CompTargetNode,
5349                                         ISD::CondCode Cond,
5350                                         DAGCombinerInfo &DCI,
5351                                         const SDLoc &DL) const {
5352   SmallVector<SDNode *, 7> Built;
5353   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5354                                          DCI, DL, Built)) {
5355     assert(Built.size() <= 7 && "Max size prediction failed.");
5356     for (SDNode *N : Built)
5357       DCI.AddToWorklist(N);
5358     return Folded;
5359   }
5360 
5361   return SDValue();
5362 }
5363 
5364 SDValue
5365 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5366                                   SDValue CompTargetNode, ISD::CondCode Cond,
5367                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5368                                   SmallVectorImpl<SDNode *> &Created) const {
5369   // Fold:
5370   //   (seteq/ne (srem N, D), 0)
5371   // To:
5372   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5373   //
5374   // - D must be constant, with D = D0 * 2^K where D0 is odd
5375   // - P is the multiplicative inverse of D0 modulo 2^W
5376   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5377   // - Q = floor((2 * A) / (2^K))
5378   // where W is the width of the common type of N and D.
5379   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5380          "Only applicable for (in)equality comparisons.");
5381 
5382   SelectionDAG &DAG = DCI.DAG;
5383 
5384   EVT VT = REMNode.getValueType();
5385   EVT SVT = VT.getScalarType();
5386   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5387   EVT ShSVT = ShVT.getScalarType();
5388 
5389   // If MUL is unavailable, we cannot proceed in any case.
5390   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5391     return SDValue();
5392 
5393   // TODO: Could support comparing with non-zero too.
5394   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5395   if (!CompTarget || !CompTarget->isNullValue())
5396     return SDValue();
5397 
5398   bool HadIntMinDivisor = false;
5399   bool HadOneDivisor = false;
5400   bool AllDivisorsAreOnes = true;
5401   bool HadEvenDivisor = false;
5402   bool NeedToApplyOffset = false;
5403   bool AllDivisorsArePowerOfTwo = true;
5404   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5405 
5406   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5407     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5408     if (C->isNullValue())
5409       return false;
5410 
5411     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5412 
5413     // WARNING: this fold is only valid for positive divisors!
5414     APInt D = C->getAPIntValue();
5415     if (D.isNegative())
5416       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5417 
5418     HadIntMinDivisor |= D.isMinSignedValue();
5419 
5420     // If all divisors are ones, we will prefer to avoid the fold.
5421     HadOneDivisor |= D.isOneValue();
5422     AllDivisorsAreOnes &= D.isOneValue();
5423 
5424     // Decompose D into D0 * 2^K
5425     unsigned K = D.countTrailingZeros();
5426     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5427     APInt D0 = D.lshr(K);
5428 
5429     if (!D.isMinSignedValue()) {
5430       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5431       // we don't care about this lane in this fold, we'll special-handle it.
5432       HadEvenDivisor |= (K != 0);
5433     }
5434 
5435     // D is a power-of-two if D0 is one. This includes INT_MIN.
5436     // If all divisors are power-of-two, we will prefer to avoid the fold.
5437     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5438 
5439     // P = inv(D0, 2^W)
5440     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5441     unsigned W = D.getBitWidth();
5442     APInt P = D0.zext(W + 1)
5443                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5444                   .trunc(W);
5445     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5446     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5447 
5448     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5449     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5450     A.clearLowBits(K);
5451 
5452     if (!D.isMinSignedValue()) {
5453       // If divisor INT_MIN, then we don't care about this lane in this fold,
5454       // we'll special-handle it.
5455       NeedToApplyOffset |= A != 0;
5456     }
5457 
5458     // Q = floor((2 * A) / (2^K))
5459     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5460 
5461     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5462            "We are expecting that A is always less than all-ones for SVT");
5463     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5464            "We are expecting that K is always less than all-ones for ShSVT");
5465 
5466     // If the divisor is 1 the result can be constant-folded. Likewise, we
5467     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5468     if (D.isOneValue()) {
5469       // Set P, A and K to a bogus values so we can try to splat them.
5470       P = 0;
5471       A = -1;
5472       K = -1;
5473 
5474       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5475       Q = -1;
5476     }
5477 
5478     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5479     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5480     KAmts.push_back(
5481         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5482     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5483     return true;
5484   };
5485 
5486   SDValue N = REMNode.getOperand(0);
5487   SDValue D = REMNode.getOperand(1);
5488 
5489   // Collect the values from each element.
5490   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5491     return SDValue();
5492 
5493   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5494   if (AllDivisorsAreOnes)
5495     return SDValue();
5496 
5497   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5498   // since it can be best implemented as a bit test.
5499   if (AllDivisorsArePowerOfTwo)
5500     return SDValue();
5501 
5502   SDValue PVal, AVal, KVal, QVal;
5503   if (VT.isVector()) {
5504     if (HadOneDivisor) {
5505       // Try to turn PAmts into a splat, since we don't care about the values
5506       // that are currently '0'. If we can't, just keep '0'`s.
5507       turnVectorIntoSplatVector(PAmts, isNullConstant);
5508       // Try to turn AAmts into a splat, since we don't care about the
5509       // values that are currently '-1'. If we can't, change them to '0'`s.
5510       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5511                                 DAG.getConstant(0, DL, SVT));
5512       // Try to turn KAmts into a splat, since we don't care about the values
5513       // that are currently '-1'. If we can't, change them to '0'`s.
5514       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5515                                 DAG.getConstant(0, DL, ShSVT));
5516     }
5517 
5518     PVal = DAG.getBuildVector(VT, DL, PAmts);
5519     AVal = DAG.getBuildVector(VT, DL, AAmts);
5520     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5521     QVal = DAG.getBuildVector(VT, DL, QAmts);
5522   } else {
5523     PVal = PAmts[0];
5524     AVal = AAmts[0];
5525     KVal = KAmts[0];
5526     QVal = QAmts[0];
5527   }
5528 
5529   // (mul N, P)
5530   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5531   Created.push_back(Op0.getNode());
5532 
5533   if (NeedToApplyOffset) {
5534     // We need ADD to do this.
5535     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5536       return SDValue();
5537 
5538     // (add (mul N, P), A)
5539     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5540     Created.push_back(Op0.getNode());
5541   }
5542 
5543   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5544   // divisors as a performance improvement, since rotating by 0 is a no-op.
5545   if (HadEvenDivisor) {
5546     // We need ROTR to do this.
5547     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5548       return SDValue();
5549     SDNodeFlags Flags;
5550     Flags.setExact(true);
5551     // SREM: (rotr (add (mul N, P), A), K)
5552     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5553     Created.push_back(Op0.getNode());
5554   }
5555 
5556   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5557   SDValue Fold =
5558       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5559                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5560 
5561   // If we didn't have lanes with INT_MIN divisor, then we're done.
5562   if (!HadIntMinDivisor)
5563     return Fold;
5564 
5565   // That fold is only valid for positive divisors. Which effectively means,
5566   // it is invalid for INT_MIN divisors. So if we have such a lane,
5567   // we must fix-up results for said lanes.
5568   assert(VT.isVector() && "Can/should only get here for vectors.");
5569 
5570   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5571       !isOperationLegalOrCustom(ISD::AND, VT) ||
5572       !isOperationLegalOrCustom(Cond, VT) ||
5573       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5574     return SDValue();
5575 
5576   Created.push_back(Fold.getNode());
5577 
5578   SDValue IntMin = DAG.getConstant(
5579       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5580   SDValue IntMax = DAG.getConstant(
5581       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5582   SDValue Zero =
5583       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5584 
5585   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5586   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5587   Created.push_back(DivisorIsIntMin.getNode());
5588 
5589   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5590   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5591   Created.push_back(Masked.getNode());
5592   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5593   Created.push_back(MaskedIsZero.getNode());
5594 
5595   // To produce final result we need to blend 2 vectors: 'SetCC' and
5596   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5597   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5598   // constant-folded, select can get lowered to a shuffle with constant mask.
5599   SDValue Blended =
5600       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5601 
5602   return Blended;
5603 }
5604 
5605 bool TargetLowering::
5606 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5607   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5608     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5609                                 "be a constant integer");
5610     return true;
5611   }
5612 
5613   return false;
5614 }
5615 
5616 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5617                                              bool LegalOps, bool OptForSize,
5618                                              NegatibleCost &Cost,
5619                                              unsigned Depth) const {
5620   // fneg is removable even if it has multiple uses.
5621   if (Op.getOpcode() == ISD::FNEG) {
5622     Cost = NegatibleCost::Cheaper;
5623     return Op.getOperand(0);
5624   }
5625 
5626   // Don't recurse exponentially.
5627   if (Depth > SelectionDAG::MaxRecursionDepth)
5628     return SDValue();
5629 
5630   // Pre-increment recursion depth for use in recursive calls.
5631   ++Depth;
5632   const SDNodeFlags Flags = Op->getFlags();
5633   const TargetOptions &Options = DAG.getTarget().Options;
5634   EVT VT = Op.getValueType();
5635   unsigned Opcode = Op.getOpcode();
5636 
5637   // Don't allow anything with multiple uses unless we know it is free.
5638   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5639     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5640                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5641     if (!IsFreeExtend)
5642       return SDValue();
5643   }
5644 
5645   SDLoc DL(Op);
5646 
5647   switch (Opcode) {
5648   case ISD::ConstantFP: {
5649     // Don't invert constant FP values after legalization unless the target says
5650     // the negated constant is legal.
5651     bool IsOpLegal =
5652         isOperationLegal(ISD::ConstantFP, VT) ||
5653         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5654                      OptForSize);
5655 
5656     if (LegalOps && !IsOpLegal)
5657       break;
5658 
5659     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5660     V.changeSign();
5661     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5662 
5663     // If we already have the use of the negated floating constant, it is free
5664     // to negate it even it has multiple uses.
5665     if (!Op.hasOneUse() && CFP.use_empty())
5666       break;
5667     Cost = NegatibleCost::Neutral;
5668     return CFP;
5669   }
5670   case ISD::BUILD_VECTOR: {
5671     // Only permit BUILD_VECTOR of constants.
5672     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5673           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5674         }))
5675       break;
5676 
5677     bool IsOpLegal =
5678         (isOperationLegal(ISD::ConstantFP, VT) &&
5679          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5680         llvm::all_of(Op->op_values(), [&](SDValue N) {
5681           return N.isUndef() ||
5682                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5683                               OptForSize);
5684         });
5685 
5686     if (LegalOps && !IsOpLegal)
5687       break;
5688 
5689     SmallVector<SDValue, 4> Ops;
5690     for (SDValue C : Op->op_values()) {
5691       if (C.isUndef()) {
5692         Ops.push_back(C);
5693         continue;
5694       }
5695       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5696       V.changeSign();
5697       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5698     }
5699     Cost = NegatibleCost::Neutral;
5700     return DAG.getBuildVector(VT, DL, Ops);
5701   }
5702   case ISD::FADD: {
5703     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5704       break;
5705 
5706     // After operation legalization, it might not be legal to create new FSUBs.
5707     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5708       break;
5709     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5710 
5711     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5712     NegatibleCost CostX = NegatibleCost::Expensive;
5713     SDValue NegX =
5714         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5715     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5716     NegatibleCost CostY = NegatibleCost::Expensive;
5717     SDValue NegY =
5718         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5719 
5720     // Negate the X if its cost is less or equal than Y.
5721     if (NegX && (CostX <= CostY)) {
5722       Cost = CostX;
5723       return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5724     }
5725 
5726     // Negate the Y if it is not expensive.
5727     if (NegY) {
5728       Cost = CostY;
5729       return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5730     }
5731     break;
5732   }
5733   case ISD::FSUB: {
5734     // We can't turn -(A-B) into B-A when we honor signed zeros.
5735     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5736       break;
5737 
5738     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5739     // fold (fneg (fsub 0, Y)) -> Y
5740     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5741       if (C->isZero()) {
5742         Cost = NegatibleCost::Cheaper;
5743         return Y;
5744       }
5745 
5746     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5747     Cost = NegatibleCost::Neutral;
5748     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5749   }
5750   case ISD::FMUL:
5751   case ISD::FDIV: {
5752     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5753 
5754     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5755     NegatibleCost CostX = NegatibleCost::Expensive;
5756     SDValue NegX =
5757         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5758     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5759     NegatibleCost CostY = NegatibleCost::Expensive;
5760     SDValue NegY =
5761         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5762 
5763     // Negate the X if its cost is less or equal than Y.
5764     if (NegX && (CostX <= CostY)) {
5765       Cost = CostX;
5766       return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5767     }
5768 
5769     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5770     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5771       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5772         break;
5773 
5774     // Negate the Y if it is not expensive.
5775     if (NegY) {
5776       Cost = CostY;
5777       return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5778     }
5779     break;
5780   }
5781   case ISD::FMA:
5782   case ISD::FMAD: {
5783     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5784       break;
5785 
5786     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5787     NegatibleCost CostZ = NegatibleCost::Expensive;
5788     SDValue NegZ =
5789         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5790     // Give up if fail to negate the Z.
5791     if (!NegZ)
5792       break;
5793 
5794     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5795     NegatibleCost CostX = NegatibleCost::Expensive;
5796     SDValue NegX =
5797         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5798     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5799     NegatibleCost CostY = NegatibleCost::Expensive;
5800     SDValue NegY =
5801         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5802 
5803     // Negate the X if its cost is less or equal than Y.
5804     if (NegX && (CostX <= CostY)) {
5805       Cost = std::min(CostX, CostZ);
5806       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5807     }
5808 
5809     // Negate the Y if it is not expensive.
5810     if (NegY) {
5811       Cost = std::min(CostY, CostZ);
5812       return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5813     }
5814     break;
5815   }
5816 
5817   case ISD::FP_EXTEND:
5818   case ISD::FSIN:
5819     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5820                                             OptForSize, Cost, Depth))
5821       return DAG.getNode(Opcode, DL, VT, NegV);
5822     break;
5823   case ISD::FP_ROUND:
5824     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5825                                             OptForSize, Cost, Depth))
5826       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5827     break;
5828   }
5829 
5830   return SDValue();
5831 }
5832 
5833 //===----------------------------------------------------------------------===//
5834 // Legalization Utilities
5835 //===----------------------------------------------------------------------===//
5836 
5837 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5838                                     SDValue LHS, SDValue RHS,
5839                                     SmallVectorImpl<SDValue> &Result,
5840                                     EVT HiLoVT, SelectionDAG &DAG,
5841                                     MulExpansionKind Kind, SDValue LL,
5842                                     SDValue LH, SDValue RL, SDValue RH) const {
5843   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5844          Opcode == ISD::SMUL_LOHI);
5845 
5846   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5847                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5848   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5849                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5850   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5851                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5852   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5853                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5854 
5855   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5856     return false;
5857 
5858   unsigned OuterBitSize = VT.getScalarSizeInBits();
5859   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5860   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5861   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5862 
5863   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5864   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5865          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5866 
5867   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5868   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5869                           bool Signed) -> bool {
5870     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5871       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5872       Hi = SDValue(Lo.getNode(), 1);
5873       return true;
5874     }
5875     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5876       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5877       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5878       return true;
5879     }
5880     return false;
5881   };
5882 
5883   SDValue Lo, Hi;
5884 
5885   if (!LL.getNode() && !RL.getNode() &&
5886       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5887     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5888     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5889   }
5890 
5891   if (!LL.getNode())
5892     return false;
5893 
5894   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5895   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5896       DAG.MaskedValueIsZero(RHS, HighMask)) {
5897     // The inputs are both zero-extended.
5898     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5899       Result.push_back(Lo);
5900       Result.push_back(Hi);
5901       if (Opcode != ISD::MUL) {
5902         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5903         Result.push_back(Zero);
5904         Result.push_back(Zero);
5905       }
5906       return true;
5907     }
5908   }
5909 
5910   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5911       RHSSB > InnerBitSize) {
5912     // The input values are both sign-extended.
5913     // TODO non-MUL case?
5914     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5915       Result.push_back(Lo);
5916       Result.push_back(Hi);
5917       return true;
5918     }
5919   }
5920 
5921   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5922   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5923   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5924     // FIXME getShiftAmountTy does not always return a sensible result when VT
5925     // is an illegal type, and so the type may be too small to fit the shift
5926     // amount. Override it with i32. The shift will have to be legalized.
5927     ShiftAmountTy = MVT::i32;
5928   }
5929   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5930 
5931   if (!LH.getNode() && !RH.getNode() &&
5932       isOperationLegalOrCustom(ISD::SRL, VT) &&
5933       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5934     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5935     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5936     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5937     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5938   }
5939 
5940   if (!LH.getNode())
5941     return false;
5942 
5943   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5944     return false;
5945 
5946   Result.push_back(Lo);
5947 
5948   if (Opcode == ISD::MUL) {
5949     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5950     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5951     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5952     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5953     Result.push_back(Hi);
5954     return true;
5955   }
5956 
5957   // Compute the full width result.
5958   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5959     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5960     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5961     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5962     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5963   };
5964 
5965   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5966   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5967     return false;
5968 
5969   // This is effectively the add part of a multiply-add of half-sized operands,
5970   // so it cannot overflow.
5971   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5972 
5973   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5974     return false;
5975 
5976   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5977   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5978 
5979   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5980                   isOperationLegalOrCustom(ISD::ADDE, VT));
5981   if (UseGlue)
5982     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5983                        Merge(Lo, Hi));
5984   else
5985     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5986                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5987 
5988   SDValue Carry = Next.getValue(1);
5989   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5990   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5991 
5992   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5993     return false;
5994 
5995   if (UseGlue)
5996     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5997                      Carry);
5998   else
5999     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6000                      Zero, Carry);
6001 
6002   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6003 
6004   if (Opcode == ISD::SMUL_LOHI) {
6005     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6006                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6007     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6008 
6009     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6010                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6011     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6012   }
6013 
6014   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6015   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6016   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6017   return true;
6018 }
6019 
6020 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6021                                SelectionDAG &DAG, MulExpansionKind Kind,
6022                                SDValue LL, SDValue LH, SDValue RL,
6023                                SDValue RH) const {
6024   SmallVector<SDValue, 2> Result;
6025   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6026                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6027                            DAG, Kind, LL, LH, RL, RH);
6028   if (Ok) {
6029     assert(Result.size() == 2);
6030     Lo = Result[0];
6031     Hi = Result[1];
6032   }
6033   return Ok;
6034 }
6035 
6036 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6037                                        SelectionDAG &DAG) const {
6038   EVT VT = Node->getValueType(0);
6039 
6040   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6041                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6042                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6043                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6044     return false;
6045 
6046   // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6047   // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6048   SDValue X = Node->getOperand(0);
6049   SDValue Y = Node->getOperand(1);
6050   SDValue Z = Node->getOperand(2);
6051 
6052   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6053   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6054   SDLoc DL(SDValue(Node, 0));
6055 
6056   EVT ShVT = Z.getValueType();
6057   SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6058   SDValue ShAmt, InvShAmt;
6059   if (isPowerOf2_32(EltSizeInBits)) {
6060     // Z % BW -> Z & (BW - 1)
6061     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6062     // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6063     InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6064   } else {
6065     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6066     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6067     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6068   }
6069 
6070   SDValue One = DAG.getConstant(1, DL, ShVT);
6071   SDValue ShX, ShY;
6072   if (IsFSHL) {
6073     ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6074     SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6075     ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6076   } else {
6077     SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6078     ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6079     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6080   }
6081   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6082   return true;
6083 }
6084 
6085 // TODO: Merge with expandFunnelShift.
6086 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6087                                SelectionDAG &DAG) const {
6088   EVT VT = Node->getValueType(0);
6089   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6090   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6091   SDValue Op0 = Node->getOperand(0);
6092   SDValue Op1 = Node->getOperand(1);
6093   SDLoc DL(SDValue(Node, 0));
6094 
6095   EVT ShVT = Op1.getValueType();
6096   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6097 
6098   // If a rotate in the other direction is legal, use it.
6099   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6100   if (isOperationLegal(RevRot, VT)) {
6101     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6102     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6103     return true;
6104   }
6105 
6106   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6107                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6108                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6109                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6110                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6111     return false;
6112 
6113   // Otherwise,
6114   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6115   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6116   //
6117   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6118          "Expecting the type bitwidth to be a power of 2");
6119   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6120   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6121   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6122   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6123   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6124   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6125   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6126                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6127   return true;
6128 }
6129 
6130 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6131                                       SelectionDAG &DAG) const {
6132   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6133   SDValue Src = Node->getOperand(OpNo);
6134   EVT SrcVT = Src.getValueType();
6135   EVT DstVT = Node->getValueType(0);
6136   SDLoc dl(SDValue(Node, 0));
6137 
6138   // FIXME: Only f32 to i64 conversions are supported.
6139   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6140     return false;
6141 
6142   if (Node->isStrictFPOpcode())
6143     // When a NaN is converted to an integer a trap is allowed. We can't
6144     // use this expansion here because it would eliminate that trap. Other
6145     // traps are also allowed and cannot be eliminated. See
6146     // IEEE 754-2008 sec 5.8.
6147     return false;
6148 
6149   // Expand f32 -> i64 conversion
6150   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6151   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6152   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6153   EVT IntVT = SrcVT.changeTypeToInteger();
6154   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6155 
6156   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6157   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6158   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6159   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6160   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6161   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6162 
6163   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6164 
6165   SDValue ExponentBits = DAG.getNode(
6166       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6167       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6168   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6169 
6170   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6171                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6172                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6173   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6174 
6175   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6176                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6177                           DAG.getConstant(0x00800000, dl, IntVT));
6178 
6179   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6180 
6181   R = DAG.getSelectCC(
6182       dl, Exponent, ExponentLoBit,
6183       DAG.getNode(ISD::SHL, dl, DstVT, R,
6184                   DAG.getZExtOrTrunc(
6185                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6186                       dl, IntShVT)),
6187       DAG.getNode(ISD::SRL, dl, DstVT, R,
6188                   DAG.getZExtOrTrunc(
6189                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6190                       dl, IntShVT)),
6191       ISD::SETGT);
6192 
6193   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6194                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6195 
6196   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6197                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6198   return true;
6199 }
6200 
6201 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6202                                       SDValue &Chain,
6203                                       SelectionDAG &DAG) const {
6204   SDLoc dl(SDValue(Node, 0));
6205   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6206   SDValue Src = Node->getOperand(OpNo);
6207 
6208   EVT SrcVT = Src.getValueType();
6209   EVT DstVT = Node->getValueType(0);
6210   EVT SetCCVT =
6211       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6212   EVT DstSetCCVT =
6213       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6214 
6215   // Only expand vector types if we have the appropriate vector bit operations.
6216   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6217                                                    ISD::FP_TO_SINT;
6218   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6219                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6220     return false;
6221 
6222   // If the maximum float value is smaller then the signed integer range,
6223   // the destination signmask can't be represented by the float, so we can
6224   // just use FP_TO_SINT directly.
6225   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6226   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6227   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6228   if (APFloat::opOverflow &
6229       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6230     if (Node->isStrictFPOpcode()) {
6231       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6232                            { Node->getOperand(0), Src });
6233       Chain = Result.getValue(1);
6234     } else
6235       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6236     return true;
6237   }
6238 
6239   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6240   SDValue Sel;
6241 
6242   if (Node->isStrictFPOpcode()) {
6243     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6244                        Node->getOperand(0), /*IsSignaling*/ true);
6245     Chain = Sel.getValue(1);
6246   } else {
6247     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6248   }
6249 
6250   bool Strict = Node->isStrictFPOpcode() ||
6251                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6252 
6253   if (Strict) {
6254     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6255     // signmask then offset (the result of which should be fully representable).
6256     // Sel = Src < 0x8000000000000000
6257     // FltOfs = select Sel, 0, 0x8000000000000000
6258     // IntOfs = select Sel, 0, 0x8000000000000000
6259     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6260 
6261     // TODO: Should any fast-math-flags be set for the FSUB?
6262     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6263                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6264     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6265     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6266                                    DAG.getConstant(0, dl, DstVT),
6267                                    DAG.getConstant(SignMask, dl, DstVT));
6268     SDValue SInt;
6269     if (Node->isStrictFPOpcode()) {
6270       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6271                                 { Chain, Src, FltOfs });
6272       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6273                          { Val.getValue(1), Val });
6274       Chain = SInt.getValue(1);
6275     } else {
6276       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6277       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6278     }
6279     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6280   } else {
6281     // Expand based on maximum range of FP_TO_SINT:
6282     // True = fp_to_sint(Src)
6283     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6284     // Result = select (Src < 0x8000000000000000), True, False
6285 
6286     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6287     // TODO: Should any fast-math-flags be set for the FSUB?
6288     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6289                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6290     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6291                         DAG.getConstant(SignMask, dl, DstVT));
6292     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6293     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6294   }
6295   return true;
6296 }
6297 
6298 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6299                                       SDValue &Chain,
6300                                       SelectionDAG &DAG) const {
6301   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6302   SDValue Src = Node->getOperand(OpNo);
6303   EVT SrcVT = Src.getValueType();
6304   EVT DstVT = Node->getValueType(0);
6305 
6306   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6307     return false;
6308 
6309   // Only expand vector types if we have the appropriate vector bit operations.
6310   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6311                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6312                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6313                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6314                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6315     return false;
6316 
6317   SDLoc dl(SDValue(Node, 0));
6318   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6319 
6320   // Implementation of unsigned i64 to f64 following the algorithm in
6321   // __floatundidf in compiler_rt. This implementation has the advantage
6322   // of performing rounding correctly, both in the default rounding mode
6323   // and in all alternate rounding modes.
6324   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6325   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6326       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6327   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6328   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6329   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6330 
6331   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6332   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6333   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6334   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6335   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6336   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6337   if (Node->isStrictFPOpcode()) {
6338     SDValue HiSub =
6339         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6340                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6341     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6342                          {HiSub.getValue(1), LoFlt, HiSub});
6343     Chain = Result.getValue(1);
6344   } else {
6345     SDValue HiSub =
6346         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6347     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6348   }
6349   return true;
6350 }
6351 
6352 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6353                                               SelectionDAG &DAG) const {
6354   SDLoc dl(Node);
6355   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6356     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6357   EVT VT = Node->getValueType(0);
6358   if (isOperationLegalOrCustom(NewOp, VT)) {
6359     SDValue Quiet0 = Node->getOperand(0);
6360     SDValue Quiet1 = Node->getOperand(1);
6361 
6362     if (!Node->getFlags().hasNoNaNs()) {
6363       // Insert canonicalizes if it's possible we need to quiet to get correct
6364       // sNaN behavior.
6365       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6366         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6367                              Node->getFlags());
6368       }
6369       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6370         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6371                              Node->getFlags());
6372       }
6373     }
6374 
6375     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6376   }
6377 
6378   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6379   // instead if there are no NaNs.
6380   if (Node->getFlags().hasNoNaNs()) {
6381     unsigned IEEE2018Op =
6382         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6383     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6384       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6385                          Node->getOperand(1), Node->getFlags());
6386     }
6387   }
6388 
6389   // If none of the above worked, but there are no NaNs, then expand to
6390   // a compare/select sequence.  This is required for correctness since
6391   // InstCombine might have canonicalized a fcmp+select sequence to a
6392   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6393   // expansion to libcall, we might introduce a link-time dependency
6394   // on libm into a file that originally did not have one.
6395   if (Node->getFlags().hasNoNaNs()) {
6396     ISD::CondCode Pred =
6397         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6398     SDValue Op1 = Node->getOperand(0);
6399     SDValue Op2 = Node->getOperand(1);
6400     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6401     // Copy FMF flags, but always set the no-signed-zeros flag
6402     // as this is implied by the FMINNUM/FMAXNUM semantics.
6403     SDNodeFlags Flags = Node->getFlags();
6404     Flags.setNoSignedZeros(true);
6405     SelCC->setFlags(Flags);
6406     return SelCC;
6407   }
6408 
6409   return SDValue();
6410 }
6411 
6412 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6413                                  SelectionDAG &DAG) const {
6414   SDLoc dl(Node);
6415   EVT VT = Node->getValueType(0);
6416   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6417   SDValue Op = Node->getOperand(0);
6418   unsigned Len = VT.getScalarSizeInBits();
6419   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6420 
6421   // TODO: Add support for irregular type lengths.
6422   if (!(Len <= 128 && Len % 8 == 0))
6423     return false;
6424 
6425   // Only expand vector types if we have the appropriate vector bit operations.
6426   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6427                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6428                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6429                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6430                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6431     return false;
6432 
6433   // This is the "best" algorithm from
6434   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6435   SDValue Mask55 =
6436       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6437   SDValue Mask33 =
6438       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6439   SDValue Mask0F =
6440       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6441   SDValue Mask01 =
6442       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6443 
6444   // v = v - ((v >> 1) & 0x55555555...)
6445   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6446                    DAG.getNode(ISD::AND, dl, VT,
6447                                DAG.getNode(ISD::SRL, dl, VT, Op,
6448                                            DAG.getConstant(1, dl, ShVT)),
6449                                Mask55));
6450   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6451   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6452                    DAG.getNode(ISD::AND, dl, VT,
6453                                DAG.getNode(ISD::SRL, dl, VT, Op,
6454                                            DAG.getConstant(2, dl, ShVT)),
6455                                Mask33));
6456   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6457   Op = DAG.getNode(ISD::AND, dl, VT,
6458                    DAG.getNode(ISD::ADD, dl, VT, Op,
6459                                DAG.getNode(ISD::SRL, dl, VT, Op,
6460                                            DAG.getConstant(4, dl, ShVT))),
6461                    Mask0F);
6462   // v = (v * 0x01010101...) >> (Len - 8)
6463   if (Len > 8)
6464     Op =
6465         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6466                     DAG.getConstant(Len - 8, dl, ShVT));
6467 
6468   Result = Op;
6469   return true;
6470 }
6471 
6472 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6473                                 SelectionDAG &DAG) const {
6474   SDLoc dl(Node);
6475   EVT VT = Node->getValueType(0);
6476   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6477   SDValue Op = Node->getOperand(0);
6478   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6479 
6480   // If the non-ZERO_UNDEF version is supported we can use that instead.
6481   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6482       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6483     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6484     return true;
6485   }
6486 
6487   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6488   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6489     EVT SetCCVT =
6490         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6491     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6492     SDValue Zero = DAG.getConstant(0, dl, VT);
6493     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6494     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6495                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6496     return true;
6497   }
6498 
6499   // Only expand vector types if we have the appropriate vector bit operations.
6500   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6501                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6502                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6503                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6504     return false;
6505 
6506   // for now, we do this:
6507   // x = x | (x >> 1);
6508   // x = x | (x >> 2);
6509   // ...
6510   // x = x | (x >>16);
6511   // x = x | (x >>32); // for 64-bit input
6512   // return popcount(~x);
6513   //
6514   // Ref: "Hacker's Delight" by Henry Warren
6515   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6516     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6517     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6518                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6519   }
6520   Op = DAG.getNOT(dl, Op, VT);
6521   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6522   return true;
6523 }
6524 
6525 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6526                                 SelectionDAG &DAG) const {
6527   SDLoc dl(Node);
6528   EVT VT = Node->getValueType(0);
6529   SDValue Op = Node->getOperand(0);
6530   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6531 
6532   // If the non-ZERO_UNDEF version is supported we can use that instead.
6533   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6534       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6535     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6536     return true;
6537   }
6538 
6539   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6540   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6541     EVT SetCCVT =
6542         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6543     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6544     SDValue Zero = DAG.getConstant(0, dl, VT);
6545     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6546     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6547                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6548     return true;
6549   }
6550 
6551   // Only expand vector types if we have the appropriate vector bit operations.
6552   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6553                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6554                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6555                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6556                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6557                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6558     return false;
6559 
6560   // for now, we use: { return popcount(~x & (x - 1)); }
6561   // unless the target has ctlz but not ctpop, in which case we use:
6562   // { return 32 - nlz(~x & (x-1)); }
6563   // Ref: "Hacker's Delight" by Henry Warren
6564   SDValue Tmp = DAG.getNode(
6565       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6566       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6567 
6568   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6569   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6570     Result =
6571         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6572                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6573     return true;
6574   }
6575 
6576   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6577   return true;
6578 }
6579 
6580 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6581                                SelectionDAG &DAG) const {
6582   SDLoc dl(N);
6583   EVT VT = N->getValueType(0);
6584   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6585   SDValue Op = N->getOperand(0);
6586 
6587   // Only expand vector types if we have the appropriate vector operations.
6588   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6589                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6590                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6591     return false;
6592 
6593   SDValue Shift =
6594       DAG.getNode(ISD::SRA, dl, VT, Op,
6595                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6596   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6597   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6598   return true;
6599 }
6600 
6601 std::pair<SDValue, SDValue>
6602 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6603                                     SelectionDAG &DAG) const {
6604   SDLoc SL(LD);
6605   SDValue Chain = LD->getChain();
6606   SDValue BasePTR = LD->getBasePtr();
6607   EVT SrcVT = LD->getMemoryVT();
6608   EVT DstVT = LD->getValueType(0);
6609   ISD::LoadExtType ExtType = LD->getExtensionType();
6610 
6611   unsigned NumElem = SrcVT.getVectorNumElements();
6612 
6613   EVT SrcEltVT = SrcVT.getScalarType();
6614   EVT DstEltVT = DstVT.getScalarType();
6615 
6616   // A vector must always be stored in memory as-is, i.e. without any padding
6617   // between the elements, since various code depend on it, e.g. in the
6618   // handling of a bitcast of a vector type to int, which may be done with a
6619   // vector store followed by an integer load. A vector that does not have
6620   // elements that are byte-sized must therefore be stored as an integer
6621   // built out of the extracted vector elements.
6622   if (!SrcEltVT.isByteSized()) {
6623     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6624     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6625 
6626     unsigned NumSrcBits = SrcVT.getSizeInBits();
6627     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6628 
6629     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6630     SDValue SrcEltBitMask = DAG.getConstant(
6631         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6632 
6633     // Load the whole vector and avoid masking off the top bits as it makes
6634     // the codegen worse.
6635     SDValue Load =
6636         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6637                        LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
6638                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6639 
6640     SmallVector<SDValue, 8> Vals;
6641     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6642       unsigned ShiftIntoIdx =
6643           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6644       SDValue ShiftAmount =
6645           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6646                                      LoadVT, SL, /*LegalTypes=*/false);
6647       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6648       SDValue Elt =
6649           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6650       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6651 
6652       if (ExtType != ISD::NON_EXTLOAD) {
6653         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6654         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6655       }
6656 
6657       Vals.push_back(Scalar);
6658     }
6659 
6660     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6661     return std::make_pair(Value, Load.getValue(1));
6662   }
6663 
6664   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6665   assert(SrcEltVT.isByteSized());
6666 
6667   SmallVector<SDValue, 8> Vals;
6668   SmallVector<SDValue, 8> LoadChains;
6669 
6670   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6671     SDValue ScalarLoad =
6672         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6673                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6674                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6675                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6676 
6677     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6678 
6679     Vals.push_back(ScalarLoad.getValue(0));
6680     LoadChains.push_back(ScalarLoad.getValue(1));
6681   }
6682 
6683   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6684   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6685 
6686   return std::make_pair(Value, NewChain);
6687 }
6688 
6689 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6690                                              SelectionDAG &DAG) const {
6691   SDLoc SL(ST);
6692 
6693   SDValue Chain = ST->getChain();
6694   SDValue BasePtr = ST->getBasePtr();
6695   SDValue Value = ST->getValue();
6696   EVT StVT = ST->getMemoryVT();
6697 
6698   // The type of the data we want to save
6699   EVT RegVT = Value.getValueType();
6700   EVT RegSclVT = RegVT.getScalarType();
6701 
6702   // The type of data as saved in memory.
6703   EVT MemSclVT = StVT.getScalarType();
6704 
6705   unsigned NumElem = StVT.getVectorNumElements();
6706 
6707   // A vector must always be stored in memory as-is, i.e. without any padding
6708   // between the elements, since various code depend on it, e.g. in the
6709   // handling of a bitcast of a vector type to int, which may be done with a
6710   // vector store followed by an integer load. A vector that does not have
6711   // elements that are byte-sized must therefore be stored as an integer
6712   // built out of the extracted vector elements.
6713   if (!MemSclVT.isByteSized()) {
6714     unsigned NumBits = StVT.getSizeInBits();
6715     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6716 
6717     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6718 
6719     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6720       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6721                                 DAG.getVectorIdxConstant(Idx, SL));
6722       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6723       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6724       unsigned ShiftIntoIdx =
6725           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6726       SDValue ShiftAmount =
6727           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6728       SDValue ShiftedElt =
6729           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6730       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6731     }
6732 
6733     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6734                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6735                         ST->getAAInfo());
6736   }
6737 
6738   // Store Stride in bytes
6739   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6740   assert(Stride && "Zero stride!");
6741   // Extract each of the elements from the original vector and save them into
6742   // memory individually.
6743   SmallVector<SDValue, 8> Stores;
6744   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6745     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6746                               DAG.getVectorIdxConstant(Idx, SL));
6747 
6748     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6749 
6750     // This scalar TruncStore may be illegal, but we legalize it later.
6751     SDValue Store = DAG.getTruncStore(
6752         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6753         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6754         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6755 
6756     Stores.push_back(Store);
6757   }
6758 
6759   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6760 }
6761 
6762 std::pair<SDValue, SDValue>
6763 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6764   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6765          "unaligned indexed loads not implemented!");
6766   SDValue Chain = LD->getChain();
6767   SDValue Ptr = LD->getBasePtr();
6768   EVT VT = LD->getValueType(0);
6769   EVT LoadedVT = LD->getMemoryVT();
6770   SDLoc dl(LD);
6771   auto &MF = DAG.getMachineFunction();
6772 
6773   if (VT.isFloatingPoint() || VT.isVector()) {
6774     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6775     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6776       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6777           LoadedVT.isVector()) {
6778         // Scalarize the load and let the individual components be handled.
6779         return scalarizeVectorLoad(LD, DAG);
6780       }
6781 
6782       // Expand to a (misaligned) integer load of the same size,
6783       // then bitconvert to floating point or vector.
6784       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6785                                     LD->getMemOperand());
6786       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6787       if (LoadedVT != VT)
6788         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6789                              ISD::ANY_EXTEND, dl, VT, Result);
6790 
6791       return std::make_pair(Result, newLoad.getValue(1));
6792     }
6793 
6794     // Copy the value to a (aligned) stack slot using (unaligned) integer
6795     // loads and stores, then do a (aligned) load from the stack slot.
6796     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6797     unsigned LoadedBytes = LoadedVT.getStoreSize();
6798     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6799     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6800 
6801     // Make sure the stack slot is also aligned for the register type.
6802     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6803     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6804     SmallVector<SDValue, 8> Stores;
6805     SDValue StackPtr = StackBase;
6806     unsigned Offset = 0;
6807 
6808     EVT PtrVT = Ptr.getValueType();
6809     EVT StackPtrVT = StackPtr.getValueType();
6810 
6811     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6812     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6813 
6814     // Do all but one copies using the full register width.
6815     for (unsigned i = 1; i < NumRegs; i++) {
6816       // Load one integer register's worth from the original location.
6817       SDValue Load = DAG.getLoad(
6818           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6819           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6820           LD->getAAInfo());
6821       // Follow the load with a store to the stack slot.  Remember the store.
6822       Stores.push_back(DAG.getStore(
6823           Load.getValue(1), dl, Load, StackPtr,
6824           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6825       // Increment the pointers.
6826       Offset += RegBytes;
6827 
6828       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6829       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6830     }
6831 
6832     // The last copy may be partial.  Do an extending load.
6833     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6834                                   8 * (LoadedBytes - Offset));
6835     SDValue Load =
6836         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6837                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6838                        MinAlign(LD->getAlignment(), Offset),
6839                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6840     // Follow the load with a store to the stack slot.  Remember the store.
6841     // On big-endian machines this requires a truncating store to ensure
6842     // that the bits end up in the right place.
6843     Stores.push_back(DAG.getTruncStore(
6844         Load.getValue(1), dl, Load, StackPtr,
6845         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6846 
6847     // The order of the stores doesn't matter - say it with a TokenFactor.
6848     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6849 
6850     // Finally, perform the original load only redirected to the stack slot.
6851     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6852                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6853                           LoadedVT);
6854 
6855     // Callers expect a MERGE_VALUES node.
6856     return std::make_pair(Load, TF);
6857   }
6858 
6859   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6860          "Unaligned load of unsupported type.");
6861 
6862   // Compute the new VT that is half the size of the old one.  This is an
6863   // integer MVT.
6864   unsigned NumBits = LoadedVT.getSizeInBits();
6865   EVT NewLoadedVT;
6866   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6867   NumBits >>= 1;
6868 
6869   unsigned Alignment = LD->getAlignment();
6870   unsigned IncrementSize = NumBits / 8;
6871   ISD::LoadExtType HiExtType = LD->getExtensionType();
6872 
6873   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6874   if (HiExtType == ISD::NON_EXTLOAD)
6875     HiExtType = ISD::ZEXTLOAD;
6876 
6877   // Load the value in two parts
6878   SDValue Lo, Hi;
6879   if (DAG.getDataLayout().isLittleEndian()) {
6880     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6881                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6882                         LD->getAAInfo());
6883 
6884     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6885     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6886                         LD->getPointerInfo().getWithOffset(IncrementSize),
6887                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6888                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6889   } else {
6890     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6891                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6892                         LD->getAAInfo());
6893 
6894     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6895     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6896                         LD->getPointerInfo().getWithOffset(IncrementSize),
6897                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6898                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6899   }
6900 
6901   // aggregate the two parts
6902   SDValue ShiftAmount =
6903       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6904                                                     DAG.getDataLayout()));
6905   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6906   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6907 
6908   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6909                              Hi.getValue(1));
6910 
6911   return std::make_pair(Result, TF);
6912 }
6913 
6914 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6915                                              SelectionDAG &DAG) const {
6916   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6917          "unaligned indexed stores not implemented!");
6918   SDValue Chain = ST->getChain();
6919   SDValue Ptr = ST->getBasePtr();
6920   SDValue Val = ST->getValue();
6921   EVT VT = Val.getValueType();
6922   int Alignment = ST->getAlignment();
6923   auto &MF = DAG.getMachineFunction();
6924   EVT StoreMemVT = ST->getMemoryVT();
6925 
6926   SDLoc dl(ST);
6927   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6928     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6929     if (isTypeLegal(intVT)) {
6930       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6931           StoreMemVT.isVector()) {
6932         // Scalarize the store and let the individual components be handled.
6933         SDValue Result = scalarizeVectorStore(ST, DAG);
6934         return Result;
6935       }
6936       // Expand to a bitconvert of the value to the integer type of the
6937       // same size, then a (misaligned) int store.
6938       // FIXME: Does not handle truncating floating point stores!
6939       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6940       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6941                             Alignment, ST->getMemOperand()->getFlags());
6942       return Result;
6943     }
6944     // Do a (aligned) store to a stack slot, then copy from the stack slot
6945     // to the final destination using (unaligned) integer loads and stores.
6946     MVT RegVT = getRegisterType(
6947         *DAG.getContext(),
6948         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6949     EVT PtrVT = Ptr.getValueType();
6950     unsigned StoredBytes = StoreMemVT.getStoreSize();
6951     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6952     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6953 
6954     // Make sure the stack slot is also aligned for the register type.
6955     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6956     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6957 
6958     // Perform the original store, only redirected to the stack slot.
6959     SDValue Store = DAG.getTruncStore(
6960         Chain, dl, Val, StackPtr,
6961         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6962 
6963     EVT StackPtrVT = StackPtr.getValueType();
6964 
6965     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6966     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6967     SmallVector<SDValue, 8> Stores;
6968     unsigned Offset = 0;
6969 
6970     // Do all but one copies using the full register width.
6971     for (unsigned i = 1; i < NumRegs; i++) {
6972       // Load one integer register's worth from the stack slot.
6973       SDValue Load = DAG.getLoad(
6974           RegVT, dl, Store, StackPtr,
6975           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6976       // Store it to the final location.  Remember the store.
6977       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6978                                     ST->getPointerInfo().getWithOffset(Offset),
6979                                     MinAlign(ST->getAlignment(), Offset),
6980                                     ST->getMemOperand()->getFlags()));
6981       // Increment the pointers.
6982       Offset += RegBytes;
6983       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6984       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6985     }
6986 
6987     // The last store may be partial.  Do a truncating store.  On big-endian
6988     // machines this requires an extending load from the stack slot to ensure
6989     // that the bits are in the right place.
6990     EVT LoadMemVT =
6991         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6992 
6993     // Load from the stack slot.
6994     SDValue Load = DAG.getExtLoad(
6995         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6996         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6997 
6998     Stores.push_back(
6999         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7000                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7001                           MinAlign(ST->getAlignment(), Offset),
7002                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7003     // The order of the stores doesn't matter - say it with a TokenFactor.
7004     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7005     return Result;
7006   }
7007 
7008   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7009          "Unaligned store of unknown type.");
7010   // Get the half-size VT
7011   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7012   int NumBits = NewStoredVT.getSizeInBits();
7013   int IncrementSize = NumBits / 8;
7014 
7015   // Divide the stored value in two parts.
7016   SDValue ShiftAmount = DAG.getConstant(
7017       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7018   SDValue Lo = Val;
7019   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7020 
7021   // Store the two parts
7022   SDValue Store1, Store2;
7023   Store1 = DAG.getTruncStore(Chain, dl,
7024                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7025                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7026                              ST->getMemOperand()->getFlags());
7027 
7028   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
7029   Alignment = MinAlign(Alignment, IncrementSize);
7030   Store2 = DAG.getTruncStore(
7031       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7032       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7033       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7034 
7035   SDValue Result =
7036       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7037   return Result;
7038 }
7039 
7040 SDValue
7041 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7042                                        const SDLoc &DL, EVT DataVT,
7043                                        SelectionDAG &DAG,
7044                                        bool IsCompressedMemory) const {
7045   SDValue Increment;
7046   EVT AddrVT = Addr.getValueType();
7047   EVT MaskVT = Mask.getValueType();
7048   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7049          "Incompatible types of Data and Mask");
7050   if (IsCompressedMemory) {
7051     // Incrementing the pointer according to number of '1's in the mask.
7052     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7053     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7054     if (MaskIntVT.getSizeInBits() < 32) {
7055       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7056       MaskIntVT = MVT::i32;
7057     }
7058 
7059     // Count '1's with POPCNT.
7060     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7061     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7062     // Scale is an element size in bytes.
7063     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7064                                     AddrVT);
7065     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7066   } else
7067     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7068 
7069   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7070 }
7071 
7072 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7073                                        SDValue Idx,
7074                                        EVT VecVT,
7075                                        const SDLoc &dl) {
7076   if (isa<ConstantSDNode>(Idx))
7077     return Idx;
7078 
7079   EVT IdxVT = Idx.getValueType();
7080   unsigned NElts = VecVT.getVectorNumElements();
7081   if (isPowerOf2_32(NElts)) {
7082     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7083                                      Log2_32(NElts));
7084     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7085                        DAG.getConstant(Imm, dl, IdxVT));
7086   }
7087 
7088   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7089                      DAG.getConstant(NElts - 1, dl, IdxVT));
7090 }
7091 
7092 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7093                                                 SDValue VecPtr, EVT VecVT,
7094                                                 SDValue Index) const {
7095   SDLoc dl(Index);
7096   // Make sure the index type is big enough to compute in.
7097   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7098 
7099   EVT EltVT = VecVT.getVectorElementType();
7100 
7101   // Calculate the element offset and add it to the pointer.
7102   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7103   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7104          "Converting bits to bytes lost precision");
7105 
7106   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7107 
7108   EVT IdxVT = Index.getValueType();
7109 
7110   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7111                       DAG.getConstant(EltSize, dl, IdxVT));
7112   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7113 }
7114 
7115 //===----------------------------------------------------------------------===//
7116 // Implementation of Emulated TLS Model
7117 //===----------------------------------------------------------------------===//
7118 
7119 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7120                                                 SelectionDAG &DAG) const {
7121   // Access to address of TLS varialbe xyz is lowered to a function call:
7122   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7123   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7124   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7125   SDLoc dl(GA);
7126 
7127   ArgListTy Args;
7128   ArgListEntry Entry;
7129   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7130   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7131   StringRef EmuTlsVarName(NameString);
7132   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7133   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7134   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7135   Entry.Ty = VoidPtrType;
7136   Args.push_back(Entry);
7137 
7138   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7139 
7140   TargetLowering::CallLoweringInfo CLI(DAG);
7141   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7142   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7143   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7144 
7145   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7146   // At last for X86 targets, maybe good for other targets too?
7147   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7148   MFI.setAdjustsStack(true); // Is this only for X86 target?
7149   MFI.setHasCalls(true);
7150 
7151   assert((GA->getOffset() == 0) &&
7152          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7153   return CallResult.first;
7154 }
7155 
7156 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7157                                                 SelectionDAG &DAG) const {
7158   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7159   if (!isCtlzFast())
7160     return SDValue();
7161   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7162   SDLoc dl(Op);
7163   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7164     if (C->isNullValue() && CC == ISD::SETEQ) {
7165       EVT VT = Op.getOperand(0).getValueType();
7166       SDValue Zext = Op.getOperand(0);
7167       if (VT.bitsLT(MVT::i32)) {
7168         VT = MVT::i32;
7169         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7170       }
7171       unsigned Log2b = Log2_32(VT.getSizeInBits());
7172       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7173       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7174                                 DAG.getConstant(Log2b, dl, MVT::i32));
7175       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7176     }
7177   }
7178   return SDValue();
7179 }
7180 
7181 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7182   unsigned Opcode = Node->getOpcode();
7183   SDValue LHS = Node->getOperand(0);
7184   SDValue RHS = Node->getOperand(1);
7185   EVT VT = LHS.getValueType();
7186   SDLoc dl(Node);
7187 
7188   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7189   assert(VT.isInteger() && "Expected operands to be integers");
7190 
7191   // usub.sat(a, b) -> umax(a, b) - b
7192   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7193     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7194     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7195   }
7196 
7197   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7198     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7199     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7200     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7201   }
7202 
7203   unsigned OverflowOp;
7204   switch (Opcode) {
7205   case ISD::SADDSAT:
7206     OverflowOp = ISD::SADDO;
7207     break;
7208   case ISD::UADDSAT:
7209     OverflowOp = ISD::UADDO;
7210     break;
7211   case ISD::SSUBSAT:
7212     OverflowOp = ISD::SSUBO;
7213     break;
7214   case ISD::USUBSAT:
7215     OverflowOp = ISD::USUBO;
7216     break;
7217   default:
7218     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7219                      "addition or subtraction node.");
7220   }
7221 
7222   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7223   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7224   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7225                                LHS, RHS);
7226   SDValue SumDiff = Result.getValue(0);
7227   SDValue Overflow = Result.getValue(1);
7228   SDValue Zero = DAG.getConstant(0, dl, VT);
7229   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7230 
7231   if (Opcode == ISD::UADDSAT) {
7232     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7233       // (LHS + RHS) | OverflowMask
7234       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7235       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7236     }
7237     // Overflow ? 0xffff.... : (LHS + RHS)
7238     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7239   } else if (Opcode == ISD::USUBSAT) {
7240     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7241       // (LHS - RHS) & ~OverflowMask
7242       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7243       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7244       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7245     }
7246     // Overflow ? 0 : (LHS - RHS)
7247     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7248   } else {
7249     // SatMax -> Overflow && SumDiff < 0
7250     // SatMin -> Overflow && SumDiff >= 0
7251     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7252     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7253     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7254     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7255     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7256     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7257     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7258   }
7259 }
7260 
7261 SDValue
7262 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7263   assert((Node->getOpcode() == ISD::SMULFIX ||
7264           Node->getOpcode() == ISD::UMULFIX ||
7265           Node->getOpcode() == ISD::SMULFIXSAT ||
7266           Node->getOpcode() == ISD::UMULFIXSAT) &&
7267          "Expected a fixed point multiplication opcode");
7268 
7269   SDLoc dl(Node);
7270   SDValue LHS = Node->getOperand(0);
7271   SDValue RHS = Node->getOperand(1);
7272   EVT VT = LHS.getValueType();
7273   unsigned Scale = Node->getConstantOperandVal(2);
7274   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7275                      Node->getOpcode() == ISD::UMULFIXSAT);
7276   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7277                  Node->getOpcode() == ISD::SMULFIXSAT);
7278   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7279   unsigned VTSize = VT.getScalarSizeInBits();
7280 
7281   if (!Scale) {
7282     // [us]mul.fix(a, b, 0) -> mul(a, b)
7283     if (!Saturating) {
7284       if (isOperationLegalOrCustom(ISD::MUL, VT))
7285         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7286     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7287       SDValue Result =
7288           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7289       SDValue Product = Result.getValue(0);
7290       SDValue Overflow = Result.getValue(1);
7291       SDValue Zero = DAG.getConstant(0, dl, VT);
7292 
7293       APInt MinVal = APInt::getSignedMinValue(VTSize);
7294       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7295       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7296       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7297       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7298       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7299       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7300     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7301       SDValue Result =
7302           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7303       SDValue Product = Result.getValue(0);
7304       SDValue Overflow = Result.getValue(1);
7305 
7306       APInt MaxVal = APInt::getMaxValue(VTSize);
7307       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7308       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7309     }
7310   }
7311 
7312   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7313          "Expected scale to be less than the number of bits if signed or at "
7314          "most the number of bits if unsigned.");
7315   assert(LHS.getValueType() == RHS.getValueType() &&
7316          "Expected both operands to be the same type");
7317 
7318   // Get the upper and lower bits of the result.
7319   SDValue Lo, Hi;
7320   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7321   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7322   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7323     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7324     Lo = Result.getValue(0);
7325     Hi = Result.getValue(1);
7326   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7327     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7328     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7329   } else if (VT.isVector()) {
7330     return SDValue();
7331   } else {
7332     report_fatal_error("Unable to expand fixed point multiplication.");
7333   }
7334 
7335   if (Scale == VTSize)
7336     // Result is just the top half since we'd be shifting by the width of the
7337     // operand. Overflow impossible so this works for both UMULFIX and
7338     // UMULFIXSAT.
7339     return Hi;
7340 
7341   // The result will need to be shifted right by the scale since both operands
7342   // are scaled. The result is given to us in 2 halves, so we only want part of
7343   // both in the result.
7344   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7345   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7346                                DAG.getConstant(Scale, dl, ShiftTy));
7347   if (!Saturating)
7348     return Result;
7349 
7350   if (!Signed) {
7351     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7352     // widened multiplication) aren't all zeroes.
7353 
7354     // Saturate to max if ((Hi >> Scale) != 0),
7355     // which is the same as if (Hi > ((1 << Scale) - 1))
7356     APInt MaxVal = APInt::getMaxValue(VTSize);
7357     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7358                                       dl, VT);
7359     Result = DAG.getSelectCC(dl, Hi, LowMask,
7360                              DAG.getConstant(MaxVal, dl, VT), Result,
7361                              ISD::SETUGT);
7362 
7363     return Result;
7364   }
7365 
7366   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7367   // widened multiplication) aren't all ones or all zeroes.
7368 
7369   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7370   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7371 
7372   if (Scale == 0) {
7373     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7374                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7375     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7376     // Saturated to SatMin if wide product is negative, and SatMax if wide
7377     // product is positive ...
7378     SDValue Zero = DAG.getConstant(0, dl, VT);
7379     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7380                                                ISD::SETLT);
7381     // ... but only if we overflowed.
7382     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7383   }
7384 
7385   //  We handled Scale==0 above so all the bits to examine is in Hi.
7386 
7387   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7388   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7389   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7390                                     dl, VT);
7391   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7392   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7393   // which is the same as if (HI < (-1 << (Scale - 1))
7394   SDValue HighMask =
7395       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7396                       dl, VT);
7397   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7398   return Result;
7399 }
7400 
7401 SDValue
7402 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7403                                     SDValue LHS, SDValue RHS,
7404                                     unsigned Scale, SelectionDAG &DAG) const {
7405   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7406           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7407          "Expected a fixed point division opcode");
7408 
7409   EVT VT = LHS.getValueType();
7410   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7411   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7412   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7413 
7414   // If there is enough room in the type to upscale the LHS or downscale the
7415   // RHS before the division, we can perform it in this type without having to
7416   // resize. For signed operations, the LHS headroom is the number of
7417   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7418   // The headroom for the RHS is the number of trailing zeroes.
7419   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7420                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7421   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7422 
7423   // For signed saturating operations, we need to be able to detect true integer
7424   // division overflow; that is, when you have MIN / -EPS. However, this
7425   // is undefined behavior and if we emit divisions that could take such
7426   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7427   // example).
7428   // Avoid this by requiring an extra bit so that we never get this case.
7429   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7430   // signed saturating division, we need to emit a whopping 32-bit division.
7431   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7432     return SDValue();
7433 
7434   unsigned LHSShift = std::min(LHSLead, Scale);
7435   unsigned RHSShift = Scale - LHSShift;
7436 
7437   // At this point, we know that if we shift the LHS up by LHSShift and the
7438   // RHS down by RHSShift, we can emit a regular division with a final scaling
7439   // factor of Scale.
7440 
7441   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7442   if (LHSShift)
7443     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7444                       DAG.getConstant(LHSShift, dl, ShiftTy));
7445   if (RHSShift)
7446     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7447                       DAG.getConstant(RHSShift, dl, ShiftTy));
7448 
7449   SDValue Quot;
7450   if (Signed) {
7451     // For signed operations, if the resulting quotient is negative and the
7452     // remainder is nonzero, subtract 1 from the quotient to round towards
7453     // negative infinity.
7454     SDValue Rem;
7455     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7456     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7457     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7458     if (isTypeLegal(VT) &&
7459         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7460       Quot = DAG.getNode(ISD::SDIVREM, dl,
7461                          DAG.getVTList(VT, VT),
7462                          LHS, RHS);
7463       Rem = Quot.getValue(1);
7464       Quot = Quot.getValue(0);
7465     } else {
7466       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7467                          LHS, RHS);
7468       Rem = DAG.getNode(ISD::SREM, dl, VT,
7469                         LHS, RHS);
7470     }
7471     SDValue Zero = DAG.getConstant(0, dl, VT);
7472     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7473     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7474     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7475     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7476     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7477                                DAG.getConstant(1, dl, VT));
7478     Quot = DAG.getSelect(dl, VT,
7479                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7480                          Sub1, Quot);
7481   } else
7482     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7483                        LHS, RHS);
7484 
7485   return Quot;
7486 }
7487 
7488 void TargetLowering::expandUADDSUBO(
7489     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7490   SDLoc dl(Node);
7491   SDValue LHS = Node->getOperand(0);
7492   SDValue RHS = Node->getOperand(1);
7493   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7494 
7495   // If ADD/SUBCARRY is legal, use that instead.
7496   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7497   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7498     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7499     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7500                                     { LHS, RHS, CarryIn });
7501     Result = SDValue(NodeCarry.getNode(), 0);
7502     Overflow = SDValue(NodeCarry.getNode(), 1);
7503     return;
7504   }
7505 
7506   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7507                             LHS.getValueType(), LHS, RHS);
7508 
7509   EVT ResultType = Node->getValueType(1);
7510   EVT SetCCType = getSetCCResultType(
7511       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7512   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7513   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7514   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7515 }
7516 
7517 void TargetLowering::expandSADDSUBO(
7518     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7519   SDLoc dl(Node);
7520   SDValue LHS = Node->getOperand(0);
7521   SDValue RHS = Node->getOperand(1);
7522   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7523 
7524   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7525                             LHS.getValueType(), LHS, RHS);
7526 
7527   EVT ResultType = Node->getValueType(1);
7528   EVT OType = getSetCCResultType(
7529       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7530 
7531   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7532   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7533   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7534     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7535     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7536     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7537     return;
7538   }
7539 
7540   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7541 
7542   // For an addition, the result should be less than one of the operands (LHS)
7543   // if and only if the other operand (RHS) is negative, otherwise there will
7544   // be overflow.
7545   // For a subtraction, the result should be less than one of the operands
7546   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7547   // otherwise there will be overflow.
7548   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7549   SDValue ConditionRHS =
7550       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7551 
7552   Overflow = DAG.getBoolExtOrTrunc(
7553       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7554       ResultType, ResultType);
7555 }
7556 
7557 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7558                                 SDValue &Overflow, SelectionDAG &DAG) const {
7559   SDLoc dl(Node);
7560   EVT VT = Node->getValueType(0);
7561   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7562   SDValue LHS = Node->getOperand(0);
7563   SDValue RHS = Node->getOperand(1);
7564   bool isSigned = Node->getOpcode() == ISD::SMULO;
7565 
7566   // For power-of-two multiplications we can use a simpler shift expansion.
7567   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7568     const APInt &C = RHSC->getAPIntValue();
7569     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7570     if (C.isPowerOf2()) {
7571       // smulo(x, signed_min) is same as umulo(x, signed_min).
7572       bool UseArithShift = isSigned && !C.isMinSignedValue();
7573       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7574       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7575       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7576       Overflow = DAG.getSetCC(dl, SetCCVT,
7577           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7578                       dl, VT, Result, ShiftAmt),
7579           LHS, ISD::SETNE);
7580       return true;
7581     }
7582   }
7583 
7584   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7585   if (VT.isVector())
7586     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7587                               VT.getVectorNumElements());
7588 
7589   SDValue BottomHalf;
7590   SDValue TopHalf;
7591   static const unsigned Ops[2][3] =
7592       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7593         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7594   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7595     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7596     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7597   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7598     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7599                              RHS);
7600     TopHalf = BottomHalf.getValue(1);
7601   } else if (isTypeLegal(WideVT)) {
7602     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7603     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7604     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7605     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7606     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7607         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7608     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7609                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7610   } else {
7611     if (VT.isVector())
7612       return false;
7613 
7614     // We can fall back to a libcall with an illegal type for the MUL if we
7615     // have a libcall big enough.
7616     // Also, we can fall back to a division in some cases, but that's a big
7617     // performance hit in the general case.
7618     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7619     if (WideVT == MVT::i16)
7620       LC = RTLIB::MUL_I16;
7621     else if (WideVT == MVT::i32)
7622       LC = RTLIB::MUL_I32;
7623     else if (WideVT == MVT::i64)
7624       LC = RTLIB::MUL_I64;
7625     else if (WideVT == MVT::i128)
7626       LC = RTLIB::MUL_I128;
7627     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7628 
7629     SDValue HiLHS;
7630     SDValue HiRHS;
7631     if (isSigned) {
7632       // The high part is obtained by SRA'ing all but one of the bits of low
7633       // part.
7634       unsigned LoSize = VT.getSizeInBits();
7635       HiLHS =
7636           DAG.getNode(ISD::SRA, dl, VT, LHS,
7637                       DAG.getConstant(LoSize - 1, dl,
7638                                       getPointerTy(DAG.getDataLayout())));
7639       HiRHS =
7640           DAG.getNode(ISD::SRA, dl, VT, RHS,
7641                       DAG.getConstant(LoSize - 1, dl,
7642                                       getPointerTy(DAG.getDataLayout())));
7643     } else {
7644         HiLHS = DAG.getConstant(0, dl, VT);
7645         HiRHS = DAG.getConstant(0, dl, VT);
7646     }
7647 
7648     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7649     // pre-lowered to the correct types. This all depends upon WideVT not
7650     // being a legal type for the architecture and thus has to be split to
7651     // two arguments.
7652     SDValue Ret;
7653     TargetLowering::MakeLibCallOptions CallOptions;
7654     CallOptions.setSExt(isSigned);
7655     CallOptions.setIsPostTypeLegalization(true);
7656     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7657       // Halves of WideVT are packed into registers in different order
7658       // depending on platform endianness. This is usually handled by
7659       // the C calling convention, but we can't defer to it in
7660       // the legalizer.
7661       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7662       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7663     } else {
7664       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7665       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7666     }
7667     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7668            "Ret value is a collection of constituent nodes holding result.");
7669     if (DAG.getDataLayout().isLittleEndian()) {
7670       // Same as above.
7671       BottomHalf = Ret.getOperand(0);
7672       TopHalf = Ret.getOperand(1);
7673     } else {
7674       BottomHalf = Ret.getOperand(1);
7675       TopHalf = Ret.getOperand(0);
7676     }
7677   }
7678 
7679   Result = BottomHalf;
7680   if (isSigned) {
7681     SDValue ShiftAmt = DAG.getConstant(
7682         VT.getScalarSizeInBits() - 1, dl,
7683         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7684     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7685     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7686   } else {
7687     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7688                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7689   }
7690 
7691   // Truncate the result if SetCC returns a larger type than needed.
7692   EVT RType = Node->getValueType(1);
7693   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7694     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7695 
7696   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7697          "Unexpected result type for S/UMULO legalization");
7698   return true;
7699 }
7700 
7701 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7702   SDLoc dl(Node);
7703   bool NoNaN = Node->getFlags().hasNoNaNs();
7704   unsigned BaseOpcode = 0;
7705   switch (Node->getOpcode()) {
7706   default: llvm_unreachable("Expected VECREDUCE opcode");
7707   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7708   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7709   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7710   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7711   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7712   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7713   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7714   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7715   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7716   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7717   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7718   case ISD::VECREDUCE_FMAX:
7719     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7720     break;
7721   case ISD::VECREDUCE_FMIN:
7722     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7723     break;
7724   }
7725 
7726   SDValue Op = Node->getOperand(0);
7727   EVT VT = Op.getValueType();
7728 
7729   // Try to use a shuffle reduction for power of two vectors.
7730   if (VT.isPow2VectorType()) {
7731     while (VT.getVectorNumElements() > 1) {
7732       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7733       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7734         break;
7735 
7736       SDValue Lo, Hi;
7737       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7738       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7739       VT = HalfVT;
7740     }
7741   }
7742 
7743   EVT EltVT = VT.getVectorElementType();
7744   unsigned NumElts = VT.getVectorNumElements();
7745 
7746   SmallVector<SDValue, 8> Ops;
7747   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7748 
7749   SDValue Res = Ops[0];
7750   for (unsigned i = 1; i < NumElts; i++)
7751     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7752 
7753   // Result type may be wider than element type.
7754   if (EltVT != Node->getValueType(0))
7755     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7756   return Res;
7757 }
7758