1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 if (IsSRet) 136 IndirectType = Call->getParamStructRetType(ArgIdx); 137 } 138 139 /// Generate a libcall taking the given operands as arguments and returning a 140 /// result of type RetVT. 141 std::pair<SDValue, SDValue> 142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 143 ArrayRef<SDValue> Ops, 144 MakeLibCallOptions CallOptions, 145 const SDLoc &dl, 146 SDValue InChain) const { 147 if (!InChain) 148 InChain = DAG.getEntryNode(); 149 150 TargetLowering::ArgListTy Args; 151 Args.reserve(Ops.size()); 152 153 TargetLowering::ArgListEntry Entry; 154 for (unsigned i = 0; i < Ops.size(); ++i) { 155 SDValue NewOp = Ops[i]; 156 Entry.Node = NewOp; 157 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 158 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 159 CallOptions.IsSExt); 160 Entry.IsZExt = !Entry.IsSExt; 161 162 if (CallOptions.IsSoften && 163 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 164 Entry.IsSExt = Entry.IsZExt = false; 165 } 166 Args.push_back(Entry); 167 } 168 169 if (LC == RTLIB::UNKNOWN_LIBCALL) 170 report_fatal_error("Unsupported library call operation!"); 171 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 172 getPointerTy(DAG.getDataLayout())); 173 174 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 175 TargetLowering::CallLoweringInfo CLI(DAG); 176 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 177 bool zeroExtend = !signExtend; 178 179 if (CallOptions.IsSoften && 180 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 181 signExtend = zeroExtend = false; 182 } 183 184 CLI.setDebugLoc(dl) 185 .setChain(InChain) 186 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 187 .setNoReturn(CallOptions.DoesNotReturn) 188 .setDiscardResult(!CallOptions.IsReturnValueUsed) 189 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 190 .setSExtResult(signExtend) 191 .setZExtResult(zeroExtend); 192 return LowerCallTo(CLI); 193 } 194 195 bool TargetLowering::findOptimalMemOpLowering( 196 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 197 unsigned SrcAS, const AttributeList &FuncAttributes) const { 198 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 199 return false; 200 201 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 202 203 if (VT == MVT::Other) { 204 // Use the largest integer type whose alignment constraints are satisfied. 205 // We only need to check DstAlign here as SrcAlign is always greater or 206 // equal to DstAlign (or zero). 207 VT = MVT::i64; 208 if (Op.isFixedDstAlign()) 209 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 210 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 211 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 212 assert(VT.isInteger()); 213 214 // Find the largest legal integer type. 215 MVT LVT = MVT::i64; 216 while (!isTypeLegal(LVT)) 217 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 218 assert(LVT.isInteger()); 219 220 // If the type we've chosen is larger than the largest legal integer type 221 // then use that instead. 222 if (VT.bitsGT(LVT)) 223 VT = LVT; 224 } 225 226 unsigned NumMemOps = 0; 227 uint64_t Size = Op.size(); 228 while (Size) { 229 unsigned VTSize = VT.getSizeInBits() / 8; 230 while (VTSize > Size) { 231 // For now, only use non-vector load / store's for the left-over pieces. 232 EVT NewVT = VT; 233 unsigned NewVTSize; 234 235 bool Found = false; 236 if (VT.isVector() || VT.isFloatingPoint()) { 237 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 238 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 239 isSafeMemOpType(NewVT.getSimpleVT())) 240 Found = true; 241 else if (NewVT == MVT::i64 && 242 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 243 isSafeMemOpType(MVT::f64)) { 244 // i64 is usually not legal on 32-bit targets, but f64 may be. 245 NewVT = MVT::f64; 246 Found = true; 247 } 248 } 249 250 if (!Found) { 251 do { 252 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 253 if (NewVT == MVT::i8) 254 break; 255 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 256 } 257 NewVTSize = NewVT.getSizeInBits() / 8; 258 259 // If the new VT cannot cover all of the remaining bits, then consider 260 // issuing a (or a pair of) unaligned and overlapping load / store. 261 bool Fast; 262 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 263 allowsMisalignedMemoryAccesses( 264 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 265 MachineMemOperand::MONone, &Fast) && 266 Fast) 267 VTSize = Size; 268 else { 269 VT = NewVT; 270 VTSize = NewVTSize; 271 } 272 } 273 274 if (++NumMemOps > Limit) 275 return false; 276 277 MemOps.push_back(VT); 278 Size -= VTSize; 279 } 280 281 return true; 282 } 283 284 /// Soften the operands of a comparison. This code is shared among BR_CC, 285 /// SELECT_CC, and SETCC handlers. 286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 287 SDValue &NewLHS, SDValue &NewRHS, 288 ISD::CondCode &CCCode, 289 const SDLoc &dl, const SDValue OldLHS, 290 const SDValue OldRHS) const { 291 SDValue Chain; 292 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 293 OldRHS, Chain); 294 } 295 296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 297 SDValue &NewLHS, SDValue &NewRHS, 298 ISD::CondCode &CCCode, 299 const SDLoc &dl, const SDValue OldLHS, 300 const SDValue OldRHS, 301 SDValue &Chain, 302 bool IsSignaling) const { 303 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 304 // not supporting it. We can update this code when libgcc provides such 305 // functions. 306 307 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 308 && "Unsupported setcc type!"); 309 310 // Expand into one or more soft-fp libcall(s). 311 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 312 bool ShouldInvertCC = false; 313 switch (CCCode) { 314 case ISD::SETEQ: 315 case ISD::SETOEQ: 316 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 317 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 318 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 319 break; 320 case ISD::SETNE: 321 case ISD::SETUNE: 322 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 323 (VT == MVT::f64) ? RTLIB::UNE_F64 : 324 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 325 break; 326 case ISD::SETGE: 327 case ISD::SETOGE: 328 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 329 (VT == MVT::f64) ? RTLIB::OGE_F64 : 330 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 331 break; 332 case ISD::SETLT: 333 case ISD::SETOLT: 334 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 335 (VT == MVT::f64) ? RTLIB::OLT_F64 : 336 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 337 break; 338 case ISD::SETLE: 339 case ISD::SETOLE: 340 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 341 (VT == MVT::f64) ? RTLIB::OLE_F64 : 342 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 343 break; 344 case ISD::SETGT: 345 case ISD::SETOGT: 346 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 347 (VT == MVT::f64) ? RTLIB::OGT_F64 : 348 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 349 break; 350 case ISD::SETO: 351 ShouldInvertCC = true; 352 LLVM_FALLTHROUGH; 353 case ISD::SETUO: 354 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 355 (VT == MVT::f64) ? RTLIB::UO_F64 : 356 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 357 break; 358 case ISD::SETONE: 359 // SETONE = O && UNE 360 ShouldInvertCC = true; 361 LLVM_FALLTHROUGH; 362 case ISD::SETUEQ: 363 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 364 (VT == MVT::f64) ? RTLIB::UO_F64 : 365 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 366 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 367 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 368 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 369 break; 370 default: 371 // Invert CC for unordered comparisons 372 ShouldInvertCC = true; 373 switch (CCCode) { 374 case ISD::SETULT: 375 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 376 (VT == MVT::f64) ? RTLIB::OGE_F64 : 377 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 378 break; 379 case ISD::SETULE: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 381 (VT == MVT::f64) ? RTLIB::OGT_F64 : 382 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 383 break; 384 case ISD::SETUGT: 385 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 386 (VT == MVT::f64) ? RTLIB::OLE_F64 : 387 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 388 break; 389 case ISD::SETUGE: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 391 (VT == MVT::f64) ? RTLIB::OLT_F64 : 392 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 393 break; 394 default: llvm_unreachable("Do not know how to soften this setcc!"); 395 } 396 } 397 398 // Use the target specific return value for comparions lib calls. 399 EVT RetVT = getCmpLibcallReturnType(); 400 SDValue Ops[2] = {NewLHS, NewRHS}; 401 TargetLowering::MakeLibCallOptions CallOptions; 402 EVT OpsVT[2] = { OldLHS.getValueType(), 403 OldRHS.getValueType() }; 404 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 405 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 406 NewLHS = Call.first; 407 NewRHS = DAG.getConstant(0, dl, RetVT); 408 409 CCCode = getCmpLibcallCC(LC1); 410 if (ShouldInvertCC) { 411 assert(RetVT.isInteger()); 412 CCCode = getSetCCInverse(CCCode, RetVT); 413 } 414 415 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 416 // Update Chain. 417 Chain = Call.second; 418 } else { 419 EVT SetCCVT = 420 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 421 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 422 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 423 CCCode = getCmpLibcallCC(LC2); 424 if (ShouldInvertCC) 425 CCCode = getSetCCInverse(CCCode, RetVT); 426 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 427 if (Chain) 428 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 429 Call2.second); 430 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 431 Tmp.getValueType(), Tmp, NewLHS); 432 NewRHS = SDValue(); 433 } 434 } 435 436 /// Return the entry encoding for a jump table in the current function. The 437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 438 unsigned TargetLowering::getJumpTableEncoding() const { 439 // In non-pic modes, just use the address of a block. 440 if (!isPositionIndependent()) 441 return MachineJumpTableInfo::EK_BlockAddress; 442 443 // In PIC mode, if the target supports a GPRel32 directive, use it. 444 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 445 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 446 447 // Otherwise, use a label difference. 448 return MachineJumpTableInfo::EK_LabelDifference32; 449 } 450 451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 452 SelectionDAG &DAG) const { 453 // If our PIC model is GP relative, use the global offset table as the base. 454 unsigned JTEncoding = getJumpTableEncoding(); 455 456 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 457 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 458 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 459 460 return Table; 461 } 462 463 /// This returns the relocation base for the given PIC jumptable, the same as 464 /// getPICJumpTableRelocBase, but as an MCExpr. 465 const MCExpr * 466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 467 unsigned JTI,MCContext &Ctx) const{ 468 // The normal PIC reloc base is the label at the start of the jump table. 469 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 470 } 471 472 bool 473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 474 const TargetMachine &TM = getTargetMachine(); 475 const GlobalValue *GV = GA->getGlobal(); 476 477 // If the address is not even local to this DSO we will have to load it from 478 // a got and then add the offset. 479 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 480 return false; 481 482 // If the code is position independent we will have to add a base register. 483 if (isPositionIndependent()) 484 return false; 485 486 // Otherwise we can do it. 487 return true; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // Optimization Methods 492 //===----------------------------------------------------------------------===// 493 494 /// If the specified instruction has a constant integer operand and there are 495 /// bits set in that constant that are not demanded, then clear those bits and 496 /// return true. 497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 498 const APInt &DemandedBits, 499 const APInt &DemandedElts, 500 TargetLoweringOpt &TLO) const { 501 SDLoc DL(Op); 502 unsigned Opcode = Op.getOpcode(); 503 504 // Do target-specific constant optimization. 505 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 506 return TLO.New.getNode(); 507 508 // FIXME: ISD::SELECT, ISD::SELECT_CC 509 switch (Opcode) { 510 default: 511 break; 512 case ISD::XOR: 513 case ISD::AND: 514 case ISD::OR: { 515 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 516 if (!Op1C || Op1C->isOpaque()) 517 return false; 518 519 // If this is a 'not' op, don't touch it because that's a canonical form. 520 const APInt &C = Op1C->getAPIntValue(); 521 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 522 return false; 523 524 if (!C.isSubsetOf(DemandedBits)) { 525 EVT VT = Op.getValueType(); 526 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 527 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 528 return TLO.CombineTo(Op, NewOp); 529 } 530 531 break; 532 } 533 } 534 535 return false; 536 } 537 538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 539 const APInt &DemandedBits, 540 TargetLoweringOpt &TLO) const { 541 EVT VT = Op.getValueType(); 542 APInt DemandedElts = VT.isVector() 543 ? APInt::getAllOnes(VT.getVectorNumElements()) 544 : APInt(1, 1); 545 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 546 } 547 548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 550 /// generalized for targets with other types of implicit widening casts. 551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 552 const APInt &Demanded, 553 TargetLoweringOpt &TLO) const { 554 assert(Op.getNumOperands() == 2 && 555 "ShrinkDemandedOp only supports binary operators!"); 556 assert(Op.getNode()->getNumValues() == 1 && 557 "ShrinkDemandedOp only supports nodes with one result!"); 558 559 SelectionDAG &DAG = TLO.DAG; 560 SDLoc dl(Op); 561 562 // Early return, as this function cannot handle vector types. 563 if (Op.getValueType().isVector()) 564 return false; 565 566 // Don't do this if the node has another user, which may require the 567 // full value. 568 if (!Op.getNode()->hasOneUse()) 569 return false; 570 571 // Search for the smallest integer type with free casts to and from 572 // Op's type. For expedience, just check power-of-2 integer types. 573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 574 unsigned DemandedSize = Demanded.getActiveBits(); 575 unsigned SmallVTBits = DemandedSize; 576 if (!isPowerOf2_32(SmallVTBits)) 577 SmallVTBits = NextPowerOf2(SmallVTBits); 578 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 579 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 580 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 581 TLI.isZExtFree(SmallVT, Op.getValueType())) { 582 // We found a type with free casts. 583 SDValue X = DAG.getNode( 584 Op.getOpcode(), dl, SmallVT, 585 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 586 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 587 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 588 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 589 return TLO.CombineTo(Op, Z); 590 } 591 } 592 return false; 593 } 594 595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 596 DAGCombinerInfo &DCI) const { 597 SelectionDAG &DAG = DCI.DAG; 598 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 599 !DCI.isBeforeLegalizeOps()); 600 KnownBits Known; 601 602 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 603 if (Simplified) { 604 DCI.AddToWorklist(Op.getNode()); 605 DCI.CommitTargetLoweringOpt(TLO); 606 } 607 return Simplified; 608 } 609 610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 611 const APInt &DemandedElts, 612 DAGCombinerInfo &DCI) const { 613 SelectionDAG &DAG = DCI.DAG; 614 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 615 !DCI.isBeforeLegalizeOps()); 616 KnownBits Known; 617 618 bool Simplified = 619 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 620 if (Simplified) { 621 DCI.AddToWorklist(Op.getNode()); 622 DCI.CommitTargetLoweringOpt(TLO); 623 } 624 return Simplified; 625 } 626 627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 628 KnownBits &Known, 629 TargetLoweringOpt &TLO, 630 unsigned Depth, 631 bool AssumeSingleUse) const { 632 EVT VT = Op.getValueType(); 633 634 // TODO: We can probably do more work on calculating the known bits and 635 // simplifying the operations for scalable vectors, but for now we just 636 // bail out. 637 if (VT.isScalableVector()) { 638 // Pretend we don't know anything for now. 639 Known = KnownBits(DemandedBits.getBitWidth()); 640 return false; 641 } 642 643 APInt DemandedElts = VT.isVector() 644 ? APInt::getAllOnes(VT.getVectorNumElements()) 645 : APInt(1, 1); 646 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 647 AssumeSingleUse); 648 } 649 650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 651 // TODO: Under what circumstances can we create nodes? Constant folding? 652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 653 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 654 SelectionDAG &DAG, unsigned Depth) const { 655 // Limit search depth. 656 if (Depth >= SelectionDAG::MaxRecursionDepth) 657 return SDValue(); 658 659 // Ignore UNDEFs. 660 if (Op.isUndef()) 661 return SDValue(); 662 663 // Not demanding any bits/elts from Op. 664 if (DemandedBits == 0 || DemandedElts == 0) 665 return DAG.getUNDEF(Op.getValueType()); 666 667 bool IsLE = DAG.getDataLayout().isLittleEndian(); 668 unsigned NumElts = DemandedElts.getBitWidth(); 669 unsigned BitWidth = DemandedBits.getBitWidth(); 670 KnownBits LHSKnown, RHSKnown; 671 switch (Op.getOpcode()) { 672 case ISD::BITCAST: { 673 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 674 EVT SrcVT = Src.getValueType(); 675 EVT DstVT = Op.getValueType(); 676 if (SrcVT == DstVT) 677 return Src; 678 679 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 680 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 681 if (NumSrcEltBits == NumDstEltBits) 682 if (SDValue V = SimplifyMultipleUseDemandedBits( 683 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 684 return DAG.getBitcast(DstVT, V); 685 686 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 687 unsigned Scale = NumDstEltBits / NumSrcEltBits; 688 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 689 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 690 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 691 for (unsigned i = 0; i != Scale; ++i) { 692 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 693 unsigned BitOffset = EltOffset * NumSrcEltBits; 694 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 695 if (!Sub.isZero()) { 696 DemandedSrcBits |= Sub; 697 for (unsigned j = 0; j != NumElts; ++j) 698 if (DemandedElts[j]) 699 DemandedSrcElts.setBit((j * Scale) + i); 700 } 701 } 702 703 if (SDValue V = SimplifyMultipleUseDemandedBits( 704 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 705 return DAG.getBitcast(DstVT, V); 706 } 707 708 // TODO - bigendian once we have test coverage. 709 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 710 unsigned Scale = NumSrcEltBits / NumDstEltBits; 711 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 712 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 713 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 714 for (unsigned i = 0; i != NumElts; ++i) 715 if (DemandedElts[i]) { 716 unsigned Offset = (i % Scale) * NumDstEltBits; 717 DemandedSrcBits.insertBits(DemandedBits, Offset); 718 DemandedSrcElts.setBit(i / Scale); 719 } 720 721 if (SDValue V = SimplifyMultipleUseDemandedBits( 722 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 723 return DAG.getBitcast(DstVT, V); 724 } 725 726 break; 727 } 728 case ISD::AND: { 729 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 730 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 731 732 // If all of the demanded bits are known 1 on one side, return the other. 733 // These bits cannot contribute to the result of the 'and' in this 734 // context. 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 736 return Op.getOperand(0); 737 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 738 return Op.getOperand(1); 739 break; 740 } 741 case ISD::OR: { 742 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 743 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 744 745 // If all of the demanded bits are known zero on one side, return the 746 // other. These bits cannot contribute to the result of the 'or' in this 747 // context. 748 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 749 return Op.getOperand(0); 750 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 751 return Op.getOperand(1); 752 break; 753 } 754 case ISD::XOR: { 755 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 756 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 757 758 // If all of the demanded bits are known zero on one side, return the 759 // other. 760 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 761 return Op.getOperand(0); 762 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 763 return Op.getOperand(1); 764 break; 765 } 766 case ISD::SHL: { 767 // If we are only demanding sign bits then we can use the shift source 768 // directly. 769 if (const APInt *MaxSA = 770 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 771 SDValue Op0 = Op.getOperand(0); 772 unsigned ShAmt = MaxSA->getZExtValue(); 773 unsigned NumSignBits = 774 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 775 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 776 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 777 return Op0; 778 } 779 break; 780 } 781 case ISD::SETCC: { 782 SDValue Op0 = Op.getOperand(0); 783 SDValue Op1 = Op.getOperand(1); 784 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 785 // If (1) we only need the sign-bit, (2) the setcc operands are the same 786 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 787 // -1, we may be able to bypass the setcc. 788 if (DemandedBits.isSignMask() && 789 Op0.getScalarValueSizeInBits() == BitWidth && 790 getBooleanContents(Op0.getValueType()) == 791 BooleanContent::ZeroOrNegativeOneBooleanContent) { 792 // If we're testing X < 0, then this compare isn't needed - just use X! 793 // FIXME: We're limiting to integer types here, but this should also work 794 // if we don't care about FP signed-zero. The use of SETLT with FP means 795 // that we don't care about NaNs. 796 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 797 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 798 return Op0; 799 } 800 break; 801 } 802 case ISD::SIGN_EXTEND_INREG: { 803 // If none of the extended bits are demanded, eliminate the sextinreg. 804 SDValue Op0 = Op.getOperand(0); 805 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 806 unsigned ExBits = ExVT.getScalarSizeInBits(); 807 if (DemandedBits.getActiveBits() <= ExBits) 808 return Op0; 809 // If the input is already sign extended, just drop the extension. 810 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 811 if (NumSignBits >= (BitWidth - ExBits + 1)) 812 return Op0; 813 break; 814 } 815 case ISD::ANY_EXTEND_VECTOR_INREG: 816 case ISD::SIGN_EXTEND_VECTOR_INREG: 817 case ISD::ZERO_EXTEND_VECTOR_INREG: { 818 // If we only want the lowest element and none of extended bits, then we can 819 // return the bitcasted source vector. 820 SDValue Src = Op.getOperand(0); 821 EVT SrcVT = Src.getValueType(); 822 EVT DstVT = Op.getValueType(); 823 if (IsLE && DemandedElts == 1 && 824 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 825 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 826 return DAG.getBitcast(DstVT, Src); 827 } 828 break; 829 } 830 case ISD::INSERT_VECTOR_ELT: { 831 // If we don't demand the inserted element, return the base vector. 832 SDValue Vec = Op.getOperand(0); 833 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 834 EVT VecVT = Vec.getValueType(); 835 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 836 !DemandedElts[CIdx->getZExtValue()]) 837 return Vec; 838 break; 839 } 840 case ISD::INSERT_SUBVECTOR: { 841 SDValue Vec = Op.getOperand(0); 842 SDValue Sub = Op.getOperand(1); 843 uint64_t Idx = Op.getConstantOperandVal(2); 844 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 845 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 846 // If we don't demand the inserted subvector, return the base vector. 847 if (DemandedSubElts == 0) 848 return Vec; 849 // If this simply widens the lowest subvector, see if we can do it earlier. 850 if (Idx == 0 && Vec.isUndef()) { 851 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 852 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 853 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 854 Op.getOperand(0), NewSub, Op.getOperand(2)); 855 } 856 break; 857 } 858 case ISD::VECTOR_SHUFFLE: { 859 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 860 861 // If all the demanded elts are from one operand and are inline, 862 // then we can use the operand directly. 863 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 864 for (unsigned i = 0; i != NumElts; ++i) { 865 int M = ShuffleMask[i]; 866 if (M < 0 || !DemandedElts[i]) 867 continue; 868 AllUndef = false; 869 IdentityLHS &= (M == (int)i); 870 IdentityRHS &= ((M - NumElts) == i); 871 } 872 873 if (AllUndef) 874 return DAG.getUNDEF(Op.getValueType()); 875 if (IdentityLHS) 876 return Op.getOperand(0); 877 if (IdentityRHS) 878 return Op.getOperand(1); 879 break; 880 } 881 default: 882 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 883 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 884 Op, DemandedBits, DemandedElts, DAG, Depth)) 885 return V; 886 break; 887 } 888 return SDValue(); 889 } 890 891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 892 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 893 unsigned Depth) const { 894 EVT VT = Op.getValueType(); 895 APInt DemandedElts = VT.isVector() 896 ? APInt::getAllOnes(VT.getVectorNumElements()) 897 : APInt(1, 1); 898 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 899 Depth); 900 } 901 902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 903 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 904 unsigned Depth) const { 905 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 906 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 907 Depth); 908 } 909 910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 911 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 913 const TargetLowering &TLI, 914 const APInt &DemandedBits, 915 const APInt &DemandedElts, 916 unsigned Depth) { 917 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 918 "SRL or SRA node is required here!"); 919 // Is the right shift using an immediate value of 1? 920 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 921 if (!N1C || !N1C->isOne()) 922 return SDValue(); 923 924 // We are looking for an avgfloor 925 // add(ext, ext) 926 // or one of these as a avgceil 927 // add(add(ext, ext), 1) 928 // add(add(ext, 1), ext) 929 // add(ext, add(ext, 1)) 930 SDValue Add = Op.getOperand(0); 931 if (Add.getOpcode() != ISD::ADD) 932 return SDValue(); 933 934 SDValue ExtOpA = Add.getOperand(0); 935 SDValue ExtOpB = Add.getOperand(1); 936 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 937 ConstantSDNode *ConstOp; 938 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 939 ConstOp->isOne()) { 940 ExtOpA = Op2; 941 ExtOpB = Op3; 942 return true; 943 } 944 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 945 ConstOp->isOne()) { 946 ExtOpA = Op1; 947 ExtOpB = Op3; 948 return true; 949 } 950 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 951 ConstOp->isOne()) { 952 ExtOpA = Op1; 953 ExtOpB = Op2; 954 return true; 955 } 956 return false; 957 }; 958 bool IsCeil = 959 (ExtOpA.getOpcode() == ISD::ADD && 960 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 961 (ExtOpB.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 963 964 // If the shift is signed (sra): 965 // - Needs >= 2 sign bit for both operands. 966 // - Needs >= 2 zero bits. 967 // If the shift is unsigned (srl): 968 // - Needs >= 1 zero bit for both operands. 969 // - Needs 1 demanded bit zero and >= 2 sign bits. 970 unsigned ShiftOpc = Op.getOpcode(); 971 bool IsSigned = false; 972 unsigned KnownBits; 973 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 974 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 975 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 976 unsigned NumZeroA = 977 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 978 unsigned NumZeroB = 979 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZero = std::min(NumZeroA, NumZeroB); 981 982 switch (ShiftOpc) { 983 default: 984 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 985 case ISD::SRA: { 986 if (NumZero >= 2 && NumSigned < NumZero) { 987 IsSigned = false; 988 KnownBits = NumZero; 989 break; 990 } 991 if (NumSigned >= 1) { 992 IsSigned = true; 993 KnownBits = NumSigned; 994 break; 995 } 996 return SDValue(); 997 } 998 case ISD::SRL: { 999 if (NumZero >= 1 && NumSigned < NumZero) { 1000 IsSigned = false; 1001 KnownBits = NumZero; 1002 break; 1003 } 1004 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1005 IsSigned = true; 1006 KnownBits = NumSigned; 1007 break; 1008 } 1009 return SDValue(); 1010 } 1011 } 1012 1013 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1014 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1015 1016 // Find the smallest power-2 type that is legal for this vector size and 1017 // operation, given the original type size and the number of known sign/zero 1018 // bits. 1019 EVT VT = Op.getValueType(); 1020 unsigned MinWidth = 1021 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1022 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1023 if (VT.isVector()) 1024 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1025 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1026 return SDValue(); 1027 1028 SDLoc DL(Op); 1029 SDValue ResultAVG = 1030 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1031 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1032 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1033 ResultAVG); 1034 } 1035 1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1037 /// result of Op are ever used downstream. If we can use this information to 1038 /// simplify Op, create a new simplified DAG node and return true, returning the 1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1040 /// return a mask of Known bits for the expression (used to simplify the 1041 /// caller). The Known bits may only be accurate for those bits in the 1042 /// OriginalDemandedBits and OriginalDemandedElts. 1043 bool TargetLowering::SimplifyDemandedBits( 1044 SDValue Op, const APInt &OriginalDemandedBits, 1045 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1046 unsigned Depth, bool AssumeSingleUse) const { 1047 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1048 assert(Op.getScalarValueSizeInBits() == BitWidth && 1049 "Mask size mismatches value type size!"); 1050 1051 // Don't know anything. 1052 Known = KnownBits(BitWidth); 1053 1054 // TODO: We can probably do more work on calculating the known bits and 1055 // simplifying the operations for scalable vectors, but for now we just 1056 // bail out. 1057 if (Op.getValueType().isScalableVector()) 1058 return false; 1059 1060 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1061 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1062 assert((!Op.getValueType().isVector() || 1063 NumElts == Op.getValueType().getVectorNumElements()) && 1064 "Unexpected vector size"); 1065 1066 APInt DemandedBits = OriginalDemandedBits; 1067 APInt DemandedElts = OriginalDemandedElts; 1068 SDLoc dl(Op); 1069 auto &DL = TLO.DAG.getDataLayout(); 1070 1071 // Undef operand. 1072 if (Op.isUndef()) 1073 return false; 1074 1075 if (Op.getOpcode() == ISD::Constant) { 1076 // We know all of the bits for a constant! 1077 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1078 return false; 1079 } 1080 1081 if (Op.getOpcode() == ISD::ConstantFP) { 1082 // We know all of the bits for a floating point constant! 1083 Known = KnownBits::makeConstant( 1084 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1085 return false; 1086 } 1087 1088 // Other users may use these bits. 1089 EVT VT = Op.getValueType(); 1090 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1091 if (Depth != 0) { 1092 // If not at the root, Just compute the Known bits to 1093 // simplify things downstream. 1094 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1095 return false; 1096 } 1097 // If this is the root being simplified, allow it to have multiple uses, 1098 // just set the DemandedBits/Elts to all bits. 1099 DemandedBits = APInt::getAllOnes(BitWidth); 1100 DemandedElts = APInt::getAllOnes(NumElts); 1101 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1102 // Not demanding any bits/elts from Op. 1103 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1104 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1105 // Limit search depth. 1106 return false; 1107 } 1108 1109 KnownBits Known2; 1110 switch (Op.getOpcode()) { 1111 case ISD::TargetConstant: 1112 llvm_unreachable("Can't simplify this node"); 1113 case ISD::SCALAR_TO_VECTOR: { 1114 if (!DemandedElts[0]) 1115 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1116 1117 KnownBits SrcKnown; 1118 SDValue Src = Op.getOperand(0); 1119 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1120 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 1121 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1122 return true; 1123 1124 // Upper elements are undef, so only get the knownbits if we just demand 1125 // the bottom element. 1126 if (DemandedElts == 1) 1127 Known = SrcKnown.anyextOrTrunc(BitWidth); 1128 break; 1129 } 1130 case ISD::BUILD_VECTOR: 1131 // Collect the known bits that are shared by every demanded element. 1132 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1133 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1134 return false; // Don't fall through, will infinitely loop. 1135 case ISD::LOAD: { 1136 auto *LD = cast<LoadSDNode>(Op); 1137 if (getTargetConstantFromLoad(LD)) { 1138 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1139 return false; // Don't fall through, will infinitely loop. 1140 } 1141 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1142 // If this is a ZEXTLoad and we are looking at the loaded value. 1143 EVT MemVT = LD->getMemoryVT(); 1144 unsigned MemBits = MemVT.getScalarSizeInBits(); 1145 Known.Zero.setBitsFrom(MemBits); 1146 return false; // Don't fall through, will infinitely loop. 1147 } 1148 break; 1149 } 1150 case ISD::INSERT_VECTOR_ELT: { 1151 SDValue Vec = Op.getOperand(0); 1152 SDValue Scl = Op.getOperand(1); 1153 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1154 EVT VecVT = Vec.getValueType(); 1155 1156 // If index isn't constant, assume we need all vector elements AND the 1157 // inserted element. 1158 APInt DemandedVecElts(DemandedElts); 1159 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1160 unsigned Idx = CIdx->getZExtValue(); 1161 DemandedVecElts.clearBit(Idx); 1162 1163 // Inserted element is not required. 1164 if (!DemandedElts[Idx]) 1165 return TLO.CombineTo(Op, Vec); 1166 } 1167 1168 KnownBits KnownScl; 1169 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1170 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1171 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1172 return true; 1173 1174 Known = KnownScl.anyextOrTrunc(BitWidth); 1175 1176 KnownBits KnownVec; 1177 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1178 Depth + 1)) 1179 return true; 1180 1181 if (!!DemandedVecElts) 1182 Known = KnownBits::commonBits(Known, KnownVec); 1183 1184 return false; 1185 } 1186 case ISD::INSERT_SUBVECTOR: { 1187 // Demand any elements from the subvector and the remainder from the src its 1188 // inserted into. 1189 SDValue Src = Op.getOperand(0); 1190 SDValue Sub = Op.getOperand(1); 1191 uint64_t Idx = Op.getConstantOperandVal(2); 1192 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1193 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1194 APInt DemandedSrcElts = DemandedElts; 1195 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1196 1197 KnownBits KnownSub, KnownSrc; 1198 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1199 Depth + 1)) 1200 return true; 1201 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1202 Depth + 1)) 1203 return true; 1204 1205 Known.Zero.setAllBits(); 1206 Known.One.setAllBits(); 1207 if (!!DemandedSubElts) 1208 Known = KnownBits::commonBits(Known, KnownSub); 1209 if (!!DemandedSrcElts) 1210 Known = KnownBits::commonBits(Known, KnownSrc); 1211 1212 // Attempt to avoid multi-use src if we don't need anything from it. 1213 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1214 !DemandedSrcElts.isAllOnes()) { 1215 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1216 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1217 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1218 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1219 if (NewSub || NewSrc) { 1220 NewSub = NewSub ? NewSub : Sub; 1221 NewSrc = NewSrc ? NewSrc : Src; 1222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1223 Op.getOperand(2)); 1224 return TLO.CombineTo(Op, NewOp); 1225 } 1226 } 1227 break; 1228 } 1229 case ISD::EXTRACT_SUBVECTOR: { 1230 // Offset the demanded elts by the subvector index. 1231 SDValue Src = Op.getOperand(0); 1232 if (Src.getValueType().isScalableVector()) 1233 break; 1234 uint64_t Idx = Op.getConstantOperandVal(1); 1235 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1236 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1237 1238 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1239 Depth + 1)) 1240 return true; 1241 1242 // Attempt to avoid multi-use src if we don't need anything from it. 1243 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1244 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1245 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1246 if (DemandedSrc) { 1247 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1248 Op.getOperand(1)); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 break; 1253 } 1254 case ISD::CONCAT_VECTORS: { 1255 Known.Zero.setAllBits(); 1256 Known.One.setAllBits(); 1257 EVT SubVT = Op.getOperand(0).getValueType(); 1258 unsigned NumSubVecs = Op.getNumOperands(); 1259 unsigned NumSubElts = SubVT.getVectorNumElements(); 1260 for (unsigned i = 0; i != NumSubVecs; ++i) { 1261 APInt DemandedSubElts = 1262 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1263 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1264 Known2, TLO, Depth + 1)) 1265 return true; 1266 // Known bits are shared by every demanded subvector element. 1267 if (!!DemandedSubElts) 1268 Known = KnownBits::commonBits(Known, Known2); 1269 } 1270 break; 1271 } 1272 case ISD::VECTOR_SHUFFLE: { 1273 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1274 1275 // Collect demanded elements from shuffle operands.. 1276 APInt DemandedLHS(NumElts, 0); 1277 APInt DemandedRHS(NumElts, 0); 1278 for (unsigned i = 0; i != NumElts; ++i) { 1279 if (!DemandedElts[i]) 1280 continue; 1281 int M = ShuffleMask[i]; 1282 if (M < 0) { 1283 // For UNDEF elements, we don't know anything about the common state of 1284 // the shuffle result. 1285 DemandedLHS.clearAllBits(); 1286 DemandedRHS.clearAllBits(); 1287 break; 1288 } 1289 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1290 if (M < (int)NumElts) 1291 DemandedLHS.setBit(M); 1292 else 1293 DemandedRHS.setBit(M - NumElts); 1294 } 1295 1296 if (!!DemandedLHS || !!DemandedRHS) { 1297 SDValue Op0 = Op.getOperand(0); 1298 SDValue Op1 = Op.getOperand(1); 1299 1300 Known.Zero.setAllBits(); 1301 Known.One.setAllBits(); 1302 if (!!DemandedLHS) { 1303 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1304 Depth + 1)) 1305 return true; 1306 Known = KnownBits::commonBits(Known, Known2); 1307 } 1308 if (!!DemandedRHS) { 1309 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1310 Depth + 1)) 1311 return true; 1312 Known = KnownBits::commonBits(Known, Known2); 1313 } 1314 1315 // Attempt to avoid multi-use ops if we don't need anything from them. 1316 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1317 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1318 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1319 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1320 if (DemandedOp0 || DemandedOp1) { 1321 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1322 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1323 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1324 return TLO.CombineTo(Op, NewOp); 1325 } 1326 } 1327 break; 1328 } 1329 case ISD::AND: { 1330 SDValue Op0 = Op.getOperand(0); 1331 SDValue Op1 = Op.getOperand(1); 1332 1333 // If the RHS is a constant, check to see if the LHS would be zero without 1334 // using the bits from the RHS. Below, we use knowledge about the RHS to 1335 // simplify the LHS, here we're using information from the LHS to simplify 1336 // the RHS. 1337 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1338 // Do not increment Depth here; that can cause an infinite loop. 1339 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1340 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1341 if ((LHSKnown.Zero & DemandedBits) == 1342 (~RHSC->getAPIntValue() & DemandedBits)) 1343 return TLO.CombineTo(Op, Op0); 1344 1345 // If any of the set bits in the RHS are known zero on the LHS, shrink 1346 // the constant. 1347 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1348 DemandedElts, TLO)) 1349 return true; 1350 1351 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1352 // constant, but if this 'and' is only clearing bits that were just set by 1353 // the xor, then this 'and' can be eliminated by shrinking the mask of 1354 // the xor. For example, for a 32-bit X: 1355 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1356 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1357 LHSKnown.One == ~RHSC->getAPIntValue()) { 1358 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1359 return TLO.CombineTo(Op, Xor); 1360 } 1361 } 1362 1363 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1364 Depth + 1)) 1365 return true; 1366 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1367 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1368 Known2, TLO, Depth + 1)) 1369 return true; 1370 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1371 1372 // Attempt to avoid multi-use ops if we don't need anything from them. 1373 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1374 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1375 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1376 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1377 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1378 if (DemandedOp0 || DemandedOp1) { 1379 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1380 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1381 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1382 return TLO.CombineTo(Op, NewOp); 1383 } 1384 } 1385 1386 // If all of the demanded bits are known one on one side, return the other. 1387 // These bits cannot contribute to the result of the 'and'. 1388 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1389 return TLO.CombineTo(Op, Op0); 1390 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1391 return TLO.CombineTo(Op, Op1); 1392 // If all of the demanded bits in the inputs are known zeros, return zero. 1393 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1394 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1395 // If the RHS is a constant, see if we can simplify it. 1396 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1397 TLO)) 1398 return true; 1399 // If the operation can be done in a smaller type, do so. 1400 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1401 return true; 1402 1403 Known &= Known2; 1404 break; 1405 } 1406 case ISD::OR: { 1407 SDValue Op0 = Op.getOperand(0); 1408 SDValue Op1 = Op.getOperand(1); 1409 1410 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1411 Depth + 1)) 1412 return true; 1413 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1414 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1415 Known2, TLO, Depth + 1)) 1416 return true; 1417 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1418 1419 // Attempt to avoid multi-use ops if we don't need anything from them. 1420 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1421 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1422 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1423 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1424 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1425 if (DemandedOp0 || DemandedOp1) { 1426 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1427 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1428 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1429 return TLO.CombineTo(Op, NewOp); 1430 } 1431 } 1432 1433 // If all of the demanded bits are known zero on one side, return the other. 1434 // These bits cannot contribute to the result of the 'or'. 1435 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1436 return TLO.CombineTo(Op, Op0); 1437 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1438 return TLO.CombineTo(Op, Op1); 1439 // If the RHS is a constant, see if we can simplify it. 1440 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1441 return true; 1442 // If the operation can be done in a smaller type, do so. 1443 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1444 return true; 1445 1446 Known |= Known2; 1447 break; 1448 } 1449 case ISD::XOR: { 1450 SDValue Op0 = Op.getOperand(0); 1451 SDValue Op1 = Op.getOperand(1); 1452 1453 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1454 Depth + 1)) 1455 return true; 1456 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1457 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1458 Depth + 1)) 1459 return true; 1460 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1461 1462 // Attempt to avoid multi-use ops if we don't need anything from them. 1463 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1464 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1465 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1466 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1467 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1468 if (DemandedOp0 || DemandedOp1) { 1469 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1470 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1471 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1472 return TLO.CombineTo(Op, NewOp); 1473 } 1474 } 1475 1476 // If all of the demanded bits are known zero on one side, return the other. 1477 // These bits cannot contribute to the result of the 'xor'. 1478 if (DemandedBits.isSubsetOf(Known.Zero)) 1479 return TLO.CombineTo(Op, Op0); 1480 if (DemandedBits.isSubsetOf(Known2.Zero)) 1481 return TLO.CombineTo(Op, Op1); 1482 // If the operation can be done in a smaller type, do so. 1483 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1484 return true; 1485 1486 // If all of the unknown bits are known to be zero on one side or the other 1487 // turn this into an *inclusive* or. 1488 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1489 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1490 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1491 1492 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1493 if (C) { 1494 // If one side is a constant, and all of the set bits in the constant are 1495 // also known set on the other side, turn this into an AND, as we know 1496 // the bits will be cleared. 1497 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1498 // NB: it is okay if more bits are known than are requested 1499 if (C->getAPIntValue() == Known2.One) { 1500 SDValue ANDC = 1501 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1502 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1503 } 1504 1505 // If the RHS is a constant, see if we can change it. Don't alter a -1 1506 // constant because that's a 'not' op, and that is better for combining 1507 // and codegen. 1508 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1509 // We're flipping all demanded bits. Flip the undemanded bits too. 1510 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1511 return TLO.CombineTo(Op, New); 1512 } 1513 } 1514 1515 // If we can't turn this into a 'not', try to shrink the constant. 1516 if (!C || !C->isAllOnes()) 1517 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1518 return true; 1519 1520 Known ^= Known2; 1521 break; 1522 } 1523 case ISD::SELECT: 1524 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1525 Depth + 1)) 1526 return true; 1527 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1528 Depth + 1)) 1529 return true; 1530 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1531 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1532 1533 // If the operands are constants, see if we can simplify them. 1534 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1535 return true; 1536 1537 // Only known if known in both the LHS and RHS. 1538 Known = KnownBits::commonBits(Known, Known2); 1539 break; 1540 case ISD::SELECT_CC: 1541 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1542 Depth + 1)) 1543 return true; 1544 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1545 Depth + 1)) 1546 return true; 1547 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1548 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1549 1550 // If the operands are constants, see if we can simplify them. 1551 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1552 return true; 1553 1554 // Only known if known in both the LHS and RHS. 1555 Known = KnownBits::commonBits(Known, Known2); 1556 break; 1557 case ISD::SETCC: { 1558 SDValue Op0 = Op.getOperand(0); 1559 SDValue Op1 = Op.getOperand(1); 1560 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1561 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1562 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1563 // -1, we may be able to bypass the setcc. 1564 if (DemandedBits.isSignMask() && 1565 Op0.getScalarValueSizeInBits() == BitWidth && 1566 getBooleanContents(Op0.getValueType()) == 1567 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1568 // If we're testing X < 0, then this compare isn't needed - just use X! 1569 // FIXME: We're limiting to integer types here, but this should also work 1570 // if we don't care about FP signed-zero. The use of SETLT with FP means 1571 // that we don't care about NaNs. 1572 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1573 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1574 return TLO.CombineTo(Op, Op0); 1575 1576 // TODO: Should we check for other forms of sign-bit comparisons? 1577 // Examples: X <= -1, X >= 0 1578 } 1579 if (getBooleanContents(Op0.getValueType()) == 1580 TargetLowering::ZeroOrOneBooleanContent && 1581 BitWidth > 1) 1582 Known.Zero.setBitsFrom(1); 1583 break; 1584 } 1585 case ISD::SHL: { 1586 SDValue Op0 = Op.getOperand(0); 1587 SDValue Op1 = Op.getOperand(1); 1588 EVT ShiftVT = Op1.getValueType(); 1589 1590 if (const APInt *SA = 1591 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1592 unsigned ShAmt = SA->getZExtValue(); 1593 if (ShAmt == 0) 1594 return TLO.CombineTo(Op, Op0); 1595 1596 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1597 // single shift. We can do this if the bottom bits (which are shifted 1598 // out) are never demanded. 1599 // TODO - support non-uniform vector amounts. 1600 if (Op0.getOpcode() == ISD::SRL) { 1601 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1602 if (const APInt *SA2 = 1603 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1604 unsigned C1 = SA2->getZExtValue(); 1605 unsigned Opc = ISD::SHL; 1606 int Diff = ShAmt - C1; 1607 if (Diff < 0) { 1608 Diff = -Diff; 1609 Opc = ISD::SRL; 1610 } 1611 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1612 return TLO.CombineTo( 1613 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1614 } 1615 } 1616 } 1617 1618 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1619 // are not demanded. This will likely allow the anyext to be folded away. 1620 // TODO - support non-uniform vector amounts. 1621 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1622 SDValue InnerOp = Op0.getOperand(0); 1623 EVT InnerVT = InnerOp.getValueType(); 1624 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1625 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1626 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1627 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1628 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1629 ShTy = InnerVT; 1630 SDValue NarrowShl = 1631 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1632 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1633 return TLO.CombineTo( 1634 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1635 } 1636 1637 // Repeat the SHL optimization above in cases where an extension 1638 // intervenes: (shl (anyext (shr x, c1)), c2) to 1639 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1640 // aren't demanded (as above) and that the shifted upper c1 bits of 1641 // x aren't demanded. 1642 // TODO - support non-uniform vector amounts. 1643 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1644 InnerOp.hasOneUse()) { 1645 if (const APInt *SA2 = 1646 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1647 unsigned InnerShAmt = SA2->getZExtValue(); 1648 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1649 DemandedBits.getActiveBits() <= 1650 (InnerBits - InnerShAmt + ShAmt) && 1651 DemandedBits.countTrailingZeros() >= ShAmt) { 1652 SDValue NewSA = 1653 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1654 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1655 InnerOp.getOperand(0)); 1656 return TLO.CombineTo( 1657 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1658 } 1659 } 1660 } 1661 } 1662 1663 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1664 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1665 Depth + 1)) 1666 return true; 1667 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1668 Known.Zero <<= ShAmt; 1669 Known.One <<= ShAmt; 1670 // low bits known zero. 1671 Known.Zero.setLowBits(ShAmt); 1672 1673 // Try shrinking the operation as long as the shift amount will still be 1674 // in range. 1675 if ((ShAmt < DemandedBits.getActiveBits()) && 1676 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1677 return true; 1678 } 1679 1680 // If we are only demanding sign bits then we can use the shift source 1681 // directly. 1682 if (const APInt *MaxSA = 1683 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1684 unsigned ShAmt = MaxSA->getZExtValue(); 1685 unsigned NumSignBits = 1686 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1687 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1688 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1689 return TLO.CombineTo(Op, Op0); 1690 } 1691 break; 1692 } 1693 case ISD::SRL: { 1694 SDValue Op0 = Op.getOperand(0); 1695 SDValue Op1 = Op.getOperand(1); 1696 EVT ShiftVT = Op1.getValueType(); 1697 1698 // Try to match AVG patterns. 1699 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1700 DemandedElts, Depth + 1)) 1701 return TLO.CombineTo(Op, AVG); 1702 1703 if (const APInt *SA = 1704 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1705 unsigned ShAmt = SA->getZExtValue(); 1706 if (ShAmt == 0) 1707 return TLO.CombineTo(Op, Op0); 1708 1709 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1710 // single shift. We can do this if the top bits (which are shifted out) 1711 // are never demanded. 1712 // TODO - support non-uniform vector amounts. 1713 if (Op0.getOpcode() == ISD::SHL) { 1714 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1715 if (const APInt *SA2 = 1716 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1717 unsigned C1 = SA2->getZExtValue(); 1718 unsigned Opc = ISD::SRL; 1719 int Diff = ShAmt - C1; 1720 if (Diff < 0) { 1721 Diff = -Diff; 1722 Opc = ISD::SHL; 1723 } 1724 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1725 return TLO.CombineTo( 1726 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1727 } 1728 } 1729 } 1730 1731 APInt InDemandedMask = (DemandedBits << ShAmt); 1732 1733 // If the shift is exact, then it does demand the low bits (and knows that 1734 // they are zero). 1735 if (Op->getFlags().hasExact()) 1736 InDemandedMask.setLowBits(ShAmt); 1737 1738 // Compute the new bits that are at the top now. 1739 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1740 Depth + 1)) 1741 return true; 1742 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1743 Known.Zero.lshrInPlace(ShAmt); 1744 Known.One.lshrInPlace(ShAmt); 1745 // High bits known zero. 1746 Known.Zero.setHighBits(ShAmt); 1747 } 1748 break; 1749 } 1750 case ISD::SRA: { 1751 SDValue Op0 = Op.getOperand(0); 1752 SDValue Op1 = Op.getOperand(1); 1753 EVT ShiftVT = Op1.getValueType(); 1754 1755 // If we only want bits that already match the signbit then we don't need 1756 // to shift. 1757 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1758 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1759 NumHiDemandedBits) 1760 return TLO.CombineTo(Op, Op0); 1761 1762 // If this is an arithmetic shift right and only the low-bit is set, we can 1763 // always convert this into a logical shr, even if the shift amount is 1764 // variable. The low bit of the shift cannot be an input sign bit unless 1765 // the shift amount is >= the size of the datatype, which is undefined. 1766 if (DemandedBits.isOne()) 1767 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1768 1769 // Try to match AVG patterns. 1770 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1771 DemandedElts, Depth + 1)) 1772 return TLO.CombineTo(Op, AVG); 1773 1774 if (const APInt *SA = 1775 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1776 unsigned ShAmt = SA->getZExtValue(); 1777 if (ShAmt == 0) 1778 return TLO.CombineTo(Op, Op0); 1779 1780 APInt InDemandedMask = (DemandedBits << ShAmt); 1781 1782 // If the shift is exact, then it does demand the low bits (and knows that 1783 // they are zero). 1784 if (Op->getFlags().hasExact()) 1785 InDemandedMask.setLowBits(ShAmt); 1786 1787 // If any of the demanded bits are produced by the sign extension, we also 1788 // demand the input sign bit. 1789 if (DemandedBits.countLeadingZeros() < ShAmt) 1790 InDemandedMask.setSignBit(); 1791 1792 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1793 Depth + 1)) 1794 return true; 1795 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1796 Known.Zero.lshrInPlace(ShAmt); 1797 Known.One.lshrInPlace(ShAmt); 1798 1799 // If the input sign bit is known to be zero, or if none of the top bits 1800 // are demanded, turn this into an unsigned shift right. 1801 if (Known.Zero[BitWidth - ShAmt - 1] || 1802 DemandedBits.countLeadingZeros() >= ShAmt) { 1803 SDNodeFlags Flags; 1804 Flags.setExact(Op->getFlags().hasExact()); 1805 return TLO.CombineTo( 1806 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1807 } 1808 1809 int Log2 = DemandedBits.exactLogBase2(); 1810 if (Log2 >= 0) { 1811 // The bit must come from the sign. 1812 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1813 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1814 } 1815 1816 if (Known.One[BitWidth - ShAmt - 1]) 1817 // New bits are known one. 1818 Known.One.setHighBits(ShAmt); 1819 1820 // Attempt to avoid multi-use ops if we don't need anything from them. 1821 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1822 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1823 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1824 if (DemandedOp0) { 1825 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1826 return TLO.CombineTo(Op, NewOp); 1827 } 1828 } 1829 } 1830 break; 1831 } 1832 case ISD::FSHL: 1833 case ISD::FSHR: { 1834 SDValue Op0 = Op.getOperand(0); 1835 SDValue Op1 = Op.getOperand(1); 1836 SDValue Op2 = Op.getOperand(2); 1837 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1838 1839 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1840 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1841 1842 // For fshl, 0-shift returns the 1st arg. 1843 // For fshr, 0-shift returns the 2nd arg. 1844 if (Amt == 0) { 1845 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1846 Known, TLO, Depth + 1)) 1847 return true; 1848 break; 1849 } 1850 1851 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1852 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1853 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1854 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1855 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1856 Depth + 1)) 1857 return true; 1858 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1859 Depth + 1)) 1860 return true; 1861 1862 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1863 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1864 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1865 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1866 Known.One |= Known2.One; 1867 Known.Zero |= Known2.Zero; 1868 } 1869 1870 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1871 if (isPowerOf2_32(BitWidth)) { 1872 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1873 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1874 Known2, TLO, Depth + 1)) 1875 return true; 1876 } 1877 break; 1878 } 1879 case ISD::ROTL: 1880 case ISD::ROTR: { 1881 SDValue Op0 = Op.getOperand(0); 1882 SDValue Op1 = Op.getOperand(1); 1883 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1884 1885 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1886 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1887 return TLO.CombineTo(Op, Op0); 1888 1889 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1890 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1891 unsigned RevAmt = BitWidth - Amt; 1892 1893 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1894 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1895 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1896 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1897 Depth + 1)) 1898 return true; 1899 1900 // rot*(x, 0) --> x 1901 if (Amt == 0) 1902 return TLO.CombineTo(Op, Op0); 1903 1904 // See if we don't demand either half of the rotated bits. 1905 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1906 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1907 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1908 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1909 } 1910 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1911 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1912 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1914 } 1915 } 1916 1917 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1918 if (isPowerOf2_32(BitWidth)) { 1919 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1920 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1921 Depth + 1)) 1922 return true; 1923 } 1924 break; 1925 } 1926 case ISD::UMIN: { 1927 // Check if one arg is always less than (or equal) to the other arg. 1928 SDValue Op0 = Op.getOperand(0); 1929 SDValue Op1 = Op.getOperand(1); 1930 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1931 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1932 Known = KnownBits::umin(Known0, Known1); 1933 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1934 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1935 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1936 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1937 break; 1938 } 1939 case ISD::UMAX: { 1940 // Check if one arg is always greater than (or equal) to the other arg. 1941 SDValue Op0 = Op.getOperand(0); 1942 SDValue Op1 = Op.getOperand(1); 1943 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1944 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1945 Known = KnownBits::umax(Known0, Known1); 1946 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1947 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1948 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1949 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1950 break; 1951 } 1952 case ISD::BITREVERSE: { 1953 SDValue Src = Op.getOperand(0); 1954 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1955 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1956 Depth + 1)) 1957 return true; 1958 Known.One = Known2.One.reverseBits(); 1959 Known.Zero = Known2.Zero.reverseBits(); 1960 break; 1961 } 1962 case ISD::BSWAP: { 1963 SDValue Src = Op.getOperand(0); 1964 1965 // If the only bits demanded come from one byte of the bswap result, 1966 // just shift the input byte into position to eliminate the bswap. 1967 unsigned NLZ = DemandedBits.countLeadingZeros(); 1968 unsigned NTZ = DemandedBits.countTrailingZeros(); 1969 1970 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1971 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1972 // have 14 leading zeros, round to 8. 1973 NLZ = alignDown(NLZ, 8); 1974 NTZ = alignDown(NTZ, 8); 1975 // If we need exactly one byte, we can do this transformation. 1976 if (BitWidth - NLZ - NTZ == 8) { 1977 // Replace this with either a left or right shift to get the byte into 1978 // the right place. 1979 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1980 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1981 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1982 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1983 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1984 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1985 return TLO.CombineTo(Op, NewOp); 1986 } 1987 } 1988 1989 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1990 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1991 Depth + 1)) 1992 return true; 1993 Known.One = Known2.One.byteSwap(); 1994 Known.Zero = Known2.Zero.byteSwap(); 1995 break; 1996 } 1997 case ISD::CTPOP: { 1998 // If only 1 bit is demanded, replace with PARITY as long as we're before 1999 // op legalization. 2000 // FIXME: Limit to scalars for now. 2001 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2002 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2003 Op.getOperand(0))); 2004 2005 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2006 break; 2007 } 2008 case ISD::SIGN_EXTEND_INREG: { 2009 SDValue Op0 = Op.getOperand(0); 2010 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2011 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2012 2013 // If we only care about the highest bit, don't bother shifting right. 2014 if (DemandedBits.isSignMask()) { 2015 unsigned MinSignedBits = 2016 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2017 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2018 // However if the input is already sign extended we expect the sign 2019 // extension to be dropped altogether later and do not simplify. 2020 if (!AlreadySignExtended) { 2021 // Compute the correct shift amount type, which must be getShiftAmountTy 2022 // for scalar types after legalization. 2023 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2024 getShiftAmountTy(VT, DL)); 2025 return TLO.CombineTo(Op, 2026 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2027 } 2028 } 2029 2030 // If none of the extended bits are demanded, eliminate the sextinreg. 2031 if (DemandedBits.getActiveBits() <= ExVTBits) 2032 return TLO.CombineTo(Op, Op0); 2033 2034 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2035 2036 // Since the sign extended bits are demanded, we know that the sign 2037 // bit is demanded. 2038 InputDemandedBits.setBit(ExVTBits - 1); 2039 2040 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2041 return true; 2042 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2043 2044 // If the sign bit of the input is known set or clear, then we know the 2045 // top bits of the result. 2046 2047 // If the input sign bit is known zero, convert this into a zero extension. 2048 if (Known.Zero[ExVTBits - 1]) 2049 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2050 2051 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2052 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2053 Known.One.setBitsFrom(ExVTBits); 2054 Known.Zero &= Mask; 2055 } else { // Input sign bit unknown 2056 Known.Zero &= Mask; 2057 Known.One &= Mask; 2058 } 2059 break; 2060 } 2061 case ISD::BUILD_PAIR: { 2062 EVT HalfVT = Op.getOperand(0).getValueType(); 2063 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2064 2065 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2066 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2067 2068 KnownBits KnownLo, KnownHi; 2069 2070 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2071 return true; 2072 2073 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2074 return true; 2075 2076 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2077 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2078 2079 Known.One = KnownLo.One.zext(BitWidth) | 2080 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2081 break; 2082 } 2083 case ISD::ZERO_EXTEND: 2084 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2085 SDValue Src = Op.getOperand(0); 2086 EVT SrcVT = Src.getValueType(); 2087 unsigned InBits = SrcVT.getScalarSizeInBits(); 2088 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2089 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2090 2091 // If none of the top bits are demanded, convert this into an any_extend. 2092 if (DemandedBits.getActiveBits() <= InBits) { 2093 // If we only need the non-extended bits of the bottom element 2094 // then we can just bitcast to the result. 2095 if (IsLE && IsVecInReg && DemandedElts == 1 && 2096 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2097 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2098 2099 unsigned Opc = 2100 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2101 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2102 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2103 } 2104 2105 APInt InDemandedBits = DemandedBits.trunc(InBits); 2106 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2107 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2108 Depth + 1)) 2109 return true; 2110 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2111 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2112 Known = Known.zext(BitWidth); 2113 2114 // Attempt to avoid multi-use ops if we don't need anything from them. 2115 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2116 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2117 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2118 break; 2119 } 2120 case ISD::SIGN_EXTEND: 2121 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2122 SDValue Src = Op.getOperand(0); 2123 EVT SrcVT = Src.getValueType(); 2124 unsigned InBits = SrcVT.getScalarSizeInBits(); 2125 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2126 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2127 2128 // If none of the top bits are demanded, convert this into an any_extend. 2129 if (DemandedBits.getActiveBits() <= InBits) { 2130 // If we only need the non-extended bits of the bottom element 2131 // then we can just bitcast to the result. 2132 if (IsLE && IsVecInReg && DemandedElts == 1 && 2133 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2134 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2135 2136 unsigned Opc = 2137 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2138 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2139 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2140 } 2141 2142 APInt InDemandedBits = DemandedBits.trunc(InBits); 2143 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2144 2145 // Since some of the sign extended bits are demanded, we know that the sign 2146 // bit is demanded. 2147 InDemandedBits.setBit(InBits - 1); 2148 2149 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2150 Depth + 1)) 2151 return true; 2152 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2153 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2154 2155 // If the sign bit is known one, the top bits match. 2156 Known = Known.sext(BitWidth); 2157 2158 // If the sign bit is known zero, convert this to a zero extend. 2159 if (Known.isNonNegative()) { 2160 unsigned Opc = 2161 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2162 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2163 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2164 } 2165 2166 // Attempt to avoid multi-use ops if we don't need anything from them. 2167 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2168 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2169 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2170 break; 2171 } 2172 case ISD::ANY_EXTEND: 2173 case ISD::ANY_EXTEND_VECTOR_INREG: { 2174 SDValue Src = Op.getOperand(0); 2175 EVT SrcVT = Src.getValueType(); 2176 unsigned InBits = SrcVT.getScalarSizeInBits(); 2177 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2178 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2179 2180 // If we only need the bottom element then we can just bitcast. 2181 // TODO: Handle ANY_EXTEND? 2182 if (IsLE && IsVecInReg && DemandedElts == 1 && 2183 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2184 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2185 2186 APInt InDemandedBits = DemandedBits.trunc(InBits); 2187 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2188 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2189 Depth + 1)) 2190 return true; 2191 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2192 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2193 Known = Known.anyext(BitWidth); 2194 2195 // Attempt to avoid multi-use ops if we don't need anything from them. 2196 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2197 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2198 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2199 break; 2200 } 2201 case ISD::TRUNCATE: { 2202 SDValue Src = Op.getOperand(0); 2203 2204 // Simplify the input, using demanded bit information, and compute the known 2205 // zero/one bits live out. 2206 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2207 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2208 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2209 Depth + 1)) 2210 return true; 2211 Known = Known.trunc(BitWidth); 2212 2213 // Attempt to avoid multi-use ops if we don't need anything from them. 2214 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2215 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2216 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2217 2218 // If the input is only used by this truncate, see if we can shrink it based 2219 // on the known demanded bits. 2220 if (Src.getNode()->hasOneUse()) { 2221 switch (Src.getOpcode()) { 2222 default: 2223 break; 2224 case ISD::SRL: 2225 // Shrink SRL by a constant if none of the high bits shifted in are 2226 // demanded. 2227 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2228 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2229 // undesirable. 2230 break; 2231 2232 const APInt *ShAmtC = 2233 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2234 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2235 break; 2236 uint64_t ShVal = ShAmtC->getZExtValue(); 2237 2238 APInt HighBits = 2239 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2240 HighBits.lshrInPlace(ShVal); 2241 HighBits = HighBits.trunc(BitWidth); 2242 2243 if (!(HighBits & DemandedBits)) { 2244 // None of the shifted in bits are needed. Add a truncate of the 2245 // shift input, then shift it. 2246 SDValue NewShAmt = TLO.DAG.getConstant( 2247 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2248 SDValue NewTrunc = 2249 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2250 return TLO.CombineTo( 2251 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2252 } 2253 break; 2254 } 2255 } 2256 2257 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2258 break; 2259 } 2260 case ISD::AssertZext: { 2261 // AssertZext demands all of the high bits, plus any of the low bits 2262 // demanded by its users. 2263 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2264 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2265 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2266 TLO, Depth + 1)) 2267 return true; 2268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2269 2270 Known.Zero |= ~InMask; 2271 break; 2272 } 2273 case ISD::EXTRACT_VECTOR_ELT: { 2274 SDValue Src = Op.getOperand(0); 2275 SDValue Idx = Op.getOperand(1); 2276 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2277 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2278 2279 if (SrcEltCnt.isScalable()) 2280 return false; 2281 2282 // Demand the bits from every vector element without a constant index. 2283 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2284 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2285 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2286 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2287 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2288 2289 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2290 // anything about the extended bits. 2291 APInt DemandedSrcBits = DemandedBits; 2292 if (BitWidth > EltBitWidth) 2293 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2294 2295 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2296 Depth + 1)) 2297 return true; 2298 2299 // Attempt to avoid multi-use ops if we don't need anything from them. 2300 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2301 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2302 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2303 SDValue NewOp = 2304 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2305 return TLO.CombineTo(Op, NewOp); 2306 } 2307 } 2308 2309 Known = Known2; 2310 if (BitWidth > EltBitWidth) 2311 Known = Known.anyext(BitWidth); 2312 break; 2313 } 2314 case ISD::BITCAST: { 2315 SDValue Src = Op.getOperand(0); 2316 EVT SrcVT = Src.getValueType(); 2317 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2318 2319 // If this is an FP->Int bitcast and if the sign bit is the only 2320 // thing demanded, turn this into a FGETSIGN. 2321 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2322 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2323 SrcVT.isFloatingPoint()) { 2324 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2325 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2326 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2327 SrcVT != MVT::f128) { 2328 // Cannot eliminate/lower SHL for f128 yet. 2329 EVT Ty = OpVTLegal ? VT : MVT::i32; 2330 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2331 // place. We expect the SHL to be eliminated by other optimizations. 2332 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2333 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2334 if (!OpVTLegal && OpVTSizeInBits > 32) 2335 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2336 unsigned ShVal = Op.getValueSizeInBits() - 1; 2337 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2338 return TLO.CombineTo(Op, 2339 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2340 } 2341 } 2342 2343 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2344 // Demand the elt/bit if any of the original elts/bits are demanded. 2345 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2346 unsigned Scale = BitWidth / NumSrcEltBits; 2347 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2348 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2349 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2350 for (unsigned i = 0; i != Scale; ++i) { 2351 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2352 unsigned BitOffset = EltOffset * NumSrcEltBits; 2353 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2354 if (!Sub.isZero()) { 2355 DemandedSrcBits |= Sub; 2356 for (unsigned j = 0; j != NumElts; ++j) 2357 if (DemandedElts[j]) 2358 DemandedSrcElts.setBit((j * Scale) + i); 2359 } 2360 } 2361 2362 APInt KnownSrcUndef, KnownSrcZero; 2363 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2364 KnownSrcZero, TLO, Depth + 1)) 2365 return true; 2366 2367 KnownBits KnownSrcBits; 2368 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2369 KnownSrcBits, TLO, Depth + 1)) 2370 return true; 2371 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2372 // TODO - bigendian once we have test coverage. 2373 unsigned Scale = NumSrcEltBits / BitWidth; 2374 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2375 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2376 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2377 for (unsigned i = 0; i != NumElts; ++i) 2378 if (DemandedElts[i]) { 2379 unsigned Offset = (i % Scale) * BitWidth; 2380 DemandedSrcBits.insertBits(DemandedBits, Offset); 2381 DemandedSrcElts.setBit(i / Scale); 2382 } 2383 2384 if (SrcVT.isVector()) { 2385 APInt KnownSrcUndef, KnownSrcZero; 2386 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2387 KnownSrcZero, TLO, Depth + 1)) 2388 return true; 2389 } 2390 2391 KnownBits KnownSrcBits; 2392 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2393 KnownSrcBits, TLO, Depth + 1)) 2394 return true; 2395 } 2396 2397 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2398 // recursive call where Known may be useful to the caller. 2399 if (Depth > 0) { 2400 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2401 return false; 2402 } 2403 break; 2404 } 2405 case ISD::MUL: 2406 if (DemandedBits.isPowerOf2()) { 2407 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2408 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2409 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2410 unsigned CTZ = DemandedBits.countTrailingZeros(); 2411 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2412 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2413 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2414 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2415 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2416 return TLO.CombineTo(Op, Shl); 2417 } 2418 } 2419 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2420 // X * X is odd iff X is odd. 2421 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2422 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2423 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2424 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2425 return TLO.CombineTo(Op, And1); 2426 } 2427 LLVM_FALLTHROUGH; 2428 case ISD::ADD: 2429 case ISD::SUB: { 2430 // Add, Sub, and Mul don't demand any bits in positions beyond that 2431 // of the highest bit demanded of them. 2432 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2433 SDNodeFlags Flags = Op.getNode()->getFlags(); 2434 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2435 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2436 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2437 Depth + 1) || 2438 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2439 Depth + 1) || 2440 // See if the operation should be performed at a smaller bit width. 2441 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2442 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2443 // Disable the nsw and nuw flags. We can no longer guarantee that we 2444 // won't wrap after simplification. 2445 Flags.setNoSignedWrap(false); 2446 Flags.setNoUnsignedWrap(false); 2447 SDValue NewOp = 2448 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2449 return TLO.CombineTo(Op, NewOp); 2450 } 2451 return true; 2452 } 2453 2454 // Attempt to avoid multi-use ops if we don't need anything from them. 2455 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2456 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2457 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2458 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2459 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2460 if (DemandedOp0 || DemandedOp1) { 2461 Flags.setNoSignedWrap(false); 2462 Flags.setNoUnsignedWrap(false); 2463 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2464 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2465 SDValue NewOp = 2466 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2467 return TLO.CombineTo(Op, NewOp); 2468 } 2469 } 2470 2471 // If we have a constant operand, we may be able to turn it into -1 if we 2472 // do not demand the high bits. This can make the constant smaller to 2473 // encode, allow more general folding, or match specialized instruction 2474 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2475 // is probably not useful (and could be detrimental). 2476 ConstantSDNode *C = isConstOrConstSplat(Op1); 2477 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2478 if (C && !C->isAllOnes() && !C->isOne() && 2479 (C->getAPIntValue() | HighMask).isAllOnes()) { 2480 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2481 // Disable the nsw and nuw flags. We can no longer guarantee that we 2482 // won't wrap after simplification. 2483 Flags.setNoSignedWrap(false); 2484 Flags.setNoUnsignedWrap(false); 2485 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2486 return TLO.CombineTo(Op, NewOp); 2487 } 2488 2489 // Match a multiply with a disguised negated-power-of-2 and convert to a 2490 // an equivalent shift-left amount. 2491 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2492 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2493 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2494 return 0; 2495 2496 // Don't touch opaque constants. Also, ignore zero and power-of-2 2497 // multiplies. Those will get folded later. 2498 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2499 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2500 !MulC->getAPIntValue().isPowerOf2()) { 2501 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2502 if (UnmaskedC.isNegatedPowerOf2()) 2503 return (-UnmaskedC).logBase2(); 2504 } 2505 return 0; 2506 }; 2507 2508 auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) { 2509 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2510 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2511 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2512 SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl); 2513 return TLO.CombineTo(Op, Sub); 2514 }; 2515 2516 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2517 if (Op.getOpcode() == ISD::ADD) { 2518 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2519 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2520 return foldMul(Op0.getOperand(0), Op1, ShAmt); 2521 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2522 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2523 return foldMul(Op1.getOperand(0), Op0, ShAmt); 2524 // TODO: 2525 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2526 } 2527 } 2528 2529 LLVM_FALLTHROUGH; 2530 } 2531 default: 2532 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2533 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2534 Known, TLO, Depth)) 2535 return true; 2536 break; 2537 } 2538 2539 // Just use computeKnownBits to compute output bits. 2540 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2541 break; 2542 } 2543 2544 // If we know the value of all of the demanded bits, return this as a 2545 // constant. 2546 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2547 // Avoid folding to a constant if any OpaqueConstant is involved. 2548 const SDNode *N = Op.getNode(); 2549 for (SDNode *Op : 2550 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2551 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2552 if (C->isOpaque()) 2553 return false; 2554 } 2555 if (VT.isInteger()) 2556 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2557 if (VT.isFloatingPoint()) 2558 return TLO.CombineTo( 2559 Op, 2560 TLO.DAG.getConstantFP( 2561 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2562 } 2563 2564 return false; 2565 } 2566 2567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2568 const APInt &DemandedElts, 2569 DAGCombinerInfo &DCI) const { 2570 SelectionDAG &DAG = DCI.DAG; 2571 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2572 !DCI.isBeforeLegalizeOps()); 2573 2574 APInt KnownUndef, KnownZero; 2575 bool Simplified = 2576 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2577 if (Simplified) { 2578 DCI.AddToWorklist(Op.getNode()); 2579 DCI.CommitTargetLoweringOpt(TLO); 2580 } 2581 2582 return Simplified; 2583 } 2584 2585 /// Given a vector binary operation and known undefined elements for each input 2586 /// operand, compute whether each element of the output is undefined. 2587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2588 const APInt &UndefOp0, 2589 const APInt &UndefOp1) { 2590 EVT VT = BO.getValueType(); 2591 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2592 "Vector binop only"); 2593 2594 EVT EltVT = VT.getVectorElementType(); 2595 unsigned NumElts = VT.getVectorNumElements(); 2596 assert(UndefOp0.getBitWidth() == NumElts && 2597 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2598 2599 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2600 const APInt &UndefVals) { 2601 if (UndefVals[Index]) 2602 return DAG.getUNDEF(EltVT); 2603 2604 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2605 // Try hard to make sure that the getNode() call is not creating temporary 2606 // nodes. Ignore opaque integers because they do not constant fold. 2607 SDValue Elt = BV->getOperand(Index); 2608 auto *C = dyn_cast<ConstantSDNode>(Elt); 2609 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2610 return Elt; 2611 } 2612 2613 return SDValue(); 2614 }; 2615 2616 APInt KnownUndef = APInt::getZero(NumElts); 2617 for (unsigned i = 0; i != NumElts; ++i) { 2618 // If both inputs for this element are either constant or undef and match 2619 // the element type, compute the constant/undef result for this element of 2620 // the vector. 2621 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2622 // not handle FP constants. The code within getNode() should be refactored 2623 // to avoid the danger of creating a bogus temporary node here. 2624 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2625 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2626 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2627 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2628 KnownUndef.setBit(i); 2629 } 2630 return KnownUndef; 2631 } 2632 2633 bool TargetLowering::SimplifyDemandedVectorElts( 2634 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2635 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2636 bool AssumeSingleUse) const { 2637 EVT VT = Op.getValueType(); 2638 unsigned Opcode = Op.getOpcode(); 2639 APInt DemandedElts = OriginalDemandedElts; 2640 unsigned NumElts = DemandedElts.getBitWidth(); 2641 assert(VT.isVector() && "Expected vector op"); 2642 2643 KnownUndef = KnownZero = APInt::getZero(NumElts); 2644 2645 // TODO: For now we assume we know nothing about scalable vectors. 2646 if (VT.isScalableVector()) 2647 return false; 2648 2649 assert(VT.getVectorNumElements() == NumElts && 2650 "Mask size mismatches value type element count!"); 2651 2652 // Undef operand. 2653 if (Op.isUndef()) { 2654 KnownUndef.setAllBits(); 2655 return false; 2656 } 2657 2658 // If Op has other users, assume that all elements are needed. 2659 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2660 DemandedElts.setAllBits(); 2661 2662 // Not demanding any elements from Op. 2663 if (DemandedElts == 0) { 2664 KnownUndef.setAllBits(); 2665 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2666 } 2667 2668 // Limit search depth. 2669 if (Depth >= SelectionDAG::MaxRecursionDepth) 2670 return false; 2671 2672 SDLoc DL(Op); 2673 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2674 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2675 2676 // Helper for demanding the specified elements and all the bits of both binary 2677 // operands. 2678 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2679 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2680 TLO.DAG, Depth + 1); 2681 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2682 TLO.DAG, Depth + 1); 2683 if (NewOp0 || NewOp1) { 2684 SDValue NewOp = TLO.DAG.getNode( 2685 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2686 return TLO.CombineTo(Op, NewOp); 2687 } 2688 return false; 2689 }; 2690 2691 switch (Opcode) { 2692 case ISD::SCALAR_TO_VECTOR: { 2693 if (!DemandedElts[0]) { 2694 KnownUndef.setAllBits(); 2695 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2696 } 2697 SDValue ScalarSrc = Op.getOperand(0); 2698 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2699 SDValue Src = ScalarSrc.getOperand(0); 2700 SDValue Idx = ScalarSrc.getOperand(1); 2701 EVT SrcVT = Src.getValueType(); 2702 2703 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2704 2705 if (SrcEltCnt.isScalable()) 2706 return false; 2707 2708 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2709 if (isNullConstant(Idx)) { 2710 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2711 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2712 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2713 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2714 TLO, Depth + 1)) 2715 return true; 2716 } 2717 } 2718 KnownUndef.setHighBits(NumElts - 1); 2719 break; 2720 } 2721 case ISD::BITCAST: { 2722 SDValue Src = Op.getOperand(0); 2723 EVT SrcVT = Src.getValueType(); 2724 2725 // We only handle vectors here. 2726 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2727 if (!SrcVT.isVector()) 2728 break; 2729 2730 // Fast handling of 'identity' bitcasts. 2731 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2732 if (NumSrcElts == NumElts) 2733 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2734 KnownZero, TLO, Depth + 1); 2735 2736 APInt SrcDemandedElts, SrcZero, SrcUndef; 2737 2738 // Bitcast from 'large element' src vector to 'small element' vector, we 2739 // must demand a source element if any DemandedElt maps to it. 2740 if ((NumElts % NumSrcElts) == 0) { 2741 unsigned Scale = NumElts / NumSrcElts; 2742 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2743 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2744 TLO, Depth + 1)) 2745 return true; 2746 2747 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2748 // of the large element. 2749 // TODO - bigendian once we have test coverage. 2750 if (IsLE) { 2751 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2752 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2753 for (unsigned i = 0; i != NumElts; ++i) 2754 if (DemandedElts[i]) { 2755 unsigned Ofs = (i % Scale) * EltSizeInBits; 2756 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2757 } 2758 2759 KnownBits Known; 2760 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2761 TLO, Depth + 1)) 2762 return true; 2763 } 2764 2765 // If the src element is zero/undef then all the output elements will be - 2766 // only demanded elements are guaranteed to be correct. 2767 for (unsigned i = 0; i != NumSrcElts; ++i) { 2768 if (SrcDemandedElts[i]) { 2769 if (SrcZero[i]) 2770 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2771 if (SrcUndef[i]) 2772 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2773 } 2774 } 2775 } 2776 2777 // Bitcast from 'small element' src vector to 'large element' vector, we 2778 // demand all smaller source elements covered by the larger demanded element 2779 // of this vector. 2780 if ((NumSrcElts % NumElts) == 0) { 2781 unsigned Scale = NumSrcElts / NumElts; 2782 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2783 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2784 TLO, Depth + 1)) 2785 return true; 2786 2787 // If all the src elements covering an output element are zero/undef, then 2788 // the output element will be as well, assuming it was demanded. 2789 for (unsigned i = 0; i != NumElts; ++i) { 2790 if (DemandedElts[i]) { 2791 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2792 KnownZero.setBit(i); 2793 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2794 KnownUndef.setBit(i); 2795 } 2796 } 2797 } 2798 break; 2799 } 2800 case ISD::BUILD_VECTOR: { 2801 // Check all elements and simplify any unused elements with UNDEF. 2802 if (!DemandedElts.isAllOnes()) { 2803 // Don't simplify BROADCASTS. 2804 if (llvm::any_of(Op->op_values(), 2805 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2806 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2807 bool Updated = false; 2808 for (unsigned i = 0; i != NumElts; ++i) { 2809 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2810 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2811 KnownUndef.setBit(i); 2812 Updated = true; 2813 } 2814 } 2815 if (Updated) 2816 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2817 } 2818 } 2819 for (unsigned i = 0; i != NumElts; ++i) { 2820 SDValue SrcOp = Op.getOperand(i); 2821 if (SrcOp.isUndef()) { 2822 KnownUndef.setBit(i); 2823 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2824 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2825 KnownZero.setBit(i); 2826 } 2827 } 2828 break; 2829 } 2830 case ISD::CONCAT_VECTORS: { 2831 EVT SubVT = Op.getOperand(0).getValueType(); 2832 unsigned NumSubVecs = Op.getNumOperands(); 2833 unsigned NumSubElts = SubVT.getVectorNumElements(); 2834 for (unsigned i = 0; i != NumSubVecs; ++i) { 2835 SDValue SubOp = Op.getOperand(i); 2836 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2837 APInt SubUndef, SubZero; 2838 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2839 Depth + 1)) 2840 return true; 2841 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2842 KnownZero.insertBits(SubZero, i * NumSubElts); 2843 } 2844 break; 2845 } 2846 case ISD::INSERT_SUBVECTOR: { 2847 // Demand any elements from the subvector and the remainder from the src its 2848 // inserted into. 2849 SDValue Src = Op.getOperand(0); 2850 SDValue Sub = Op.getOperand(1); 2851 uint64_t Idx = Op.getConstantOperandVal(2); 2852 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2853 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2854 APInt DemandedSrcElts = DemandedElts; 2855 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2856 2857 APInt SubUndef, SubZero; 2858 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2859 Depth + 1)) 2860 return true; 2861 2862 // If none of the src operand elements are demanded, replace it with undef. 2863 if (!DemandedSrcElts && !Src.isUndef()) 2864 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2865 TLO.DAG.getUNDEF(VT), Sub, 2866 Op.getOperand(2))); 2867 2868 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2869 TLO, Depth + 1)) 2870 return true; 2871 KnownUndef.insertBits(SubUndef, Idx); 2872 KnownZero.insertBits(SubZero, Idx); 2873 2874 // Attempt to avoid multi-use ops if we don't need anything from them. 2875 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2876 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2877 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2878 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2879 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2880 if (NewSrc || NewSub) { 2881 NewSrc = NewSrc ? NewSrc : Src; 2882 NewSub = NewSub ? NewSub : Sub; 2883 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2884 NewSub, Op.getOperand(2)); 2885 return TLO.CombineTo(Op, NewOp); 2886 } 2887 } 2888 break; 2889 } 2890 case ISD::EXTRACT_SUBVECTOR: { 2891 // Offset the demanded elts by the subvector index. 2892 SDValue Src = Op.getOperand(0); 2893 if (Src.getValueType().isScalableVector()) 2894 break; 2895 uint64_t Idx = Op.getConstantOperandVal(1); 2896 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2897 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2898 2899 APInt SrcUndef, SrcZero; 2900 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2901 Depth + 1)) 2902 return true; 2903 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2904 KnownZero = SrcZero.extractBits(NumElts, Idx); 2905 2906 // Attempt to avoid multi-use ops if we don't need anything from them. 2907 if (!DemandedElts.isAllOnes()) { 2908 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2909 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2910 if (NewSrc) { 2911 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2912 Op.getOperand(1)); 2913 return TLO.CombineTo(Op, NewOp); 2914 } 2915 } 2916 break; 2917 } 2918 case ISD::INSERT_VECTOR_ELT: { 2919 SDValue Vec = Op.getOperand(0); 2920 SDValue Scl = Op.getOperand(1); 2921 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2922 2923 // For a legal, constant insertion index, if we don't need this insertion 2924 // then strip it, else remove it from the demanded elts. 2925 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2926 unsigned Idx = CIdx->getZExtValue(); 2927 if (!DemandedElts[Idx]) 2928 return TLO.CombineTo(Op, Vec); 2929 2930 APInt DemandedVecElts(DemandedElts); 2931 DemandedVecElts.clearBit(Idx); 2932 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2933 KnownZero, TLO, Depth + 1)) 2934 return true; 2935 2936 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2937 2938 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2939 break; 2940 } 2941 2942 APInt VecUndef, VecZero; 2943 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2944 Depth + 1)) 2945 return true; 2946 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2947 break; 2948 } 2949 case ISD::VSELECT: { 2950 // Try to transform the select condition based on the current demanded 2951 // elements. 2952 // TODO: If a condition element is undef, we can choose from one arm of the 2953 // select (and if one arm is undef, then we can propagate that to the 2954 // result). 2955 // TODO - add support for constant vselect masks (see IR version of this). 2956 APInt UnusedUndef, UnusedZero; 2957 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2958 UnusedZero, TLO, Depth + 1)) 2959 return true; 2960 2961 // See if we can simplify either vselect operand. 2962 APInt DemandedLHS(DemandedElts); 2963 APInt DemandedRHS(DemandedElts); 2964 APInt UndefLHS, ZeroLHS; 2965 APInt UndefRHS, ZeroRHS; 2966 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2967 ZeroLHS, TLO, Depth + 1)) 2968 return true; 2969 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2970 ZeroRHS, TLO, Depth + 1)) 2971 return true; 2972 2973 KnownUndef = UndefLHS & UndefRHS; 2974 KnownZero = ZeroLHS & ZeroRHS; 2975 break; 2976 } 2977 case ISD::VECTOR_SHUFFLE: { 2978 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2979 2980 // Collect demanded elements from shuffle operands.. 2981 APInt DemandedLHS(NumElts, 0); 2982 APInt DemandedRHS(NumElts, 0); 2983 for (unsigned i = 0; i != NumElts; ++i) { 2984 int M = ShuffleMask[i]; 2985 if (M < 0 || !DemandedElts[i]) 2986 continue; 2987 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2988 if (M < (int)NumElts) 2989 DemandedLHS.setBit(M); 2990 else 2991 DemandedRHS.setBit(M - NumElts); 2992 } 2993 2994 // See if we can simplify either shuffle operand. 2995 APInt UndefLHS, ZeroLHS; 2996 APInt UndefRHS, ZeroRHS; 2997 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2998 ZeroLHS, TLO, Depth + 1)) 2999 return true; 3000 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3001 ZeroRHS, TLO, Depth + 1)) 3002 return true; 3003 3004 // Simplify mask using undef elements from LHS/RHS. 3005 bool Updated = false; 3006 bool IdentityLHS = true, IdentityRHS = true; 3007 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3008 for (unsigned i = 0; i != NumElts; ++i) { 3009 int &M = NewMask[i]; 3010 if (M < 0) 3011 continue; 3012 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3013 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3014 Updated = true; 3015 M = -1; 3016 } 3017 IdentityLHS &= (M < 0) || (M == (int)i); 3018 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3019 } 3020 3021 // Update legal shuffle masks based on demanded elements if it won't reduce 3022 // to Identity which can cause premature removal of the shuffle mask. 3023 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3024 SDValue LegalShuffle = 3025 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3026 NewMask, TLO.DAG); 3027 if (LegalShuffle) 3028 return TLO.CombineTo(Op, LegalShuffle); 3029 } 3030 3031 // Propagate undef/zero elements from LHS/RHS. 3032 for (unsigned i = 0; i != NumElts; ++i) { 3033 int M = ShuffleMask[i]; 3034 if (M < 0) { 3035 KnownUndef.setBit(i); 3036 } else if (M < (int)NumElts) { 3037 if (UndefLHS[M]) 3038 KnownUndef.setBit(i); 3039 if (ZeroLHS[M]) 3040 KnownZero.setBit(i); 3041 } else { 3042 if (UndefRHS[M - NumElts]) 3043 KnownUndef.setBit(i); 3044 if (ZeroRHS[M - NumElts]) 3045 KnownZero.setBit(i); 3046 } 3047 } 3048 break; 3049 } 3050 case ISD::ANY_EXTEND_VECTOR_INREG: 3051 case ISD::SIGN_EXTEND_VECTOR_INREG: 3052 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3053 APInt SrcUndef, SrcZero; 3054 SDValue Src = Op.getOperand(0); 3055 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3056 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 3057 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3058 Depth + 1)) 3059 return true; 3060 KnownZero = SrcZero.zextOrTrunc(NumElts); 3061 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3062 3063 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3064 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3065 DemandedSrcElts == 1) { 3066 // aext - if we just need the bottom element then we can bitcast. 3067 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3068 } 3069 3070 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3071 // zext(undef) upper bits are guaranteed to be zero. 3072 if (DemandedElts.isSubsetOf(KnownUndef)) 3073 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3074 KnownUndef.clearAllBits(); 3075 3076 // zext - if we just need the bottom element then we can mask: 3077 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3078 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3079 Op->isOnlyUserOf(Src.getNode()) && 3080 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3081 SDLoc DL(Op); 3082 EVT SrcVT = Src.getValueType(); 3083 EVT SrcSVT = SrcVT.getScalarType(); 3084 SmallVector<SDValue> MaskElts; 3085 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3086 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3087 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3088 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3089 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3090 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3091 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3092 } 3093 } 3094 } 3095 break; 3096 } 3097 3098 // TODO: There are more binop opcodes that could be handled here - MIN, 3099 // MAX, saturated math, etc. 3100 case ISD::ADD: { 3101 SDValue Op0 = Op.getOperand(0); 3102 SDValue Op1 = Op.getOperand(1); 3103 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3104 APInt UndefLHS, ZeroLHS; 3105 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3106 Depth + 1, /*AssumeSingleUse*/ true)) 3107 return true; 3108 } 3109 LLVM_FALLTHROUGH; 3110 } 3111 case ISD::OR: 3112 case ISD::XOR: 3113 case ISD::SUB: 3114 case ISD::FADD: 3115 case ISD::FSUB: 3116 case ISD::FMUL: 3117 case ISD::FDIV: 3118 case ISD::FREM: { 3119 SDValue Op0 = Op.getOperand(0); 3120 SDValue Op1 = Op.getOperand(1); 3121 3122 APInt UndefRHS, ZeroRHS; 3123 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3124 Depth + 1)) 3125 return true; 3126 APInt UndefLHS, ZeroLHS; 3127 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3128 Depth + 1)) 3129 return true; 3130 3131 KnownZero = ZeroLHS & ZeroRHS; 3132 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3133 3134 // Attempt to avoid multi-use ops if we don't need anything from them. 3135 // TODO - use KnownUndef to relax the demandedelts? 3136 if (!DemandedElts.isAllOnes()) 3137 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3138 return true; 3139 break; 3140 } 3141 case ISD::SHL: 3142 case ISD::SRL: 3143 case ISD::SRA: 3144 case ISD::ROTL: 3145 case ISD::ROTR: { 3146 SDValue Op0 = Op.getOperand(0); 3147 SDValue Op1 = Op.getOperand(1); 3148 3149 APInt UndefRHS, ZeroRHS; 3150 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3151 Depth + 1)) 3152 return true; 3153 APInt UndefLHS, ZeroLHS; 3154 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3155 Depth + 1)) 3156 return true; 3157 3158 KnownZero = ZeroLHS; 3159 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3160 3161 // Attempt to avoid multi-use ops if we don't need anything from them. 3162 // TODO - use KnownUndef to relax the demandedelts? 3163 if (!DemandedElts.isAllOnes()) 3164 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3165 return true; 3166 break; 3167 } 3168 case ISD::MUL: 3169 case ISD::AND: { 3170 SDValue Op0 = Op.getOperand(0); 3171 SDValue Op1 = Op.getOperand(1); 3172 3173 APInt SrcUndef, SrcZero; 3174 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3175 Depth + 1)) 3176 return true; 3177 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3178 TLO, Depth + 1)) 3179 return true; 3180 3181 // If either side has a zero element, then the result element is zero, even 3182 // if the other is an UNDEF. 3183 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3184 // and then handle 'and' nodes with the rest of the binop opcodes. 3185 KnownZero |= SrcZero; 3186 KnownUndef &= SrcUndef; 3187 KnownUndef &= ~KnownZero; 3188 3189 // Attempt to avoid multi-use ops if we don't need anything from them. 3190 // TODO - use KnownUndef to relax the demandedelts? 3191 if (!DemandedElts.isAllOnes()) 3192 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3193 return true; 3194 break; 3195 } 3196 case ISD::TRUNCATE: 3197 case ISD::SIGN_EXTEND: 3198 case ISD::ZERO_EXTEND: 3199 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3200 KnownZero, TLO, Depth + 1)) 3201 return true; 3202 3203 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3204 // zext(undef) upper bits are guaranteed to be zero. 3205 if (DemandedElts.isSubsetOf(KnownUndef)) 3206 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3207 KnownUndef.clearAllBits(); 3208 } 3209 break; 3210 default: { 3211 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3212 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3213 KnownZero, TLO, Depth)) 3214 return true; 3215 } else { 3216 KnownBits Known; 3217 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3218 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3219 TLO, Depth, AssumeSingleUse)) 3220 return true; 3221 } 3222 break; 3223 } 3224 } 3225 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3226 3227 // Constant fold all undef cases. 3228 // TODO: Handle zero cases as well. 3229 if (DemandedElts.isSubsetOf(KnownUndef)) 3230 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3231 3232 return false; 3233 } 3234 3235 /// Determine which of the bits specified in Mask are known to be either zero or 3236 /// one and return them in the Known. 3237 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3238 KnownBits &Known, 3239 const APInt &DemandedElts, 3240 const SelectionDAG &DAG, 3241 unsigned Depth) const { 3242 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3243 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3244 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3245 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3246 "Should use MaskedValueIsZero if you don't know whether Op" 3247 " is a target node!"); 3248 Known.resetAll(); 3249 } 3250 3251 void TargetLowering::computeKnownBitsForTargetInstr( 3252 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3253 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3254 unsigned Depth) const { 3255 Known.resetAll(); 3256 } 3257 3258 void TargetLowering::computeKnownBitsForFrameIndex( 3259 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3260 // The low bits are known zero if the pointer is aligned. 3261 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3262 } 3263 3264 Align TargetLowering::computeKnownAlignForTargetInstr( 3265 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3266 unsigned Depth) const { 3267 return Align(1); 3268 } 3269 3270 /// This method can be implemented by targets that want to expose additional 3271 /// information about sign bits to the DAG Combiner. 3272 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3273 const APInt &, 3274 const SelectionDAG &, 3275 unsigned Depth) const { 3276 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3277 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3278 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3279 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3280 "Should use ComputeNumSignBits if you don't know whether Op" 3281 " is a target node!"); 3282 return 1; 3283 } 3284 3285 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3286 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3287 const MachineRegisterInfo &MRI, unsigned Depth) const { 3288 return 1; 3289 } 3290 3291 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3292 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3293 TargetLoweringOpt &TLO, unsigned Depth) const { 3294 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3295 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3296 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3297 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3298 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3299 " is a target node!"); 3300 return false; 3301 } 3302 3303 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3304 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3305 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3306 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3307 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3308 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3309 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3310 "Should use SimplifyDemandedBits if you don't know whether Op" 3311 " is a target node!"); 3312 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3313 return false; 3314 } 3315 3316 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3317 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3318 SelectionDAG &DAG, unsigned Depth) const { 3319 assert( 3320 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3321 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3322 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3323 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3324 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3325 " is a target node!"); 3326 return SDValue(); 3327 } 3328 3329 SDValue 3330 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3331 SDValue N1, MutableArrayRef<int> Mask, 3332 SelectionDAG &DAG) const { 3333 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3334 if (!LegalMask) { 3335 std::swap(N0, N1); 3336 ShuffleVectorSDNode::commuteMask(Mask); 3337 LegalMask = isShuffleMaskLegal(Mask, VT); 3338 } 3339 3340 if (!LegalMask) 3341 return SDValue(); 3342 3343 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3344 } 3345 3346 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3347 return nullptr; 3348 } 3349 3350 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3351 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3352 bool PoisonOnly, unsigned Depth) const { 3353 assert( 3354 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3355 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3356 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3357 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3358 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3359 " is a target node!"); 3360 return false; 3361 } 3362 3363 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3364 const SelectionDAG &DAG, 3365 bool SNaN, 3366 unsigned Depth) const { 3367 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3368 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3369 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3370 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3371 "Should use isKnownNeverNaN if you don't know whether Op" 3372 " is a target node!"); 3373 return false; 3374 } 3375 3376 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3377 const APInt &DemandedElts, 3378 APInt &UndefElts, 3379 unsigned Depth) const { 3380 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3381 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3382 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3383 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3384 "Should use isSplatValue if you don't know whether Op" 3385 " is a target node!"); 3386 return false; 3387 } 3388 3389 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3390 // work with truncating build vectors and vectors with elements of less than 3391 // 8 bits. 3392 bool TargetLowering::isConstTrueVal(SDValue N) const { 3393 if (!N) 3394 return false; 3395 3396 unsigned EltWidth; 3397 APInt CVal; 3398 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3399 /*AllowTruncation=*/true)) { 3400 CVal = CN->getAPIntValue(); 3401 EltWidth = N.getValueType().getScalarSizeInBits(); 3402 } else 3403 return false; 3404 3405 // If this is a truncating splat, truncate the splat value. 3406 // Otherwise, we may fail to match the expected values below. 3407 if (EltWidth < CVal.getBitWidth()) 3408 CVal = CVal.trunc(EltWidth); 3409 3410 switch (getBooleanContents(N.getValueType())) { 3411 case UndefinedBooleanContent: 3412 return CVal[0]; 3413 case ZeroOrOneBooleanContent: 3414 return CVal.isOne(); 3415 case ZeroOrNegativeOneBooleanContent: 3416 return CVal.isAllOnes(); 3417 } 3418 3419 llvm_unreachable("Invalid boolean contents"); 3420 } 3421 3422 bool TargetLowering::isConstFalseVal(SDValue N) const { 3423 if (!N) 3424 return false; 3425 3426 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3427 if (!CN) { 3428 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3429 if (!BV) 3430 return false; 3431 3432 // Only interested in constant splats, we don't care about undef 3433 // elements in identifying boolean constants and getConstantSplatNode 3434 // returns NULL if all ops are undef; 3435 CN = BV->getConstantSplatNode(); 3436 if (!CN) 3437 return false; 3438 } 3439 3440 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3441 return !CN->getAPIntValue()[0]; 3442 3443 return CN->isZero(); 3444 } 3445 3446 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3447 bool SExt) const { 3448 if (VT == MVT::i1) 3449 return N->isOne(); 3450 3451 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3452 switch (Cnt) { 3453 case TargetLowering::ZeroOrOneBooleanContent: 3454 // An extended value of 1 is always true, unless its original type is i1, 3455 // in which case it will be sign extended to -1. 3456 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3457 case TargetLowering::UndefinedBooleanContent: 3458 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3459 return N->isAllOnes() && SExt; 3460 } 3461 llvm_unreachable("Unexpected enumeration."); 3462 } 3463 3464 /// This helper function of SimplifySetCC tries to optimize the comparison when 3465 /// either operand of the SetCC node is a bitwise-and instruction. 3466 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3467 ISD::CondCode Cond, const SDLoc &DL, 3468 DAGCombinerInfo &DCI) const { 3469 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3470 std::swap(N0, N1); 3471 3472 SelectionDAG &DAG = DCI.DAG; 3473 EVT OpVT = N0.getValueType(); 3474 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3475 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3476 return SDValue(); 3477 3478 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3479 // iff everything but LSB is known zero: 3480 if (Cond == ISD::SETNE && isNullConstant(N1) && 3481 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3482 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3483 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3484 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3485 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3486 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3487 } 3488 3489 // Match these patterns in any of their permutations: 3490 // (X & Y) == Y 3491 // (X & Y) != Y 3492 SDValue X, Y; 3493 if (N0.getOperand(0) == N1) { 3494 X = N0.getOperand(1); 3495 Y = N0.getOperand(0); 3496 } else if (N0.getOperand(1) == N1) { 3497 X = N0.getOperand(0); 3498 Y = N0.getOperand(1); 3499 } else { 3500 return SDValue(); 3501 } 3502 3503 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3504 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3505 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3506 // Note that where Y is variable and is known to have at most one bit set 3507 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3508 // equivalent when Y == 0. 3509 assert(OpVT.isInteger()); 3510 Cond = ISD::getSetCCInverse(Cond, OpVT); 3511 if (DCI.isBeforeLegalizeOps() || 3512 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3513 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3514 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3515 // If the target supports an 'and-not' or 'and-complement' logic operation, 3516 // try to use that to make a comparison operation more efficient. 3517 // But don't do this transform if the mask is a single bit because there are 3518 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3519 // 'rlwinm' on PPC). 3520 3521 // Bail out if the compare operand that we want to turn into a zero is 3522 // already a zero (otherwise, infinite loop). 3523 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3524 if (YConst && YConst->isZero()) 3525 return SDValue(); 3526 3527 // Transform this into: ~X & Y == 0. 3528 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3529 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3530 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3531 } 3532 3533 return SDValue(); 3534 } 3535 3536 /// There are multiple IR patterns that could be checking whether certain 3537 /// truncation of a signed number would be lossy or not. The pattern which is 3538 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3539 /// We are looking for the following pattern: (KeptBits is a constant) 3540 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3541 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3542 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3543 /// We will unfold it into the natural trunc+sext pattern: 3544 /// ((%x << C) a>> C) dstcond %x 3545 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3546 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3547 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3548 const SDLoc &DL) const { 3549 // We must be comparing with a constant. 3550 ConstantSDNode *C1; 3551 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3552 return SDValue(); 3553 3554 // N0 should be: add %x, (1 << (KeptBits-1)) 3555 if (N0->getOpcode() != ISD::ADD) 3556 return SDValue(); 3557 3558 // And we must be 'add'ing a constant. 3559 ConstantSDNode *C01; 3560 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3561 return SDValue(); 3562 3563 SDValue X = N0->getOperand(0); 3564 EVT XVT = X.getValueType(); 3565 3566 // Validate constants ... 3567 3568 APInt I1 = C1->getAPIntValue(); 3569 3570 ISD::CondCode NewCond; 3571 if (Cond == ISD::CondCode::SETULT) { 3572 NewCond = ISD::CondCode::SETEQ; 3573 } else if (Cond == ISD::CondCode::SETULE) { 3574 NewCond = ISD::CondCode::SETEQ; 3575 // But need to 'canonicalize' the constant. 3576 I1 += 1; 3577 } else if (Cond == ISD::CondCode::SETUGT) { 3578 NewCond = ISD::CondCode::SETNE; 3579 // But need to 'canonicalize' the constant. 3580 I1 += 1; 3581 } else if (Cond == ISD::CondCode::SETUGE) { 3582 NewCond = ISD::CondCode::SETNE; 3583 } else 3584 return SDValue(); 3585 3586 APInt I01 = C01->getAPIntValue(); 3587 3588 auto checkConstants = [&I1, &I01]() -> bool { 3589 // Both of them must be power-of-two, and the constant from setcc is bigger. 3590 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3591 }; 3592 3593 if (checkConstants()) { 3594 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3595 } else { 3596 // What if we invert constants? (and the target predicate) 3597 I1.negate(); 3598 I01.negate(); 3599 assert(XVT.isInteger()); 3600 NewCond = getSetCCInverse(NewCond, XVT); 3601 if (!checkConstants()) 3602 return SDValue(); 3603 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3604 } 3605 3606 // They are power-of-two, so which bit is set? 3607 const unsigned KeptBits = I1.logBase2(); 3608 const unsigned KeptBitsMinusOne = I01.logBase2(); 3609 3610 // Magic! 3611 if (KeptBits != (KeptBitsMinusOne + 1)) 3612 return SDValue(); 3613 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3614 3615 // We don't want to do this in every single case. 3616 SelectionDAG &DAG = DCI.DAG; 3617 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3618 XVT, KeptBits)) 3619 return SDValue(); 3620 3621 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3622 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3623 3624 // Unfold into: ((%x << C) a>> C) cond %x 3625 // Where 'cond' will be either 'eq' or 'ne'. 3626 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3627 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3628 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3629 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3630 3631 return T2; 3632 } 3633 3634 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3635 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3636 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3637 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3638 assert(isConstOrConstSplat(N1C) && 3639 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3640 "Should be a comparison with 0."); 3641 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3642 "Valid only for [in]equality comparisons."); 3643 3644 unsigned NewShiftOpcode; 3645 SDValue X, C, Y; 3646 3647 SelectionDAG &DAG = DCI.DAG; 3648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3649 3650 // Look for '(C l>>/<< Y)'. 3651 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3652 // The shift should be one-use. 3653 if (!V.hasOneUse()) 3654 return false; 3655 unsigned OldShiftOpcode = V.getOpcode(); 3656 switch (OldShiftOpcode) { 3657 case ISD::SHL: 3658 NewShiftOpcode = ISD::SRL; 3659 break; 3660 case ISD::SRL: 3661 NewShiftOpcode = ISD::SHL; 3662 break; 3663 default: 3664 return false; // must be a logical shift. 3665 } 3666 // We should be shifting a constant. 3667 // FIXME: best to use isConstantOrConstantVector(). 3668 C = V.getOperand(0); 3669 ConstantSDNode *CC = 3670 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3671 if (!CC) 3672 return false; 3673 Y = V.getOperand(1); 3674 3675 ConstantSDNode *XC = 3676 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3677 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3678 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3679 }; 3680 3681 // LHS of comparison should be an one-use 'and'. 3682 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3683 return SDValue(); 3684 3685 X = N0.getOperand(0); 3686 SDValue Mask = N0.getOperand(1); 3687 3688 // 'and' is commutative! 3689 if (!Match(Mask)) { 3690 std::swap(X, Mask); 3691 if (!Match(Mask)) 3692 return SDValue(); 3693 } 3694 3695 EVT VT = X.getValueType(); 3696 3697 // Produce: 3698 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3699 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3700 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3701 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3702 return T2; 3703 } 3704 3705 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3706 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3707 /// handle the commuted versions of these patterns. 3708 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3709 ISD::CondCode Cond, const SDLoc &DL, 3710 DAGCombinerInfo &DCI) const { 3711 unsigned BOpcode = N0.getOpcode(); 3712 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3713 "Unexpected binop"); 3714 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3715 3716 // (X + Y) == X --> Y == 0 3717 // (X - Y) == X --> Y == 0 3718 // (X ^ Y) == X --> Y == 0 3719 SelectionDAG &DAG = DCI.DAG; 3720 EVT OpVT = N0.getValueType(); 3721 SDValue X = N0.getOperand(0); 3722 SDValue Y = N0.getOperand(1); 3723 if (X == N1) 3724 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3725 3726 if (Y != N1) 3727 return SDValue(); 3728 3729 // (X + Y) == Y --> X == 0 3730 // (X ^ Y) == Y --> X == 0 3731 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3732 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3733 3734 // The shift would not be valid if the operands are boolean (i1). 3735 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3736 return SDValue(); 3737 3738 // (X - Y) == Y --> X == Y << 1 3739 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3740 !DCI.isBeforeLegalize()); 3741 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3742 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3743 if (!DCI.isCalledByLegalizer()) 3744 DCI.AddToWorklist(YShl1.getNode()); 3745 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3746 } 3747 3748 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3749 SDValue N0, const APInt &C1, 3750 ISD::CondCode Cond, const SDLoc &dl, 3751 SelectionDAG &DAG) { 3752 // Look through truncs that don't change the value of a ctpop. 3753 // FIXME: Add vector support? Need to be careful with setcc result type below. 3754 SDValue CTPOP = N0; 3755 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3756 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3757 CTPOP = N0.getOperand(0); 3758 3759 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3760 return SDValue(); 3761 3762 EVT CTVT = CTPOP.getValueType(); 3763 SDValue CTOp = CTPOP.getOperand(0); 3764 3765 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3766 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3767 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3768 return SDValue(); 3769 3770 // (ctpop x) u< 2 -> (x & x-1) == 0 3771 // (ctpop x) u> 1 -> (x & x-1) != 0 3772 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3773 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3774 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3775 return SDValue(); 3776 if (C1 == 0 && (Cond == ISD::SETULT)) 3777 return SDValue(); // This is handled elsewhere. 3778 3779 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3780 3781 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3782 SDValue Result = CTOp; 3783 for (unsigned i = 0; i < Passes; i++) { 3784 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3785 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3786 } 3787 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3788 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3789 } 3790 3791 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3792 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3793 // For scalars, keep CTPOP if it is legal or custom. 3794 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3795 return SDValue(); 3796 // This is based on X86's custom lowering for CTPOP which produces more 3797 // instructions than the expansion here. 3798 3799 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3800 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3801 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3802 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3803 assert(CTVT.isInteger()); 3804 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3805 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3806 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3807 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3808 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3809 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3810 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3811 } 3812 3813 return SDValue(); 3814 } 3815 3816 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3817 ISD::CondCode Cond, const SDLoc &dl, 3818 SelectionDAG &DAG) { 3819 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3820 return SDValue(); 3821 3822 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3823 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3824 return SDValue(); 3825 3826 auto getRotateSource = [](SDValue X) { 3827 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3828 return X.getOperand(0); 3829 return SDValue(); 3830 }; 3831 3832 // Peek through a rotated value compared against 0 or -1: 3833 // (rot X, Y) == 0/-1 --> X == 0/-1 3834 // (rot X, Y) != 0/-1 --> X != 0/-1 3835 if (SDValue R = getRotateSource(N0)) 3836 return DAG.getSetCC(dl, VT, R, N1, Cond); 3837 3838 return SDValue(); 3839 } 3840 3841 /// Try to simplify a setcc built with the specified operands and cc. If it is 3842 /// unable to simplify it, return a null SDValue. 3843 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3844 ISD::CondCode Cond, bool foldBooleans, 3845 DAGCombinerInfo &DCI, 3846 const SDLoc &dl) const { 3847 SelectionDAG &DAG = DCI.DAG; 3848 const DataLayout &Layout = DAG.getDataLayout(); 3849 EVT OpVT = N0.getValueType(); 3850 3851 // Constant fold or commute setcc. 3852 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3853 return Fold; 3854 3855 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3856 // TODO: Handle non-splat vector constants. All undef causes trouble. 3857 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3858 // infinite loop here when we encounter one. 3859 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3860 if (isConstOrConstSplat(N0) && 3861 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3862 (DCI.isBeforeLegalizeOps() || 3863 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3864 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3865 3866 // If we have a subtract with the same 2 non-constant operands as this setcc 3867 // -- but in reverse order -- then try to commute the operands of this setcc 3868 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3869 // instruction on some targets. 3870 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3871 (DCI.isBeforeLegalizeOps() || 3872 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3873 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3874 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3875 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3876 3877 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 3878 return V; 3879 3880 if (auto *N1C = isConstOrConstSplat(N1)) { 3881 const APInt &C1 = N1C->getAPIntValue(); 3882 3883 // Optimize some CTPOP cases. 3884 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3885 return V; 3886 3887 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3888 // equality comparison, then we're just comparing whether X itself is 3889 // zero. 3890 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3891 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3892 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3893 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3894 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3895 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3896 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3897 // (srl (ctlz x), 5) == 0 -> X != 0 3898 // (srl (ctlz x), 5) != 1 -> X != 0 3899 Cond = ISD::SETNE; 3900 } else { 3901 // (srl (ctlz x), 5) != 0 -> X == 0 3902 // (srl (ctlz x), 5) == 1 -> X == 0 3903 Cond = ISD::SETEQ; 3904 } 3905 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3906 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3907 Cond); 3908 } 3909 } 3910 } 3911 } 3912 3913 // FIXME: Support vectors. 3914 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3915 const APInt &C1 = N1C->getAPIntValue(); 3916 3917 // (zext x) == C --> x == (trunc C) 3918 // (sext x) == C --> x == (trunc C) 3919 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3920 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3921 unsigned MinBits = N0.getValueSizeInBits(); 3922 SDValue PreExt; 3923 bool Signed = false; 3924 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3925 // ZExt 3926 MinBits = N0->getOperand(0).getValueSizeInBits(); 3927 PreExt = N0->getOperand(0); 3928 } else if (N0->getOpcode() == ISD::AND) { 3929 // DAGCombine turns costly ZExts into ANDs 3930 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3931 if ((C->getAPIntValue()+1).isPowerOf2()) { 3932 MinBits = C->getAPIntValue().countTrailingOnes(); 3933 PreExt = N0->getOperand(0); 3934 } 3935 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3936 // SExt 3937 MinBits = N0->getOperand(0).getValueSizeInBits(); 3938 PreExt = N0->getOperand(0); 3939 Signed = true; 3940 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3941 // ZEXTLOAD / SEXTLOAD 3942 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3943 MinBits = LN0->getMemoryVT().getSizeInBits(); 3944 PreExt = N0; 3945 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3946 Signed = true; 3947 MinBits = LN0->getMemoryVT().getSizeInBits(); 3948 PreExt = N0; 3949 } 3950 } 3951 3952 // Figure out how many bits we need to preserve this constant. 3953 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3954 3955 // Make sure we're not losing bits from the constant. 3956 if (MinBits > 0 && 3957 MinBits < C1.getBitWidth() && 3958 MinBits >= ReqdBits) { 3959 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3960 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3961 // Will get folded away. 3962 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3963 if (MinBits == 1 && C1 == 1) 3964 // Invert the condition. 3965 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3966 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3967 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3968 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3969 } 3970 3971 // If truncating the setcc operands is not desirable, we can still 3972 // simplify the expression in some cases: 3973 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3974 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3975 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3976 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3977 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3978 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3979 SDValue TopSetCC = N0->getOperand(0); 3980 unsigned N0Opc = N0->getOpcode(); 3981 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3982 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3983 TopSetCC.getOpcode() == ISD::SETCC && 3984 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3985 (isConstFalseVal(N1) || 3986 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3987 3988 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3989 (!N1C->isZero() && Cond == ISD::SETNE); 3990 3991 if (!Inverse) 3992 return TopSetCC; 3993 3994 ISD::CondCode InvCond = ISD::getSetCCInverse( 3995 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3996 TopSetCC.getOperand(0).getValueType()); 3997 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3998 TopSetCC.getOperand(1), 3999 InvCond); 4000 } 4001 } 4002 } 4003 4004 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4005 // equality or unsigned, and all 1 bits of the const are in the same 4006 // partial word, see if we can shorten the load. 4007 if (DCI.isBeforeLegalize() && 4008 !ISD::isSignedIntSetCC(Cond) && 4009 N0.getOpcode() == ISD::AND && C1 == 0 && 4010 N0.getNode()->hasOneUse() && 4011 isa<LoadSDNode>(N0.getOperand(0)) && 4012 N0.getOperand(0).getNode()->hasOneUse() && 4013 isa<ConstantSDNode>(N0.getOperand(1))) { 4014 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4015 APInt bestMask; 4016 unsigned bestWidth = 0, bestOffset = 0; 4017 if (Lod->isSimple() && Lod->isUnindexed()) { 4018 unsigned origWidth = N0.getValueSizeInBits(); 4019 unsigned maskWidth = origWidth; 4020 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4021 // 8 bits, but have to be careful... 4022 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4023 origWidth = Lod->getMemoryVT().getSizeInBits(); 4024 const APInt &Mask = N0.getConstantOperandAPInt(1); 4025 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4026 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4027 for (unsigned offset=0; offset<origWidth/width; offset++) { 4028 if (Mask.isSubsetOf(newMask)) { 4029 if (Layout.isLittleEndian()) 4030 bestOffset = (uint64_t)offset * (width/8); 4031 else 4032 bestOffset = (origWidth/width - offset - 1) * (width/8); 4033 bestMask = Mask.lshr(offset * (width/8) * 8); 4034 bestWidth = width; 4035 break; 4036 } 4037 newMask <<= width; 4038 } 4039 } 4040 } 4041 if (bestWidth) { 4042 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4043 if (newVT.isRound() && 4044 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4045 SDValue Ptr = Lod->getBasePtr(); 4046 if (bestOffset != 0) 4047 Ptr = 4048 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4049 SDValue NewLoad = 4050 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4051 Lod->getPointerInfo().getWithOffset(bestOffset), 4052 Lod->getOriginalAlign()); 4053 return DAG.getSetCC(dl, VT, 4054 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4055 DAG.getConstant(bestMask.trunc(bestWidth), 4056 dl, newVT)), 4057 DAG.getConstant(0LL, dl, newVT), Cond); 4058 } 4059 } 4060 } 4061 4062 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4063 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4064 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4065 4066 // If the comparison constant has bits in the upper part, the 4067 // zero-extended value could never match. 4068 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4069 C1.getBitWidth() - InSize))) { 4070 switch (Cond) { 4071 case ISD::SETUGT: 4072 case ISD::SETUGE: 4073 case ISD::SETEQ: 4074 return DAG.getConstant(0, dl, VT); 4075 case ISD::SETULT: 4076 case ISD::SETULE: 4077 case ISD::SETNE: 4078 return DAG.getConstant(1, dl, VT); 4079 case ISD::SETGT: 4080 case ISD::SETGE: 4081 // True if the sign bit of C1 is set. 4082 return DAG.getConstant(C1.isNegative(), dl, VT); 4083 case ISD::SETLT: 4084 case ISD::SETLE: 4085 // True if the sign bit of C1 isn't set. 4086 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4087 default: 4088 break; 4089 } 4090 } 4091 4092 // Otherwise, we can perform the comparison with the low bits. 4093 switch (Cond) { 4094 case ISD::SETEQ: 4095 case ISD::SETNE: 4096 case ISD::SETUGT: 4097 case ISD::SETUGE: 4098 case ISD::SETULT: 4099 case ISD::SETULE: { 4100 EVT newVT = N0.getOperand(0).getValueType(); 4101 if (DCI.isBeforeLegalizeOps() || 4102 (isOperationLegal(ISD::SETCC, newVT) && 4103 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4104 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4105 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4106 4107 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4108 NewConst, Cond); 4109 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4110 } 4111 break; 4112 } 4113 default: 4114 break; // todo, be more careful with signed comparisons 4115 } 4116 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4117 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4118 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4119 OpVT)) { 4120 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4121 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4122 EVT ExtDstTy = N0.getValueType(); 4123 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4124 4125 // If the constant doesn't fit into the number of bits for the source of 4126 // the sign extension, it is impossible for both sides to be equal. 4127 if (C1.getMinSignedBits() > ExtSrcTyBits) 4128 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4129 4130 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4131 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4132 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4133 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4134 DAG.getConstant(Imm, dl, ExtDstTy)); 4135 if (!DCI.isCalledByLegalizer()) 4136 DCI.AddToWorklist(ZextOp.getNode()); 4137 // Otherwise, make this a use of a zext. 4138 return DAG.getSetCC(dl, VT, ZextOp, 4139 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4140 } else if ((N1C->isZero() || N1C->isOne()) && 4141 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4142 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4143 if (N0.getOpcode() == ISD::SETCC && 4144 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4145 (N0.getValueType() == MVT::i1 || 4146 getBooleanContents(N0.getOperand(0).getValueType()) == 4147 ZeroOrOneBooleanContent)) { 4148 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4149 if (TrueWhenTrue) 4150 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4151 // Invert the condition. 4152 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4153 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4154 if (DCI.isBeforeLegalizeOps() || 4155 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4156 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4157 } 4158 4159 if ((N0.getOpcode() == ISD::XOR || 4160 (N0.getOpcode() == ISD::AND && 4161 N0.getOperand(0).getOpcode() == ISD::XOR && 4162 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4163 isOneConstant(N0.getOperand(1))) { 4164 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4165 // can only do this if the top bits are known zero. 4166 unsigned BitWidth = N0.getValueSizeInBits(); 4167 if (DAG.MaskedValueIsZero(N0, 4168 APInt::getHighBitsSet(BitWidth, 4169 BitWidth-1))) { 4170 // Okay, get the un-inverted input value. 4171 SDValue Val; 4172 if (N0.getOpcode() == ISD::XOR) { 4173 Val = N0.getOperand(0); 4174 } else { 4175 assert(N0.getOpcode() == ISD::AND && 4176 N0.getOperand(0).getOpcode() == ISD::XOR); 4177 // ((X^1)&1)^1 -> X & 1 4178 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4179 N0.getOperand(0).getOperand(0), 4180 N0.getOperand(1)); 4181 } 4182 4183 return DAG.getSetCC(dl, VT, Val, N1, 4184 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4185 } 4186 } else if (N1C->isOne()) { 4187 SDValue Op0 = N0; 4188 if (Op0.getOpcode() == ISD::TRUNCATE) 4189 Op0 = Op0.getOperand(0); 4190 4191 if ((Op0.getOpcode() == ISD::XOR) && 4192 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4193 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4194 SDValue XorLHS = Op0.getOperand(0); 4195 SDValue XorRHS = Op0.getOperand(1); 4196 // Ensure that the input setccs return an i1 type or 0/1 value. 4197 if (Op0.getValueType() == MVT::i1 || 4198 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4199 ZeroOrOneBooleanContent && 4200 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4201 ZeroOrOneBooleanContent)) { 4202 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4203 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4204 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4205 } 4206 } 4207 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4208 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4209 if (Op0.getValueType().bitsGT(VT)) 4210 Op0 = DAG.getNode(ISD::AND, dl, VT, 4211 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4212 DAG.getConstant(1, dl, VT)); 4213 else if (Op0.getValueType().bitsLT(VT)) 4214 Op0 = DAG.getNode(ISD::AND, dl, VT, 4215 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4216 DAG.getConstant(1, dl, VT)); 4217 4218 return DAG.getSetCC(dl, VT, Op0, 4219 DAG.getConstant(0, dl, Op0.getValueType()), 4220 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4221 } 4222 if (Op0.getOpcode() == ISD::AssertZext && 4223 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4224 return DAG.getSetCC(dl, VT, Op0, 4225 DAG.getConstant(0, dl, Op0.getValueType()), 4226 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4227 } 4228 } 4229 4230 // Given: 4231 // icmp eq/ne (urem %x, %y), 0 4232 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4233 // icmp eq/ne %x, 0 4234 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4235 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4236 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4237 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4238 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4239 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4240 } 4241 4242 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4243 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4244 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4245 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4246 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4247 N1C && N1C->isAllOnes()) { 4248 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4249 DAG.getConstant(0, dl, OpVT), 4250 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4251 } 4252 4253 if (SDValue V = 4254 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4255 return V; 4256 } 4257 4258 // These simplifications apply to splat vectors as well. 4259 // TODO: Handle more splat vector cases. 4260 if (auto *N1C = isConstOrConstSplat(N1)) { 4261 const APInt &C1 = N1C->getAPIntValue(); 4262 4263 APInt MinVal, MaxVal; 4264 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4265 if (ISD::isSignedIntSetCC(Cond)) { 4266 MinVal = APInt::getSignedMinValue(OperandBitSize); 4267 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4268 } else { 4269 MinVal = APInt::getMinValue(OperandBitSize); 4270 MaxVal = APInt::getMaxValue(OperandBitSize); 4271 } 4272 4273 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4274 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4275 // X >= MIN --> true 4276 if (C1 == MinVal) 4277 return DAG.getBoolConstant(true, dl, VT, OpVT); 4278 4279 if (!VT.isVector()) { // TODO: Support this for vectors. 4280 // X >= C0 --> X > (C0 - 1) 4281 APInt C = C1 - 1; 4282 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4283 if ((DCI.isBeforeLegalizeOps() || 4284 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4285 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4286 isLegalICmpImmediate(C.getSExtValue())))) { 4287 return DAG.getSetCC(dl, VT, N0, 4288 DAG.getConstant(C, dl, N1.getValueType()), 4289 NewCC); 4290 } 4291 } 4292 } 4293 4294 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4295 // X <= MAX --> true 4296 if (C1 == MaxVal) 4297 return DAG.getBoolConstant(true, dl, VT, OpVT); 4298 4299 // X <= C0 --> X < (C0 + 1) 4300 if (!VT.isVector()) { // TODO: Support this for vectors. 4301 APInt C = C1 + 1; 4302 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4303 if ((DCI.isBeforeLegalizeOps() || 4304 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4305 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4306 isLegalICmpImmediate(C.getSExtValue())))) { 4307 return DAG.getSetCC(dl, VT, N0, 4308 DAG.getConstant(C, dl, N1.getValueType()), 4309 NewCC); 4310 } 4311 } 4312 } 4313 4314 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4315 if (C1 == MinVal) 4316 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4317 4318 // TODO: Support this for vectors after legalize ops. 4319 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4320 // Canonicalize setlt X, Max --> setne X, Max 4321 if (C1 == MaxVal) 4322 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4323 4324 // If we have setult X, 1, turn it into seteq X, 0 4325 if (C1 == MinVal+1) 4326 return DAG.getSetCC(dl, VT, N0, 4327 DAG.getConstant(MinVal, dl, N0.getValueType()), 4328 ISD::SETEQ); 4329 } 4330 } 4331 4332 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4333 if (C1 == MaxVal) 4334 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4335 4336 // TODO: Support this for vectors after legalize ops. 4337 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4338 // Canonicalize setgt X, Min --> setne X, Min 4339 if (C1 == MinVal) 4340 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4341 4342 // If we have setugt X, Max-1, turn it into seteq X, Max 4343 if (C1 == MaxVal-1) 4344 return DAG.getSetCC(dl, VT, N0, 4345 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4346 ISD::SETEQ); 4347 } 4348 } 4349 4350 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4351 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4352 if (C1.isZero()) 4353 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4354 VT, N0, N1, Cond, DCI, dl)) 4355 return CC; 4356 4357 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4358 // For example, when high 32-bits of i64 X are known clear: 4359 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4360 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4361 bool CmpZero = N1C->getAPIntValue().isZero(); 4362 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4363 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4364 // Match or(lo,shl(hi,bw/2)) pattern. 4365 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4366 unsigned EltBits = V.getScalarValueSizeInBits(); 4367 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4368 return false; 4369 SDValue LHS = V.getOperand(0); 4370 SDValue RHS = V.getOperand(1); 4371 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4372 // Unshifted element must have zero upperbits. 4373 if (RHS.getOpcode() == ISD::SHL && 4374 isa<ConstantSDNode>(RHS.getOperand(1)) && 4375 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4376 DAG.MaskedValueIsZero(LHS, HiBits)) { 4377 Lo = LHS; 4378 Hi = RHS.getOperand(0); 4379 return true; 4380 } 4381 if (LHS.getOpcode() == ISD::SHL && 4382 isa<ConstantSDNode>(LHS.getOperand(1)) && 4383 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4384 DAG.MaskedValueIsZero(RHS, HiBits)) { 4385 Lo = RHS; 4386 Hi = LHS.getOperand(0); 4387 return true; 4388 } 4389 return false; 4390 }; 4391 4392 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4393 unsigned EltBits = N0.getScalarValueSizeInBits(); 4394 unsigned HalfBits = EltBits / 2; 4395 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4396 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4397 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4398 SDValue NewN0 = 4399 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4400 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4401 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4402 }; 4403 4404 SDValue Lo, Hi; 4405 if (IsConcat(N0, Lo, Hi)) 4406 return MergeConcat(Lo, Hi); 4407 4408 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4409 SDValue Lo0, Lo1, Hi0, Hi1; 4410 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4411 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4412 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4413 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4414 } 4415 } 4416 } 4417 } 4418 4419 // If we have "setcc X, C0", check to see if we can shrink the immediate 4420 // by changing cc. 4421 // TODO: Support this for vectors after legalize ops. 4422 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4423 // SETUGT X, SINTMAX -> SETLT X, 0 4424 // SETUGE X, SINTMIN -> SETLT X, 0 4425 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4426 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4427 return DAG.getSetCC(dl, VT, N0, 4428 DAG.getConstant(0, dl, N1.getValueType()), 4429 ISD::SETLT); 4430 4431 // SETULT X, SINTMIN -> SETGT X, -1 4432 // SETULE X, SINTMAX -> SETGT X, -1 4433 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4434 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4435 return DAG.getSetCC(dl, VT, N0, 4436 DAG.getAllOnesConstant(dl, N1.getValueType()), 4437 ISD::SETGT); 4438 } 4439 } 4440 4441 // Back to non-vector simplifications. 4442 // TODO: Can we do these for vector splats? 4443 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4445 const APInt &C1 = N1C->getAPIntValue(); 4446 EVT ShValTy = N0.getValueType(); 4447 4448 // Fold bit comparisons when we can. This will result in an 4449 // incorrect value when boolean false is negative one, unless 4450 // the bitsize is 1 in which case the false value is the same 4451 // in practice regardless of the representation. 4452 if ((VT.getSizeInBits() == 1 || 4453 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4454 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4455 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4456 N0.getOpcode() == ISD::AND) { 4457 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4458 EVT ShiftTy = 4459 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4460 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4461 // Perform the xform if the AND RHS is a single bit. 4462 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4463 if (AndRHS->getAPIntValue().isPowerOf2() && 4464 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4465 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4466 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4467 DAG.getConstant(ShCt, dl, ShiftTy))); 4468 } 4469 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4470 // (X & 8) == 8 --> (X & 8) >> 3 4471 // Perform the xform if C1 is a single bit. 4472 unsigned ShCt = C1.logBase2(); 4473 if (C1.isPowerOf2() && 4474 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4475 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4476 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4477 DAG.getConstant(ShCt, dl, ShiftTy))); 4478 } 4479 } 4480 } 4481 } 4482 4483 if (C1.getMinSignedBits() <= 64 && 4484 !isLegalICmpImmediate(C1.getSExtValue())) { 4485 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4486 // (X & -256) == 256 -> (X >> 8) == 1 4487 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4488 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4489 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4490 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4491 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4492 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4493 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4494 SDValue Shift = 4495 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4496 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4497 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4498 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4499 } 4500 } 4501 } 4502 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4503 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4504 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4505 // X < 0x100000000 -> (X >> 32) < 1 4506 // X >= 0x100000000 -> (X >> 32) >= 1 4507 // X <= 0x0ffffffff -> (X >> 32) < 1 4508 // X > 0x0ffffffff -> (X >> 32) >= 1 4509 unsigned ShiftBits; 4510 APInt NewC = C1; 4511 ISD::CondCode NewCond = Cond; 4512 if (AdjOne) { 4513 ShiftBits = C1.countTrailingOnes(); 4514 NewC = NewC + 1; 4515 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4516 } else { 4517 ShiftBits = C1.countTrailingZeros(); 4518 } 4519 NewC.lshrInPlace(ShiftBits); 4520 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4521 isLegalICmpImmediate(NewC.getSExtValue()) && 4522 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4523 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4524 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4525 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4526 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4527 } 4528 } 4529 } 4530 } 4531 4532 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4533 auto *CFP = cast<ConstantFPSDNode>(N1); 4534 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4535 4536 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4537 // constant if knowing that the operand is non-nan is enough. We prefer to 4538 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4539 // materialize 0.0. 4540 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4541 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4542 4543 // setcc (fneg x), C -> setcc swap(pred) x, -C 4544 if (N0.getOpcode() == ISD::FNEG) { 4545 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4546 if (DCI.isBeforeLegalizeOps() || 4547 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4548 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4549 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4550 } 4551 } 4552 4553 // If the condition is not legal, see if we can find an equivalent one 4554 // which is legal. 4555 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4556 // If the comparison was an awkward floating-point == or != and one of 4557 // the comparison operands is infinity or negative infinity, convert the 4558 // condition to a less-awkward <= or >=. 4559 if (CFP->getValueAPF().isInfinity()) { 4560 bool IsNegInf = CFP->getValueAPF().isNegative(); 4561 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4562 switch (Cond) { 4563 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4564 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4565 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4566 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4567 default: break; 4568 } 4569 if (NewCond != ISD::SETCC_INVALID && 4570 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4571 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4572 } 4573 } 4574 } 4575 4576 if (N0 == N1) { 4577 // The sext(setcc()) => setcc() optimization relies on the appropriate 4578 // constant being emitted. 4579 assert(!N0.getValueType().isInteger() && 4580 "Integer types should be handled by FoldSetCC"); 4581 4582 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4583 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4584 if (UOF == 2) // FP operators that are undefined on NaNs. 4585 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4586 if (UOF == unsigned(EqTrue)) 4587 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4588 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4589 // if it is not already. 4590 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4591 if (NewCond != Cond && 4592 (DCI.isBeforeLegalizeOps() || 4593 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4594 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4595 } 4596 4597 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4598 N0.getValueType().isInteger()) { 4599 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4600 N0.getOpcode() == ISD::XOR) { 4601 // Simplify (X+Y) == (X+Z) --> Y == Z 4602 if (N0.getOpcode() == N1.getOpcode()) { 4603 if (N0.getOperand(0) == N1.getOperand(0)) 4604 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4605 if (N0.getOperand(1) == N1.getOperand(1)) 4606 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4607 if (isCommutativeBinOp(N0.getOpcode())) { 4608 // If X op Y == Y op X, try other combinations. 4609 if (N0.getOperand(0) == N1.getOperand(1)) 4610 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4611 Cond); 4612 if (N0.getOperand(1) == N1.getOperand(0)) 4613 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4614 Cond); 4615 } 4616 } 4617 4618 // If RHS is a legal immediate value for a compare instruction, we need 4619 // to be careful about increasing register pressure needlessly. 4620 bool LegalRHSImm = false; 4621 4622 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4623 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4624 // Turn (X+C1) == C2 --> X == C2-C1 4625 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4626 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4627 DAG.getConstant(RHSC->getAPIntValue()- 4628 LHSR->getAPIntValue(), 4629 dl, N0.getValueType()), Cond); 4630 } 4631 4632 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4633 if (N0.getOpcode() == ISD::XOR) 4634 // If we know that all of the inverted bits are zero, don't bother 4635 // performing the inversion. 4636 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4637 return 4638 DAG.getSetCC(dl, VT, N0.getOperand(0), 4639 DAG.getConstant(LHSR->getAPIntValue() ^ 4640 RHSC->getAPIntValue(), 4641 dl, N0.getValueType()), 4642 Cond); 4643 } 4644 4645 // Turn (C1-X) == C2 --> X == C1-C2 4646 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4647 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4648 return 4649 DAG.getSetCC(dl, VT, N0.getOperand(1), 4650 DAG.getConstant(SUBC->getAPIntValue() - 4651 RHSC->getAPIntValue(), 4652 dl, N0.getValueType()), 4653 Cond); 4654 } 4655 } 4656 4657 // Could RHSC fold directly into a compare? 4658 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4659 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4660 } 4661 4662 // (X+Y) == X --> Y == 0 and similar folds. 4663 // Don't do this if X is an immediate that can fold into a cmp 4664 // instruction and X+Y has other uses. It could be an induction variable 4665 // chain, and the transform would increase register pressure. 4666 if (!LegalRHSImm || N0.hasOneUse()) 4667 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4668 return V; 4669 } 4670 4671 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4672 N1.getOpcode() == ISD::XOR) 4673 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4674 return V; 4675 4676 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4677 return V; 4678 } 4679 4680 // Fold remainder of division by a constant. 4681 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4682 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4683 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4684 4685 // When division is cheap or optimizing for minimum size, 4686 // fall through to DIVREM creation by skipping this fold. 4687 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4688 if (N0.getOpcode() == ISD::UREM) { 4689 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4690 return Folded; 4691 } else if (N0.getOpcode() == ISD::SREM) { 4692 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4693 return Folded; 4694 } 4695 } 4696 } 4697 4698 // Fold away ALL boolean setcc's. 4699 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4700 SDValue Temp; 4701 switch (Cond) { 4702 default: llvm_unreachable("Unknown integer setcc!"); 4703 case ISD::SETEQ: // X == Y -> ~(X^Y) 4704 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4705 N0 = DAG.getNOT(dl, Temp, OpVT); 4706 if (!DCI.isCalledByLegalizer()) 4707 DCI.AddToWorklist(Temp.getNode()); 4708 break; 4709 case ISD::SETNE: // X != Y --> (X^Y) 4710 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4711 break; 4712 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4713 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4714 Temp = DAG.getNOT(dl, N0, OpVT); 4715 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4716 if (!DCI.isCalledByLegalizer()) 4717 DCI.AddToWorklist(Temp.getNode()); 4718 break; 4719 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4720 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4721 Temp = DAG.getNOT(dl, N1, OpVT); 4722 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4723 if (!DCI.isCalledByLegalizer()) 4724 DCI.AddToWorklist(Temp.getNode()); 4725 break; 4726 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4727 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4728 Temp = DAG.getNOT(dl, N0, OpVT); 4729 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4730 if (!DCI.isCalledByLegalizer()) 4731 DCI.AddToWorklist(Temp.getNode()); 4732 break; 4733 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4734 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4735 Temp = DAG.getNOT(dl, N1, OpVT); 4736 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4737 break; 4738 } 4739 if (VT.getScalarType() != MVT::i1) { 4740 if (!DCI.isCalledByLegalizer()) 4741 DCI.AddToWorklist(N0.getNode()); 4742 // FIXME: If running after legalize, we probably can't do this. 4743 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4744 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4745 } 4746 return N0; 4747 } 4748 4749 // Could not fold it. 4750 return SDValue(); 4751 } 4752 4753 /// Returns true (and the GlobalValue and the offset) if the node is a 4754 /// GlobalAddress + offset. 4755 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4756 int64_t &Offset) const { 4757 4758 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4759 4760 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4761 GA = GASD->getGlobal(); 4762 Offset += GASD->getOffset(); 4763 return true; 4764 } 4765 4766 if (N->getOpcode() == ISD::ADD) { 4767 SDValue N1 = N->getOperand(0); 4768 SDValue N2 = N->getOperand(1); 4769 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4770 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4771 Offset += V->getSExtValue(); 4772 return true; 4773 } 4774 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4775 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4776 Offset += V->getSExtValue(); 4777 return true; 4778 } 4779 } 4780 } 4781 4782 return false; 4783 } 4784 4785 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4786 DAGCombinerInfo &DCI) const { 4787 // Default implementation: no optimization. 4788 return SDValue(); 4789 } 4790 4791 //===----------------------------------------------------------------------===// 4792 // Inline Assembler Implementation Methods 4793 //===----------------------------------------------------------------------===// 4794 4795 TargetLowering::ConstraintType 4796 TargetLowering::getConstraintType(StringRef Constraint) const { 4797 unsigned S = Constraint.size(); 4798 4799 if (S == 1) { 4800 switch (Constraint[0]) { 4801 default: break; 4802 case 'r': 4803 return C_RegisterClass; 4804 case 'm': // memory 4805 case 'o': // offsetable 4806 case 'V': // not offsetable 4807 return C_Memory; 4808 case 'n': // Simple Integer 4809 case 'E': // Floating Point Constant 4810 case 'F': // Floating Point Constant 4811 return C_Immediate; 4812 case 'i': // Simple Integer or Relocatable Constant 4813 case 's': // Relocatable Constant 4814 case 'p': // Address. 4815 case 'X': // Allow ANY value. 4816 case 'I': // Target registers. 4817 case 'J': 4818 case 'K': 4819 case 'L': 4820 case 'M': 4821 case 'N': 4822 case 'O': 4823 case 'P': 4824 case '<': 4825 case '>': 4826 return C_Other; 4827 } 4828 } 4829 4830 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4831 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4832 return C_Memory; 4833 return C_Register; 4834 } 4835 return C_Unknown; 4836 } 4837 4838 /// Try to replace an X constraint, which matches anything, with another that 4839 /// has more specific requirements based on the type of the corresponding 4840 /// operand. 4841 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4842 if (ConstraintVT.isInteger()) 4843 return "r"; 4844 if (ConstraintVT.isFloatingPoint()) 4845 return "f"; // works for many targets 4846 return nullptr; 4847 } 4848 4849 SDValue TargetLowering::LowerAsmOutputForConstraint( 4850 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4851 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4852 return SDValue(); 4853 } 4854 4855 /// Lower the specified operand into the Ops vector. 4856 /// If it is invalid, don't add anything to Ops. 4857 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4858 std::string &Constraint, 4859 std::vector<SDValue> &Ops, 4860 SelectionDAG &DAG) const { 4861 4862 if (Constraint.length() > 1) return; 4863 4864 char ConstraintLetter = Constraint[0]; 4865 switch (ConstraintLetter) { 4866 default: break; 4867 case 'X': // Allows any operand 4868 case 'i': // Simple Integer or Relocatable Constant 4869 case 'n': // Simple Integer 4870 case 's': { // Relocatable Constant 4871 4872 ConstantSDNode *C; 4873 uint64_t Offset = 0; 4874 4875 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4876 // etc., since getelementpointer is variadic. We can't use 4877 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4878 // while in this case the GA may be furthest from the root node which is 4879 // likely an ISD::ADD. 4880 while (true) { 4881 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4882 // gcc prints these as sign extended. Sign extend value to 64 bits 4883 // now; without this it would get ZExt'd later in 4884 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4885 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4886 BooleanContent BCont = getBooleanContents(MVT::i64); 4887 ISD::NodeType ExtOpc = 4888 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4889 int64_t ExtVal = 4890 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4891 Ops.push_back( 4892 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4893 return; 4894 } 4895 if (ConstraintLetter != 'n') { 4896 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4897 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4898 GA->getValueType(0), 4899 Offset + GA->getOffset())); 4900 return; 4901 } 4902 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4903 Ops.push_back(DAG.getTargetBlockAddress( 4904 BA->getBlockAddress(), BA->getValueType(0), 4905 Offset + BA->getOffset(), BA->getTargetFlags())); 4906 return; 4907 } 4908 if (isa<BasicBlockSDNode>(Op)) { 4909 Ops.push_back(Op); 4910 return; 4911 } 4912 } 4913 const unsigned OpCode = Op.getOpcode(); 4914 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4915 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4916 Op = Op.getOperand(1); 4917 // Subtraction is not commutative. 4918 else if (OpCode == ISD::ADD && 4919 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4920 Op = Op.getOperand(0); 4921 else 4922 return; 4923 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4924 continue; 4925 } 4926 return; 4927 } 4928 break; 4929 } 4930 } 4931 } 4932 4933 std::pair<unsigned, const TargetRegisterClass *> 4934 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4935 StringRef Constraint, 4936 MVT VT) const { 4937 if (Constraint.empty() || Constraint[0] != '{') 4938 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4939 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4940 4941 // Remove the braces from around the name. 4942 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4943 4944 std::pair<unsigned, const TargetRegisterClass *> R = 4945 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4946 4947 // Figure out which register class contains this reg. 4948 for (const TargetRegisterClass *RC : RI->regclasses()) { 4949 // If none of the value types for this register class are valid, we 4950 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4951 if (!isLegalRC(*RI, *RC)) 4952 continue; 4953 4954 for (const MCPhysReg &PR : *RC) { 4955 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4956 std::pair<unsigned, const TargetRegisterClass *> S = 4957 std::make_pair(PR, RC); 4958 4959 // If this register class has the requested value type, return it, 4960 // otherwise keep searching and return the first class found 4961 // if no other is found which explicitly has the requested type. 4962 if (RI->isTypeLegalForClass(*RC, VT)) 4963 return S; 4964 if (!R.second) 4965 R = S; 4966 } 4967 } 4968 } 4969 4970 return R; 4971 } 4972 4973 //===----------------------------------------------------------------------===// 4974 // Constraint Selection. 4975 4976 /// Return true of this is an input operand that is a matching constraint like 4977 /// "4". 4978 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4979 assert(!ConstraintCode.empty() && "No known constraint!"); 4980 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4981 } 4982 4983 /// If this is an input matching constraint, this method returns the output 4984 /// operand it matches. 4985 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4986 assert(!ConstraintCode.empty() && "No known constraint!"); 4987 return atoi(ConstraintCode.c_str()); 4988 } 4989 4990 /// Split up the constraint string from the inline assembly value into the 4991 /// specific constraints and their prefixes, and also tie in the associated 4992 /// operand values. 4993 /// If this returns an empty vector, and if the constraint string itself 4994 /// isn't empty, there was an error parsing. 4995 TargetLowering::AsmOperandInfoVector 4996 TargetLowering::ParseConstraints(const DataLayout &DL, 4997 const TargetRegisterInfo *TRI, 4998 const CallBase &Call) const { 4999 /// Information about all of the constraints. 5000 AsmOperandInfoVector ConstraintOperands; 5001 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5002 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5003 5004 // Do a prepass over the constraints, canonicalizing them, and building up the 5005 // ConstraintOperands list. 5006 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5007 unsigned ResNo = 0; // ResNo - The result number of the next output. 5008 5009 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5010 ConstraintOperands.emplace_back(std::move(CI)); 5011 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5012 5013 // Update multiple alternative constraint count. 5014 if (OpInfo.multipleAlternatives.size() > maCount) 5015 maCount = OpInfo.multipleAlternatives.size(); 5016 5017 OpInfo.ConstraintVT = MVT::Other; 5018 5019 // Compute the value type for each operand. 5020 switch (OpInfo.Type) { 5021 case InlineAsm::isOutput: 5022 // Indirect outputs just consume an argument. 5023 if (OpInfo.isIndirect) { 5024 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5025 break; 5026 } 5027 5028 // The return value of the call is this value. As such, there is no 5029 // corresponding argument. 5030 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5031 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5032 OpInfo.ConstraintVT = 5033 getSimpleValueType(DL, STy->getElementType(ResNo)); 5034 } else { 5035 assert(ResNo == 0 && "Asm only has one result!"); 5036 OpInfo.ConstraintVT = 5037 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5038 } 5039 ++ResNo; 5040 break; 5041 case InlineAsm::isInput: 5042 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5043 break; 5044 case InlineAsm::isClobber: 5045 // Nothing to do. 5046 break; 5047 } 5048 5049 if (OpInfo.CallOperandVal) { 5050 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5051 if (OpInfo.isIndirect) { 5052 OpTy = Call.getParamElementType(ArgNo); 5053 assert(OpTy && "Indirect opernad must have elementtype attribute"); 5054 } 5055 5056 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5057 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5058 if (STy->getNumElements() == 1) 5059 OpTy = STy->getElementType(0); 5060 5061 // If OpTy is not a single value, it may be a struct/union that we 5062 // can tile with integers. 5063 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5064 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5065 switch (BitSize) { 5066 default: break; 5067 case 1: 5068 case 8: 5069 case 16: 5070 case 32: 5071 case 64: 5072 case 128: 5073 OpInfo.ConstraintVT = 5074 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5075 break; 5076 } 5077 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5078 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5079 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5080 } else { 5081 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5082 } 5083 5084 ArgNo++; 5085 } 5086 } 5087 5088 // If we have multiple alternative constraints, select the best alternative. 5089 if (!ConstraintOperands.empty()) { 5090 if (maCount) { 5091 unsigned bestMAIndex = 0; 5092 int bestWeight = -1; 5093 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5094 int weight = -1; 5095 unsigned maIndex; 5096 // Compute the sums of the weights for each alternative, keeping track 5097 // of the best (highest weight) one so far. 5098 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5099 int weightSum = 0; 5100 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5101 cIndex != eIndex; ++cIndex) { 5102 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5103 if (OpInfo.Type == InlineAsm::isClobber) 5104 continue; 5105 5106 // If this is an output operand with a matching input operand, 5107 // look up the matching input. If their types mismatch, e.g. one 5108 // is an integer, the other is floating point, or their sizes are 5109 // different, flag it as an maCantMatch. 5110 if (OpInfo.hasMatchingInput()) { 5111 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5112 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5113 if ((OpInfo.ConstraintVT.isInteger() != 5114 Input.ConstraintVT.isInteger()) || 5115 (OpInfo.ConstraintVT.getSizeInBits() != 5116 Input.ConstraintVT.getSizeInBits())) { 5117 weightSum = -1; // Can't match. 5118 break; 5119 } 5120 } 5121 } 5122 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5123 if (weight == -1) { 5124 weightSum = -1; 5125 break; 5126 } 5127 weightSum += weight; 5128 } 5129 // Update best. 5130 if (weightSum > bestWeight) { 5131 bestWeight = weightSum; 5132 bestMAIndex = maIndex; 5133 } 5134 } 5135 5136 // Now select chosen alternative in each constraint. 5137 for (AsmOperandInfo &cInfo : ConstraintOperands) 5138 if (cInfo.Type != InlineAsm::isClobber) 5139 cInfo.selectAlternative(bestMAIndex); 5140 } 5141 } 5142 5143 // Check and hook up tied operands, choose constraint code to use. 5144 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5145 cIndex != eIndex; ++cIndex) { 5146 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5147 5148 // If this is an output operand with a matching input operand, look up the 5149 // matching input. If their types mismatch, e.g. one is an integer, the 5150 // other is floating point, or their sizes are different, flag it as an 5151 // error. 5152 if (OpInfo.hasMatchingInput()) { 5153 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5154 5155 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5156 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5157 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5158 OpInfo.ConstraintVT); 5159 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5160 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5161 Input.ConstraintVT); 5162 if ((OpInfo.ConstraintVT.isInteger() != 5163 Input.ConstraintVT.isInteger()) || 5164 (MatchRC.second != InputRC.second)) { 5165 report_fatal_error("Unsupported asm: input constraint" 5166 " with a matching output constraint of" 5167 " incompatible type!"); 5168 } 5169 } 5170 } 5171 } 5172 5173 return ConstraintOperands; 5174 } 5175 5176 /// Return an integer indicating how general CT is. 5177 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5178 switch (CT) { 5179 case TargetLowering::C_Immediate: 5180 case TargetLowering::C_Other: 5181 case TargetLowering::C_Unknown: 5182 return 0; 5183 case TargetLowering::C_Register: 5184 return 1; 5185 case TargetLowering::C_RegisterClass: 5186 return 2; 5187 case TargetLowering::C_Memory: 5188 return 3; 5189 } 5190 llvm_unreachable("Invalid constraint type"); 5191 } 5192 5193 /// Examine constraint type and operand type and determine a weight value. 5194 /// This object must already have been set up with the operand type 5195 /// and the current alternative constraint selected. 5196 TargetLowering::ConstraintWeight 5197 TargetLowering::getMultipleConstraintMatchWeight( 5198 AsmOperandInfo &info, int maIndex) const { 5199 InlineAsm::ConstraintCodeVector *rCodes; 5200 if (maIndex >= (int)info.multipleAlternatives.size()) 5201 rCodes = &info.Codes; 5202 else 5203 rCodes = &info.multipleAlternatives[maIndex].Codes; 5204 ConstraintWeight BestWeight = CW_Invalid; 5205 5206 // Loop over the options, keeping track of the most general one. 5207 for (const std::string &rCode : *rCodes) { 5208 ConstraintWeight weight = 5209 getSingleConstraintMatchWeight(info, rCode.c_str()); 5210 if (weight > BestWeight) 5211 BestWeight = weight; 5212 } 5213 5214 return BestWeight; 5215 } 5216 5217 /// Examine constraint type and operand type and determine a weight value. 5218 /// This object must already have been set up with the operand type 5219 /// and the current alternative constraint selected. 5220 TargetLowering::ConstraintWeight 5221 TargetLowering::getSingleConstraintMatchWeight( 5222 AsmOperandInfo &info, const char *constraint) const { 5223 ConstraintWeight weight = CW_Invalid; 5224 Value *CallOperandVal = info.CallOperandVal; 5225 // If we don't have a value, we can't do a match, 5226 // but allow it at the lowest weight. 5227 if (!CallOperandVal) 5228 return CW_Default; 5229 // Look at the constraint type. 5230 switch (*constraint) { 5231 case 'i': // immediate integer. 5232 case 'n': // immediate integer with a known value. 5233 if (isa<ConstantInt>(CallOperandVal)) 5234 weight = CW_Constant; 5235 break; 5236 case 's': // non-explicit intregal immediate. 5237 if (isa<GlobalValue>(CallOperandVal)) 5238 weight = CW_Constant; 5239 break; 5240 case 'E': // immediate float if host format. 5241 case 'F': // immediate float. 5242 if (isa<ConstantFP>(CallOperandVal)) 5243 weight = CW_Constant; 5244 break; 5245 case '<': // memory operand with autodecrement. 5246 case '>': // memory operand with autoincrement. 5247 case 'm': // memory operand. 5248 case 'o': // offsettable memory operand 5249 case 'V': // non-offsettable memory operand 5250 weight = CW_Memory; 5251 break; 5252 case 'r': // general register. 5253 case 'g': // general register, memory operand or immediate integer. 5254 // note: Clang converts "g" to "imr". 5255 if (CallOperandVal->getType()->isIntegerTy()) 5256 weight = CW_Register; 5257 break; 5258 case 'X': // any operand. 5259 default: 5260 weight = CW_Default; 5261 break; 5262 } 5263 return weight; 5264 } 5265 5266 /// If there are multiple different constraints that we could pick for this 5267 /// operand (e.g. "imr") try to pick the 'best' one. 5268 /// This is somewhat tricky: constraints fall into four classes: 5269 /// Other -> immediates and magic values 5270 /// Register -> one specific register 5271 /// RegisterClass -> a group of regs 5272 /// Memory -> memory 5273 /// Ideally, we would pick the most specific constraint possible: if we have 5274 /// something that fits into a register, we would pick it. The problem here 5275 /// is that if we have something that could either be in a register or in 5276 /// memory that use of the register could cause selection of *other* 5277 /// operands to fail: they might only succeed if we pick memory. Because of 5278 /// this the heuristic we use is: 5279 /// 5280 /// 1) If there is an 'other' constraint, and if the operand is valid for 5281 /// that constraint, use it. This makes us take advantage of 'i' 5282 /// constraints when available. 5283 /// 2) Otherwise, pick the most general constraint present. This prefers 5284 /// 'm' over 'r', for example. 5285 /// 5286 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5287 const TargetLowering &TLI, 5288 SDValue Op, SelectionDAG *DAG) { 5289 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5290 unsigned BestIdx = 0; 5291 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5292 int BestGenerality = -1; 5293 5294 // Loop over the options, keeping track of the most general one. 5295 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5296 TargetLowering::ConstraintType CType = 5297 TLI.getConstraintType(OpInfo.Codes[i]); 5298 5299 // Indirect 'other' or 'immediate' constraints are not allowed. 5300 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5301 CType == TargetLowering::C_Register || 5302 CType == TargetLowering::C_RegisterClass)) 5303 continue; 5304 5305 // If this is an 'other' or 'immediate' constraint, see if the operand is 5306 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5307 // the operand is an integer in the range [0..31] we want to use I (saving a 5308 // load of a register), otherwise we must use 'r'. 5309 if ((CType == TargetLowering::C_Other || 5310 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5311 assert(OpInfo.Codes[i].size() == 1 && 5312 "Unhandled multi-letter 'other' constraint"); 5313 std::vector<SDValue> ResultOps; 5314 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5315 ResultOps, *DAG); 5316 if (!ResultOps.empty()) { 5317 BestType = CType; 5318 BestIdx = i; 5319 break; 5320 } 5321 } 5322 5323 // Things with matching constraints can only be registers, per gcc 5324 // documentation. This mainly affects "g" constraints. 5325 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5326 continue; 5327 5328 // This constraint letter is more general than the previous one, use it. 5329 int Generality = getConstraintGenerality(CType); 5330 if (Generality > BestGenerality) { 5331 BestType = CType; 5332 BestIdx = i; 5333 BestGenerality = Generality; 5334 } 5335 } 5336 5337 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5338 OpInfo.ConstraintType = BestType; 5339 } 5340 5341 /// Determines the constraint code and constraint type to use for the specific 5342 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5343 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5344 SDValue Op, 5345 SelectionDAG *DAG) const { 5346 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5347 5348 // Single-letter constraints ('r') are very common. 5349 if (OpInfo.Codes.size() == 1) { 5350 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5351 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5352 } else { 5353 ChooseConstraint(OpInfo, *this, Op, DAG); 5354 } 5355 5356 // 'X' matches anything. 5357 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5358 // Constants are handled elsewhere. For Functions, the type here is the 5359 // type of the result, which is not what we want to look at; leave them 5360 // alone. 5361 Value *v = OpInfo.CallOperandVal; 5362 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5363 return; 5364 } 5365 5366 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5367 OpInfo.ConstraintCode = "i"; 5368 return; 5369 } 5370 5371 // Otherwise, try to resolve it to something we know about by looking at 5372 // the actual operand type. 5373 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5374 OpInfo.ConstraintCode = Repl; 5375 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5376 } 5377 } 5378 } 5379 5380 /// Given an exact SDIV by a constant, create a multiplication 5381 /// with the multiplicative inverse of the constant. 5382 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5383 const SDLoc &dl, SelectionDAG &DAG, 5384 SmallVectorImpl<SDNode *> &Created) { 5385 SDValue Op0 = N->getOperand(0); 5386 SDValue Op1 = N->getOperand(1); 5387 EVT VT = N->getValueType(0); 5388 EVT SVT = VT.getScalarType(); 5389 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5390 EVT ShSVT = ShVT.getScalarType(); 5391 5392 bool UseSRA = false; 5393 SmallVector<SDValue, 16> Shifts, Factors; 5394 5395 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5396 if (C->isZero()) 5397 return false; 5398 APInt Divisor = C->getAPIntValue(); 5399 unsigned Shift = Divisor.countTrailingZeros(); 5400 if (Shift) { 5401 Divisor.ashrInPlace(Shift); 5402 UseSRA = true; 5403 } 5404 // Calculate the multiplicative inverse, using Newton's method. 5405 APInt t; 5406 APInt Factor = Divisor; 5407 while ((t = Divisor * Factor) != 1) 5408 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5409 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5410 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5411 return true; 5412 }; 5413 5414 // Collect all magic values from the build vector. 5415 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5416 return SDValue(); 5417 5418 SDValue Shift, Factor; 5419 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5420 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5421 Factor = DAG.getBuildVector(VT, dl, Factors); 5422 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5423 assert(Shifts.size() == 1 && Factors.size() == 1 && 5424 "Expected matchUnaryPredicate to return one element for scalable " 5425 "vectors"); 5426 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5427 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5428 } else { 5429 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5430 Shift = Shifts[0]; 5431 Factor = Factors[0]; 5432 } 5433 5434 SDValue Res = Op0; 5435 5436 // Shift the value upfront if it is even, so the LSB is one. 5437 if (UseSRA) { 5438 // TODO: For UDIV use SRL instead of SRA. 5439 SDNodeFlags Flags; 5440 Flags.setExact(true); 5441 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5442 Created.push_back(Res.getNode()); 5443 } 5444 5445 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5446 } 5447 5448 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5449 SelectionDAG &DAG, 5450 SmallVectorImpl<SDNode *> &Created) const { 5451 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5452 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5453 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5454 return SDValue(N, 0); // Lower SDIV as SDIV 5455 return SDValue(); 5456 } 5457 5458 /// Given an ISD::SDIV node expressing a divide by constant, 5459 /// return a DAG expression to select that will generate the same value by 5460 /// multiplying by a magic number. 5461 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5462 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5463 bool IsAfterLegalization, 5464 SmallVectorImpl<SDNode *> &Created) const { 5465 SDLoc dl(N); 5466 EVT VT = N->getValueType(0); 5467 EVT SVT = VT.getScalarType(); 5468 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5469 EVT ShSVT = ShVT.getScalarType(); 5470 unsigned EltBits = VT.getScalarSizeInBits(); 5471 EVT MulVT; 5472 5473 // Check to see if we can do this. 5474 // FIXME: We should be more aggressive here. 5475 if (!isTypeLegal(VT)) { 5476 // Limit this to simple scalars for now. 5477 if (VT.isVector() || !VT.isSimple()) 5478 return SDValue(); 5479 5480 // If this type will be promoted to a large enough type with a legal 5481 // multiply operation, we can go ahead and do this transform. 5482 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5483 return SDValue(); 5484 5485 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5486 if (MulVT.getSizeInBits() < (2 * EltBits) || 5487 !isOperationLegal(ISD::MUL, MulVT)) 5488 return SDValue(); 5489 } 5490 5491 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5492 if (N->getFlags().hasExact()) 5493 return BuildExactSDIV(*this, N, dl, DAG, Created); 5494 5495 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5496 5497 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5498 if (C->isZero()) 5499 return false; 5500 5501 const APInt &Divisor = C->getAPIntValue(); 5502 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5503 int NumeratorFactor = 0; 5504 int ShiftMask = -1; 5505 5506 if (Divisor.isOne() || Divisor.isAllOnes()) { 5507 // If d is +1/-1, we just multiply the numerator by +1/-1. 5508 NumeratorFactor = Divisor.getSExtValue(); 5509 magics.Magic = 0; 5510 magics.ShiftAmount = 0; 5511 ShiftMask = 0; 5512 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5513 // If d > 0 and m < 0, add the numerator. 5514 NumeratorFactor = 1; 5515 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5516 // If d < 0 and m > 0, subtract the numerator. 5517 NumeratorFactor = -1; 5518 } 5519 5520 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5521 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5522 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5523 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5524 return true; 5525 }; 5526 5527 SDValue N0 = N->getOperand(0); 5528 SDValue N1 = N->getOperand(1); 5529 5530 // Collect the shifts / magic values from each element. 5531 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5532 return SDValue(); 5533 5534 SDValue MagicFactor, Factor, Shift, ShiftMask; 5535 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5536 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5537 Factor = DAG.getBuildVector(VT, dl, Factors); 5538 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5539 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5540 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5541 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5542 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5543 "Expected matchUnaryPredicate to return one element for scalable " 5544 "vectors"); 5545 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5546 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5547 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5548 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5549 } else { 5550 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5551 MagicFactor = MagicFactors[0]; 5552 Factor = Factors[0]; 5553 Shift = Shifts[0]; 5554 ShiftMask = ShiftMasks[0]; 5555 } 5556 5557 // Multiply the numerator (operand 0) by the magic value. 5558 // FIXME: We should support doing a MUL in a wider type. 5559 auto GetMULHS = [&](SDValue X, SDValue Y) { 5560 // If the type isn't legal, use a wider mul of the the type calculated 5561 // earlier. 5562 if (!isTypeLegal(VT)) { 5563 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5564 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5565 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5566 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5567 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5568 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5569 } 5570 5571 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5572 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5573 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5574 SDValue LoHi = 5575 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5576 return SDValue(LoHi.getNode(), 1); 5577 } 5578 return SDValue(); 5579 }; 5580 5581 SDValue Q = GetMULHS(N0, MagicFactor); 5582 if (!Q) 5583 return SDValue(); 5584 5585 Created.push_back(Q.getNode()); 5586 5587 // (Optionally) Add/subtract the numerator using Factor. 5588 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5589 Created.push_back(Factor.getNode()); 5590 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5591 Created.push_back(Q.getNode()); 5592 5593 // Shift right algebraic by shift value. 5594 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5595 Created.push_back(Q.getNode()); 5596 5597 // Extract the sign bit, mask it and add it to the quotient. 5598 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5599 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5600 Created.push_back(T.getNode()); 5601 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5602 Created.push_back(T.getNode()); 5603 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5604 } 5605 5606 /// Given an ISD::UDIV node expressing a divide by constant, 5607 /// return a DAG expression to select that will generate the same value by 5608 /// multiplying by a magic number. 5609 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5610 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5611 bool IsAfterLegalization, 5612 SmallVectorImpl<SDNode *> &Created) const { 5613 SDLoc dl(N); 5614 EVT VT = N->getValueType(0); 5615 EVT SVT = VT.getScalarType(); 5616 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5617 EVT ShSVT = ShVT.getScalarType(); 5618 unsigned EltBits = VT.getScalarSizeInBits(); 5619 EVT MulVT; 5620 5621 // Check to see if we can do this. 5622 // FIXME: We should be more aggressive here. 5623 if (!isTypeLegal(VT)) { 5624 // Limit this to simple scalars for now. 5625 if (VT.isVector() || !VT.isSimple()) 5626 return SDValue(); 5627 5628 // If this type will be promoted to a large enough type with a legal 5629 // multiply operation, we can go ahead and do this transform. 5630 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5631 return SDValue(); 5632 5633 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5634 if (MulVT.getSizeInBits() < (2 * EltBits) || 5635 !isOperationLegal(ISD::MUL, MulVT)) 5636 return SDValue(); 5637 } 5638 5639 bool UseNPQ = false; 5640 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5641 5642 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5643 if (C->isZero()) 5644 return false; 5645 // FIXME: We should use a narrower constant when the upper 5646 // bits are known to be zero. 5647 const APInt& Divisor = C->getAPIntValue(); 5648 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5649 unsigned PreShift = 0, PostShift = 0; 5650 5651 // If the divisor is even, we can avoid using the expensive fixup by 5652 // shifting the divided value upfront. 5653 if (magics.IsAdd != 0 && !Divisor[0]) { 5654 PreShift = Divisor.countTrailingZeros(); 5655 // Get magic number for the shifted divisor. 5656 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5657 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5658 } 5659 5660 APInt Magic = magics.Magic; 5661 5662 unsigned SelNPQ; 5663 if (magics.IsAdd == 0 || Divisor.isOne()) { 5664 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5665 "We shouldn't generate an undefined shift!"); 5666 PostShift = magics.ShiftAmount; 5667 SelNPQ = false; 5668 } else { 5669 PostShift = magics.ShiftAmount - 1; 5670 SelNPQ = true; 5671 } 5672 5673 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5674 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5675 NPQFactors.push_back( 5676 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5677 : APInt::getZero(EltBits), 5678 dl, SVT)); 5679 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5680 UseNPQ |= SelNPQ; 5681 return true; 5682 }; 5683 5684 SDValue N0 = N->getOperand(0); 5685 SDValue N1 = N->getOperand(1); 5686 5687 // Collect the shifts/magic values from each element. 5688 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5689 return SDValue(); 5690 5691 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5692 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5693 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5694 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5695 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5696 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5697 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5698 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5699 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5700 "Expected matchUnaryPredicate to return one for scalable vectors"); 5701 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5702 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5703 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5704 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5705 } else { 5706 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5707 PreShift = PreShifts[0]; 5708 MagicFactor = MagicFactors[0]; 5709 PostShift = PostShifts[0]; 5710 } 5711 5712 SDValue Q = N0; 5713 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5714 Created.push_back(Q.getNode()); 5715 5716 // FIXME: We should support doing a MUL in a wider type. 5717 auto GetMULHU = [&](SDValue X, SDValue Y) { 5718 // If the type isn't legal, use a wider mul of the the type calculated 5719 // earlier. 5720 if (!isTypeLegal(VT)) { 5721 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5722 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5723 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5724 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5725 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5726 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5727 } 5728 5729 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5730 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5731 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5732 SDValue LoHi = 5733 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5734 return SDValue(LoHi.getNode(), 1); 5735 } 5736 return SDValue(); // No mulhu or equivalent 5737 }; 5738 5739 // Multiply the numerator (operand 0) by the magic value. 5740 Q = GetMULHU(Q, MagicFactor); 5741 if (!Q) 5742 return SDValue(); 5743 5744 Created.push_back(Q.getNode()); 5745 5746 if (UseNPQ) { 5747 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5748 Created.push_back(NPQ.getNode()); 5749 5750 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5751 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5752 if (VT.isVector()) 5753 NPQ = GetMULHU(NPQ, NPQFactor); 5754 else 5755 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5756 5757 Created.push_back(NPQ.getNode()); 5758 5759 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5760 Created.push_back(Q.getNode()); 5761 } 5762 5763 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5764 Created.push_back(Q.getNode()); 5765 5766 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5767 5768 SDValue One = DAG.getConstant(1, dl, VT); 5769 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5770 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5771 } 5772 5773 /// If all values in Values that *don't* match the predicate are same 'splat' 5774 /// value, then replace all values with that splat value. 5775 /// Else, if AlternativeReplacement was provided, then replace all values that 5776 /// do match predicate with AlternativeReplacement value. 5777 static void 5778 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5779 std::function<bool(SDValue)> Predicate, 5780 SDValue AlternativeReplacement = SDValue()) { 5781 SDValue Replacement; 5782 // Is there a value for which the Predicate does *NOT* match? What is it? 5783 auto SplatValue = llvm::find_if_not(Values, Predicate); 5784 if (SplatValue != Values.end()) { 5785 // Does Values consist only of SplatValue's and values matching Predicate? 5786 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5787 return Value == *SplatValue || Predicate(Value); 5788 })) // Then we shall replace values matching predicate with SplatValue. 5789 Replacement = *SplatValue; 5790 } 5791 if (!Replacement) { 5792 // Oops, we did not find the "baseline" splat value. 5793 if (!AlternativeReplacement) 5794 return; // Nothing to do. 5795 // Let's replace with provided value then. 5796 Replacement = AlternativeReplacement; 5797 } 5798 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5799 } 5800 5801 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5802 /// where the divisor is constant and the comparison target is zero, 5803 /// return a DAG expression that will generate the same comparison result 5804 /// using only multiplications, additions and shifts/rotations. 5805 /// Ref: "Hacker's Delight" 10-17. 5806 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5807 SDValue CompTargetNode, 5808 ISD::CondCode Cond, 5809 DAGCombinerInfo &DCI, 5810 const SDLoc &DL) const { 5811 SmallVector<SDNode *, 5> Built; 5812 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5813 DCI, DL, Built)) { 5814 for (SDNode *N : Built) 5815 DCI.AddToWorklist(N); 5816 return Folded; 5817 } 5818 5819 return SDValue(); 5820 } 5821 5822 SDValue 5823 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5824 SDValue CompTargetNode, ISD::CondCode Cond, 5825 DAGCombinerInfo &DCI, const SDLoc &DL, 5826 SmallVectorImpl<SDNode *> &Created) const { 5827 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5828 // - D must be constant, with D = D0 * 2^K where D0 is odd 5829 // - P is the multiplicative inverse of D0 modulo 2^W 5830 // - Q = floor(((2^W) - 1) / D) 5831 // where W is the width of the common type of N and D. 5832 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5833 "Only applicable for (in)equality comparisons."); 5834 5835 SelectionDAG &DAG = DCI.DAG; 5836 5837 EVT VT = REMNode.getValueType(); 5838 EVT SVT = VT.getScalarType(); 5839 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5840 EVT ShSVT = ShVT.getScalarType(); 5841 5842 // If MUL is unavailable, we cannot proceed in any case. 5843 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5844 return SDValue(); 5845 5846 bool ComparingWithAllZeros = true; 5847 bool AllComparisonsWithNonZerosAreTautological = true; 5848 bool HadTautologicalLanes = false; 5849 bool AllLanesAreTautological = true; 5850 bool HadEvenDivisor = false; 5851 bool AllDivisorsArePowerOfTwo = true; 5852 bool HadTautologicalInvertedLanes = false; 5853 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5854 5855 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5856 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5857 if (CDiv->isZero()) 5858 return false; 5859 5860 const APInt &D = CDiv->getAPIntValue(); 5861 const APInt &Cmp = CCmp->getAPIntValue(); 5862 5863 ComparingWithAllZeros &= Cmp.isZero(); 5864 5865 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5866 // if C2 is not less than C1, the comparison is always false. 5867 // But we will only be able to produce the comparison that will give the 5868 // opposive tautological answer. So this lane would need to be fixed up. 5869 bool TautologicalInvertedLane = D.ule(Cmp); 5870 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5871 5872 // If all lanes are tautological (either all divisors are ones, or divisor 5873 // is not greater than the constant we are comparing with), 5874 // we will prefer to avoid the fold. 5875 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5876 HadTautologicalLanes |= TautologicalLane; 5877 AllLanesAreTautological &= TautologicalLane; 5878 5879 // If we are comparing with non-zero, we need'll need to subtract said 5880 // comparison value from the LHS. But there is no point in doing that if 5881 // every lane where we are comparing with non-zero is tautological.. 5882 if (!Cmp.isZero()) 5883 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5884 5885 // Decompose D into D0 * 2^K 5886 unsigned K = D.countTrailingZeros(); 5887 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5888 APInt D0 = D.lshr(K); 5889 5890 // D is even if it has trailing zeros. 5891 HadEvenDivisor |= (K != 0); 5892 // D is a power-of-two if D0 is one. 5893 // If all divisors are power-of-two, we will prefer to avoid the fold. 5894 AllDivisorsArePowerOfTwo &= D0.isOne(); 5895 5896 // P = inv(D0, 2^W) 5897 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5898 unsigned W = D.getBitWidth(); 5899 APInt P = D0.zext(W + 1) 5900 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5901 .trunc(W); 5902 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5903 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5904 5905 // Q = floor((2^W - 1) u/ D) 5906 // R = ((2^W - 1) u% D) 5907 APInt Q, R; 5908 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5909 5910 // If we are comparing with zero, then that comparison constant is okay, 5911 // else it may need to be one less than that. 5912 if (Cmp.ugt(R)) 5913 Q -= 1; 5914 5915 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5916 "We are expecting that K is always less than all-ones for ShSVT"); 5917 5918 // If the lane is tautological the result can be constant-folded. 5919 if (TautologicalLane) { 5920 // Set P and K amount to a bogus values so we can try to splat them. 5921 P = 0; 5922 K = -1; 5923 // And ensure that comparison constant is tautological, 5924 // it will always compare true/false. 5925 Q = -1; 5926 } 5927 5928 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5929 KAmts.push_back( 5930 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5931 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5932 return true; 5933 }; 5934 5935 SDValue N = REMNode.getOperand(0); 5936 SDValue D = REMNode.getOperand(1); 5937 5938 // Collect the values from each element. 5939 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5940 return SDValue(); 5941 5942 // If all lanes are tautological, the result can be constant-folded. 5943 if (AllLanesAreTautological) 5944 return SDValue(); 5945 5946 // If this is a urem by a powers-of-two, avoid the fold since it can be 5947 // best implemented as a bit test. 5948 if (AllDivisorsArePowerOfTwo) 5949 return SDValue(); 5950 5951 SDValue PVal, KVal, QVal; 5952 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5953 if (HadTautologicalLanes) { 5954 // Try to turn PAmts into a splat, since we don't care about the values 5955 // that are currently '0'. If we can't, just keep '0'`s. 5956 turnVectorIntoSplatVector(PAmts, isNullConstant); 5957 // Try to turn KAmts into a splat, since we don't care about the values 5958 // that are currently '-1'. If we can't, change them to '0'`s. 5959 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5960 DAG.getConstant(0, DL, ShSVT)); 5961 } 5962 5963 PVal = DAG.getBuildVector(VT, DL, PAmts); 5964 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5965 QVal = DAG.getBuildVector(VT, DL, QAmts); 5966 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5967 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5968 "Expected matchBinaryPredicate to return one element for " 5969 "SPLAT_VECTORs"); 5970 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5971 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5972 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5973 } else { 5974 PVal = PAmts[0]; 5975 KVal = KAmts[0]; 5976 QVal = QAmts[0]; 5977 } 5978 5979 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5980 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5981 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5982 assert(CompTargetNode.getValueType() == N.getValueType() && 5983 "Expecting that the types on LHS and RHS of comparisons match."); 5984 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5985 } 5986 5987 // (mul N, P) 5988 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5989 Created.push_back(Op0.getNode()); 5990 5991 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5992 // divisors as a performance improvement, since rotating by 0 is a no-op. 5993 if (HadEvenDivisor) { 5994 // We need ROTR to do this. 5995 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5996 return SDValue(); 5997 // UREM: (rotr (mul N, P), K) 5998 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5999 Created.push_back(Op0.getNode()); 6000 } 6001 6002 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6003 SDValue NewCC = 6004 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6005 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6006 if (!HadTautologicalInvertedLanes) 6007 return NewCC; 6008 6009 // If any lanes previously compared always-false, the NewCC will give 6010 // always-true result for them, so we need to fixup those lanes. 6011 // Or the other way around for inequality predicate. 6012 assert(VT.isVector() && "Can/should only get here for vectors."); 6013 Created.push_back(NewCC.getNode()); 6014 6015 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6016 // if C2 is not less than C1, the comparison is always false. 6017 // But we have produced the comparison that will give the 6018 // opposive tautological answer. So these lanes would need to be fixed up. 6019 SDValue TautologicalInvertedChannels = 6020 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6021 Created.push_back(TautologicalInvertedChannels.getNode()); 6022 6023 // NOTE: we avoid letting illegal types through even if we're before legalize 6024 // ops – legalization has a hard time producing good code for this. 6025 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6026 // If we have a vector select, let's replace the comparison results in the 6027 // affected lanes with the correct tautological result. 6028 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6029 DL, SETCCVT, SETCCVT); 6030 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6031 Replacement, NewCC); 6032 } 6033 6034 // Else, we can just invert the comparison result in the appropriate lanes. 6035 // 6036 // NOTE: see the note above VSELECT above. 6037 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6038 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6039 TautologicalInvertedChannels); 6040 6041 return SDValue(); // Don't know how to lower. 6042 } 6043 6044 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6045 /// where the divisor is constant and the comparison target is zero, 6046 /// return a DAG expression that will generate the same comparison result 6047 /// using only multiplications, additions and shifts/rotations. 6048 /// Ref: "Hacker's Delight" 10-17. 6049 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6050 SDValue CompTargetNode, 6051 ISD::CondCode Cond, 6052 DAGCombinerInfo &DCI, 6053 const SDLoc &DL) const { 6054 SmallVector<SDNode *, 7> Built; 6055 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6056 DCI, DL, Built)) { 6057 assert(Built.size() <= 7 && "Max size prediction failed."); 6058 for (SDNode *N : Built) 6059 DCI.AddToWorklist(N); 6060 return Folded; 6061 } 6062 6063 return SDValue(); 6064 } 6065 6066 SDValue 6067 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6068 SDValue CompTargetNode, ISD::CondCode Cond, 6069 DAGCombinerInfo &DCI, const SDLoc &DL, 6070 SmallVectorImpl<SDNode *> &Created) const { 6071 // Fold: 6072 // (seteq/ne (srem N, D), 0) 6073 // To: 6074 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6075 // 6076 // - D must be constant, with D = D0 * 2^K where D0 is odd 6077 // - P is the multiplicative inverse of D0 modulo 2^W 6078 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6079 // - Q = floor((2 * A) / (2^K)) 6080 // where W is the width of the common type of N and D. 6081 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6082 "Only applicable for (in)equality comparisons."); 6083 6084 SelectionDAG &DAG = DCI.DAG; 6085 6086 EVT VT = REMNode.getValueType(); 6087 EVT SVT = VT.getScalarType(); 6088 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6089 EVT ShSVT = ShVT.getScalarType(); 6090 6091 // If we are after ops legalization, and MUL is unavailable, we can not 6092 // proceed. 6093 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6094 return SDValue(); 6095 6096 // TODO: Could support comparing with non-zero too. 6097 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6098 if (!CompTarget || !CompTarget->isZero()) 6099 return SDValue(); 6100 6101 bool HadIntMinDivisor = false; 6102 bool HadOneDivisor = false; 6103 bool AllDivisorsAreOnes = true; 6104 bool HadEvenDivisor = false; 6105 bool NeedToApplyOffset = false; 6106 bool AllDivisorsArePowerOfTwo = true; 6107 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6108 6109 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6110 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6111 if (C->isZero()) 6112 return false; 6113 6114 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6115 6116 // WARNING: this fold is only valid for positive divisors! 6117 APInt D = C->getAPIntValue(); 6118 if (D.isNegative()) 6119 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6120 6121 HadIntMinDivisor |= D.isMinSignedValue(); 6122 6123 // If all divisors are ones, we will prefer to avoid the fold. 6124 HadOneDivisor |= D.isOne(); 6125 AllDivisorsAreOnes &= D.isOne(); 6126 6127 // Decompose D into D0 * 2^K 6128 unsigned K = D.countTrailingZeros(); 6129 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6130 APInt D0 = D.lshr(K); 6131 6132 if (!D.isMinSignedValue()) { 6133 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6134 // we don't care about this lane in this fold, we'll special-handle it. 6135 HadEvenDivisor |= (K != 0); 6136 } 6137 6138 // D is a power-of-two if D0 is one. This includes INT_MIN. 6139 // If all divisors are power-of-two, we will prefer to avoid the fold. 6140 AllDivisorsArePowerOfTwo &= D0.isOne(); 6141 6142 // P = inv(D0, 2^W) 6143 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6144 unsigned W = D.getBitWidth(); 6145 APInt P = D0.zext(W + 1) 6146 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6147 .trunc(W); 6148 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6149 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6150 6151 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6152 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6153 A.clearLowBits(K); 6154 6155 if (!D.isMinSignedValue()) { 6156 // If divisor INT_MIN, then we don't care about this lane in this fold, 6157 // we'll special-handle it. 6158 NeedToApplyOffset |= A != 0; 6159 } 6160 6161 // Q = floor((2 * A) / (2^K)) 6162 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6163 6164 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6165 "We are expecting that A is always less than all-ones for SVT"); 6166 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6167 "We are expecting that K is always less than all-ones for ShSVT"); 6168 6169 // If the divisor is 1 the result can be constant-folded. Likewise, we 6170 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6171 if (D.isOne()) { 6172 // Set P, A and K to a bogus values so we can try to splat them. 6173 P = 0; 6174 A = -1; 6175 K = -1; 6176 6177 // x ?% 1 == 0 <--> true <--> x u<= -1 6178 Q = -1; 6179 } 6180 6181 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6182 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6183 KAmts.push_back( 6184 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6185 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6186 return true; 6187 }; 6188 6189 SDValue N = REMNode.getOperand(0); 6190 SDValue D = REMNode.getOperand(1); 6191 6192 // Collect the values from each element. 6193 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6194 return SDValue(); 6195 6196 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6197 if (AllDivisorsAreOnes) 6198 return SDValue(); 6199 6200 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6201 // since it can be best implemented as a bit test. 6202 if (AllDivisorsArePowerOfTwo) 6203 return SDValue(); 6204 6205 SDValue PVal, AVal, KVal, QVal; 6206 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6207 if (HadOneDivisor) { 6208 // Try to turn PAmts into a splat, since we don't care about the values 6209 // that are currently '0'. If we can't, just keep '0'`s. 6210 turnVectorIntoSplatVector(PAmts, isNullConstant); 6211 // Try to turn AAmts into a splat, since we don't care about the 6212 // values that are currently '-1'. If we can't, change them to '0'`s. 6213 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6214 DAG.getConstant(0, DL, SVT)); 6215 // Try to turn KAmts into a splat, since we don't care about the values 6216 // that are currently '-1'. If we can't, change them to '0'`s. 6217 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6218 DAG.getConstant(0, DL, ShSVT)); 6219 } 6220 6221 PVal = DAG.getBuildVector(VT, DL, PAmts); 6222 AVal = DAG.getBuildVector(VT, DL, AAmts); 6223 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6224 QVal = DAG.getBuildVector(VT, DL, QAmts); 6225 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6226 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6227 QAmts.size() == 1 && 6228 "Expected matchUnaryPredicate to return one element for scalable " 6229 "vectors"); 6230 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6231 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6232 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6233 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6234 } else { 6235 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6236 PVal = PAmts[0]; 6237 AVal = AAmts[0]; 6238 KVal = KAmts[0]; 6239 QVal = QAmts[0]; 6240 } 6241 6242 // (mul N, P) 6243 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6244 Created.push_back(Op0.getNode()); 6245 6246 if (NeedToApplyOffset) { 6247 // We need ADD to do this. 6248 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6249 return SDValue(); 6250 6251 // (add (mul N, P), A) 6252 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6253 Created.push_back(Op0.getNode()); 6254 } 6255 6256 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6257 // divisors as a performance improvement, since rotating by 0 is a no-op. 6258 if (HadEvenDivisor) { 6259 // We need ROTR to do this. 6260 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6261 return SDValue(); 6262 // SREM: (rotr (add (mul N, P), A), K) 6263 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6264 Created.push_back(Op0.getNode()); 6265 } 6266 6267 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6268 SDValue Fold = 6269 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6270 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6271 6272 // If we didn't have lanes with INT_MIN divisor, then we're done. 6273 if (!HadIntMinDivisor) 6274 return Fold; 6275 6276 // That fold is only valid for positive divisors. Which effectively means, 6277 // it is invalid for INT_MIN divisors. So if we have such a lane, 6278 // we must fix-up results for said lanes. 6279 assert(VT.isVector() && "Can/should only get here for vectors."); 6280 6281 // NOTE: we avoid letting illegal types through even if we're before legalize 6282 // ops – legalization has a hard time producing good code for the code that 6283 // follows. 6284 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6285 !isOperationLegalOrCustom(ISD::AND, VT) || 6286 !isOperationLegalOrCustom(Cond, VT) || 6287 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6288 return SDValue(); 6289 6290 Created.push_back(Fold.getNode()); 6291 6292 SDValue IntMin = DAG.getConstant( 6293 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6294 SDValue IntMax = DAG.getConstant( 6295 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6296 SDValue Zero = 6297 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6298 6299 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6300 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6301 Created.push_back(DivisorIsIntMin.getNode()); 6302 6303 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6304 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6305 Created.push_back(Masked.getNode()); 6306 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6307 Created.push_back(MaskedIsZero.getNode()); 6308 6309 // To produce final result we need to blend 2 vectors: 'SetCC' and 6310 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6311 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6312 // constant-folded, select can get lowered to a shuffle with constant mask. 6313 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6314 MaskedIsZero, Fold); 6315 6316 return Blended; 6317 } 6318 6319 bool TargetLowering:: 6320 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6321 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6322 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6323 "be a constant integer"); 6324 return true; 6325 } 6326 6327 return false; 6328 } 6329 6330 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6331 const DenormalMode &Mode) const { 6332 SDLoc DL(Op); 6333 EVT VT = Op.getValueType(); 6334 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6335 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6336 // Testing it with denormal inputs to avoid wrong estimate. 6337 if (Mode.Input == DenormalMode::IEEE) { 6338 // This is specifically a check for the handling of denormal inputs, 6339 // not the result. 6340 6341 // Test = fabs(X) < SmallestNormal 6342 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6343 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6344 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6345 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6346 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6347 } 6348 // Test = X == 0.0 6349 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6350 } 6351 6352 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6353 bool LegalOps, bool OptForSize, 6354 NegatibleCost &Cost, 6355 unsigned Depth) const { 6356 // fneg is removable even if it has multiple uses. 6357 if (Op.getOpcode() == ISD::FNEG) { 6358 Cost = NegatibleCost::Cheaper; 6359 return Op.getOperand(0); 6360 } 6361 6362 // Don't recurse exponentially. 6363 if (Depth > SelectionDAG::MaxRecursionDepth) 6364 return SDValue(); 6365 6366 // Pre-increment recursion depth for use in recursive calls. 6367 ++Depth; 6368 const SDNodeFlags Flags = Op->getFlags(); 6369 const TargetOptions &Options = DAG.getTarget().Options; 6370 EVT VT = Op.getValueType(); 6371 unsigned Opcode = Op.getOpcode(); 6372 6373 // Don't allow anything with multiple uses unless we know it is free. 6374 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6375 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6376 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6377 if (!IsFreeExtend) 6378 return SDValue(); 6379 } 6380 6381 auto RemoveDeadNode = [&](SDValue N) { 6382 if (N && N.getNode()->use_empty()) 6383 DAG.RemoveDeadNode(N.getNode()); 6384 }; 6385 6386 SDLoc DL(Op); 6387 6388 // Because getNegatedExpression can delete nodes we need a handle to keep 6389 // temporary nodes alive in case the recursion manages to create an identical 6390 // node. 6391 std::list<HandleSDNode> Handles; 6392 6393 switch (Opcode) { 6394 case ISD::ConstantFP: { 6395 // Don't invert constant FP values after legalization unless the target says 6396 // the negated constant is legal. 6397 bool IsOpLegal = 6398 isOperationLegal(ISD::ConstantFP, VT) || 6399 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6400 OptForSize); 6401 6402 if (LegalOps && !IsOpLegal) 6403 break; 6404 6405 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6406 V.changeSign(); 6407 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6408 6409 // If we already have the use of the negated floating constant, it is free 6410 // to negate it even it has multiple uses. 6411 if (!Op.hasOneUse() && CFP.use_empty()) 6412 break; 6413 Cost = NegatibleCost::Neutral; 6414 return CFP; 6415 } 6416 case ISD::BUILD_VECTOR: { 6417 // Only permit BUILD_VECTOR of constants. 6418 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6419 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6420 })) 6421 break; 6422 6423 bool IsOpLegal = 6424 (isOperationLegal(ISD::ConstantFP, VT) && 6425 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6426 llvm::all_of(Op->op_values(), [&](SDValue N) { 6427 return N.isUndef() || 6428 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6429 OptForSize); 6430 }); 6431 6432 if (LegalOps && !IsOpLegal) 6433 break; 6434 6435 SmallVector<SDValue, 4> Ops; 6436 for (SDValue C : Op->op_values()) { 6437 if (C.isUndef()) { 6438 Ops.push_back(C); 6439 continue; 6440 } 6441 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6442 V.changeSign(); 6443 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6444 } 6445 Cost = NegatibleCost::Neutral; 6446 return DAG.getBuildVector(VT, DL, Ops); 6447 } 6448 case ISD::FADD: { 6449 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6450 break; 6451 6452 // After operation legalization, it might not be legal to create new FSUBs. 6453 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6454 break; 6455 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6456 6457 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6458 NegatibleCost CostX = NegatibleCost::Expensive; 6459 SDValue NegX = 6460 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6461 // Prevent this node from being deleted by the next call. 6462 if (NegX) 6463 Handles.emplace_back(NegX); 6464 6465 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6466 NegatibleCost CostY = NegatibleCost::Expensive; 6467 SDValue NegY = 6468 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6469 6470 // We're done with the handles. 6471 Handles.clear(); 6472 6473 // Negate the X if its cost is less or equal than Y. 6474 if (NegX && (CostX <= CostY)) { 6475 Cost = CostX; 6476 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6477 if (NegY != N) 6478 RemoveDeadNode(NegY); 6479 return N; 6480 } 6481 6482 // Negate the Y if it is not expensive. 6483 if (NegY) { 6484 Cost = CostY; 6485 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6486 if (NegX != N) 6487 RemoveDeadNode(NegX); 6488 return N; 6489 } 6490 break; 6491 } 6492 case ISD::FSUB: { 6493 // We can't turn -(A-B) into B-A when we honor signed zeros. 6494 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6495 break; 6496 6497 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6498 // fold (fneg (fsub 0, Y)) -> Y 6499 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6500 if (C->isZero()) { 6501 Cost = NegatibleCost::Cheaper; 6502 return Y; 6503 } 6504 6505 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6506 Cost = NegatibleCost::Neutral; 6507 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6508 } 6509 case ISD::FMUL: 6510 case ISD::FDIV: { 6511 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6512 6513 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6514 NegatibleCost CostX = NegatibleCost::Expensive; 6515 SDValue NegX = 6516 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6517 // Prevent this node from being deleted by the next call. 6518 if (NegX) 6519 Handles.emplace_back(NegX); 6520 6521 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6522 NegatibleCost CostY = NegatibleCost::Expensive; 6523 SDValue NegY = 6524 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6525 6526 // We're done with the handles. 6527 Handles.clear(); 6528 6529 // Negate the X if its cost is less or equal than Y. 6530 if (NegX && (CostX <= CostY)) { 6531 Cost = CostX; 6532 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6533 if (NegY != N) 6534 RemoveDeadNode(NegY); 6535 return N; 6536 } 6537 6538 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6539 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6540 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6541 break; 6542 6543 // Negate the Y if it is not expensive. 6544 if (NegY) { 6545 Cost = CostY; 6546 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6547 if (NegX != N) 6548 RemoveDeadNode(NegX); 6549 return N; 6550 } 6551 break; 6552 } 6553 case ISD::FMA: 6554 case ISD::FMAD: { 6555 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6556 break; 6557 6558 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6559 NegatibleCost CostZ = NegatibleCost::Expensive; 6560 SDValue NegZ = 6561 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6562 // Give up if fail to negate the Z. 6563 if (!NegZ) 6564 break; 6565 6566 // Prevent this node from being deleted by the next two calls. 6567 Handles.emplace_back(NegZ); 6568 6569 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6570 NegatibleCost CostX = NegatibleCost::Expensive; 6571 SDValue NegX = 6572 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6573 // Prevent this node from being deleted by the next call. 6574 if (NegX) 6575 Handles.emplace_back(NegX); 6576 6577 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6578 NegatibleCost CostY = NegatibleCost::Expensive; 6579 SDValue NegY = 6580 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6581 6582 // We're done with the handles. 6583 Handles.clear(); 6584 6585 // Negate the X if its cost is less or equal than Y. 6586 if (NegX && (CostX <= CostY)) { 6587 Cost = std::min(CostX, CostZ); 6588 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6589 if (NegY != N) 6590 RemoveDeadNode(NegY); 6591 return N; 6592 } 6593 6594 // Negate the Y if it is not expensive. 6595 if (NegY) { 6596 Cost = std::min(CostY, CostZ); 6597 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6598 if (NegX != N) 6599 RemoveDeadNode(NegX); 6600 return N; 6601 } 6602 break; 6603 } 6604 6605 case ISD::FP_EXTEND: 6606 case ISD::FSIN: 6607 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6608 OptForSize, Cost, Depth)) 6609 return DAG.getNode(Opcode, DL, VT, NegV); 6610 break; 6611 case ISD::FP_ROUND: 6612 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6613 OptForSize, Cost, Depth)) 6614 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6615 break; 6616 } 6617 6618 return SDValue(); 6619 } 6620 6621 //===----------------------------------------------------------------------===// 6622 // Legalization Utilities 6623 //===----------------------------------------------------------------------===// 6624 6625 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6626 SDValue LHS, SDValue RHS, 6627 SmallVectorImpl<SDValue> &Result, 6628 EVT HiLoVT, SelectionDAG &DAG, 6629 MulExpansionKind Kind, SDValue LL, 6630 SDValue LH, SDValue RL, SDValue RH) const { 6631 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6632 Opcode == ISD::SMUL_LOHI); 6633 6634 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6635 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6636 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6637 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6638 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6639 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6640 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6641 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6642 6643 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6644 return false; 6645 6646 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6647 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6648 6649 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6650 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6651 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6652 6653 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6654 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6655 bool Signed) -> bool { 6656 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6657 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6658 Hi = SDValue(Lo.getNode(), 1); 6659 return true; 6660 } 6661 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6662 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6663 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6664 return true; 6665 } 6666 return false; 6667 }; 6668 6669 SDValue Lo, Hi; 6670 6671 if (!LL.getNode() && !RL.getNode() && 6672 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6673 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6674 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6675 } 6676 6677 if (!LL.getNode()) 6678 return false; 6679 6680 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6681 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6682 DAG.MaskedValueIsZero(RHS, HighMask)) { 6683 // The inputs are both zero-extended. 6684 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6685 Result.push_back(Lo); 6686 Result.push_back(Hi); 6687 if (Opcode != ISD::MUL) { 6688 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6689 Result.push_back(Zero); 6690 Result.push_back(Zero); 6691 } 6692 return true; 6693 } 6694 } 6695 6696 if (!VT.isVector() && Opcode == ISD::MUL && 6697 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6698 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6699 // The input values are both sign-extended. 6700 // TODO non-MUL case? 6701 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6702 Result.push_back(Lo); 6703 Result.push_back(Hi); 6704 return true; 6705 } 6706 } 6707 6708 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6709 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6710 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6711 6712 if (!LH.getNode() && !RH.getNode() && 6713 isOperationLegalOrCustom(ISD::SRL, VT) && 6714 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6715 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6716 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6717 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6718 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6719 } 6720 6721 if (!LH.getNode()) 6722 return false; 6723 6724 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6725 return false; 6726 6727 Result.push_back(Lo); 6728 6729 if (Opcode == ISD::MUL) { 6730 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6731 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6732 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6733 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6734 Result.push_back(Hi); 6735 return true; 6736 } 6737 6738 // Compute the full width result. 6739 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6740 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6741 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6742 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6743 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6744 }; 6745 6746 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6747 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6748 return false; 6749 6750 // This is effectively the add part of a multiply-add of half-sized operands, 6751 // so it cannot overflow. 6752 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6753 6754 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6755 return false; 6756 6757 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6758 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6759 6760 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6761 isOperationLegalOrCustom(ISD::ADDE, VT)); 6762 if (UseGlue) 6763 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6764 Merge(Lo, Hi)); 6765 else 6766 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6767 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6768 6769 SDValue Carry = Next.getValue(1); 6770 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6771 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6772 6773 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6774 return false; 6775 6776 if (UseGlue) 6777 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6778 Carry); 6779 else 6780 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6781 Zero, Carry); 6782 6783 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6784 6785 if (Opcode == ISD::SMUL_LOHI) { 6786 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6787 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6788 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6789 6790 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6791 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6792 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6793 } 6794 6795 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6796 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6797 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6798 return true; 6799 } 6800 6801 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6802 SelectionDAG &DAG, MulExpansionKind Kind, 6803 SDValue LL, SDValue LH, SDValue RL, 6804 SDValue RH) const { 6805 SmallVector<SDValue, 2> Result; 6806 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6807 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6808 DAG, Kind, LL, LH, RL, RH); 6809 if (Ok) { 6810 assert(Result.size() == 2); 6811 Lo = Result[0]; 6812 Hi = Result[1]; 6813 } 6814 return Ok; 6815 } 6816 6817 // Check that (every element of) Z is undef or not an exact multiple of BW. 6818 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6819 return ISD::matchUnaryPredicate( 6820 Z, 6821 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6822 true); 6823 } 6824 6825 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6826 SelectionDAG &DAG) const { 6827 EVT VT = Node->getValueType(0); 6828 6829 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6830 !isOperationLegalOrCustom(ISD::SRL, VT) || 6831 !isOperationLegalOrCustom(ISD::SUB, VT) || 6832 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6833 return SDValue(); 6834 6835 SDValue X = Node->getOperand(0); 6836 SDValue Y = Node->getOperand(1); 6837 SDValue Z = Node->getOperand(2); 6838 6839 unsigned BW = VT.getScalarSizeInBits(); 6840 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6841 SDLoc DL(SDValue(Node, 0)); 6842 6843 EVT ShVT = Z.getValueType(); 6844 6845 // If a funnel shift in the other direction is more supported, use it. 6846 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6847 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6848 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6849 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6850 // fshl X, Y, Z -> fshr X, Y, -Z 6851 // fshr X, Y, Z -> fshl X, Y, -Z 6852 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6853 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6854 } else { 6855 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6856 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6857 SDValue One = DAG.getConstant(1, DL, ShVT); 6858 if (IsFSHL) { 6859 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6860 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6861 } else { 6862 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6863 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6864 } 6865 Z = DAG.getNOT(DL, Z, ShVT); 6866 } 6867 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6868 } 6869 6870 SDValue ShX, ShY; 6871 SDValue ShAmt, InvShAmt; 6872 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6873 // fshl: X << C | Y >> (BW - C) 6874 // fshr: X << (BW - C) | Y >> C 6875 // where C = Z % BW is not zero 6876 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6877 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6878 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6879 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6880 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6881 } else { 6882 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6883 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6884 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6885 if (isPowerOf2_32(BW)) { 6886 // Z % BW -> Z & (BW - 1) 6887 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6888 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6889 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6890 } else { 6891 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6892 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6893 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6894 } 6895 6896 SDValue One = DAG.getConstant(1, DL, ShVT); 6897 if (IsFSHL) { 6898 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6899 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6900 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6901 } else { 6902 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6903 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6904 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6905 } 6906 } 6907 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6908 } 6909 6910 // TODO: Merge with expandFunnelShift. 6911 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6912 SelectionDAG &DAG) const { 6913 EVT VT = Node->getValueType(0); 6914 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6915 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6916 SDValue Op0 = Node->getOperand(0); 6917 SDValue Op1 = Node->getOperand(1); 6918 SDLoc DL(SDValue(Node, 0)); 6919 6920 EVT ShVT = Op1.getValueType(); 6921 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6922 6923 // If a rotate in the other direction is more supported, use it. 6924 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6925 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6926 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6927 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6928 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6929 } 6930 6931 if (!AllowVectorOps && VT.isVector() && 6932 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6933 !isOperationLegalOrCustom(ISD::SRL, VT) || 6934 !isOperationLegalOrCustom(ISD::SUB, VT) || 6935 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6936 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6937 return SDValue(); 6938 6939 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6940 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6941 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6942 SDValue ShVal; 6943 SDValue HsVal; 6944 if (isPowerOf2_32(EltSizeInBits)) { 6945 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6946 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6947 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6948 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6949 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6950 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6951 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6952 } else { 6953 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6954 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6955 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6956 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6957 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6958 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6959 SDValue One = DAG.getConstant(1, DL, ShVT); 6960 HsVal = 6961 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6962 } 6963 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6964 } 6965 6966 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6967 SelectionDAG &DAG) const { 6968 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6969 EVT VT = Node->getValueType(0); 6970 unsigned VTBits = VT.getScalarSizeInBits(); 6971 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6972 6973 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6974 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6975 SDValue ShOpLo = Node->getOperand(0); 6976 SDValue ShOpHi = Node->getOperand(1); 6977 SDValue ShAmt = Node->getOperand(2); 6978 EVT ShAmtVT = ShAmt.getValueType(); 6979 EVT ShAmtCCVT = 6980 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6981 SDLoc dl(Node); 6982 6983 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6984 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6985 // away during isel. 6986 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6987 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6988 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6989 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6990 : DAG.getConstant(0, dl, VT); 6991 6992 SDValue Tmp2, Tmp3; 6993 if (IsSHL) { 6994 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6995 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6996 } else { 6997 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6998 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6999 } 7000 7001 // If the shift amount is larger or equal than the width of a part we don't 7002 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7003 // values for large shift amounts. 7004 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7005 DAG.getConstant(VTBits, dl, ShAmtVT)); 7006 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7007 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7008 7009 if (IsSHL) { 7010 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7011 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7012 } else { 7013 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7014 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7015 } 7016 } 7017 7018 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7019 SelectionDAG &DAG) const { 7020 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7021 SDValue Src = Node->getOperand(OpNo); 7022 EVT SrcVT = Src.getValueType(); 7023 EVT DstVT = Node->getValueType(0); 7024 SDLoc dl(SDValue(Node, 0)); 7025 7026 // FIXME: Only f32 to i64 conversions are supported. 7027 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7028 return false; 7029 7030 if (Node->isStrictFPOpcode()) 7031 // When a NaN is converted to an integer a trap is allowed. We can't 7032 // use this expansion here because it would eliminate that trap. Other 7033 // traps are also allowed and cannot be eliminated. See 7034 // IEEE 754-2008 sec 5.8. 7035 return false; 7036 7037 // Expand f32 -> i64 conversion 7038 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7039 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7040 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7041 EVT IntVT = SrcVT.changeTypeToInteger(); 7042 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7043 7044 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7045 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7046 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7047 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7048 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7049 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7050 7051 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7052 7053 SDValue ExponentBits = DAG.getNode( 7054 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7055 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7056 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7057 7058 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7059 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7060 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7061 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7062 7063 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7064 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7065 DAG.getConstant(0x00800000, dl, IntVT)); 7066 7067 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7068 7069 R = DAG.getSelectCC( 7070 dl, Exponent, ExponentLoBit, 7071 DAG.getNode(ISD::SHL, dl, DstVT, R, 7072 DAG.getZExtOrTrunc( 7073 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7074 dl, IntShVT)), 7075 DAG.getNode(ISD::SRL, dl, DstVT, R, 7076 DAG.getZExtOrTrunc( 7077 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7078 dl, IntShVT)), 7079 ISD::SETGT); 7080 7081 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7082 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7083 7084 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7085 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7086 return true; 7087 } 7088 7089 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7090 SDValue &Chain, 7091 SelectionDAG &DAG) const { 7092 SDLoc dl(SDValue(Node, 0)); 7093 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7094 SDValue Src = Node->getOperand(OpNo); 7095 7096 EVT SrcVT = Src.getValueType(); 7097 EVT DstVT = Node->getValueType(0); 7098 EVT SetCCVT = 7099 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7100 EVT DstSetCCVT = 7101 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7102 7103 // Only expand vector types if we have the appropriate vector bit operations. 7104 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7105 ISD::FP_TO_SINT; 7106 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7107 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7108 return false; 7109 7110 // If the maximum float value is smaller then the signed integer range, 7111 // the destination signmask can't be represented by the float, so we can 7112 // just use FP_TO_SINT directly. 7113 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7114 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7115 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7116 if (APFloat::opOverflow & 7117 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7118 if (Node->isStrictFPOpcode()) { 7119 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7120 { Node->getOperand(0), Src }); 7121 Chain = Result.getValue(1); 7122 } else 7123 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7124 return true; 7125 } 7126 7127 // Don't expand it if there isn't cheap fsub instruction. 7128 if (!isOperationLegalOrCustom( 7129 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7130 return false; 7131 7132 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7133 SDValue Sel; 7134 7135 if (Node->isStrictFPOpcode()) { 7136 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7137 Node->getOperand(0), /*IsSignaling*/ true); 7138 Chain = Sel.getValue(1); 7139 } else { 7140 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7141 } 7142 7143 bool Strict = Node->isStrictFPOpcode() || 7144 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7145 7146 if (Strict) { 7147 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7148 // signmask then offset (the result of which should be fully representable). 7149 // Sel = Src < 0x8000000000000000 7150 // FltOfs = select Sel, 0, 0x8000000000000000 7151 // IntOfs = select Sel, 0, 0x8000000000000000 7152 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7153 7154 // TODO: Should any fast-math-flags be set for the FSUB? 7155 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7156 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7157 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7158 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7159 DAG.getConstant(0, dl, DstVT), 7160 DAG.getConstant(SignMask, dl, DstVT)); 7161 SDValue SInt; 7162 if (Node->isStrictFPOpcode()) { 7163 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7164 { Chain, Src, FltOfs }); 7165 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7166 { Val.getValue(1), Val }); 7167 Chain = SInt.getValue(1); 7168 } else { 7169 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7170 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7171 } 7172 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7173 } else { 7174 // Expand based on maximum range of FP_TO_SINT: 7175 // True = fp_to_sint(Src) 7176 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7177 // Result = select (Src < 0x8000000000000000), True, False 7178 7179 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7180 // TODO: Should any fast-math-flags be set for the FSUB? 7181 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7182 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7183 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7184 DAG.getConstant(SignMask, dl, DstVT)); 7185 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7186 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7187 } 7188 return true; 7189 } 7190 7191 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7192 SDValue &Chain, 7193 SelectionDAG &DAG) const { 7194 // This transform is not correct for converting 0 when rounding mode is set 7195 // to round toward negative infinity which will produce -0.0. So disable under 7196 // strictfp. 7197 if (Node->isStrictFPOpcode()) 7198 return false; 7199 7200 SDValue Src = Node->getOperand(0); 7201 EVT SrcVT = Src.getValueType(); 7202 EVT DstVT = Node->getValueType(0); 7203 7204 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7205 return false; 7206 7207 // Only expand vector types if we have the appropriate vector bit operations. 7208 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7209 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7210 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7211 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7212 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7213 return false; 7214 7215 SDLoc dl(SDValue(Node, 0)); 7216 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7217 7218 // Implementation of unsigned i64 to f64 following the algorithm in 7219 // __floatundidf in compiler_rt. This implementation performs rounding 7220 // correctly in all rounding modes with the exception of converting 0 7221 // when rounding toward negative infinity. In that case the fsub will produce 7222 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7223 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7224 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7225 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7226 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7227 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7228 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7229 7230 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7231 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7232 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7233 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7234 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7235 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7236 SDValue HiSub = 7237 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7238 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7239 return true; 7240 } 7241 7242 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7243 SelectionDAG &DAG) const { 7244 SDLoc dl(Node); 7245 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7246 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7247 EVT VT = Node->getValueType(0); 7248 7249 if (VT.isScalableVector()) 7250 report_fatal_error( 7251 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7252 7253 if (isOperationLegalOrCustom(NewOp, VT)) { 7254 SDValue Quiet0 = Node->getOperand(0); 7255 SDValue Quiet1 = Node->getOperand(1); 7256 7257 if (!Node->getFlags().hasNoNaNs()) { 7258 // Insert canonicalizes if it's possible we need to quiet to get correct 7259 // sNaN behavior. 7260 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7261 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7262 Node->getFlags()); 7263 } 7264 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7265 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7266 Node->getFlags()); 7267 } 7268 } 7269 7270 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7271 } 7272 7273 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7274 // instead if there are no NaNs. 7275 if (Node->getFlags().hasNoNaNs()) { 7276 unsigned IEEE2018Op = 7277 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7278 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7279 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7280 Node->getOperand(1), Node->getFlags()); 7281 } 7282 } 7283 7284 // If none of the above worked, but there are no NaNs, then expand to 7285 // a compare/select sequence. This is required for correctness since 7286 // InstCombine might have canonicalized a fcmp+select sequence to a 7287 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7288 // expansion to libcall, we might introduce a link-time dependency 7289 // on libm into a file that originally did not have one. 7290 if (Node->getFlags().hasNoNaNs()) { 7291 ISD::CondCode Pred = 7292 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7293 SDValue Op1 = Node->getOperand(0); 7294 SDValue Op2 = Node->getOperand(1); 7295 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7296 // Copy FMF flags, but always set the no-signed-zeros flag 7297 // as this is implied by the FMINNUM/FMAXNUM semantics. 7298 SDNodeFlags Flags = Node->getFlags(); 7299 Flags.setNoSignedZeros(true); 7300 SelCC->setFlags(Flags); 7301 return SelCC; 7302 } 7303 7304 return SDValue(); 7305 } 7306 7307 // Only expand vector types if we have the appropriate vector bit operations. 7308 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7309 assert(VT.isVector() && "Expected vector type"); 7310 unsigned Len = VT.getScalarSizeInBits(); 7311 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7312 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7313 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7314 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7315 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7316 } 7317 7318 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7319 SDLoc dl(Node); 7320 EVT VT = Node->getValueType(0); 7321 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7322 SDValue Op = Node->getOperand(0); 7323 unsigned Len = VT.getScalarSizeInBits(); 7324 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7325 7326 // TODO: Add support for irregular type lengths. 7327 if (!(Len <= 128 && Len % 8 == 0)) 7328 return SDValue(); 7329 7330 // Only expand vector types if we have the appropriate vector bit operations. 7331 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7332 return SDValue(); 7333 7334 // This is the "best" algorithm from 7335 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7336 SDValue Mask55 = 7337 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7338 SDValue Mask33 = 7339 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7340 SDValue Mask0F = 7341 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7342 SDValue Mask01 = 7343 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7344 7345 // v = v - ((v >> 1) & 0x55555555...) 7346 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7347 DAG.getNode(ISD::AND, dl, VT, 7348 DAG.getNode(ISD::SRL, dl, VT, Op, 7349 DAG.getConstant(1, dl, ShVT)), 7350 Mask55)); 7351 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7352 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7353 DAG.getNode(ISD::AND, dl, VT, 7354 DAG.getNode(ISD::SRL, dl, VT, Op, 7355 DAG.getConstant(2, dl, ShVT)), 7356 Mask33)); 7357 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7358 Op = DAG.getNode(ISD::AND, dl, VT, 7359 DAG.getNode(ISD::ADD, dl, VT, Op, 7360 DAG.getNode(ISD::SRL, dl, VT, Op, 7361 DAG.getConstant(4, dl, ShVT))), 7362 Mask0F); 7363 // v = (v * 0x01010101...) >> (Len - 8) 7364 if (Len > 8) 7365 Op = 7366 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7367 DAG.getConstant(Len - 8, dl, ShVT)); 7368 7369 return Op; 7370 } 7371 7372 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7373 SDLoc dl(Node); 7374 EVT VT = Node->getValueType(0); 7375 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7376 SDValue Op = Node->getOperand(0); 7377 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7378 7379 // If the non-ZERO_UNDEF version is supported we can use that instead. 7380 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7381 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7382 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7383 7384 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7385 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7386 EVT SetCCVT = 7387 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7388 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7389 SDValue Zero = DAG.getConstant(0, dl, VT); 7390 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7391 return DAG.getSelect(dl, VT, SrcIsZero, 7392 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7393 } 7394 7395 // Only expand vector types if we have the appropriate vector bit operations. 7396 // This includes the operations needed to expand CTPOP if it isn't supported. 7397 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7398 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7399 !canExpandVectorCTPOP(*this, VT)) || 7400 !isOperationLegalOrCustom(ISD::SRL, VT) || 7401 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7402 return SDValue(); 7403 7404 // for now, we do this: 7405 // x = x | (x >> 1); 7406 // x = x | (x >> 2); 7407 // ... 7408 // x = x | (x >>16); 7409 // x = x | (x >>32); // for 64-bit input 7410 // return popcount(~x); 7411 // 7412 // Ref: "Hacker's Delight" by Henry Warren 7413 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7414 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7415 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7416 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7417 } 7418 Op = DAG.getNOT(dl, Op, VT); 7419 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7420 } 7421 7422 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7423 SDLoc dl(Node); 7424 EVT VT = Node->getValueType(0); 7425 SDValue Op = Node->getOperand(0); 7426 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7427 7428 // If the non-ZERO_UNDEF version is supported we can use that instead. 7429 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7430 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7431 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7432 7433 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7434 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7435 EVT SetCCVT = 7436 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7437 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7438 SDValue Zero = DAG.getConstant(0, dl, VT); 7439 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7440 return DAG.getSelect(dl, VT, SrcIsZero, 7441 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7442 } 7443 7444 // Only expand vector types if we have the appropriate vector bit operations. 7445 // This includes the operations needed to expand CTPOP if it isn't supported. 7446 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7447 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7448 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7449 !canExpandVectorCTPOP(*this, VT)) || 7450 !isOperationLegalOrCustom(ISD::SUB, VT) || 7451 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7452 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7453 return SDValue(); 7454 7455 // for now, we use: { return popcount(~x & (x - 1)); } 7456 // unless the target has ctlz but not ctpop, in which case we use: 7457 // { return 32 - nlz(~x & (x-1)); } 7458 // Ref: "Hacker's Delight" by Henry Warren 7459 SDValue Tmp = DAG.getNode( 7460 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7461 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7462 7463 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7464 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7465 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7466 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7467 } 7468 7469 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7470 } 7471 7472 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7473 bool IsNegative) const { 7474 SDLoc dl(N); 7475 EVT VT = N->getValueType(0); 7476 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7477 SDValue Op = N->getOperand(0); 7478 7479 // abs(x) -> smax(x,sub(0,x)) 7480 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7481 isOperationLegal(ISD::SMAX, VT)) { 7482 SDValue Zero = DAG.getConstant(0, dl, VT); 7483 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7484 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7485 } 7486 7487 // abs(x) -> umin(x,sub(0,x)) 7488 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7489 isOperationLegal(ISD::UMIN, VT)) { 7490 SDValue Zero = DAG.getConstant(0, dl, VT); 7491 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7492 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7493 } 7494 7495 // 0 - abs(x) -> smin(x, sub(0,x)) 7496 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7497 isOperationLegal(ISD::SMIN, VT)) { 7498 SDValue Zero = DAG.getConstant(0, dl, VT); 7499 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7500 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7501 } 7502 7503 // Only expand vector types if we have the appropriate vector operations. 7504 if (VT.isVector() && 7505 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7506 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7507 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7508 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7509 return SDValue(); 7510 7511 SDValue Shift = 7512 DAG.getNode(ISD::SRA, dl, VT, Op, 7513 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7514 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7515 7516 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7517 if (!IsNegative) 7518 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7519 7520 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7521 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7522 } 7523 7524 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7525 SDLoc dl(N); 7526 EVT VT = N->getValueType(0); 7527 SDValue Op = N->getOperand(0); 7528 7529 if (!VT.isSimple()) 7530 return SDValue(); 7531 7532 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7533 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7534 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7535 default: 7536 return SDValue(); 7537 case MVT::i16: 7538 // Use a rotate by 8. This can be further expanded if necessary. 7539 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7540 case MVT::i32: 7541 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7542 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7543 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7544 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7545 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7546 DAG.getConstant(0xFF0000, dl, VT)); 7547 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7548 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7549 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7550 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7551 case MVT::i64: 7552 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7553 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7554 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7555 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7556 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7557 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7558 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7559 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7560 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7561 DAG.getConstant(255ULL<<48, dl, VT)); 7562 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7563 DAG.getConstant(255ULL<<40, dl, VT)); 7564 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7565 DAG.getConstant(255ULL<<32, dl, VT)); 7566 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7567 DAG.getConstant(255ULL<<24, dl, VT)); 7568 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7569 DAG.getConstant(255ULL<<16, dl, VT)); 7570 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7571 DAG.getConstant(255ULL<<8 , dl, VT)); 7572 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7573 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7574 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7575 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7576 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7577 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7578 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7579 } 7580 } 7581 7582 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7583 SDLoc dl(N); 7584 EVT VT = N->getValueType(0); 7585 SDValue Op = N->getOperand(0); 7586 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7587 unsigned Sz = VT.getScalarSizeInBits(); 7588 7589 SDValue Tmp, Tmp2, Tmp3; 7590 7591 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7592 // and finally the i1 pairs. 7593 // TODO: We can easily support i4/i2 legal types if any target ever does. 7594 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7595 // Create the masks - repeating the pattern every byte. 7596 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7597 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7598 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7599 7600 // BSWAP if the type is wider than a single byte. 7601 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7602 7603 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7604 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7605 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7606 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7607 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7608 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7609 7610 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7611 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7612 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7613 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7614 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7615 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7616 7617 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7618 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7619 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7620 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7621 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7622 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7623 return Tmp; 7624 } 7625 7626 Tmp = DAG.getConstant(0, dl, VT); 7627 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7628 if (I < J) 7629 Tmp2 = 7630 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7631 else 7632 Tmp2 = 7633 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7634 7635 APInt Shift(Sz, 1); 7636 Shift <<= J; 7637 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7638 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7639 } 7640 7641 return Tmp; 7642 } 7643 7644 std::pair<SDValue, SDValue> 7645 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7646 SelectionDAG &DAG) const { 7647 SDLoc SL(LD); 7648 SDValue Chain = LD->getChain(); 7649 SDValue BasePTR = LD->getBasePtr(); 7650 EVT SrcVT = LD->getMemoryVT(); 7651 EVT DstVT = LD->getValueType(0); 7652 ISD::LoadExtType ExtType = LD->getExtensionType(); 7653 7654 if (SrcVT.isScalableVector()) 7655 report_fatal_error("Cannot scalarize scalable vector loads"); 7656 7657 unsigned NumElem = SrcVT.getVectorNumElements(); 7658 7659 EVT SrcEltVT = SrcVT.getScalarType(); 7660 EVT DstEltVT = DstVT.getScalarType(); 7661 7662 // A vector must always be stored in memory as-is, i.e. without any padding 7663 // between the elements, since various code depend on it, e.g. in the 7664 // handling of a bitcast of a vector type to int, which may be done with a 7665 // vector store followed by an integer load. A vector that does not have 7666 // elements that are byte-sized must therefore be stored as an integer 7667 // built out of the extracted vector elements. 7668 if (!SrcEltVT.isByteSized()) { 7669 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7670 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7671 7672 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7673 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7674 7675 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7676 SDValue SrcEltBitMask = DAG.getConstant( 7677 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7678 7679 // Load the whole vector and avoid masking off the top bits as it makes 7680 // the codegen worse. 7681 SDValue Load = 7682 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7683 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7684 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7685 7686 SmallVector<SDValue, 8> Vals; 7687 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7688 unsigned ShiftIntoIdx = 7689 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7690 SDValue ShiftAmount = 7691 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7692 LoadVT, SL, /*LegalTypes=*/false); 7693 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7694 SDValue Elt = 7695 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7696 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7697 7698 if (ExtType != ISD::NON_EXTLOAD) { 7699 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7700 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7701 } 7702 7703 Vals.push_back(Scalar); 7704 } 7705 7706 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7707 return std::make_pair(Value, Load.getValue(1)); 7708 } 7709 7710 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7711 assert(SrcEltVT.isByteSized()); 7712 7713 SmallVector<SDValue, 8> Vals; 7714 SmallVector<SDValue, 8> LoadChains; 7715 7716 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7717 SDValue ScalarLoad = 7718 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7719 LD->getPointerInfo().getWithOffset(Idx * Stride), 7720 SrcEltVT, LD->getOriginalAlign(), 7721 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7722 7723 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7724 7725 Vals.push_back(ScalarLoad.getValue(0)); 7726 LoadChains.push_back(ScalarLoad.getValue(1)); 7727 } 7728 7729 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7730 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7731 7732 return std::make_pair(Value, NewChain); 7733 } 7734 7735 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7736 SelectionDAG &DAG) const { 7737 SDLoc SL(ST); 7738 7739 SDValue Chain = ST->getChain(); 7740 SDValue BasePtr = ST->getBasePtr(); 7741 SDValue Value = ST->getValue(); 7742 EVT StVT = ST->getMemoryVT(); 7743 7744 if (StVT.isScalableVector()) 7745 report_fatal_error("Cannot scalarize scalable vector stores"); 7746 7747 // The type of the data we want to save 7748 EVT RegVT = Value.getValueType(); 7749 EVT RegSclVT = RegVT.getScalarType(); 7750 7751 // The type of data as saved in memory. 7752 EVT MemSclVT = StVT.getScalarType(); 7753 7754 unsigned NumElem = StVT.getVectorNumElements(); 7755 7756 // A vector must always be stored in memory as-is, i.e. without any padding 7757 // between the elements, since various code depend on it, e.g. in the 7758 // handling of a bitcast of a vector type to int, which may be done with a 7759 // vector store followed by an integer load. A vector that does not have 7760 // elements that are byte-sized must therefore be stored as an integer 7761 // built out of the extracted vector elements. 7762 if (!MemSclVT.isByteSized()) { 7763 unsigned NumBits = StVT.getSizeInBits(); 7764 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7765 7766 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7767 7768 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7769 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7770 DAG.getVectorIdxConstant(Idx, SL)); 7771 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7772 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7773 unsigned ShiftIntoIdx = 7774 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7775 SDValue ShiftAmount = 7776 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7777 SDValue ShiftedElt = 7778 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7779 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7780 } 7781 7782 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7783 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7784 ST->getAAInfo()); 7785 } 7786 7787 // Store Stride in bytes 7788 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7789 assert(Stride && "Zero stride!"); 7790 // Extract each of the elements from the original vector and save them into 7791 // memory individually. 7792 SmallVector<SDValue, 8> Stores; 7793 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7794 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7795 DAG.getVectorIdxConstant(Idx, SL)); 7796 7797 SDValue Ptr = 7798 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7799 7800 // This scalar TruncStore may be illegal, but we legalize it later. 7801 SDValue Store = DAG.getTruncStore( 7802 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7803 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7804 ST->getAAInfo()); 7805 7806 Stores.push_back(Store); 7807 } 7808 7809 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7810 } 7811 7812 std::pair<SDValue, SDValue> 7813 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7814 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7815 "unaligned indexed loads not implemented!"); 7816 SDValue Chain = LD->getChain(); 7817 SDValue Ptr = LD->getBasePtr(); 7818 EVT VT = LD->getValueType(0); 7819 EVT LoadedVT = LD->getMemoryVT(); 7820 SDLoc dl(LD); 7821 auto &MF = DAG.getMachineFunction(); 7822 7823 if (VT.isFloatingPoint() || VT.isVector()) { 7824 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7825 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7826 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7827 LoadedVT.isVector()) { 7828 // Scalarize the load and let the individual components be handled. 7829 return scalarizeVectorLoad(LD, DAG); 7830 } 7831 7832 // Expand to a (misaligned) integer load of the same size, 7833 // then bitconvert to floating point or vector. 7834 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7835 LD->getMemOperand()); 7836 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7837 if (LoadedVT != VT) 7838 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7839 ISD::ANY_EXTEND, dl, VT, Result); 7840 7841 return std::make_pair(Result, newLoad.getValue(1)); 7842 } 7843 7844 // Copy the value to a (aligned) stack slot using (unaligned) integer 7845 // loads and stores, then do a (aligned) load from the stack slot. 7846 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7847 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7848 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7849 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7850 7851 // Make sure the stack slot is also aligned for the register type. 7852 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7853 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7854 SmallVector<SDValue, 8> Stores; 7855 SDValue StackPtr = StackBase; 7856 unsigned Offset = 0; 7857 7858 EVT PtrVT = Ptr.getValueType(); 7859 EVT StackPtrVT = StackPtr.getValueType(); 7860 7861 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7862 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7863 7864 // Do all but one copies using the full register width. 7865 for (unsigned i = 1; i < NumRegs; i++) { 7866 // Load one integer register's worth from the original location. 7867 SDValue Load = DAG.getLoad( 7868 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7869 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7870 LD->getAAInfo()); 7871 // Follow the load with a store to the stack slot. Remember the store. 7872 Stores.push_back(DAG.getStore( 7873 Load.getValue(1), dl, Load, StackPtr, 7874 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7875 // Increment the pointers. 7876 Offset += RegBytes; 7877 7878 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7879 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7880 } 7881 7882 // The last copy may be partial. Do an extending load. 7883 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7884 8 * (LoadedBytes - Offset)); 7885 SDValue Load = 7886 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7887 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7888 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7889 LD->getAAInfo()); 7890 // Follow the load with a store to the stack slot. Remember the store. 7891 // On big-endian machines this requires a truncating store to ensure 7892 // that the bits end up in the right place. 7893 Stores.push_back(DAG.getTruncStore( 7894 Load.getValue(1), dl, Load, StackPtr, 7895 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7896 7897 // The order of the stores doesn't matter - say it with a TokenFactor. 7898 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7899 7900 // Finally, perform the original load only redirected to the stack slot. 7901 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7902 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7903 LoadedVT); 7904 7905 // Callers expect a MERGE_VALUES node. 7906 return std::make_pair(Load, TF); 7907 } 7908 7909 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7910 "Unaligned load of unsupported type."); 7911 7912 // Compute the new VT that is half the size of the old one. This is an 7913 // integer MVT. 7914 unsigned NumBits = LoadedVT.getSizeInBits(); 7915 EVT NewLoadedVT; 7916 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7917 NumBits >>= 1; 7918 7919 Align Alignment = LD->getOriginalAlign(); 7920 unsigned IncrementSize = NumBits / 8; 7921 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7922 7923 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7924 if (HiExtType == ISD::NON_EXTLOAD) 7925 HiExtType = ISD::ZEXTLOAD; 7926 7927 // Load the value in two parts 7928 SDValue Lo, Hi; 7929 if (DAG.getDataLayout().isLittleEndian()) { 7930 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7931 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7932 LD->getAAInfo()); 7933 7934 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7935 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7936 LD->getPointerInfo().getWithOffset(IncrementSize), 7937 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7938 LD->getAAInfo()); 7939 } else { 7940 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7941 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7942 LD->getAAInfo()); 7943 7944 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7945 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7946 LD->getPointerInfo().getWithOffset(IncrementSize), 7947 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7948 LD->getAAInfo()); 7949 } 7950 7951 // aggregate the two parts 7952 SDValue ShiftAmount = 7953 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7954 DAG.getDataLayout())); 7955 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7956 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7957 7958 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7959 Hi.getValue(1)); 7960 7961 return std::make_pair(Result, TF); 7962 } 7963 7964 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7965 SelectionDAG &DAG) const { 7966 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7967 "unaligned indexed stores not implemented!"); 7968 SDValue Chain = ST->getChain(); 7969 SDValue Ptr = ST->getBasePtr(); 7970 SDValue Val = ST->getValue(); 7971 EVT VT = Val.getValueType(); 7972 Align Alignment = ST->getOriginalAlign(); 7973 auto &MF = DAG.getMachineFunction(); 7974 EVT StoreMemVT = ST->getMemoryVT(); 7975 7976 SDLoc dl(ST); 7977 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7978 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7979 if (isTypeLegal(intVT)) { 7980 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7981 StoreMemVT.isVector()) { 7982 // Scalarize the store and let the individual components be handled. 7983 SDValue Result = scalarizeVectorStore(ST, DAG); 7984 return Result; 7985 } 7986 // Expand to a bitconvert of the value to the integer type of the 7987 // same size, then a (misaligned) int store. 7988 // FIXME: Does not handle truncating floating point stores! 7989 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7990 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7991 Alignment, ST->getMemOperand()->getFlags()); 7992 return Result; 7993 } 7994 // Do a (aligned) store to a stack slot, then copy from the stack slot 7995 // to the final destination using (unaligned) integer loads and stores. 7996 MVT RegVT = getRegisterType( 7997 *DAG.getContext(), 7998 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7999 EVT PtrVT = Ptr.getValueType(); 8000 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8001 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8002 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8003 8004 // Make sure the stack slot is also aligned for the register type. 8005 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8006 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8007 8008 // Perform the original store, only redirected to the stack slot. 8009 SDValue Store = DAG.getTruncStore( 8010 Chain, dl, Val, StackPtr, 8011 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8012 8013 EVT StackPtrVT = StackPtr.getValueType(); 8014 8015 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8016 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8017 SmallVector<SDValue, 8> Stores; 8018 unsigned Offset = 0; 8019 8020 // Do all but one copies using the full register width. 8021 for (unsigned i = 1; i < NumRegs; i++) { 8022 // Load one integer register's worth from the stack slot. 8023 SDValue Load = DAG.getLoad( 8024 RegVT, dl, Store, StackPtr, 8025 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8026 // Store it to the final location. Remember the store. 8027 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8028 ST->getPointerInfo().getWithOffset(Offset), 8029 ST->getOriginalAlign(), 8030 ST->getMemOperand()->getFlags())); 8031 // Increment the pointers. 8032 Offset += RegBytes; 8033 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8034 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8035 } 8036 8037 // The last store may be partial. Do a truncating store. On big-endian 8038 // machines this requires an extending load from the stack slot to ensure 8039 // that the bits are in the right place. 8040 EVT LoadMemVT = 8041 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8042 8043 // Load from the stack slot. 8044 SDValue Load = DAG.getExtLoad( 8045 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8046 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8047 8048 Stores.push_back( 8049 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8050 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8051 ST->getOriginalAlign(), 8052 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8053 // The order of the stores doesn't matter - say it with a TokenFactor. 8054 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8055 return Result; 8056 } 8057 8058 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8059 "Unaligned store of unknown type."); 8060 // Get the half-size VT 8061 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8062 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8063 unsigned IncrementSize = NumBits / 8; 8064 8065 // Divide the stored value in two parts. 8066 SDValue ShiftAmount = DAG.getConstant( 8067 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8068 SDValue Lo = Val; 8069 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8070 8071 // Store the two parts 8072 SDValue Store1, Store2; 8073 Store1 = DAG.getTruncStore(Chain, dl, 8074 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8075 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8076 ST->getMemOperand()->getFlags()); 8077 8078 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8079 Store2 = DAG.getTruncStore( 8080 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8081 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8082 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8083 8084 SDValue Result = 8085 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8086 return Result; 8087 } 8088 8089 SDValue 8090 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8091 const SDLoc &DL, EVT DataVT, 8092 SelectionDAG &DAG, 8093 bool IsCompressedMemory) const { 8094 SDValue Increment; 8095 EVT AddrVT = Addr.getValueType(); 8096 EVT MaskVT = Mask.getValueType(); 8097 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8098 "Incompatible types of Data and Mask"); 8099 if (IsCompressedMemory) { 8100 if (DataVT.isScalableVector()) 8101 report_fatal_error( 8102 "Cannot currently handle compressed memory with scalable vectors"); 8103 // Incrementing the pointer according to number of '1's in the mask. 8104 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8105 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8106 if (MaskIntVT.getSizeInBits() < 32) { 8107 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8108 MaskIntVT = MVT::i32; 8109 } 8110 8111 // Count '1's with POPCNT. 8112 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8113 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8114 // Scale is an element size in bytes. 8115 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8116 AddrVT); 8117 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8118 } else if (DataVT.isScalableVector()) { 8119 Increment = DAG.getVScale(DL, AddrVT, 8120 APInt(AddrVT.getFixedSizeInBits(), 8121 DataVT.getStoreSize().getKnownMinSize())); 8122 } else 8123 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8124 8125 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8126 } 8127 8128 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8129 EVT VecVT, const SDLoc &dl, 8130 ElementCount SubEC) { 8131 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8132 "Cannot index a scalable vector within a fixed-width vector"); 8133 8134 unsigned NElts = VecVT.getVectorMinNumElements(); 8135 unsigned NumSubElts = SubEC.getKnownMinValue(); 8136 EVT IdxVT = Idx.getValueType(); 8137 8138 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8139 // If this is a constant index and we know the value plus the number of the 8140 // elements in the subvector minus one is less than the minimum number of 8141 // elements then it's safe to return Idx. 8142 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8143 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8144 return Idx; 8145 SDValue VS = 8146 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8147 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8148 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8149 DAG.getConstant(NumSubElts, dl, IdxVT)); 8150 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8151 } 8152 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8153 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8154 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8155 DAG.getConstant(Imm, dl, IdxVT)); 8156 } 8157 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8158 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8159 DAG.getConstant(MaxIndex, dl, IdxVT)); 8160 } 8161 8162 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8163 SDValue VecPtr, EVT VecVT, 8164 SDValue Index) const { 8165 return getVectorSubVecPointer( 8166 DAG, VecPtr, VecVT, 8167 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8168 Index); 8169 } 8170 8171 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8172 SDValue VecPtr, EVT VecVT, 8173 EVT SubVecVT, 8174 SDValue Index) const { 8175 SDLoc dl(Index); 8176 // Make sure the index type is big enough to compute in. 8177 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8178 8179 EVT EltVT = VecVT.getVectorElementType(); 8180 8181 // Calculate the element offset and add it to the pointer. 8182 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8183 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8184 "Converting bits to bytes lost precision"); 8185 assert(SubVecVT.getVectorElementType() == EltVT && 8186 "Sub-vector must be a vector with matching element type"); 8187 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8188 SubVecVT.getVectorElementCount()); 8189 8190 EVT IdxVT = Index.getValueType(); 8191 if (SubVecVT.isScalableVector()) 8192 Index = 8193 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8194 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8195 8196 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8197 DAG.getConstant(EltSize, dl, IdxVT)); 8198 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8199 } 8200 8201 //===----------------------------------------------------------------------===// 8202 // Implementation of Emulated TLS Model 8203 //===----------------------------------------------------------------------===// 8204 8205 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8206 SelectionDAG &DAG) const { 8207 // Access to address of TLS varialbe xyz is lowered to a function call: 8208 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8209 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8210 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8211 SDLoc dl(GA); 8212 8213 ArgListTy Args; 8214 ArgListEntry Entry; 8215 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8216 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8217 StringRef EmuTlsVarName(NameString); 8218 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8219 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8220 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8221 Entry.Ty = VoidPtrType; 8222 Args.push_back(Entry); 8223 8224 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8225 8226 TargetLowering::CallLoweringInfo CLI(DAG); 8227 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8228 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8229 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8230 8231 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8232 // At last for X86 targets, maybe good for other targets too? 8233 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8234 MFI.setAdjustsStack(true); // Is this only for X86 target? 8235 MFI.setHasCalls(true); 8236 8237 assert((GA->getOffset() == 0) && 8238 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8239 return CallResult.first; 8240 } 8241 8242 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8243 SelectionDAG &DAG) const { 8244 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8245 if (!isCtlzFast()) 8246 return SDValue(); 8247 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8248 SDLoc dl(Op); 8249 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8250 if (C->isZero() && CC == ISD::SETEQ) { 8251 EVT VT = Op.getOperand(0).getValueType(); 8252 SDValue Zext = Op.getOperand(0); 8253 if (VT.bitsLT(MVT::i32)) { 8254 VT = MVT::i32; 8255 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8256 } 8257 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8258 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8259 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8260 DAG.getConstant(Log2b, dl, MVT::i32)); 8261 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8262 } 8263 } 8264 return SDValue(); 8265 } 8266 8267 // Convert redundant addressing modes (e.g. scaling is redundant 8268 // when accessing bytes). 8269 ISD::MemIndexType 8270 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8271 SDValue Offsets) const { 8272 bool IsScaledIndex = 8273 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8274 bool IsSignedIndex = 8275 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8276 8277 // Scaling is unimportant for bytes, canonicalize to unscaled. 8278 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8279 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8280 8281 return IndexType; 8282 } 8283 8284 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8285 SDValue Op0 = Node->getOperand(0); 8286 SDValue Op1 = Node->getOperand(1); 8287 EVT VT = Op0.getValueType(); 8288 unsigned Opcode = Node->getOpcode(); 8289 SDLoc DL(Node); 8290 8291 // umin(x,y) -> sub(x,usubsat(x,y)) 8292 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8293 isOperationLegal(ISD::USUBSAT, VT)) { 8294 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8295 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8296 } 8297 8298 // umax(x,y) -> add(x,usubsat(y,x)) 8299 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8300 isOperationLegal(ISD::USUBSAT, VT)) { 8301 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8302 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8303 } 8304 8305 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8306 ISD::CondCode CC; 8307 switch (Opcode) { 8308 default: llvm_unreachable("How did we get here?"); 8309 case ISD::SMAX: CC = ISD::SETGT; break; 8310 case ISD::SMIN: CC = ISD::SETLT; break; 8311 case ISD::UMAX: CC = ISD::SETUGT; break; 8312 case ISD::UMIN: CC = ISD::SETULT; break; 8313 } 8314 8315 // FIXME: Should really try to split the vector in case it's legal on a 8316 // subvector. 8317 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8318 return DAG.UnrollVectorOp(Node); 8319 8320 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8321 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8322 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8323 } 8324 8325 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8326 unsigned Opcode = Node->getOpcode(); 8327 SDValue LHS = Node->getOperand(0); 8328 SDValue RHS = Node->getOperand(1); 8329 EVT VT = LHS.getValueType(); 8330 SDLoc dl(Node); 8331 8332 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8333 assert(VT.isInteger() && "Expected operands to be integers"); 8334 8335 // usub.sat(a, b) -> umax(a, b) - b 8336 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8337 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8338 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8339 } 8340 8341 // uadd.sat(a, b) -> umin(a, ~b) + b 8342 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8343 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8344 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8345 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8346 } 8347 8348 unsigned OverflowOp; 8349 switch (Opcode) { 8350 case ISD::SADDSAT: 8351 OverflowOp = ISD::SADDO; 8352 break; 8353 case ISD::UADDSAT: 8354 OverflowOp = ISD::UADDO; 8355 break; 8356 case ISD::SSUBSAT: 8357 OverflowOp = ISD::SSUBO; 8358 break; 8359 case ISD::USUBSAT: 8360 OverflowOp = ISD::USUBO; 8361 break; 8362 default: 8363 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8364 "addition or subtraction node."); 8365 } 8366 8367 // FIXME: Should really try to split the vector in case it's legal on a 8368 // subvector. 8369 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8370 return DAG.UnrollVectorOp(Node); 8371 8372 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8373 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8374 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8375 SDValue SumDiff = Result.getValue(0); 8376 SDValue Overflow = Result.getValue(1); 8377 SDValue Zero = DAG.getConstant(0, dl, VT); 8378 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8379 8380 if (Opcode == ISD::UADDSAT) { 8381 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8382 // (LHS + RHS) | OverflowMask 8383 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8384 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8385 } 8386 // Overflow ? 0xffff.... : (LHS + RHS) 8387 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8388 } 8389 8390 if (Opcode == ISD::USUBSAT) { 8391 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8392 // (LHS - RHS) & ~OverflowMask 8393 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8394 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8395 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8396 } 8397 // Overflow ? 0 : (LHS - RHS) 8398 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8399 } 8400 8401 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8402 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8403 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8404 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8405 DAG.getConstant(BitWidth - 1, dl, VT)); 8406 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8407 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8408 } 8409 8410 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8411 unsigned Opcode = Node->getOpcode(); 8412 bool IsSigned = Opcode == ISD::SSHLSAT; 8413 SDValue LHS = Node->getOperand(0); 8414 SDValue RHS = Node->getOperand(1); 8415 EVT VT = LHS.getValueType(); 8416 SDLoc dl(Node); 8417 8418 assert((Node->getOpcode() == ISD::SSHLSAT || 8419 Node->getOpcode() == ISD::USHLSAT) && 8420 "Expected a SHLSAT opcode"); 8421 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8422 assert(VT.isInteger() && "Expected operands to be integers"); 8423 8424 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8425 8426 unsigned BW = VT.getScalarSizeInBits(); 8427 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8428 SDValue Orig = 8429 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8430 8431 SDValue SatVal; 8432 if (IsSigned) { 8433 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8434 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8435 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8436 SatMin, SatMax, ISD::SETLT); 8437 } else { 8438 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8439 } 8440 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8441 8442 return Result; 8443 } 8444 8445 SDValue 8446 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8447 assert((Node->getOpcode() == ISD::SMULFIX || 8448 Node->getOpcode() == ISD::UMULFIX || 8449 Node->getOpcode() == ISD::SMULFIXSAT || 8450 Node->getOpcode() == ISD::UMULFIXSAT) && 8451 "Expected a fixed point multiplication opcode"); 8452 8453 SDLoc dl(Node); 8454 SDValue LHS = Node->getOperand(0); 8455 SDValue RHS = Node->getOperand(1); 8456 EVT VT = LHS.getValueType(); 8457 unsigned Scale = Node->getConstantOperandVal(2); 8458 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8459 Node->getOpcode() == ISD::UMULFIXSAT); 8460 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8461 Node->getOpcode() == ISD::SMULFIXSAT); 8462 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8463 unsigned VTSize = VT.getScalarSizeInBits(); 8464 8465 if (!Scale) { 8466 // [us]mul.fix(a, b, 0) -> mul(a, b) 8467 if (!Saturating) { 8468 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8469 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8470 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8471 SDValue Result = 8472 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8473 SDValue Product = Result.getValue(0); 8474 SDValue Overflow = Result.getValue(1); 8475 SDValue Zero = DAG.getConstant(0, dl, VT); 8476 8477 APInt MinVal = APInt::getSignedMinValue(VTSize); 8478 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8479 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8480 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8481 // Xor the inputs, if resulting sign bit is 0 the product will be 8482 // positive, else negative. 8483 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8484 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8485 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8486 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8487 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8488 SDValue Result = 8489 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8490 SDValue Product = Result.getValue(0); 8491 SDValue Overflow = Result.getValue(1); 8492 8493 APInt MaxVal = APInt::getMaxValue(VTSize); 8494 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8495 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8496 } 8497 } 8498 8499 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8500 "Expected scale to be less than the number of bits if signed or at " 8501 "most the number of bits if unsigned."); 8502 assert(LHS.getValueType() == RHS.getValueType() && 8503 "Expected both operands to be the same type"); 8504 8505 // Get the upper and lower bits of the result. 8506 SDValue Lo, Hi; 8507 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8508 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8509 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8510 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8511 Lo = Result.getValue(0); 8512 Hi = Result.getValue(1); 8513 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8514 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8515 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8516 } else if (VT.isVector()) { 8517 return SDValue(); 8518 } else { 8519 report_fatal_error("Unable to expand fixed point multiplication."); 8520 } 8521 8522 if (Scale == VTSize) 8523 // Result is just the top half since we'd be shifting by the width of the 8524 // operand. Overflow impossible so this works for both UMULFIX and 8525 // UMULFIXSAT. 8526 return Hi; 8527 8528 // The result will need to be shifted right by the scale since both operands 8529 // are scaled. The result is given to us in 2 halves, so we only want part of 8530 // both in the result. 8531 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8532 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8533 DAG.getConstant(Scale, dl, ShiftTy)); 8534 if (!Saturating) 8535 return Result; 8536 8537 if (!Signed) { 8538 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8539 // widened multiplication) aren't all zeroes. 8540 8541 // Saturate to max if ((Hi >> Scale) != 0), 8542 // which is the same as if (Hi > ((1 << Scale) - 1)) 8543 APInt MaxVal = APInt::getMaxValue(VTSize); 8544 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8545 dl, VT); 8546 Result = DAG.getSelectCC(dl, Hi, LowMask, 8547 DAG.getConstant(MaxVal, dl, VT), Result, 8548 ISD::SETUGT); 8549 8550 return Result; 8551 } 8552 8553 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8554 // widened multiplication) aren't all ones or all zeroes. 8555 8556 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8557 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8558 8559 if (Scale == 0) { 8560 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8561 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8562 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8563 // Saturated to SatMin if wide product is negative, and SatMax if wide 8564 // product is positive ... 8565 SDValue Zero = DAG.getConstant(0, dl, VT); 8566 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8567 ISD::SETLT); 8568 // ... but only if we overflowed. 8569 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8570 } 8571 8572 // We handled Scale==0 above so all the bits to examine is in Hi. 8573 8574 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8575 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8576 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8577 dl, VT); 8578 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8579 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8580 // which is the same as if (HI < (-1 << (Scale - 1)) 8581 SDValue HighMask = 8582 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8583 dl, VT); 8584 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8585 return Result; 8586 } 8587 8588 SDValue 8589 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8590 SDValue LHS, SDValue RHS, 8591 unsigned Scale, SelectionDAG &DAG) const { 8592 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8593 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8594 "Expected a fixed point division opcode"); 8595 8596 EVT VT = LHS.getValueType(); 8597 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8598 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8599 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8600 8601 // If there is enough room in the type to upscale the LHS or downscale the 8602 // RHS before the division, we can perform it in this type without having to 8603 // resize. For signed operations, the LHS headroom is the number of 8604 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8605 // The headroom for the RHS is the number of trailing zeroes. 8606 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8607 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8608 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8609 8610 // For signed saturating operations, we need to be able to detect true integer 8611 // division overflow; that is, when you have MIN / -EPS. However, this 8612 // is undefined behavior and if we emit divisions that could take such 8613 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8614 // example). 8615 // Avoid this by requiring an extra bit so that we never get this case. 8616 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8617 // signed saturating division, we need to emit a whopping 32-bit division. 8618 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8619 return SDValue(); 8620 8621 unsigned LHSShift = std::min(LHSLead, Scale); 8622 unsigned RHSShift = Scale - LHSShift; 8623 8624 // At this point, we know that if we shift the LHS up by LHSShift and the 8625 // RHS down by RHSShift, we can emit a regular division with a final scaling 8626 // factor of Scale. 8627 8628 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8629 if (LHSShift) 8630 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8631 DAG.getConstant(LHSShift, dl, ShiftTy)); 8632 if (RHSShift) 8633 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8634 DAG.getConstant(RHSShift, dl, ShiftTy)); 8635 8636 SDValue Quot; 8637 if (Signed) { 8638 // For signed operations, if the resulting quotient is negative and the 8639 // remainder is nonzero, subtract 1 from the quotient to round towards 8640 // negative infinity. 8641 SDValue Rem; 8642 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8643 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8644 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8645 if (isTypeLegal(VT) && 8646 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8647 Quot = DAG.getNode(ISD::SDIVREM, dl, 8648 DAG.getVTList(VT, VT), 8649 LHS, RHS); 8650 Rem = Quot.getValue(1); 8651 Quot = Quot.getValue(0); 8652 } else { 8653 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8654 LHS, RHS); 8655 Rem = DAG.getNode(ISD::SREM, dl, VT, 8656 LHS, RHS); 8657 } 8658 SDValue Zero = DAG.getConstant(0, dl, VT); 8659 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8660 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8661 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8662 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8663 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8664 DAG.getConstant(1, dl, VT)); 8665 Quot = DAG.getSelect(dl, VT, 8666 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8667 Sub1, Quot); 8668 } else 8669 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8670 LHS, RHS); 8671 8672 return Quot; 8673 } 8674 8675 void TargetLowering::expandUADDSUBO( 8676 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8677 SDLoc dl(Node); 8678 SDValue LHS = Node->getOperand(0); 8679 SDValue RHS = Node->getOperand(1); 8680 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8681 8682 // If ADD/SUBCARRY is legal, use that instead. 8683 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8684 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8685 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8686 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8687 { LHS, RHS, CarryIn }); 8688 Result = SDValue(NodeCarry.getNode(), 0); 8689 Overflow = SDValue(NodeCarry.getNode(), 1); 8690 return; 8691 } 8692 8693 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8694 LHS.getValueType(), LHS, RHS); 8695 8696 EVT ResultType = Node->getValueType(1); 8697 EVT SetCCType = getSetCCResultType( 8698 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8699 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8700 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8701 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8702 } 8703 8704 void TargetLowering::expandSADDSUBO( 8705 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8706 SDLoc dl(Node); 8707 SDValue LHS = Node->getOperand(0); 8708 SDValue RHS = Node->getOperand(1); 8709 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8710 8711 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8712 LHS.getValueType(), LHS, RHS); 8713 8714 EVT ResultType = Node->getValueType(1); 8715 EVT OType = getSetCCResultType( 8716 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8717 8718 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8719 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8720 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8721 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8722 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8723 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8724 return; 8725 } 8726 8727 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8728 8729 // For an addition, the result should be less than one of the operands (LHS) 8730 // if and only if the other operand (RHS) is negative, otherwise there will 8731 // be overflow. 8732 // For a subtraction, the result should be less than one of the operands 8733 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8734 // otherwise there will be overflow. 8735 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8736 SDValue ConditionRHS = 8737 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8738 8739 Overflow = DAG.getBoolExtOrTrunc( 8740 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8741 ResultType, ResultType); 8742 } 8743 8744 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8745 SDValue &Overflow, SelectionDAG &DAG) const { 8746 SDLoc dl(Node); 8747 EVT VT = Node->getValueType(0); 8748 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8749 SDValue LHS = Node->getOperand(0); 8750 SDValue RHS = Node->getOperand(1); 8751 bool isSigned = Node->getOpcode() == ISD::SMULO; 8752 8753 // For power-of-two multiplications we can use a simpler shift expansion. 8754 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8755 const APInt &C = RHSC->getAPIntValue(); 8756 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8757 if (C.isPowerOf2()) { 8758 // smulo(x, signed_min) is same as umulo(x, signed_min). 8759 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8760 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8761 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8762 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8763 Overflow = DAG.getSetCC(dl, SetCCVT, 8764 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8765 dl, VT, Result, ShiftAmt), 8766 LHS, ISD::SETNE); 8767 return true; 8768 } 8769 } 8770 8771 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8772 if (VT.isVector()) 8773 WideVT = 8774 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8775 8776 SDValue BottomHalf; 8777 SDValue TopHalf; 8778 static const unsigned Ops[2][3] = 8779 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8780 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8781 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8782 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8783 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8784 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8785 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8786 RHS); 8787 TopHalf = BottomHalf.getValue(1); 8788 } else if (isTypeLegal(WideVT)) { 8789 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8790 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8791 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8792 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8793 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8794 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8795 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8796 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8797 } else { 8798 if (VT.isVector()) 8799 return false; 8800 8801 // We can fall back to a libcall with an illegal type for the MUL if we 8802 // have a libcall big enough. 8803 // Also, we can fall back to a division in some cases, but that's a big 8804 // performance hit in the general case. 8805 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8806 if (WideVT == MVT::i16) 8807 LC = RTLIB::MUL_I16; 8808 else if (WideVT == MVT::i32) 8809 LC = RTLIB::MUL_I32; 8810 else if (WideVT == MVT::i64) 8811 LC = RTLIB::MUL_I64; 8812 else if (WideVT == MVT::i128) 8813 LC = RTLIB::MUL_I128; 8814 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8815 8816 SDValue HiLHS; 8817 SDValue HiRHS; 8818 if (isSigned) { 8819 // The high part is obtained by SRA'ing all but one of the bits of low 8820 // part. 8821 unsigned LoSize = VT.getFixedSizeInBits(); 8822 HiLHS = 8823 DAG.getNode(ISD::SRA, dl, VT, LHS, 8824 DAG.getConstant(LoSize - 1, dl, 8825 getPointerTy(DAG.getDataLayout()))); 8826 HiRHS = 8827 DAG.getNode(ISD::SRA, dl, VT, RHS, 8828 DAG.getConstant(LoSize - 1, dl, 8829 getPointerTy(DAG.getDataLayout()))); 8830 } else { 8831 HiLHS = DAG.getConstant(0, dl, VT); 8832 HiRHS = DAG.getConstant(0, dl, VT); 8833 } 8834 8835 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8836 // pre-lowered to the correct types. This all depends upon WideVT not 8837 // being a legal type for the architecture and thus has to be split to 8838 // two arguments. 8839 SDValue Ret; 8840 TargetLowering::MakeLibCallOptions CallOptions; 8841 CallOptions.setSExt(isSigned); 8842 CallOptions.setIsPostTypeLegalization(true); 8843 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8844 // Halves of WideVT are packed into registers in different order 8845 // depending on platform endianness. This is usually handled by 8846 // the C calling convention, but we can't defer to it in 8847 // the legalizer. 8848 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8849 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8850 } else { 8851 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8852 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8853 } 8854 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8855 "Ret value is a collection of constituent nodes holding result."); 8856 if (DAG.getDataLayout().isLittleEndian()) { 8857 // Same as above. 8858 BottomHalf = Ret.getOperand(0); 8859 TopHalf = Ret.getOperand(1); 8860 } else { 8861 BottomHalf = Ret.getOperand(1); 8862 TopHalf = Ret.getOperand(0); 8863 } 8864 } 8865 8866 Result = BottomHalf; 8867 if (isSigned) { 8868 SDValue ShiftAmt = DAG.getConstant( 8869 VT.getScalarSizeInBits() - 1, dl, 8870 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8871 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8872 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8873 } else { 8874 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8875 DAG.getConstant(0, dl, VT), ISD::SETNE); 8876 } 8877 8878 // Truncate the result if SetCC returns a larger type than needed. 8879 EVT RType = Node->getValueType(1); 8880 if (RType.bitsLT(Overflow.getValueType())) 8881 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8882 8883 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8884 "Unexpected result type for S/UMULO legalization"); 8885 return true; 8886 } 8887 8888 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8889 SDLoc dl(Node); 8890 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8891 SDValue Op = Node->getOperand(0); 8892 EVT VT = Op.getValueType(); 8893 8894 if (VT.isScalableVector()) 8895 report_fatal_error( 8896 "Expanding reductions for scalable vectors is undefined."); 8897 8898 // Try to use a shuffle reduction for power of two vectors. 8899 if (VT.isPow2VectorType()) { 8900 while (VT.getVectorNumElements() > 1) { 8901 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8902 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8903 break; 8904 8905 SDValue Lo, Hi; 8906 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8907 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8908 VT = HalfVT; 8909 } 8910 } 8911 8912 EVT EltVT = VT.getVectorElementType(); 8913 unsigned NumElts = VT.getVectorNumElements(); 8914 8915 SmallVector<SDValue, 8> Ops; 8916 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8917 8918 SDValue Res = Ops[0]; 8919 for (unsigned i = 1; i < NumElts; i++) 8920 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8921 8922 // Result type may be wider than element type. 8923 if (EltVT != Node->getValueType(0)) 8924 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8925 return Res; 8926 } 8927 8928 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8929 SDLoc dl(Node); 8930 SDValue AccOp = Node->getOperand(0); 8931 SDValue VecOp = Node->getOperand(1); 8932 SDNodeFlags Flags = Node->getFlags(); 8933 8934 EVT VT = VecOp.getValueType(); 8935 EVT EltVT = VT.getVectorElementType(); 8936 8937 if (VT.isScalableVector()) 8938 report_fatal_error( 8939 "Expanding reductions for scalable vectors is undefined."); 8940 8941 unsigned NumElts = VT.getVectorNumElements(); 8942 8943 SmallVector<SDValue, 8> Ops; 8944 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8945 8946 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8947 8948 SDValue Res = AccOp; 8949 for (unsigned i = 0; i < NumElts; i++) 8950 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8951 8952 return Res; 8953 } 8954 8955 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8956 SelectionDAG &DAG) const { 8957 EVT VT = Node->getValueType(0); 8958 SDLoc dl(Node); 8959 bool isSigned = Node->getOpcode() == ISD::SREM; 8960 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8961 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8962 SDValue Dividend = Node->getOperand(0); 8963 SDValue Divisor = Node->getOperand(1); 8964 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8965 SDVTList VTs = DAG.getVTList(VT, VT); 8966 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8967 return true; 8968 } 8969 if (isOperationLegalOrCustom(DivOpc, VT)) { 8970 // X % Y -> X-X/Y*Y 8971 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8972 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8973 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8974 return true; 8975 } 8976 return false; 8977 } 8978 8979 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8980 SelectionDAG &DAG) const { 8981 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8982 SDLoc dl(SDValue(Node, 0)); 8983 SDValue Src = Node->getOperand(0); 8984 8985 // DstVT is the result type, while SatVT is the size to which we saturate 8986 EVT SrcVT = Src.getValueType(); 8987 EVT DstVT = Node->getValueType(0); 8988 8989 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8990 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8991 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8992 assert(SatWidth <= DstWidth && 8993 "Expected saturation width smaller than result width"); 8994 8995 // Determine minimum and maximum integer values and their corresponding 8996 // floating-point values. 8997 APInt MinInt, MaxInt; 8998 if (IsSigned) { 8999 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 9000 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 9001 } else { 9002 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 9003 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 9004 } 9005 9006 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9007 // libcall emission cannot handle this. Large result types will fail. 9008 if (SrcVT == MVT::f16) { 9009 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9010 SrcVT = Src.getValueType(); 9011 } 9012 9013 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9014 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9015 9016 APFloat::opStatus MinStatus = 9017 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9018 APFloat::opStatus MaxStatus = 9019 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9020 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9021 !(MaxStatus & APFloat::opStatus::opInexact); 9022 9023 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9024 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9025 9026 // If the integer bounds are exactly representable as floats and min/max are 9027 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9028 // of comparisons and selects. 9029 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9030 isOperationLegal(ISD::FMAXNUM, SrcVT); 9031 if (AreExactFloatBounds && MinMaxLegal) { 9032 SDValue Clamped = Src; 9033 9034 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9035 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9036 // Clamp by MaxFloat from above. NaN cannot occur. 9037 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9038 // Convert clamped value to integer. 9039 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9040 dl, DstVT, Clamped); 9041 9042 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9043 // which will cast to zero. 9044 if (!IsSigned) 9045 return FpToInt; 9046 9047 // Otherwise, select 0 if Src is NaN. 9048 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9049 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9050 ISD::CondCode::SETUO); 9051 } 9052 9053 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9054 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9055 9056 // Result of direct conversion. The assumption here is that the operation is 9057 // non-trapping and it's fine to apply it to an out-of-range value if we 9058 // select it away later. 9059 SDValue FpToInt = 9060 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9061 9062 SDValue Select = FpToInt; 9063 9064 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9065 // MinInt if Src is NaN. 9066 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9067 ISD::CondCode::SETULT); 9068 // If Src OGT MaxFloat, select MaxInt. 9069 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9070 ISD::CondCode::SETOGT); 9071 9072 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9073 // is already zero. 9074 if (!IsSigned) 9075 return Select; 9076 9077 // Otherwise, select 0 if Src is NaN. 9078 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9079 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9080 } 9081 9082 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9083 SelectionDAG &DAG) const { 9084 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9085 assert(Node->getValueType(0).isScalableVector() && 9086 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9087 9088 EVT VT = Node->getValueType(0); 9089 SDValue V1 = Node->getOperand(0); 9090 SDValue V2 = Node->getOperand(1); 9091 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9092 SDLoc DL(Node); 9093 9094 // Expand through memory thusly: 9095 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9096 // Store V1, Ptr 9097 // Store V2, Ptr + sizeof(V1) 9098 // If (Imm < 0) 9099 // TrailingElts = -Imm 9100 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9101 // else 9102 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9103 // Res = Load Ptr 9104 9105 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9106 9107 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9108 VT.getVectorElementCount() * 2); 9109 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9110 EVT PtrVT = StackPtr.getValueType(); 9111 auto &MF = DAG.getMachineFunction(); 9112 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9113 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9114 9115 // Store the lo part of CONCAT_VECTORS(V1, V2) 9116 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9117 // Store the hi part of CONCAT_VECTORS(V1, V2) 9118 SDValue OffsetToV2 = DAG.getVScale( 9119 DL, PtrVT, 9120 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9121 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9122 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9123 9124 if (Imm >= 0) { 9125 // Load back the required element. getVectorElementPointer takes care of 9126 // clamping the index if it's out-of-bounds. 9127 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9128 // Load the spliced result 9129 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9130 MachinePointerInfo::getUnknownStack(MF)); 9131 } 9132 9133 uint64_t TrailingElts = -Imm; 9134 9135 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9136 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9137 SDValue TrailingBytes = 9138 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9139 9140 if (TrailingElts > VT.getVectorMinNumElements()) { 9141 SDValue VLBytes = DAG.getVScale( 9142 DL, PtrVT, 9143 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9144 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9145 } 9146 9147 // Calculate the start address of the spliced result. 9148 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9149 9150 // Load the spliced result 9151 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9152 MachinePointerInfo::getUnknownStack(MF)); 9153 } 9154 9155 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9156 SDValue &LHS, SDValue &RHS, 9157 SDValue &CC, bool &NeedInvert, 9158 const SDLoc &dl, SDValue &Chain, 9159 bool IsSignaling) const { 9160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9161 MVT OpVT = LHS.getSimpleValueType(); 9162 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9163 NeedInvert = false; 9164 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9165 default: 9166 llvm_unreachable("Unknown condition code action!"); 9167 case TargetLowering::Legal: 9168 // Nothing to do. 9169 break; 9170 case TargetLowering::Expand: { 9171 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9172 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9173 std::swap(LHS, RHS); 9174 CC = DAG.getCondCode(InvCC); 9175 return true; 9176 } 9177 // Swapping operands didn't work. Try inverting the condition. 9178 bool NeedSwap = false; 9179 InvCC = getSetCCInverse(CCCode, OpVT); 9180 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9181 // If inverting the condition is not enough, try swapping operands 9182 // on top of it. 9183 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9184 NeedSwap = true; 9185 } 9186 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9187 CC = DAG.getCondCode(InvCC); 9188 NeedInvert = true; 9189 if (NeedSwap) 9190 std::swap(LHS, RHS); 9191 return true; 9192 } 9193 9194 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9195 unsigned Opc = 0; 9196 switch (CCCode) { 9197 default: 9198 llvm_unreachable("Don't know how to expand this condition!"); 9199 case ISD::SETUO: 9200 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9201 CC1 = ISD::SETUNE; 9202 CC2 = ISD::SETUNE; 9203 Opc = ISD::OR; 9204 break; 9205 } 9206 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9207 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9208 NeedInvert = true; 9209 LLVM_FALLTHROUGH; 9210 case ISD::SETO: 9211 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9212 "If SETO is expanded, SETOEQ must be legal!"); 9213 CC1 = ISD::SETOEQ; 9214 CC2 = ISD::SETOEQ; 9215 Opc = ISD::AND; 9216 break; 9217 case ISD::SETONE: 9218 case ISD::SETUEQ: 9219 // If the SETUO or SETO CC isn't legal, we might be able to use 9220 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9221 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9222 // the operands. 9223 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9224 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9225 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9226 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9227 CC1 = ISD::SETOGT; 9228 CC2 = ISD::SETOLT; 9229 Opc = ISD::OR; 9230 NeedInvert = ((unsigned)CCCode & 0x8U); 9231 break; 9232 } 9233 LLVM_FALLTHROUGH; 9234 case ISD::SETOEQ: 9235 case ISD::SETOGT: 9236 case ISD::SETOGE: 9237 case ISD::SETOLT: 9238 case ISD::SETOLE: 9239 case ISD::SETUNE: 9240 case ISD::SETUGT: 9241 case ISD::SETUGE: 9242 case ISD::SETULT: 9243 case ISD::SETULE: 9244 // If we are floating point, assign and break, otherwise fall through. 9245 if (!OpVT.isInteger()) { 9246 // We can use the 4th bit to tell if we are the unordered 9247 // or ordered version of the opcode. 9248 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9249 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9250 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9251 break; 9252 } 9253 // Fallthrough if we are unsigned integer. 9254 LLVM_FALLTHROUGH; 9255 case ISD::SETLE: 9256 case ISD::SETGT: 9257 case ISD::SETGE: 9258 case ISD::SETLT: 9259 case ISD::SETNE: 9260 case ISD::SETEQ: 9261 // If all combinations of inverting the condition and swapping operands 9262 // didn't work then we have no means to expand the condition. 9263 llvm_unreachable("Don't know how to expand this condition!"); 9264 } 9265 9266 SDValue SetCC1, SetCC2; 9267 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9268 // If we aren't the ordered or unorder operation, 9269 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9270 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9271 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9272 } else { 9273 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9274 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9275 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9276 } 9277 if (Chain) 9278 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9279 SetCC2.getValue(1)); 9280 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9281 RHS = SDValue(); 9282 CC = SDValue(); 9283 return true; 9284 } 9285 } 9286 return false; 9287 } 9288