1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include <cctype>
32 using namespace llvm;
33 
34 namespace llvm {
35 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
36   bool isLocal = GV->hasLocalLinkage();
37   bool isDeclaration = GV->isDeclaration();
38   // FIXME: what should we do for protected and internal visibility?
39   // For variables, is internal different from hidden?
40   bool isHidden = GV->hasHiddenVisibility();
41 
42   if (reloc == Reloc::PIC_) {
43     if (isLocal || isHidden)
44       return TLSModel::LocalDynamic;
45     else
46       return TLSModel::GeneralDynamic;
47   } else {
48     if (!isDeclaration || isHidden)
49       return TLSModel::LocalExec;
50     else
51       return TLSModel::InitialExec;
52   }
53 }
54 }
55 
56 /// InitLibcallNames - Set default libcall names.
57 ///
58 static void InitLibcallNames(const char **Names) {
59   Names[RTLIB::SHL_I16] = "__ashlhi3";
60   Names[RTLIB::SHL_I32] = "__ashlsi3";
61   Names[RTLIB::SHL_I64] = "__ashldi3";
62   Names[RTLIB::SHL_I128] = "__ashlti3";
63   Names[RTLIB::SRL_I16] = "__lshrhi3";
64   Names[RTLIB::SRL_I32] = "__lshrsi3";
65   Names[RTLIB::SRL_I64] = "__lshrdi3";
66   Names[RTLIB::SRL_I128] = "__lshrti3";
67   Names[RTLIB::SRA_I16] = "__ashrhi3";
68   Names[RTLIB::SRA_I32] = "__ashrsi3";
69   Names[RTLIB::SRA_I64] = "__ashrdi3";
70   Names[RTLIB::SRA_I128] = "__ashrti3";
71   Names[RTLIB::MUL_I8] = "__mulqi3";
72   Names[RTLIB::MUL_I16] = "__mulhi3";
73   Names[RTLIB::MUL_I32] = "__mulsi3";
74   Names[RTLIB::MUL_I64] = "__muldi3";
75   Names[RTLIB::MUL_I128] = "__multi3";
76   Names[RTLIB::SDIV_I8] = "__divqi3";
77   Names[RTLIB::SDIV_I16] = "__divhi3";
78   Names[RTLIB::SDIV_I32] = "__divsi3";
79   Names[RTLIB::SDIV_I64] = "__divdi3";
80   Names[RTLIB::SDIV_I128] = "__divti3";
81   Names[RTLIB::UDIV_I8] = "__udivqi3";
82   Names[RTLIB::UDIV_I16] = "__udivhi3";
83   Names[RTLIB::UDIV_I32] = "__udivsi3";
84   Names[RTLIB::UDIV_I64] = "__udivdi3";
85   Names[RTLIB::UDIV_I128] = "__udivti3";
86   Names[RTLIB::SREM_I8] = "__modqi3";
87   Names[RTLIB::SREM_I16] = "__modhi3";
88   Names[RTLIB::SREM_I32] = "__modsi3";
89   Names[RTLIB::SREM_I64] = "__moddi3";
90   Names[RTLIB::SREM_I128] = "__modti3";
91   Names[RTLIB::UREM_I8] = "__umodqi3";
92   Names[RTLIB::UREM_I16] = "__umodhi3";
93   Names[RTLIB::UREM_I32] = "__umodsi3";
94   Names[RTLIB::UREM_I64] = "__umoddi3";
95   Names[RTLIB::UREM_I128] = "__umodti3";
96 
97   // These are generally not available.
98   Names[RTLIB::SDIVREM_I8] = 0;
99   Names[RTLIB::SDIVREM_I16] = 0;
100   Names[RTLIB::SDIVREM_I32] = 0;
101   Names[RTLIB::SDIVREM_I64] = 0;
102   Names[RTLIB::SDIVREM_I128] = 0;
103   Names[RTLIB::UDIVREM_I8] = 0;
104   Names[RTLIB::UDIVREM_I16] = 0;
105   Names[RTLIB::UDIVREM_I32] = 0;
106   Names[RTLIB::UDIVREM_I64] = 0;
107   Names[RTLIB::UDIVREM_I128] = 0;
108 
109   Names[RTLIB::NEG_I32] = "__negsi2";
110   Names[RTLIB::NEG_I64] = "__negdi2";
111   Names[RTLIB::ADD_F32] = "__addsf3";
112   Names[RTLIB::ADD_F64] = "__adddf3";
113   Names[RTLIB::ADD_F80] = "__addxf3";
114   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
115   Names[RTLIB::SUB_F32] = "__subsf3";
116   Names[RTLIB::SUB_F64] = "__subdf3";
117   Names[RTLIB::SUB_F80] = "__subxf3";
118   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
119   Names[RTLIB::MUL_F32] = "__mulsf3";
120   Names[RTLIB::MUL_F64] = "__muldf3";
121   Names[RTLIB::MUL_F80] = "__mulxf3";
122   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
123   Names[RTLIB::DIV_F32] = "__divsf3";
124   Names[RTLIB::DIV_F64] = "__divdf3";
125   Names[RTLIB::DIV_F80] = "__divxf3";
126   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
127   Names[RTLIB::REM_F32] = "fmodf";
128   Names[RTLIB::REM_F64] = "fmod";
129   Names[RTLIB::REM_F80] = "fmodl";
130   Names[RTLIB::REM_PPCF128] = "fmodl";
131   Names[RTLIB::POWI_F32] = "__powisf2";
132   Names[RTLIB::POWI_F64] = "__powidf2";
133   Names[RTLIB::POWI_F80] = "__powixf2";
134   Names[RTLIB::POWI_PPCF128] = "__powitf2";
135   Names[RTLIB::SQRT_F32] = "sqrtf";
136   Names[RTLIB::SQRT_F64] = "sqrt";
137   Names[RTLIB::SQRT_F80] = "sqrtl";
138   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
139   Names[RTLIB::LOG_F32] = "logf";
140   Names[RTLIB::LOG_F64] = "log";
141   Names[RTLIB::LOG_F80] = "logl";
142   Names[RTLIB::LOG_PPCF128] = "logl";
143   Names[RTLIB::LOG2_F32] = "log2f";
144   Names[RTLIB::LOG2_F64] = "log2";
145   Names[RTLIB::LOG2_F80] = "log2l";
146   Names[RTLIB::LOG2_PPCF128] = "log2l";
147   Names[RTLIB::LOG10_F32] = "log10f";
148   Names[RTLIB::LOG10_F64] = "log10";
149   Names[RTLIB::LOG10_F80] = "log10l";
150   Names[RTLIB::LOG10_PPCF128] = "log10l";
151   Names[RTLIB::EXP_F32] = "expf";
152   Names[RTLIB::EXP_F64] = "exp";
153   Names[RTLIB::EXP_F80] = "expl";
154   Names[RTLIB::EXP_PPCF128] = "expl";
155   Names[RTLIB::EXP2_F32] = "exp2f";
156   Names[RTLIB::EXP2_F64] = "exp2";
157   Names[RTLIB::EXP2_F80] = "exp2l";
158   Names[RTLIB::EXP2_PPCF128] = "exp2l";
159   Names[RTLIB::SIN_F32] = "sinf";
160   Names[RTLIB::SIN_F64] = "sin";
161   Names[RTLIB::SIN_F80] = "sinl";
162   Names[RTLIB::SIN_PPCF128] = "sinl";
163   Names[RTLIB::COS_F32] = "cosf";
164   Names[RTLIB::COS_F64] = "cos";
165   Names[RTLIB::COS_F80] = "cosl";
166   Names[RTLIB::COS_PPCF128] = "cosl";
167   Names[RTLIB::POW_F32] = "powf";
168   Names[RTLIB::POW_F64] = "pow";
169   Names[RTLIB::POW_F80] = "powl";
170   Names[RTLIB::POW_PPCF128] = "powl";
171   Names[RTLIB::CEIL_F32] = "ceilf";
172   Names[RTLIB::CEIL_F64] = "ceil";
173   Names[RTLIB::CEIL_F80] = "ceill";
174   Names[RTLIB::CEIL_PPCF128] = "ceill";
175   Names[RTLIB::TRUNC_F32] = "truncf";
176   Names[RTLIB::TRUNC_F64] = "trunc";
177   Names[RTLIB::TRUNC_F80] = "truncl";
178   Names[RTLIB::TRUNC_PPCF128] = "truncl";
179   Names[RTLIB::RINT_F32] = "rintf";
180   Names[RTLIB::RINT_F64] = "rint";
181   Names[RTLIB::RINT_F80] = "rintl";
182   Names[RTLIB::RINT_PPCF128] = "rintl";
183   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
184   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
185   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
186   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
187   Names[RTLIB::FLOOR_F32] = "floorf";
188   Names[RTLIB::FLOOR_F64] = "floor";
189   Names[RTLIB::FLOOR_F80] = "floorl";
190   Names[RTLIB::FLOOR_PPCF128] = "floorl";
191   Names[RTLIB::COPYSIGN_F32] = "copysignf";
192   Names[RTLIB::COPYSIGN_F64] = "copysign";
193   Names[RTLIB::COPYSIGN_F80] = "copysignl";
194   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
195   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
196   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
197   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
198   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
199   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
200   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
201   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
202   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
203   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
204   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
205   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
206   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
207   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
208   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
209   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
210   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
211   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
212   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
213   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
214   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
215   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
216   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
217   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
218   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
219   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
220   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
221   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
222   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
223   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
224   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
225   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
226   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
227   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
228   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
229   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
230   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
231   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
232   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
233   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
234   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
235   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
236   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
237   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
238   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
239   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
240   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
241   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
242   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
243   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
244   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
245   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
246   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
247   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
248   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
249   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
250   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
251   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
252   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
253   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
254   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
255   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
256   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
257   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
258   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
259   Names[RTLIB::OEQ_F32] = "__eqsf2";
260   Names[RTLIB::OEQ_F64] = "__eqdf2";
261   Names[RTLIB::UNE_F32] = "__nesf2";
262   Names[RTLIB::UNE_F64] = "__nedf2";
263   Names[RTLIB::OGE_F32] = "__gesf2";
264   Names[RTLIB::OGE_F64] = "__gedf2";
265   Names[RTLIB::OLT_F32] = "__ltsf2";
266   Names[RTLIB::OLT_F64] = "__ltdf2";
267   Names[RTLIB::OLE_F32] = "__lesf2";
268   Names[RTLIB::OLE_F64] = "__ledf2";
269   Names[RTLIB::OGT_F32] = "__gtsf2";
270   Names[RTLIB::OGT_F64] = "__gtdf2";
271   Names[RTLIB::UO_F32] = "__unordsf2";
272   Names[RTLIB::UO_F64] = "__unorddf2";
273   Names[RTLIB::O_F32] = "__unordsf2";
274   Names[RTLIB::O_F64] = "__unorddf2";
275   Names[RTLIB::MEMCPY] = "memcpy";
276   Names[RTLIB::MEMMOVE] = "memmove";
277   Names[RTLIB::MEMSET] = "memset";
278   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
279   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
280   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
281   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
282   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
283   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
284   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
285   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
286   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
287   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
288   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
289   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
290   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
291   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
292   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
293   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
294   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
295   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
296   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
297   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
298   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
299   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
300   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
301   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
302   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
303   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
304   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
305   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
306   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
307   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
308   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
309   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
310   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
311 }
312 
313 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
314 ///
315 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
316   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
317     CCs[i] = CallingConv::C;
318   }
319 }
320 
321 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
322 /// UNKNOWN_LIBCALL if there is none.
323 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
324   if (OpVT == MVT::f32) {
325     if (RetVT == MVT::f64)
326       return FPEXT_F32_F64;
327   }
328 
329   return UNKNOWN_LIBCALL;
330 }
331 
332 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
333 /// UNKNOWN_LIBCALL if there is none.
334 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
335   if (RetVT == MVT::f32) {
336     if (OpVT == MVT::f64)
337       return FPROUND_F64_F32;
338     if (OpVT == MVT::f80)
339       return FPROUND_F80_F32;
340     if (OpVT == MVT::ppcf128)
341       return FPROUND_PPCF128_F32;
342   } else if (RetVT == MVT::f64) {
343     if (OpVT == MVT::f80)
344       return FPROUND_F80_F64;
345     if (OpVT == MVT::ppcf128)
346       return FPROUND_PPCF128_F64;
347   }
348 
349   return UNKNOWN_LIBCALL;
350 }
351 
352 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
353 /// UNKNOWN_LIBCALL if there is none.
354 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
355   if (OpVT == MVT::f32) {
356     if (RetVT == MVT::i8)
357       return FPTOSINT_F32_I8;
358     if (RetVT == MVT::i16)
359       return FPTOSINT_F32_I16;
360     if (RetVT == MVT::i32)
361       return FPTOSINT_F32_I32;
362     if (RetVT == MVT::i64)
363       return FPTOSINT_F32_I64;
364     if (RetVT == MVT::i128)
365       return FPTOSINT_F32_I128;
366   } else if (OpVT == MVT::f64) {
367     if (RetVT == MVT::i8)
368       return FPTOSINT_F64_I8;
369     if (RetVT == MVT::i16)
370       return FPTOSINT_F64_I16;
371     if (RetVT == MVT::i32)
372       return FPTOSINT_F64_I32;
373     if (RetVT == MVT::i64)
374       return FPTOSINT_F64_I64;
375     if (RetVT == MVT::i128)
376       return FPTOSINT_F64_I128;
377   } else if (OpVT == MVT::f80) {
378     if (RetVT == MVT::i32)
379       return FPTOSINT_F80_I32;
380     if (RetVT == MVT::i64)
381       return FPTOSINT_F80_I64;
382     if (RetVT == MVT::i128)
383       return FPTOSINT_F80_I128;
384   } else if (OpVT == MVT::ppcf128) {
385     if (RetVT == MVT::i32)
386       return FPTOSINT_PPCF128_I32;
387     if (RetVT == MVT::i64)
388       return FPTOSINT_PPCF128_I64;
389     if (RetVT == MVT::i128)
390       return FPTOSINT_PPCF128_I128;
391   }
392   return UNKNOWN_LIBCALL;
393 }
394 
395 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
396 /// UNKNOWN_LIBCALL if there is none.
397 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
398   if (OpVT == MVT::f32) {
399     if (RetVT == MVT::i8)
400       return FPTOUINT_F32_I8;
401     if (RetVT == MVT::i16)
402       return FPTOUINT_F32_I16;
403     if (RetVT == MVT::i32)
404       return FPTOUINT_F32_I32;
405     if (RetVT == MVT::i64)
406       return FPTOUINT_F32_I64;
407     if (RetVT == MVT::i128)
408       return FPTOUINT_F32_I128;
409   } else if (OpVT == MVT::f64) {
410     if (RetVT == MVT::i8)
411       return FPTOUINT_F64_I8;
412     if (RetVT == MVT::i16)
413       return FPTOUINT_F64_I16;
414     if (RetVT == MVT::i32)
415       return FPTOUINT_F64_I32;
416     if (RetVT == MVT::i64)
417       return FPTOUINT_F64_I64;
418     if (RetVT == MVT::i128)
419       return FPTOUINT_F64_I128;
420   } else if (OpVT == MVT::f80) {
421     if (RetVT == MVT::i32)
422       return FPTOUINT_F80_I32;
423     if (RetVT == MVT::i64)
424       return FPTOUINT_F80_I64;
425     if (RetVT == MVT::i128)
426       return FPTOUINT_F80_I128;
427   } else if (OpVT == MVT::ppcf128) {
428     if (RetVT == MVT::i32)
429       return FPTOUINT_PPCF128_I32;
430     if (RetVT == MVT::i64)
431       return FPTOUINT_PPCF128_I64;
432     if (RetVT == MVT::i128)
433       return FPTOUINT_PPCF128_I128;
434   }
435   return UNKNOWN_LIBCALL;
436 }
437 
438 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
439 /// UNKNOWN_LIBCALL if there is none.
440 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
441   if (OpVT == MVT::i32) {
442     if (RetVT == MVT::f32)
443       return SINTTOFP_I32_F32;
444     else if (RetVT == MVT::f64)
445       return SINTTOFP_I32_F64;
446     else if (RetVT == MVT::f80)
447       return SINTTOFP_I32_F80;
448     else if (RetVT == MVT::ppcf128)
449       return SINTTOFP_I32_PPCF128;
450   } else if (OpVT == MVT::i64) {
451     if (RetVT == MVT::f32)
452       return SINTTOFP_I64_F32;
453     else if (RetVT == MVT::f64)
454       return SINTTOFP_I64_F64;
455     else if (RetVT == MVT::f80)
456       return SINTTOFP_I64_F80;
457     else if (RetVT == MVT::ppcf128)
458       return SINTTOFP_I64_PPCF128;
459   } else if (OpVT == MVT::i128) {
460     if (RetVT == MVT::f32)
461       return SINTTOFP_I128_F32;
462     else if (RetVT == MVT::f64)
463       return SINTTOFP_I128_F64;
464     else if (RetVT == MVT::f80)
465       return SINTTOFP_I128_F80;
466     else if (RetVT == MVT::ppcf128)
467       return SINTTOFP_I128_PPCF128;
468   }
469   return UNKNOWN_LIBCALL;
470 }
471 
472 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
473 /// UNKNOWN_LIBCALL if there is none.
474 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
475   if (OpVT == MVT::i32) {
476     if (RetVT == MVT::f32)
477       return UINTTOFP_I32_F32;
478     else if (RetVT == MVT::f64)
479       return UINTTOFP_I32_F64;
480     else if (RetVT == MVT::f80)
481       return UINTTOFP_I32_F80;
482     else if (RetVT == MVT::ppcf128)
483       return UINTTOFP_I32_PPCF128;
484   } else if (OpVT == MVT::i64) {
485     if (RetVT == MVT::f32)
486       return UINTTOFP_I64_F32;
487     else if (RetVT == MVT::f64)
488       return UINTTOFP_I64_F64;
489     else if (RetVT == MVT::f80)
490       return UINTTOFP_I64_F80;
491     else if (RetVT == MVT::ppcf128)
492       return UINTTOFP_I64_PPCF128;
493   } else if (OpVT == MVT::i128) {
494     if (RetVT == MVT::f32)
495       return UINTTOFP_I128_F32;
496     else if (RetVT == MVT::f64)
497       return UINTTOFP_I128_F64;
498     else if (RetVT == MVT::f80)
499       return UINTTOFP_I128_F80;
500     else if (RetVT == MVT::ppcf128)
501       return UINTTOFP_I128_PPCF128;
502   }
503   return UNKNOWN_LIBCALL;
504 }
505 
506 /// InitCmpLibcallCCs - Set default comparison libcall CC.
507 ///
508 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
509   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
510   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
511   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
512   CCs[RTLIB::UNE_F32] = ISD::SETNE;
513   CCs[RTLIB::UNE_F64] = ISD::SETNE;
514   CCs[RTLIB::OGE_F32] = ISD::SETGE;
515   CCs[RTLIB::OGE_F64] = ISD::SETGE;
516   CCs[RTLIB::OLT_F32] = ISD::SETLT;
517   CCs[RTLIB::OLT_F64] = ISD::SETLT;
518   CCs[RTLIB::OLE_F32] = ISD::SETLE;
519   CCs[RTLIB::OLE_F64] = ISD::SETLE;
520   CCs[RTLIB::OGT_F32] = ISD::SETGT;
521   CCs[RTLIB::OGT_F64] = ISD::SETGT;
522   CCs[RTLIB::UO_F32] = ISD::SETNE;
523   CCs[RTLIB::UO_F64] = ISD::SETNE;
524   CCs[RTLIB::O_F32] = ISD::SETEQ;
525   CCs[RTLIB::O_F64] = ISD::SETEQ;
526 }
527 
528 /// NOTE: The constructor takes ownership of TLOF.
529 TargetLowering::TargetLowering(const TargetMachine &tm,
530                                const TargetLoweringObjectFile *tlof)
531   : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
532   // All operations default to being supported.
533   memset(OpActions, 0, sizeof(OpActions));
534   memset(LoadExtActions, 0, sizeof(LoadExtActions));
535   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
536   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
537   memset(CondCodeActions, 0, sizeof(CondCodeActions));
538 
539   // Set default actions for various operations.
540   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
541     // Default all indexed load / store to expand.
542     for (unsigned IM = (unsigned)ISD::PRE_INC;
543          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
544       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
545       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
546     }
547 
548     // These operations default to expand.
549     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
550     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
551   }
552 
553   // Most targets ignore the @llvm.prefetch intrinsic.
554   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
555 
556   // ConstantFP nodes default to expand.  Targets can either change this to
557   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
558   // to optimize expansions for certain constants.
559   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
560   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
561   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
562 
563   // These library functions default to expand.
564   setOperationAction(ISD::FLOG , MVT::f64, Expand);
565   setOperationAction(ISD::FLOG2, MVT::f64, Expand);
566   setOperationAction(ISD::FLOG10,MVT::f64, Expand);
567   setOperationAction(ISD::FEXP , MVT::f64, Expand);
568   setOperationAction(ISD::FEXP2, MVT::f64, Expand);
569   setOperationAction(ISD::FLOG , MVT::f32, Expand);
570   setOperationAction(ISD::FLOG2, MVT::f32, Expand);
571   setOperationAction(ISD::FLOG10,MVT::f32, Expand);
572   setOperationAction(ISD::FEXP , MVT::f32, Expand);
573   setOperationAction(ISD::FEXP2, MVT::f32, Expand);
574 
575   // Default ISD::TRAP to expand (which turns it into abort).
576   setOperationAction(ISD::TRAP, MVT::Other, Expand);
577 
578   IsLittleEndian = TD->isLittleEndian();
579   PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
580   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
581   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
582   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
583   maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
584     = maxStoresPerMemmoveOptSize = 4;
585   benefitFromCodePlacementOpt = false;
586   UseUnderscoreSetJmp = false;
587   UseUnderscoreLongJmp = false;
588   SelectIsExpensive = false;
589   IntDivIsCheap = false;
590   Pow2DivIsCheap = false;
591   JumpIsExpensive = false;
592   StackPointerRegisterToSaveRestore = 0;
593   ExceptionPointerRegister = 0;
594   ExceptionSelectorRegister = 0;
595   BooleanContents = UndefinedBooleanContent;
596   SchedPreferenceInfo = Sched::Latency;
597   JumpBufSize = 0;
598   JumpBufAlignment = 0;
599   PrefLoopAlignment = 0;
600   MinStackArgumentAlignment = 1;
601   ShouldFoldAtomicFences = false;
602 
603   InitLibcallNames(LibcallRoutineNames);
604   InitCmpLibcallCCs(CmpLibcallCCs);
605   InitLibcallCallingConvs(LibcallCallingConvs);
606 }
607 
608 TargetLowering::~TargetLowering() {
609   delete &TLOF;
610 }
611 
612 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
613   return MVT::getIntegerVT(8*TD->getPointerSize());
614 }
615 
616 /// canOpTrap - Returns true if the operation can trap for the value type.
617 /// VT must be a legal type.
618 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
619   assert(isTypeLegal(VT));
620   switch (Op) {
621   default:
622     return false;
623   case ISD::FDIV:
624   case ISD::FREM:
625   case ISD::SDIV:
626   case ISD::UDIV:
627   case ISD::SREM:
628   case ISD::UREM:
629     return true;
630   }
631 }
632 
633 
634 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
635                                           unsigned &NumIntermediates,
636                                           EVT &RegisterVT,
637                                           TargetLowering *TLI) {
638   // Figure out the right, legal destination reg to copy into.
639   unsigned NumElts = VT.getVectorNumElements();
640   MVT EltTy = VT.getVectorElementType();
641 
642   unsigned NumVectorRegs = 1;
643 
644   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
645   // could break down into LHS/RHS like LegalizeDAG does.
646   if (!isPowerOf2_32(NumElts)) {
647     NumVectorRegs = NumElts;
648     NumElts = 1;
649   }
650 
651   // Divide the input until we get to a supported size.  This will always
652   // end with a scalar if the target doesn't support vectors.
653   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
654     NumElts >>= 1;
655     NumVectorRegs <<= 1;
656   }
657 
658   NumIntermediates = NumVectorRegs;
659 
660   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
661   if (!TLI->isTypeLegal(NewVT))
662     NewVT = EltTy;
663   IntermediateVT = NewVT;
664 
665   EVT DestVT = TLI->getRegisterType(NewVT);
666   RegisterVT = DestVT;
667   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
668     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
669 
670   // Otherwise, promotion or legal types use the same number of registers as
671   // the vector decimated to the appropriate level.
672   return NumVectorRegs;
673 }
674 
675 /// isLegalRC - Return true if the value types that can be represented by the
676 /// specified register class are all legal.
677 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
678   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
679        I != E; ++I) {
680     if (isTypeLegal(*I))
681       return true;
682   }
683   return false;
684 }
685 
686 /// hasLegalSuperRegRegClasses - Return true if the specified register class
687 /// has one or more super-reg register classes that are legal.
688 bool
689 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
690   if (*RC->superregclasses_begin() == 0)
691     return false;
692   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
693          E = RC->superregclasses_end(); I != E; ++I) {
694     const TargetRegisterClass *RRC = *I;
695     if (isLegalRC(RRC))
696       return true;
697   }
698   return false;
699 }
700 
701 /// findRepresentativeClass - Return the largest legal super-reg register class
702 /// of the register class for the specified type and its associated "cost".
703 std::pair<const TargetRegisterClass*, uint8_t>
704 TargetLowering::findRepresentativeClass(EVT VT) const {
705   const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
706   if (!RC)
707     return std::make_pair(RC, 0);
708   const TargetRegisterClass *BestRC = RC;
709   for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
710          E = RC->superregclasses_end(); I != E; ++I) {
711     const TargetRegisterClass *RRC = *I;
712     if (RRC->isASubClass() || !isLegalRC(RRC))
713       continue;
714     if (!hasLegalSuperRegRegClasses(RRC))
715       return std::make_pair(RRC, 1);
716     BestRC = RRC;
717   }
718   return std::make_pair(BestRC, 1);
719 }
720 
721 
722 /// computeRegisterProperties - Once all of the register classes are added,
723 /// this allows us to compute derived properties we expose.
724 void TargetLowering::computeRegisterProperties() {
725   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
726          "Too many value types for ValueTypeActions to hold!");
727 
728   // Everything defaults to needing one register.
729   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
730     NumRegistersForVT[i] = 1;
731     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
732   }
733   // ...except isVoid, which doesn't need any registers.
734   NumRegistersForVT[MVT::isVoid] = 0;
735 
736   // Find the largest integer register class.
737   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
738   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
739     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
740 
741   // Every integer value type larger than this largest register takes twice as
742   // many registers to represent as the previous ValueType.
743   for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
744     EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
745     if (!ExpandedVT.isInteger())
746       break;
747     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
748     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
749     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
750     ValueTypeActions.setTypeAction(ExpandedVT, Expand);
751   }
752 
753   // Inspect all of the ValueType's smaller than the largest integer
754   // register to see which ones need promotion.
755   unsigned LegalIntReg = LargestIntReg;
756   for (unsigned IntReg = LargestIntReg - 1;
757        IntReg >= (unsigned)MVT::i1; --IntReg) {
758     EVT IVT = (MVT::SimpleValueType)IntReg;
759     if (isTypeLegal(IVT)) {
760       LegalIntReg = IntReg;
761     } else {
762       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
763         (MVT::SimpleValueType)LegalIntReg;
764       ValueTypeActions.setTypeAction(IVT, Promote);
765     }
766   }
767 
768   // ppcf128 type is really two f64's.
769   if (!isTypeLegal(MVT::ppcf128)) {
770     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
771     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
772     TransformToType[MVT::ppcf128] = MVT::f64;
773     ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
774   }
775 
776   // Decide how to handle f64. If the target does not have native f64 support,
777   // expand it to i64 and we will be generating soft float library calls.
778   if (!isTypeLegal(MVT::f64)) {
779     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
780     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
781     TransformToType[MVT::f64] = MVT::i64;
782     ValueTypeActions.setTypeAction(MVT::f64, Expand);
783   }
784 
785   // Decide how to handle f32. If the target does not have native support for
786   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
787   if (!isTypeLegal(MVT::f32)) {
788     if (isTypeLegal(MVT::f64)) {
789       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
790       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
791       TransformToType[MVT::f32] = MVT::f64;
792       ValueTypeActions.setTypeAction(MVT::f32, Promote);
793     } else {
794       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
795       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
796       TransformToType[MVT::f32] = MVT::i32;
797       ValueTypeActions.setTypeAction(MVT::f32, Expand);
798     }
799   }
800 
801   // Loop over all of the vector value types to see which need transformations.
802   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
803        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
804     MVT VT = (MVT::SimpleValueType)i;
805     if (isTypeLegal(VT)) continue;
806 
807     // Determine if there is a legal wider type.  If so, we should promote to
808     // that wider vector type.
809     EVT EltVT = VT.getVectorElementType();
810     unsigned NElts = VT.getVectorNumElements();
811     if (NElts != 1) {
812       bool IsLegalWiderType = false;
813       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
814         EVT SVT = (MVT::SimpleValueType)nVT;
815         if (SVT.getVectorElementType() == EltVT &&
816             SVT.getVectorNumElements() > NElts &&
817             isTypeLegal(SVT)) {
818           TransformToType[i] = SVT;
819           RegisterTypeForVT[i] = SVT;
820           NumRegistersForVT[i] = 1;
821           ValueTypeActions.setTypeAction(VT, Promote);
822           IsLegalWiderType = true;
823           break;
824         }
825       }
826       if (IsLegalWiderType) continue;
827     }
828 
829     MVT IntermediateVT;
830     EVT RegisterVT;
831     unsigned NumIntermediates;
832     NumRegistersForVT[i] =
833       getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
834                                 RegisterVT, this);
835     RegisterTypeForVT[i] = RegisterVT;
836 
837     EVT NVT = VT.getPow2VectorType();
838     if (NVT == VT) {
839       // Type is already a power of 2.  The default action is to split.
840       TransformToType[i] = MVT::Other;
841       ValueTypeActions.setTypeAction(VT, Expand);
842     } else {
843       TransformToType[i] = NVT;
844       ValueTypeActions.setTypeAction(VT, Promote);
845     }
846   }
847 
848   // Determine the 'representative' register class for each value type.
849   // An representative register class is the largest (meaning one which is
850   // not a sub-register class / subreg register class) legal register class for
851   // a group of value types. For example, on i386, i8, i16, and i32
852   // representative would be GR32; while on x86_64 it's GR64.
853   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
854     const TargetRegisterClass* RRC;
855     uint8_t Cost;
856     tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
857     RepRegClassForVT[i] = RRC;
858     RepRegClassCostForVT[i] = Cost;
859   }
860 }
861 
862 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
863   return NULL;
864 }
865 
866 
867 MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
868   return PointerTy.SimpleTy;
869 }
870 
871 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
872   return MVT::i32; // return the default value
873 }
874 
875 /// getVectorTypeBreakdown - Vector types are broken down into some number of
876 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
877 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
878 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
879 ///
880 /// This method returns the number of registers needed, and the VT for each
881 /// register.  It also returns the VT and quantity of the intermediate values
882 /// before they are promoted/expanded.
883 ///
884 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
885                                                 EVT &IntermediateVT,
886                                                 unsigned &NumIntermediates,
887                                                 EVT &RegisterVT) const {
888   unsigned NumElts = VT.getVectorNumElements();
889 
890   // If there is a wider vector type with the same element type as this one,
891   // we should widen to that legal vector type.  This handles things like
892   // <2 x float> -> <4 x float>.
893   if (NumElts != 1 && getTypeAction(VT) == Promote) {
894     RegisterVT = getTypeToTransformTo(Context, VT);
895     if (isTypeLegal(RegisterVT)) {
896       IntermediateVT = RegisterVT;
897       NumIntermediates = 1;
898       return 1;
899     }
900   }
901 
902   // Figure out the right, legal destination reg to copy into.
903   EVT EltTy = VT.getVectorElementType();
904 
905   unsigned NumVectorRegs = 1;
906 
907   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
908   // could break down into LHS/RHS like LegalizeDAG does.
909   if (!isPowerOf2_32(NumElts)) {
910     NumVectorRegs = NumElts;
911     NumElts = 1;
912   }
913 
914   // Divide the input until we get to a supported size.  This will always
915   // end with a scalar if the target doesn't support vectors.
916   while (NumElts > 1 && !isTypeLegal(
917                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
918     NumElts >>= 1;
919     NumVectorRegs <<= 1;
920   }
921 
922   NumIntermediates = NumVectorRegs;
923 
924   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
925   if (!isTypeLegal(NewVT))
926     NewVT = EltTy;
927   IntermediateVT = NewVT;
928 
929   EVT DestVT = getRegisterType(Context, NewVT);
930   RegisterVT = DestVT;
931   if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
932     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
933 
934   // Otherwise, promotion or legal types use the same number of registers as
935   // the vector decimated to the appropriate level.
936   return NumVectorRegs;
937 }
938 
939 /// Get the EVTs and ArgFlags collections that represent the legalized return
940 /// type of the given function.  This does not require a DAG or a return value,
941 /// and is suitable for use before any DAGs for the function are constructed.
942 /// TODO: Move this out of TargetLowering.cpp.
943 void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
944                          SmallVectorImpl<ISD::OutputArg> &Outs,
945                          const TargetLowering &TLI,
946                          SmallVectorImpl<uint64_t> *Offsets) {
947   SmallVector<EVT, 4> ValueVTs;
948   ComputeValueVTs(TLI, ReturnType, ValueVTs);
949   unsigned NumValues = ValueVTs.size();
950   if (NumValues == 0) return;
951   unsigned Offset = 0;
952 
953   for (unsigned j = 0, f = NumValues; j != f; ++j) {
954     EVT VT = ValueVTs[j];
955     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
956 
957     if (attr & Attribute::SExt)
958       ExtendKind = ISD::SIGN_EXTEND;
959     else if (attr & Attribute::ZExt)
960       ExtendKind = ISD::ZERO_EXTEND;
961 
962     // FIXME: C calling convention requires the return type to be promoted to
963     // at least 32-bit. But this is not necessary for non-C calling
964     // conventions. The frontend should mark functions whose return values
965     // require promoting with signext or zeroext attributes.
966     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
967       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
968       if (VT.bitsLT(MinVT))
969         VT = MinVT;
970     }
971 
972     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
973     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
974     unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
975                         PartVT.getTypeForEVT(ReturnType->getContext()));
976 
977     // 'inreg' on function refers to return value
978     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
979     if (attr & Attribute::InReg)
980       Flags.setInReg();
981 
982     // Propagate extension type if any
983     if (attr & Attribute::SExt)
984       Flags.setSExt();
985     else if (attr & Attribute::ZExt)
986       Flags.setZExt();
987 
988     for (unsigned i = 0; i < NumParts; ++i) {
989       Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
990       if (Offsets) {
991         Offsets->push_back(Offset);
992         Offset += PartSize;
993       }
994     }
995   }
996 }
997 
998 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
999 /// function arguments in the caller parameter area.  This is the actual
1000 /// alignment, not its logarithm.
1001 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1002   return TD->getCallFrameTypeAlignment(Ty);
1003 }
1004 
1005 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1006 /// current function.  The returned value is a member of the
1007 /// MachineJumpTableInfo::JTEntryKind enum.
1008 unsigned TargetLowering::getJumpTableEncoding() const {
1009   // In non-pic modes, just use the address of a block.
1010   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1011     return MachineJumpTableInfo::EK_BlockAddress;
1012 
1013   // In PIC mode, if the target supports a GPRel32 directive, use it.
1014   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1015     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1016 
1017   // Otherwise, use a label difference.
1018   return MachineJumpTableInfo::EK_LabelDifference32;
1019 }
1020 
1021 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1022                                                  SelectionDAG &DAG) const {
1023   // If our PIC model is GP relative, use the global offset table as the base.
1024   if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1025     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1026   return Table;
1027 }
1028 
1029 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1030 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1031 /// MCExpr.
1032 const MCExpr *
1033 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1034                                              unsigned JTI,MCContext &Ctx) const{
1035   // The normal PIC reloc base is the label at the start of the jump table.
1036   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1037 }
1038 
1039 bool
1040 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1041   // Assume that everything is safe in static mode.
1042   if (getTargetMachine().getRelocationModel() == Reloc::Static)
1043     return true;
1044 
1045   // In dynamic-no-pic mode, assume that known defined values are safe.
1046   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1047       GA &&
1048       !GA->getGlobal()->isDeclaration() &&
1049       !GA->getGlobal()->isWeakForLinker())
1050     return true;
1051 
1052   // Otherwise assume nothing is safe.
1053   return false;
1054 }
1055 
1056 //===----------------------------------------------------------------------===//
1057 //  Optimization Methods
1058 //===----------------------------------------------------------------------===//
1059 
1060 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1061 /// specified instruction is a constant integer.  If so, check to see if there
1062 /// are any bits set in the constant that are not demanded.  If so, shrink the
1063 /// constant and return true.
1064 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1065                                                         const APInt &Demanded) {
1066   DebugLoc dl = Op.getDebugLoc();
1067 
1068   // FIXME: ISD::SELECT, ISD::SELECT_CC
1069   switch (Op.getOpcode()) {
1070   default: break;
1071   case ISD::XOR:
1072   case ISD::AND:
1073   case ISD::OR: {
1074     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1075     if (!C) return false;
1076 
1077     if (Op.getOpcode() == ISD::XOR &&
1078         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1079       return false;
1080 
1081     // if we can expand it to have all bits set, do it
1082     if (C->getAPIntValue().intersects(~Demanded)) {
1083       EVT VT = Op.getValueType();
1084       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1085                                 DAG.getConstant(Demanded &
1086                                                 C->getAPIntValue(),
1087                                                 VT));
1088       return CombineTo(Op, New);
1089     }
1090 
1091     break;
1092   }
1093   }
1094 
1095   return false;
1096 }
1097 
1098 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1099 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1100 /// cast, but it could be generalized for targets with other types of
1101 /// implicit widening casts.
1102 bool
1103 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1104                                                     unsigned BitWidth,
1105                                                     const APInt &Demanded,
1106                                                     DebugLoc dl) {
1107   assert(Op.getNumOperands() == 2 &&
1108          "ShrinkDemandedOp only supports binary operators!");
1109   assert(Op.getNode()->getNumValues() == 1 &&
1110          "ShrinkDemandedOp only supports nodes with one result!");
1111 
1112   // Don't do this if the node has another user, which may require the
1113   // full value.
1114   if (!Op.getNode()->hasOneUse())
1115     return false;
1116 
1117   // Search for the smallest integer type with free casts to and from
1118   // Op's type. For expedience, just check power-of-2 integer types.
1119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1120   unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1121   if (!isPowerOf2_32(SmallVTBits))
1122     SmallVTBits = NextPowerOf2(SmallVTBits);
1123   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1124     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1125     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1126         TLI.isZExtFree(SmallVT, Op.getValueType())) {
1127       // We found a type with free casts.
1128       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1129                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1130                                           Op.getNode()->getOperand(0)),
1131                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1132                                           Op.getNode()->getOperand(1)));
1133       SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1134       return CombineTo(Op, Z);
1135     }
1136   }
1137   return false;
1138 }
1139 
1140 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1141 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
1142 /// use this information to simplify Op, create a new simplified DAG node and
1143 /// return true, returning the original and new nodes in Old and New. Otherwise,
1144 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1145 /// the expression (used to simplify the caller).  The KnownZero/One bits may
1146 /// only be accurate for those bits in the DemandedMask.
1147 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1148                                           const APInt &DemandedMask,
1149                                           APInt &KnownZero,
1150                                           APInt &KnownOne,
1151                                           TargetLoweringOpt &TLO,
1152                                           unsigned Depth) const {
1153   unsigned BitWidth = DemandedMask.getBitWidth();
1154   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1155          "Mask size mismatches value type size!");
1156   APInt NewMask = DemandedMask;
1157   DebugLoc dl = Op.getDebugLoc();
1158 
1159   // Don't know anything.
1160   KnownZero = KnownOne = APInt(BitWidth, 0);
1161 
1162   // Other users may use these bits.
1163   if (!Op.getNode()->hasOneUse()) {
1164     if (Depth != 0) {
1165       // If not at the root, Just compute the KnownZero/KnownOne bits to
1166       // simplify things downstream.
1167       TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1168       return false;
1169     }
1170     // If this is the root being simplified, allow it to have multiple uses,
1171     // just set the NewMask to all bits.
1172     NewMask = APInt::getAllOnesValue(BitWidth);
1173   } else if (DemandedMask == 0) {
1174     // Not demanding any bits from Op.
1175     if (Op.getOpcode() != ISD::UNDEF)
1176       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1177     return false;
1178   } else if (Depth == 6) {        // Limit search depth.
1179     return false;
1180   }
1181 
1182   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1183   switch (Op.getOpcode()) {
1184   case ISD::Constant:
1185     // We know all of the bits for a constant!
1186     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1187     KnownZero = ~KnownOne & NewMask;
1188     return false;   // Don't fall through, will infinitely loop.
1189   case ISD::AND:
1190     // If the RHS is a constant, check to see if the LHS would be zero without
1191     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1192     // simplify the LHS, here we're using information from the LHS to simplify
1193     // the RHS.
1194     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1195       APInt LHSZero, LHSOne;
1196       // Do not increment Depth here; that can cause an infinite loop.
1197       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1198                                 LHSZero, LHSOne, Depth);
1199       // If the LHS already has zeros where RHSC does, this and is dead.
1200       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1201         return TLO.CombineTo(Op, Op.getOperand(0));
1202       // If any of the set bits in the RHS are known zero on the LHS, shrink
1203       // the constant.
1204       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1205         return true;
1206     }
1207 
1208     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1209                              KnownOne, TLO, Depth+1))
1210       return true;
1211     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1213                              KnownZero2, KnownOne2, TLO, Depth+1))
1214       return true;
1215     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1216 
1217     // If all of the demanded bits are known one on one side, return the other.
1218     // These bits cannot contribute to the result of the 'and'.
1219     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1220       return TLO.CombineTo(Op, Op.getOperand(0));
1221     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1222       return TLO.CombineTo(Op, Op.getOperand(1));
1223     // If all of the demanded bits in the inputs are known zeros, return zero.
1224     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1225       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1226     // If the RHS is a constant, see if we can simplify it.
1227     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1228       return true;
1229     // If the operation can be done in a smaller type, do so.
1230     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1231       return true;
1232 
1233     // Output known-1 bits are only known if set in both the LHS & RHS.
1234     KnownOne &= KnownOne2;
1235     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1236     KnownZero |= KnownZero2;
1237     break;
1238   case ISD::OR:
1239     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1240                              KnownOne, TLO, Depth+1))
1241       return true;
1242     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1244                              KnownZero2, KnownOne2, TLO, Depth+1))
1245       return true;
1246     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1247 
1248     // If all of the demanded bits are known zero on one side, return the other.
1249     // These bits cannot contribute to the result of the 'or'.
1250     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1251       return TLO.CombineTo(Op, Op.getOperand(0));
1252     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1253       return TLO.CombineTo(Op, Op.getOperand(1));
1254     // If all of the potentially set bits on one side are known to be set on
1255     // the other side, just use the 'other' side.
1256     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1257       return TLO.CombineTo(Op, Op.getOperand(0));
1258     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1259       return TLO.CombineTo(Op, Op.getOperand(1));
1260     // If the RHS is a constant, see if we can simplify it.
1261     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1262       return true;
1263     // If the operation can be done in a smaller type, do so.
1264     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1265       return true;
1266 
1267     // Output known-0 bits are only known if clear in both the LHS & RHS.
1268     KnownZero &= KnownZero2;
1269     // Output known-1 are known to be set if set in either the LHS | RHS.
1270     KnownOne |= KnownOne2;
1271     break;
1272   case ISD::XOR:
1273     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1274                              KnownOne, TLO, Depth+1))
1275       return true;
1276     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1277     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1278                              KnownOne2, TLO, Depth+1))
1279       return true;
1280     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1281 
1282     // If all of the demanded bits are known zero on one side, return the other.
1283     // These bits cannot contribute to the result of the 'xor'.
1284     if ((KnownZero & NewMask) == NewMask)
1285       return TLO.CombineTo(Op, Op.getOperand(0));
1286     if ((KnownZero2 & NewMask) == NewMask)
1287       return TLO.CombineTo(Op, Op.getOperand(1));
1288     // If the operation can be done in a smaller type, do so.
1289     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1290       return true;
1291 
1292     // If all of the unknown bits are known to be zero on one side or the other
1293     // (but not both) turn this into an *inclusive* or.
1294     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1295     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1296       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1297                                                Op.getOperand(0),
1298                                                Op.getOperand(1)));
1299 
1300     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1301     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1302     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1303     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1304 
1305     // If all of the demanded bits on one side are known, and all of the set
1306     // bits on that side are also known to be set on the other side, turn this
1307     // into an AND, as we know the bits will be cleared.
1308     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1309     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1310       if ((KnownOne & KnownOne2) == KnownOne) {
1311         EVT VT = Op.getValueType();
1312         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1313         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1314                                                  Op.getOperand(0), ANDC));
1315       }
1316     }
1317 
1318     // If the RHS is a constant, see if we can simplify it.
1319     // for XOR, we prefer to force bits to 1 if they will make a -1.
1320     // if we can't force bits, try to shrink constant
1321     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1322       APInt Expanded = C->getAPIntValue() | (~NewMask);
1323       // if we can expand it to have all bits set, do it
1324       if (Expanded.isAllOnesValue()) {
1325         if (Expanded != C->getAPIntValue()) {
1326           EVT VT = Op.getValueType();
1327           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1328                                           TLO.DAG.getConstant(Expanded, VT));
1329           return TLO.CombineTo(Op, New);
1330         }
1331         // if it already has all the bits set, nothing to change
1332         // but don't shrink either!
1333       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1334         return true;
1335       }
1336     }
1337 
1338     KnownZero = KnownZeroOut;
1339     KnownOne  = KnownOneOut;
1340     break;
1341   case ISD::SELECT:
1342     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1343                              KnownOne, TLO, Depth+1))
1344       return true;
1345     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1346                              KnownOne2, TLO, Depth+1))
1347       return true;
1348     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1349     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1350 
1351     // If the operands are constants, see if we can simplify them.
1352     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1353       return true;
1354 
1355     // Only known if known in both the LHS and RHS.
1356     KnownOne &= KnownOne2;
1357     KnownZero &= KnownZero2;
1358     break;
1359   case ISD::SELECT_CC:
1360     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1361                              KnownOne, TLO, Depth+1))
1362       return true;
1363     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1364                              KnownOne2, TLO, Depth+1))
1365       return true;
1366     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1367     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1368 
1369     // If the operands are constants, see if we can simplify them.
1370     if (TLO.ShrinkDemandedConstant(Op, NewMask))
1371       return true;
1372 
1373     // Only known if known in both the LHS and RHS.
1374     KnownOne &= KnownOne2;
1375     KnownZero &= KnownZero2;
1376     break;
1377   case ISD::SHL:
1378     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1379       unsigned ShAmt = SA->getZExtValue();
1380       SDValue InOp = Op.getOperand(0);
1381 
1382       // If the shift count is an invalid immediate, don't do anything.
1383       if (ShAmt >= BitWidth)
1384         break;
1385 
1386       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1387       // single shift.  We can do this if the bottom bits (which are shifted
1388       // out) are never demanded.
1389       if (InOp.getOpcode() == ISD::SRL &&
1390           isa<ConstantSDNode>(InOp.getOperand(1))) {
1391         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1392           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1393           unsigned Opc = ISD::SHL;
1394           int Diff = ShAmt-C1;
1395           if (Diff < 0) {
1396             Diff = -Diff;
1397             Opc = ISD::SRL;
1398           }
1399 
1400           SDValue NewSA =
1401             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1402           EVT VT = Op.getValueType();
1403           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1404                                                    InOp.getOperand(0), NewSA));
1405         }
1406       }
1407 
1408       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1409                                KnownZero, KnownOne, TLO, Depth+1))
1410         return true;
1411 
1412       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1413       // are not demanded. This will likely allow the anyext to be folded away.
1414       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1415         SDValue InnerOp = InOp.getNode()->getOperand(0);
1416         EVT InnerVT = InnerOp.getValueType();
1417         if ((APInt::getHighBitsSet(BitWidth,
1418                                    BitWidth - InnerVT.getSizeInBits()) &
1419                DemandedMask) == 0 &&
1420             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1421           EVT ShTy = getShiftAmountTy(InnerVT);
1422           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1423             ShTy = InnerVT;
1424           SDValue NarrowShl =
1425             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1426                             TLO.DAG.getConstant(ShAmt, ShTy));
1427           return
1428             TLO.CombineTo(Op,
1429                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1430                                           NarrowShl));
1431         }
1432       }
1433 
1434       KnownZero <<= SA->getZExtValue();
1435       KnownOne  <<= SA->getZExtValue();
1436       // low bits known zero.
1437       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1438     }
1439     break;
1440   case ISD::SRL:
1441     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1442       EVT VT = Op.getValueType();
1443       unsigned ShAmt = SA->getZExtValue();
1444       unsigned VTSize = VT.getSizeInBits();
1445       SDValue InOp = Op.getOperand(0);
1446 
1447       // If the shift count is an invalid immediate, don't do anything.
1448       if (ShAmt >= BitWidth)
1449         break;
1450 
1451       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the top bits (which are shifted out)
1453       // are never demanded.
1454       if (InOp.getOpcode() == ISD::SHL &&
1455           isa<ConstantSDNode>(InOp.getOperand(1))) {
1456         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1457           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1458           unsigned Opc = ISD::SRL;
1459           int Diff = ShAmt-C1;
1460           if (Diff < 0) {
1461             Diff = -Diff;
1462             Opc = ISD::SHL;
1463           }
1464 
1465           SDValue NewSA =
1466             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1467           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1468                                                    InOp.getOperand(0), NewSA));
1469         }
1470       }
1471 
1472       // Compute the new bits that are at the top now.
1473       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1474                                KnownZero, KnownOne, TLO, Depth+1))
1475         return true;
1476       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1477       KnownZero = KnownZero.lshr(ShAmt);
1478       KnownOne  = KnownOne.lshr(ShAmt);
1479 
1480       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1481       KnownZero |= HighBits;  // High bits known zero.
1482     }
1483     break;
1484   case ISD::SRA:
1485     // If this is an arithmetic shift right and only the low-bit is set, we can
1486     // always convert this into a logical shr, even if the shift amount is
1487     // variable.  The low bit of the shift cannot be an input sign bit unless
1488     // the shift amount is >= the size of the datatype, which is undefined.
1489     if (DemandedMask == 1)
1490       return TLO.CombineTo(Op,
1491                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1492                                            Op.getOperand(0), Op.getOperand(1)));
1493 
1494     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1495       EVT VT = Op.getValueType();
1496       unsigned ShAmt = SA->getZExtValue();
1497 
1498       // If the shift count is an invalid immediate, don't do anything.
1499       if (ShAmt >= BitWidth)
1500         break;
1501 
1502       APInt InDemandedMask = (NewMask << ShAmt);
1503 
1504       // If any of the demanded bits are produced by the sign extension, we also
1505       // demand the input sign bit.
1506       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1507       if (HighBits.intersects(NewMask))
1508         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1509 
1510       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1511                                KnownZero, KnownOne, TLO, Depth+1))
1512         return true;
1513       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514       KnownZero = KnownZero.lshr(ShAmt);
1515       KnownOne  = KnownOne.lshr(ShAmt);
1516 
1517       // Handle the sign bit, adjusted to where it is now in the mask.
1518       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1519 
1520       // If the input sign bit is known to be zero, or if none of the top bits
1521       // are demanded, turn this into an unsigned shift right.
1522       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1523         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1524                                                  Op.getOperand(0),
1525                                                  Op.getOperand(1)));
1526       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1527         KnownOne |= HighBits;
1528       }
1529     }
1530     break;
1531   case ISD::SIGN_EXTEND_INREG: {
1532     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1533 
1534     // Sign extension.  Compute the demanded bits in the result that are not
1535     // present in the input.
1536     APInt NewBits =
1537       APInt::getHighBitsSet(BitWidth,
1538                             BitWidth - EVT.getScalarType().getSizeInBits());
1539 
1540     // If none of the extended bits are demanded, eliminate the sextinreg.
1541     if ((NewBits & NewMask) == 0)
1542       return TLO.CombineTo(Op, Op.getOperand(0));
1543 
1544     APInt InSignBit =
1545       APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1546     APInt InputDemandedBits =
1547       APInt::getLowBitsSet(BitWidth,
1548                            EVT.getScalarType().getSizeInBits()) &
1549       NewMask;
1550 
1551     // Since the sign extended bits are demanded, we know that the sign
1552     // bit is demanded.
1553     InputDemandedBits |= InSignBit;
1554 
1555     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1556                              KnownZero, KnownOne, TLO, Depth+1))
1557       return true;
1558     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1559 
1560     // If the sign bit of the input is known set or clear, then we know the
1561     // top bits of the result.
1562 
1563     // If the input sign bit is known zero, convert this into a zero extension.
1564     if (KnownZero.intersects(InSignBit))
1565       return TLO.CombineTo(Op,
1566                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1567 
1568     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1569       KnownOne |= NewBits;
1570       KnownZero &= ~NewBits;
1571     } else {                       // Input sign bit unknown
1572       KnownZero &= ~NewBits;
1573       KnownOne &= ~NewBits;
1574     }
1575     break;
1576   }
1577   case ISD::ZERO_EXTEND: {
1578     unsigned OperandBitWidth =
1579       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1580     APInt InMask = NewMask.trunc(OperandBitWidth);
1581 
1582     // If none of the top bits are demanded, convert this into an any_extend.
1583     APInt NewBits =
1584       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1585     if (!NewBits.intersects(NewMask))
1586       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1587                                                Op.getValueType(),
1588                                                Op.getOperand(0)));
1589 
1590     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1591                              KnownZero, KnownOne, TLO, Depth+1))
1592       return true;
1593     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594     KnownZero = KnownZero.zext(BitWidth);
1595     KnownOne = KnownOne.zext(BitWidth);
1596     KnownZero |= NewBits;
1597     break;
1598   }
1599   case ISD::SIGN_EXTEND: {
1600     EVT InVT = Op.getOperand(0).getValueType();
1601     unsigned InBits = InVT.getScalarType().getSizeInBits();
1602     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1603     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1604     APInt NewBits   = ~InMask & NewMask;
1605 
1606     // If none of the top bits are demanded, convert this into an any_extend.
1607     if (NewBits == 0)
1608       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1609                                               Op.getValueType(),
1610                                               Op.getOperand(0)));
1611 
1612     // Since some of the sign extended bits are demanded, we know that the sign
1613     // bit is demanded.
1614     APInt InDemandedBits = InMask & NewMask;
1615     InDemandedBits |= InSignBit;
1616     InDemandedBits = InDemandedBits.trunc(InBits);
1617 
1618     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1619                              KnownOne, TLO, Depth+1))
1620       return true;
1621     KnownZero = KnownZero.zext(BitWidth);
1622     KnownOne = KnownOne.zext(BitWidth);
1623 
1624     // If the sign bit is known zero, convert this to a zero extend.
1625     if (KnownZero.intersects(InSignBit))
1626       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1627                                                Op.getValueType(),
1628                                                Op.getOperand(0)));
1629 
1630     // If the sign bit is known one, the top bits match.
1631     if (KnownOne.intersects(InSignBit)) {
1632       KnownOne  |= NewBits;
1633       KnownZero &= ~NewBits;
1634     } else {   // Otherwise, top bits aren't known.
1635       KnownOne  &= ~NewBits;
1636       KnownZero &= ~NewBits;
1637     }
1638     break;
1639   }
1640   case ISD::ANY_EXTEND: {
1641     unsigned OperandBitWidth =
1642       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1643     APInt InMask = NewMask.trunc(OperandBitWidth);
1644     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1645                              KnownZero, KnownOne, TLO, Depth+1))
1646       return true;
1647     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1648     KnownZero = KnownZero.zext(BitWidth);
1649     KnownOne = KnownOne.zext(BitWidth);
1650     break;
1651   }
1652   case ISD::TRUNCATE: {
1653     // Simplify the input, using demanded bit information, and compute the known
1654     // zero/one bits live out.
1655     unsigned OperandBitWidth =
1656       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1657     APInt TruncMask = NewMask.zext(OperandBitWidth);
1658     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1659                              KnownZero, KnownOne, TLO, Depth+1))
1660       return true;
1661     KnownZero = KnownZero.trunc(BitWidth);
1662     KnownOne = KnownOne.trunc(BitWidth);
1663 
1664     // If the input is only used by this truncate, see if we can shrink it based
1665     // on the known demanded bits.
1666     if (Op.getOperand(0).getNode()->hasOneUse()) {
1667       SDValue In = Op.getOperand(0);
1668       switch (In.getOpcode()) {
1669       default: break;
1670       case ISD::SRL:
1671         // Shrink SRL by a constant if none of the high bits shifted in are
1672         // demanded.
1673         if (TLO.LegalTypes() &&
1674             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1675           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1676           // undesirable.
1677           break;
1678         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1679         if (!ShAmt)
1680           break;
1681         SDValue Shift = In.getOperand(1);
1682         if (TLO.LegalTypes()) {
1683           uint64_t ShVal = ShAmt->getZExtValue();
1684           Shift =
1685             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1686         }
1687 
1688         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1689                                                OperandBitWidth - BitWidth);
1690         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1691 
1692         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1693           // None of the shifted in bits are needed.  Add a truncate of the
1694           // shift input, then shift it.
1695           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1696                                              Op.getValueType(),
1697                                              In.getOperand(0));
1698           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1699                                                    Op.getValueType(),
1700                                                    NewTrunc,
1701                                                    Shift));
1702         }
1703         break;
1704       }
1705     }
1706 
1707     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1708     break;
1709   }
1710   case ISD::AssertZext: {
1711     // Demand all the bits of the input that are demanded in the output.
1712     // The low bits are obvious; the high bits are demanded because we're
1713     // asserting that they're zero here.
1714     if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1715                              KnownZero, KnownOne, TLO, Depth+1))
1716       return true;
1717     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1718 
1719     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1720     APInt InMask = APInt::getLowBitsSet(BitWidth,
1721                                         VT.getSizeInBits());
1722     KnownZero |= ~InMask & NewMask;
1723     break;
1724   }
1725   case ISD::BITCAST:
1726 #if 0
1727     // If this is an FP->Int bitcast and if the sign bit is the only thing that
1728     // is demanded, turn this into a FGETSIGN.
1729     if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1730         MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1731         !MVT::isVector(Op.getOperand(0).getValueType())) {
1732       // Only do this xform if FGETSIGN is valid or if before legalize.
1733       if (!TLO.AfterLegalize ||
1734           isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1735         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1736         // place.  We expect the SHL to be eliminated by other optimizations.
1737         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1738                                          Op.getOperand(0));
1739         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1740         SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1741         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1742                                                  Sign, ShAmt));
1743       }
1744     }
1745 #endif
1746     break;
1747   case ISD::ADD:
1748   case ISD::MUL:
1749   case ISD::SUB: {
1750     // Add, Sub, and Mul don't demand any bits in positions beyond that
1751     // of the highest bit demanded of them.
1752     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1753                                         BitWidth - NewMask.countLeadingZeros());
1754     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1755                              KnownOne2, TLO, Depth+1))
1756       return true;
1757     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1758                              KnownOne2, TLO, Depth+1))
1759       return true;
1760     // See if the operation should be performed at a smaller bit width.
1761     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1762       return true;
1763   }
1764   // FALL THROUGH
1765   default:
1766     // Just use ComputeMaskedBits to compute output bits.
1767     TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1768     break;
1769   }
1770 
1771   // If we know the value of all of the demanded bits, return this as a
1772   // constant.
1773   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1774     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1775 
1776   return false;
1777 }
1778 
1779 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1780 /// in Mask are known to be either zero or one and return them in the
1781 /// KnownZero/KnownOne bitsets.
1782 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1783                                                     const APInt &Mask,
1784                                                     APInt &KnownZero,
1785                                                     APInt &KnownOne,
1786                                                     const SelectionDAG &DAG,
1787                                                     unsigned Depth) const {
1788   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1789           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1790           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1791           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1792          "Should use MaskedValueIsZero if you don't know whether Op"
1793          " is a target node!");
1794   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1795 }
1796 
1797 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1798 /// targets that want to expose additional information about sign bits to the
1799 /// DAG Combiner.
1800 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1801                                                          unsigned Depth) const {
1802   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1803           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1804           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1805           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1806          "Should use ComputeNumSignBits if you don't know whether Op"
1807          " is a target node!");
1808   return 1;
1809 }
1810 
1811 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1812 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1813 /// determine which bit is set.
1814 ///
1815 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1816   // A left-shift of a constant one will have exactly one bit set, because
1817   // shifting the bit off the end is undefined.
1818   if (Val.getOpcode() == ISD::SHL)
1819     if (ConstantSDNode *C =
1820          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1821       if (C->getAPIntValue() == 1)
1822         return true;
1823 
1824   // Similarly, a right-shift of a constant sign-bit will have exactly
1825   // one bit set.
1826   if (Val.getOpcode() == ISD::SRL)
1827     if (ConstantSDNode *C =
1828          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1829       if (C->getAPIntValue().isSignBit())
1830         return true;
1831 
1832   // More could be done here, though the above checks are enough
1833   // to handle some common cases.
1834 
1835   // Fall back to ComputeMaskedBits to catch other known cases.
1836   EVT OpVT = Val.getValueType();
1837   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1838   APInt Mask = APInt::getAllOnesValue(BitWidth);
1839   APInt KnownZero, KnownOne;
1840   DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1841   return (KnownZero.countPopulation() == BitWidth - 1) &&
1842          (KnownOne.countPopulation() == 1);
1843 }
1844 
1845 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1846 /// and cc. If it is unable to simplify it, return a null SDValue.
1847 SDValue
1848 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1849                               ISD::CondCode Cond, bool foldBooleans,
1850                               DAGCombinerInfo &DCI, DebugLoc dl) const {
1851   SelectionDAG &DAG = DCI.DAG;
1852 
1853   // These setcc operations always fold.
1854   switch (Cond) {
1855   default: break;
1856   case ISD::SETFALSE:
1857   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1858   case ISD::SETTRUE:
1859   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1860   }
1861 
1862   if (isa<ConstantSDNode>(N0.getNode())) {
1863     // Ensure that the constant occurs on the RHS, and fold constant
1864     // comparisons.
1865     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1866   }
1867 
1868   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1869     const APInt &C1 = N1C->getAPIntValue();
1870 
1871     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1872     // equality comparison, then we're just comparing whether X itself is
1873     // zero.
1874     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1875         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1876         N0.getOperand(1).getOpcode() == ISD::Constant) {
1877       const APInt &ShAmt
1878         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1879       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1880           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1881         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1882           // (srl (ctlz x), 5) == 0  -> X != 0
1883           // (srl (ctlz x), 5) != 1  -> X != 0
1884           Cond = ISD::SETNE;
1885         } else {
1886           // (srl (ctlz x), 5) != 0  -> X == 0
1887           // (srl (ctlz x), 5) == 1  -> X == 0
1888           Cond = ISD::SETEQ;
1889         }
1890         SDValue Zero = DAG.getConstant(0, N0.getValueType());
1891         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1892                             Zero, Cond);
1893       }
1894     }
1895 
1896     SDValue CTPOP = N0;
1897     // Look through truncs that don't change the value of a ctpop.
1898     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1899       CTPOP = N0.getOperand(0);
1900 
1901     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1902         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1903                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1904       EVT CTVT = CTPOP.getValueType();
1905       SDValue CTOp = CTPOP.getOperand(0);
1906 
1907       // (ctpop x) u< 2 -> (x & x-1) == 0
1908       // (ctpop x) u> 1 -> (x & x-1) != 0
1909       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1910         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1911                                   DAG.getConstant(1, CTVT));
1912         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1913         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1914         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1915       }
1916 
1917       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1918     }
1919 
1920     // If the LHS is '(and load, const)', the RHS is 0,
1921     // the test is for equality or unsigned, and all 1 bits of the const are
1922     // in the same partial word, see if we can shorten the load.
1923     if (DCI.isBeforeLegalize() &&
1924         N0.getOpcode() == ISD::AND && C1 == 0 &&
1925         N0.getNode()->hasOneUse() &&
1926         isa<LoadSDNode>(N0.getOperand(0)) &&
1927         N0.getOperand(0).getNode()->hasOneUse() &&
1928         isa<ConstantSDNode>(N0.getOperand(1))) {
1929       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1930       APInt bestMask;
1931       unsigned bestWidth = 0, bestOffset = 0;
1932       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1933         unsigned origWidth = N0.getValueType().getSizeInBits();
1934         unsigned maskWidth = origWidth;
1935         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1936         // 8 bits, but have to be careful...
1937         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1938           origWidth = Lod->getMemoryVT().getSizeInBits();
1939         const APInt &Mask =
1940           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1941         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1942           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1943           for (unsigned offset=0; offset<origWidth/width; offset++) {
1944             if ((newMask & Mask) == Mask) {
1945               if (!TD->isLittleEndian())
1946                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1947               else
1948                 bestOffset = (uint64_t)offset * (width/8);
1949               bestMask = Mask.lshr(offset * (width/8) * 8);
1950               bestWidth = width;
1951               break;
1952             }
1953             newMask = newMask << width;
1954           }
1955         }
1956       }
1957       if (bestWidth) {
1958         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1959         if (newVT.isRound()) {
1960           EVT PtrType = Lod->getOperand(1).getValueType();
1961           SDValue Ptr = Lod->getBasePtr();
1962           if (bestOffset != 0)
1963             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1964                               DAG.getConstant(bestOffset, PtrType));
1965           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1966           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1967                                 Lod->getPointerInfo().getWithOffset(bestOffset),
1968                                         false, false, NewAlign);
1969           return DAG.getSetCC(dl, VT,
1970                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1971                                       DAG.getConstant(bestMask.trunc(bestWidth),
1972                                                       newVT)),
1973                               DAG.getConstant(0LL, newVT), Cond);
1974         }
1975       }
1976     }
1977 
1978     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1979     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1980       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1981 
1982       // If the comparison constant has bits in the upper part, the
1983       // zero-extended value could never match.
1984       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1985                                               C1.getBitWidth() - InSize))) {
1986         switch (Cond) {
1987         case ISD::SETUGT:
1988         case ISD::SETUGE:
1989         case ISD::SETEQ: return DAG.getConstant(0, VT);
1990         case ISD::SETULT:
1991         case ISD::SETULE:
1992         case ISD::SETNE: return DAG.getConstant(1, VT);
1993         case ISD::SETGT:
1994         case ISD::SETGE:
1995           // True if the sign bit of C1 is set.
1996           return DAG.getConstant(C1.isNegative(), VT);
1997         case ISD::SETLT:
1998         case ISD::SETLE:
1999           // True if the sign bit of C1 isn't set.
2000           return DAG.getConstant(C1.isNonNegative(), VT);
2001         default:
2002           break;
2003         }
2004       }
2005 
2006       // Otherwise, we can perform the comparison with the low bits.
2007       switch (Cond) {
2008       case ISD::SETEQ:
2009       case ISD::SETNE:
2010       case ISD::SETUGT:
2011       case ISD::SETUGE:
2012       case ISD::SETULT:
2013       case ISD::SETULE: {
2014         EVT newVT = N0.getOperand(0).getValueType();
2015         if (DCI.isBeforeLegalizeOps() ||
2016             (isOperationLegal(ISD::SETCC, newVT) &&
2017               getCondCodeAction(Cond, newVT)==Legal))
2018           return DAG.getSetCC(dl, VT, N0.getOperand(0),
2019                               DAG.getConstant(C1.trunc(InSize), newVT),
2020                               Cond);
2021         break;
2022       }
2023       default:
2024         break;   // todo, be more careful with signed comparisons
2025       }
2026     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2027                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2028       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2029       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2030       EVT ExtDstTy = N0.getValueType();
2031       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2032 
2033       // If the constant doesn't fit into the number of bits for the source of
2034       // the sign extension, it is impossible for both sides to be equal.
2035       if (C1.getMinSignedBits() > ExtSrcTyBits)
2036         return DAG.getConstant(Cond == ISD::SETNE, VT);
2037 
2038       SDValue ZextOp;
2039       EVT Op0Ty = N0.getOperand(0).getValueType();
2040       if (Op0Ty == ExtSrcTy) {
2041         ZextOp = N0.getOperand(0);
2042       } else {
2043         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2044         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2045                               DAG.getConstant(Imm, Op0Ty));
2046       }
2047       if (!DCI.isCalledByLegalizer())
2048         DCI.AddToWorklist(ZextOp.getNode());
2049       // Otherwise, make this a use of a zext.
2050       return DAG.getSetCC(dl, VT, ZextOp,
2051                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2052                                                               ExtDstTyBits,
2053                                                               ExtSrcTyBits),
2054                                           ExtDstTy),
2055                           Cond);
2056     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2057                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2058       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2059       if (N0.getOpcode() == ISD::SETCC &&
2060           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2061         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2062         if (TrueWhenTrue)
2063           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2064         // Invert the condition.
2065         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2066         CC = ISD::getSetCCInverse(CC,
2067                                   N0.getOperand(0).getValueType().isInteger());
2068         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2069       }
2070 
2071       if ((N0.getOpcode() == ISD::XOR ||
2072            (N0.getOpcode() == ISD::AND &&
2073             N0.getOperand(0).getOpcode() == ISD::XOR &&
2074             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2075           isa<ConstantSDNode>(N0.getOperand(1)) &&
2076           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2077         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2078         // can only do this if the top bits are known zero.
2079         unsigned BitWidth = N0.getValueSizeInBits();
2080         if (DAG.MaskedValueIsZero(N0,
2081                                   APInt::getHighBitsSet(BitWidth,
2082                                                         BitWidth-1))) {
2083           // Okay, get the un-inverted input value.
2084           SDValue Val;
2085           if (N0.getOpcode() == ISD::XOR)
2086             Val = N0.getOperand(0);
2087           else {
2088             assert(N0.getOpcode() == ISD::AND &&
2089                     N0.getOperand(0).getOpcode() == ISD::XOR);
2090             // ((X^1)&1)^1 -> X & 1
2091             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2092                               N0.getOperand(0).getOperand(0),
2093                               N0.getOperand(1));
2094           }
2095 
2096           return DAG.getSetCC(dl, VT, Val, N1,
2097                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2098         }
2099       } else if (N1C->getAPIntValue() == 1 &&
2100                  (VT == MVT::i1 ||
2101                   getBooleanContents() == ZeroOrOneBooleanContent)) {
2102         SDValue Op0 = N0;
2103         if (Op0.getOpcode() == ISD::TRUNCATE)
2104           Op0 = Op0.getOperand(0);
2105 
2106         if ((Op0.getOpcode() == ISD::XOR) &&
2107             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2108             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2109           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2110           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2111           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2112                               Cond);
2113         } else if (Op0.getOpcode() == ISD::AND &&
2114                 isa<ConstantSDNode>(Op0.getOperand(1)) &&
2115                 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2116           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2117           if (Op0.getValueType().bitsGT(VT))
2118             Op0 = DAG.getNode(ISD::AND, dl, VT,
2119                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2120                           DAG.getConstant(1, VT));
2121           else if (Op0.getValueType().bitsLT(VT))
2122             Op0 = DAG.getNode(ISD::AND, dl, VT,
2123                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2124                         DAG.getConstant(1, VT));
2125 
2126           return DAG.getSetCC(dl, VT, Op0,
2127                               DAG.getConstant(0, Op0.getValueType()),
2128                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2129         }
2130       }
2131     }
2132 
2133     APInt MinVal, MaxVal;
2134     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2135     if (ISD::isSignedIntSetCC(Cond)) {
2136       MinVal = APInt::getSignedMinValue(OperandBitSize);
2137       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2138     } else {
2139       MinVal = APInt::getMinValue(OperandBitSize);
2140       MaxVal = APInt::getMaxValue(OperandBitSize);
2141     }
2142 
2143     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2144     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2145       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2146       // X >= C0 --> X > (C0-1)
2147       return DAG.getSetCC(dl, VT, N0,
2148                           DAG.getConstant(C1-1, N1.getValueType()),
2149                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2150     }
2151 
2152     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2153       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2154       // X <= C0 --> X < (C0+1)
2155       return DAG.getSetCC(dl, VT, N0,
2156                           DAG.getConstant(C1+1, N1.getValueType()),
2157                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2158     }
2159 
2160     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2161       return DAG.getConstant(0, VT);      // X < MIN --> false
2162     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2163       return DAG.getConstant(1, VT);      // X >= MIN --> true
2164     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2165       return DAG.getConstant(0, VT);      // X > MAX --> false
2166     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2167       return DAG.getConstant(1, VT);      // X <= MAX --> true
2168 
2169     // Canonicalize setgt X, Min --> setne X, Min
2170     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2171       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2172     // Canonicalize setlt X, Max --> setne X, Max
2173     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2174       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2175 
2176     // If we have setult X, 1, turn it into seteq X, 0
2177     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2178       return DAG.getSetCC(dl, VT, N0,
2179                           DAG.getConstant(MinVal, N0.getValueType()),
2180                           ISD::SETEQ);
2181     // If we have setugt X, Max-1, turn it into seteq X, Max
2182     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2183       return DAG.getSetCC(dl, VT, N0,
2184                           DAG.getConstant(MaxVal, N0.getValueType()),
2185                           ISD::SETEQ);
2186 
2187     // If we have "setcc X, C0", check to see if we can shrink the immediate
2188     // by changing cc.
2189 
2190     // SETUGT X, SINTMAX  -> SETLT X, 0
2191     if (Cond == ISD::SETUGT &&
2192         C1 == APInt::getSignedMaxValue(OperandBitSize))
2193       return DAG.getSetCC(dl, VT, N0,
2194                           DAG.getConstant(0, N1.getValueType()),
2195                           ISD::SETLT);
2196 
2197     // SETULT X, SINTMIN  -> SETGT X, -1
2198     if (Cond == ISD::SETULT &&
2199         C1 == APInt::getSignedMinValue(OperandBitSize)) {
2200       SDValue ConstMinusOne =
2201           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2202                           N1.getValueType());
2203       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2204     }
2205 
2206     // Fold bit comparisons when we can.
2207     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2208         (VT == N0.getValueType() ||
2209          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2210         N0.getOpcode() == ISD::AND)
2211       if (ConstantSDNode *AndRHS =
2212                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2213         EVT ShiftTy = DCI.isBeforeLegalize() ?
2214           getPointerTy() : getShiftAmountTy(N0.getValueType());
2215         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2216           // Perform the xform if the AND RHS is a single bit.
2217           if (AndRHS->getAPIntValue().isPowerOf2()) {
2218             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2219                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2220                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2221           }
2222         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2223           // (X & 8) == 8  -->  (X & 8) >> 3
2224           // Perform the xform if C1 is a single bit.
2225           if (C1.isPowerOf2()) {
2226             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2227                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2228                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
2229           }
2230         }
2231       }
2232   }
2233 
2234   if (isa<ConstantFPSDNode>(N0.getNode())) {
2235     // Constant fold or commute setcc.
2236     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2237     if (O.getNode()) return O;
2238   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2239     // If the RHS of an FP comparison is a constant, simplify it away in
2240     // some cases.
2241     if (CFP->getValueAPF().isNaN()) {
2242       // If an operand is known to be a nan, we can fold it.
2243       switch (ISD::getUnorderedFlavor(Cond)) {
2244       default: llvm_unreachable("Unknown flavor!");
2245       case 0:  // Known false.
2246         return DAG.getConstant(0, VT);
2247       case 1:  // Known true.
2248         return DAG.getConstant(1, VT);
2249       case 2:  // Undefined.
2250         return DAG.getUNDEF(VT);
2251       }
2252     }
2253 
2254     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2255     // constant if knowing that the operand is non-nan is enough.  We prefer to
2256     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2257     // materialize 0.0.
2258     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2259       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2260 
2261     // If the condition is not legal, see if we can find an equivalent one
2262     // which is legal.
2263     if (!isCondCodeLegal(Cond, N0.getValueType())) {
2264       // If the comparison was an awkward floating-point == or != and one of
2265       // the comparison operands is infinity or negative infinity, convert the
2266       // condition to a less-awkward <= or >=.
2267       if (CFP->getValueAPF().isInfinity()) {
2268         if (CFP->getValueAPF().isNegative()) {
2269           if (Cond == ISD::SETOEQ &&
2270               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2271             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2272           if (Cond == ISD::SETUEQ &&
2273               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2274             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2275           if (Cond == ISD::SETUNE &&
2276               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2277             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2278           if (Cond == ISD::SETONE &&
2279               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2280             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2281         } else {
2282           if (Cond == ISD::SETOEQ &&
2283               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2284             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2285           if (Cond == ISD::SETUEQ &&
2286               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2287             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2288           if (Cond == ISD::SETUNE &&
2289               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2290             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2291           if (Cond == ISD::SETONE &&
2292               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2293             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2294         }
2295       }
2296     }
2297   }
2298 
2299   if (N0 == N1) {
2300     // We can always fold X == X for integer setcc's.
2301     if (N0.getValueType().isInteger())
2302       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2303     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2304     if (UOF == 2)   // FP operators that are undefined on NaNs.
2305       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2306     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2307       return DAG.getConstant(UOF, VT);
2308     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2309     // if it is not already.
2310     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2311     if (NewCond != Cond)
2312       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2313   }
2314 
2315   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2316       N0.getValueType().isInteger()) {
2317     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2318         N0.getOpcode() == ISD::XOR) {
2319       // Simplify (X+Y) == (X+Z) -->  Y == Z
2320       if (N0.getOpcode() == N1.getOpcode()) {
2321         if (N0.getOperand(0) == N1.getOperand(0))
2322           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2323         if (N0.getOperand(1) == N1.getOperand(1))
2324           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2325         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2326           // If X op Y == Y op X, try other combinations.
2327           if (N0.getOperand(0) == N1.getOperand(1))
2328             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2329                                 Cond);
2330           if (N0.getOperand(1) == N1.getOperand(0))
2331             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2332                                 Cond);
2333         }
2334       }
2335 
2336       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2337         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2338           // Turn (X+C1) == C2 --> X == C2-C1
2339           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2340             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2341                                 DAG.getConstant(RHSC->getAPIntValue()-
2342                                                 LHSR->getAPIntValue(),
2343                                 N0.getValueType()), Cond);
2344           }
2345 
2346           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2347           if (N0.getOpcode() == ISD::XOR)
2348             // If we know that all of the inverted bits are zero, don't bother
2349             // performing the inversion.
2350             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2351               return
2352                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2353                              DAG.getConstant(LHSR->getAPIntValue() ^
2354                                                RHSC->getAPIntValue(),
2355                                              N0.getValueType()),
2356                              Cond);
2357         }
2358 
2359         // Turn (C1-X) == C2 --> X == C1-C2
2360         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2361           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2362             return
2363               DAG.getSetCC(dl, VT, N0.getOperand(1),
2364                            DAG.getConstant(SUBC->getAPIntValue() -
2365                                              RHSC->getAPIntValue(),
2366                                            N0.getValueType()),
2367                            Cond);
2368           }
2369         }
2370       }
2371 
2372       // Simplify (X+Z) == X -->  Z == 0
2373       if (N0.getOperand(0) == N1)
2374         return DAG.getSetCC(dl, VT, N0.getOperand(1),
2375                         DAG.getConstant(0, N0.getValueType()), Cond);
2376       if (N0.getOperand(1) == N1) {
2377         if (DAG.isCommutativeBinOp(N0.getOpcode()))
2378           return DAG.getSetCC(dl, VT, N0.getOperand(0),
2379                           DAG.getConstant(0, N0.getValueType()), Cond);
2380         else if (N0.getNode()->hasOneUse()) {
2381           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2382           // (Z-X) == X  --> Z == X<<1
2383           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2384                                      N1,
2385                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2386           if (!DCI.isCalledByLegalizer())
2387             DCI.AddToWorklist(SH.getNode());
2388           return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2389         }
2390       }
2391     }
2392 
2393     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2394         N1.getOpcode() == ISD::XOR) {
2395       // Simplify  X == (X+Z) -->  Z == 0
2396       if (N1.getOperand(0) == N0) {
2397         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2398                         DAG.getConstant(0, N1.getValueType()), Cond);
2399       } else if (N1.getOperand(1) == N0) {
2400         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2401           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2402                           DAG.getConstant(0, N1.getValueType()), Cond);
2403         } else if (N1.getNode()->hasOneUse()) {
2404           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2405           // X == (Z-X)  --> X<<1 == Z
2406           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2407                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2408           if (!DCI.isCalledByLegalizer())
2409             DCI.AddToWorklist(SH.getNode());
2410           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2411         }
2412       }
2413     }
2414 
2415     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2416     // Note that where y is variable and is known to have at most
2417     // one bit set (for example, if it is z&1) we cannot do this;
2418     // the expressions are not equivalent when y==0.
2419     if (N0.getOpcode() == ISD::AND)
2420       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2421         if (ValueHasExactlyOneBitSet(N1, DAG)) {
2422           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2423           SDValue Zero = DAG.getConstant(0, N1.getValueType());
2424           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2425         }
2426       }
2427     if (N1.getOpcode() == ISD::AND)
2428       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2429         if (ValueHasExactlyOneBitSet(N0, DAG)) {
2430           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2431           SDValue Zero = DAG.getConstant(0, N0.getValueType());
2432           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2433         }
2434       }
2435   }
2436 
2437   // Fold away ALL boolean setcc's.
2438   SDValue Temp;
2439   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2440     switch (Cond) {
2441     default: llvm_unreachable("Unknown integer setcc!");
2442     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2443       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2444       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2445       if (!DCI.isCalledByLegalizer())
2446         DCI.AddToWorklist(Temp.getNode());
2447       break;
2448     case ISD::SETNE:  // X != Y   -->  (X^Y)
2449       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2450       break;
2451     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2452     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2453       Temp = DAG.getNOT(dl, N0, MVT::i1);
2454       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2455       if (!DCI.isCalledByLegalizer())
2456         DCI.AddToWorklist(Temp.getNode());
2457       break;
2458     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2459     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2460       Temp = DAG.getNOT(dl, N1, MVT::i1);
2461       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2462       if (!DCI.isCalledByLegalizer())
2463         DCI.AddToWorklist(Temp.getNode());
2464       break;
2465     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2466     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2467       Temp = DAG.getNOT(dl, N0, MVT::i1);
2468       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2469       if (!DCI.isCalledByLegalizer())
2470         DCI.AddToWorklist(Temp.getNode());
2471       break;
2472     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2473     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2474       Temp = DAG.getNOT(dl, N1, MVT::i1);
2475       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2476       break;
2477     }
2478     if (VT != MVT::i1) {
2479       if (!DCI.isCalledByLegalizer())
2480         DCI.AddToWorklist(N0.getNode());
2481       // FIXME: If running after legalize, we probably can't do this.
2482       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2483     }
2484     return N0;
2485   }
2486 
2487   // Could not fold it.
2488   return SDValue();
2489 }
2490 
2491 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2492 /// node is a GlobalAddress + offset.
2493 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2494                                     int64_t &Offset) const {
2495   if (isa<GlobalAddressSDNode>(N)) {
2496     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2497     GA = GASD->getGlobal();
2498     Offset += GASD->getOffset();
2499     return true;
2500   }
2501 
2502   if (N->getOpcode() == ISD::ADD) {
2503     SDValue N1 = N->getOperand(0);
2504     SDValue N2 = N->getOperand(1);
2505     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2506       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2507       if (V) {
2508         Offset += V->getSExtValue();
2509         return true;
2510       }
2511     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2512       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2513       if (V) {
2514         Offset += V->getSExtValue();
2515         return true;
2516       }
2517     }
2518   }
2519 
2520   return false;
2521 }
2522 
2523 
2524 SDValue TargetLowering::
2525 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2526   // Default implementation: no optimization.
2527   return SDValue();
2528 }
2529 
2530 //===----------------------------------------------------------------------===//
2531 //  Inline Assembler Implementation Methods
2532 //===----------------------------------------------------------------------===//
2533 
2534 
2535 TargetLowering::ConstraintType
2536 TargetLowering::getConstraintType(const std::string &Constraint) const {
2537   // FIXME: lots more standard ones to handle.
2538   if (Constraint.size() == 1) {
2539     switch (Constraint[0]) {
2540     default: break;
2541     case 'r': return C_RegisterClass;
2542     case 'm':    // memory
2543     case 'o':    // offsetable
2544     case 'V':    // not offsetable
2545       return C_Memory;
2546     case 'i':    // Simple Integer or Relocatable Constant
2547     case 'n':    // Simple Integer
2548     case 'E':    // Floating Point Constant
2549     case 'F':    // Floating Point Constant
2550     case 's':    // Relocatable Constant
2551     case 'p':    // Address.
2552     case 'X':    // Allow ANY value.
2553     case 'I':    // Target registers.
2554     case 'J':
2555     case 'K':
2556     case 'L':
2557     case 'M':
2558     case 'N':
2559     case 'O':
2560     case 'P':
2561     case '<':
2562     case '>':
2563       return C_Other;
2564     }
2565   }
2566 
2567   if (Constraint.size() > 1 && Constraint[0] == '{' &&
2568       Constraint[Constraint.size()-1] == '}')
2569     return C_Register;
2570   return C_Unknown;
2571 }
2572 
2573 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2574 /// with another that has more specific requirements based on the type of the
2575 /// corresponding operand.
2576 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2577   if (ConstraintVT.isInteger())
2578     return "r";
2579   if (ConstraintVT.isFloatingPoint())
2580     return "f";      // works for many targets
2581   return 0;
2582 }
2583 
2584 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2585 /// vector.  If it is invalid, don't add anything to Ops.
2586 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2587                                                   char ConstraintLetter,
2588                                                   std::vector<SDValue> &Ops,
2589                                                   SelectionDAG &DAG) const {
2590   switch (ConstraintLetter) {
2591   default: break;
2592   case 'X':     // Allows any operand; labels (basic block) use this.
2593     if (Op.getOpcode() == ISD::BasicBlock) {
2594       Ops.push_back(Op);
2595       return;
2596     }
2597     // fall through
2598   case 'i':    // Simple Integer or Relocatable Constant
2599   case 'n':    // Simple Integer
2600   case 's': {  // Relocatable Constant
2601     // These operands are interested in values of the form (GV+C), where C may
2602     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2603     // is possible and fine if either GV or C are missing.
2604     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2605     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2606 
2607     // If we have "(add GV, C)", pull out GV/C
2608     if (Op.getOpcode() == ISD::ADD) {
2609       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2610       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2611       if (C == 0 || GA == 0) {
2612         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2613         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2614       }
2615       if (C == 0 || GA == 0)
2616         C = 0, GA = 0;
2617     }
2618 
2619     // If we find a valid operand, map to the TargetXXX version so that the
2620     // value itself doesn't get selected.
2621     if (GA) {   // Either &GV   or   &GV+C
2622       if (ConstraintLetter != 'n') {
2623         int64_t Offs = GA->getOffset();
2624         if (C) Offs += C->getZExtValue();
2625         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2626                                                  C ? C->getDebugLoc() : DebugLoc(),
2627                                                  Op.getValueType(), Offs));
2628         return;
2629       }
2630     }
2631     if (C) {   // just C, no GV.
2632       // Simple constants are not allowed for 's'.
2633       if (ConstraintLetter != 's') {
2634         // gcc prints these as sign extended.  Sign extend value to 64 bits
2635         // now; without this it would get ZExt'd later in
2636         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2637         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2638                                             MVT::i64));
2639         return;
2640       }
2641     }
2642     break;
2643   }
2644   }
2645 }
2646 
2647 std::vector<unsigned> TargetLowering::
2648 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2649                                   EVT VT) const {
2650   return std::vector<unsigned>();
2651 }
2652 
2653 
2654 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2655 getRegForInlineAsmConstraint(const std::string &Constraint,
2656                              EVT VT) const {
2657   if (Constraint[0] != '{')
2658     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2659   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2660 
2661   // Remove the braces from around the name.
2662   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2663 
2664   // Figure out which register class contains this reg.
2665   const TargetRegisterInfo *RI = TM.getRegisterInfo();
2666   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2667        E = RI->regclass_end(); RCI != E; ++RCI) {
2668     const TargetRegisterClass *RC = *RCI;
2669 
2670     // If none of the value types for this register class are valid, we
2671     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2672     bool isLegal = false;
2673     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2674          I != E; ++I) {
2675       if (isTypeLegal(*I)) {
2676         isLegal = true;
2677         break;
2678       }
2679     }
2680 
2681     if (!isLegal) continue;
2682 
2683     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2684          I != E; ++I) {
2685       if (RegName.equals_lower(RI->getName(*I)))
2686         return std::make_pair(*I, RC);
2687     }
2688   }
2689 
2690   return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2691 }
2692 
2693 //===----------------------------------------------------------------------===//
2694 // Constraint Selection.
2695 
2696 /// isMatchingInputConstraint - Return true of this is an input operand that is
2697 /// a matching constraint like "4".
2698 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2699   assert(!ConstraintCode.empty() && "No known constraint!");
2700   return isdigit(ConstraintCode[0]);
2701 }
2702 
2703 /// getMatchedOperand - If this is an input matching constraint, this method
2704 /// returns the output operand it matches.
2705 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2706   assert(!ConstraintCode.empty() && "No known constraint!");
2707   return atoi(ConstraintCode.c_str());
2708 }
2709 
2710 
2711 /// ParseConstraints - Split up the constraint string from the inline
2712 /// assembly value into the specific constraints and their prefixes,
2713 /// and also tie in the associated operand values.
2714 /// If this returns an empty vector, and if the constraint string itself
2715 /// isn't empty, there was an error parsing.
2716 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2717     ImmutableCallSite CS) const {
2718   /// ConstraintOperands - Information about all of the constraints.
2719   AsmOperandInfoVector ConstraintOperands;
2720   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2721   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2722 
2723   // Do a prepass over the constraints, canonicalizing them, and building up the
2724   // ConstraintOperands list.
2725   InlineAsm::ConstraintInfoVector
2726     ConstraintInfos = IA->ParseConstraints();
2727 
2728   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2729   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2730 
2731   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2732     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2733     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2734 
2735     // Update multiple alternative constraint count.
2736     if (OpInfo.multipleAlternatives.size() > maCount)
2737       maCount = OpInfo.multipleAlternatives.size();
2738 
2739     OpInfo.ConstraintVT = MVT::Other;
2740 
2741     // Compute the value type for each operand.
2742     switch (OpInfo.Type) {
2743     case InlineAsm::isOutput:
2744       // Indirect outputs just consume an argument.
2745       if (OpInfo.isIndirect) {
2746         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2747         break;
2748       }
2749 
2750       // The return value of the call is this value.  As such, there is no
2751       // corresponding argument.
2752       assert(!CS.getType()->isVoidTy() &&
2753              "Bad inline asm!");
2754       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2755         OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2756       } else {
2757         assert(ResNo == 0 && "Asm only has one result!");
2758         OpInfo.ConstraintVT = getValueType(CS.getType());
2759       }
2760       ++ResNo;
2761       break;
2762     case InlineAsm::isInput:
2763       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2764       break;
2765     case InlineAsm::isClobber:
2766       // Nothing to do.
2767       break;
2768     }
2769 
2770     if (OpInfo.CallOperandVal) {
2771       const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2772       if (OpInfo.isIndirect) {
2773         const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2774         if (!PtrTy)
2775           report_fatal_error("Indirect operand for inline asm not a pointer!");
2776         OpTy = PtrTy->getElementType();
2777       }
2778       // If OpTy is not a single value, it may be a struct/union that we
2779       // can tile with integers.
2780       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2781         unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2782         switch (BitSize) {
2783         default: break;
2784         case 1:
2785         case 8:
2786         case 16:
2787         case 32:
2788         case 64:
2789         case 128:
2790           OpInfo.ConstraintVT =
2791               EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2792           break;
2793         }
2794       } else if (dyn_cast<PointerType>(OpTy)) {
2795         OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2796       } else {
2797         OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2798       }
2799     }
2800   }
2801 
2802   // If we have multiple alternative constraints, select the best alternative.
2803   if (ConstraintInfos.size()) {
2804     if (maCount) {
2805       unsigned bestMAIndex = 0;
2806       int bestWeight = -1;
2807       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2808       int weight = -1;
2809       unsigned maIndex;
2810       // Compute the sums of the weights for each alternative, keeping track
2811       // of the best (highest weight) one so far.
2812       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2813         int weightSum = 0;
2814         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2815             cIndex != eIndex; ++cIndex) {
2816           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2817           if (OpInfo.Type == InlineAsm::isClobber)
2818             continue;
2819 
2820           // If this is an output operand with a matching input operand,
2821           // look up the matching input. If their types mismatch, e.g. one
2822           // is an integer, the other is floating point, or their sizes are
2823           // different, flag it as an maCantMatch.
2824           if (OpInfo.hasMatchingInput()) {
2825             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2826             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2827               if ((OpInfo.ConstraintVT.isInteger() !=
2828                    Input.ConstraintVT.isInteger()) ||
2829                   (OpInfo.ConstraintVT.getSizeInBits() !=
2830                    Input.ConstraintVT.getSizeInBits())) {
2831                 weightSum = -1;  // Can't match.
2832                 break;
2833               }
2834             }
2835           }
2836           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2837           if (weight == -1) {
2838             weightSum = -1;
2839             break;
2840           }
2841           weightSum += weight;
2842         }
2843         // Update best.
2844         if (weightSum > bestWeight) {
2845           bestWeight = weightSum;
2846           bestMAIndex = maIndex;
2847         }
2848       }
2849 
2850       // Now select chosen alternative in each constraint.
2851       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2852           cIndex != eIndex; ++cIndex) {
2853         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2854         if (cInfo.Type == InlineAsm::isClobber)
2855           continue;
2856         cInfo.selectAlternative(bestMAIndex);
2857       }
2858     }
2859   }
2860 
2861   // Check and hook up tied operands, choose constraint code to use.
2862   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2863       cIndex != eIndex; ++cIndex) {
2864     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2865 
2866     // If this is an output operand with a matching input operand, look up the
2867     // matching input. If their types mismatch, e.g. one is an integer, the
2868     // other is floating point, or their sizes are different, flag it as an
2869     // error.
2870     if (OpInfo.hasMatchingInput()) {
2871       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2872 
2873       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2874         if ((OpInfo.ConstraintVT.isInteger() !=
2875              Input.ConstraintVT.isInteger()) ||
2876             (OpInfo.ConstraintVT.getSizeInBits() !=
2877              Input.ConstraintVT.getSizeInBits())) {
2878           report_fatal_error("Unsupported asm: input constraint"
2879                              " with a matching output constraint of"
2880                              " incompatible type!");
2881         }
2882       }
2883 
2884     }
2885   }
2886 
2887   return ConstraintOperands;
2888 }
2889 
2890 
2891 /// getConstraintGenerality - Return an integer indicating how general CT
2892 /// is.
2893 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2894   switch (CT) {
2895   default: llvm_unreachable("Unknown constraint type!");
2896   case TargetLowering::C_Other:
2897   case TargetLowering::C_Unknown:
2898     return 0;
2899   case TargetLowering::C_Register:
2900     return 1;
2901   case TargetLowering::C_RegisterClass:
2902     return 2;
2903   case TargetLowering::C_Memory:
2904     return 3;
2905   }
2906 }
2907 
2908 /// Examine constraint type and operand type and determine a weight value.
2909 /// This object must already have been set up with the operand type
2910 /// and the current alternative constraint selected.
2911 TargetLowering::ConstraintWeight
2912   TargetLowering::getMultipleConstraintMatchWeight(
2913     AsmOperandInfo &info, int maIndex) const {
2914   InlineAsm::ConstraintCodeVector *rCodes;
2915   if (maIndex >= (int)info.multipleAlternatives.size())
2916     rCodes = &info.Codes;
2917   else
2918     rCodes = &info.multipleAlternatives[maIndex].Codes;
2919   ConstraintWeight BestWeight = CW_Invalid;
2920 
2921   // Loop over the options, keeping track of the most general one.
2922   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2923     ConstraintWeight weight =
2924       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2925     if (weight > BestWeight)
2926       BestWeight = weight;
2927   }
2928 
2929   return BestWeight;
2930 }
2931 
2932 /// Examine constraint type and operand type and determine a weight value.
2933 /// This object must already have been set up with the operand type
2934 /// and the current alternative constraint selected.
2935 TargetLowering::ConstraintWeight
2936   TargetLowering::getSingleConstraintMatchWeight(
2937     AsmOperandInfo &info, const char *constraint) const {
2938   ConstraintWeight weight = CW_Invalid;
2939   Value *CallOperandVal = info.CallOperandVal;
2940     // If we don't have a value, we can't do a match,
2941     // but allow it at the lowest weight.
2942   if (CallOperandVal == NULL)
2943     return CW_Default;
2944   // Look at the constraint type.
2945   switch (*constraint) {
2946     case 'i': // immediate integer.
2947     case 'n': // immediate integer with a known value.
2948       if (isa<ConstantInt>(CallOperandVal))
2949         weight = CW_Constant;
2950       break;
2951     case 's': // non-explicit intregal immediate.
2952       if (isa<GlobalValue>(CallOperandVal))
2953         weight = CW_Constant;
2954       break;
2955     case 'E': // immediate float if host format.
2956     case 'F': // immediate float.
2957       if (isa<ConstantFP>(CallOperandVal))
2958         weight = CW_Constant;
2959       break;
2960     case '<': // memory operand with autodecrement.
2961     case '>': // memory operand with autoincrement.
2962     case 'm': // memory operand.
2963     case 'o': // offsettable memory operand
2964     case 'V': // non-offsettable memory operand
2965       weight = CW_Memory;
2966       break;
2967     case 'r': // general register.
2968     case 'g': // general register, memory operand or immediate integer.
2969               // note: Clang converts "g" to "imr".
2970       if (CallOperandVal->getType()->isIntegerTy())
2971         weight = CW_Register;
2972       break;
2973     case 'X': // any operand.
2974     default:
2975       weight = CW_Default;
2976       break;
2977   }
2978   return weight;
2979 }
2980 
2981 /// ChooseConstraint - If there are multiple different constraints that we
2982 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2983 /// This is somewhat tricky: constraints fall into four classes:
2984 ///    Other         -> immediates and magic values
2985 ///    Register      -> one specific register
2986 ///    RegisterClass -> a group of regs
2987 ///    Memory        -> memory
2988 /// Ideally, we would pick the most specific constraint possible: if we have
2989 /// something that fits into a register, we would pick it.  The problem here
2990 /// is that if we have something that could either be in a register or in
2991 /// memory that use of the register could cause selection of *other*
2992 /// operands to fail: they might only succeed if we pick memory.  Because of
2993 /// this the heuristic we use is:
2994 ///
2995 ///  1) If there is an 'other' constraint, and if the operand is valid for
2996 ///     that constraint, use it.  This makes us take advantage of 'i'
2997 ///     constraints when available.
2998 ///  2) Otherwise, pick the most general constraint present.  This prefers
2999 ///     'm' over 'r', for example.
3000 ///
3001 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3002                              const TargetLowering &TLI,
3003                              SDValue Op, SelectionDAG *DAG) {
3004   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3005   unsigned BestIdx = 0;
3006   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3007   int BestGenerality = -1;
3008 
3009   // Loop over the options, keeping track of the most general one.
3010   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3011     TargetLowering::ConstraintType CType =
3012       TLI.getConstraintType(OpInfo.Codes[i]);
3013 
3014     // If this is an 'other' constraint, see if the operand is valid for it.
3015     // For example, on X86 we might have an 'rI' constraint.  If the operand
3016     // is an integer in the range [0..31] we want to use I (saving a load
3017     // of a register), otherwise we must use 'r'.
3018     if (CType == TargetLowering::C_Other && Op.getNode()) {
3019       assert(OpInfo.Codes[i].size() == 1 &&
3020              "Unhandled multi-letter 'other' constraint");
3021       std::vector<SDValue> ResultOps;
3022       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
3023                                        ResultOps, *DAG);
3024       if (!ResultOps.empty()) {
3025         BestType = CType;
3026         BestIdx = i;
3027         break;
3028       }
3029     }
3030 
3031     // Things with matching constraints can only be registers, per gcc
3032     // documentation.  This mainly affects "g" constraints.
3033     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3034       continue;
3035 
3036     // This constraint letter is more general than the previous one, use it.
3037     int Generality = getConstraintGenerality(CType);
3038     if (Generality > BestGenerality) {
3039       BestType = CType;
3040       BestIdx = i;
3041       BestGenerality = Generality;
3042     }
3043   }
3044 
3045   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3046   OpInfo.ConstraintType = BestType;
3047 }
3048 
3049 /// ComputeConstraintToUse - Determines the constraint code and constraint
3050 /// type to use for the specific AsmOperandInfo, setting
3051 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3052 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3053                                             SDValue Op,
3054                                             SelectionDAG *DAG) const {
3055   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3056 
3057   // Single-letter constraints ('r') are very common.
3058   if (OpInfo.Codes.size() == 1) {
3059     OpInfo.ConstraintCode = OpInfo.Codes[0];
3060     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3061   } else {
3062     ChooseConstraint(OpInfo, *this, Op, DAG);
3063   }
3064 
3065   // 'X' matches anything.
3066   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3067     // Labels and constants are handled elsewhere ('X' is the only thing
3068     // that matches labels).  For Functions, the type here is the type of
3069     // the result, which is not what we want to look at; leave them alone.
3070     Value *v = OpInfo.CallOperandVal;
3071     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3072       OpInfo.CallOperandVal = v;
3073       return;
3074     }
3075 
3076     // Otherwise, try to resolve it to something we know about by looking at
3077     // the actual operand type.
3078     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3079       OpInfo.ConstraintCode = Repl;
3080       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3081     }
3082   }
3083 }
3084 
3085 //===----------------------------------------------------------------------===//
3086 //  Loop Strength Reduction hooks
3087 //===----------------------------------------------------------------------===//
3088 
3089 /// isLegalAddressingMode - Return true if the addressing mode represented
3090 /// by AM is legal for this target, for a load/store of the specified type.
3091 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3092                                            const Type *Ty) const {
3093   // The default implementation of this implements a conservative RISCy, r+r and
3094   // r+i addr mode.
3095 
3096   // Allows a sign-extended 16-bit immediate field.
3097   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3098     return false;
3099 
3100   // No global is ever allowed as a base.
3101   if (AM.BaseGV)
3102     return false;
3103 
3104   // Only support r+r,
3105   switch (AM.Scale) {
3106   case 0:  // "r+i" or just "i", depending on HasBaseReg.
3107     break;
3108   case 1:
3109     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3110       return false;
3111     // Otherwise we have r+r or r+i.
3112     break;
3113   case 2:
3114     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3115       return false;
3116     // Allow 2*r as r+r.
3117     break;
3118   }
3119 
3120   return true;
3121 }
3122 
3123 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3124 /// return a DAG expression to select that will generate the same value by
3125 /// multiplying by a magic number.  See:
3126 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3127 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3128                                   std::vector<SDNode*>* Created) const {
3129   EVT VT = N->getValueType(0);
3130   DebugLoc dl= N->getDebugLoc();
3131 
3132   // Check to see if we can do this.
3133   // FIXME: We should be more aggressive here.
3134   if (!isTypeLegal(VT))
3135     return SDValue();
3136 
3137   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3138   APInt::ms magics = d.magic();
3139 
3140   // Multiply the numerator (operand 0) by the magic value
3141   // FIXME: We should support doing a MUL in a wider type
3142   SDValue Q;
3143   if (isOperationLegalOrCustom(ISD::MULHS, VT))
3144     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3145                     DAG.getConstant(magics.m, VT));
3146   else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3147     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3148                               N->getOperand(0),
3149                               DAG.getConstant(magics.m, VT)).getNode(), 1);
3150   else
3151     return SDValue();       // No mulhs or equvialent
3152   // If d > 0 and m < 0, add the numerator
3153   if (d.isStrictlyPositive() && magics.m.isNegative()) {
3154     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3155     if (Created)
3156       Created->push_back(Q.getNode());
3157   }
3158   // If d < 0 and m > 0, subtract the numerator.
3159   if (d.isNegative() && magics.m.isStrictlyPositive()) {
3160     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3161     if (Created)
3162       Created->push_back(Q.getNode());
3163   }
3164   // Shift right algebraic if shift value is nonzero
3165   if (magics.s > 0) {
3166     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3167                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3168     if (Created)
3169       Created->push_back(Q.getNode());
3170   }
3171   // Extract the sign bit and add it to the quotient
3172   SDValue T =
3173     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3174                                            getShiftAmountTy(Q.getValueType())));
3175   if (Created)
3176     Created->push_back(T.getNode());
3177   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3178 }
3179 
3180 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3181 /// return a DAG expression to select that will generate the same value by
3182 /// multiplying by a magic number.  See:
3183 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3184 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3185                                   std::vector<SDNode*>* Created) const {
3186   EVT VT = N->getValueType(0);
3187   DebugLoc dl = N->getDebugLoc();
3188 
3189   // Check to see if we can do this.
3190   // FIXME: We should be more aggressive here.
3191   if (!isTypeLegal(VT))
3192     return SDValue();
3193 
3194   // FIXME: We should use a narrower constant when the upper
3195   // bits are known to be zero.
3196   const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3197   APInt::mu magics = N1C.magicu();
3198 
3199   SDValue Q = N->getOperand(0);
3200 
3201   // If the divisor is even, we can avoid using the expensive fixup by shifting
3202   // the divided value upfront.
3203   if (magics.a != 0 && !N1C[0]) {
3204     unsigned Shift = N1C.countTrailingZeros();
3205     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3206                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3207     if (Created)
3208       Created->push_back(Q.getNode());
3209 
3210     // Get magic number for the shifted divisor.
3211     magics = N1C.lshr(Shift).magicu(Shift);
3212     assert(magics.a == 0 && "Should use cheap fixup now");
3213   }
3214 
3215   // Multiply the numerator (operand 0) by the magic value
3216   // FIXME: We should support doing a MUL in a wider type
3217   if (isOperationLegalOrCustom(ISD::MULHU, VT))
3218     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3219   else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3220     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3221                             DAG.getConstant(magics.m, VT)).getNode(), 1);
3222   else
3223     return SDValue();       // No mulhu or equvialent
3224   if (Created)
3225     Created->push_back(Q.getNode());
3226 
3227   if (magics.a == 0) {
3228     assert(magics.s < N1C.getBitWidth() &&
3229            "We shouldn't generate an undefined shift!");
3230     return DAG.getNode(ISD::SRL, dl, VT, Q,
3231                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3232   } else {
3233     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3234     if (Created)
3235       Created->push_back(NPQ.getNode());
3236     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3237                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3238     if (Created)
3239       Created->push_back(NPQ.getNode());
3240     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3241     if (Created)
3242       Created->push_back(NPQ.getNode());
3243     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3244              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3245   }
3246 }
3247