1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCExpr.h"
28 #include "llvm/Support/DivisionByConstantInfo.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cctype>
34 using namespace llvm;
35 
36 /// NOTE: The TargetMachine owns TLOF.
37 TargetLowering::TargetLowering(const TargetMachine &tm)
38     : TargetLoweringBase(tm) {}
39 
40 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
41   return nullptr;
42 }
43 
44 bool TargetLowering::isPositionIndependent() const {
45   return getTargetMachine().isPositionIndependent();
46 }
47 
48 /// Check whether a given call node is in tail position within its function. If
49 /// so, it sets Chain to the input chain of the tail call.
50 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
51                                           SDValue &Chain) const {
52   const Function &F = DAG.getMachineFunction().getFunction();
53 
54   // First, check if tail calls have been disabled in this function.
55   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
56     return false;
57 
58   // Conservatively require the attributes of the call to match those of
59   // the return. Ignore following attributes because they don't affect the
60   // call sequence.
61   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
62   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
63                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
64                            Attribute::NonNull, Attribute::NoUndef})
65     CallerAttrs.removeAttribute(Attr);
66 
67   if (CallerAttrs.hasAttributes())
68     return false;
69 
70   // It's not safe to eliminate the sign / zero extension of the return value.
71   if (CallerAttrs.contains(Attribute::ZExt) ||
72       CallerAttrs.contains(Attribute::SExt))
73     return false;
74 
75   // Check if the only use is a function return node.
76   return isUsedByReturnOnly(Node, Chain);
77 }
78 
79 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
80     const uint32_t *CallerPreservedMask,
81     const SmallVectorImpl<CCValAssign> &ArgLocs,
82     const SmallVectorImpl<SDValue> &OutVals) const {
83   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
84     const CCValAssign &ArgLoc = ArgLocs[I];
85     if (!ArgLoc.isRegLoc())
86       continue;
87     MCRegister Reg = ArgLoc.getLocReg();
88     // Only look at callee saved registers.
89     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
90       continue;
91     // Check that we pass the value used for the caller.
92     // (We look for a CopyFromReg reading a virtual register that is used
93     //  for the function live-in value of register Reg)
94     SDValue Value = OutVals[I];
95     if (Value->getOpcode() == ISD::AssertZext)
96       Value = Value.getOperand(0);
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135   if (IsSRet)
136     IndirectType = Call->getParamStructRetType(ArgIdx);
137 }
138 
139 /// Generate a libcall taking the given operands as arguments and returning a
140 /// result of type RetVT.
141 std::pair<SDValue, SDValue>
142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
143                             ArrayRef<SDValue> Ops,
144                             MakeLibCallOptions CallOptions,
145                             const SDLoc &dl,
146                             SDValue InChain) const {
147   if (!InChain)
148     InChain = DAG.getEntryNode();
149 
150   TargetLowering::ArgListTy Args;
151   Args.reserve(Ops.size());
152 
153   TargetLowering::ArgListEntry Entry;
154   for (unsigned i = 0; i < Ops.size(); ++i) {
155     SDValue NewOp = Ops[i];
156     Entry.Node = NewOp;
157     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
158     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
159                                                  CallOptions.IsSExt);
160     Entry.IsZExt = !Entry.IsSExt;
161 
162     if (CallOptions.IsSoften &&
163         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
164       Entry.IsSExt = Entry.IsZExt = false;
165     }
166     Args.push_back(Entry);
167   }
168 
169   if (LC == RTLIB::UNKNOWN_LIBCALL)
170     report_fatal_error("Unsupported library call operation!");
171   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
172                                          getPointerTy(DAG.getDataLayout()));
173 
174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
175   TargetLowering::CallLoweringInfo CLI(DAG);
176   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
177   bool zeroExtend = !signExtend;
178 
179   if (CallOptions.IsSoften &&
180       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
181     signExtend = zeroExtend = false;
182   }
183 
184   CLI.setDebugLoc(dl)
185       .setChain(InChain)
186       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
187       .setNoReturn(CallOptions.DoesNotReturn)
188       .setDiscardResult(!CallOptions.IsReturnValueUsed)
189       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
190       .setSExtResult(signExtend)
191       .setZExtResult(zeroExtend);
192   return LowerCallTo(CLI);
193 }
194 
195 bool TargetLowering::findOptimalMemOpLowering(
196     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
197     unsigned SrcAS, const AttributeList &FuncAttributes) const {
198   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
199     return false;
200 
201   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     if (Op.isFixedDstAlign())
209       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
210              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
211         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
212     assert(VT.isInteger());
213 
214     // Find the largest legal integer type.
215     MVT LVT = MVT::i64;
216     while (!isTypeLegal(LVT))
217       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
218     assert(LVT.isInteger());
219 
220     // If the type we've chosen is larger than the largest legal integer type
221     // then use that instead.
222     if (VT.bitsGT(LVT))
223       VT = LVT;
224   }
225 
226   unsigned NumMemOps = 0;
227   uint64_t Size = Op.size();
228   while (Size) {
229     unsigned VTSize = VT.getSizeInBits() / 8;
230     while (VTSize > Size) {
231       // For now, only use non-vector load / store's for the left-over pieces.
232       EVT NewVT = VT;
233       unsigned NewVTSize;
234 
235       bool Found = false;
236       if (VT.isVector() || VT.isFloatingPoint()) {
237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
238         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
239             isSafeMemOpType(NewVT.getSimpleVT()))
240           Found = true;
241         else if (NewVT == MVT::i64 &&
242                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
243                  isSafeMemOpType(MVT::f64)) {
244           // i64 is usually not legal on 32-bit targets, but f64 may be.
245           NewVT = MVT::f64;
246           Found = true;
247         }
248       }
249 
250       if (!Found) {
251         do {
252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
253           if (NewVT == MVT::i8)
254             break;
255         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
256       }
257       NewVTSize = NewVT.getSizeInBits() / 8;
258 
259       // If the new VT cannot cover all of the remaining bits, then consider
260       // issuing a (or a pair of) unaligned and overlapping load / store.
261       bool Fast;
262       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
263           allowsMisalignedMemoryAccesses(
264               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
265               MachineMemOperand::MONone, &Fast) &&
266           Fast)
267         VTSize = Size;
268       else {
269         VT = NewVT;
270         VTSize = NewVTSize;
271       }
272     }
273 
274     if (++NumMemOps > Limit)
275       return false;
276 
277     MemOps.push_back(VT);
278     Size -= VTSize;
279   }
280 
281   return true;
282 }
283 
284 /// Soften the operands of a comparison. This code is shared among BR_CC,
285 /// SELECT_CC, and SETCC handlers.
286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
287                                          SDValue &NewLHS, SDValue &NewRHS,
288                                          ISD::CondCode &CCCode,
289                                          const SDLoc &dl, const SDValue OldLHS,
290                                          const SDValue OldRHS) const {
291   SDValue Chain;
292   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
293                              OldRHS, Chain);
294 }
295 
296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
297                                          SDValue &NewLHS, SDValue &NewRHS,
298                                          ISD::CondCode &CCCode,
299                                          const SDLoc &dl, const SDValue OldLHS,
300                                          const SDValue OldRHS,
301                                          SDValue &Chain,
302                                          bool IsSignaling) const {
303   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
304   // not supporting it. We can update this code when libgcc provides such
305   // functions.
306 
307   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
308          && "Unsupported setcc type!");
309 
310   // Expand into one or more soft-fp libcall(s).
311   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
312   bool ShouldInvertCC = false;
313   switch (CCCode) {
314   case ISD::SETEQ:
315   case ISD::SETOEQ:
316     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
317           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
318           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
319     break;
320   case ISD::SETNE:
321   case ISD::SETUNE:
322     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
323           (VT == MVT::f64) ? RTLIB::UNE_F64 :
324           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
325     break;
326   case ISD::SETGE:
327   case ISD::SETOGE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
329           (VT == MVT::f64) ? RTLIB::OGE_F64 :
330           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
331     break;
332   case ISD::SETLT:
333   case ISD::SETOLT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
335           (VT == MVT::f64) ? RTLIB::OLT_F64 :
336           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
337     break;
338   case ISD::SETLE:
339   case ISD::SETOLE:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
341           (VT == MVT::f64) ? RTLIB::OLE_F64 :
342           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
343     break;
344   case ISD::SETGT:
345   case ISD::SETOGT:
346     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETO:
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUO:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     break;
358   case ISD::SETONE:
359     // SETONE = O && UNE
360     ShouldInvertCC = true;
361     LLVM_FALLTHROUGH;
362   case ISD::SETUEQ:
363     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
364           (VT == MVT::f64) ? RTLIB::UO_F64 :
365           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
366     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
367           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
368           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
369     break;
370   default:
371     // Invert CC for unordered comparisons
372     ShouldInvertCC = true;
373     switch (CCCode) {
374     case ISD::SETULT:
375       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
376             (VT == MVT::f64) ? RTLIB::OGE_F64 :
377             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
378       break;
379     case ISD::SETULE:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
381             (VT == MVT::f64) ? RTLIB::OGT_F64 :
382             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
383       break;
384     case ISD::SETUGT:
385       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
386             (VT == MVT::f64) ? RTLIB::OLE_F64 :
387             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
388       break;
389     case ISD::SETUGE:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
391             (VT == MVT::f64) ? RTLIB::OLT_F64 :
392             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
393       break;
394     default: llvm_unreachable("Do not know how to soften this setcc!");
395     }
396   }
397 
398   // Use the target specific return value for comparions lib calls.
399   EVT RetVT = getCmpLibcallReturnType();
400   SDValue Ops[2] = {NewLHS, NewRHS};
401   TargetLowering::MakeLibCallOptions CallOptions;
402   EVT OpsVT[2] = { OldLHS.getValueType(),
403                    OldRHS.getValueType() };
404   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
405   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
406   NewLHS = Call.first;
407   NewRHS = DAG.getConstant(0, dl, RetVT);
408 
409   CCCode = getCmpLibcallCC(LC1);
410   if (ShouldInvertCC) {
411     assert(RetVT.isInteger());
412     CCCode = getSetCCInverse(CCCode, RetVT);
413   }
414 
415   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
416     // Update Chain.
417     Chain = Call.second;
418   } else {
419     EVT SetCCVT =
420         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
421     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
422     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
423     CCCode = getCmpLibcallCC(LC2);
424     if (ShouldInvertCC)
425       CCCode = getSetCCInverse(CCCode, RetVT);
426     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
427     if (Chain)
428       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
429                           Call2.second);
430     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
431                          Tmp.getValueType(), Tmp, NewLHS);
432     NewRHS = SDValue();
433   }
434 }
435 
436 /// Return the entry encoding for a jump table in the current function. The
437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
438 unsigned TargetLowering::getJumpTableEncoding() const {
439   // In non-pic modes, just use the address of a block.
440   if (!isPositionIndependent())
441     return MachineJumpTableInfo::EK_BlockAddress;
442 
443   // In PIC mode, if the target supports a GPRel32 directive, use it.
444   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
445     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
446 
447   // Otherwise, use a label difference.
448   return MachineJumpTableInfo::EK_LabelDifference32;
449 }
450 
451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
452                                                  SelectionDAG &DAG) const {
453   // If our PIC model is GP relative, use the global offset table as the base.
454   unsigned JTEncoding = getJumpTableEncoding();
455 
456   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
457       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
458     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
459 
460   return Table;
461 }
462 
463 /// This returns the relocation base for the given PIC jumptable, the same as
464 /// getPICJumpTableRelocBase, but as an MCExpr.
465 const MCExpr *
466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
467                                              unsigned JTI,MCContext &Ctx) const{
468   // The normal PIC reloc base is the label at the start of the jump table.
469   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
470 }
471 
472 bool
473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
474   const TargetMachine &TM = getTargetMachine();
475   const GlobalValue *GV = GA->getGlobal();
476 
477   // If the address is not even local to this DSO we will have to load it from
478   // a got and then add the offset.
479   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
480     return false;
481 
482   // If the code is position independent we will have to add a base register.
483   if (isPositionIndependent())
484     return false;
485 
486   // Otherwise we can do it.
487   return true;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //  Optimization Methods
492 //===----------------------------------------------------------------------===//
493 
494 /// If the specified instruction has a constant integer operand and there are
495 /// bits set in that constant that are not demanded, then clear those bits and
496 /// return true.
497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
498                                             const APInt &DemandedBits,
499                                             const APInt &DemandedElts,
500                                             TargetLoweringOpt &TLO) const {
501   SDLoc DL(Op);
502   unsigned Opcode = Op.getOpcode();
503 
504   // Do target-specific constant optimization.
505   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
506     return TLO.New.getNode();
507 
508   // FIXME: ISD::SELECT, ISD::SELECT_CC
509   switch (Opcode) {
510   default:
511     break;
512   case ISD::XOR:
513   case ISD::AND:
514   case ISD::OR: {
515     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
516     if (!Op1C || Op1C->isOpaque())
517       return false;
518 
519     // If this is a 'not' op, don't touch it because that's a canonical form.
520     const APInt &C = Op1C->getAPIntValue();
521     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
522       return false;
523 
524     if (!C.isSubsetOf(DemandedBits)) {
525       EVT VT = Op.getValueType();
526       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
527       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
528       return TLO.CombineTo(Op, NewOp);
529     }
530 
531     break;
532   }
533   }
534 
535   return false;
536 }
537 
538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
539                                             const APInt &DemandedBits,
540                                             TargetLoweringOpt &TLO) const {
541   EVT VT = Op.getValueType();
542   APInt DemandedElts = VT.isVector()
543                            ? APInt::getAllOnes(VT.getVectorNumElements())
544                            : APInt(1, 1);
545   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
546 }
547 
548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
550 /// generalized for targets with other types of implicit widening casts.
551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
552                                       const APInt &Demanded,
553                                       TargetLoweringOpt &TLO) const {
554   assert(Op.getNumOperands() == 2 &&
555          "ShrinkDemandedOp only supports binary operators!");
556   assert(Op.getNode()->getNumValues() == 1 &&
557          "ShrinkDemandedOp only supports nodes with one result!");
558 
559   SelectionDAG &DAG = TLO.DAG;
560   SDLoc dl(Op);
561 
562   // Early return, as this function cannot handle vector types.
563   if (Op.getValueType().isVector())
564     return false;
565 
566   // Don't do this if the node has another user, which may require the
567   // full value.
568   if (!Op.getNode()->hasOneUse())
569     return false;
570 
571   // Search for the smallest integer type with free casts to and from
572   // Op's type. For expedience, just check power-of-2 integer types.
573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
574   unsigned DemandedSize = Demanded.getActiveBits();
575   unsigned SmallVTBits = DemandedSize;
576   if (!isPowerOf2_32(SmallVTBits))
577     SmallVTBits = NextPowerOf2(SmallVTBits);
578   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
579     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
580     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
581         TLI.isZExtFree(SmallVT, Op.getValueType())) {
582       // We found a type with free casts.
583       SDValue X = DAG.getNode(
584           Op.getOpcode(), dl, SmallVT,
585           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
586           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
587       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
588       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
589       return TLO.CombineTo(Op, Z);
590     }
591   }
592   return false;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           DAGCombinerInfo &DCI) const {
597   SelectionDAG &DAG = DCI.DAG;
598   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
599                         !DCI.isBeforeLegalizeOps());
600   KnownBits Known;
601 
602   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
603   if (Simplified) {
604     DCI.AddToWorklist(Op.getNode());
605     DCI.CommitTargetLoweringOpt(TLO);
606   }
607   return Simplified;
608 }
609 
610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
611                                           const APInt &DemandedElts,
612                                           DAGCombinerInfo &DCI) const {
613   SelectionDAG &DAG = DCI.DAG;
614   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
615                         !DCI.isBeforeLegalizeOps());
616   KnownBits Known;
617 
618   bool Simplified =
619       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
620   if (Simplified) {
621     DCI.AddToWorklist(Op.getNode());
622     DCI.CommitTargetLoweringOpt(TLO);
623   }
624   return Simplified;
625 }
626 
627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
628                                           KnownBits &Known,
629                                           TargetLoweringOpt &TLO,
630                                           unsigned Depth,
631                                           bool AssumeSingleUse) const {
632   EVT VT = Op.getValueType();
633 
634   // TODO: We can probably do more work on calculating the known bits and
635   // simplifying the operations for scalable vectors, but for now we just
636   // bail out.
637   if (VT.isScalableVector()) {
638     // Pretend we don't know anything for now.
639     Known = KnownBits(DemandedBits.getBitWidth());
640     return false;
641   }
642 
643   APInt DemandedElts = VT.isVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
651 // TODO: Under what circumstances can we create nodes? Constant folding?
652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
653     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
654     SelectionDAG &DAG, unsigned Depth) const {
655   // Limit search depth.
656   if (Depth >= SelectionDAG::MaxRecursionDepth)
657     return SDValue();
658 
659   // Ignore UNDEFs.
660   if (Op.isUndef())
661     return SDValue();
662 
663   // Not demanding any bits/elts from Op.
664   if (DemandedBits == 0 || DemandedElts == 0)
665     return DAG.getUNDEF(Op.getValueType());
666 
667   bool IsLE = DAG.getDataLayout().isLittleEndian();
668   unsigned NumElts = DemandedElts.getBitWidth();
669   unsigned BitWidth = DemandedBits.getBitWidth();
670   KnownBits LHSKnown, RHSKnown;
671   switch (Op.getOpcode()) {
672   case ISD::BITCAST: {
673     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
674     EVT SrcVT = Src.getValueType();
675     EVT DstVT = Op.getValueType();
676     if (SrcVT == DstVT)
677       return Src;
678 
679     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
680     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
681     if (NumSrcEltBits == NumDstEltBits)
682       if (SDValue V = SimplifyMultipleUseDemandedBits(
683               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
684         return DAG.getBitcast(DstVT, V);
685 
686     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
687       unsigned Scale = NumDstEltBits / NumSrcEltBits;
688       unsigned NumSrcElts = SrcVT.getVectorNumElements();
689       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
690       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
691       for (unsigned i = 0; i != Scale; ++i) {
692         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
693         unsigned BitOffset = EltOffset * NumSrcEltBits;
694         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
695         if (!Sub.isZero()) {
696           DemandedSrcBits |= Sub;
697           for (unsigned j = 0; j != NumElts; ++j)
698             if (DemandedElts[j])
699               DemandedSrcElts.setBit((j * Scale) + i);
700         }
701       }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     // TODO - bigendian once we have test coverage.
709     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
710       unsigned Scale = NumSrcEltBits / NumDstEltBits;
711       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != NumElts; ++i)
715         if (DemandedElts[i]) {
716           unsigned Offset = (i % Scale) * NumDstEltBits;
717           DemandedSrcBits.insertBits(DemandedBits, Offset);
718           DemandedSrcElts.setBit(i / Scale);
719         }
720 
721       if (SDValue V = SimplifyMultipleUseDemandedBits(
722               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
723         return DAG.getBitcast(DstVT, V);
724     }
725 
726     break;
727   }
728   case ISD::AND: {
729     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
730     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
731 
732     // If all of the demanded bits are known 1 on one side, return the other.
733     // These bits cannot contribute to the result of the 'and' in this
734     // context.
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::OR: {
742     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
743     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
744 
745     // If all of the demanded bits are known zero on one side, return the
746     // other.  These bits cannot contribute to the result of the 'or' in this
747     // context.
748     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
749       return Op.getOperand(0);
750     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
751       return Op.getOperand(1);
752     break;
753   }
754   case ISD::XOR: {
755     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
756     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
757 
758     // If all of the demanded bits are known zero on one side, return the
759     // other.
760     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
761       return Op.getOperand(0);
762     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
763       return Op.getOperand(1);
764     break;
765   }
766   case ISD::SHL: {
767     // If we are only demanding sign bits then we can use the shift source
768     // directly.
769     if (const APInt *MaxSA =
770             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
771       SDValue Op0 = Op.getOperand(0);
772       unsigned ShAmt = MaxSA->getZExtValue();
773       unsigned NumSignBits =
774           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
775       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
776       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
777         return Op0;
778     }
779     break;
780   }
781   case ISD::SETCC: {
782     SDValue Op0 = Op.getOperand(0);
783     SDValue Op1 = Op.getOperand(1);
784     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
785     // If (1) we only need the sign-bit, (2) the setcc operands are the same
786     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
787     // -1, we may be able to bypass the setcc.
788     if (DemandedBits.isSignMask() &&
789         Op0.getScalarValueSizeInBits() == BitWidth &&
790         getBooleanContents(Op0.getValueType()) ==
791             BooleanContent::ZeroOrNegativeOneBooleanContent) {
792       // If we're testing X < 0, then this compare isn't needed - just use X!
793       // FIXME: We're limiting to integer types here, but this should also work
794       // if we don't care about FP signed-zero. The use of SETLT with FP means
795       // that we don't care about NaNs.
796       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
797           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
798         return Op0;
799     }
800     break;
801   }
802   case ISD::SIGN_EXTEND_INREG: {
803     // If none of the extended bits are demanded, eliminate the sextinreg.
804     SDValue Op0 = Op.getOperand(0);
805     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
806     unsigned ExBits = ExVT.getScalarSizeInBits();
807     if (DemandedBits.getActiveBits() <= ExBits)
808       return Op0;
809     // If the input is already sign extended, just drop the extension.
810     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
811     if (NumSignBits >= (BitWidth - ExBits + 1))
812       return Op0;
813     break;
814   }
815   case ISD::ANY_EXTEND_VECTOR_INREG:
816   case ISD::SIGN_EXTEND_VECTOR_INREG:
817   case ISD::ZERO_EXTEND_VECTOR_INREG: {
818     // If we only want the lowest element and none of extended bits, then we can
819     // return the bitcasted source vector.
820     SDValue Src = Op.getOperand(0);
821     EVT SrcVT = Src.getValueType();
822     EVT DstVT = Op.getValueType();
823     if (IsLE && DemandedElts == 1 &&
824         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
825         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
826       return DAG.getBitcast(DstVT, Src);
827     }
828     break;
829   }
830   case ISD::INSERT_VECTOR_ELT: {
831     // If we don't demand the inserted element, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
834     EVT VecVT = Vec.getValueType();
835     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
836         !DemandedElts[CIdx->getZExtValue()])
837       return Vec;
838     break;
839   }
840   case ISD::INSERT_SUBVECTOR: {
841     SDValue Vec = Op.getOperand(0);
842     SDValue Sub = Op.getOperand(1);
843     uint64_t Idx = Op.getConstantOperandVal(2);
844     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
845     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
846     // If we don't demand the inserted subvector, return the base vector.
847     if (DemandedSubElts == 0)
848       return Vec;
849     // If this simply widens the lowest subvector, see if we can do it earlier.
850     if (Idx == 0 && Vec.isUndef()) {
851       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
852               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
853         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
854                            Op.getOperand(0), NewSub, Op.getOperand(2));
855     }
856     break;
857   }
858   case ISD::VECTOR_SHUFFLE: {
859     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
860 
861     // If all the demanded elts are from one operand and are inline,
862     // then we can use the operand directly.
863     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
864     for (unsigned i = 0; i != NumElts; ++i) {
865       int M = ShuffleMask[i];
866       if (M < 0 || !DemandedElts[i])
867         continue;
868       AllUndef = false;
869       IdentityLHS &= (M == (int)i);
870       IdentityRHS &= ((M - NumElts) == i);
871     }
872 
873     if (AllUndef)
874       return DAG.getUNDEF(Op.getValueType());
875     if (IdentityLHS)
876       return Op.getOperand(0);
877     if (IdentityRHS)
878       return Op.getOperand(1);
879     break;
880   }
881   default:
882     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
883       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
884               Op, DemandedBits, DemandedElts, DAG, Depth))
885         return V;
886     break;
887   }
888   return SDValue();
889 }
890 
891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
892     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
893     unsigned Depth) const {
894   EVT VT = Op.getValueType();
895   APInt DemandedElts = VT.isVector()
896                            ? APInt::getAllOnes(VT.getVectorNumElements())
897                            : APInt(1, 1);
898   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
899                                          Depth);
900 }
901 
902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
903     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
904     unsigned Depth) const {
905   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
906   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
907                                          Depth);
908 }
909 
910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
911 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
913                                  const TargetLowering &TLI,
914                                  const APInt &DemandedBits,
915                                  const APInt &DemandedElts,
916                                  unsigned Depth) {
917   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
918          "SRL or SRA node is required here!");
919   // Is the right shift using an immediate value of 1?
920   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
921   if (!N1C || !N1C->isOne())
922     return SDValue();
923 
924   // We are looking for an avgfloor
925   // add(ext, ext)
926   // or one of these as a avgceil
927   // add(add(ext, ext), 1)
928   // add(add(ext, 1), ext)
929   // add(ext, add(ext, 1))
930   SDValue Add = Op.getOperand(0);
931   if (Add.getOpcode() != ISD::ADD)
932     return SDValue();
933 
934   SDValue ExtOpA = Add.getOperand(0);
935   SDValue ExtOpB = Add.getOperand(1);
936   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
937     ConstantSDNode *ConstOp;
938     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
939         ConstOp->isOne()) {
940       ExtOpA = Op2;
941       ExtOpB = Op3;
942       return true;
943     }
944     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
945         ConstOp->isOne()) {
946       ExtOpA = Op1;
947       ExtOpB = Op3;
948       return true;
949     }
950     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
951         ConstOp->isOne()) {
952       ExtOpA = Op1;
953       ExtOpB = Op2;
954       return true;
955     }
956     return false;
957   };
958   bool IsCeil =
959       (ExtOpA.getOpcode() == ISD::ADD &&
960        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
961       (ExtOpB.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
963 
964   // If the shift is signed (sra):
965   //  - Needs >= 2 sign bit for both operands.
966   //  - Needs >= 2 zero bits.
967   // If the shift is unsigned (srl):
968   //  - Needs >= 1 zero bit for both operands.
969   //  - Needs 1 demanded bit zero and >= 2 sign bits.
970   unsigned ShiftOpc = Op.getOpcode();
971   bool IsSigned = false;
972   unsigned KnownBits;
973   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
974   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
975   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
976   unsigned NumZeroA =
977       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
978   unsigned NumZeroB =
979       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZero = std::min(NumZeroA, NumZeroB);
981 
982   switch (ShiftOpc) {
983   default:
984     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
985   case ISD::SRA: {
986     if (NumZero >= 2 && NumSigned < NumZero) {
987       IsSigned = false;
988       KnownBits = NumZero;
989       break;
990     }
991     if (NumSigned >= 1) {
992       IsSigned = true;
993       KnownBits = NumSigned;
994       break;
995     }
996     return SDValue();
997   }
998   case ISD::SRL: {
999     if (NumZero >= 1 && NumSigned < NumZero) {
1000       IsSigned = false;
1001       KnownBits = NumZero;
1002       break;
1003     }
1004     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1005       IsSigned = true;
1006       KnownBits = NumSigned;
1007       break;
1008     }
1009     return SDValue();
1010   }
1011   }
1012 
1013   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1014                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1015 
1016   // Find the smallest power-2 type that is legal for this vector size and
1017   // operation, given the original type size and the number of known sign/zero
1018   // bits.
1019   EVT VT = Op.getValueType();
1020   unsigned MinWidth =
1021       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1022   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1023   if (VT.isVector())
1024     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1025   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1026     return SDValue();
1027 
1028   SDLoc DL(Op);
1029   SDValue ResultAVG =
1030       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1031                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1032   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1033                      ResultAVG);
1034 }
1035 
1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1037 /// result of Op are ever used downstream. If we can use this information to
1038 /// simplify Op, create a new simplified DAG node and return true, returning the
1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1040 /// return a mask of Known bits for the expression (used to simplify the
1041 /// caller).  The Known bits may only be accurate for those bits in the
1042 /// OriginalDemandedBits and OriginalDemandedElts.
1043 bool TargetLowering::SimplifyDemandedBits(
1044     SDValue Op, const APInt &OriginalDemandedBits,
1045     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1046     unsigned Depth, bool AssumeSingleUse) const {
1047   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1048   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1049          "Mask size mismatches value type size!");
1050 
1051   // Don't know anything.
1052   Known = KnownBits(BitWidth);
1053 
1054   // TODO: We can probably do more work on calculating the known bits and
1055   // simplifying the operations for scalable vectors, but for now we just
1056   // bail out.
1057   if (Op.getValueType().isScalableVector())
1058     return false;
1059 
1060   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1061   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1062   assert((!Op.getValueType().isVector() ||
1063           NumElts == Op.getValueType().getVectorNumElements()) &&
1064          "Unexpected vector size");
1065 
1066   APInt DemandedBits = OriginalDemandedBits;
1067   APInt DemandedElts = OriginalDemandedElts;
1068   SDLoc dl(Op);
1069   auto &DL = TLO.DAG.getDataLayout();
1070 
1071   // Undef operand.
1072   if (Op.isUndef())
1073     return false;
1074 
1075   if (Op.getOpcode() == ISD::Constant) {
1076     // We know all of the bits for a constant!
1077     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1078     return false;
1079   }
1080 
1081   if (Op.getOpcode() == ISD::ConstantFP) {
1082     // We know all of the bits for a floating point constant!
1083     Known = KnownBits::makeConstant(
1084         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1085     return false;
1086   }
1087 
1088   // Other users may use these bits.
1089   EVT VT = Op.getValueType();
1090   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1091     if (Depth != 0) {
1092       // If not at the root, Just compute the Known bits to
1093       // simplify things downstream.
1094       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1095       return false;
1096     }
1097     // If this is the root being simplified, allow it to have multiple uses,
1098     // just set the DemandedBits/Elts to all bits.
1099     DemandedBits = APInt::getAllOnes(BitWidth);
1100     DemandedElts = APInt::getAllOnes(NumElts);
1101   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1102     // Not demanding any bits/elts from Op.
1103     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1104   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1105     // Limit search depth.
1106     return false;
1107   }
1108 
1109   KnownBits Known2;
1110   switch (Op.getOpcode()) {
1111   case ISD::TargetConstant:
1112     llvm_unreachable("Can't simplify this node");
1113   case ISD::SCALAR_TO_VECTOR: {
1114     if (!DemandedElts[0])
1115       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1116 
1117     KnownBits SrcKnown;
1118     SDValue Src = Op.getOperand(0);
1119     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1120     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
1121     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1122       return true;
1123 
1124     // Upper elements are undef, so only get the knownbits if we just demand
1125     // the bottom element.
1126     if (DemandedElts == 1)
1127       Known = SrcKnown.anyextOrTrunc(BitWidth);
1128     break;
1129   }
1130   case ISD::BUILD_VECTOR:
1131     // Collect the known bits that are shared by every demanded element.
1132     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1134     return false; // Don't fall through, will infinitely loop.
1135   case ISD::LOAD: {
1136     auto *LD = cast<LoadSDNode>(Op);
1137     if (getTargetConstantFromLoad(LD)) {
1138       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1139       return false; // Don't fall through, will infinitely loop.
1140     }
1141     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1142       // If this is a ZEXTLoad and we are looking at the loaded value.
1143       EVT MemVT = LD->getMemoryVT();
1144       unsigned MemBits = MemVT.getScalarSizeInBits();
1145       Known.Zero.setBitsFrom(MemBits);
1146       return false; // Don't fall through, will infinitely loop.
1147     }
1148     break;
1149   }
1150   case ISD::INSERT_VECTOR_ELT: {
1151     SDValue Vec = Op.getOperand(0);
1152     SDValue Scl = Op.getOperand(1);
1153     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1154     EVT VecVT = Vec.getValueType();
1155 
1156     // If index isn't constant, assume we need all vector elements AND the
1157     // inserted element.
1158     APInt DemandedVecElts(DemandedElts);
1159     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1160       unsigned Idx = CIdx->getZExtValue();
1161       DemandedVecElts.clearBit(Idx);
1162 
1163       // Inserted element is not required.
1164       if (!DemandedElts[Idx])
1165         return TLO.CombineTo(Op, Vec);
1166     }
1167 
1168     KnownBits KnownScl;
1169     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1170     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1171     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1172       return true;
1173 
1174     Known = KnownScl.anyextOrTrunc(BitWidth);
1175 
1176     KnownBits KnownVec;
1177     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1178                              Depth + 1))
1179       return true;
1180 
1181     if (!!DemandedVecElts)
1182       Known = KnownBits::commonBits(Known, KnownVec);
1183 
1184     return false;
1185   }
1186   case ISD::INSERT_SUBVECTOR: {
1187     // Demand any elements from the subvector and the remainder from the src its
1188     // inserted into.
1189     SDValue Src = Op.getOperand(0);
1190     SDValue Sub = Op.getOperand(1);
1191     uint64_t Idx = Op.getConstantOperandVal(2);
1192     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1193     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1194     APInt DemandedSrcElts = DemandedElts;
1195     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1196 
1197     KnownBits KnownSub, KnownSrc;
1198     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1199                              Depth + 1))
1200       return true;
1201     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1202                              Depth + 1))
1203       return true;
1204 
1205     Known.Zero.setAllBits();
1206     Known.One.setAllBits();
1207     if (!!DemandedSubElts)
1208       Known = KnownBits::commonBits(Known, KnownSub);
1209     if (!!DemandedSrcElts)
1210       Known = KnownBits::commonBits(Known, KnownSrc);
1211 
1212     // Attempt to avoid multi-use src if we don't need anything from it.
1213     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1214         !DemandedSrcElts.isAllOnes()) {
1215       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1216           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1217       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1218           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1219       if (NewSub || NewSrc) {
1220         NewSub = NewSub ? NewSub : Sub;
1221         NewSrc = NewSrc ? NewSrc : Src;
1222         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1223                                         Op.getOperand(2));
1224         return TLO.CombineTo(Op, NewOp);
1225       }
1226     }
1227     break;
1228   }
1229   case ISD::EXTRACT_SUBVECTOR: {
1230     // Offset the demanded elts by the subvector index.
1231     SDValue Src = Op.getOperand(0);
1232     if (Src.getValueType().isScalableVector())
1233       break;
1234     uint64_t Idx = Op.getConstantOperandVal(1);
1235     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1236     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1237 
1238     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1239                              Depth + 1))
1240       return true;
1241 
1242     // Attempt to avoid multi-use src if we don't need anything from it.
1243     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1244       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1245           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1246       if (DemandedSrc) {
1247         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1248                                         Op.getOperand(1));
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252     break;
1253   }
1254   case ISD::CONCAT_VECTORS: {
1255     Known.Zero.setAllBits();
1256     Known.One.setAllBits();
1257     EVT SubVT = Op.getOperand(0).getValueType();
1258     unsigned NumSubVecs = Op.getNumOperands();
1259     unsigned NumSubElts = SubVT.getVectorNumElements();
1260     for (unsigned i = 0; i != NumSubVecs; ++i) {
1261       APInt DemandedSubElts =
1262           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1263       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1264                                Known2, TLO, Depth + 1))
1265         return true;
1266       // Known bits are shared by every demanded subvector element.
1267       if (!!DemandedSubElts)
1268         Known = KnownBits::commonBits(Known, Known2);
1269     }
1270     break;
1271   }
1272   case ISD::VECTOR_SHUFFLE: {
1273     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1274 
1275     // Collect demanded elements from shuffle operands..
1276     APInt DemandedLHS(NumElts, 0);
1277     APInt DemandedRHS(NumElts, 0);
1278     for (unsigned i = 0; i != NumElts; ++i) {
1279       if (!DemandedElts[i])
1280         continue;
1281       int M = ShuffleMask[i];
1282       if (M < 0) {
1283         // For UNDEF elements, we don't know anything about the common state of
1284         // the shuffle result.
1285         DemandedLHS.clearAllBits();
1286         DemandedRHS.clearAllBits();
1287         break;
1288       }
1289       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1290       if (M < (int)NumElts)
1291         DemandedLHS.setBit(M);
1292       else
1293         DemandedRHS.setBit(M - NumElts);
1294     }
1295 
1296     if (!!DemandedLHS || !!DemandedRHS) {
1297       SDValue Op0 = Op.getOperand(0);
1298       SDValue Op1 = Op.getOperand(1);
1299 
1300       Known.Zero.setAllBits();
1301       Known.One.setAllBits();
1302       if (!!DemandedLHS) {
1303         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1304                                  Depth + 1))
1305           return true;
1306         Known = KnownBits::commonBits(Known, Known2);
1307       }
1308       if (!!DemandedRHS) {
1309         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1310                                  Depth + 1))
1311           return true;
1312         Known = KnownBits::commonBits(Known, Known2);
1313       }
1314 
1315       // Attempt to avoid multi-use ops if we don't need anything from them.
1316       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1317           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1318       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1319           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1320       if (DemandedOp0 || DemandedOp1) {
1321         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1322         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1323         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1324         return TLO.CombineTo(Op, NewOp);
1325       }
1326     }
1327     break;
1328   }
1329   case ISD::AND: {
1330     SDValue Op0 = Op.getOperand(0);
1331     SDValue Op1 = Op.getOperand(1);
1332 
1333     // If the RHS is a constant, check to see if the LHS would be zero without
1334     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1335     // simplify the LHS, here we're using information from the LHS to simplify
1336     // the RHS.
1337     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1338       // Do not increment Depth here; that can cause an infinite loop.
1339       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1340       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1341       if ((LHSKnown.Zero & DemandedBits) ==
1342           (~RHSC->getAPIntValue() & DemandedBits))
1343         return TLO.CombineTo(Op, Op0);
1344 
1345       // If any of the set bits in the RHS are known zero on the LHS, shrink
1346       // the constant.
1347       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1348                                  DemandedElts, TLO))
1349         return true;
1350 
1351       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1352       // constant, but if this 'and' is only clearing bits that were just set by
1353       // the xor, then this 'and' can be eliminated by shrinking the mask of
1354       // the xor. For example, for a 32-bit X:
1355       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1356       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1357           LHSKnown.One == ~RHSC->getAPIntValue()) {
1358         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1359         return TLO.CombineTo(Op, Xor);
1360       }
1361     }
1362 
1363     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1364                              Depth + 1))
1365       return true;
1366     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1367     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1368                              Known2, TLO, Depth + 1))
1369       return true;
1370     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1371 
1372     // Attempt to avoid multi-use ops if we don't need anything from them.
1373     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1374       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1375           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1376       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1377           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       if (DemandedOp0 || DemandedOp1) {
1379         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1380         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1381         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1382         return TLO.CombineTo(Op, NewOp);
1383       }
1384     }
1385 
1386     // If all of the demanded bits are known one on one side, return the other.
1387     // These bits cannot contribute to the result of the 'and'.
1388     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1389       return TLO.CombineTo(Op, Op0);
1390     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1391       return TLO.CombineTo(Op, Op1);
1392     // If all of the demanded bits in the inputs are known zeros, return zero.
1393     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1394       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1395     // If the RHS is a constant, see if we can simplify it.
1396     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1397                                TLO))
1398       return true;
1399     // If the operation can be done in a smaller type, do so.
1400     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1401       return true;
1402 
1403     Known &= Known2;
1404     break;
1405   }
1406   case ISD::OR: {
1407     SDValue Op0 = Op.getOperand(0);
1408     SDValue Op1 = Op.getOperand(1);
1409 
1410     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1411                              Depth + 1))
1412       return true;
1413     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1414     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1415                              Known2, TLO, Depth + 1))
1416       return true;
1417     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1418 
1419     // Attempt to avoid multi-use ops if we don't need anything from them.
1420     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1421       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1422           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1423       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1424           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       if (DemandedOp0 || DemandedOp1) {
1426         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1427         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1428         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1429         return TLO.CombineTo(Op, NewOp);
1430       }
1431     }
1432 
1433     // If all of the demanded bits are known zero on one side, return the other.
1434     // These bits cannot contribute to the result of the 'or'.
1435     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1436       return TLO.CombineTo(Op, Op0);
1437     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1438       return TLO.CombineTo(Op, Op1);
1439     // If the RHS is a constant, see if we can simplify it.
1440     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1441       return true;
1442     // If the operation can be done in a smaller type, do so.
1443     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1444       return true;
1445 
1446     Known |= Known2;
1447     break;
1448   }
1449   case ISD::XOR: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452 
1453     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1454                              Depth + 1))
1455       return true;
1456     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1457     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1458                              Depth + 1))
1459       return true;
1460     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1461 
1462     // Attempt to avoid multi-use ops if we don't need anything from them.
1463     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1464       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1465           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1466       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1467           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       if (DemandedOp0 || DemandedOp1) {
1469         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1470         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1471         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1472         return TLO.CombineTo(Op, NewOp);
1473       }
1474     }
1475 
1476     // If all of the demanded bits are known zero on one side, return the other.
1477     // These bits cannot contribute to the result of the 'xor'.
1478     if (DemandedBits.isSubsetOf(Known.Zero))
1479       return TLO.CombineTo(Op, Op0);
1480     if (DemandedBits.isSubsetOf(Known2.Zero))
1481       return TLO.CombineTo(Op, Op1);
1482     // If the operation can be done in a smaller type, do so.
1483     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1484       return true;
1485 
1486     // If all of the unknown bits are known to be zero on one side or the other
1487     // turn this into an *inclusive* or.
1488     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1489     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1490       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1491 
1492     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1493     if (C) {
1494       // If one side is a constant, and all of the set bits in the constant are
1495       // also known set on the other side, turn this into an AND, as we know
1496       // the bits will be cleared.
1497       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1498       // NB: it is okay if more bits are known than are requested
1499       if (C->getAPIntValue() == Known2.One) {
1500         SDValue ANDC =
1501             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1502         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1503       }
1504 
1505       // If the RHS is a constant, see if we can change it. Don't alter a -1
1506       // constant because that's a 'not' op, and that is better for combining
1507       // and codegen.
1508       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1509         // We're flipping all demanded bits. Flip the undemanded bits too.
1510         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1511         return TLO.CombineTo(Op, New);
1512       }
1513     }
1514 
1515     // If we can't turn this into a 'not', try to shrink the constant.
1516     if (!C || !C->isAllOnes())
1517       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1518         return true;
1519 
1520     Known ^= Known2;
1521     break;
1522   }
1523   case ISD::SELECT:
1524     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1525                              Depth + 1))
1526       return true;
1527     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1528                              Depth + 1))
1529       return true;
1530     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1531     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1532 
1533     // If the operands are constants, see if we can simplify them.
1534     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1535       return true;
1536 
1537     // Only known if known in both the LHS and RHS.
1538     Known = KnownBits::commonBits(Known, Known2);
1539     break;
1540   case ISD::SELECT_CC:
1541     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1542                              Depth + 1))
1543       return true;
1544     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1545                              Depth + 1))
1546       return true;
1547     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1548     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1549 
1550     // If the operands are constants, see if we can simplify them.
1551     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1552       return true;
1553 
1554     // Only known if known in both the LHS and RHS.
1555     Known = KnownBits::commonBits(Known, Known2);
1556     break;
1557   case ISD::SETCC: {
1558     SDValue Op0 = Op.getOperand(0);
1559     SDValue Op1 = Op.getOperand(1);
1560     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1561     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1562     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1563     // -1, we may be able to bypass the setcc.
1564     if (DemandedBits.isSignMask() &&
1565         Op0.getScalarValueSizeInBits() == BitWidth &&
1566         getBooleanContents(Op0.getValueType()) ==
1567             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1568       // If we're testing X < 0, then this compare isn't needed - just use X!
1569       // FIXME: We're limiting to integer types here, but this should also work
1570       // if we don't care about FP signed-zero. The use of SETLT with FP means
1571       // that we don't care about NaNs.
1572       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1573           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1574         return TLO.CombineTo(Op, Op0);
1575 
1576       // TODO: Should we check for other forms of sign-bit comparisons?
1577       // Examples: X <= -1, X >= 0
1578     }
1579     if (getBooleanContents(Op0.getValueType()) ==
1580             TargetLowering::ZeroOrOneBooleanContent &&
1581         BitWidth > 1)
1582       Known.Zero.setBitsFrom(1);
1583     break;
1584   }
1585   case ISD::SHL: {
1586     SDValue Op0 = Op.getOperand(0);
1587     SDValue Op1 = Op.getOperand(1);
1588     EVT ShiftVT = Op1.getValueType();
1589 
1590     if (const APInt *SA =
1591             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1592       unsigned ShAmt = SA->getZExtValue();
1593       if (ShAmt == 0)
1594         return TLO.CombineTo(Op, Op0);
1595 
1596       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1597       // single shift.  We can do this if the bottom bits (which are shifted
1598       // out) are never demanded.
1599       // TODO - support non-uniform vector amounts.
1600       if (Op0.getOpcode() == ISD::SRL) {
1601         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1602           if (const APInt *SA2 =
1603                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1604             unsigned C1 = SA2->getZExtValue();
1605             unsigned Opc = ISD::SHL;
1606             int Diff = ShAmt - C1;
1607             if (Diff < 0) {
1608               Diff = -Diff;
1609               Opc = ISD::SRL;
1610             }
1611             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1612             return TLO.CombineTo(
1613                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1614           }
1615         }
1616       }
1617 
1618       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1619       // are not demanded. This will likely allow the anyext to be folded away.
1620       // TODO - support non-uniform vector amounts.
1621       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1622         SDValue InnerOp = Op0.getOperand(0);
1623         EVT InnerVT = InnerOp.getValueType();
1624         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1625         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1626             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1627           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1628           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1629             ShTy = InnerVT;
1630           SDValue NarrowShl =
1631               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1632                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1633           return TLO.CombineTo(
1634               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1635         }
1636 
1637         // Repeat the SHL optimization above in cases where an extension
1638         // intervenes: (shl (anyext (shr x, c1)), c2) to
1639         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1640         // aren't demanded (as above) and that the shifted upper c1 bits of
1641         // x aren't demanded.
1642         // TODO - support non-uniform vector amounts.
1643         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1644             InnerOp.hasOneUse()) {
1645           if (const APInt *SA2 =
1646                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1647             unsigned InnerShAmt = SA2->getZExtValue();
1648             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1649                 DemandedBits.getActiveBits() <=
1650                     (InnerBits - InnerShAmt + ShAmt) &&
1651                 DemandedBits.countTrailingZeros() >= ShAmt) {
1652               SDValue NewSA =
1653                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1654               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1655                                                InnerOp.getOperand(0));
1656               return TLO.CombineTo(
1657                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1658             }
1659           }
1660         }
1661       }
1662 
1663       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1664       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1665                                Depth + 1))
1666         return true;
1667       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1668       Known.Zero <<= ShAmt;
1669       Known.One <<= ShAmt;
1670       // low bits known zero.
1671       Known.Zero.setLowBits(ShAmt);
1672 
1673       // Try shrinking the operation as long as the shift amount will still be
1674       // in range.
1675       if ((ShAmt < DemandedBits.getActiveBits()) &&
1676           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1677         return true;
1678     }
1679 
1680     // If we are only demanding sign bits then we can use the shift source
1681     // directly.
1682     if (const APInt *MaxSA =
1683             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1684       unsigned ShAmt = MaxSA->getZExtValue();
1685       unsigned NumSignBits =
1686           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1687       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1688       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1689         return TLO.CombineTo(Op, Op0);
1690     }
1691     break;
1692   }
1693   case ISD::SRL: {
1694     SDValue Op0 = Op.getOperand(0);
1695     SDValue Op1 = Op.getOperand(1);
1696     EVT ShiftVT = Op1.getValueType();
1697 
1698     // Try to match AVG patterns.
1699     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1700                                         DemandedElts, Depth + 1))
1701       return TLO.CombineTo(Op, AVG);
1702 
1703     if (const APInt *SA =
1704             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1705       unsigned ShAmt = SA->getZExtValue();
1706       if (ShAmt == 0)
1707         return TLO.CombineTo(Op, Op0);
1708 
1709       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1710       // single shift.  We can do this if the top bits (which are shifted out)
1711       // are never demanded.
1712       // TODO - support non-uniform vector amounts.
1713       if (Op0.getOpcode() == ISD::SHL) {
1714         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1715           if (const APInt *SA2 =
1716                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1717             unsigned C1 = SA2->getZExtValue();
1718             unsigned Opc = ISD::SRL;
1719             int Diff = ShAmt - C1;
1720             if (Diff < 0) {
1721               Diff = -Diff;
1722               Opc = ISD::SHL;
1723             }
1724             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1725             return TLO.CombineTo(
1726                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1727           }
1728         }
1729       }
1730 
1731       APInt InDemandedMask = (DemandedBits << ShAmt);
1732 
1733       // If the shift is exact, then it does demand the low bits (and knows that
1734       // they are zero).
1735       if (Op->getFlags().hasExact())
1736         InDemandedMask.setLowBits(ShAmt);
1737 
1738       // Compute the new bits that are at the top now.
1739       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1740                                Depth + 1))
1741         return true;
1742       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1743       Known.Zero.lshrInPlace(ShAmt);
1744       Known.One.lshrInPlace(ShAmt);
1745       // High bits known zero.
1746       Known.Zero.setHighBits(ShAmt);
1747     }
1748     break;
1749   }
1750   case ISD::SRA: {
1751     SDValue Op0 = Op.getOperand(0);
1752     SDValue Op1 = Op.getOperand(1);
1753     EVT ShiftVT = Op1.getValueType();
1754 
1755     // If we only want bits that already match the signbit then we don't need
1756     // to shift.
1757     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1758     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1759         NumHiDemandedBits)
1760       return TLO.CombineTo(Op, Op0);
1761 
1762     // If this is an arithmetic shift right and only the low-bit is set, we can
1763     // always convert this into a logical shr, even if the shift amount is
1764     // variable.  The low bit of the shift cannot be an input sign bit unless
1765     // the shift amount is >= the size of the datatype, which is undefined.
1766     if (DemandedBits.isOne())
1767       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1768 
1769     // Try to match AVG patterns.
1770     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1771                                         DemandedElts, Depth + 1))
1772       return TLO.CombineTo(Op, AVG);
1773 
1774     if (const APInt *SA =
1775             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1776       unsigned ShAmt = SA->getZExtValue();
1777       if (ShAmt == 0)
1778         return TLO.CombineTo(Op, Op0);
1779 
1780       APInt InDemandedMask = (DemandedBits << ShAmt);
1781 
1782       // If the shift is exact, then it does demand the low bits (and knows that
1783       // they are zero).
1784       if (Op->getFlags().hasExact())
1785         InDemandedMask.setLowBits(ShAmt);
1786 
1787       // If any of the demanded bits are produced by the sign extension, we also
1788       // demand the input sign bit.
1789       if (DemandedBits.countLeadingZeros() < ShAmt)
1790         InDemandedMask.setSignBit();
1791 
1792       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1793                                Depth + 1))
1794         return true;
1795       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796       Known.Zero.lshrInPlace(ShAmt);
1797       Known.One.lshrInPlace(ShAmt);
1798 
1799       // If the input sign bit is known to be zero, or if none of the top bits
1800       // are demanded, turn this into an unsigned shift right.
1801       if (Known.Zero[BitWidth - ShAmt - 1] ||
1802           DemandedBits.countLeadingZeros() >= ShAmt) {
1803         SDNodeFlags Flags;
1804         Flags.setExact(Op->getFlags().hasExact());
1805         return TLO.CombineTo(
1806             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1807       }
1808 
1809       int Log2 = DemandedBits.exactLogBase2();
1810       if (Log2 >= 0) {
1811         // The bit must come from the sign.
1812         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1813         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1814       }
1815 
1816       if (Known.One[BitWidth - ShAmt - 1])
1817         // New bits are known one.
1818         Known.One.setHighBits(ShAmt);
1819 
1820       // Attempt to avoid multi-use ops if we don't need anything from them.
1821       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1822         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1823             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1824         if (DemandedOp0) {
1825           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1826           return TLO.CombineTo(Op, NewOp);
1827         }
1828       }
1829     }
1830     break;
1831   }
1832   case ISD::FSHL:
1833   case ISD::FSHR: {
1834     SDValue Op0 = Op.getOperand(0);
1835     SDValue Op1 = Op.getOperand(1);
1836     SDValue Op2 = Op.getOperand(2);
1837     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1838 
1839     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1840       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1841 
1842       // For fshl, 0-shift returns the 1st arg.
1843       // For fshr, 0-shift returns the 2nd arg.
1844       if (Amt == 0) {
1845         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1846                                  Known, TLO, Depth + 1))
1847           return true;
1848         break;
1849       }
1850 
1851       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1852       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1853       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1854       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1855       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1856                                Depth + 1))
1857         return true;
1858       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1859                                Depth + 1))
1860         return true;
1861 
1862       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1863       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1864       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1865       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1866       Known.One |= Known2.One;
1867       Known.Zero |= Known2.Zero;
1868     }
1869 
1870     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1871     if (isPowerOf2_32(BitWidth)) {
1872       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1873       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1874                                Known2, TLO, Depth + 1))
1875         return true;
1876     }
1877     break;
1878   }
1879   case ISD::ROTL:
1880   case ISD::ROTR: {
1881     SDValue Op0 = Op.getOperand(0);
1882     SDValue Op1 = Op.getOperand(1);
1883     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1884 
1885     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1886     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1887       return TLO.CombineTo(Op, Op0);
1888 
1889     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1890       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1891       unsigned RevAmt = BitWidth - Amt;
1892 
1893       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1894       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1895       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1896       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1897                                Depth + 1))
1898         return true;
1899 
1900       // rot*(x, 0) --> x
1901       if (Amt == 0)
1902         return TLO.CombineTo(Op, Op0);
1903 
1904       // See if we don't demand either half of the rotated bits.
1905       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1906           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1907         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1908         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1909       }
1910       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1911           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1912         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1913         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1914       }
1915     }
1916 
1917     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1918     if (isPowerOf2_32(BitWidth)) {
1919       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1920       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1921                                Depth + 1))
1922         return true;
1923     }
1924     break;
1925   }
1926   case ISD::UMIN: {
1927     // Check if one arg is always less than (or equal) to the other arg.
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1931     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1932     Known = KnownBits::umin(Known0, Known1);
1933     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1934       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1935     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1936       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1937     break;
1938   }
1939   case ISD::UMAX: {
1940     // Check if one arg is always greater than (or equal) to the other arg.
1941     SDValue Op0 = Op.getOperand(0);
1942     SDValue Op1 = Op.getOperand(1);
1943     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1944     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1945     Known = KnownBits::umax(Known0, Known1);
1946     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1947       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1948     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1949       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1950     break;
1951   }
1952   case ISD::BITREVERSE: {
1953     SDValue Src = Op.getOperand(0);
1954     APInt DemandedSrcBits = DemandedBits.reverseBits();
1955     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1956                              Depth + 1))
1957       return true;
1958     Known.One = Known2.One.reverseBits();
1959     Known.Zero = Known2.Zero.reverseBits();
1960     break;
1961   }
1962   case ISD::BSWAP: {
1963     SDValue Src = Op.getOperand(0);
1964 
1965     // If the only bits demanded come from one byte of the bswap result,
1966     // just shift the input byte into position to eliminate the bswap.
1967     unsigned NLZ = DemandedBits.countLeadingZeros();
1968     unsigned NTZ = DemandedBits.countTrailingZeros();
1969 
1970     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1971     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1972     // have 14 leading zeros, round to 8.
1973     NLZ = alignDown(NLZ, 8);
1974     NTZ = alignDown(NTZ, 8);
1975     // If we need exactly one byte, we can do this transformation.
1976     if (BitWidth - NLZ - NTZ == 8) {
1977       // Replace this with either a left or right shift to get the byte into
1978       // the right place.
1979       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1980       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1981         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1982         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1983         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1984         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1985         return TLO.CombineTo(Op, NewOp);
1986       }
1987     }
1988 
1989     APInt DemandedSrcBits = DemandedBits.byteSwap();
1990     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1991                              Depth + 1))
1992       return true;
1993     Known.One = Known2.One.byteSwap();
1994     Known.Zero = Known2.Zero.byteSwap();
1995     break;
1996   }
1997   case ISD::CTPOP: {
1998     // If only 1 bit is demanded, replace with PARITY as long as we're before
1999     // op legalization.
2000     // FIXME: Limit to scalars for now.
2001     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2002       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2003                                                Op.getOperand(0)));
2004 
2005     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2006     break;
2007   }
2008   case ISD::SIGN_EXTEND_INREG: {
2009     SDValue Op0 = Op.getOperand(0);
2010     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2011     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2012 
2013     // If we only care about the highest bit, don't bother shifting right.
2014     if (DemandedBits.isSignMask()) {
2015       unsigned MinSignedBits =
2016           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2017       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2018       // However if the input is already sign extended we expect the sign
2019       // extension to be dropped altogether later and do not simplify.
2020       if (!AlreadySignExtended) {
2021         // Compute the correct shift amount type, which must be getShiftAmountTy
2022         // for scalar types after legalization.
2023         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2024                                                getShiftAmountTy(VT, DL));
2025         return TLO.CombineTo(Op,
2026                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2027       }
2028     }
2029 
2030     // If none of the extended bits are demanded, eliminate the sextinreg.
2031     if (DemandedBits.getActiveBits() <= ExVTBits)
2032       return TLO.CombineTo(Op, Op0);
2033 
2034     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2035 
2036     // Since the sign extended bits are demanded, we know that the sign
2037     // bit is demanded.
2038     InputDemandedBits.setBit(ExVTBits - 1);
2039 
2040     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2041       return true;
2042     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2043 
2044     // If the sign bit of the input is known set or clear, then we know the
2045     // top bits of the result.
2046 
2047     // If the input sign bit is known zero, convert this into a zero extension.
2048     if (Known.Zero[ExVTBits - 1])
2049       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2050 
2051     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2052     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2053       Known.One.setBitsFrom(ExVTBits);
2054       Known.Zero &= Mask;
2055     } else { // Input sign bit unknown
2056       Known.Zero &= Mask;
2057       Known.One &= Mask;
2058     }
2059     break;
2060   }
2061   case ISD::BUILD_PAIR: {
2062     EVT HalfVT = Op.getOperand(0).getValueType();
2063     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2064 
2065     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2066     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2067 
2068     KnownBits KnownLo, KnownHi;
2069 
2070     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2071       return true;
2072 
2073     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2074       return true;
2075 
2076     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2077                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2078 
2079     Known.One = KnownLo.One.zext(BitWidth) |
2080                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2081     break;
2082   }
2083   case ISD::ZERO_EXTEND:
2084   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2085     SDValue Src = Op.getOperand(0);
2086     EVT SrcVT = Src.getValueType();
2087     unsigned InBits = SrcVT.getScalarSizeInBits();
2088     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2089     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2090 
2091     // If none of the top bits are demanded, convert this into an any_extend.
2092     if (DemandedBits.getActiveBits() <= InBits) {
2093       // If we only need the non-extended bits of the bottom element
2094       // then we can just bitcast to the result.
2095       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2096           VT.getSizeInBits() == SrcVT.getSizeInBits())
2097         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2098 
2099       unsigned Opc =
2100           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2101       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2102         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2103     }
2104 
2105     APInt InDemandedBits = DemandedBits.trunc(InBits);
2106     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2107     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2108                              Depth + 1))
2109       return true;
2110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2111     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2112     Known = Known.zext(BitWidth);
2113 
2114     // Attempt to avoid multi-use ops if we don't need anything from them.
2115     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2116             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2117       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2118     break;
2119   }
2120   case ISD::SIGN_EXTEND:
2121   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2122     SDValue Src = Op.getOperand(0);
2123     EVT SrcVT = Src.getValueType();
2124     unsigned InBits = SrcVT.getScalarSizeInBits();
2125     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2126     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2127 
2128     // If none of the top bits are demanded, convert this into an any_extend.
2129     if (DemandedBits.getActiveBits() <= InBits) {
2130       // If we only need the non-extended bits of the bottom element
2131       // then we can just bitcast to the result.
2132       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2133           VT.getSizeInBits() == SrcVT.getSizeInBits())
2134         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2135 
2136       unsigned Opc =
2137           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2138       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2139         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2140     }
2141 
2142     APInt InDemandedBits = DemandedBits.trunc(InBits);
2143     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2144 
2145     // Since some of the sign extended bits are demanded, we know that the sign
2146     // bit is demanded.
2147     InDemandedBits.setBit(InBits - 1);
2148 
2149     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2150                              Depth + 1))
2151       return true;
2152     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2153     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2154 
2155     // If the sign bit is known one, the top bits match.
2156     Known = Known.sext(BitWidth);
2157 
2158     // If the sign bit is known zero, convert this to a zero extend.
2159     if (Known.isNonNegative()) {
2160       unsigned Opc =
2161           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2162       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2163         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2164     }
2165 
2166     // Attempt to avoid multi-use ops if we don't need anything from them.
2167     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2168             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2169       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2170     break;
2171   }
2172   case ISD::ANY_EXTEND:
2173   case ISD::ANY_EXTEND_VECTOR_INREG: {
2174     SDValue Src = Op.getOperand(0);
2175     EVT SrcVT = Src.getValueType();
2176     unsigned InBits = SrcVT.getScalarSizeInBits();
2177     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2178     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2179 
2180     // If we only need the bottom element then we can just bitcast.
2181     // TODO: Handle ANY_EXTEND?
2182     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2183         VT.getSizeInBits() == SrcVT.getSizeInBits())
2184       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2185 
2186     APInt InDemandedBits = DemandedBits.trunc(InBits);
2187     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2188     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2189                              Depth + 1))
2190       return true;
2191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2192     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2193     Known = Known.anyext(BitWidth);
2194 
2195     // Attempt to avoid multi-use ops if we don't need anything from them.
2196     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2197             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2198       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2199     break;
2200   }
2201   case ISD::TRUNCATE: {
2202     SDValue Src = Op.getOperand(0);
2203 
2204     // Simplify the input, using demanded bit information, and compute the known
2205     // zero/one bits live out.
2206     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2207     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2208     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2209                              Depth + 1))
2210       return true;
2211     Known = Known.trunc(BitWidth);
2212 
2213     // Attempt to avoid multi-use ops if we don't need anything from them.
2214     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2215             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2216       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2217 
2218     // If the input is only used by this truncate, see if we can shrink it based
2219     // on the known demanded bits.
2220     if (Src.getNode()->hasOneUse()) {
2221       switch (Src.getOpcode()) {
2222       default:
2223         break;
2224       case ISD::SRL:
2225         // Shrink SRL by a constant if none of the high bits shifted in are
2226         // demanded.
2227         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2228           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2229           // undesirable.
2230           break;
2231 
2232         const APInt *ShAmtC =
2233             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2234         if (!ShAmtC || ShAmtC->uge(BitWidth))
2235           break;
2236         uint64_t ShVal = ShAmtC->getZExtValue();
2237 
2238         APInt HighBits =
2239             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2240         HighBits.lshrInPlace(ShVal);
2241         HighBits = HighBits.trunc(BitWidth);
2242 
2243         if (!(HighBits & DemandedBits)) {
2244           // None of the shifted in bits are needed.  Add a truncate of the
2245           // shift input, then shift it.
2246           SDValue NewShAmt = TLO.DAG.getConstant(
2247               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2248           SDValue NewTrunc =
2249               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2250           return TLO.CombineTo(
2251               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2252         }
2253         break;
2254       }
2255     }
2256 
2257     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2258     break;
2259   }
2260   case ISD::AssertZext: {
2261     // AssertZext demands all of the high bits, plus any of the low bits
2262     // demanded by its users.
2263     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2264     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2265     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2266                              TLO, Depth + 1))
2267       return true;
2268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2269 
2270     Known.Zero |= ~InMask;
2271     break;
2272   }
2273   case ISD::EXTRACT_VECTOR_ELT: {
2274     SDValue Src = Op.getOperand(0);
2275     SDValue Idx = Op.getOperand(1);
2276     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2277     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2278 
2279     if (SrcEltCnt.isScalable())
2280       return false;
2281 
2282     // Demand the bits from every vector element without a constant index.
2283     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2284     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2285     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2286       if (CIdx->getAPIntValue().ult(NumSrcElts))
2287         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2288 
2289     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2290     // anything about the extended bits.
2291     APInt DemandedSrcBits = DemandedBits;
2292     if (BitWidth > EltBitWidth)
2293       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2294 
2295     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2296                              Depth + 1))
2297       return true;
2298 
2299     // Attempt to avoid multi-use ops if we don't need anything from them.
2300     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2301       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2302               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2303         SDValue NewOp =
2304             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2305         return TLO.CombineTo(Op, NewOp);
2306       }
2307     }
2308 
2309     Known = Known2;
2310     if (BitWidth > EltBitWidth)
2311       Known = Known.anyext(BitWidth);
2312     break;
2313   }
2314   case ISD::BITCAST: {
2315     SDValue Src = Op.getOperand(0);
2316     EVT SrcVT = Src.getValueType();
2317     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2318 
2319     // If this is an FP->Int bitcast and if the sign bit is the only
2320     // thing demanded, turn this into a FGETSIGN.
2321     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2322         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2323         SrcVT.isFloatingPoint()) {
2324       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2325       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2326       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2327           SrcVT != MVT::f128) {
2328         // Cannot eliminate/lower SHL for f128 yet.
2329         EVT Ty = OpVTLegal ? VT : MVT::i32;
2330         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2331         // place.  We expect the SHL to be eliminated by other optimizations.
2332         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2333         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2334         if (!OpVTLegal && OpVTSizeInBits > 32)
2335           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2336         unsigned ShVal = Op.getValueSizeInBits() - 1;
2337         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2338         return TLO.CombineTo(Op,
2339                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2340       }
2341     }
2342 
2343     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2344     // Demand the elt/bit if any of the original elts/bits are demanded.
2345     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2346       unsigned Scale = BitWidth / NumSrcEltBits;
2347       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2348       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2349       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2350       for (unsigned i = 0; i != Scale; ++i) {
2351         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2352         unsigned BitOffset = EltOffset * NumSrcEltBits;
2353         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2354         if (!Sub.isZero()) {
2355           DemandedSrcBits |= Sub;
2356           for (unsigned j = 0; j != NumElts; ++j)
2357             if (DemandedElts[j])
2358               DemandedSrcElts.setBit((j * Scale) + i);
2359         }
2360       }
2361 
2362       APInt KnownSrcUndef, KnownSrcZero;
2363       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2364                                      KnownSrcZero, TLO, Depth + 1))
2365         return true;
2366 
2367       KnownBits KnownSrcBits;
2368       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2369                                KnownSrcBits, TLO, Depth + 1))
2370         return true;
2371     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2372       // TODO - bigendian once we have test coverage.
2373       unsigned Scale = NumSrcEltBits / BitWidth;
2374       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2375       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2376       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2377       for (unsigned i = 0; i != NumElts; ++i)
2378         if (DemandedElts[i]) {
2379           unsigned Offset = (i % Scale) * BitWidth;
2380           DemandedSrcBits.insertBits(DemandedBits, Offset);
2381           DemandedSrcElts.setBit(i / Scale);
2382         }
2383 
2384       if (SrcVT.isVector()) {
2385         APInt KnownSrcUndef, KnownSrcZero;
2386         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2387                                        KnownSrcZero, TLO, Depth + 1))
2388           return true;
2389       }
2390 
2391       KnownBits KnownSrcBits;
2392       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2393                                KnownSrcBits, TLO, Depth + 1))
2394         return true;
2395     }
2396 
2397     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2398     // recursive call where Known may be useful to the caller.
2399     if (Depth > 0) {
2400       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2401       return false;
2402     }
2403     break;
2404   }
2405   case ISD::MUL:
2406     if (DemandedBits.isPowerOf2()) {
2407       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2408       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2409       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2410       unsigned CTZ = DemandedBits.countTrailingZeros();
2411       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2412       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2413         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2414         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2415         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2416         return TLO.CombineTo(Op, Shl);
2417       }
2418     }
2419     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2420     // X * X is odd iff X is odd.
2421     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2422     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2423       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2424       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2425       return TLO.CombineTo(Op, And1);
2426     }
2427     LLVM_FALLTHROUGH;
2428   case ISD::ADD:
2429   case ISD::SUB: {
2430     // Add, Sub, and Mul don't demand any bits in positions beyond that
2431     // of the highest bit demanded of them.
2432     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2433     SDNodeFlags Flags = Op.getNode()->getFlags();
2434     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2435     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2436     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2437                              Depth + 1) ||
2438         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2439                              Depth + 1) ||
2440         // See if the operation should be performed at a smaller bit width.
2441         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2442       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2443         // Disable the nsw and nuw flags. We can no longer guarantee that we
2444         // won't wrap after simplification.
2445         Flags.setNoSignedWrap(false);
2446         Flags.setNoUnsignedWrap(false);
2447         SDValue NewOp =
2448             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2449         return TLO.CombineTo(Op, NewOp);
2450       }
2451       return true;
2452     }
2453 
2454     // Attempt to avoid multi-use ops if we don't need anything from them.
2455     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2456       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2457           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2458       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2459           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2460       if (DemandedOp0 || DemandedOp1) {
2461         Flags.setNoSignedWrap(false);
2462         Flags.setNoUnsignedWrap(false);
2463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2465         SDValue NewOp =
2466             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2467         return TLO.CombineTo(Op, NewOp);
2468       }
2469     }
2470 
2471     // If we have a constant operand, we may be able to turn it into -1 if we
2472     // do not demand the high bits. This can make the constant smaller to
2473     // encode, allow more general folding, or match specialized instruction
2474     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2475     // is probably not useful (and could be detrimental).
2476     ConstantSDNode *C = isConstOrConstSplat(Op1);
2477     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2478     if (C && !C->isAllOnes() && !C->isOne() &&
2479         (C->getAPIntValue() | HighMask).isAllOnes()) {
2480       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2481       // Disable the nsw and nuw flags. We can no longer guarantee that we
2482       // won't wrap after simplification.
2483       Flags.setNoSignedWrap(false);
2484       Flags.setNoUnsignedWrap(false);
2485       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2486       return TLO.CombineTo(Op, NewOp);
2487     }
2488 
2489     // Match a multiply with a disguised negated-power-of-2 and convert to a
2490     // an equivalent shift-left amount.
2491     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2492     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2493       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2494         return 0;
2495 
2496       // Don't touch opaque constants. Also, ignore zero and power-of-2
2497       // multiplies. Those will get folded later.
2498       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2499       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2500           !MulC->getAPIntValue().isPowerOf2()) {
2501         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2502         if (UnmaskedC.isNegatedPowerOf2())
2503           return (-UnmaskedC).logBase2();
2504       }
2505       return 0;
2506     };
2507 
2508     auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) {
2509       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2510       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2511       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2512       SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl);
2513       return TLO.CombineTo(Op, Sub);
2514     };
2515 
2516     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2517       if (Op.getOpcode() == ISD::ADD) {
2518         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2519         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2520           return foldMul(Op0.getOperand(0), Op1, ShAmt);
2521         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2522         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2523           return foldMul(Op1.getOperand(0), Op0, ShAmt);
2524         // TODO:
2525         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2526       }
2527     }
2528 
2529     LLVM_FALLTHROUGH;
2530   }
2531   default:
2532     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2533       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2534                                             Known, TLO, Depth))
2535         return true;
2536       break;
2537     }
2538 
2539     // Just use computeKnownBits to compute output bits.
2540     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2541     break;
2542   }
2543 
2544   // If we know the value of all of the demanded bits, return this as a
2545   // constant.
2546   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2547     // Avoid folding to a constant if any OpaqueConstant is involved.
2548     const SDNode *N = Op.getNode();
2549     for (SDNode *Op :
2550          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2551       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2552         if (C->isOpaque())
2553           return false;
2554     }
2555     if (VT.isInteger())
2556       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2557     if (VT.isFloatingPoint())
2558       return TLO.CombineTo(
2559           Op,
2560           TLO.DAG.getConstantFP(
2561               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2562   }
2563 
2564   return false;
2565 }
2566 
2567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2568                                                 const APInt &DemandedElts,
2569                                                 DAGCombinerInfo &DCI) const {
2570   SelectionDAG &DAG = DCI.DAG;
2571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2572                         !DCI.isBeforeLegalizeOps());
2573 
2574   APInt KnownUndef, KnownZero;
2575   bool Simplified =
2576       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2577   if (Simplified) {
2578     DCI.AddToWorklist(Op.getNode());
2579     DCI.CommitTargetLoweringOpt(TLO);
2580   }
2581 
2582   return Simplified;
2583 }
2584 
2585 /// Given a vector binary operation and known undefined elements for each input
2586 /// operand, compute whether each element of the output is undefined.
2587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2588                                          const APInt &UndefOp0,
2589                                          const APInt &UndefOp1) {
2590   EVT VT = BO.getValueType();
2591   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2592          "Vector binop only");
2593 
2594   EVT EltVT = VT.getVectorElementType();
2595   unsigned NumElts = VT.getVectorNumElements();
2596   assert(UndefOp0.getBitWidth() == NumElts &&
2597          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2598 
2599   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2600                                    const APInt &UndefVals) {
2601     if (UndefVals[Index])
2602       return DAG.getUNDEF(EltVT);
2603 
2604     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2605       // Try hard to make sure that the getNode() call is not creating temporary
2606       // nodes. Ignore opaque integers because they do not constant fold.
2607       SDValue Elt = BV->getOperand(Index);
2608       auto *C = dyn_cast<ConstantSDNode>(Elt);
2609       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2610         return Elt;
2611     }
2612 
2613     return SDValue();
2614   };
2615 
2616   APInt KnownUndef = APInt::getZero(NumElts);
2617   for (unsigned i = 0; i != NumElts; ++i) {
2618     // If both inputs for this element are either constant or undef and match
2619     // the element type, compute the constant/undef result for this element of
2620     // the vector.
2621     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2622     // not handle FP constants. The code within getNode() should be refactored
2623     // to avoid the danger of creating a bogus temporary node here.
2624     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2625     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2626     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2627       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2628         KnownUndef.setBit(i);
2629   }
2630   return KnownUndef;
2631 }
2632 
2633 bool TargetLowering::SimplifyDemandedVectorElts(
2634     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2635     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2636     bool AssumeSingleUse) const {
2637   EVT VT = Op.getValueType();
2638   unsigned Opcode = Op.getOpcode();
2639   APInt DemandedElts = OriginalDemandedElts;
2640   unsigned NumElts = DemandedElts.getBitWidth();
2641   assert(VT.isVector() && "Expected vector op");
2642 
2643   KnownUndef = KnownZero = APInt::getZero(NumElts);
2644 
2645   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2646   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2647     return false;
2648 
2649   // TODO: For now we assume we know nothing about scalable vectors.
2650   if (VT.isScalableVector())
2651     return false;
2652 
2653   assert(VT.getVectorNumElements() == NumElts &&
2654          "Mask size mismatches value type element count!");
2655 
2656   // Undef operand.
2657   if (Op.isUndef()) {
2658     KnownUndef.setAllBits();
2659     return false;
2660   }
2661 
2662   // If Op has other users, assume that all elements are needed.
2663   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2664     DemandedElts.setAllBits();
2665 
2666   // Not demanding any elements from Op.
2667   if (DemandedElts == 0) {
2668     KnownUndef.setAllBits();
2669     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2670   }
2671 
2672   // Limit search depth.
2673   if (Depth >= SelectionDAG::MaxRecursionDepth)
2674     return false;
2675 
2676   SDLoc DL(Op);
2677   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2678   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2679 
2680   // Helper for demanding the specified elements and all the bits of both binary
2681   // operands.
2682   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2683     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2684                                                            TLO.DAG, Depth + 1);
2685     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2686                                                            TLO.DAG, Depth + 1);
2687     if (NewOp0 || NewOp1) {
2688       SDValue NewOp = TLO.DAG.getNode(
2689           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2690       return TLO.CombineTo(Op, NewOp);
2691     }
2692     return false;
2693   };
2694 
2695   switch (Opcode) {
2696   case ISD::SCALAR_TO_VECTOR: {
2697     if (!DemandedElts[0]) {
2698       KnownUndef.setAllBits();
2699       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2700     }
2701     SDValue ScalarSrc = Op.getOperand(0);
2702     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2703       SDValue Src = ScalarSrc.getOperand(0);
2704       SDValue Idx = ScalarSrc.getOperand(1);
2705       EVT SrcVT = Src.getValueType();
2706 
2707       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2708 
2709       if (SrcEltCnt.isScalable())
2710         return false;
2711 
2712       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2713       if (isNullConstant(Idx)) {
2714         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2715         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2716         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2717         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2718                                        TLO, Depth + 1))
2719           return true;
2720       }
2721     }
2722     KnownUndef.setHighBits(NumElts - 1);
2723     break;
2724   }
2725   case ISD::BITCAST: {
2726     SDValue Src = Op.getOperand(0);
2727     EVT SrcVT = Src.getValueType();
2728 
2729     // We only handle vectors here.
2730     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2731     if (!SrcVT.isVector())
2732       break;
2733 
2734     // Fast handling of 'identity' bitcasts.
2735     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2736     if (NumSrcElts == NumElts)
2737       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2738                                         KnownZero, TLO, Depth + 1);
2739 
2740     APInt SrcDemandedElts, SrcZero, SrcUndef;
2741 
2742     // Bitcast from 'large element' src vector to 'small element' vector, we
2743     // must demand a source element if any DemandedElt maps to it.
2744     if ((NumElts % NumSrcElts) == 0) {
2745       unsigned Scale = NumElts / NumSrcElts;
2746       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2747       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2748                                      TLO, Depth + 1))
2749         return true;
2750 
2751       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2752       // of the large element.
2753       // TODO - bigendian once we have test coverage.
2754       if (IsLE) {
2755         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2756         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2757         for (unsigned i = 0; i != NumElts; ++i)
2758           if (DemandedElts[i]) {
2759             unsigned Ofs = (i % Scale) * EltSizeInBits;
2760             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2761           }
2762 
2763         KnownBits Known;
2764         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2765                                  TLO, Depth + 1))
2766           return true;
2767 
2768         // The bitcast has split each wide element into a number of
2769         // narrow subelements. We have just computed the Known bits
2770         // for wide elements. See if element splitting results in
2771         // some subelements being zero. Only for demanded elements!
2772         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2773           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2774                    .isAllOnes())
2775             continue;
2776           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2777             unsigned Elt = Scale * SrcElt + SubElt;
2778             if (DemandedElts[Elt])
2779               KnownZero.setBit(Elt);
2780           }
2781         }
2782       }
2783 
2784       // If the src element is zero/undef then all the output elements will be -
2785       // only demanded elements are guaranteed to be correct.
2786       for (unsigned i = 0; i != NumSrcElts; ++i) {
2787         if (SrcDemandedElts[i]) {
2788           if (SrcZero[i])
2789             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2790           if (SrcUndef[i])
2791             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2792         }
2793       }
2794     }
2795 
2796     // Bitcast from 'small element' src vector to 'large element' vector, we
2797     // demand all smaller source elements covered by the larger demanded element
2798     // of this vector.
2799     if ((NumSrcElts % NumElts) == 0) {
2800       unsigned Scale = NumSrcElts / NumElts;
2801       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2802       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2803                                      TLO, Depth + 1))
2804         return true;
2805 
2806       // If all the src elements covering an output element are zero/undef, then
2807       // the output element will be as well, assuming it was demanded.
2808       for (unsigned i = 0; i != NumElts; ++i) {
2809         if (DemandedElts[i]) {
2810           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2811             KnownZero.setBit(i);
2812           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2813             KnownUndef.setBit(i);
2814         }
2815       }
2816     }
2817     break;
2818   }
2819   case ISD::BUILD_VECTOR: {
2820     // Check all elements and simplify any unused elements with UNDEF.
2821     if (!DemandedElts.isAllOnes()) {
2822       // Don't simplify BROADCASTS.
2823       if (llvm::any_of(Op->op_values(),
2824                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2825         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2826         bool Updated = false;
2827         for (unsigned i = 0; i != NumElts; ++i) {
2828           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2829             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2830             KnownUndef.setBit(i);
2831             Updated = true;
2832           }
2833         }
2834         if (Updated)
2835           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2836       }
2837     }
2838     for (unsigned i = 0; i != NumElts; ++i) {
2839       SDValue SrcOp = Op.getOperand(i);
2840       if (SrcOp.isUndef()) {
2841         KnownUndef.setBit(i);
2842       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2843                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2844         KnownZero.setBit(i);
2845       }
2846     }
2847     break;
2848   }
2849   case ISD::CONCAT_VECTORS: {
2850     EVT SubVT = Op.getOperand(0).getValueType();
2851     unsigned NumSubVecs = Op.getNumOperands();
2852     unsigned NumSubElts = SubVT.getVectorNumElements();
2853     for (unsigned i = 0; i != NumSubVecs; ++i) {
2854       SDValue SubOp = Op.getOperand(i);
2855       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2856       APInt SubUndef, SubZero;
2857       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2858                                      Depth + 1))
2859         return true;
2860       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2861       KnownZero.insertBits(SubZero, i * NumSubElts);
2862     }
2863     break;
2864   }
2865   case ISD::INSERT_SUBVECTOR: {
2866     // Demand any elements from the subvector and the remainder from the src its
2867     // inserted into.
2868     SDValue Src = Op.getOperand(0);
2869     SDValue Sub = Op.getOperand(1);
2870     uint64_t Idx = Op.getConstantOperandVal(2);
2871     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2872     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2873     APInt DemandedSrcElts = DemandedElts;
2874     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2875 
2876     APInt SubUndef, SubZero;
2877     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2878                                    Depth + 1))
2879       return true;
2880 
2881     // If none of the src operand elements are demanded, replace it with undef.
2882     if (!DemandedSrcElts && !Src.isUndef())
2883       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2884                                                TLO.DAG.getUNDEF(VT), Sub,
2885                                                Op.getOperand(2)));
2886 
2887     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2888                                    TLO, Depth + 1))
2889       return true;
2890     KnownUndef.insertBits(SubUndef, Idx);
2891     KnownZero.insertBits(SubZero, Idx);
2892 
2893     // Attempt to avoid multi-use ops if we don't need anything from them.
2894     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2895       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2896           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2897       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2898           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2899       if (NewSrc || NewSub) {
2900         NewSrc = NewSrc ? NewSrc : Src;
2901         NewSub = NewSub ? NewSub : Sub;
2902         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2903                                         NewSub, Op.getOperand(2));
2904         return TLO.CombineTo(Op, NewOp);
2905       }
2906     }
2907     break;
2908   }
2909   case ISD::EXTRACT_SUBVECTOR: {
2910     // Offset the demanded elts by the subvector index.
2911     SDValue Src = Op.getOperand(0);
2912     if (Src.getValueType().isScalableVector())
2913       break;
2914     uint64_t Idx = Op.getConstantOperandVal(1);
2915     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2916     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2917 
2918     APInt SrcUndef, SrcZero;
2919     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2920                                    Depth + 1))
2921       return true;
2922     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2923     KnownZero = SrcZero.extractBits(NumElts, Idx);
2924 
2925     // Attempt to avoid multi-use ops if we don't need anything from them.
2926     if (!DemandedElts.isAllOnes()) {
2927       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2928           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2929       if (NewSrc) {
2930         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2931                                         Op.getOperand(1));
2932         return TLO.CombineTo(Op, NewOp);
2933       }
2934     }
2935     break;
2936   }
2937   case ISD::INSERT_VECTOR_ELT: {
2938     SDValue Vec = Op.getOperand(0);
2939     SDValue Scl = Op.getOperand(1);
2940     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2941 
2942     // For a legal, constant insertion index, if we don't need this insertion
2943     // then strip it, else remove it from the demanded elts.
2944     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2945       unsigned Idx = CIdx->getZExtValue();
2946       if (!DemandedElts[Idx])
2947         return TLO.CombineTo(Op, Vec);
2948 
2949       APInt DemandedVecElts(DemandedElts);
2950       DemandedVecElts.clearBit(Idx);
2951       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2952                                      KnownZero, TLO, Depth + 1))
2953         return true;
2954 
2955       KnownUndef.setBitVal(Idx, Scl.isUndef());
2956 
2957       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2958       break;
2959     }
2960 
2961     APInt VecUndef, VecZero;
2962     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2963                                    Depth + 1))
2964       return true;
2965     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2966     break;
2967   }
2968   case ISD::VSELECT: {
2969     // Try to transform the select condition based on the current demanded
2970     // elements.
2971     // TODO: If a condition element is undef, we can choose from one arm of the
2972     //       select (and if one arm is undef, then we can propagate that to the
2973     //       result).
2974     // TODO - add support for constant vselect masks (see IR version of this).
2975     APInt UnusedUndef, UnusedZero;
2976     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2977                                    UnusedZero, TLO, Depth + 1))
2978       return true;
2979 
2980     // See if we can simplify either vselect operand.
2981     APInt DemandedLHS(DemandedElts);
2982     APInt DemandedRHS(DemandedElts);
2983     APInt UndefLHS, ZeroLHS;
2984     APInt UndefRHS, ZeroRHS;
2985     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2986                                    ZeroLHS, TLO, Depth + 1))
2987       return true;
2988     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2989                                    ZeroRHS, TLO, Depth + 1))
2990       return true;
2991 
2992     KnownUndef = UndefLHS & UndefRHS;
2993     KnownZero = ZeroLHS & ZeroRHS;
2994     break;
2995   }
2996   case ISD::VECTOR_SHUFFLE: {
2997     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2998 
2999     // Collect demanded elements from shuffle operands..
3000     APInt DemandedLHS(NumElts, 0);
3001     APInt DemandedRHS(NumElts, 0);
3002     for (unsigned i = 0; i != NumElts; ++i) {
3003       int M = ShuffleMask[i];
3004       if (M < 0 || !DemandedElts[i])
3005         continue;
3006       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3007       if (M < (int)NumElts)
3008         DemandedLHS.setBit(M);
3009       else
3010         DemandedRHS.setBit(M - NumElts);
3011     }
3012 
3013     // See if we can simplify either shuffle operand.
3014     APInt UndefLHS, ZeroLHS;
3015     APInt UndefRHS, ZeroRHS;
3016     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3017                                    ZeroLHS, TLO, Depth + 1))
3018       return true;
3019     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3020                                    ZeroRHS, TLO, Depth + 1))
3021       return true;
3022 
3023     // Simplify mask using undef elements from LHS/RHS.
3024     bool Updated = false;
3025     bool IdentityLHS = true, IdentityRHS = true;
3026     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3027     for (unsigned i = 0; i != NumElts; ++i) {
3028       int &M = NewMask[i];
3029       if (M < 0)
3030         continue;
3031       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3032           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3033         Updated = true;
3034         M = -1;
3035       }
3036       IdentityLHS &= (M < 0) || (M == (int)i);
3037       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3038     }
3039 
3040     // Update legal shuffle masks based on demanded elements if it won't reduce
3041     // to Identity which can cause premature removal of the shuffle mask.
3042     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3043       SDValue LegalShuffle =
3044           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3045                                   NewMask, TLO.DAG);
3046       if (LegalShuffle)
3047         return TLO.CombineTo(Op, LegalShuffle);
3048     }
3049 
3050     // Propagate undef/zero elements from LHS/RHS.
3051     for (unsigned i = 0; i != NumElts; ++i) {
3052       int M = ShuffleMask[i];
3053       if (M < 0) {
3054         KnownUndef.setBit(i);
3055       } else if (M < (int)NumElts) {
3056         if (UndefLHS[M])
3057           KnownUndef.setBit(i);
3058         if (ZeroLHS[M])
3059           KnownZero.setBit(i);
3060       } else {
3061         if (UndefRHS[M - NumElts])
3062           KnownUndef.setBit(i);
3063         if (ZeroRHS[M - NumElts])
3064           KnownZero.setBit(i);
3065       }
3066     }
3067     break;
3068   }
3069   case ISD::ANY_EXTEND_VECTOR_INREG:
3070   case ISD::SIGN_EXTEND_VECTOR_INREG:
3071   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3072     APInt SrcUndef, SrcZero;
3073     SDValue Src = Op.getOperand(0);
3074     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3075     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
3076     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3077                                    Depth + 1))
3078       return true;
3079     KnownZero = SrcZero.zextOrTrunc(NumElts);
3080     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3081 
3082     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3083         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3084         DemandedSrcElts == 1) {
3085       // aext - if we just need the bottom element then we can bitcast.
3086       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3087     }
3088 
3089     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3090       // zext(undef) upper bits are guaranteed to be zero.
3091       if (DemandedElts.isSubsetOf(KnownUndef))
3092         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3093       KnownUndef.clearAllBits();
3094 
3095       // zext - if we just need the bottom element then we can mask:
3096       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3097       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3098           Op->isOnlyUserOf(Src.getNode()) &&
3099           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3100         SDLoc DL(Op);
3101         EVT SrcVT = Src.getValueType();
3102         EVT SrcSVT = SrcVT.getScalarType();
3103         SmallVector<SDValue> MaskElts;
3104         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3105         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3106         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3107         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3108                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3109           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3110           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3111         }
3112       }
3113     }
3114     break;
3115   }
3116 
3117   // TODO: There are more binop opcodes that could be handled here - MIN,
3118   // MAX, saturated math, etc.
3119   case ISD::ADD: {
3120     SDValue Op0 = Op.getOperand(0);
3121     SDValue Op1 = Op.getOperand(1);
3122     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3123       APInt UndefLHS, ZeroLHS;
3124       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3125                                      Depth + 1, /*AssumeSingleUse*/ true))
3126         return true;
3127     }
3128     LLVM_FALLTHROUGH;
3129   }
3130   case ISD::OR:
3131   case ISD::XOR:
3132   case ISD::SUB:
3133   case ISD::FADD:
3134   case ISD::FSUB:
3135   case ISD::FMUL:
3136   case ISD::FDIV:
3137   case ISD::FREM: {
3138     SDValue Op0 = Op.getOperand(0);
3139     SDValue Op1 = Op.getOperand(1);
3140 
3141     APInt UndefRHS, ZeroRHS;
3142     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3143                                    Depth + 1))
3144       return true;
3145     APInt UndefLHS, ZeroLHS;
3146     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3147                                    Depth + 1))
3148       return true;
3149 
3150     KnownZero = ZeroLHS & ZeroRHS;
3151     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3152 
3153     // Attempt to avoid multi-use ops if we don't need anything from them.
3154     // TODO - use KnownUndef to relax the demandedelts?
3155     if (!DemandedElts.isAllOnes())
3156       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3157         return true;
3158     break;
3159   }
3160   case ISD::SHL:
3161   case ISD::SRL:
3162   case ISD::SRA:
3163   case ISD::ROTL:
3164   case ISD::ROTR: {
3165     SDValue Op0 = Op.getOperand(0);
3166     SDValue Op1 = Op.getOperand(1);
3167 
3168     APInt UndefRHS, ZeroRHS;
3169     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3170                                    Depth + 1))
3171       return true;
3172     APInt UndefLHS, ZeroLHS;
3173     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3174                                    Depth + 1))
3175       return true;
3176 
3177     KnownZero = ZeroLHS;
3178     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3179 
3180     // Attempt to avoid multi-use ops if we don't need anything from them.
3181     // TODO - use KnownUndef to relax the demandedelts?
3182     if (!DemandedElts.isAllOnes())
3183       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3184         return true;
3185     break;
3186   }
3187   case ISD::MUL:
3188   case ISD::AND: {
3189     SDValue Op0 = Op.getOperand(0);
3190     SDValue Op1 = Op.getOperand(1);
3191 
3192     APInt SrcUndef, SrcZero;
3193     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3194                                    Depth + 1))
3195       return true;
3196     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3197                                    TLO, Depth + 1))
3198       return true;
3199 
3200     // If either side has a zero element, then the result element is zero, even
3201     // if the other is an UNDEF.
3202     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3203     // and then handle 'and' nodes with the rest of the binop opcodes.
3204     KnownZero |= SrcZero;
3205     KnownUndef &= SrcUndef;
3206     KnownUndef &= ~KnownZero;
3207 
3208     // Attempt to avoid multi-use ops if we don't need anything from them.
3209     // TODO - use KnownUndef to relax the demandedelts?
3210     if (!DemandedElts.isAllOnes())
3211       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3212         return true;
3213     break;
3214   }
3215   case ISD::TRUNCATE:
3216   case ISD::SIGN_EXTEND:
3217   case ISD::ZERO_EXTEND:
3218     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3219                                    KnownZero, TLO, Depth + 1))
3220       return true;
3221 
3222     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3223       // zext(undef) upper bits are guaranteed to be zero.
3224       if (DemandedElts.isSubsetOf(KnownUndef))
3225         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3226       KnownUndef.clearAllBits();
3227     }
3228     break;
3229   default: {
3230     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3231       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3232                                                   KnownZero, TLO, Depth))
3233         return true;
3234     } else {
3235       KnownBits Known;
3236       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3237       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3238                                TLO, Depth, AssumeSingleUse))
3239         return true;
3240     }
3241     break;
3242   }
3243   }
3244   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3245 
3246   // Constant fold all undef cases.
3247   // TODO: Handle zero cases as well.
3248   if (DemandedElts.isSubsetOf(KnownUndef))
3249     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3250 
3251   return false;
3252 }
3253 
3254 /// Determine which of the bits specified in Mask are known to be either zero or
3255 /// one and return them in the Known.
3256 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3257                                                    KnownBits &Known,
3258                                                    const APInt &DemandedElts,
3259                                                    const SelectionDAG &DAG,
3260                                                    unsigned Depth) const {
3261   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3262           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3263           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3264           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3265          "Should use MaskedValueIsZero if you don't know whether Op"
3266          " is a target node!");
3267   Known.resetAll();
3268 }
3269 
3270 void TargetLowering::computeKnownBitsForTargetInstr(
3271     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3272     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3273     unsigned Depth) const {
3274   Known.resetAll();
3275 }
3276 
3277 void TargetLowering::computeKnownBitsForFrameIndex(
3278   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3279   // The low bits are known zero if the pointer is aligned.
3280   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3281 }
3282 
3283 Align TargetLowering::computeKnownAlignForTargetInstr(
3284   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3285   unsigned Depth) const {
3286   return Align(1);
3287 }
3288 
3289 /// This method can be implemented by targets that want to expose additional
3290 /// information about sign bits to the DAG Combiner.
3291 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3292                                                          const APInt &,
3293                                                          const SelectionDAG &,
3294                                                          unsigned Depth) const {
3295   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3296           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3297           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3298           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3299          "Should use ComputeNumSignBits if you don't know whether Op"
3300          " is a target node!");
3301   return 1;
3302 }
3303 
3304 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3305   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3306   const MachineRegisterInfo &MRI, unsigned Depth) const {
3307   return 1;
3308 }
3309 
3310 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3311     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3312     TargetLoweringOpt &TLO, unsigned Depth) const {
3313   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3314           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3315           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3316           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3317          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3318          " is a target node!");
3319   return false;
3320 }
3321 
3322 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3323     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3324     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3325   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3326           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3327           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3328           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3329          "Should use SimplifyDemandedBits if you don't know whether Op"
3330          " is a target node!");
3331   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3332   return false;
3333 }
3334 
3335 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3336     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3337     SelectionDAG &DAG, unsigned Depth) const {
3338   assert(
3339       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3340        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3341        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3342        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3343       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3344       " is a target node!");
3345   return SDValue();
3346 }
3347 
3348 SDValue
3349 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3350                                         SDValue N1, MutableArrayRef<int> Mask,
3351                                         SelectionDAG &DAG) const {
3352   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3353   if (!LegalMask) {
3354     std::swap(N0, N1);
3355     ShuffleVectorSDNode::commuteMask(Mask);
3356     LegalMask = isShuffleMaskLegal(Mask, VT);
3357   }
3358 
3359   if (!LegalMask)
3360     return SDValue();
3361 
3362   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3363 }
3364 
3365 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3366   return nullptr;
3367 }
3368 
3369 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3370     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3371     bool PoisonOnly, unsigned Depth) const {
3372   assert(
3373       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3374        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3375        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3376        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3377       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3378       " is a target node!");
3379   return false;
3380 }
3381 
3382 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3383                                                   const SelectionDAG &DAG,
3384                                                   bool SNaN,
3385                                                   unsigned Depth) const {
3386   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3387           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3388           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3389           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3390          "Should use isKnownNeverNaN if you don't know whether Op"
3391          " is a target node!");
3392   return false;
3393 }
3394 
3395 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3396                                                const APInt &DemandedElts,
3397                                                APInt &UndefElts,
3398                                                unsigned Depth) const {
3399   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3400           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3401           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3402           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3403          "Should use isSplatValue if you don't know whether Op"
3404          " is a target node!");
3405   return false;
3406 }
3407 
3408 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3409 // work with truncating build vectors and vectors with elements of less than
3410 // 8 bits.
3411 bool TargetLowering::isConstTrueVal(SDValue N) const {
3412   if (!N)
3413     return false;
3414 
3415   unsigned EltWidth;
3416   APInt CVal;
3417   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3418                                                /*AllowTruncation=*/true)) {
3419     CVal = CN->getAPIntValue();
3420     EltWidth = N.getValueType().getScalarSizeInBits();
3421   } else
3422     return false;
3423 
3424   // If this is a truncating splat, truncate the splat value.
3425   // Otherwise, we may fail to match the expected values below.
3426   if (EltWidth < CVal.getBitWidth())
3427     CVal = CVal.trunc(EltWidth);
3428 
3429   switch (getBooleanContents(N.getValueType())) {
3430   case UndefinedBooleanContent:
3431     return CVal[0];
3432   case ZeroOrOneBooleanContent:
3433     return CVal.isOne();
3434   case ZeroOrNegativeOneBooleanContent:
3435     return CVal.isAllOnes();
3436   }
3437 
3438   llvm_unreachable("Invalid boolean contents");
3439 }
3440 
3441 bool TargetLowering::isConstFalseVal(SDValue N) const {
3442   if (!N)
3443     return false;
3444 
3445   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3446   if (!CN) {
3447     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3448     if (!BV)
3449       return false;
3450 
3451     // Only interested in constant splats, we don't care about undef
3452     // elements in identifying boolean constants and getConstantSplatNode
3453     // returns NULL if all ops are undef;
3454     CN = BV->getConstantSplatNode();
3455     if (!CN)
3456       return false;
3457   }
3458 
3459   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3460     return !CN->getAPIntValue()[0];
3461 
3462   return CN->isZero();
3463 }
3464 
3465 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3466                                        bool SExt) const {
3467   if (VT == MVT::i1)
3468     return N->isOne();
3469 
3470   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3471   switch (Cnt) {
3472   case TargetLowering::ZeroOrOneBooleanContent:
3473     // An extended value of 1 is always true, unless its original type is i1,
3474     // in which case it will be sign extended to -1.
3475     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3476   case TargetLowering::UndefinedBooleanContent:
3477   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3478     return N->isAllOnes() && SExt;
3479   }
3480   llvm_unreachable("Unexpected enumeration.");
3481 }
3482 
3483 /// This helper function of SimplifySetCC tries to optimize the comparison when
3484 /// either operand of the SetCC node is a bitwise-and instruction.
3485 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3486                                          ISD::CondCode Cond, const SDLoc &DL,
3487                                          DAGCombinerInfo &DCI) const {
3488   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3489     std::swap(N0, N1);
3490 
3491   SelectionDAG &DAG = DCI.DAG;
3492   EVT OpVT = N0.getValueType();
3493   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3494       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3495     return SDValue();
3496 
3497   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3498   // iff everything but LSB is known zero:
3499   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3500       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3501        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3502     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3503     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3504     if (DAG.MaskedValueIsZero(N0, UpperBits))
3505       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3506   }
3507 
3508   // Match these patterns in any of their permutations:
3509   // (X & Y) == Y
3510   // (X & Y) != Y
3511   SDValue X, Y;
3512   if (N0.getOperand(0) == N1) {
3513     X = N0.getOperand(1);
3514     Y = N0.getOperand(0);
3515   } else if (N0.getOperand(1) == N1) {
3516     X = N0.getOperand(0);
3517     Y = N0.getOperand(1);
3518   } else {
3519     return SDValue();
3520   }
3521 
3522   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3523   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3524     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3525     // Note that where Y is variable and is known to have at most one bit set
3526     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3527     // equivalent when Y == 0.
3528     assert(OpVT.isInteger());
3529     Cond = ISD::getSetCCInverse(Cond, OpVT);
3530     if (DCI.isBeforeLegalizeOps() ||
3531         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3532       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3533   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3534     // If the target supports an 'and-not' or 'and-complement' logic operation,
3535     // try to use that to make a comparison operation more efficient.
3536     // But don't do this transform if the mask is a single bit because there are
3537     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3538     // 'rlwinm' on PPC).
3539 
3540     // Bail out if the compare operand that we want to turn into a zero is
3541     // already a zero (otherwise, infinite loop).
3542     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3543     if (YConst && YConst->isZero())
3544       return SDValue();
3545 
3546     // Transform this into: ~X & Y == 0.
3547     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3548     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3549     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3550   }
3551 
3552   return SDValue();
3553 }
3554 
3555 /// There are multiple IR patterns that could be checking whether certain
3556 /// truncation of a signed number would be lossy or not. The pattern which is
3557 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3558 /// We are looking for the following pattern: (KeptBits is a constant)
3559 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3560 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3561 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3562 /// We will unfold it into the natural trunc+sext pattern:
3563 ///   ((%x << C) a>> C) dstcond %x
3564 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3565 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3566     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3567     const SDLoc &DL) const {
3568   // We must be comparing with a constant.
3569   ConstantSDNode *C1;
3570   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3571     return SDValue();
3572 
3573   // N0 should be:  add %x, (1 << (KeptBits-1))
3574   if (N0->getOpcode() != ISD::ADD)
3575     return SDValue();
3576 
3577   // And we must be 'add'ing a constant.
3578   ConstantSDNode *C01;
3579   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3580     return SDValue();
3581 
3582   SDValue X = N0->getOperand(0);
3583   EVT XVT = X.getValueType();
3584 
3585   // Validate constants ...
3586 
3587   APInt I1 = C1->getAPIntValue();
3588 
3589   ISD::CondCode NewCond;
3590   if (Cond == ISD::CondCode::SETULT) {
3591     NewCond = ISD::CondCode::SETEQ;
3592   } else if (Cond == ISD::CondCode::SETULE) {
3593     NewCond = ISD::CondCode::SETEQ;
3594     // But need to 'canonicalize' the constant.
3595     I1 += 1;
3596   } else if (Cond == ISD::CondCode::SETUGT) {
3597     NewCond = ISD::CondCode::SETNE;
3598     // But need to 'canonicalize' the constant.
3599     I1 += 1;
3600   } else if (Cond == ISD::CondCode::SETUGE) {
3601     NewCond = ISD::CondCode::SETNE;
3602   } else
3603     return SDValue();
3604 
3605   APInt I01 = C01->getAPIntValue();
3606 
3607   auto checkConstants = [&I1, &I01]() -> bool {
3608     // Both of them must be power-of-two, and the constant from setcc is bigger.
3609     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3610   };
3611 
3612   if (checkConstants()) {
3613     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3614   } else {
3615     // What if we invert constants? (and the target predicate)
3616     I1.negate();
3617     I01.negate();
3618     assert(XVT.isInteger());
3619     NewCond = getSetCCInverse(NewCond, XVT);
3620     if (!checkConstants())
3621       return SDValue();
3622     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3623   }
3624 
3625   // They are power-of-two, so which bit is set?
3626   const unsigned KeptBits = I1.logBase2();
3627   const unsigned KeptBitsMinusOne = I01.logBase2();
3628 
3629   // Magic!
3630   if (KeptBits != (KeptBitsMinusOne + 1))
3631     return SDValue();
3632   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3633 
3634   // We don't want to do this in every single case.
3635   SelectionDAG &DAG = DCI.DAG;
3636   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3637           XVT, KeptBits))
3638     return SDValue();
3639 
3640   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3641   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3642 
3643   // Unfold into:  ((%x << C) a>> C) cond %x
3644   // Where 'cond' will be either 'eq' or 'ne'.
3645   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3646   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3647   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3648   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3649 
3650   return T2;
3651 }
3652 
3653 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3654 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3655     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3656     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3657   assert(isConstOrConstSplat(N1C) &&
3658          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3659          "Should be a comparison with 0.");
3660   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3661          "Valid only for [in]equality comparisons.");
3662 
3663   unsigned NewShiftOpcode;
3664   SDValue X, C, Y;
3665 
3666   SelectionDAG &DAG = DCI.DAG;
3667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3668 
3669   // Look for '(C l>>/<< Y)'.
3670   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3671     // The shift should be one-use.
3672     if (!V.hasOneUse())
3673       return false;
3674     unsigned OldShiftOpcode = V.getOpcode();
3675     switch (OldShiftOpcode) {
3676     case ISD::SHL:
3677       NewShiftOpcode = ISD::SRL;
3678       break;
3679     case ISD::SRL:
3680       NewShiftOpcode = ISD::SHL;
3681       break;
3682     default:
3683       return false; // must be a logical shift.
3684     }
3685     // We should be shifting a constant.
3686     // FIXME: best to use isConstantOrConstantVector().
3687     C = V.getOperand(0);
3688     ConstantSDNode *CC =
3689         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3690     if (!CC)
3691       return false;
3692     Y = V.getOperand(1);
3693 
3694     ConstantSDNode *XC =
3695         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3696     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3697         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3698   };
3699 
3700   // LHS of comparison should be an one-use 'and'.
3701   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3702     return SDValue();
3703 
3704   X = N0.getOperand(0);
3705   SDValue Mask = N0.getOperand(1);
3706 
3707   // 'and' is commutative!
3708   if (!Match(Mask)) {
3709     std::swap(X, Mask);
3710     if (!Match(Mask))
3711       return SDValue();
3712   }
3713 
3714   EVT VT = X.getValueType();
3715 
3716   // Produce:
3717   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3718   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3719   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3720   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3721   return T2;
3722 }
3723 
3724 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3725 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3726 /// handle the commuted versions of these patterns.
3727 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3728                                            ISD::CondCode Cond, const SDLoc &DL,
3729                                            DAGCombinerInfo &DCI) const {
3730   unsigned BOpcode = N0.getOpcode();
3731   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3732          "Unexpected binop");
3733   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3734 
3735   // (X + Y) == X --> Y == 0
3736   // (X - Y) == X --> Y == 0
3737   // (X ^ Y) == X --> Y == 0
3738   SelectionDAG &DAG = DCI.DAG;
3739   EVT OpVT = N0.getValueType();
3740   SDValue X = N0.getOperand(0);
3741   SDValue Y = N0.getOperand(1);
3742   if (X == N1)
3743     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3744 
3745   if (Y != N1)
3746     return SDValue();
3747 
3748   // (X + Y) == Y --> X == 0
3749   // (X ^ Y) == Y --> X == 0
3750   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3751     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3752 
3753   // The shift would not be valid if the operands are boolean (i1).
3754   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3755     return SDValue();
3756 
3757   // (X - Y) == Y --> X == Y << 1
3758   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3759                                  !DCI.isBeforeLegalize());
3760   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3761   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3762   if (!DCI.isCalledByLegalizer())
3763     DCI.AddToWorklist(YShl1.getNode());
3764   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3765 }
3766 
3767 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3768                                       SDValue N0, const APInt &C1,
3769                                       ISD::CondCode Cond, const SDLoc &dl,
3770                                       SelectionDAG &DAG) {
3771   // Look through truncs that don't change the value of a ctpop.
3772   // FIXME: Add vector support? Need to be careful with setcc result type below.
3773   SDValue CTPOP = N0;
3774   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3775       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3776     CTPOP = N0.getOperand(0);
3777 
3778   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3779     return SDValue();
3780 
3781   EVT CTVT = CTPOP.getValueType();
3782   SDValue CTOp = CTPOP.getOperand(0);
3783 
3784   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3785   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3786   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3787     return SDValue();
3788 
3789   // (ctpop x) u< 2 -> (x & x-1) == 0
3790   // (ctpop x) u> 1 -> (x & x-1) != 0
3791   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3792     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3793     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3794       return SDValue();
3795     if (C1 == 0 && (Cond == ISD::SETULT))
3796       return SDValue(); // This is handled elsewhere.
3797 
3798     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3799 
3800     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3801     SDValue Result = CTOp;
3802     for (unsigned i = 0; i < Passes; i++) {
3803       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3804       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3805     }
3806     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3807     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3808   }
3809 
3810   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3811   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3812     // For scalars, keep CTPOP if it is legal or custom.
3813     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3814       return SDValue();
3815     // This is based on X86's custom lowering for CTPOP which produces more
3816     // instructions than the expansion here.
3817 
3818     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3819     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3820     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3821     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3822     assert(CTVT.isInteger());
3823     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3824     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3825     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3826     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3827     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3828     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3829     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3830   }
3831 
3832   return SDValue();
3833 }
3834 
3835 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3836                                    ISD::CondCode Cond, const SDLoc &dl,
3837                                    SelectionDAG &DAG) {
3838   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3839     return SDValue();
3840 
3841   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3842   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3843     return SDValue();
3844 
3845   auto getRotateSource = [](SDValue X) {
3846     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3847       return X.getOperand(0);
3848     return SDValue();
3849   };
3850 
3851   // Peek through a rotated value compared against 0 or -1:
3852   // (rot X, Y) == 0/-1 --> X == 0/-1
3853   // (rot X, Y) != 0/-1 --> X != 0/-1
3854   if (SDValue R = getRotateSource(N0))
3855     return DAG.getSetCC(dl, VT, R, N1, Cond);
3856 
3857   // Peek through an 'or' of a rotated value compared against 0:
3858   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3859   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3860   //
3861   // TODO: Add the 'and' with -1 sibling.
3862   // TODO: Recurse through a series of 'or' ops to find the rotate.
3863   EVT OpVT = N0.getValueType();
3864   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3865     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3866       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3867       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3868     }
3869     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3870       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3871       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3872     }
3873   }
3874 
3875   return SDValue();
3876 }
3877 
3878 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3879                                         ISD::CondCode Cond, const SDLoc &dl,
3880                                         SelectionDAG &DAG) {
3881   // If we are testing for all-bits-clear, we might be able to do that with
3882   // less shifting since bit-order does not matter.
3883   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3884     return SDValue();
3885 
3886   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3887   if (!C1 || !C1->isZero())
3888     return SDValue();
3889 
3890   if (!N0.hasOneUse() ||
3891       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3892     return SDValue();
3893 
3894   unsigned BitWidth = N0.getScalarValueSizeInBits();
3895   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3896   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3897     return SDValue();
3898 
3899   // Canonicalize fshr as fshl to reduce pattern-matching.
3900   unsigned ShAmt = ShAmtC->getZExtValue();
3901   if (N0.getOpcode() == ISD::FSHR)
3902     ShAmt = BitWidth - ShAmt;
3903 
3904   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3905   SDValue X, Y;
3906   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3907     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3908       return false;
3909     if (Or.getOperand(0) == Other) {
3910       X = Or.getOperand(0);
3911       Y = Or.getOperand(1);
3912       return true;
3913     }
3914     if (Or.getOperand(1) == Other) {
3915       X = Or.getOperand(1);
3916       Y = Or.getOperand(0);
3917       return true;
3918     }
3919     return false;
3920   };
3921 
3922   EVT OpVT = N0.getValueType();
3923   EVT ShAmtVT = N0.getOperand(2).getValueType();
3924   SDValue F0 = N0.getOperand(0);
3925   SDValue F1 = N0.getOperand(1);
3926   if (matchOr(F0, F1)) {
3927     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3928     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3929     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3930     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3931     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3932   }
3933   if (matchOr(F1, F0)) {
3934     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
3935     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
3936     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
3937     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3938     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3939   }
3940 
3941   return SDValue();
3942 }
3943 
3944 /// Try to simplify a setcc built with the specified operands and cc. If it is
3945 /// unable to simplify it, return a null SDValue.
3946 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3947                                       ISD::CondCode Cond, bool foldBooleans,
3948                                       DAGCombinerInfo &DCI,
3949                                       const SDLoc &dl) const {
3950   SelectionDAG &DAG = DCI.DAG;
3951   const DataLayout &Layout = DAG.getDataLayout();
3952   EVT OpVT = N0.getValueType();
3953 
3954   // Constant fold or commute setcc.
3955   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3956     return Fold;
3957 
3958   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3959   // TODO: Handle non-splat vector constants. All undef causes trouble.
3960   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3961   // infinite loop here when we encounter one.
3962   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3963   if (isConstOrConstSplat(N0) &&
3964       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3965       (DCI.isBeforeLegalizeOps() ||
3966        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3967     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3968 
3969   // If we have a subtract with the same 2 non-constant operands as this setcc
3970   // -- but in reverse order -- then try to commute the operands of this setcc
3971   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3972   // instruction on some targets.
3973   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3974       (DCI.isBeforeLegalizeOps() ||
3975        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3976       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3977       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3978     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3979 
3980   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
3981     return V;
3982 
3983   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
3984     return V;
3985 
3986   if (auto *N1C = isConstOrConstSplat(N1)) {
3987     const APInt &C1 = N1C->getAPIntValue();
3988 
3989     // Optimize some CTPOP cases.
3990     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3991       return V;
3992 
3993     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3994     // equality comparison, then we're just comparing whether X itself is
3995     // zero.
3996     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3997         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3998         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3999       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4000         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4001             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4002           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4003             // (srl (ctlz x), 5) == 0  -> X != 0
4004             // (srl (ctlz x), 5) != 1  -> X != 0
4005             Cond = ISD::SETNE;
4006           } else {
4007             // (srl (ctlz x), 5) != 0  -> X == 0
4008             // (srl (ctlz x), 5) == 1  -> X == 0
4009             Cond = ISD::SETEQ;
4010           }
4011           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4012           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4013                               Cond);
4014         }
4015       }
4016     }
4017   }
4018 
4019   // FIXME: Support vectors.
4020   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4021     const APInt &C1 = N1C->getAPIntValue();
4022 
4023     // (zext x) == C --> x == (trunc C)
4024     // (sext x) == C --> x == (trunc C)
4025     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4026         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4027       unsigned MinBits = N0.getValueSizeInBits();
4028       SDValue PreExt;
4029       bool Signed = false;
4030       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4031         // ZExt
4032         MinBits = N0->getOperand(0).getValueSizeInBits();
4033         PreExt = N0->getOperand(0);
4034       } else if (N0->getOpcode() == ISD::AND) {
4035         // DAGCombine turns costly ZExts into ANDs
4036         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4037           if ((C->getAPIntValue()+1).isPowerOf2()) {
4038             MinBits = C->getAPIntValue().countTrailingOnes();
4039             PreExt = N0->getOperand(0);
4040           }
4041       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4042         // SExt
4043         MinBits = N0->getOperand(0).getValueSizeInBits();
4044         PreExt = N0->getOperand(0);
4045         Signed = true;
4046       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4047         // ZEXTLOAD / SEXTLOAD
4048         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4049           MinBits = LN0->getMemoryVT().getSizeInBits();
4050           PreExt = N0;
4051         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4052           Signed = true;
4053           MinBits = LN0->getMemoryVT().getSizeInBits();
4054           PreExt = N0;
4055         }
4056       }
4057 
4058       // Figure out how many bits we need to preserve this constant.
4059       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4060 
4061       // Make sure we're not losing bits from the constant.
4062       if (MinBits > 0 &&
4063           MinBits < C1.getBitWidth() &&
4064           MinBits >= ReqdBits) {
4065         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4066         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4067           // Will get folded away.
4068           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4069           if (MinBits == 1 && C1 == 1)
4070             // Invert the condition.
4071             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4072                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4073           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4074           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4075         }
4076 
4077         // If truncating the setcc operands is not desirable, we can still
4078         // simplify the expression in some cases:
4079         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4080         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4081         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4082         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4083         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4084         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4085         SDValue TopSetCC = N0->getOperand(0);
4086         unsigned N0Opc = N0->getOpcode();
4087         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4088         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4089             TopSetCC.getOpcode() == ISD::SETCC &&
4090             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4091             (isConstFalseVal(N1) ||
4092              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4093 
4094           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4095                          (!N1C->isZero() && Cond == ISD::SETNE);
4096 
4097           if (!Inverse)
4098             return TopSetCC;
4099 
4100           ISD::CondCode InvCond = ISD::getSetCCInverse(
4101               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4102               TopSetCC.getOperand(0).getValueType());
4103           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4104                                       TopSetCC.getOperand(1),
4105                                       InvCond);
4106         }
4107       }
4108     }
4109 
4110     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4111     // equality or unsigned, and all 1 bits of the const are in the same
4112     // partial word, see if we can shorten the load.
4113     if (DCI.isBeforeLegalize() &&
4114         !ISD::isSignedIntSetCC(Cond) &&
4115         N0.getOpcode() == ISD::AND && C1 == 0 &&
4116         N0.getNode()->hasOneUse() &&
4117         isa<LoadSDNode>(N0.getOperand(0)) &&
4118         N0.getOperand(0).getNode()->hasOneUse() &&
4119         isa<ConstantSDNode>(N0.getOperand(1))) {
4120       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4121       APInt bestMask;
4122       unsigned bestWidth = 0, bestOffset = 0;
4123       if (Lod->isSimple() && Lod->isUnindexed()) {
4124         unsigned origWidth = N0.getValueSizeInBits();
4125         unsigned maskWidth = origWidth;
4126         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4127         // 8 bits, but have to be careful...
4128         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4129           origWidth = Lod->getMemoryVT().getSizeInBits();
4130         const APInt &Mask = N0.getConstantOperandAPInt(1);
4131         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4132           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4133           for (unsigned offset=0; offset<origWidth/width; offset++) {
4134             if (Mask.isSubsetOf(newMask)) {
4135               if (Layout.isLittleEndian())
4136                 bestOffset = (uint64_t)offset * (width/8);
4137               else
4138                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4139               bestMask = Mask.lshr(offset * (width/8) * 8);
4140               bestWidth = width;
4141               break;
4142             }
4143             newMask <<= width;
4144           }
4145         }
4146       }
4147       if (bestWidth) {
4148         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4149         if (newVT.isRound() &&
4150             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4151           SDValue Ptr = Lod->getBasePtr();
4152           if (bestOffset != 0)
4153             Ptr =
4154                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4155           SDValue NewLoad =
4156               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4157                           Lod->getPointerInfo().getWithOffset(bestOffset),
4158                           Lod->getOriginalAlign());
4159           return DAG.getSetCC(dl, VT,
4160                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4161                                       DAG.getConstant(bestMask.trunc(bestWidth),
4162                                                       dl, newVT)),
4163                               DAG.getConstant(0LL, dl, newVT), Cond);
4164         }
4165       }
4166     }
4167 
4168     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4169     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4170       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4171 
4172       // If the comparison constant has bits in the upper part, the
4173       // zero-extended value could never match.
4174       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4175                                               C1.getBitWidth() - InSize))) {
4176         switch (Cond) {
4177         case ISD::SETUGT:
4178         case ISD::SETUGE:
4179         case ISD::SETEQ:
4180           return DAG.getConstant(0, dl, VT);
4181         case ISD::SETULT:
4182         case ISD::SETULE:
4183         case ISD::SETNE:
4184           return DAG.getConstant(1, dl, VT);
4185         case ISD::SETGT:
4186         case ISD::SETGE:
4187           // True if the sign bit of C1 is set.
4188           return DAG.getConstant(C1.isNegative(), dl, VT);
4189         case ISD::SETLT:
4190         case ISD::SETLE:
4191           // True if the sign bit of C1 isn't set.
4192           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4193         default:
4194           break;
4195         }
4196       }
4197 
4198       // Otherwise, we can perform the comparison with the low bits.
4199       switch (Cond) {
4200       case ISD::SETEQ:
4201       case ISD::SETNE:
4202       case ISD::SETUGT:
4203       case ISD::SETUGE:
4204       case ISD::SETULT:
4205       case ISD::SETULE: {
4206         EVT newVT = N0.getOperand(0).getValueType();
4207         if (DCI.isBeforeLegalizeOps() ||
4208             (isOperationLegal(ISD::SETCC, newVT) &&
4209              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4210           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4211           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4212 
4213           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4214                                           NewConst, Cond);
4215           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4216         }
4217         break;
4218       }
4219       default:
4220         break; // todo, be more careful with signed comparisons
4221       }
4222     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4223                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4224                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4225                                       OpVT)) {
4226       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4227       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4228       EVT ExtDstTy = N0.getValueType();
4229       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4230 
4231       // If the constant doesn't fit into the number of bits for the source of
4232       // the sign extension, it is impossible for both sides to be equal.
4233       if (C1.getMinSignedBits() > ExtSrcTyBits)
4234         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4235 
4236       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4237              ExtDstTy != ExtSrcTy && "Unexpected types!");
4238       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4239       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4240                                    DAG.getConstant(Imm, dl, ExtDstTy));
4241       if (!DCI.isCalledByLegalizer())
4242         DCI.AddToWorklist(ZextOp.getNode());
4243       // Otherwise, make this a use of a zext.
4244       return DAG.getSetCC(dl, VT, ZextOp,
4245                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4246     } else if ((N1C->isZero() || N1C->isOne()) &&
4247                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4248       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4249       if (N0.getOpcode() == ISD::SETCC &&
4250           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4251           (N0.getValueType() == MVT::i1 ||
4252            getBooleanContents(N0.getOperand(0).getValueType()) ==
4253                        ZeroOrOneBooleanContent)) {
4254         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4255         if (TrueWhenTrue)
4256           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4257         // Invert the condition.
4258         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4259         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4260         if (DCI.isBeforeLegalizeOps() ||
4261             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4262           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4263       }
4264 
4265       if ((N0.getOpcode() == ISD::XOR ||
4266            (N0.getOpcode() == ISD::AND &&
4267             N0.getOperand(0).getOpcode() == ISD::XOR &&
4268             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4269           isOneConstant(N0.getOperand(1))) {
4270         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4271         // can only do this if the top bits are known zero.
4272         unsigned BitWidth = N0.getValueSizeInBits();
4273         if (DAG.MaskedValueIsZero(N0,
4274                                   APInt::getHighBitsSet(BitWidth,
4275                                                         BitWidth-1))) {
4276           // Okay, get the un-inverted input value.
4277           SDValue Val;
4278           if (N0.getOpcode() == ISD::XOR) {
4279             Val = N0.getOperand(0);
4280           } else {
4281             assert(N0.getOpcode() == ISD::AND &&
4282                     N0.getOperand(0).getOpcode() == ISD::XOR);
4283             // ((X^1)&1)^1 -> X & 1
4284             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4285                               N0.getOperand(0).getOperand(0),
4286                               N0.getOperand(1));
4287           }
4288 
4289           return DAG.getSetCC(dl, VT, Val, N1,
4290                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4291         }
4292       } else if (N1C->isOne()) {
4293         SDValue Op0 = N0;
4294         if (Op0.getOpcode() == ISD::TRUNCATE)
4295           Op0 = Op0.getOperand(0);
4296 
4297         if ((Op0.getOpcode() == ISD::XOR) &&
4298             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4299             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4300           SDValue XorLHS = Op0.getOperand(0);
4301           SDValue XorRHS = Op0.getOperand(1);
4302           // Ensure that the input setccs return an i1 type or 0/1 value.
4303           if (Op0.getValueType() == MVT::i1 ||
4304               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4305                       ZeroOrOneBooleanContent &&
4306                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4307                         ZeroOrOneBooleanContent)) {
4308             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4309             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4310             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4311           }
4312         }
4313         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4314           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4315           if (Op0.getValueType().bitsGT(VT))
4316             Op0 = DAG.getNode(ISD::AND, dl, VT,
4317                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4318                           DAG.getConstant(1, dl, VT));
4319           else if (Op0.getValueType().bitsLT(VT))
4320             Op0 = DAG.getNode(ISD::AND, dl, VT,
4321                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4322                         DAG.getConstant(1, dl, VT));
4323 
4324           return DAG.getSetCC(dl, VT, Op0,
4325                               DAG.getConstant(0, dl, Op0.getValueType()),
4326                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4327         }
4328         if (Op0.getOpcode() == ISD::AssertZext &&
4329             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4330           return DAG.getSetCC(dl, VT, Op0,
4331                               DAG.getConstant(0, dl, Op0.getValueType()),
4332                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4333       }
4334     }
4335 
4336     // Given:
4337     //   icmp eq/ne (urem %x, %y), 0
4338     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4339     //   icmp eq/ne %x, 0
4340     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4341         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4342       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4343       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4344       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4345         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4346     }
4347 
4348     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4349     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4350     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4351         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4352         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4353         N1C && N1C->isAllOnes()) {
4354       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4355                           DAG.getConstant(0, dl, OpVT),
4356                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4357     }
4358 
4359     if (SDValue V =
4360             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4361       return V;
4362   }
4363 
4364   // These simplifications apply to splat vectors as well.
4365   // TODO: Handle more splat vector cases.
4366   if (auto *N1C = isConstOrConstSplat(N1)) {
4367     const APInt &C1 = N1C->getAPIntValue();
4368 
4369     APInt MinVal, MaxVal;
4370     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4371     if (ISD::isSignedIntSetCC(Cond)) {
4372       MinVal = APInt::getSignedMinValue(OperandBitSize);
4373       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4374     } else {
4375       MinVal = APInt::getMinValue(OperandBitSize);
4376       MaxVal = APInt::getMaxValue(OperandBitSize);
4377     }
4378 
4379     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4380     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4381       // X >= MIN --> true
4382       if (C1 == MinVal)
4383         return DAG.getBoolConstant(true, dl, VT, OpVT);
4384 
4385       if (!VT.isVector()) { // TODO: Support this for vectors.
4386         // X >= C0 --> X > (C0 - 1)
4387         APInt C = C1 - 1;
4388         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4389         if ((DCI.isBeforeLegalizeOps() ||
4390              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4391             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4392                                   isLegalICmpImmediate(C.getSExtValue())))) {
4393           return DAG.getSetCC(dl, VT, N0,
4394                               DAG.getConstant(C, dl, N1.getValueType()),
4395                               NewCC);
4396         }
4397       }
4398     }
4399 
4400     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4401       // X <= MAX --> true
4402       if (C1 == MaxVal)
4403         return DAG.getBoolConstant(true, dl, VT, OpVT);
4404 
4405       // X <= C0 --> X < (C0 + 1)
4406       if (!VT.isVector()) { // TODO: Support this for vectors.
4407         APInt C = C1 + 1;
4408         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4409         if ((DCI.isBeforeLegalizeOps() ||
4410              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4411             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4412                                   isLegalICmpImmediate(C.getSExtValue())))) {
4413           return DAG.getSetCC(dl, VT, N0,
4414                               DAG.getConstant(C, dl, N1.getValueType()),
4415                               NewCC);
4416         }
4417       }
4418     }
4419 
4420     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4421       if (C1 == MinVal)
4422         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4423 
4424       // TODO: Support this for vectors after legalize ops.
4425       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4426         // Canonicalize setlt X, Max --> setne X, Max
4427         if (C1 == MaxVal)
4428           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4429 
4430         // If we have setult X, 1, turn it into seteq X, 0
4431         if (C1 == MinVal+1)
4432           return DAG.getSetCC(dl, VT, N0,
4433                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4434                               ISD::SETEQ);
4435       }
4436     }
4437 
4438     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4439       if (C1 == MaxVal)
4440         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4441 
4442       // TODO: Support this for vectors after legalize ops.
4443       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4444         // Canonicalize setgt X, Min --> setne X, Min
4445         if (C1 == MinVal)
4446           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4447 
4448         // If we have setugt X, Max-1, turn it into seteq X, Max
4449         if (C1 == MaxVal-1)
4450           return DAG.getSetCC(dl, VT, N0,
4451                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4452                               ISD::SETEQ);
4453       }
4454     }
4455 
4456     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4457       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4458       if (C1.isZero())
4459         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4460                 VT, N0, N1, Cond, DCI, dl))
4461           return CC;
4462 
4463       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4464       // For example, when high 32-bits of i64 X are known clear:
4465       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4466       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4467       bool CmpZero = N1C->getAPIntValue().isZero();
4468       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4469       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4470         // Match or(lo,shl(hi,bw/2)) pattern.
4471         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4472           unsigned EltBits = V.getScalarValueSizeInBits();
4473           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4474             return false;
4475           SDValue LHS = V.getOperand(0);
4476           SDValue RHS = V.getOperand(1);
4477           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4478           // Unshifted element must have zero upperbits.
4479           if (RHS.getOpcode() == ISD::SHL &&
4480               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4481               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4482               DAG.MaskedValueIsZero(LHS, HiBits)) {
4483             Lo = LHS;
4484             Hi = RHS.getOperand(0);
4485             return true;
4486           }
4487           if (LHS.getOpcode() == ISD::SHL &&
4488               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4489               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4490               DAG.MaskedValueIsZero(RHS, HiBits)) {
4491             Lo = RHS;
4492             Hi = LHS.getOperand(0);
4493             return true;
4494           }
4495           return false;
4496         };
4497 
4498         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4499           unsigned EltBits = N0.getScalarValueSizeInBits();
4500           unsigned HalfBits = EltBits / 2;
4501           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4502           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4503           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4504           SDValue NewN0 =
4505               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4506           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4507           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4508         };
4509 
4510         SDValue Lo, Hi;
4511         if (IsConcat(N0, Lo, Hi))
4512           return MergeConcat(Lo, Hi);
4513 
4514         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4515           SDValue Lo0, Lo1, Hi0, Hi1;
4516           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4517               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4518             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4519                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4520           }
4521         }
4522       }
4523     }
4524 
4525     // If we have "setcc X, C0", check to see if we can shrink the immediate
4526     // by changing cc.
4527     // TODO: Support this for vectors after legalize ops.
4528     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4529       // SETUGT X, SINTMAX  -> SETLT X, 0
4530       // SETUGE X, SINTMIN -> SETLT X, 0
4531       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4532           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4533         return DAG.getSetCC(dl, VT, N0,
4534                             DAG.getConstant(0, dl, N1.getValueType()),
4535                             ISD::SETLT);
4536 
4537       // SETULT X, SINTMIN  -> SETGT X, -1
4538       // SETULE X, SINTMAX  -> SETGT X, -1
4539       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4540           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4541         return DAG.getSetCC(dl, VT, N0,
4542                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4543                             ISD::SETGT);
4544     }
4545   }
4546 
4547   // Back to non-vector simplifications.
4548   // TODO: Can we do these for vector splats?
4549   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4550     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4551     const APInt &C1 = N1C->getAPIntValue();
4552     EVT ShValTy = N0.getValueType();
4553 
4554     // Fold bit comparisons when we can. This will result in an
4555     // incorrect value when boolean false is negative one, unless
4556     // the bitsize is 1 in which case the false value is the same
4557     // in practice regardless of the representation.
4558     if ((VT.getSizeInBits() == 1 ||
4559          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4560         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4561         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4562         N0.getOpcode() == ISD::AND) {
4563       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4564         EVT ShiftTy =
4565             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4566         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4567           // Perform the xform if the AND RHS is a single bit.
4568           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4569           if (AndRHS->getAPIntValue().isPowerOf2() &&
4570               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4571             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4572                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4573                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4574           }
4575         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4576           // (X & 8) == 8  -->  (X & 8) >> 3
4577           // Perform the xform if C1 is a single bit.
4578           unsigned ShCt = C1.logBase2();
4579           if (C1.isPowerOf2() &&
4580               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4581             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4582                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4583                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4584           }
4585         }
4586       }
4587     }
4588 
4589     if (C1.getMinSignedBits() <= 64 &&
4590         !isLegalICmpImmediate(C1.getSExtValue())) {
4591       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4592       // (X & -256) == 256 -> (X >> 8) == 1
4593       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4594           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4595         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4596           const APInt &AndRHSC = AndRHS->getAPIntValue();
4597           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4598             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4599             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4600               SDValue Shift =
4601                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4602                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4603               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4604               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4605             }
4606           }
4607         }
4608       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4609                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4610         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4611         // X <  0x100000000 -> (X >> 32) <  1
4612         // X >= 0x100000000 -> (X >> 32) >= 1
4613         // X <= 0x0ffffffff -> (X >> 32) <  1
4614         // X >  0x0ffffffff -> (X >> 32) >= 1
4615         unsigned ShiftBits;
4616         APInt NewC = C1;
4617         ISD::CondCode NewCond = Cond;
4618         if (AdjOne) {
4619           ShiftBits = C1.countTrailingOnes();
4620           NewC = NewC + 1;
4621           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4622         } else {
4623           ShiftBits = C1.countTrailingZeros();
4624         }
4625         NewC.lshrInPlace(ShiftBits);
4626         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4627             isLegalICmpImmediate(NewC.getSExtValue()) &&
4628             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4629           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4630                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4631           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4632           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4633         }
4634       }
4635     }
4636   }
4637 
4638   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4639     auto *CFP = cast<ConstantFPSDNode>(N1);
4640     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4641 
4642     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4643     // constant if knowing that the operand is non-nan is enough.  We prefer to
4644     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4645     // materialize 0.0.
4646     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4647       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4648 
4649     // setcc (fneg x), C -> setcc swap(pred) x, -C
4650     if (N0.getOpcode() == ISD::FNEG) {
4651       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4652       if (DCI.isBeforeLegalizeOps() ||
4653           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4654         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4655         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4656       }
4657     }
4658 
4659     // If the condition is not legal, see if we can find an equivalent one
4660     // which is legal.
4661     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4662       // If the comparison was an awkward floating-point == or != and one of
4663       // the comparison operands is infinity or negative infinity, convert the
4664       // condition to a less-awkward <= or >=.
4665       if (CFP->getValueAPF().isInfinity()) {
4666         bool IsNegInf = CFP->getValueAPF().isNegative();
4667         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4668         switch (Cond) {
4669         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4670         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4671         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4672         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4673         default: break;
4674         }
4675         if (NewCond != ISD::SETCC_INVALID &&
4676             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4677           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4678       }
4679     }
4680   }
4681 
4682   if (N0 == N1) {
4683     // The sext(setcc()) => setcc() optimization relies on the appropriate
4684     // constant being emitted.
4685     assert(!N0.getValueType().isInteger() &&
4686            "Integer types should be handled by FoldSetCC");
4687 
4688     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4689     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4690     if (UOF == 2) // FP operators that are undefined on NaNs.
4691       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4692     if (UOF == unsigned(EqTrue))
4693       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4694     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4695     // if it is not already.
4696     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4697     if (NewCond != Cond &&
4698         (DCI.isBeforeLegalizeOps() ||
4699                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4700       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4701   }
4702 
4703   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4704       N0.getValueType().isInteger()) {
4705     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4706         N0.getOpcode() == ISD::XOR) {
4707       // Simplify (X+Y) == (X+Z) -->  Y == Z
4708       if (N0.getOpcode() == N1.getOpcode()) {
4709         if (N0.getOperand(0) == N1.getOperand(0))
4710           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4711         if (N0.getOperand(1) == N1.getOperand(1))
4712           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4713         if (isCommutativeBinOp(N0.getOpcode())) {
4714           // If X op Y == Y op X, try other combinations.
4715           if (N0.getOperand(0) == N1.getOperand(1))
4716             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4717                                 Cond);
4718           if (N0.getOperand(1) == N1.getOperand(0))
4719             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4720                                 Cond);
4721         }
4722       }
4723 
4724       // If RHS is a legal immediate value for a compare instruction, we need
4725       // to be careful about increasing register pressure needlessly.
4726       bool LegalRHSImm = false;
4727 
4728       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4729         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4730           // Turn (X+C1) == C2 --> X == C2-C1
4731           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4732             return DAG.getSetCC(
4733                 dl, VT, N0.getOperand(0),
4734                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4735                                 dl, N0.getValueType()),
4736                 Cond);
4737 
4738           // Turn (X^C1) == C2 --> X == C1^C2
4739           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4740             return DAG.getSetCC(
4741                 dl, VT, N0.getOperand(0),
4742                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4743                                 dl, N0.getValueType()),
4744                 Cond);
4745         }
4746 
4747         // Turn (C1-X) == C2 --> X == C1-C2
4748         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4749           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4750             return DAG.getSetCC(
4751                 dl, VT, N0.getOperand(1),
4752                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4753                                 dl, N0.getValueType()),
4754                 Cond);
4755 
4756         // Could RHSC fold directly into a compare?
4757         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4758           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4759       }
4760 
4761       // (X+Y) == X --> Y == 0 and similar folds.
4762       // Don't do this if X is an immediate that can fold into a cmp
4763       // instruction and X+Y has other uses. It could be an induction variable
4764       // chain, and the transform would increase register pressure.
4765       if (!LegalRHSImm || N0.hasOneUse())
4766         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4767           return V;
4768     }
4769 
4770     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4771         N1.getOpcode() == ISD::XOR)
4772       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4773         return V;
4774 
4775     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4776       return V;
4777   }
4778 
4779   // Fold remainder of division by a constant.
4780   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4781       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4782     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4783 
4784     // When division is cheap or optimizing for minimum size,
4785     // fall through to DIVREM creation by skipping this fold.
4786     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4787       if (N0.getOpcode() == ISD::UREM) {
4788         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4789           return Folded;
4790       } else if (N0.getOpcode() == ISD::SREM) {
4791         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4792           return Folded;
4793       }
4794     }
4795   }
4796 
4797   // Fold away ALL boolean setcc's.
4798   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4799     SDValue Temp;
4800     switch (Cond) {
4801     default: llvm_unreachable("Unknown integer setcc!");
4802     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4803       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4804       N0 = DAG.getNOT(dl, Temp, OpVT);
4805       if (!DCI.isCalledByLegalizer())
4806         DCI.AddToWorklist(Temp.getNode());
4807       break;
4808     case ISD::SETNE:  // X != Y   -->  (X^Y)
4809       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4810       break;
4811     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4812     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4813       Temp = DAG.getNOT(dl, N0, OpVT);
4814       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4815       if (!DCI.isCalledByLegalizer())
4816         DCI.AddToWorklist(Temp.getNode());
4817       break;
4818     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4819     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4820       Temp = DAG.getNOT(dl, N1, OpVT);
4821       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4822       if (!DCI.isCalledByLegalizer())
4823         DCI.AddToWorklist(Temp.getNode());
4824       break;
4825     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4826     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4827       Temp = DAG.getNOT(dl, N0, OpVT);
4828       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4829       if (!DCI.isCalledByLegalizer())
4830         DCI.AddToWorklist(Temp.getNode());
4831       break;
4832     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4833     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4834       Temp = DAG.getNOT(dl, N1, OpVT);
4835       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4836       break;
4837     }
4838     if (VT.getScalarType() != MVT::i1) {
4839       if (!DCI.isCalledByLegalizer())
4840         DCI.AddToWorklist(N0.getNode());
4841       // FIXME: If running after legalize, we probably can't do this.
4842       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4843       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4844     }
4845     return N0;
4846   }
4847 
4848   // Could not fold it.
4849   return SDValue();
4850 }
4851 
4852 /// Returns true (and the GlobalValue and the offset) if the node is a
4853 /// GlobalAddress + offset.
4854 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4855                                     int64_t &Offset) const {
4856 
4857   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4858 
4859   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4860     GA = GASD->getGlobal();
4861     Offset += GASD->getOffset();
4862     return true;
4863   }
4864 
4865   if (N->getOpcode() == ISD::ADD) {
4866     SDValue N1 = N->getOperand(0);
4867     SDValue N2 = N->getOperand(1);
4868     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4869       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4870         Offset += V->getSExtValue();
4871         return true;
4872       }
4873     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4874       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4875         Offset += V->getSExtValue();
4876         return true;
4877       }
4878     }
4879   }
4880 
4881   return false;
4882 }
4883 
4884 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4885                                           DAGCombinerInfo &DCI) const {
4886   // Default implementation: no optimization.
4887   return SDValue();
4888 }
4889 
4890 //===----------------------------------------------------------------------===//
4891 //  Inline Assembler Implementation Methods
4892 //===----------------------------------------------------------------------===//
4893 
4894 TargetLowering::ConstraintType
4895 TargetLowering::getConstraintType(StringRef Constraint) const {
4896   unsigned S = Constraint.size();
4897 
4898   if (S == 1) {
4899     switch (Constraint[0]) {
4900     default: break;
4901     case 'r':
4902       return C_RegisterClass;
4903     case 'm': // memory
4904     case 'o': // offsetable
4905     case 'V': // not offsetable
4906       return C_Memory;
4907     case 'n': // Simple Integer
4908     case 'E': // Floating Point Constant
4909     case 'F': // Floating Point Constant
4910       return C_Immediate;
4911     case 'i': // Simple Integer or Relocatable Constant
4912     case 's': // Relocatable Constant
4913     case 'p': // Address.
4914     case 'X': // Allow ANY value.
4915     case 'I': // Target registers.
4916     case 'J':
4917     case 'K':
4918     case 'L':
4919     case 'M':
4920     case 'N':
4921     case 'O':
4922     case 'P':
4923     case '<':
4924     case '>':
4925       return C_Other;
4926     }
4927   }
4928 
4929   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4930     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4931       return C_Memory;
4932     return C_Register;
4933   }
4934   return C_Unknown;
4935 }
4936 
4937 /// Try to replace an X constraint, which matches anything, with another that
4938 /// has more specific requirements based on the type of the corresponding
4939 /// operand.
4940 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4941   if (ConstraintVT.isInteger())
4942     return "r";
4943   if (ConstraintVT.isFloatingPoint())
4944     return "f"; // works for many targets
4945   return nullptr;
4946 }
4947 
4948 SDValue TargetLowering::LowerAsmOutputForConstraint(
4949     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4950     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4951   return SDValue();
4952 }
4953 
4954 /// Lower the specified operand into the Ops vector.
4955 /// If it is invalid, don't add anything to Ops.
4956 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4957                                                   std::string &Constraint,
4958                                                   std::vector<SDValue> &Ops,
4959                                                   SelectionDAG &DAG) const {
4960 
4961   if (Constraint.length() > 1) return;
4962 
4963   char ConstraintLetter = Constraint[0];
4964   switch (ConstraintLetter) {
4965   default: break;
4966   case 'X':    // Allows any operand
4967   case 'i':    // Simple Integer or Relocatable Constant
4968   case 'n':    // Simple Integer
4969   case 's': {  // Relocatable Constant
4970 
4971     ConstantSDNode *C;
4972     uint64_t Offset = 0;
4973 
4974     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4975     // etc., since getelementpointer is variadic. We can't use
4976     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4977     // while in this case the GA may be furthest from the root node which is
4978     // likely an ISD::ADD.
4979     while (true) {
4980       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4981         // gcc prints these as sign extended.  Sign extend value to 64 bits
4982         // now; without this it would get ZExt'd later in
4983         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4984         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4985         BooleanContent BCont = getBooleanContents(MVT::i64);
4986         ISD::NodeType ExtOpc =
4987             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4988         int64_t ExtVal =
4989             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4990         Ops.push_back(
4991             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4992         return;
4993       }
4994       if (ConstraintLetter != 'n') {
4995         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4996           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4997                                                    GA->getValueType(0),
4998                                                    Offset + GA->getOffset()));
4999           return;
5000         }
5001         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5002           Ops.push_back(DAG.getTargetBlockAddress(
5003               BA->getBlockAddress(), BA->getValueType(0),
5004               Offset + BA->getOffset(), BA->getTargetFlags()));
5005           return;
5006         }
5007         if (isa<BasicBlockSDNode>(Op)) {
5008           Ops.push_back(Op);
5009           return;
5010         }
5011       }
5012       const unsigned OpCode = Op.getOpcode();
5013       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5014         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5015           Op = Op.getOperand(1);
5016         // Subtraction is not commutative.
5017         else if (OpCode == ISD::ADD &&
5018                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5019           Op = Op.getOperand(0);
5020         else
5021           return;
5022         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5023         continue;
5024       }
5025       return;
5026     }
5027     break;
5028   }
5029   }
5030 }
5031 
5032 std::pair<unsigned, const TargetRegisterClass *>
5033 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5034                                              StringRef Constraint,
5035                                              MVT VT) const {
5036   if (Constraint.empty() || Constraint[0] != '{')
5037     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5038   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5039 
5040   // Remove the braces from around the name.
5041   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5042 
5043   std::pair<unsigned, const TargetRegisterClass *> R =
5044       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5045 
5046   // Figure out which register class contains this reg.
5047   for (const TargetRegisterClass *RC : RI->regclasses()) {
5048     // If none of the value types for this register class are valid, we
5049     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5050     if (!isLegalRC(*RI, *RC))
5051       continue;
5052 
5053     for (const MCPhysReg &PR : *RC) {
5054       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5055         std::pair<unsigned, const TargetRegisterClass *> S =
5056             std::make_pair(PR, RC);
5057 
5058         // If this register class has the requested value type, return it,
5059         // otherwise keep searching and return the first class found
5060         // if no other is found which explicitly has the requested type.
5061         if (RI->isTypeLegalForClass(*RC, VT))
5062           return S;
5063         if (!R.second)
5064           R = S;
5065       }
5066     }
5067   }
5068 
5069   return R;
5070 }
5071 
5072 //===----------------------------------------------------------------------===//
5073 // Constraint Selection.
5074 
5075 /// Return true of this is an input operand that is a matching constraint like
5076 /// "4".
5077 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5078   assert(!ConstraintCode.empty() && "No known constraint!");
5079   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5080 }
5081 
5082 /// If this is an input matching constraint, this method returns the output
5083 /// operand it matches.
5084 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5085   assert(!ConstraintCode.empty() && "No known constraint!");
5086   return atoi(ConstraintCode.c_str());
5087 }
5088 
5089 /// Split up the constraint string from the inline assembly value into the
5090 /// specific constraints and their prefixes, and also tie in the associated
5091 /// operand values.
5092 /// If this returns an empty vector, and if the constraint string itself
5093 /// isn't empty, there was an error parsing.
5094 TargetLowering::AsmOperandInfoVector
5095 TargetLowering::ParseConstraints(const DataLayout &DL,
5096                                  const TargetRegisterInfo *TRI,
5097                                  const CallBase &Call) const {
5098   /// Information about all of the constraints.
5099   AsmOperandInfoVector ConstraintOperands;
5100   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5101   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5102 
5103   // Do a prepass over the constraints, canonicalizing them, and building up the
5104   // ConstraintOperands list.
5105   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5106   unsigned ResNo = 0; // ResNo - The result number of the next output.
5107 
5108   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5109     ConstraintOperands.emplace_back(std::move(CI));
5110     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5111 
5112     // Update multiple alternative constraint count.
5113     if (OpInfo.multipleAlternatives.size() > maCount)
5114       maCount = OpInfo.multipleAlternatives.size();
5115 
5116     OpInfo.ConstraintVT = MVT::Other;
5117 
5118     // Compute the value type for each operand.
5119     switch (OpInfo.Type) {
5120     case InlineAsm::isOutput:
5121       // Indirect outputs just consume an argument.
5122       if (OpInfo.isIndirect) {
5123         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5124         break;
5125       }
5126 
5127       // The return value of the call is this value.  As such, there is no
5128       // corresponding argument.
5129       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5130       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5131         OpInfo.ConstraintVT =
5132             getSimpleValueType(DL, STy->getElementType(ResNo));
5133       } else {
5134         assert(ResNo == 0 && "Asm only has one result!");
5135         OpInfo.ConstraintVT =
5136             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5137       }
5138       ++ResNo;
5139       break;
5140     case InlineAsm::isInput:
5141       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5142       break;
5143     case InlineAsm::isClobber:
5144       // Nothing to do.
5145       break;
5146     }
5147 
5148     if (OpInfo.CallOperandVal) {
5149       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5150       if (OpInfo.isIndirect) {
5151         OpTy = Call.getParamElementType(ArgNo);
5152         assert(OpTy && "Indirect operand must have elementtype attribute");
5153       }
5154 
5155       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5156       if (StructType *STy = dyn_cast<StructType>(OpTy))
5157         if (STy->getNumElements() == 1)
5158           OpTy = STy->getElementType(0);
5159 
5160       // If OpTy is not a single value, it may be a struct/union that we
5161       // can tile with integers.
5162       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5163         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5164         switch (BitSize) {
5165         default: break;
5166         case 1:
5167         case 8:
5168         case 16:
5169         case 32:
5170         case 64:
5171         case 128:
5172           OpInfo.ConstraintVT =
5173               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5174           break;
5175         }
5176       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5177         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5178         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5179       } else {
5180         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5181       }
5182 
5183       ArgNo++;
5184     }
5185   }
5186 
5187   // If we have multiple alternative constraints, select the best alternative.
5188   if (!ConstraintOperands.empty()) {
5189     if (maCount) {
5190       unsigned bestMAIndex = 0;
5191       int bestWeight = -1;
5192       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5193       int weight = -1;
5194       unsigned maIndex;
5195       // Compute the sums of the weights for each alternative, keeping track
5196       // of the best (highest weight) one so far.
5197       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5198         int weightSum = 0;
5199         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5200              cIndex != eIndex; ++cIndex) {
5201           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5202           if (OpInfo.Type == InlineAsm::isClobber)
5203             continue;
5204 
5205           // If this is an output operand with a matching input operand,
5206           // look up the matching input. If their types mismatch, e.g. one
5207           // is an integer, the other is floating point, or their sizes are
5208           // different, flag it as an maCantMatch.
5209           if (OpInfo.hasMatchingInput()) {
5210             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5211             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5212               if ((OpInfo.ConstraintVT.isInteger() !=
5213                    Input.ConstraintVT.isInteger()) ||
5214                   (OpInfo.ConstraintVT.getSizeInBits() !=
5215                    Input.ConstraintVT.getSizeInBits())) {
5216                 weightSum = -1; // Can't match.
5217                 break;
5218               }
5219             }
5220           }
5221           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5222           if (weight == -1) {
5223             weightSum = -1;
5224             break;
5225           }
5226           weightSum += weight;
5227         }
5228         // Update best.
5229         if (weightSum > bestWeight) {
5230           bestWeight = weightSum;
5231           bestMAIndex = maIndex;
5232         }
5233       }
5234 
5235       // Now select chosen alternative in each constraint.
5236       for (AsmOperandInfo &cInfo : ConstraintOperands)
5237         if (cInfo.Type != InlineAsm::isClobber)
5238           cInfo.selectAlternative(bestMAIndex);
5239     }
5240   }
5241 
5242   // Check and hook up tied operands, choose constraint code to use.
5243   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5244        cIndex != eIndex; ++cIndex) {
5245     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5246 
5247     // If this is an output operand with a matching input operand, look up the
5248     // matching input. If their types mismatch, e.g. one is an integer, the
5249     // other is floating point, or their sizes are different, flag it as an
5250     // error.
5251     if (OpInfo.hasMatchingInput()) {
5252       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5253 
5254       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5255         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5256             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5257                                          OpInfo.ConstraintVT);
5258         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5259             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5260                                          Input.ConstraintVT);
5261         if ((OpInfo.ConstraintVT.isInteger() !=
5262              Input.ConstraintVT.isInteger()) ||
5263             (MatchRC.second != InputRC.second)) {
5264           report_fatal_error("Unsupported asm: input constraint"
5265                              " with a matching output constraint of"
5266                              " incompatible type!");
5267         }
5268       }
5269     }
5270   }
5271 
5272   return ConstraintOperands;
5273 }
5274 
5275 /// Return an integer indicating how general CT is.
5276 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5277   switch (CT) {
5278   case TargetLowering::C_Immediate:
5279   case TargetLowering::C_Other:
5280   case TargetLowering::C_Unknown:
5281     return 0;
5282   case TargetLowering::C_Register:
5283     return 1;
5284   case TargetLowering::C_RegisterClass:
5285     return 2;
5286   case TargetLowering::C_Memory:
5287     return 3;
5288   }
5289   llvm_unreachable("Invalid constraint type");
5290 }
5291 
5292 /// Examine constraint type and operand type and determine a weight value.
5293 /// This object must already have been set up with the operand type
5294 /// and the current alternative constraint selected.
5295 TargetLowering::ConstraintWeight
5296   TargetLowering::getMultipleConstraintMatchWeight(
5297     AsmOperandInfo &info, int maIndex) const {
5298   InlineAsm::ConstraintCodeVector *rCodes;
5299   if (maIndex >= (int)info.multipleAlternatives.size())
5300     rCodes = &info.Codes;
5301   else
5302     rCodes = &info.multipleAlternatives[maIndex].Codes;
5303   ConstraintWeight BestWeight = CW_Invalid;
5304 
5305   // Loop over the options, keeping track of the most general one.
5306   for (const std::string &rCode : *rCodes) {
5307     ConstraintWeight weight =
5308         getSingleConstraintMatchWeight(info, rCode.c_str());
5309     if (weight > BestWeight)
5310       BestWeight = weight;
5311   }
5312 
5313   return BestWeight;
5314 }
5315 
5316 /// Examine constraint type and operand type and determine a weight value.
5317 /// This object must already have been set up with the operand type
5318 /// and the current alternative constraint selected.
5319 TargetLowering::ConstraintWeight
5320   TargetLowering::getSingleConstraintMatchWeight(
5321     AsmOperandInfo &info, const char *constraint) const {
5322   ConstraintWeight weight = CW_Invalid;
5323   Value *CallOperandVal = info.CallOperandVal;
5324     // If we don't have a value, we can't do a match,
5325     // but allow it at the lowest weight.
5326   if (!CallOperandVal)
5327     return CW_Default;
5328   // Look at the constraint type.
5329   switch (*constraint) {
5330     case 'i': // immediate integer.
5331     case 'n': // immediate integer with a known value.
5332       if (isa<ConstantInt>(CallOperandVal))
5333         weight = CW_Constant;
5334       break;
5335     case 's': // non-explicit intregal immediate.
5336       if (isa<GlobalValue>(CallOperandVal))
5337         weight = CW_Constant;
5338       break;
5339     case 'E': // immediate float if host format.
5340     case 'F': // immediate float.
5341       if (isa<ConstantFP>(CallOperandVal))
5342         weight = CW_Constant;
5343       break;
5344     case '<': // memory operand with autodecrement.
5345     case '>': // memory operand with autoincrement.
5346     case 'm': // memory operand.
5347     case 'o': // offsettable memory operand
5348     case 'V': // non-offsettable memory operand
5349       weight = CW_Memory;
5350       break;
5351     case 'r': // general register.
5352     case 'g': // general register, memory operand or immediate integer.
5353               // note: Clang converts "g" to "imr".
5354       if (CallOperandVal->getType()->isIntegerTy())
5355         weight = CW_Register;
5356       break;
5357     case 'X': // any operand.
5358   default:
5359     weight = CW_Default;
5360     break;
5361   }
5362   return weight;
5363 }
5364 
5365 /// If there are multiple different constraints that we could pick for this
5366 /// operand (e.g. "imr") try to pick the 'best' one.
5367 /// This is somewhat tricky: constraints fall into four classes:
5368 ///    Other         -> immediates and magic values
5369 ///    Register      -> one specific register
5370 ///    RegisterClass -> a group of regs
5371 ///    Memory        -> memory
5372 /// Ideally, we would pick the most specific constraint possible: if we have
5373 /// something that fits into a register, we would pick it.  The problem here
5374 /// is that if we have something that could either be in a register or in
5375 /// memory that use of the register could cause selection of *other*
5376 /// operands to fail: they might only succeed if we pick memory.  Because of
5377 /// this the heuristic we use is:
5378 ///
5379 ///  1) If there is an 'other' constraint, and if the operand is valid for
5380 ///     that constraint, use it.  This makes us take advantage of 'i'
5381 ///     constraints when available.
5382 ///  2) Otherwise, pick the most general constraint present.  This prefers
5383 ///     'm' over 'r', for example.
5384 ///
5385 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5386                              const TargetLowering &TLI,
5387                              SDValue Op, SelectionDAG *DAG) {
5388   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5389   unsigned BestIdx = 0;
5390   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5391   int BestGenerality = -1;
5392 
5393   // Loop over the options, keeping track of the most general one.
5394   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5395     TargetLowering::ConstraintType CType =
5396       TLI.getConstraintType(OpInfo.Codes[i]);
5397 
5398     // Indirect 'other' or 'immediate' constraints are not allowed.
5399     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5400                                CType == TargetLowering::C_Register ||
5401                                CType == TargetLowering::C_RegisterClass))
5402       continue;
5403 
5404     // If this is an 'other' or 'immediate' constraint, see if the operand is
5405     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5406     // the operand is an integer in the range [0..31] we want to use I (saving a
5407     // load of a register), otherwise we must use 'r'.
5408     if ((CType == TargetLowering::C_Other ||
5409          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5410       assert(OpInfo.Codes[i].size() == 1 &&
5411              "Unhandled multi-letter 'other' constraint");
5412       std::vector<SDValue> ResultOps;
5413       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5414                                        ResultOps, *DAG);
5415       if (!ResultOps.empty()) {
5416         BestType = CType;
5417         BestIdx = i;
5418         break;
5419       }
5420     }
5421 
5422     // Things with matching constraints can only be registers, per gcc
5423     // documentation.  This mainly affects "g" constraints.
5424     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5425       continue;
5426 
5427     // This constraint letter is more general than the previous one, use it.
5428     int Generality = getConstraintGenerality(CType);
5429     if (Generality > BestGenerality) {
5430       BestType = CType;
5431       BestIdx = i;
5432       BestGenerality = Generality;
5433     }
5434   }
5435 
5436   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5437   OpInfo.ConstraintType = BestType;
5438 }
5439 
5440 /// Determines the constraint code and constraint type to use for the specific
5441 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5442 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5443                                             SDValue Op,
5444                                             SelectionDAG *DAG) const {
5445   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5446 
5447   // Single-letter constraints ('r') are very common.
5448   if (OpInfo.Codes.size() == 1) {
5449     OpInfo.ConstraintCode = OpInfo.Codes[0];
5450     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5451   } else {
5452     ChooseConstraint(OpInfo, *this, Op, DAG);
5453   }
5454 
5455   // 'X' matches anything.
5456   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5457     // Constants are handled elsewhere.  For Functions, the type here is the
5458     // type of the result, which is not what we want to look at; leave them
5459     // alone.
5460     Value *v = OpInfo.CallOperandVal;
5461     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5462       return;
5463     }
5464 
5465     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5466       OpInfo.ConstraintCode = "i";
5467       return;
5468     }
5469 
5470     // Otherwise, try to resolve it to something we know about by looking at
5471     // the actual operand type.
5472     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5473       OpInfo.ConstraintCode = Repl;
5474       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5475     }
5476   }
5477 }
5478 
5479 /// Given an exact SDIV by a constant, create a multiplication
5480 /// with the multiplicative inverse of the constant.
5481 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5482                               const SDLoc &dl, SelectionDAG &DAG,
5483                               SmallVectorImpl<SDNode *> &Created) {
5484   SDValue Op0 = N->getOperand(0);
5485   SDValue Op1 = N->getOperand(1);
5486   EVT VT = N->getValueType(0);
5487   EVT SVT = VT.getScalarType();
5488   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5489   EVT ShSVT = ShVT.getScalarType();
5490 
5491   bool UseSRA = false;
5492   SmallVector<SDValue, 16> Shifts, Factors;
5493 
5494   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5495     if (C->isZero())
5496       return false;
5497     APInt Divisor = C->getAPIntValue();
5498     unsigned Shift = Divisor.countTrailingZeros();
5499     if (Shift) {
5500       Divisor.ashrInPlace(Shift);
5501       UseSRA = true;
5502     }
5503     // Calculate the multiplicative inverse, using Newton's method.
5504     APInt t;
5505     APInt Factor = Divisor;
5506     while ((t = Divisor * Factor) != 1)
5507       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5508     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5509     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5510     return true;
5511   };
5512 
5513   // Collect all magic values from the build vector.
5514   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5515     return SDValue();
5516 
5517   SDValue Shift, Factor;
5518   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5519     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5520     Factor = DAG.getBuildVector(VT, dl, Factors);
5521   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5522     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5523            "Expected matchUnaryPredicate to return one element for scalable "
5524            "vectors");
5525     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5526     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5527   } else {
5528     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5529     Shift = Shifts[0];
5530     Factor = Factors[0];
5531   }
5532 
5533   SDValue Res = Op0;
5534 
5535   // Shift the value upfront if it is even, so the LSB is one.
5536   if (UseSRA) {
5537     // TODO: For UDIV use SRL instead of SRA.
5538     SDNodeFlags Flags;
5539     Flags.setExact(true);
5540     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5541     Created.push_back(Res.getNode());
5542   }
5543 
5544   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5545 }
5546 
5547 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5548                               SelectionDAG &DAG,
5549                               SmallVectorImpl<SDNode *> &Created) const {
5550   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5551   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5552   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5553     return SDValue(N, 0); // Lower SDIV as SDIV
5554   return SDValue();
5555 }
5556 
5557 /// Given an ISD::SDIV node expressing a divide by constant,
5558 /// return a DAG expression to select that will generate the same value by
5559 /// multiplying by a magic number.
5560 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5561 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5562                                   bool IsAfterLegalization,
5563                                   SmallVectorImpl<SDNode *> &Created) const {
5564   SDLoc dl(N);
5565   EVT VT = N->getValueType(0);
5566   EVT SVT = VT.getScalarType();
5567   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5568   EVT ShSVT = ShVT.getScalarType();
5569   unsigned EltBits = VT.getScalarSizeInBits();
5570   EVT MulVT;
5571 
5572   // Check to see if we can do this.
5573   // FIXME: We should be more aggressive here.
5574   if (!isTypeLegal(VT)) {
5575     // Limit this to simple scalars for now.
5576     if (VT.isVector() || !VT.isSimple())
5577       return SDValue();
5578 
5579     // If this type will be promoted to a large enough type with a legal
5580     // multiply operation, we can go ahead and do this transform.
5581     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5582       return SDValue();
5583 
5584     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5585     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5586         !isOperationLegal(ISD::MUL, MulVT))
5587       return SDValue();
5588   }
5589 
5590   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5591   if (N->getFlags().hasExact())
5592     return BuildExactSDIV(*this, N, dl, DAG, Created);
5593 
5594   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5595 
5596   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5597     if (C->isZero())
5598       return false;
5599 
5600     const APInt &Divisor = C->getAPIntValue();
5601     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5602     int NumeratorFactor = 0;
5603     int ShiftMask = -1;
5604 
5605     if (Divisor.isOne() || Divisor.isAllOnes()) {
5606       // If d is +1/-1, we just multiply the numerator by +1/-1.
5607       NumeratorFactor = Divisor.getSExtValue();
5608       magics.Magic = 0;
5609       magics.ShiftAmount = 0;
5610       ShiftMask = 0;
5611     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5612       // If d > 0 and m < 0, add the numerator.
5613       NumeratorFactor = 1;
5614     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5615       // If d < 0 and m > 0, subtract the numerator.
5616       NumeratorFactor = -1;
5617     }
5618 
5619     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5620     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5621     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5622     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5623     return true;
5624   };
5625 
5626   SDValue N0 = N->getOperand(0);
5627   SDValue N1 = N->getOperand(1);
5628 
5629   // Collect the shifts / magic values from each element.
5630   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5631     return SDValue();
5632 
5633   SDValue MagicFactor, Factor, Shift, ShiftMask;
5634   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5635     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5636     Factor = DAG.getBuildVector(VT, dl, Factors);
5637     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5638     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5639   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5640     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5641            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5642            "Expected matchUnaryPredicate to return one element for scalable "
5643            "vectors");
5644     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5645     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5646     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5647     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5648   } else {
5649     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5650     MagicFactor = MagicFactors[0];
5651     Factor = Factors[0];
5652     Shift = Shifts[0];
5653     ShiftMask = ShiftMasks[0];
5654   }
5655 
5656   // Multiply the numerator (operand 0) by the magic value.
5657   // FIXME: We should support doing a MUL in a wider type.
5658   auto GetMULHS = [&](SDValue X, SDValue Y) {
5659     // If the type isn't legal, use a wider mul of the the type calculated
5660     // earlier.
5661     if (!isTypeLegal(VT)) {
5662       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5663       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5664       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5665       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5666                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5667       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5668     }
5669 
5670     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5671       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5672     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5673       SDValue LoHi =
5674           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5675       return SDValue(LoHi.getNode(), 1);
5676     }
5677     return SDValue();
5678   };
5679 
5680   SDValue Q = GetMULHS(N0, MagicFactor);
5681   if (!Q)
5682     return SDValue();
5683 
5684   Created.push_back(Q.getNode());
5685 
5686   // (Optionally) Add/subtract the numerator using Factor.
5687   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5688   Created.push_back(Factor.getNode());
5689   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5690   Created.push_back(Q.getNode());
5691 
5692   // Shift right algebraic by shift value.
5693   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5694   Created.push_back(Q.getNode());
5695 
5696   // Extract the sign bit, mask it and add it to the quotient.
5697   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5698   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5699   Created.push_back(T.getNode());
5700   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5701   Created.push_back(T.getNode());
5702   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5703 }
5704 
5705 /// Given an ISD::UDIV node expressing a divide by constant,
5706 /// return a DAG expression to select that will generate the same value by
5707 /// multiplying by a magic number.
5708 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5709 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5710                                   bool IsAfterLegalization,
5711                                   SmallVectorImpl<SDNode *> &Created) const {
5712   SDLoc dl(N);
5713   EVT VT = N->getValueType(0);
5714   EVT SVT = VT.getScalarType();
5715   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5716   EVT ShSVT = ShVT.getScalarType();
5717   unsigned EltBits = VT.getScalarSizeInBits();
5718   EVT MulVT;
5719 
5720   // Check to see if we can do this.
5721   // FIXME: We should be more aggressive here.
5722   if (!isTypeLegal(VT)) {
5723     // Limit this to simple scalars for now.
5724     if (VT.isVector() || !VT.isSimple())
5725       return SDValue();
5726 
5727     // If this type will be promoted to a large enough type with a legal
5728     // multiply operation, we can go ahead and do this transform.
5729     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5730       return SDValue();
5731 
5732     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5733     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5734         !isOperationLegal(ISD::MUL, MulVT))
5735       return SDValue();
5736   }
5737 
5738   bool UseNPQ = false;
5739   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5740 
5741   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5742     if (C->isZero())
5743       return false;
5744     // FIXME: We should use a narrower constant when the upper
5745     // bits are known to be zero.
5746     const APInt& Divisor = C->getAPIntValue();
5747     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5748     unsigned PreShift = 0, PostShift = 0;
5749 
5750     // If the divisor is even, we can avoid using the expensive fixup by
5751     // shifting the divided value upfront.
5752     if (magics.IsAdd != 0 && !Divisor[0]) {
5753       PreShift = Divisor.countTrailingZeros();
5754       // Get magic number for the shifted divisor.
5755       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5756       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5757     }
5758 
5759     APInt Magic = magics.Magic;
5760 
5761     unsigned SelNPQ;
5762     if (magics.IsAdd == 0 || Divisor.isOne()) {
5763       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5764              "We shouldn't generate an undefined shift!");
5765       PostShift = magics.ShiftAmount;
5766       SelNPQ = false;
5767     } else {
5768       PostShift = magics.ShiftAmount - 1;
5769       SelNPQ = true;
5770     }
5771 
5772     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5773     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5774     NPQFactors.push_back(
5775         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5776                                : APInt::getZero(EltBits),
5777                         dl, SVT));
5778     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5779     UseNPQ |= SelNPQ;
5780     return true;
5781   };
5782 
5783   SDValue N0 = N->getOperand(0);
5784   SDValue N1 = N->getOperand(1);
5785 
5786   // Collect the shifts/magic values from each element.
5787   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5788     return SDValue();
5789 
5790   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5791   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5792     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5793     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5794     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5795     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5796   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5797     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5798            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5799            "Expected matchUnaryPredicate to return one for scalable vectors");
5800     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5801     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5802     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5803     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5804   } else {
5805     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5806     PreShift = PreShifts[0];
5807     MagicFactor = MagicFactors[0];
5808     PostShift = PostShifts[0];
5809   }
5810 
5811   SDValue Q = N0;
5812   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5813   Created.push_back(Q.getNode());
5814 
5815   // FIXME: We should support doing a MUL in a wider type.
5816   auto GetMULHU = [&](SDValue X, SDValue Y) {
5817     // If the type isn't legal, use a wider mul of the the type calculated
5818     // earlier.
5819     if (!isTypeLegal(VT)) {
5820       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5821       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5822       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5823       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5824                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5825       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5826     }
5827 
5828     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5829       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5830     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5831       SDValue LoHi =
5832           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5833       return SDValue(LoHi.getNode(), 1);
5834     }
5835     return SDValue(); // No mulhu or equivalent
5836   };
5837 
5838   // Multiply the numerator (operand 0) by the magic value.
5839   Q = GetMULHU(Q, MagicFactor);
5840   if (!Q)
5841     return SDValue();
5842 
5843   Created.push_back(Q.getNode());
5844 
5845   if (UseNPQ) {
5846     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5847     Created.push_back(NPQ.getNode());
5848 
5849     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5850     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5851     if (VT.isVector())
5852       NPQ = GetMULHU(NPQ, NPQFactor);
5853     else
5854       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5855 
5856     Created.push_back(NPQ.getNode());
5857 
5858     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5859     Created.push_back(Q.getNode());
5860   }
5861 
5862   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5863   Created.push_back(Q.getNode());
5864 
5865   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5866 
5867   SDValue One = DAG.getConstant(1, dl, VT);
5868   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5869   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5870 }
5871 
5872 /// If all values in Values that *don't* match the predicate are same 'splat'
5873 /// value, then replace all values with that splat value.
5874 /// Else, if AlternativeReplacement was provided, then replace all values that
5875 /// do match predicate with AlternativeReplacement value.
5876 static void
5877 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5878                           std::function<bool(SDValue)> Predicate,
5879                           SDValue AlternativeReplacement = SDValue()) {
5880   SDValue Replacement;
5881   // Is there a value for which the Predicate does *NOT* match? What is it?
5882   auto SplatValue = llvm::find_if_not(Values, Predicate);
5883   if (SplatValue != Values.end()) {
5884     // Does Values consist only of SplatValue's and values matching Predicate?
5885     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5886           return Value == *SplatValue || Predicate(Value);
5887         })) // Then we shall replace values matching predicate with SplatValue.
5888       Replacement = *SplatValue;
5889   }
5890   if (!Replacement) {
5891     // Oops, we did not find the "baseline" splat value.
5892     if (!AlternativeReplacement)
5893       return; // Nothing to do.
5894     // Let's replace with provided value then.
5895     Replacement = AlternativeReplacement;
5896   }
5897   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5898 }
5899 
5900 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5901 /// where the divisor is constant and the comparison target is zero,
5902 /// return a DAG expression that will generate the same comparison result
5903 /// using only multiplications, additions and shifts/rotations.
5904 /// Ref: "Hacker's Delight" 10-17.
5905 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5906                                         SDValue CompTargetNode,
5907                                         ISD::CondCode Cond,
5908                                         DAGCombinerInfo &DCI,
5909                                         const SDLoc &DL) const {
5910   SmallVector<SDNode *, 5> Built;
5911   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5912                                          DCI, DL, Built)) {
5913     for (SDNode *N : Built)
5914       DCI.AddToWorklist(N);
5915     return Folded;
5916   }
5917 
5918   return SDValue();
5919 }
5920 
5921 SDValue
5922 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5923                                   SDValue CompTargetNode, ISD::CondCode Cond,
5924                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5925                                   SmallVectorImpl<SDNode *> &Created) const {
5926   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5927   // - D must be constant, with D = D0 * 2^K where D0 is odd
5928   // - P is the multiplicative inverse of D0 modulo 2^W
5929   // - Q = floor(((2^W) - 1) / D)
5930   // where W is the width of the common type of N and D.
5931   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5932          "Only applicable for (in)equality comparisons.");
5933 
5934   SelectionDAG &DAG = DCI.DAG;
5935 
5936   EVT VT = REMNode.getValueType();
5937   EVT SVT = VT.getScalarType();
5938   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5939   EVT ShSVT = ShVT.getScalarType();
5940 
5941   // If MUL is unavailable, we cannot proceed in any case.
5942   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5943     return SDValue();
5944 
5945   bool ComparingWithAllZeros = true;
5946   bool AllComparisonsWithNonZerosAreTautological = true;
5947   bool HadTautologicalLanes = false;
5948   bool AllLanesAreTautological = true;
5949   bool HadEvenDivisor = false;
5950   bool AllDivisorsArePowerOfTwo = true;
5951   bool HadTautologicalInvertedLanes = false;
5952   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5953 
5954   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5955     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5956     if (CDiv->isZero())
5957       return false;
5958 
5959     const APInt &D = CDiv->getAPIntValue();
5960     const APInt &Cmp = CCmp->getAPIntValue();
5961 
5962     ComparingWithAllZeros &= Cmp.isZero();
5963 
5964     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5965     // if C2 is not less than C1, the comparison is always false.
5966     // But we will only be able to produce the comparison that will give the
5967     // opposive tautological answer. So this lane would need to be fixed up.
5968     bool TautologicalInvertedLane = D.ule(Cmp);
5969     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5970 
5971     // If all lanes are tautological (either all divisors are ones, or divisor
5972     // is not greater than the constant we are comparing with),
5973     // we will prefer to avoid the fold.
5974     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5975     HadTautologicalLanes |= TautologicalLane;
5976     AllLanesAreTautological &= TautologicalLane;
5977 
5978     // If we are comparing with non-zero, we need'll need  to subtract said
5979     // comparison value from the LHS. But there is no point in doing that if
5980     // every lane where we are comparing with non-zero is tautological..
5981     if (!Cmp.isZero())
5982       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5983 
5984     // Decompose D into D0 * 2^K
5985     unsigned K = D.countTrailingZeros();
5986     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5987     APInt D0 = D.lshr(K);
5988 
5989     // D is even if it has trailing zeros.
5990     HadEvenDivisor |= (K != 0);
5991     // D is a power-of-two if D0 is one.
5992     // If all divisors are power-of-two, we will prefer to avoid the fold.
5993     AllDivisorsArePowerOfTwo &= D0.isOne();
5994 
5995     // P = inv(D0, 2^W)
5996     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5997     unsigned W = D.getBitWidth();
5998     APInt P = D0.zext(W + 1)
5999                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6000                   .trunc(W);
6001     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6002     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6003 
6004     // Q = floor((2^W - 1) u/ D)
6005     // R = ((2^W - 1) u% D)
6006     APInt Q, R;
6007     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6008 
6009     // If we are comparing with zero, then that comparison constant is okay,
6010     // else it may need to be one less than that.
6011     if (Cmp.ugt(R))
6012       Q -= 1;
6013 
6014     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6015            "We are expecting that K is always less than all-ones for ShSVT");
6016 
6017     // If the lane is tautological the result can be constant-folded.
6018     if (TautologicalLane) {
6019       // Set P and K amount to a bogus values so we can try to splat them.
6020       P = 0;
6021       K = -1;
6022       // And ensure that comparison constant is tautological,
6023       // it will always compare true/false.
6024       Q = -1;
6025     }
6026 
6027     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6028     KAmts.push_back(
6029         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6030     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6031     return true;
6032   };
6033 
6034   SDValue N = REMNode.getOperand(0);
6035   SDValue D = REMNode.getOperand(1);
6036 
6037   // Collect the values from each element.
6038   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6039     return SDValue();
6040 
6041   // If all lanes are tautological, the result can be constant-folded.
6042   if (AllLanesAreTautological)
6043     return SDValue();
6044 
6045   // If this is a urem by a powers-of-two, avoid the fold since it can be
6046   // best implemented as a bit test.
6047   if (AllDivisorsArePowerOfTwo)
6048     return SDValue();
6049 
6050   SDValue PVal, KVal, QVal;
6051   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6052     if (HadTautologicalLanes) {
6053       // Try to turn PAmts into a splat, since we don't care about the values
6054       // that are currently '0'. If we can't, just keep '0'`s.
6055       turnVectorIntoSplatVector(PAmts, isNullConstant);
6056       // Try to turn KAmts into a splat, since we don't care about the values
6057       // that are currently '-1'. If we can't, change them to '0'`s.
6058       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6059                                 DAG.getConstant(0, DL, ShSVT));
6060     }
6061 
6062     PVal = DAG.getBuildVector(VT, DL, PAmts);
6063     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6064     QVal = DAG.getBuildVector(VT, DL, QAmts);
6065   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6066     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6067            "Expected matchBinaryPredicate to return one element for "
6068            "SPLAT_VECTORs");
6069     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6070     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6071     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6072   } else {
6073     PVal = PAmts[0];
6074     KVal = KAmts[0];
6075     QVal = QAmts[0];
6076   }
6077 
6078   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6079     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6080       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6081     assert(CompTargetNode.getValueType() == N.getValueType() &&
6082            "Expecting that the types on LHS and RHS of comparisons match.");
6083     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6084   }
6085 
6086   // (mul N, P)
6087   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6088   Created.push_back(Op0.getNode());
6089 
6090   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6091   // divisors as a performance improvement, since rotating by 0 is a no-op.
6092   if (HadEvenDivisor) {
6093     // We need ROTR to do this.
6094     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6095       return SDValue();
6096     // UREM: (rotr (mul N, P), K)
6097     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6098     Created.push_back(Op0.getNode());
6099   }
6100 
6101   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6102   SDValue NewCC =
6103       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6104                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6105   if (!HadTautologicalInvertedLanes)
6106     return NewCC;
6107 
6108   // If any lanes previously compared always-false, the NewCC will give
6109   // always-true result for them, so we need to fixup those lanes.
6110   // Or the other way around for inequality predicate.
6111   assert(VT.isVector() && "Can/should only get here for vectors.");
6112   Created.push_back(NewCC.getNode());
6113 
6114   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6115   // if C2 is not less than C1, the comparison is always false.
6116   // But we have produced the comparison that will give the
6117   // opposive tautological answer. So these lanes would need to be fixed up.
6118   SDValue TautologicalInvertedChannels =
6119       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6120   Created.push_back(TautologicalInvertedChannels.getNode());
6121 
6122   // NOTE: we avoid letting illegal types through even if we're before legalize
6123   // ops – legalization has a hard time producing good code for this.
6124   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6125     // If we have a vector select, let's replace the comparison results in the
6126     // affected lanes with the correct tautological result.
6127     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6128                                               DL, SETCCVT, SETCCVT);
6129     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6130                        Replacement, NewCC);
6131   }
6132 
6133   // Else, we can just invert the comparison result in the appropriate lanes.
6134   //
6135   // NOTE: see the note above VSELECT above.
6136   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6137     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6138                        TautologicalInvertedChannels);
6139 
6140   return SDValue(); // Don't know how to lower.
6141 }
6142 
6143 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6144 /// where the divisor is constant and the comparison target is zero,
6145 /// return a DAG expression that will generate the same comparison result
6146 /// using only multiplications, additions and shifts/rotations.
6147 /// Ref: "Hacker's Delight" 10-17.
6148 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6149                                         SDValue CompTargetNode,
6150                                         ISD::CondCode Cond,
6151                                         DAGCombinerInfo &DCI,
6152                                         const SDLoc &DL) const {
6153   SmallVector<SDNode *, 7> Built;
6154   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6155                                          DCI, DL, Built)) {
6156     assert(Built.size() <= 7 && "Max size prediction failed.");
6157     for (SDNode *N : Built)
6158       DCI.AddToWorklist(N);
6159     return Folded;
6160   }
6161 
6162   return SDValue();
6163 }
6164 
6165 SDValue
6166 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6167                                   SDValue CompTargetNode, ISD::CondCode Cond,
6168                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6169                                   SmallVectorImpl<SDNode *> &Created) const {
6170   // Fold:
6171   //   (seteq/ne (srem N, D), 0)
6172   // To:
6173   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6174   //
6175   // - D must be constant, with D = D0 * 2^K where D0 is odd
6176   // - P is the multiplicative inverse of D0 modulo 2^W
6177   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6178   // - Q = floor((2 * A) / (2^K))
6179   // where W is the width of the common type of N and D.
6180   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6181          "Only applicable for (in)equality comparisons.");
6182 
6183   SelectionDAG &DAG = DCI.DAG;
6184 
6185   EVT VT = REMNode.getValueType();
6186   EVT SVT = VT.getScalarType();
6187   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6188   EVT ShSVT = ShVT.getScalarType();
6189 
6190   // If we are after ops legalization, and MUL is unavailable, we can not
6191   // proceed.
6192   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6193     return SDValue();
6194 
6195   // TODO: Could support comparing with non-zero too.
6196   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6197   if (!CompTarget || !CompTarget->isZero())
6198     return SDValue();
6199 
6200   bool HadIntMinDivisor = false;
6201   bool HadOneDivisor = false;
6202   bool AllDivisorsAreOnes = true;
6203   bool HadEvenDivisor = false;
6204   bool NeedToApplyOffset = false;
6205   bool AllDivisorsArePowerOfTwo = true;
6206   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6207 
6208   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6209     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6210     if (C->isZero())
6211       return false;
6212 
6213     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6214 
6215     // WARNING: this fold is only valid for positive divisors!
6216     APInt D = C->getAPIntValue();
6217     if (D.isNegative())
6218       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6219 
6220     HadIntMinDivisor |= D.isMinSignedValue();
6221 
6222     // If all divisors are ones, we will prefer to avoid the fold.
6223     HadOneDivisor |= D.isOne();
6224     AllDivisorsAreOnes &= D.isOne();
6225 
6226     // Decompose D into D0 * 2^K
6227     unsigned K = D.countTrailingZeros();
6228     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6229     APInt D0 = D.lshr(K);
6230 
6231     if (!D.isMinSignedValue()) {
6232       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6233       // we don't care about this lane in this fold, we'll special-handle it.
6234       HadEvenDivisor |= (K != 0);
6235     }
6236 
6237     // D is a power-of-two if D0 is one. This includes INT_MIN.
6238     // If all divisors are power-of-two, we will prefer to avoid the fold.
6239     AllDivisorsArePowerOfTwo &= D0.isOne();
6240 
6241     // P = inv(D0, 2^W)
6242     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6243     unsigned W = D.getBitWidth();
6244     APInt P = D0.zext(W + 1)
6245                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6246                   .trunc(W);
6247     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6248     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6249 
6250     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6251     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6252     A.clearLowBits(K);
6253 
6254     if (!D.isMinSignedValue()) {
6255       // If divisor INT_MIN, then we don't care about this lane in this fold,
6256       // we'll special-handle it.
6257       NeedToApplyOffset |= A != 0;
6258     }
6259 
6260     // Q = floor((2 * A) / (2^K))
6261     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6262 
6263     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6264            "We are expecting that A is always less than all-ones for SVT");
6265     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6266            "We are expecting that K is always less than all-ones for ShSVT");
6267 
6268     // If the divisor is 1 the result can be constant-folded. Likewise, we
6269     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6270     if (D.isOne()) {
6271       // Set P, A and K to a bogus values so we can try to splat them.
6272       P = 0;
6273       A = -1;
6274       K = -1;
6275 
6276       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6277       Q = -1;
6278     }
6279 
6280     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6281     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6282     KAmts.push_back(
6283         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6284     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6285     return true;
6286   };
6287 
6288   SDValue N = REMNode.getOperand(0);
6289   SDValue D = REMNode.getOperand(1);
6290 
6291   // Collect the values from each element.
6292   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6293     return SDValue();
6294 
6295   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6296   if (AllDivisorsAreOnes)
6297     return SDValue();
6298 
6299   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6300   // since it can be best implemented as a bit test.
6301   if (AllDivisorsArePowerOfTwo)
6302     return SDValue();
6303 
6304   SDValue PVal, AVal, KVal, QVal;
6305   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6306     if (HadOneDivisor) {
6307       // Try to turn PAmts into a splat, since we don't care about the values
6308       // that are currently '0'. If we can't, just keep '0'`s.
6309       turnVectorIntoSplatVector(PAmts, isNullConstant);
6310       // Try to turn AAmts into a splat, since we don't care about the
6311       // values that are currently '-1'. If we can't, change them to '0'`s.
6312       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6313                                 DAG.getConstant(0, DL, SVT));
6314       // Try to turn KAmts into a splat, since we don't care about the values
6315       // that are currently '-1'. If we can't, change them to '0'`s.
6316       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6317                                 DAG.getConstant(0, DL, ShSVT));
6318     }
6319 
6320     PVal = DAG.getBuildVector(VT, DL, PAmts);
6321     AVal = DAG.getBuildVector(VT, DL, AAmts);
6322     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6323     QVal = DAG.getBuildVector(VT, DL, QAmts);
6324   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6325     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6326            QAmts.size() == 1 &&
6327            "Expected matchUnaryPredicate to return one element for scalable "
6328            "vectors");
6329     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6330     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6331     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6332     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6333   } else {
6334     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6335     PVal = PAmts[0];
6336     AVal = AAmts[0];
6337     KVal = KAmts[0];
6338     QVal = QAmts[0];
6339   }
6340 
6341   // (mul N, P)
6342   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6343   Created.push_back(Op0.getNode());
6344 
6345   if (NeedToApplyOffset) {
6346     // We need ADD to do this.
6347     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6348       return SDValue();
6349 
6350     // (add (mul N, P), A)
6351     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6352     Created.push_back(Op0.getNode());
6353   }
6354 
6355   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6356   // divisors as a performance improvement, since rotating by 0 is a no-op.
6357   if (HadEvenDivisor) {
6358     // We need ROTR to do this.
6359     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6360       return SDValue();
6361     // SREM: (rotr (add (mul N, P), A), K)
6362     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6363     Created.push_back(Op0.getNode());
6364   }
6365 
6366   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6367   SDValue Fold =
6368       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6369                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6370 
6371   // If we didn't have lanes with INT_MIN divisor, then we're done.
6372   if (!HadIntMinDivisor)
6373     return Fold;
6374 
6375   // That fold is only valid for positive divisors. Which effectively means,
6376   // it is invalid for INT_MIN divisors. So if we have such a lane,
6377   // we must fix-up results for said lanes.
6378   assert(VT.isVector() && "Can/should only get here for vectors.");
6379 
6380   // NOTE: we avoid letting illegal types through even if we're before legalize
6381   // ops – legalization has a hard time producing good code for the code that
6382   // follows.
6383   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6384       !isOperationLegalOrCustom(ISD::AND, VT) ||
6385       !isOperationLegalOrCustom(Cond, VT) ||
6386       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6387     return SDValue();
6388 
6389   Created.push_back(Fold.getNode());
6390 
6391   SDValue IntMin = DAG.getConstant(
6392       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6393   SDValue IntMax = DAG.getConstant(
6394       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6395   SDValue Zero =
6396       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6397 
6398   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6399   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6400   Created.push_back(DivisorIsIntMin.getNode());
6401 
6402   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6403   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6404   Created.push_back(Masked.getNode());
6405   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6406   Created.push_back(MaskedIsZero.getNode());
6407 
6408   // To produce final result we need to blend 2 vectors: 'SetCC' and
6409   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6410   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6411   // constant-folded, select can get lowered to a shuffle with constant mask.
6412   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6413                                 MaskedIsZero, Fold);
6414 
6415   return Blended;
6416 }
6417 
6418 bool TargetLowering::
6419 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6420   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6421     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6422                                 "be a constant integer");
6423     return true;
6424   }
6425 
6426   return false;
6427 }
6428 
6429 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6430                                          const DenormalMode &Mode) const {
6431   SDLoc DL(Op);
6432   EVT VT = Op.getValueType();
6433   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6434   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6435   // Testing it with denormal inputs to avoid wrong estimate.
6436   if (Mode.Input == DenormalMode::IEEE) {
6437     // This is specifically a check for the handling of denormal inputs,
6438     // not the result.
6439 
6440     // Test = fabs(X) < SmallestNormal
6441     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6442     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6443     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6444     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6445     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6446   }
6447   // Test = X == 0.0
6448   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6449 }
6450 
6451 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6452                                              bool LegalOps, bool OptForSize,
6453                                              NegatibleCost &Cost,
6454                                              unsigned Depth) const {
6455   // fneg is removable even if it has multiple uses.
6456   if (Op.getOpcode() == ISD::FNEG) {
6457     Cost = NegatibleCost::Cheaper;
6458     return Op.getOperand(0);
6459   }
6460 
6461   // Don't recurse exponentially.
6462   if (Depth > SelectionDAG::MaxRecursionDepth)
6463     return SDValue();
6464 
6465   // Pre-increment recursion depth for use in recursive calls.
6466   ++Depth;
6467   const SDNodeFlags Flags = Op->getFlags();
6468   const TargetOptions &Options = DAG.getTarget().Options;
6469   EVT VT = Op.getValueType();
6470   unsigned Opcode = Op.getOpcode();
6471 
6472   // Don't allow anything with multiple uses unless we know it is free.
6473   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6474     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6475                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6476     if (!IsFreeExtend)
6477       return SDValue();
6478   }
6479 
6480   auto RemoveDeadNode = [&](SDValue N) {
6481     if (N && N.getNode()->use_empty())
6482       DAG.RemoveDeadNode(N.getNode());
6483   };
6484 
6485   SDLoc DL(Op);
6486 
6487   // Because getNegatedExpression can delete nodes we need a handle to keep
6488   // temporary nodes alive in case the recursion manages to create an identical
6489   // node.
6490   std::list<HandleSDNode> Handles;
6491 
6492   switch (Opcode) {
6493   case ISD::ConstantFP: {
6494     // Don't invert constant FP values after legalization unless the target says
6495     // the negated constant is legal.
6496     bool IsOpLegal =
6497         isOperationLegal(ISD::ConstantFP, VT) ||
6498         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6499                      OptForSize);
6500 
6501     if (LegalOps && !IsOpLegal)
6502       break;
6503 
6504     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6505     V.changeSign();
6506     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6507 
6508     // If we already have the use of the negated floating constant, it is free
6509     // to negate it even it has multiple uses.
6510     if (!Op.hasOneUse() && CFP.use_empty())
6511       break;
6512     Cost = NegatibleCost::Neutral;
6513     return CFP;
6514   }
6515   case ISD::BUILD_VECTOR: {
6516     // Only permit BUILD_VECTOR of constants.
6517     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6518           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6519         }))
6520       break;
6521 
6522     bool IsOpLegal =
6523         (isOperationLegal(ISD::ConstantFP, VT) &&
6524          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6525         llvm::all_of(Op->op_values(), [&](SDValue N) {
6526           return N.isUndef() ||
6527                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6528                               OptForSize);
6529         });
6530 
6531     if (LegalOps && !IsOpLegal)
6532       break;
6533 
6534     SmallVector<SDValue, 4> Ops;
6535     for (SDValue C : Op->op_values()) {
6536       if (C.isUndef()) {
6537         Ops.push_back(C);
6538         continue;
6539       }
6540       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6541       V.changeSign();
6542       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6543     }
6544     Cost = NegatibleCost::Neutral;
6545     return DAG.getBuildVector(VT, DL, Ops);
6546   }
6547   case ISD::FADD: {
6548     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6549       break;
6550 
6551     // After operation legalization, it might not be legal to create new FSUBs.
6552     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6553       break;
6554     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6555 
6556     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6557     NegatibleCost CostX = NegatibleCost::Expensive;
6558     SDValue NegX =
6559         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6560     // Prevent this node from being deleted by the next call.
6561     if (NegX)
6562       Handles.emplace_back(NegX);
6563 
6564     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6565     NegatibleCost CostY = NegatibleCost::Expensive;
6566     SDValue NegY =
6567         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6568 
6569     // We're done with the handles.
6570     Handles.clear();
6571 
6572     // Negate the X if its cost is less or equal than Y.
6573     if (NegX && (CostX <= CostY)) {
6574       Cost = CostX;
6575       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6576       if (NegY != N)
6577         RemoveDeadNode(NegY);
6578       return N;
6579     }
6580 
6581     // Negate the Y if it is not expensive.
6582     if (NegY) {
6583       Cost = CostY;
6584       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6585       if (NegX != N)
6586         RemoveDeadNode(NegX);
6587       return N;
6588     }
6589     break;
6590   }
6591   case ISD::FSUB: {
6592     // We can't turn -(A-B) into B-A when we honor signed zeros.
6593     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6594       break;
6595 
6596     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6597     // fold (fneg (fsub 0, Y)) -> Y
6598     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6599       if (C->isZero()) {
6600         Cost = NegatibleCost::Cheaper;
6601         return Y;
6602       }
6603 
6604     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6605     Cost = NegatibleCost::Neutral;
6606     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6607   }
6608   case ISD::FMUL:
6609   case ISD::FDIV: {
6610     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6611 
6612     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6613     NegatibleCost CostX = NegatibleCost::Expensive;
6614     SDValue NegX =
6615         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6616     // Prevent this node from being deleted by the next call.
6617     if (NegX)
6618       Handles.emplace_back(NegX);
6619 
6620     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6621     NegatibleCost CostY = NegatibleCost::Expensive;
6622     SDValue NegY =
6623         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6624 
6625     // We're done with the handles.
6626     Handles.clear();
6627 
6628     // Negate the X if its cost is less or equal than Y.
6629     if (NegX && (CostX <= CostY)) {
6630       Cost = CostX;
6631       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6632       if (NegY != N)
6633         RemoveDeadNode(NegY);
6634       return N;
6635     }
6636 
6637     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6638     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6639       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6640         break;
6641 
6642     // Negate the Y if it is not expensive.
6643     if (NegY) {
6644       Cost = CostY;
6645       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6646       if (NegX != N)
6647         RemoveDeadNode(NegX);
6648       return N;
6649     }
6650     break;
6651   }
6652   case ISD::FMA:
6653   case ISD::FMAD: {
6654     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6655       break;
6656 
6657     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6658     NegatibleCost CostZ = NegatibleCost::Expensive;
6659     SDValue NegZ =
6660         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6661     // Give up if fail to negate the Z.
6662     if (!NegZ)
6663       break;
6664 
6665     // Prevent this node from being deleted by the next two calls.
6666     Handles.emplace_back(NegZ);
6667 
6668     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6669     NegatibleCost CostX = NegatibleCost::Expensive;
6670     SDValue NegX =
6671         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6672     // Prevent this node from being deleted by the next call.
6673     if (NegX)
6674       Handles.emplace_back(NegX);
6675 
6676     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6677     NegatibleCost CostY = NegatibleCost::Expensive;
6678     SDValue NegY =
6679         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6680 
6681     // We're done with the handles.
6682     Handles.clear();
6683 
6684     // Negate the X if its cost is less or equal than Y.
6685     if (NegX && (CostX <= CostY)) {
6686       Cost = std::min(CostX, CostZ);
6687       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6688       if (NegY != N)
6689         RemoveDeadNode(NegY);
6690       return N;
6691     }
6692 
6693     // Negate the Y if it is not expensive.
6694     if (NegY) {
6695       Cost = std::min(CostY, CostZ);
6696       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6697       if (NegX != N)
6698         RemoveDeadNode(NegX);
6699       return N;
6700     }
6701     break;
6702   }
6703 
6704   case ISD::FP_EXTEND:
6705   case ISD::FSIN:
6706     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6707                                             OptForSize, Cost, Depth))
6708       return DAG.getNode(Opcode, DL, VT, NegV);
6709     break;
6710   case ISD::FP_ROUND:
6711     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6712                                             OptForSize, Cost, Depth))
6713       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6714     break;
6715   }
6716 
6717   return SDValue();
6718 }
6719 
6720 //===----------------------------------------------------------------------===//
6721 // Legalization Utilities
6722 //===----------------------------------------------------------------------===//
6723 
6724 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6725                                     SDValue LHS, SDValue RHS,
6726                                     SmallVectorImpl<SDValue> &Result,
6727                                     EVT HiLoVT, SelectionDAG &DAG,
6728                                     MulExpansionKind Kind, SDValue LL,
6729                                     SDValue LH, SDValue RL, SDValue RH) const {
6730   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6731          Opcode == ISD::SMUL_LOHI);
6732 
6733   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6734                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6735   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6736                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6737   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6738                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6739   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6740                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6741 
6742   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6743     return false;
6744 
6745   unsigned OuterBitSize = VT.getScalarSizeInBits();
6746   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6747 
6748   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6749   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6750          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6751 
6752   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6753   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6754                           bool Signed) -> bool {
6755     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6756       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6757       Hi = SDValue(Lo.getNode(), 1);
6758       return true;
6759     }
6760     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6761       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6762       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6763       return true;
6764     }
6765     return false;
6766   };
6767 
6768   SDValue Lo, Hi;
6769 
6770   if (!LL.getNode() && !RL.getNode() &&
6771       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6772     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6773     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6774   }
6775 
6776   if (!LL.getNode())
6777     return false;
6778 
6779   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6780   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6781       DAG.MaskedValueIsZero(RHS, HighMask)) {
6782     // The inputs are both zero-extended.
6783     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6784       Result.push_back(Lo);
6785       Result.push_back(Hi);
6786       if (Opcode != ISD::MUL) {
6787         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6788         Result.push_back(Zero);
6789         Result.push_back(Zero);
6790       }
6791       return true;
6792     }
6793   }
6794 
6795   if (!VT.isVector() && Opcode == ISD::MUL &&
6796       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6797       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6798     // The input values are both sign-extended.
6799     // TODO non-MUL case?
6800     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6801       Result.push_back(Lo);
6802       Result.push_back(Hi);
6803       return true;
6804     }
6805   }
6806 
6807   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6808   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6809   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6810 
6811   if (!LH.getNode() && !RH.getNode() &&
6812       isOperationLegalOrCustom(ISD::SRL, VT) &&
6813       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6814     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6815     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6816     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6817     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6818   }
6819 
6820   if (!LH.getNode())
6821     return false;
6822 
6823   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6824     return false;
6825 
6826   Result.push_back(Lo);
6827 
6828   if (Opcode == ISD::MUL) {
6829     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6830     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6831     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6832     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6833     Result.push_back(Hi);
6834     return true;
6835   }
6836 
6837   // Compute the full width result.
6838   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6839     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6840     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6841     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6842     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6843   };
6844 
6845   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6846   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6847     return false;
6848 
6849   // This is effectively the add part of a multiply-add of half-sized operands,
6850   // so it cannot overflow.
6851   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6852 
6853   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6854     return false;
6855 
6856   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6857   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6858 
6859   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6860                   isOperationLegalOrCustom(ISD::ADDE, VT));
6861   if (UseGlue)
6862     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6863                        Merge(Lo, Hi));
6864   else
6865     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6866                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6867 
6868   SDValue Carry = Next.getValue(1);
6869   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6870   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6871 
6872   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6873     return false;
6874 
6875   if (UseGlue)
6876     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6877                      Carry);
6878   else
6879     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6880                      Zero, Carry);
6881 
6882   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6883 
6884   if (Opcode == ISD::SMUL_LOHI) {
6885     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6886                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6887     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6888 
6889     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6890                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6891     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6892   }
6893 
6894   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6895   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6896   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6897   return true;
6898 }
6899 
6900 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6901                                SelectionDAG &DAG, MulExpansionKind Kind,
6902                                SDValue LL, SDValue LH, SDValue RL,
6903                                SDValue RH) const {
6904   SmallVector<SDValue, 2> Result;
6905   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6906                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6907                            DAG, Kind, LL, LH, RL, RH);
6908   if (Ok) {
6909     assert(Result.size() == 2);
6910     Lo = Result[0];
6911     Hi = Result[1];
6912   }
6913   return Ok;
6914 }
6915 
6916 // Check that (every element of) Z is undef or not an exact multiple of BW.
6917 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6918   return ISD::matchUnaryPredicate(
6919       Z,
6920       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6921       true);
6922 }
6923 
6924 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6925                                           SelectionDAG &DAG) const {
6926   EVT VT = Node->getValueType(0);
6927 
6928   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6929                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6930                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6931                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6932     return SDValue();
6933 
6934   SDValue X = Node->getOperand(0);
6935   SDValue Y = Node->getOperand(1);
6936   SDValue Z = Node->getOperand(2);
6937 
6938   unsigned BW = VT.getScalarSizeInBits();
6939   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6940   SDLoc DL(SDValue(Node, 0));
6941 
6942   EVT ShVT = Z.getValueType();
6943 
6944   // If a funnel shift in the other direction is more supported, use it.
6945   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6946   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6947       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6948     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6949       // fshl X, Y, Z -> fshr X, Y, -Z
6950       // fshr X, Y, Z -> fshl X, Y, -Z
6951       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6952       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6953     } else {
6954       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6955       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6956       SDValue One = DAG.getConstant(1, DL, ShVT);
6957       if (IsFSHL) {
6958         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6959         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6960       } else {
6961         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6962         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6963       }
6964       Z = DAG.getNOT(DL, Z, ShVT);
6965     }
6966     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6967   }
6968 
6969   SDValue ShX, ShY;
6970   SDValue ShAmt, InvShAmt;
6971   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6972     // fshl: X << C | Y >> (BW - C)
6973     // fshr: X << (BW - C) | Y >> C
6974     // where C = Z % BW is not zero
6975     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6976     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6977     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6978     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6979     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6980   } else {
6981     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6982     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6983     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6984     if (isPowerOf2_32(BW)) {
6985       // Z % BW -> Z & (BW - 1)
6986       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6987       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6988       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6989     } else {
6990       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6991       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6992       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6993     }
6994 
6995     SDValue One = DAG.getConstant(1, DL, ShVT);
6996     if (IsFSHL) {
6997       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6998       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6999       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7000     } else {
7001       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7002       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7003       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7004     }
7005   }
7006   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7007 }
7008 
7009 // TODO: Merge with expandFunnelShift.
7010 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7011                                   SelectionDAG &DAG) const {
7012   EVT VT = Node->getValueType(0);
7013   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7014   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7015   SDValue Op0 = Node->getOperand(0);
7016   SDValue Op1 = Node->getOperand(1);
7017   SDLoc DL(SDValue(Node, 0));
7018 
7019   EVT ShVT = Op1.getValueType();
7020   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7021 
7022   // If a rotate in the other direction is more supported, use it.
7023   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7024   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7025       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7026     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7027     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7028   }
7029 
7030   if (!AllowVectorOps && VT.isVector() &&
7031       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7032        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7033        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7034        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7035        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7036     return SDValue();
7037 
7038   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7039   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7040   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7041   SDValue ShVal;
7042   SDValue HsVal;
7043   if (isPowerOf2_32(EltSizeInBits)) {
7044     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7045     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7046     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7047     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7048     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7049     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7050     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7051   } else {
7052     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7053     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7054     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7055     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7056     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7057     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7058     SDValue One = DAG.getConstant(1, DL, ShVT);
7059     HsVal =
7060         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7061   }
7062   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7063 }
7064 
7065 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7066                                       SelectionDAG &DAG) const {
7067   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7068   EVT VT = Node->getValueType(0);
7069   unsigned VTBits = VT.getScalarSizeInBits();
7070   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7071 
7072   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7073   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7074   SDValue ShOpLo = Node->getOperand(0);
7075   SDValue ShOpHi = Node->getOperand(1);
7076   SDValue ShAmt = Node->getOperand(2);
7077   EVT ShAmtVT = ShAmt.getValueType();
7078   EVT ShAmtCCVT =
7079       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7080   SDLoc dl(Node);
7081 
7082   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7083   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7084   // away during isel.
7085   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7086                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7087   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7088                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7089                        : DAG.getConstant(0, dl, VT);
7090 
7091   SDValue Tmp2, Tmp3;
7092   if (IsSHL) {
7093     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7094     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7095   } else {
7096     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7097     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7098   }
7099 
7100   // If the shift amount is larger or equal than the width of a part we don't
7101   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7102   // values for large shift amounts.
7103   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7104                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7105   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7106                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7107 
7108   if (IsSHL) {
7109     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7110     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7111   } else {
7112     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7113     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7114   }
7115 }
7116 
7117 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7118                                       SelectionDAG &DAG) const {
7119   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7120   SDValue Src = Node->getOperand(OpNo);
7121   EVT SrcVT = Src.getValueType();
7122   EVT DstVT = Node->getValueType(0);
7123   SDLoc dl(SDValue(Node, 0));
7124 
7125   // FIXME: Only f32 to i64 conversions are supported.
7126   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7127     return false;
7128 
7129   if (Node->isStrictFPOpcode())
7130     // When a NaN is converted to an integer a trap is allowed. We can't
7131     // use this expansion here because it would eliminate that trap. Other
7132     // traps are also allowed and cannot be eliminated. See
7133     // IEEE 754-2008 sec 5.8.
7134     return false;
7135 
7136   // Expand f32 -> i64 conversion
7137   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7138   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7139   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7140   EVT IntVT = SrcVT.changeTypeToInteger();
7141   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7142 
7143   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7144   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7145   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7146   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7147   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7148   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7149 
7150   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7151 
7152   SDValue ExponentBits = DAG.getNode(
7153       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7154       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7155   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7156 
7157   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7158                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7159                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7160   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7161 
7162   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7163                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7164                           DAG.getConstant(0x00800000, dl, IntVT));
7165 
7166   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7167 
7168   R = DAG.getSelectCC(
7169       dl, Exponent, ExponentLoBit,
7170       DAG.getNode(ISD::SHL, dl, DstVT, R,
7171                   DAG.getZExtOrTrunc(
7172                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7173                       dl, IntShVT)),
7174       DAG.getNode(ISD::SRL, dl, DstVT, R,
7175                   DAG.getZExtOrTrunc(
7176                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7177                       dl, IntShVT)),
7178       ISD::SETGT);
7179 
7180   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7181                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7182 
7183   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7184                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7185   return true;
7186 }
7187 
7188 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7189                                       SDValue &Chain,
7190                                       SelectionDAG &DAG) const {
7191   SDLoc dl(SDValue(Node, 0));
7192   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7193   SDValue Src = Node->getOperand(OpNo);
7194 
7195   EVT SrcVT = Src.getValueType();
7196   EVT DstVT = Node->getValueType(0);
7197   EVT SetCCVT =
7198       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7199   EVT DstSetCCVT =
7200       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7201 
7202   // Only expand vector types if we have the appropriate vector bit operations.
7203   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7204                                                    ISD::FP_TO_SINT;
7205   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7206                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7207     return false;
7208 
7209   // If the maximum float value is smaller then the signed integer range,
7210   // the destination signmask can't be represented by the float, so we can
7211   // just use FP_TO_SINT directly.
7212   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7213   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7214   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7215   if (APFloat::opOverflow &
7216       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7217     if (Node->isStrictFPOpcode()) {
7218       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7219                            { Node->getOperand(0), Src });
7220       Chain = Result.getValue(1);
7221     } else
7222       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7223     return true;
7224   }
7225 
7226   // Don't expand it if there isn't cheap fsub instruction.
7227   if (!isOperationLegalOrCustom(
7228           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7229     return false;
7230 
7231   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7232   SDValue Sel;
7233 
7234   if (Node->isStrictFPOpcode()) {
7235     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7236                        Node->getOperand(0), /*IsSignaling*/ true);
7237     Chain = Sel.getValue(1);
7238   } else {
7239     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7240   }
7241 
7242   bool Strict = Node->isStrictFPOpcode() ||
7243                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7244 
7245   if (Strict) {
7246     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7247     // signmask then offset (the result of which should be fully representable).
7248     // Sel = Src < 0x8000000000000000
7249     // FltOfs = select Sel, 0, 0x8000000000000000
7250     // IntOfs = select Sel, 0, 0x8000000000000000
7251     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7252 
7253     // TODO: Should any fast-math-flags be set for the FSUB?
7254     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7255                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7256     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7257     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7258                                    DAG.getConstant(0, dl, DstVT),
7259                                    DAG.getConstant(SignMask, dl, DstVT));
7260     SDValue SInt;
7261     if (Node->isStrictFPOpcode()) {
7262       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7263                                 { Chain, Src, FltOfs });
7264       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7265                          { Val.getValue(1), Val });
7266       Chain = SInt.getValue(1);
7267     } else {
7268       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7269       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7270     }
7271     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7272   } else {
7273     // Expand based on maximum range of FP_TO_SINT:
7274     // True = fp_to_sint(Src)
7275     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7276     // Result = select (Src < 0x8000000000000000), True, False
7277 
7278     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7279     // TODO: Should any fast-math-flags be set for the FSUB?
7280     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7281                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7282     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7283                         DAG.getConstant(SignMask, dl, DstVT));
7284     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7285     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7286   }
7287   return true;
7288 }
7289 
7290 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7291                                       SDValue &Chain,
7292                                       SelectionDAG &DAG) const {
7293   // This transform is not correct for converting 0 when rounding mode is set
7294   // to round toward negative infinity which will produce -0.0. So disable under
7295   // strictfp.
7296   if (Node->isStrictFPOpcode())
7297     return false;
7298 
7299   SDValue Src = Node->getOperand(0);
7300   EVT SrcVT = Src.getValueType();
7301   EVT DstVT = Node->getValueType(0);
7302 
7303   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7304     return false;
7305 
7306   // Only expand vector types if we have the appropriate vector bit operations.
7307   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7308                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7309                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7310                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7311                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7312     return false;
7313 
7314   SDLoc dl(SDValue(Node, 0));
7315   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7316 
7317   // Implementation of unsigned i64 to f64 following the algorithm in
7318   // __floatundidf in compiler_rt.  This implementation performs rounding
7319   // correctly in all rounding modes with the exception of converting 0
7320   // when rounding toward negative infinity. In that case the fsub will produce
7321   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7322   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7323   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7324       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7325   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7326   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7327   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7328 
7329   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7330   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7331   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7332   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7333   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7334   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7335   SDValue HiSub =
7336       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7337   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7338   return true;
7339 }
7340 
7341 SDValue
7342 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7343                                                SelectionDAG &DAG) const {
7344   unsigned Opcode = Node->getOpcode();
7345   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7346           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7347          "Wrong opcode");
7348 
7349   if (Node->getFlags().hasNoNaNs()) {
7350     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7351     SDValue Op1 = Node->getOperand(0);
7352     SDValue Op2 = Node->getOperand(1);
7353     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7354     // Copy FMF flags, but always set the no-signed-zeros flag
7355     // as this is implied by the FMINNUM/FMAXNUM semantics.
7356     SDNodeFlags Flags = Node->getFlags();
7357     Flags.setNoSignedZeros(true);
7358     SelCC->setFlags(Flags);
7359     return SelCC;
7360   }
7361 
7362   return SDValue();
7363 }
7364 
7365 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7366                                               SelectionDAG &DAG) const {
7367   SDLoc dl(Node);
7368   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7369     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7370   EVT VT = Node->getValueType(0);
7371 
7372   if (VT.isScalableVector())
7373     report_fatal_error(
7374         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7375 
7376   if (isOperationLegalOrCustom(NewOp, VT)) {
7377     SDValue Quiet0 = Node->getOperand(0);
7378     SDValue Quiet1 = Node->getOperand(1);
7379 
7380     if (!Node->getFlags().hasNoNaNs()) {
7381       // Insert canonicalizes if it's possible we need to quiet to get correct
7382       // sNaN behavior.
7383       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7384         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7385                              Node->getFlags());
7386       }
7387       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7388         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7389                              Node->getFlags());
7390       }
7391     }
7392 
7393     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7394   }
7395 
7396   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7397   // instead if there are no NaNs.
7398   if (Node->getFlags().hasNoNaNs()) {
7399     unsigned IEEE2018Op =
7400         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7401     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7402       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7403                          Node->getOperand(1), Node->getFlags());
7404     }
7405   }
7406 
7407   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7408     return SelCC;
7409 
7410   return SDValue();
7411 }
7412 
7413 // Only expand vector types if we have the appropriate vector bit operations.
7414 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7415   assert(VT.isVector() && "Expected vector type");
7416   unsigned Len = VT.getScalarSizeInBits();
7417   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7418          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7419          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7420          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7421          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7422 }
7423 
7424 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7425   SDLoc dl(Node);
7426   EVT VT = Node->getValueType(0);
7427   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7428   SDValue Op = Node->getOperand(0);
7429   unsigned Len = VT.getScalarSizeInBits();
7430   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7431 
7432   // TODO: Add support for irregular type lengths.
7433   if (!(Len <= 128 && Len % 8 == 0))
7434     return SDValue();
7435 
7436   // Only expand vector types if we have the appropriate vector bit operations.
7437   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7438     return SDValue();
7439 
7440   // This is the "best" algorithm from
7441   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7442   SDValue Mask55 =
7443       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7444   SDValue Mask33 =
7445       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7446   SDValue Mask0F =
7447       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7448   SDValue Mask01 =
7449       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7450 
7451   // v = v - ((v >> 1) & 0x55555555...)
7452   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7453                    DAG.getNode(ISD::AND, dl, VT,
7454                                DAG.getNode(ISD::SRL, dl, VT, Op,
7455                                            DAG.getConstant(1, dl, ShVT)),
7456                                Mask55));
7457   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7458   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7459                    DAG.getNode(ISD::AND, dl, VT,
7460                                DAG.getNode(ISD::SRL, dl, VT, Op,
7461                                            DAG.getConstant(2, dl, ShVT)),
7462                                Mask33));
7463   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7464   Op = DAG.getNode(ISD::AND, dl, VT,
7465                    DAG.getNode(ISD::ADD, dl, VT, Op,
7466                                DAG.getNode(ISD::SRL, dl, VT, Op,
7467                                            DAG.getConstant(4, dl, ShVT))),
7468                    Mask0F);
7469   // v = (v * 0x01010101...) >> (Len - 8)
7470   if (Len > 8)
7471     Op =
7472         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7473                     DAG.getConstant(Len - 8, dl, ShVT));
7474 
7475   return Op;
7476 }
7477 
7478 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7479   SDLoc dl(Node);
7480   EVT VT = Node->getValueType(0);
7481   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7482   SDValue Op = Node->getOperand(0);
7483   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7484 
7485   // If the non-ZERO_UNDEF version is supported we can use that instead.
7486   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7487       isOperationLegalOrCustom(ISD::CTLZ, VT))
7488     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7489 
7490   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7491   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7492     EVT SetCCVT =
7493         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7494     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7495     SDValue Zero = DAG.getConstant(0, dl, VT);
7496     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7497     return DAG.getSelect(dl, VT, SrcIsZero,
7498                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7499   }
7500 
7501   // Only expand vector types if we have the appropriate vector bit operations.
7502   // This includes the operations needed to expand CTPOP if it isn't supported.
7503   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7504                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7505                          !canExpandVectorCTPOP(*this, VT)) ||
7506                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7507                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7508     return SDValue();
7509 
7510   // for now, we do this:
7511   // x = x | (x >> 1);
7512   // x = x | (x >> 2);
7513   // ...
7514   // x = x | (x >>16);
7515   // x = x | (x >>32); // for 64-bit input
7516   // return popcount(~x);
7517   //
7518   // Ref: "Hacker's Delight" by Henry Warren
7519   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7520     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7521     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7522                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7523   }
7524   Op = DAG.getNOT(dl, Op, VT);
7525   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7526 }
7527 
7528 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7529   SDLoc dl(Node);
7530   EVT VT = Node->getValueType(0);
7531   SDValue Op = Node->getOperand(0);
7532   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7533 
7534   // If the non-ZERO_UNDEF version is supported we can use that instead.
7535   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7536       isOperationLegalOrCustom(ISD::CTTZ, VT))
7537     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7538 
7539   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7540   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7541     EVT SetCCVT =
7542         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7543     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7544     SDValue Zero = DAG.getConstant(0, dl, VT);
7545     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7546     return DAG.getSelect(dl, VT, SrcIsZero,
7547                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7548   }
7549 
7550   // Only expand vector types if we have the appropriate vector bit operations.
7551   // This includes the operations needed to expand CTPOP if it isn't supported.
7552   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7553                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7554                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7555                          !canExpandVectorCTPOP(*this, VT)) ||
7556                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7557                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7558                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7559     return SDValue();
7560 
7561   // for now, we use: { return popcount(~x & (x - 1)); }
7562   // unless the target has ctlz but not ctpop, in which case we use:
7563   // { return 32 - nlz(~x & (x-1)); }
7564   // Ref: "Hacker's Delight" by Henry Warren
7565   SDValue Tmp = DAG.getNode(
7566       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7567       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7568 
7569   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7570   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7571     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7572                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7573   }
7574 
7575   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7576 }
7577 
7578 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7579                                   bool IsNegative) const {
7580   SDLoc dl(N);
7581   EVT VT = N->getValueType(0);
7582   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7583   SDValue Op = N->getOperand(0);
7584 
7585   // abs(x) -> smax(x,sub(0,x))
7586   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7587       isOperationLegal(ISD::SMAX, VT)) {
7588     SDValue Zero = DAG.getConstant(0, dl, VT);
7589     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7590                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7591   }
7592 
7593   // abs(x) -> umin(x,sub(0,x))
7594   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7595       isOperationLegal(ISD::UMIN, VT)) {
7596     SDValue Zero = DAG.getConstant(0, dl, VT);
7597     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7598                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7599   }
7600 
7601   // 0 - abs(x) -> smin(x, sub(0,x))
7602   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7603       isOperationLegal(ISD::SMIN, VT)) {
7604     SDValue Zero = DAG.getConstant(0, dl, VT);
7605     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7606                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7607   }
7608 
7609   // Only expand vector types if we have the appropriate vector operations.
7610   if (VT.isVector() &&
7611       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7612        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7613        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7614        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7615     return SDValue();
7616 
7617   SDValue Shift =
7618       DAG.getNode(ISD::SRA, dl, VT, Op,
7619                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7620   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7621 
7622   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7623   if (!IsNegative)
7624     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7625 
7626   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7627   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7628 }
7629 
7630 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7631   SDLoc dl(N);
7632   EVT VT = N->getValueType(0);
7633   SDValue Op = N->getOperand(0);
7634 
7635   if (!VT.isSimple())
7636     return SDValue();
7637 
7638   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7639   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7640   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7641   default:
7642     return SDValue();
7643   case MVT::i16:
7644     // Use a rotate by 8. This can be further expanded if necessary.
7645     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7646   case MVT::i32:
7647     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7648     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7649     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7650     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7651     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7652                        DAG.getConstant(0xFF0000, dl, VT));
7653     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7654     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7655     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7656     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7657   case MVT::i64:
7658     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7659     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7660     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7661     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7662     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7663     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7664     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7665     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7666     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7667                        DAG.getConstant(255ULL<<48, dl, VT));
7668     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7669                        DAG.getConstant(255ULL<<40, dl, VT));
7670     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7671                        DAG.getConstant(255ULL<<32, dl, VT));
7672     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7673                        DAG.getConstant(255ULL<<24, dl, VT));
7674     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7675                        DAG.getConstant(255ULL<<16, dl, VT));
7676     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7677                        DAG.getConstant(255ULL<<8 , dl, VT));
7678     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7679     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7680     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7681     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7682     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7683     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7684     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7685   }
7686 }
7687 
7688 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7689   SDLoc dl(N);
7690   EVT VT = N->getValueType(0);
7691   SDValue Op = N->getOperand(0);
7692   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7693   unsigned Sz = VT.getScalarSizeInBits();
7694 
7695   SDValue Tmp, Tmp2, Tmp3;
7696 
7697   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7698   // and finally the i1 pairs.
7699   // TODO: We can easily support i4/i2 legal types if any target ever does.
7700   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7701     // Create the masks - repeating the pattern every byte.
7702     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7703     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7704     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7705 
7706     // BSWAP if the type is wider than a single byte.
7707     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7708 
7709     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7710     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7711     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7712     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7713     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7714     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7715 
7716     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7717     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7718     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7719     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7720     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7721     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7722 
7723     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7724     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7725     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7726     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7727     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7728     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7729     return Tmp;
7730   }
7731 
7732   Tmp = DAG.getConstant(0, dl, VT);
7733   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7734     if (I < J)
7735       Tmp2 =
7736           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7737     else
7738       Tmp2 =
7739           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7740 
7741     APInt Shift(Sz, 1);
7742     Shift <<= J;
7743     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7744     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7745   }
7746 
7747   return Tmp;
7748 }
7749 
7750 std::pair<SDValue, SDValue>
7751 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7752                                     SelectionDAG &DAG) const {
7753   SDLoc SL(LD);
7754   SDValue Chain = LD->getChain();
7755   SDValue BasePTR = LD->getBasePtr();
7756   EVT SrcVT = LD->getMemoryVT();
7757   EVT DstVT = LD->getValueType(0);
7758   ISD::LoadExtType ExtType = LD->getExtensionType();
7759 
7760   if (SrcVT.isScalableVector())
7761     report_fatal_error("Cannot scalarize scalable vector loads");
7762 
7763   unsigned NumElem = SrcVT.getVectorNumElements();
7764 
7765   EVT SrcEltVT = SrcVT.getScalarType();
7766   EVT DstEltVT = DstVT.getScalarType();
7767 
7768   // A vector must always be stored in memory as-is, i.e. without any padding
7769   // between the elements, since various code depend on it, e.g. in the
7770   // handling of a bitcast of a vector type to int, which may be done with a
7771   // vector store followed by an integer load. A vector that does not have
7772   // elements that are byte-sized must therefore be stored as an integer
7773   // built out of the extracted vector elements.
7774   if (!SrcEltVT.isByteSized()) {
7775     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7776     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7777 
7778     unsigned NumSrcBits = SrcVT.getSizeInBits();
7779     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7780 
7781     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7782     SDValue SrcEltBitMask = DAG.getConstant(
7783         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7784 
7785     // Load the whole vector and avoid masking off the top bits as it makes
7786     // the codegen worse.
7787     SDValue Load =
7788         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7789                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7790                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7791 
7792     SmallVector<SDValue, 8> Vals;
7793     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7794       unsigned ShiftIntoIdx =
7795           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7796       SDValue ShiftAmount =
7797           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7798                                      LoadVT, SL, /*LegalTypes=*/false);
7799       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7800       SDValue Elt =
7801           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7802       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7803 
7804       if (ExtType != ISD::NON_EXTLOAD) {
7805         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7806         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7807       }
7808 
7809       Vals.push_back(Scalar);
7810     }
7811 
7812     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7813     return std::make_pair(Value, Load.getValue(1));
7814   }
7815 
7816   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7817   assert(SrcEltVT.isByteSized());
7818 
7819   SmallVector<SDValue, 8> Vals;
7820   SmallVector<SDValue, 8> LoadChains;
7821 
7822   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7823     SDValue ScalarLoad =
7824         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7825                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7826                        SrcEltVT, LD->getOriginalAlign(),
7827                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7828 
7829     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7830 
7831     Vals.push_back(ScalarLoad.getValue(0));
7832     LoadChains.push_back(ScalarLoad.getValue(1));
7833   }
7834 
7835   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7836   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7837 
7838   return std::make_pair(Value, NewChain);
7839 }
7840 
7841 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7842                                              SelectionDAG &DAG) const {
7843   SDLoc SL(ST);
7844 
7845   SDValue Chain = ST->getChain();
7846   SDValue BasePtr = ST->getBasePtr();
7847   SDValue Value = ST->getValue();
7848   EVT StVT = ST->getMemoryVT();
7849 
7850   if (StVT.isScalableVector())
7851     report_fatal_error("Cannot scalarize scalable vector stores");
7852 
7853   // The type of the data we want to save
7854   EVT RegVT = Value.getValueType();
7855   EVT RegSclVT = RegVT.getScalarType();
7856 
7857   // The type of data as saved in memory.
7858   EVT MemSclVT = StVT.getScalarType();
7859 
7860   unsigned NumElem = StVT.getVectorNumElements();
7861 
7862   // A vector must always be stored in memory as-is, i.e. without any padding
7863   // between the elements, since various code depend on it, e.g. in the
7864   // handling of a bitcast of a vector type to int, which may be done with a
7865   // vector store followed by an integer load. A vector that does not have
7866   // elements that are byte-sized must therefore be stored as an integer
7867   // built out of the extracted vector elements.
7868   if (!MemSclVT.isByteSized()) {
7869     unsigned NumBits = StVT.getSizeInBits();
7870     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7871 
7872     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7873 
7874     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7875       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7876                                 DAG.getVectorIdxConstant(Idx, SL));
7877       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7878       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7879       unsigned ShiftIntoIdx =
7880           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7881       SDValue ShiftAmount =
7882           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7883       SDValue ShiftedElt =
7884           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7885       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7886     }
7887 
7888     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7889                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7890                         ST->getAAInfo());
7891   }
7892 
7893   // Store Stride in bytes
7894   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7895   assert(Stride && "Zero stride!");
7896   // Extract each of the elements from the original vector and save them into
7897   // memory individually.
7898   SmallVector<SDValue, 8> Stores;
7899   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7900     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7901                               DAG.getVectorIdxConstant(Idx, SL));
7902 
7903     SDValue Ptr =
7904         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7905 
7906     // This scalar TruncStore may be illegal, but we legalize it later.
7907     SDValue Store = DAG.getTruncStore(
7908         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7909         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7910         ST->getAAInfo());
7911 
7912     Stores.push_back(Store);
7913   }
7914 
7915   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7916 }
7917 
7918 std::pair<SDValue, SDValue>
7919 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7920   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7921          "unaligned indexed loads not implemented!");
7922   SDValue Chain = LD->getChain();
7923   SDValue Ptr = LD->getBasePtr();
7924   EVT VT = LD->getValueType(0);
7925   EVT LoadedVT = LD->getMemoryVT();
7926   SDLoc dl(LD);
7927   auto &MF = DAG.getMachineFunction();
7928 
7929   if (VT.isFloatingPoint() || VT.isVector()) {
7930     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7931     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7932       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7933           LoadedVT.isVector()) {
7934         // Scalarize the load and let the individual components be handled.
7935         return scalarizeVectorLoad(LD, DAG);
7936       }
7937 
7938       // Expand to a (misaligned) integer load of the same size,
7939       // then bitconvert to floating point or vector.
7940       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7941                                     LD->getMemOperand());
7942       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7943       if (LoadedVT != VT)
7944         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7945                              ISD::ANY_EXTEND, dl, VT, Result);
7946 
7947       return std::make_pair(Result, newLoad.getValue(1));
7948     }
7949 
7950     // Copy the value to a (aligned) stack slot using (unaligned) integer
7951     // loads and stores, then do a (aligned) load from the stack slot.
7952     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7953     unsigned LoadedBytes = LoadedVT.getStoreSize();
7954     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7955     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7956 
7957     // Make sure the stack slot is also aligned for the register type.
7958     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7959     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7960     SmallVector<SDValue, 8> Stores;
7961     SDValue StackPtr = StackBase;
7962     unsigned Offset = 0;
7963 
7964     EVT PtrVT = Ptr.getValueType();
7965     EVT StackPtrVT = StackPtr.getValueType();
7966 
7967     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7968     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7969 
7970     // Do all but one copies using the full register width.
7971     for (unsigned i = 1; i < NumRegs; i++) {
7972       // Load one integer register's worth from the original location.
7973       SDValue Load = DAG.getLoad(
7974           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7975           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7976           LD->getAAInfo());
7977       // Follow the load with a store to the stack slot.  Remember the store.
7978       Stores.push_back(DAG.getStore(
7979           Load.getValue(1), dl, Load, StackPtr,
7980           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7981       // Increment the pointers.
7982       Offset += RegBytes;
7983 
7984       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7985       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7986     }
7987 
7988     // The last copy may be partial.  Do an extending load.
7989     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7990                                   8 * (LoadedBytes - Offset));
7991     SDValue Load =
7992         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7993                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7994                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7995                        LD->getAAInfo());
7996     // Follow the load with a store to the stack slot.  Remember the store.
7997     // On big-endian machines this requires a truncating store to ensure
7998     // that the bits end up in the right place.
7999     Stores.push_back(DAG.getTruncStore(
8000         Load.getValue(1), dl, Load, StackPtr,
8001         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8002 
8003     // The order of the stores doesn't matter - say it with a TokenFactor.
8004     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8005 
8006     // Finally, perform the original load only redirected to the stack slot.
8007     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8008                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8009                           LoadedVT);
8010 
8011     // Callers expect a MERGE_VALUES node.
8012     return std::make_pair(Load, TF);
8013   }
8014 
8015   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8016          "Unaligned load of unsupported type.");
8017 
8018   // Compute the new VT that is half the size of the old one.  This is an
8019   // integer MVT.
8020   unsigned NumBits = LoadedVT.getSizeInBits();
8021   EVT NewLoadedVT;
8022   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8023   NumBits >>= 1;
8024 
8025   Align Alignment = LD->getOriginalAlign();
8026   unsigned IncrementSize = NumBits / 8;
8027   ISD::LoadExtType HiExtType = LD->getExtensionType();
8028 
8029   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8030   if (HiExtType == ISD::NON_EXTLOAD)
8031     HiExtType = ISD::ZEXTLOAD;
8032 
8033   // Load the value in two parts
8034   SDValue Lo, Hi;
8035   if (DAG.getDataLayout().isLittleEndian()) {
8036     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8037                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8038                         LD->getAAInfo());
8039 
8040     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8041     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8042                         LD->getPointerInfo().getWithOffset(IncrementSize),
8043                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8044                         LD->getAAInfo());
8045   } else {
8046     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8047                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8048                         LD->getAAInfo());
8049 
8050     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8051     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8052                         LD->getPointerInfo().getWithOffset(IncrementSize),
8053                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8054                         LD->getAAInfo());
8055   }
8056 
8057   // aggregate the two parts
8058   SDValue ShiftAmount =
8059       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8060                                                     DAG.getDataLayout()));
8061   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8062   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8063 
8064   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8065                              Hi.getValue(1));
8066 
8067   return std::make_pair(Result, TF);
8068 }
8069 
8070 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8071                                              SelectionDAG &DAG) const {
8072   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8073          "unaligned indexed stores not implemented!");
8074   SDValue Chain = ST->getChain();
8075   SDValue Ptr = ST->getBasePtr();
8076   SDValue Val = ST->getValue();
8077   EVT VT = Val.getValueType();
8078   Align Alignment = ST->getOriginalAlign();
8079   auto &MF = DAG.getMachineFunction();
8080   EVT StoreMemVT = ST->getMemoryVT();
8081 
8082   SDLoc dl(ST);
8083   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8084     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8085     if (isTypeLegal(intVT)) {
8086       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8087           StoreMemVT.isVector()) {
8088         // Scalarize the store and let the individual components be handled.
8089         SDValue Result = scalarizeVectorStore(ST, DAG);
8090         return Result;
8091       }
8092       // Expand to a bitconvert of the value to the integer type of the
8093       // same size, then a (misaligned) int store.
8094       // FIXME: Does not handle truncating floating point stores!
8095       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8096       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8097                             Alignment, ST->getMemOperand()->getFlags());
8098       return Result;
8099     }
8100     // Do a (aligned) store to a stack slot, then copy from the stack slot
8101     // to the final destination using (unaligned) integer loads and stores.
8102     MVT RegVT = getRegisterType(
8103         *DAG.getContext(),
8104         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8105     EVT PtrVT = Ptr.getValueType();
8106     unsigned StoredBytes = StoreMemVT.getStoreSize();
8107     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8108     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8109 
8110     // Make sure the stack slot is also aligned for the register type.
8111     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8112     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8113 
8114     // Perform the original store, only redirected to the stack slot.
8115     SDValue Store = DAG.getTruncStore(
8116         Chain, dl, Val, StackPtr,
8117         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8118 
8119     EVT StackPtrVT = StackPtr.getValueType();
8120 
8121     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8122     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8123     SmallVector<SDValue, 8> Stores;
8124     unsigned Offset = 0;
8125 
8126     // Do all but one copies using the full register width.
8127     for (unsigned i = 1; i < NumRegs; i++) {
8128       // Load one integer register's worth from the stack slot.
8129       SDValue Load = DAG.getLoad(
8130           RegVT, dl, Store, StackPtr,
8131           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8132       // Store it to the final location.  Remember the store.
8133       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8134                                     ST->getPointerInfo().getWithOffset(Offset),
8135                                     ST->getOriginalAlign(),
8136                                     ST->getMemOperand()->getFlags()));
8137       // Increment the pointers.
8138       Offset += RegBytes;
8139       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8140       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8141     }
8142 
8143     // The last store may be partial.  Do a truncating store.  On big-endian
8144     // machines this requires an extending load from the stack slot to ensure
8145     // that the bits are in the right place.
8146     EVT LoadMemVT =
8147         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8148 
8149     // Load from the stack slot.
8150     SDValue Load = DAG.getExtLoad(
8151         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8152         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8153 
8154     Stores.push_back(
8155         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8156                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8157                           ST->getOriginalAlign(),
8158                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8159     // The order of the stores doesn't matter - say it with a TokenFactor.
8160     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8161     return Result;
8162   }
8163 
8164   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8165          "Unaligned store of unknown type.");
8166   // Get the half-size VT
8167   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8168   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8169   unsigned IncrementSize = NumBits / 8;
8170 
8171   // Divide the stored value in two parts.
8172   SDValue ShiftAmount = DAG.getConstant(
8173       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8174   SDValue Lo = Val;
8175   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8176 
8177   // Store the two parts
8178   SDValue Store1, Store2;
8179   Store1 = DAG.getTruncStore(Chain, dl,
8180                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8181                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8182                              ST->getMemOperand()->getFlags());
8183 
8184   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8185   Store2 = DAG.getTruncStore(
8186       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8187       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8188       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8189 
8190   SDValue Result =
8191       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8192   return Result;
8193 }
8194 
8195 SDValue
8196 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8197                                        const SDLoc &DL, EVT DataVT,
8198                                        SelectionDAG &DAG,
8199                                        bool IsCompressedMemory) const {
8200   SDValue Increment;
8201   EVT AddrVT = Addr.getValueType();
8202   EVT MaskVT = Mask.getValueType();
8203   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8204          "Incompatible types of Data and Mask");
8205   if (IsCompressedMemory) {
8206     if (DataVT.isScalableVector())
8207       report_fatal_error(
8208           "Cannot currently handle compressed memory with scalable vectors");
8209     // Incrementing the pointer according to number of '1's in the mask.
8210     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8211     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8212     if (MaskIntVT.getSizeInBits() < 32) {
8213       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8214       MaskIntVT = MVT::i32;
8215     }
8216 
8217     // Count '1's with POPCNT.
8218     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8219     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8220     // Scale is an element size in bytes.
8221     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8222                                     AddrVT);
8223     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8224   } else if (DataVT.isScalableVector()) {
8225     Increment = DAG.getVScale(DL, AddrVT,
8226                               APInt(AddrVT.getFixedSizeInBits(),
8227                                     DataVT.getStoreSize().getKnownMinSize()));
8228   } else
8229     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8230 
8231   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8232 }
8233 
8234 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8235                                        EVT VecVT, const SDLoc &dl,
8236                                        ElementCount SubEC) {
8237   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8238          "Cannot index a scalable vector within a fixed-width vector");
8239 
8240   unsigned NElts = VecVT.getVectorMinNumElements();
8241   unsigned NumSubElts = SubEC.getKnownMinValue();
8242   EVT IdxVT = Idx.getValueType();
8243 
8244   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8245     // If this is a constant index and we know the value plus the number of the
8246     // elements in the subvector minus one is less than the minimum number of
8247     // elements then it's safe to return Idx.
8248     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8249       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8250         return Idx;
8251     SDValue VS =
8252         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8253     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8254     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8255                               DAG.getConstant(NumSubElts, dl, IdxVT));
8256     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8257   }
8258   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8259     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8260     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8261                        DAG.getConstant(Imm, dl, IdxVT));
8262   }
8263   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8264   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8265                      DAG.getConstant(MaxIndex, dl, IdxVT));
8266 }
8267 
8268 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8269                                                 SDValue VecPtr, EVT VecVT,
8270                                                 SDValue Index) const {
8271   return getVectorSubVecPointer(
8272       DAG, VecPtr, VecVT,
8273       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8274       Index);
8275 }
8276 
8277 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8278                                                SDValue VecPtr, EVT VecVT,
8279                                                EVT SubVecVT,
8280                                                SDValue Index) const {
8281   SDLoc dl(Index);
8282   // Make sure the index type is big enough to compute in.
8283   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8284 
8285   EVT EltVT = VecVT.getVectorElementType();
8286 
8287   // Calculate the element offset and add it to the pointer.
8288   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8289   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8290          "Converting bits to bytes lost precision");
8291   assert(SubVecVT.getVectorElementType() == EltVT &&
8292          "Sub-vector must be a vector with matching element type");
8293   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8294                                   SubVecVT.getVectorElementCount());
8295 
8296   EVT IdxVT = Index.getValueType();
8297   if (SubVecVT.isScalableVector())
8298     Index =
8299         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8300                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8301 
8302   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8303                       DAG.getConstant(EltSize, dl, IdxVT));
8304   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8305 }
8306 
8307 //===----------------------------------------------------------------------===//
8308 // Implementation of Emulated TLS Model
8309 //===----------------------------------------------------------------------===//
8310 
8311 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8312                                                 SelectionDAG &DAG) const {
8313   // Access to address of TLS varialbe xyz is lowered to a function call:
8314   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8315   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8316   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8317   SDLoc dl(GA);
8318 
8319   ArgListTy Args;
8320   ArgListEntry Entry;
8321   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8322   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8323   StringRef EmuTlsVarName(NameString);
8324   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8325   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8326   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8327   Entry.Ty = VoidPtrType;
8328   Args.push_back(Entry);
8329 
8330   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8331 
8332   TargetLowering::CallLoweringInfo CLI(DAG);
8333   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8334   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8335   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8336 
8337   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8338   // At last for X86 targets, maybe good for other targets too?
8339   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8340   MFI.setAdjustsStack(true); // Is this only for X86 target?
8341   MFI.setHasCalls(true);
8342 
8343   assert((GA->getOffset() == 0) &&
8344          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8345   return CallResult.first;
8346 }
8347 
8348 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8349                                                 SelectionDAG &DAG) const {
8350   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8351   if (!isCtlzFast())
8352     return SDValue();
8353   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8354   SDLoc dl(Op);
8355   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8356     if (C->isZero() && CC == ISD::SETEQ) {
8357       EVT VT = Op.getOperand(0).getValueType();
8358       SDValue Zext = Op.getOperand(0);
8359       if (VT.bitsLT(MVT::i32)) {
8360         VT = MVT::i32;
8361         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8362       }
8363       unsigned Log2b = Log2_32(VT.getSizeInBits());
8364       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8365       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8366                                 DAG.getConstant(Log2b, dl, MVT::i32));
8367       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8368     }
8369   }
8370   return SDValue();
8371 }
8372 
8373 // Convert redundant addressing modes (e.g. scaling is redundant
8374 // when accessing bytes).
8375 ISD::MemIndexType
8376 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8377                                       SDValue Offsets) const {
8378   bool IsScaledIndex =
8379       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8380   bool IsSignedIndex =
8381       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8382 
8383   // Scaling is unimportant for bytes, canonicalize to unscaled.
8384   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8385     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8386 
8387   return IndexType;
8388 }
8389 
8390 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8391   SDValue Op0 = Node->getOperand(0);
8392   SDValue Op1 = Node->getOperand(1);
8393   EVT VT = Op0.getValueType();
8394   unsigned Opcode = Node->getOpcode();
8395   SDLoc DL(Node);
8396 
8397   // umin(x,y) -> sub(x,usubsat(x,y))
8398   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8399       isOperationLegal(ISD::USUBSAT, VT)) {
8400     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8401                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8402   }
8403 
8404   // umax(x,y) -> add(x,usubsat(y,x))
8405   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8406       isOperationLegal(ISD::USUBSAT, VT)) {
8407     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8408                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8409   }
8410 
8411   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8412   ISD::CondCode CC;
8413   switch (Opcode) {
8414   default: llvm_unreachable("How did we get here?");
8415   case ISD::SMAX: CC = ISD::SETGT; break;
8416   case ISD::SMIN: CC = ISD::SETLT; break;
8417   case ISD::UMAX: CC = ISD::SETUGT; break;
8418   case ISD::UMIN: CC = ISD::SETULT; break;
8419   }
8420 
8421   // FIXME: Should really try to split the vector in case it's legal on a
8422   // subvector.
8423   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8424     return DAG.UnrollVectorOp(Node);
8425 
8426   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8427   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8428   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8429 }
8430 
8431 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8432   unsigned Opcode = Node->getOpcode();
8433   SDValue LHS = Node->getOperand(0);
8434   SDValue RHS = Node->getOperand(1);
8435   EVT VT = LHS.getValueType();
8436   SDLoc dl(Node);
8437 
8438   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8439   assert(VT.isInteger() && "Expected operands to be integers");
8440 
8441   // usub.sat(a, b) -> umax(a, b) - b
8442   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8443     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8444     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8445   }
8446 
8447   // uadd.sat(a, b) -> umin(a, ~b) + b
8448   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8449     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8450     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8451     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8452   }
8453 
8454   unsigned OverflowOp;
8455   switch (Opcode) {
8456   case ISD::SADDSAT:
8457     OverflowOp = ISD::SADDO;
8458     break;
8459   case ISD::UADDSAT:
8460     OverflowOp = ISD::UADDO;
8461     break;
8462   case ISD::SSUBSAT:
8463     OverflowOp = ISD::SSUBO;
8464     break;
8465   case ISD::USUBSAT:
8466     OverflowOp = ISD::USUBO;
8467     break;
8468   default:
8469     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8470                      "addition or subtraction node.");
8471   }
8472 
8473   // FIXME: Should really try to split the vector in case it's legal on a
8474   // subvector.
8475   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8476     return DAG.UnrollVectorOp(Node);
8477 
8478   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8479   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8480   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8481   SDValue SumDiff = Result.getValue(0);
8482   SDValue Overflow = Result.getValue(1);
8483   SDValue Zero = DAG.getConstant(0, dl, VT);
8484   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8485 
8486   if (Opcode == ISD::UADDSAT) {
8487     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8488       // (LHS + RHS) | OverflowMask
8489       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8490       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8491     }
8492     // Overflow ? 0xffff.... : (LHS + RHS)
8493     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8494   }
8495 
8496   if (Opcode == ISD::USUBSAT) {
8497     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8498       // (LHS - RHS) & ~OverflowMask
8499       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8500       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8501       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8502     }
8503     // Overflow ? 0 : (LHS - RHS)
8504     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8505   }
8506 
8507   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8508   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8509   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8510   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8511                               DAG.getConstant(BitWidth - 1, dl, VT));
8512   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8513   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8514 }
8515 
8516 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8517   unsigned Opcode = Node->getOpcode();
8518   bool IsSigned = Opcode == ISD::SSHLSAT;
8519   SDValue LHS = Node->getOperand(0);
8520   SDValue RHS = Node->getOperand(1);
8521   EVT VT = LHS.getValueType();
8522   SDLoc dl(Node);
8523 
8524   assert((Node->getOpcode() == ISD::SSHLSAT ||
8525           Node->getOpcode() == ISD::USHLSAT) &&
8526           "Expected a SHLSAT opcode");
8527   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8528   assert(VT.isInteger() && "Expected operands to be integers");
8529 
8530   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8531 
8532   unsigned BW = VT.getScalarSizeInBits();
8533   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8534   SDValue Orig =
8535       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8536 
8537   SDValue SatVal;
8538   if (IsSigned) {
8539     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8540     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8541     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8542                              SatMin, SatMax, ISD::SETLT);
8543   } else {
8544     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8545   }
8546   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8547 
8548   return Result;
8549 }
8550 
8551 SDValue
8552 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8553   assert((Node->getOpcode() == ISD::SMULFIX ||
8554           Node->getOpcode() == ISD::UMULFIX ||
8555           Node->getOpcode() == ISD::SMULFIXSAT ||
8556           Node->getOpcode() == ISD::UMULFIXSAT) &&
8557          "Expected a fixed point multiplication opcode");
8558 
8559   SDLoc dl(Node);
8560   SDValue LHS = Node->getOperand(0);
8561   SDValue RHS = Node->getOperand(1);
8562   EVT VT = LHS.getValueType();
8563   unsigned Scale = Node->getConstantOperandVal(2);
8564   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8565                      Node->getOpcode() == ISD::UMULFIXSAT);
8566   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8567                  Node->getOpcode() == ISD::SMULFIXSAT);
8568   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8569   unsigned VTSize = VT.getScalarSizeInBits();
8570 
8571   if (!Scale) {
8572     // [us]mul.fix(a, b, 0) -> mul(a, b)
8573     if (!Saturating) {
8574       if (isOperationLegalOrCustom(ISD::MUL, VT))
8575         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8576     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8577       SDValue Result =
8578           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8579       SDValue Product = Result.getValue(0);
8580       SDValue Overflow = Result.getValue(1);
8581       SDValue Zero = DAG.getConstant(0, dl, VT);
8582 
8583       APInt MinVal = APInt::getSignedMinValue(VTSize);
8584       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8585       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8586       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8587       // Xor the inputs, if resulting sign bit is 0 the product will be
8588       // positive, else negative.
8589       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8590       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8591       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8592       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8593     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8594       SDValue Result =
8595           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8596       SDValue Product = Result.getValue(0);
8597       SDValue Overflow = Result.getValue(1);
8598 
8599       APInt MaxVal = APInt::getMaxValue(VTSize);
8600       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8601       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8602     }
8603   }
8604 
8605   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8606          "Expected scale to be less than the number of bits if signed or at "
8607          "most the number of bits if unsigned.");
8608   assert(LHS.getValueType() == RHS.getValueType() &&
8609          "Expected both operands to be the same type");
8610 
8611   // Get the upper and lower bits of the result.
8612   SDValue Lo, Hi;
8613   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8614   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8615   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8616     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8617     Lo = Result.getValue(0);
8618     Hi = Result.getValue(1);
8619   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8620     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8621     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8622   } else if (VT.isVector()) {
8623     return SDValue();
8624   } else {
8625     report_fatal_error("Unable to expand fixed point multiplication.");
8626   }
8627 
8628   if (Scale == VTSize)
8629     // Result is just the top half since we'd be shifting by the width of the
8630     // operand. Overflow impossible so this works for both UMULFIX and
8631     // UMULFIXSAT.
8632     return Hi;
8633 
8634   // The result will need to be shifted right by the scale since both operands
8635   // are scaled. The result is given to us in 2 halves, so we only want part of
8636   // both in the result.
8637   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8638   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8639                                DAG.getConstant(Scale, dl, ShiftTy));
8640   if (!Saturating)
8641     return Result;
8642 
8643   if (!Signed) {
8644     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8645     // widened multiplication) aren't all zeroes.
8646 
8647     // Saturate to max if ((Hi >> Scale) != 0),
8648     // which is the same as if (Hi > ((1 << Scale) - 1))
8649     APInt MaxVal = APInt::getMaxValue(VTSize);
8650     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8651                                       dl, VT);
8652     Result = DAG.getSelectCC(dl, Hi, LowMask,
8653                              DAG.getConstant(MaxVal, dl, VT), Result,
8654                              ISD::SETUGT);
8655 
8656     return Result;
8657   }
8658 
8659   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8660   // widened multiplication) aren't all ones or all zeroes.
8661 
8662   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8663   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8664 
8665   if (Scale == 0) {
8666     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8667                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8668     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8669     // Saturated to SatMin if wide product is negative, and SatMax if wide
8670     // product is positive ...
8671     SDValue Zero = DAG.getConstant(0, dl, VT);
8672     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8673                                                ISD::SETLT);
8674     // ... but only if we overflowed.
8675     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8676   }
8677 
8678   //  We handled Scale==0 above so all the bits to examine is in Hi.
8679 
8680   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8681   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8682   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8683                                     dl, VT);
8684   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8685   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8686   // which is the same as if (HI < (-1 << (Scale - 1))
8687   SDValue HighMask =
8688       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8689                       dl, VT);
8690   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8691   return Result;
8692 }
8693 
8694 SDValue
8695 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8696                                     SDValue LHS, SDValue RHS,
8697                                     unsigned Scale, SelectionDAG &DAG) const {
8698   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8699           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8700          "Expected a fixed point division opcode");
8701 
8702   EVT VT = LHS.getValueType();
8703   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8704   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8705   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8706 
8707   // If there is enough room in the type to upscale the LHS or downscale the
8708   // RHS before the division, we can perform it in this type without having to
8709   // resize. For signed operations, the LHS headroom is the number of
8710   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8711   // The headroom for the RHS is the number of trailing zeroes.
8712   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8713                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8714   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8715 
8716   // For signed saturating operations, we need to be able to detect true integer
8717   // division overflow; that is, when you have MIN / -EPS. However, this
8718   // is undefined behavior and if we emit divisions that could take such
8719   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8720   // example).
8721   // Avoid this by requiring an extra bit so that we never get this case.
8722   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8723   // signed saturating division, we need to emit a whopping 32-bit division.
8724   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8725     return SDValue();
8726 
8727   unsigned LHSShift = std::min(LHSLead, Scale);
8728   unsigned RHSShift = Scale - LHSShift;
8729 
8730   // At this point, we know that if we shift the LHS up by LHSShift and the
8731   // RHS down by RHSShift, we can emit a regular division with a final scaling
8732   // factor of Scale.
8733 
8734   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8735   if (LHSShift)
8736     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8737                       DAG.getConstant(LHSShift, dl, ShiftTy));
8738   if (RHSShift)
8739     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8740                       DAG.getConstant(RHSShift, dl, ShiftTy));
8741 
8742   SDValue Quot;
8743   if (Signed) {
8744     // For signed operations, if the resulting quotient is negative and the
8745     // remainder is nonzero, subtract 1 from the quotient to round towards
8746     // negative infinity.
8747     SDValue Rem;
8748     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8749     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8750     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8751     if (isTypeLegal(VT) &&
8752         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8753       Quot = DAG.getNode(ISD::SDIVREM, dl,
8754                          DAG.getVTList(VT, VT),
8755                          LHS, RHS);
8756       Rem = Quot.getValue(1);
8757       Quot = Quot.getValue(0);
8758     } else {
8759       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8760                          LHS, RHS);
8761       Rem = DAG.getNode(ISD::SREM, dl, VT,
8762                         LHS, RHS);
8763     }
8764     SDValue Zero = DAG.getConstant(0, dl, VT);
8765     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8766     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8767     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8768     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8769     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8770                                DAG.getConstant(1, dl, VT));
8771     Quot = DAG.getSelect(dl, VT,
8772                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8773                          Sub1, Quot);
8774   } else
8775     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8776                        LHS, RHS);
8777 
8778   return Quot;
8779 }
8780 
8781 void TargetLowering::expandUADDSUBO(
8782     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8783   SDLoc dl(Node);
8784   SDValue LHS = Node->getOperand(0);
8785   SDValue RHS = Node->getOperand(1);
8786   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8787 
8788   // If ADD/SUBCARRY is legal, use that instead.
8789   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8790   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8791     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8792     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8793                                     { LHS, RHS, CarryIn });
8794     Result = SDValue(NodeCarry.getNode(), 0);
8795     Overflow = SDValue(NodeCarry.getNode(), 1);
8796     return;
8797   }
8798 
8799   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8800                             LHS.getValueType(), LHS, RHS);
8801 
8802   EVT ResultType = Node->getValueType(1);
8803   EVT SetCCType = getSetCCResultType(
8804       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8805   SDValue SetCC;
8806   if (IsAdd && isOneConstant(RHS)) {
8807     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
8808     // the live range of X. We assume comparing with 0 is cheap.
8809     // TODO: This generalizes to (X + C) < C.
8810     SetCC =
8811         DAG.getSetCC(dl, SetCCType, Result,
8812                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
8813   } else {
8814     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8815     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8816   }
8817   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8818 }
8819 
8820 void TargetLowering::expandSADDSUBO(
8821     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8822   SDLoc dl(Node);
8823   SDValue LHS = Node->getOperand(0);
8824   SDValue RHS = Node->getOperand(1);
8825   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8826 
8827   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8828                             LHS.getValueType(), LHS, RHS);
8829 
8830   EVT ResultType = Node->getValueType(1);
8831   EVT OType = getSetCCResultType(
8832       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8833 
8834   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8835   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8836   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8837     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8838     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8839     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8840     return;
8841   }
8842 
8843   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8844 
8845   // For an addition, the result should be less than one of the operands (LHS)
8846   // if and only if the other operand (RHS) is negative, otherwise there will
8847   // be overflow.
8848   // For a subtraction, the result should be less than one of the operands
8849   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8850   // otherwise there will be overflow.
8851   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8852   SDValue ConditionRHS =
8853       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8854 
8855   Overflow = DAG.getBoolExtOrTrunc(
8856       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8857       ResultType, ResultType);
8858 }
8859 
8860 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8861                                 SDValue &Overflow, SelectionDAG &DAG) const {
8862   SDLoc dl(Node);
8863   EVT VT = Node->getValueType(0);
8864   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8865   SDValue LHS = Node->getOperand(0);
8866   SDValue RHS = Node->getOperand(1);
8867   bool isSigned = Node->getOpcode() == ISD::SMULO;
8868 
8869   // For power-of-two multiplications we can use a simpler shift expansion.
8870   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8871     const APInt &C = RHSC->getAPIntValue();
8872     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8873     if (C.isPowerOf2()) {
8874       // smulo(x, signed_min) is same as umulo(x, signed_min).
8875       bool UseArithShift = isSigned && !C.isMinSignedValue();
8876       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8877       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8878       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8879       Overflow = DAG.getSetCC(dl, SetCCVT,
8880           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8881                       dl, VT, Result, ShiftAmt),
8882           LHS, ISD::SETNE);
8883       return true;
8884     }
8885   }
8886 
8887   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8888   if (VT.isVector())
8889     WideVT =
8890         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8891 
8892   SDValue BottomHalf;
8893   SDValue TopHalf;
8894   static const unsigned Ops[2][3] =
8895       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8896         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8897   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8898     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8899     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8900   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8901     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8902                              RHS);
8903     TopHalf = BottomHalf.getValue(1);
8904   } else if (isTypeLegal(WideVT)) {
8905     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8906     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8907     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8908     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8909     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8910         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8911     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8912                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8913   } else {
8914     if (VT.isVector())
8915       return false;
8916 
8917     // We can fall back to a libcall with an illegal type for the MUL if we
8918     // have a libcall big enough.
8919     // Also, we can fall back to a division in some cases, but that's a big
8920     // performance hit in the general case.
8921     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8922     if (WideVT == MVT::i16)
8923       LC = RTLIB::MUL_I16;
8924     else if (WideVT == MVT::i32)
8925       LC = RTLIB::MUL_I32;
8926     else if (WideVT == MVT::i64)
8927       LC = RTLIB::MUL_I64;
8928     else if (WideVT == MVT::i128)
8929       LC = RTLIB::MUL_I128;
8930     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8931 
8932     SDValue HiLHS;
8933     SDValue HiRHS;
8934     if (isSigned) {
8935       // The high part is obtained by SRA'ing all but one of the bits of low
8936       // part.
8937       unsigned LoSize = VT.getFixedSizeInBits();
8938       HiLHS =
8939           DAG.getNode(ISD::SRA, dl, VT, LHS,
8940                       DAG.getConstant(LoSize - 1, dl,
8941                                       getPointerTy(DAG.getDataLayout())));
8942       HiRHS =
8943           DAG.getNode(ISD::SRA, dl, VT, RHS,
8944                       DAG.getConstant(LoSize - 1, dl,
8945                                       getPointerTy(DAG.getDataLayout())));
8946     } else {
8947         HiLHS = DAG.getConstant(0, dl, VT);
8948         HiRHS = DAG.getConstant(0, dl, VT);
8949     }
8950 
8951     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8952     // pre-lowered to the correct types. This all depends upon WideVT not
8953     // being a legal type for the architecture and thus has to be split to
8954     // two arguments.
8955     SDValue Ret;
8956     TargetLowering::MakeLibCallOptions CallOptions;
8957     CallOptions.setSExt(isSigned);
8958     CallOptions.setIsPostTypeLegalization(true);
8959     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8960       // Halves of WideVT are packed into registers in different order
8961       // depending on platform endianness. This is usually handled by
8962       // the C calling convention, but we can't defer to it in
8963       // the legalizer.
8964       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8965       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8966     } else {
8967       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8968       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8969     }
8970     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8971            "Ret value is a collection of constituent nodes holding result.");
8972     if (DAG.getDataLayout().isLittleEndian()) {
8973       // Same as above.
8974       BottomHalf = Ret.getOperand(0);
8975       TopHalf = Ret.getOperand(1);
8976     } else {
8977       BottomHalf = Ret.getOperand(1);
8978       TopHalf = Ret.getOperand(0);
8979     }
8980   }
8981 
8982   Result = BottomHalf;
8983   if (isSigned) {
8984     SDValue ShiftAmt = DAG.getConstant(
8985         VT.getScalarSizeInBits() - 1, dl,
8986         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8987     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8988     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8989   } else {
8990     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8991                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8992   }
8993 
8994   // Truncate the result if SetCC returns a larger type than needed.
8995   EVT RType = Node->getValueType(1);
8996   if (RType.bitsLT(Overflow.getValueType()))
8997     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8998 
8999   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9000          "Unexpected result type for S/UMULO legalization");
9001   return true;
9002 }
9003 
9004 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9005   SDLoc dl(Node);
9006   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9007   SDValue Op = Node->getOperand(0);
9008   EVT VT = Op.getValueType();
9009 
9010   if (VT.isScalableVector())
9011     report_fatal_error(
9012         "Expanding reductions for scalable vectors is undefined.");
9013 
9014   // Try to use a shuffle reduction for power of two vectors.
9015   if (VT.isPow2VectorType()) {
9016     while (VT.getVectorNumElements() > 1) {
9017       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9018       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9019         break;
9020 
9021       SDValue Lo, Hi;
9022       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9023       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9024       VT = HalfVT;
9025     }
9026   }
9027 
9028   EVT EltVT = VT.getVectorElementType();
9029   unsigned NumElts = VT.getVectorNumElements();
9030 
9031   SmallVector<SDValue, 8> Ops;
9032   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9033 
9034   SDValue Res = Ops[0];
9035   for (unsigned i = 1; i < NumElts; i++)
9036     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9037 
9038   // Result type may be wider than element type.
9039   if (EltVT != Node->getValueType(0))
9040     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9041   return Res;
9042 }
9043 
9044 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9045   SDLoc dl(Node);
9046   SDValue AccOp = Node->getOperand(0);
9047   SDValue VecOp = Node->getOperand(1);
9048   SDNodeFlags Flags = Node->getFlags();
9049 
9050   EVT VT = VecOp.getValueType();
9051   EVT EltVT = VT.getVectorElementType();
9052 
9053   if (VT.isScalableVector())
9054     report_fatal_error(
9055         "Expanding reductions for scalable vectors is undefined.");
9056 
9057   unsigned NumElts = VT.getVectorNumElements();
9058 
9059   SmallVector<SDValue, 8> Ops;
9060   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9061 
9062   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9063 
9064   SDValue Res = AccOp;
9065   for (unsigned i = 0; i < NumElts; i++)
9066     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9067 
9068   return Res;
9069 }
9070 
9071 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9072                                SelectionDAG &DAG) const {
9073   EVT VT = Node->getValueType(0);
9074   SDLoc dl(Node);
9075   bool isSigned = Node->getOpcode() == ISD::SREM;
9076   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9077   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9078   SDValue Dividend = Node->getOperand(0);
9079   SDValue Divisor = Node->getOperand(1);
9080   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9081     SDVTList VTs = DAG.getVTList(VT, VT);
9082     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9083     return true;
9084   }
9085   if (isOperationLegalOrCustom(DivOpc, VT)) {
9086     // X % Y -> X-X/Y*Y
9087     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9088     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9089     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9090     return true;
9091   }
9092   return false;
9093 }
9094 
9095 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9096                                             SelectionDAG &DAG) const {
9097   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9098   SDLoc dl(SDValue(Node, 0));
9099   SDValue Src = Node->getOperand(0);
9100 
9101   // DstVT is the result type, while SatVT is the size to which we saturate
9102   EVT SrcVT = Src.getValueType();
9103   EVT DstVT = Node->getValueType(0);
9104 
9105   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9106   unsigned SatWidth = SatVT.getScalarSizeInBits();
9107   unsigned DstWidth = DstVT.getScalarSizeInBits();
9108   assert(SatWidth <= DstWidth &&
9109          "Expected saturation width smaller than result width");
9110 
9111   // Determine minimum and maximum integer values and their corresponding
9112   // floating-point values.
9113   APInt MinInt, MaxInt;
9114   if (IsSigned) {
9115     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
9116     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
9117   } else {
9118     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
9119     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
9120   }
9121 
9122   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9123   // libcall emission cannot handle this. Large result types will fail.
9124   if (SrcVT == MVT::f16) {
9125     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9126     SrcVT = Src.getValueType();
9127   }
9128 
9129   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9130   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9131 
9132   APFloat::opStatus MinStatus =
9133       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9134   APFloat::opStatus MaxStatus =
9135       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9136   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9137                              !(MaxStatus & APFloat::opStatus::opInexact);
9138 
9139   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9140   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9141 
9142   // If the integer bounds are exactly representable as floats and min/max are
9143   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9144   // of comparisons and selects.
9145   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9146                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9147   if (AreExactFloatBounds && MinMaxLegal) {
9148     SDValue Clamped = Src;
9149 
9150     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9151     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9152     // Clamp by MaxFloat from above. NaN cannot occur.
9153     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9154     // Convert clamped value to integer.
9155     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9156                                   dl, DstVT, Clamped);
9157 
9158     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9159     // which will cast to zero.
9160     if (!IsSigned)
9161       return FpToInt;
9162 
9163     // Otherwise, select 0 if Src is NaN.
9164     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9165     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9166                            ISD::CondCode::SETUO);
9167   }
9168 
9169   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9170   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9171 
9172   // Result of direct conversion. The assumption here is that the operation is
9173   // non-trapping and it's fine to apply it to an out-of-range value if we
9174   // select it away later.
9175   SDValue FpToInt =
9176       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9177 
9178   SDValue Select = FpToInt;
9179 
9180   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9181   // MinInt if Src is NaN.
9182   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9183                            ISD::CondCode::SETULT);
9184   // If Src OGT MaxFloat, select MaxInt.
9185   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9186                            ISD::CondCode::SETOGT);
9187 
9188   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9189   // is already zero.
9190   if (!IsSigned)
9191     return Select;
9192 
9193   // Otherwise, select 0 if Src is NaN.
9194   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9195   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9196 }
9197 
9198 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9199                                            SelectionDAG &DAG) const {
9200   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9201   assert(Node->getValueType(0).isScalableVector() &&
9202          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9203 
9204   EVT VT = Node->getValueType(0);
9205   SDValue V1 = Node->getOperand(0);
9206   SDValue V2 = Node->getOperand(1);
9207   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9208   SDLoc DL(Node);
9209 
9210   // Expand through memory thusly:
9211   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9212   //  Store V1, Ptr
9213   //  Store V2, Ptr + sizeof(V1)
9214   //  If (Imm < 0)
9215   //    TrailingElts = -Imm
9216   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9217   //  else
9218   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9219   //  Res = Load Ptr
9220 
9221   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9222 
9223   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9224                                VT.getVectorElementCount() * 2);
9225   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9226   EVT PtrVT = StackPtr.getValueType();
9227   auto &MF = DAG.getMachineFunction();
9228   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9229   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9230 
9231   // Store the lo part of CONCAT_VECTORS(V1, V2)
9232   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9233   // Store the hi part of CONCAT_VECTORS(V1, V2)
9234   SDValue OffsetToV2 = DAG.getVScale(
9235       DL, PtrVT,
9236       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9237   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9238   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9239 
9240   if (Imm >= 0) {
9241     // Load back the required element. getVectorElementPointer takes care of
9242     // clamping the index if it's out-of-bounds.
9243     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9244     // Load the spliced result
9245     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9246                        MachinePointerInfo::getUnknownStack(MF));
9247   }
9248 
9249   uint64_t TrailingElts = -Imm;
9250 
9251   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9252   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9253   SDValue TrailingBytes =
9254       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9255 
9256   if (TrailingElts > VT.getVectorMinNumElements()) {
9257     SDValue VLBytes = DAG.getVScale(
9258         DL, PtrVT,
9259         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9260     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9261   }
9262 
9263   // Calculate the start address of the spliced result.
9264   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9265 
9266   // Load the spliced result
9267   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9268                      MachinePointerInfo::getUnknownStack(MF));
9269 }
9270 
9271 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9272                                            SDValue &LHS, SDValue &RHS,
9273                                            SDValue &CC, SDValue Mask,
9274                                            SDValue EVL, bool &NeedInvert,
9275                                            const SDLoc &dl, SDValue &Chain,
9276                                            bool IsSignaling) const {
9277   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9278   MVT OpVT = LHS.getSimpleValueType();
9279   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9280   NeedInvert = false;
9281   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9282   bool IsNonVP = !EVL;
9283   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9284   default:
9285     llvm_unreachable("Unknown condition code action!");
9286   case TargetLowering::Legal:
9287     // Nothing to do.
9288     break;
9289   case TargetLowering::Expand: {
9290     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9291     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9292       std::swap(LHS, RHS);
9293       CC = DAG.getCondCode(InvCC);
9294       return true;
9295     }
9296     // Swapping operands didn't work. Try inverting the condition.
9297     bool NeedSwap = false;
9298     InvCC = getSetCCInverse(CCCode, OpVT);
9299     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9300       // If inverting the condition is not enough, try swapping operands
9301       // on top of it.
9302       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9303       NeedSwap = true;
9304     }
9305     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9306       CC = DAG.getCondCode(InvCC);
9307       NeedInvert = true;
9308       if (NeedSwap)
9309         std::swap(LHS, RHS);
9310       return true;
9311     }
9312 
9313     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9314     unsigned Opc = 0;
9315     switch (CCCode) {
9316     default:
9317       llvm_unreachable("Don't know how to expand this condition!");
9318     case ISD::SETUO:
9319       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9320         CC1 = ISD::SETUNE;
9321         CC2 = ISD::SETUNE;
9322         Opc = ISD::OR;
9323         break;
9324       }
9325       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9326              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9327       NeedInvert = true;
9328       LLVM_FALLTHROUGH;
9329     case ISD::SETO:
9330       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9331              "If SETO is expanded, SETOEQ must be legal!");
9332       CC1 = ISD::SETOEQ;
9333       CC2 = ISD::SETOEQ;
9334       Opc = ISD::AND;
9335       break;
9336     case ISD::SETONE:
9337     case ISD::SETUEQ:
9338       // If the SETUO or SETO CC isn't legal, we might be able to use
9339       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9340       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9341       // the operands.
9342       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9343       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9344           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9345            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9346         CC1 = ISD::SETOGT;
9347         CC2 = ISD::SETOLT;
9348         Opc = ISD::OR;
9349         NeedInvert = ((unsigned)CCCode & 0x8U);
9350         break;
9351       }
9352       LLVM_FALLTHROUGH;
9353     case ISD::SETOEQ:
9354     case ISD::SETOGT:
9355     case ISD::SETOGE:
9356     case ISD::SETOLT:
9357     case ISD::SETOLE:
9358     case ISD::SETUNE:
9359     case ISD::SETUGT:
9360     case ISD::SETUGE:
9361     case ISD::SETULT:
9362     case ISD::SETULE:
9363       // If we are floating point, assign and break, otherwise fall through.
9364       if (!OpVT.isInteger()) {
9365         // We can use the 4th bit to tell if we are the unordered
9366         // or ordered version of the opcode.
9367         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9368         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9369         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9370         break;
9371       }
9372       // Fallthrough if we are unsigned integer.
9373       LLVM_FALLTHROUGH;
9374     case ISD::SETLE:
9375     case ISD::SETGT:
9376     case ISD::SETGE:
9377     case ISD::SETLT:
9378     case ISD::SETNE:
9379     case ISD::SETEQ:
9380       // If all combinations of inverting the condition and swapping operands
9381       // didn't work then we have no means to expand the condition.
9382       llvm_unreachable("Don't know how to expand this condition!");
9383     }
9384 
9385     SDValue SetCC1, SetCC2;
9386     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9387       // If we aren't the ordered or unorder operation,
9388       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9389       if (IsNonVP) {
9390         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9391         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9392       } else {
9393         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9394         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9395       }
9396     } else {
9397       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9398       if (IsNonVP) {
9399         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9400         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9401       } else {
9402         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9403         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9404       }
9405     }
9406     if (Chain)
9407       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9408                           SetCC2.getValue(1));
9409     if (IsNonVP)
9410       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9411     else {
9412       // Transform the binary opcode to the VP equivalent.
9413       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9414       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9415       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9416     }
9417     RHS = SDValue();
9418     CC = SDValue();
9419     return true;
9420   }
9421   }
9422   return false;
9423 }
9424