1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 void 42 StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 43 // Consistency check 44 assert(PendingGCRelocateCalls.empty() && 45 "Trying to visit statepoint before finished processing previous one"); 46 Locations.clear(); 47 RelocLocations.clear(); 48 NextSlotToAllocate = 0; 49 // Need to resize this on each safepoint - we need the two to stay in 50 // sync and the clear patterns of a SelectionDAGBuilder have no relation 51 // to FunctionLoweringInfo. 52 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 53 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 54 AllocatedStackSlots[i] = false; 55 } 56 } 57 void StatepointLoweringState::clear() { 58 Locations.clear(); 59 RelocLocations.clear(); 60 AllocatedStackSlots.clear(); 61 assert(PendingGCRelocateCalls.empty() && 62 "cleared before statepoint sequence completed"); 63 } 64 65 SDValue 66 StatepointLoweringState::allocateStackSlot(EVT ValueType, 67 SelectionDAGBuilder &Builder) { 68 69 NumSlotsAllocatedForStatepoints++; 70 71 // The basic scheme here is to first look for a previously created stack slot 72 // which is not in use (accounting for the fact arbitrary slots may already 73 // be reserved), or to create a new stack slot and use it. 74 75 // If this doesn't succeed in 40000 iterations, something is seriously wrong 76 for (int i = 0; i < 40000; i++) { 77 assert(Builder.FuncInfo.StatepointStackSlots.size() == 78 AllocatedStackSlots.size() && 79 "broken invariant"); 80 const size_t NumSlots = AllocatedStackSlots.size(); 81 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 82 83 if (NextSlotToAllocate >= NumSlots) { 84 assert(NextSlotToAllocate == NumSlots); 85 // record stats 86 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 87 StatepointMaxSlotsRequired = NumSlots + 1; 88 } 89 90 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 91 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 92 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 93 AllocatedStackSlots.push_back(true); 94 return SpillSlot; 95 } 96 if (!AllocatedStackSlots[NextSlotToAllocate]) { 97 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 98 AllocatedStackSlots[NextSlotToAllocate] = true; 99 return Builder.DAG.getFrameIndex(FI, ValueType); 100 } 101 // Note: We deliberately choose to advance this only on the failing path. 102 // Doing so on the suceeding path involes a bit of complexity that caused a 103 // minor bug previously. Unless performance shows this matters, please 104 // keep this code as simple as possible. 105 NextSlotToAllocate++; 106 } 107 llvm_unreachable("infinite loop?"); 108 } 109 110 /// Try to find existing copies of the incoming values in stack slots used for 111 /// statepoint spilling. If we can find a spill slot for the incoming value, 112 /// mark that slot as allocated, and reuse the same slot for this safepoint. 113 /// This helps to avoid series of loads and stores that only serve to resuffle 114 /// values on the stack between calls. 115 static void reservePreviousStackSlotForValue(SDValue Incoming, 116 SelectionDAGBuilder &Builder) { 117 118 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 119 // We won't need to spill this, so no need to check for previously 120 // allocated stack slots 121 return; 122 } 123 124 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 125 if (Loc.getNode()) { 126 // duplicates in input 127 return; 128 } 129 130 // Search back for the load from a stack slot pattern to find the original 131 // slot we allocated for this value. We could extend this to deal with 132 // simple modification patterns, but simple dealing with trivial load/store 133 // sequences helps a lot already. 134 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) { 135 if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) { 136 const int Index = FI->getIndex(); 137 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 138 Builder.FuncInfo.StatepointStackSlots.end(), Index); 139 if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) { 140 // not one of the lowering stack slots, can't reuse! 141 // TODO: Actually, we probably could reuse the stack slot if the value 142 // hasn't changed at all, but we'd need to look for intervening writes 143 return; 144 } else { 145 // This is one of our dedicated lowering slots 146 const int Offset = 147 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 148 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 149 // stack slot already assigned to someone else, can't use it! 150 // TODO: currently we reserve space for gc arguments after doing 151 // normal allocation for deopt arguments. We should reserve for 152 // _all_ deopt and gc arguments, then start allocating. This 153 // will prevent some moves being inserted when vm state changes, 154 // but gc state doesn't between two calls. 155 return; 156 } 157 // Reserve this stack slot 158 Builder.StatepointLowering.reserveStackSlot(Offset); 159 } 160 161 // Cache this slot so we find it when going through the normal 162 // assignment loop. 163 SDValue Loc = 164 Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 165 166 Builder.StatepointLowering.setLocation(Incoming, Loc); 167 } 168 } 169 170 // TODO: handle case where a reloaded value flows through a phi to 171 // another safepoint. e.g. 172 // bb1: 173 // a' = relocated... 174 // bb2: % pred: bb1, bb3, bb4, etc. 175 // a_phi = phi(a', ...) 176 // statepoint ... a_phi 177 // NOTE: This will require reasoning about cross basic block values. This is 178 // decidedly non trivial and this might not be the right place to do it. We 179 // don't really have the information we need here... 180 181 // TODO: handle simple updates. If a value is modified and the original 182 // value is no longer live, it would be nice to put the modified value in the 183 // same slot. This allows folding of the memory accesses for some 184 // instructions types (like an increment). 185 // statepoint (i) 186 // i1 = i+1 187 // statepoint (i1) 188 } 189 190 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 191 /// is not required for correctness. It's purpose is to reduce the size of 192 /// StackMap section. It has no effect on the number of spill slots required 193 /// or the actual lowering. 194 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 195 SmallVectorImpl<const Value *> &Ptrs, 196 SmallVectorImpl<const Value *> &Relocs, 197 SelectionDAGBuilder &Builder) { 198 199 // This is horribly ineffecient, but I don't care right now 200 SmallSet<SDValue, 64> Seen; 201 202 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 203 for (size_t i = 0; i < Ptrs.size(); i++) { 204 SDValue SD = Builder.getValue(Ptrs[i]); 205 // Only add non-duplicates 206 if (Seen.count(SD) == 0) { 207 NewBases.push_back(Bases[i]); 208 NewPtrs.push_back(Ptrs[i]); 209 NewRelocs.push_back(Relocs[i]); 210 } 211 Seen.insert(SD); 212 } 213 assert(Bases.size() >= NewBases.size()); 214 assert(Ptrs.size() >= NewPtrs.size()); 215 assert(Relocs.size() >= NewRelocs.size()); 216 Bases = NewBases; 217 Ptrs = NewPtrs; 218 Relocs = NewRelocs; 219 assert(Ptrs.size() == Bases.size()); 220 assert(Ptrs.size() == Relocs.size()); 221 } 222 223 /// Extract call from statepoint, lower it and return pointer to the 224 /// call node. Also update NodeMap so that getValue(statepoint) will 225 /// reference lowered call result 226 static SDNode *lowerCallFromStatepoint(ImmutableStatepoint StatepointSite, 227 SelectionDAGBuilder &Builder) { 228 229 ImmutableCallSite CS(StatepointSite.getCallSite()); 230 231 // Lower the actual call itself - This is a bit of a hack, but we want to 232 // avoid modifying the actual lowering code. This is similiar in intent to 233 // the LowerCallOperands mechanism used by PATCHPOINT, but is structured 234 // differently. Hopefully, this is slightly more robust w.r.t. calling 235 // convention, return values, and other function attributes. 236 Value *ActualCallee = const_cast<Value *>(StatepointSite.actualCallee()); 237 238 std::vector<Value *> Args; 239 CallInst::const_op_iterator arg_begin = StatepointSite.call_args_begin(); 240 CallInst::const_op_iterator arg_end = StatepointSite.call_args_end(); 241 Args.insert(Args.end(), arg_begin, arg_end); 242 // TODO: remove the creation of a new instruction! We should not be 243 // modifying the IR (even temporarily) at this point. 244 CallInst *Tmp = CallInst::Create(ActualCallee, Args); 245 Tmp->setTailCall(CS.isTailCall()); 246 Tmp->setCallingConv(CS.getCallingConv()); 247 Tmp->setAttributes(CS.getAttributes()); 248 Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false); 249 250 // Handle the return value of the call iff any. 251 const bool HasDef = !Tmp->getType()->isVoidTy(); 252 if (HasDef) { 253 // The value of the statepoint itself will be the value of call itself. 254 // We'll replace the actually call node shortly. gc_result will grab 255 // this value. 256 Builder.setValue(CS.getInstruction(), Builder.getValue(Tmp)); 257 } else { 258 // The token value is never used from here on, just generate a poison value 259 Builder.setValue(CS.getInstruction(), Builder.DAG.getIntPtrConstant(-1)); 260 } 261 // Remove the fake entry we created so we don't have a hanging reference 262 // after we delete this node. 263 Builder.removeValue(Tmp); 264 delete Tmp; 265 Tmp = nullptr; 266 267 // Search for the call node 268 // The following code is essentially reverse engineering X86's 269 // LowerCallTo. 270 SDNode *CallNode = nullptr; 271 272 // We just emitted a call, so it should be last thing generated 273 SDValue Chain = Builder.DAG.getRoot(); 274 275 // Find closest CALLSEQ_END walking back through lowered nodes if needed 276 SDNode *CallEnd = Chain.getNode(); 277 int Sanity = 0; 278 while (CallEnd->getOpcode() != ISD::CALLSEQ_END) { 279 CallEnd = CallEnd->getGluedNode(); 280 assert(CallEnd && "Can not find call node"); 281 assert(Sanity < 20 && "should have found call end already"); 282 Sanity++; 283 } 284 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 285 "Expected a callseq node."); 286 assert(CallEnd->getGluedNode()); 287 288 // Step back inside the CALLSEQ 289 CallNode = CallEnd->getGluedNode(); 290 return CallNode; 291 } 292 293 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 294 /// and return two arrays: 295 /// Bases - base pointers incoming to this statepoint 296 /// Ptrs - derived pointers incoming to this statepoint 297 /// Relocs - the gc_relocate corresponding to each base/ptr pair 298 /// Elements of this arrays should be in one-to-one correspondence with each 299 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 300 static void 301 getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases, 302 SmallVectorImpl<const Value *> &Ptrs, 303 SmallVectorImpl<const Value *> &Relocs, 304 ImmutableStatepoint StatepointSite, 305 SelectionDAGBuilder &Builder) { 306 for (GCRelocateOperands relocateOpers : 307 StatepointSite.getRelocates(StatepointSite)) { 308 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); 309 Bases.push_back(relocateOpers.basePtr()); 310 Ptrs.push_back(relocateOpers.derivedPtr()); 311 } 312 313 // Remove any redundant llvm::Values which map to the same SDValue as another 314 // input. Also has the effect of removing duplicates in the original 315 // llvm::Value input list as well. This is a useful optimization for 316 // reducing the size of the StackMap section. It has no other impact. 317 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 318 319 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 320 } 321 322 /// Spill a value incoming to the statepoint. It might be either part of 323 /// vmstate 324 /// or gcstate. In both cases unconditionally spill it on the stack unless it 325 /// is a null constant. Return pair with first element being frame index 326 /// containing saved value and second element with outgoing chain from the 327 /// emitted store 328 static std::pair<SDValue, SDValue> 329 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 330 SelectionDAGBuilder &Builder) { 331 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 332 333 // Emit new store if we didn't do it for this ptr before 334 if (!Loc.getNode()) { 335 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 336 Builder); 337 assert(isa<FrameIndexSDNode>(Loc)); 338 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 339 // We use TargetFrameIndex so that isel will not select it into LEA 340 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 341 342 // TODO: We can create TokenFactor node instead of 343 // chaining stores one after another, this may allow 344 // a bit more optimal scheduling for them 345 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 346 MachinePointerInfo::getFixedStack(Index), 347 false, false, 0); 348 349 Builder.StatepointLowering.setLocation(Incoming, Loc); 350 } 351 352 assert(Loc.getNode()); 353 return std::make_pair(Loc, Chain); 354 } 355 356 /// Lower a single value incoming to a statepoint node. This value can be 357 /// either a deopt value or a gc value, the handling is the same. We special 358 /// case constants and allocas, then fall back to spilling if required. 359 static void lowerIncomingStatepointValue(SDValue Incoming, 360 SmallVectorImpl<SDValue> &Ops, 361 SelectionDAGBuilder &Builder) { 362 SDValue Chain = Builder.getRoot(); 363 364 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 365 // If the original value was a constant, make sure it gets recorded as 366 // such in the stackmap. This is required so that the consumer can 367 // parse any internal format to the deopt state. It also handles null 368 // pointers and other constant pointers in GC states 369 Ops.push_back( 370 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 371 Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 372 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 373 // This handles allocas as arguments to the statepoint 374 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 375 Ops.push_back( 376 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 377 } else { 378 // Otherwise, locate a spill slot and explicitly spill it so it 379 // can be found by the runtime later. We currently do not support 380 // tracking values through callee saved registers to their eventual 381 // spill location. This would be a useful optimization, but would 382 // need to be optional since it requires a lot of complexity on the 383 // runtime side which not all would support. 384 std::pair<SDValue, SDValue> Res = 385 spillIncomingStatepointValue(Incoming, Chain, Builder); 386 Ops.push_back(Res.first); 387 Chain = Res.second; 388 } 389 390 Builder.DAG.setRoot(Chain); 391 } 392 393 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 394 /// lowering is described in lowerIncomingStatepointValue. This function is 395 /// responsible for lowering everything in the right position and playing some 396 /// tricks to avoid redundant stack manipulation where possible. On 397 /// completion, 'Ops' will contain ready to use operands for machine code 398 /// statepoint. The chain nodes will have already been created and the DAG root 399 /// will be set to the last value spilled (if any were). 400 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 401 ImmutableStatepoint StatepointSite, 402 SelectionDAGBuilder &Builder) { 403 404 // Lower the deopt and gc arguments for this statepoint. Layout will 405 // be: deopt argument length, deopt arguments.., gc arguments... 406 407 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 408 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, 409 StatepointSite, Builder); 410 411 #ifndef NDEBUG 412 // Check that each of the gc pointer and bases we've gotten out of the 413 // safepoint is something the strategy thinks might be a pointer into the GC 414 // heap. This is basically just here to help catch errors during statepoint 415 // insertion. TODO: This should actually be in the Verifier, but we can't get 416 // to the GCStrategy from there (yet). 417 if (Builder.GFI) { 418 GCStrategy &S = Builder.GFI->getStrategy(); 419 for (const Value *V : Bases) { 420 auto Opt = S.isGCManagedPointer(V); 421 if (Opt.hasValue()) { 422 assert(Opt.getValue() && 423 "non gc managed base pointer found in statepoint"); 424 } 425 } 426 for (const Value *V : Ptrs) { 427 auto Opt = S.isGCManagedPointer(V); 428 if (Opt.hasValue()) { 429 assert(Opt.getValue() && 430 "non gc managed derived pointer found in statepoint"); 431 } 432 } 433 for (const Value *V : Relocations) { 434 auto Opt = S.isGCManagedPointer(V); 435 if (Opt.hasValue()) { 436 assert(Opt.getValue() && "non gc managed pointer relocated"); 437 } 438 } 439 } 440 #endif 441 442 443 444 // Before we actually start lowering (and allocating spill slots for values), 445 // reserve any stack slots which we judge to be profitable to reuse for a 446 // particular value. This is purely an optimization over the code below and 447 // doesn't change semantics at all. It is important for performance that we 448 // reserve slots for both deopt and gc values before lowering either. 449 for (auto I = StatepointSite.vm_state_begin() + 1, 450 E = StatepointSite.vm_state_end(); 451 I != E; ++I) { 452 Value *V = *I; 453 SDValue Incoming = Builder.getValue(V); 454 reservePreviousStackSlotForValue(Incoming, Builder); 455 } 456 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 457 // Even elements will contain base, odd elements - derived ptr 458 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 459 SDValue Incoming = Builder.getValue(V); 460 reservePreviousStackSlotForValue(Incoming, Builder); 461 } 462 463 // First, prefix the list with the number of unique values to be 464 // lowered. Note that this is the number of *Values* not the 465 // number of SDValues required to lower them. 466 const int NumVMSArgs = StatepointSite.numTotalVMSArgs(); 467 Ops.push_back( 468 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 469 Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64)); 470 471 assert(NumVMSArgs + 1 == std::distance(StatepointSite.vm_state_begin(), 472 StatepointSite.vm_state_end())); 473 474 // The vm state arguments are lowered in an opaque manner. We do 475 // not know what type of values are contained within. We skip the 476 // first one since that happens to be the total number we lowered 477 // explicitly just above. We could have left it in the loop and 478 // not done it explicitly, but it's far easier to understand this 479 // way. 480 for (auto I = StatepointSite.vm_state_begin() + 1, 481 E = StatepointSite.vm_state_end(); 482 I != E; ++I) { 483 const Value *V = *I; 484 SDValue Incoming = Builder.getValue(V); 485 lowerIncomingStatepointValue(Incoming, Ops, Builder); 486 } 487 488 // Finally, go ahead and lower all the gc arguments. There's no prefixed 489 // length for this one. After lowering, we'll have the base and pointer 490 // arrays interwoven with each (lowered) base pointer immediately followed by 491 // it's (lowered) derived pointer. i.e 492 // (base[0], ptr[0], base[1], ptr[1], ...) 493 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 494 // Even elements will contain base, odd elements - derived ptr 495 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 496 SDValue Incoming = Builder.getValue(V); 497 lowerIncomingStatepointValue(Incoming, Ops, Builder); 498 } 499 } 500 501 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 502 // Check some preconditions for sanity 503 assert(isStatepoint(&CI) && 504 "function called must be the statepoint function"); 505 506 LowerStatepoint(ImmutableStatepoint(&CI)); 507 } 508 509 void SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP) { 510 // The basic scheme here is that information about both the original call and 511 // the safepoint is encoded in the CallInst. We create a temporary call and 512 // lower it, then reverse engineer the calling sequence. 513 514 NumOfStatepoints++; 515 // Clear state 516 StatepointLowering.startNewStatepoint(*this); 517 518 ImmutableCallSite CS(ISP.getCallSite()); 519 520 #ifndef NDEBUG 521 // Consistency check 522 for (const User *U : CS->users()) { 523 const CallInst *Call = cast<CallInst>(U); 524 if (isGCRelocate(Call)) 525 StatepointLowering.scheduleRelocCall(*Call); 526 } 527 #endif 528 529 #ifndef NDEBUG 530 // If this is a malformed statepoint, report it early to simplify debugging. 531 // This should catch any IR level mistake that's made when constructing or 532 // transforming statepoints. 533 ISP.verify(); 534 535 // Check that the associated GCStrategy expects to encounter statepoints. 536 // TODO: This if should become an assert. For now, we allow the GCStrategy 537 // to be optional for backwards compatibility. This will only last a short 538 // period (i.e. a couple of weeks). 539 if (GFI) { 540 assert(GFI->getStrategy().useStatepoints() && 541 "GCStrategy does not expect to encounter statepoints"); 542 } 543 #endif 544 545 546 // Lower statepoint vmstate and gcstate arguments 547 SmallVector<SDValue, 10> LoweredArgs; 548 lowerStatepointMetaArgs(LoweredArgs, ISP, *this); 549 550 // Get call node, we will replace it later with statepoint 551 SDNode *CallNode = lowerCallFromStatepoint(ISP, *this); 552 553 // Construct the actual STATEPOINT node with all the appropriate arguments 554 // and return values. 555 556 // TODO: Currently, all of these operands are being marked as read/write in 557 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 558 // and flags to be read-only. 559 SmallVector<SDValue, 40> Ops; 560 561 // Calculate and push starting position of vmstate arguments 562 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 563 SDValue Glue; 564 if (CallNode->getGluedNode()) { 565 // Glue is always last operand 566 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 567 } 568 // Get number of arguments incoming directly into call node 569 unsigned NumCallRegArgs = 570 CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3); 571 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 572 573 // Add call target 574 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 575 Ops.push_back(CallTarget); 576 577 // Add call arguments 578 // Get position of register mask in the call 579 SDNode::op_iterator RegMaskIt; 580 if (Glue.getNode()) 581 RegMaskIt = CallNode->op_end() - 2; 582 else 583 RegMaskIt = CallNode->op_end() - 1; 584 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 585 586 // Add a leading constant argument with the Flags and the calling convention 587 // masked together 588 CallingConv::ID CallConv = CS.getCallingConv(); 589 int Flags = dyn_cast<ConstantInt>(CS.getArgument(2))->getZExtValue(); 590 assert(Flags == 0 && "not expected to be used"); 591 Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 592 Ops.push_back( 593 DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64)); 594 595 // Insert all vmstate and gcstate arguments 596 Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end()); 597 598 // Add register mask from call node 599 Ops.push_back(*RegMaskIt); 600 601 // Add chain 602 Ops.push_back(CallNode->getOperand(0)); 603 604 // Same for the glue, but we add it only if original call had it 605 if (Glue.getNode()) 606 Ops.push_back(Glue); 607 608 // Compute return values. Provide a glue output since we consume one as 609 // input. This allows someone else to chain off us as needed. 610 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 611 612 SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT, 613 getCurSDLoc(), NodeTys, Ops); 614 615 // Replace original call 616 DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root 617 // Remove originall call node 618 DAG.DeleteNode(CallNode); 619 620 // DON'T set the root - under the assumption that it's already set past the 621 // inserted node we created. 622 623 // TODO: A better future implementation would be to emit a single variable 624 // argument, variable return value STATEPOINT node here and then hookup the 625 // return value of each gc.relocate to the respective output of the 626 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 627 // to actually be possible today. 628 } 629 630 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 631 // The result value of the gc_result is simply the result of the actual 632 // call. We've already emitted this, so just grab the value. 633 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 634 assert(isStatepoint(I) && 635 "first argument must be a statepoint token"); 636 637 setValue(&CI, getValue(I)); 638 } 639 640 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 641 #ifndef NDEBUG 642 // Consistency check 643 StatepointLowering.relocCallVisited(CI); 644 #endif 645 646 GCRelocateOperands relocateOpers(&CI); 647 SDValue SD = getValue(relocateOpers.derivedPtr()); 648 649 if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) { 650 // We didn't need to spill these special cases (constants and allocas). 651 // See the handling in spillIncomingValueForStatepoint for detail. 652 setValue(&CI, SD); 653 return; 654 } 655 656 SDValue Loc = StatepointLowering.getRelocLocation(SD); 657 // Emit new load if we did not emit it before 658 if (!Loc.getNode()) { 659 SDValue SpillSlot = StatepointLowering.getLocation(SD); 660 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 661 662 // Be conservative: flush all pending loads 663 // TODO: Probably we can be less restrictive on this, 664 // it may allow more scheduling opprtunities 665 SDValue Chain = getRoot(); 666 667 Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, 668 SpillSlot, MachinePointerInfo::getFixedStack(FI), false, 669 false, false, 0); 670 671 StatepointLowering.setRelocLocation(SD, Loc); 672 673 // Again, be conservative, don't emit pending loads 674 DAG.setRoot(Loc.getValue(1)); 675 } 676 677 assert(Loc.getNode()); 678 setValue(&CI, Loc); 679 } 680