1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GCMetadata.h"
27 #include "llvm/CodeGen/ISDOpcodes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/StackMaps.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetOpcodes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/GCStrategy.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Statepoint.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <cassert>
51 #include <cstddef>
52 #include <cstdint>
53 #include <iterator>
54 #include <tuple>
55 #include <utility>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "statepoint-lowering"
60
61 STATISTIC(NumSlotsAllocatedForStatepoints,
62 "Number of stack slots allocated for statepoints");
63 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
64 STATISTIC(StatepointMaxSlotsRequired,
65 "Maximum number of stack slots required for a singe statepoint");
66
67 cl::opt<bool> UseRegistersForDeoptValues(
68 "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
69 cl::desc("Allow using registers for non pointer deopt args"));
70
71 cl::opt<bool> UseRegistersForGCPointersInLandingPad(
72 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
73 cl::desc("Allow using registers for gc pointer in landing pad"));
74
75 cl::opt<unsigned> MaxRegistersForGCPointers(
76 "max-registers-for-gc-values", cl::Hidden, cl::init(0),
77 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
78
79 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
80
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)81 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
82 SelectionDAGBuilder &Builder, uint64_t Value) {
83 SDLoc L = Builder.getCurSDLoc();
84 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
85 MVT::i64));
86 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
87 }
88
startNewStatepoint(SelectionDAGBuilder & Builder)89 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
90 // Consistency check
91 assert(PendingGCRelocateCalls.empty() &&
92 "Trying to visit statepoint before finished processing previous one");
93 Locations.clear();
94 NextSlotToAllocate = 0;
95 // Need to resize this on each safepoint - we need the two to stay in sync and
96 // the clear patterns of a SelectionDAGBuilder have no relation to
97 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
98 AllocatedStackSlots.clear();
99 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
100 }
101
clear()102 void StatepointLoweringState::clear() {
103 Locations.clear();
104 AllocatedStackSlots.clear();
105 assert(PendingGCRelocateCalls.empty() &&
106 "cleared before statepoint sequence completed");
107 }
108
109 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)110 StatepointLoweringState::allocateStackSlot(EVT ValueType,
111 SelectionDAGBuilder &Builder) {
112 NumSlotsAllocatedForStatepoints++;
113 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
114
115 unsigned SpillSize = ValueType.getStoreSize();
116 assert((SpillSize * 8) ==
117 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
118 "Size not in bytes?");
119
120 // First look for a previously created stack slot which is not in
121 // use (accounting for the fact arbitrary slots may already be
122 // reserved), or to create a new stack slot and use it.
123
124 const size_t NumSlots = AllocatedStackSlots.size();
125 assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
126
127 assert(AllocatedStackSlots.size() ==
128 Builder.FuncInfo.StatepointStackSlots.size() &&
129 "Broken invariant");
130
131 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
132 if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
133 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
134 if (MFI.getObjectSize(FI) == SpillSize) {
135 AllocatedStackSlots.set(NextSlotToAllocate);
136 // TODO: Is ValueType the right thing to use here?
137 return Builder.DAG.getFrameIndex(FI, ValueType);
138 }
139 }
140 }
141
142 // Couldn't find a free slot, so create a new one:
143
144 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
145 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
146 MFI.markAsStatepointSpillSlotObjectIndex(FI);
147
148 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
149 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
150 assert(AllocatedStackSlots.size() ==
151 Builder.FuncInfo.StatepointStackSlots.size() &&
152 "Broken invariant");
153
154 StatepointMaxSlotsRequired.updateMax(
155 Builder.FuncInfo.StatepointStackSlots.size());
156
157 return SpillSlot;
158 }
159
160 /// Utility function for reservePreviousStackSlotForValue. Tries to find
161 /// stack slot index to which we have spilled value for previous statepoints.
162 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)163 static Optional<int> findPreviousSpillSlot(const Value *Val,
164 SelectionDAGBuilder &Builder,
165 int LookUpDepth) {
166 // Can not look any further - give up now
167 if (LookUpDepth <= 0)
168 return None;
169
170 // Spill location is known for gc relocates
171 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
172 const Value *Statepoint = Relocate->getStatepoint();
173 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
174 "GetStatepoint must return one of two types");
175 if (isa<UndefValue>(Statepoint))
176 return None;
177
178 const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps
179 [cast<GCStatepointInst>(Statepoint)];
180
181 auto It = RelocationMap.find(Relocate);
182 if (It == RelocationMap.end())
183 return None;
184
185 auto &Record = It->second;
186 if (Record.type != RecordType::Spill)
187 return None;
188
189 return Record.payload.FI;
190 }
191
192 // Look through bitcast instructions.
193 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
194 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
195
196 // Look through phi nodes
197 // All incoming values should have same known stack slot, otherwise result
198 // is unknown.
199 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
200 Optional<int> MergedResult = None;
201
202 for (const auto &IncomingValue : Phi->incoming_values()) {
203 Optional<int> SpillSlot =
204 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
205 if (!SpillSlot)
206 return None;
207
208 if (MergedResult && *MergedResult != *SpillSlot)
209 return None;
210
211 MergedResult = SpillSlot;
212 }
213 return MergedResult;
214 }
215
216 // TODO: We can do better for PHI nodes. In cases like this:
217 // ptr = phi(relocated_pointer, not_relocated_pointer)
218 // statepoint(ptr)
219 // We will return that stack slot for ptr is unknown. And later we might
220 // assign different stack slots for ptr and relocated_pointer. This limits
221 // llvm's ability to remove redundant stores.
222 // Unfortunately it's hard to accomplish in current infrastructure.
223 // We use this function to eliminate spill store completely, while
224 // in example we still need to emit store, but instead of any location
225 // we need to use special "preferred" location.
226
227 // TODO: handle simple updates. If a value is modified and the original
228 // value is no longer live, it would be nice to put the modified value in the
229 // same slot. This allows folding of the memory accesses for some
230 // instructions types (like an increment).
231 // statepoint (i)
232 // i1 = i+1
233 // statepoint (i1)
234 // However we need to be careful for cases like this:
235 // statepoint(i)
236 // i1 = i+1
237 // statepoint(i, i1)
238 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
239 // put handling of simple modifications in this function like it's done
240 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
241 // which we visit values is unspecified.
242
243 // Don't know any information about this instruction
244 return None;
245 }
246
247 /// Return true if-and-only-if the given SDValue can be lowered as either a
248 /// constant argument or a stack reference. The key point is that the value
249 /// doesn't need to be spilled or tracked as a vreg use.
willLowerDirectly(SDValue Incoming)250 static bool willLowerDirectly(SDValue Incoming) {
251 // We are making an unchecked assumption that the frame size <= 2^16 as that
252 // is the largest offset which can be encoded in the stackmap format.
253 if (isa<FrameIndexSDNode>(Incoming))
254 return true;
255
256 // The largest constant describeable in the StackMap format is 64 bits.
257 // Potential Optimization: Constants values are sign extended by consumer,
258 // and thus there are many constants of static type > 64 bits whose value
259 // happens to be sext(Con64) and could thus be lowered directly.
260 if (Incoming.getValueType().getSizeInBits() > 64)
261 return false;
262
263 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
264 Incoming.isUndef());
265 }
266
267 /// Try to find existing copies of the incoming values in stack slots used for
268 /// statepoint spilling. If we can find a spill slot for the incoming value,
269 /// mark that slot as allocated, and reuse the same slot for this safepoint.
270 /// This helps to avoid series of loads and stores that only serve to reshuffle
271 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)272 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
273 SelectionDAGBuilder &Builder) {
274 SDValue Incoming = Builder.getValue(IncomingValue);
275
276 // If we won't spill this, we don't need to check for previously allocated
277 // stack slots.
278 if (willLowerDirectly(Incoming))
279 return;
280
281 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
282 if (OldLocation.getNode())
283 // Duplicates in input
284 return;
285
286 const int LookUpDepth = 6;
287 Optional<int> Index =
288 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
289 if (!Index)
290 return;
291
292 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
293
294 auto SlotIt = find(StatepointSlots, *Index);
295 assert(SlotIt != StatepointSlots.end() &&
296 "Value spilled to the unknown stack slot");
297
298 // This is one of our dedicated lowering slots
299 const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
300 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
301 // stack slot already assigned to someone else, can't use it!
302 // TODO: currently we reserve space for gc arguments after doing
303 // normal allocation for deopt arguments. We should reserve for
304 // _all_ deopt and gc arguments, then start allocating. This
305 // will prevent some moves being inserted when vm state changes,
306 // but gc state doesn't between two calls.
307 return;
308 }
309 // Reserve this stack slot
310 Builder.StatepointLowering.reserveStackSlot(Offset);
311
312 // Cache this slot so we find it when going through the normal
313 // assignment loop.
314 SDValue Loc =
315 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
316 Builder.StatepointLowering.setLocation(Incoming, Loc);
317 }
318
319 /// Extract call from statepoint, lower it and return pointer to the
320 /// call node. Also update NodeMap so that getValue(statepoint) will
321 /// reference lowered call result
lowerCallFromStatepointLoweringInfo(SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder,SmallVectorImpl<SDValue> & PendingExports)322 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
323 SelectionDAGBuilder::StatepointLoweringInfo &SI,
324 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
325 SDValue ReturnValue, CallEndVal;
326 std::tie(ReturnValue, CallEndVal) =
327 Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
328 SDNode *CallEnd = CallEndVal.getNode();
329
330 // Get a call instruction from the call sequence chain. Tail calls are not
331 // allowed. The following code is essentially reverse engineering X86's
332 // LowerCallTo.
333 //
334 // We are expecting DAG to have the following form:
335 //
336 // ch = eh_label (only in case of invoke statepoint)
337 // ch, glue = callseq_start ch
338 // ch, glue = X86::Call ch, glue
339 // ch, glue = callseq_end ch, glue
340 // get_return_value ch, glue
341 //
342 // get_return_value can either be a sequence of CopyFromReg instructions
343 // to grab the return value from the return register(s), or it can be a LOAD
344 // to load a value returned by reference via a stack slot.
345
346 bool HasDef = !SI.CLI.RetTy->isVoidTy();
347 if (HasDef) {
348 if (CallEnd->getOpcode() == ISD::LOAD)
349 CallEnd = CallEnd->getOperand(0).getNode();
350 else
351 while (CallEnd->getOpcode() == ISD::CopyFromReg)
352 CallEnd = CallEnd->getOperand(0).getNode();
353 }
354
355 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
356 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
357 }
358
getMachineMemOperand(MachineFunction & MF,FrameIndexSDNode & FI)359 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
360 FrameIndexSDNode &FI) {
361 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
362 auto MMOFlags = MachineMemOperand::MOStore |
363 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
364 auto &MFI = MF.getFrameInfo();
365 return MF.getMachineMemOperand(PtrInfo, MMOFlags,
366 MFI.getObjectSize(FI.getIndex()),
367 MFI.getObjectAlign(FI.getIndex()));
368 }
369
370 /// Spill a value incoming to the statepoint. It might be either part of
371 /// vmstate
372 /// or gcstate. In both cases unconditionally spill it on the stack unless it
373 /// is a null constant. Return pair with first element being frame index
374 /// containing saved value and second element with outgoing chain from the
375 /// emitted store
376 static std::tuple<SDValue, SDValue, MachineMemOperand*>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)377 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
378 SelectionDAGBuilder &Builder) {
379 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
380 MachineMemOperand* MMO = nullptr;
381
382 // Emit new store if we didn't do it for this ptr before
383 if (!Loc.getNode()) {
384 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
385 Builder);
386 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
387 // We use TargetFrameIndex so that isel will not select it into LEA
388 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
389
390 // Right now we always allocate spill slots that are of the same
391 // size as the value we're about to spill (the size of spillee can
392 // vary since we spill vectors of pointers too). At some point we
393 // can consider allowing spills of smaller values to larger slots
394 // (i.e. change the '==' in the assert below to a '>=').
395 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
396 assert((MFI.getObjectSize(Index) * 8) ==
397 (-8 & (7 + // Round up modulo 8.
398 (int64_t)Incoming.getValueSizeInBits())) &&
399 "Bad spill: stack slot does not match!");
400
401 // Note: Using the alignment of the spill slot (rather than the abi or
402 // preferred alignment) is required for correctness when dealing with spill
403 // slots with preferred alignments larger than frame alignment..
404 auto &MF = Builder.DAG.getMachineFunction();
405 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
406 auto *StoreMMO = MF.getMachineMemOperand(
407 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
408 MFI.getObjectAlign(Index));
409 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
410 StoreMMO);
411
412 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
413
414 Builder.StatepointLowering.setLocation(Incoming, Loc);
415 }
416
417 assert(Loc.getNode());
418 return std::make_tuple(Loc, Chain, MMO);
419 }
420
421 /// Lower a single value incoming to a statepoint node. This value can be
422 /// either a deopt value or a gc value, the handling is the same. We special
423 /// case constants and allocas, then fall back to spilling if required.
424 static void
lowerIncomingStatepointValue(SDValue Incoming,bool RequireSpillSlot,SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SelectionDAGBuilder & Builder)425 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
426 SmallVectorImpl<SDValue> &Ops,
427 SmallVectorImpl<MachineMemOperand *> &MemRefs,
428 SelectionDAGBuilder &Builder) {
429
430 if (willLowerDirectly(Incoming)) {
431 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
432 // This handles allocas as arguments to the statepoint (this is only
433 // really meaningful for a deopt value. For GC, we'd be trying to
434 // relocate the address of the alloca itself?)
435 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
436 "Incoming value is a frame index!");
437 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
438 Builder.getFrameIndexTy()));
439
440 auto &MF = Builder.DAG.getMachineFunction();
441 auto *MMO = getMachineMemOperand(MF, *FI);
442 MemRefs.push_back(MMO);
443 return;
444 }
445
446 assert(Incoming.getValueType().getSizeInBits() <= 64);
447
448 if (Incoming.isUndef()) {
449 // Put an easily recognized constant that's unlikely to be a valid
450 // value so that uses of undef by the consumer of the stackmap is
451 // easily recognized. This is legal since the compiler is always
452 // allowed to chose an arbitrary value for undef.
453 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
454 return;
455 }
456
457 // If the original value was a constant, make sure it gets recorded as
458 // such in the stackmap. This is required so that the consumer can
459 // parse any internal format to the deopt state. It also handles null
460 // pointers and other constant pointers in GC states.
461 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
462 pushStackMapConstant(Ops, Builder, C->getSExtValue());
463 return;
464 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
465 pushStackMapConstant(Ops, Builder,
466 C->getValueAPF().bitcastToAPInt().getZExtValue());
467 return;
468 }
469
470 llvm_unreachable("unhandled direct lowering case");
471 }
472
473
474
475 if (!RequireSpillSlot) {
476 // If this value is live in (not live-on-return, or live-through), we can
477 // treat it the same way patchpoint treats it's "live in" values. We'll
478 // end up folding some of these into stack references, but they'll be
479 // handled by the register allocator. Note that we do not have the notion
480 // of a late use so these values might be placed in registers which are
481 // clobbered by the call. This is fine for live-in. For live-through
482 // fix-up pass should be executed to force spilling of such registers.
483 Ops.push_back(Incoming);
484 } else {
485 // Otherwise, locate a spill slot and explicitly spill it so it can be
486 // found by the runtime later. Note: We know all of these spills are
487 // independent, but don't bother to exploit that chain wise. DAGCombine
488 // will happily do so as needed, so doing it here would be a small compile
489 // time win at most.
490 SDValue Chain = Builder.getRoot();
491 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
492 Ops.push_back(std::get<0>(Res));
493 if (auto *MMO = std::get<2>(Res))
494 MemRefs.push_back(MMO);
495 Chain = std::get<1>(Res);;
496 Builder.DAG.setRoot(Chain);
497 }
498
499 }
500
501 /// Return true if value V represents the GC value. The behavior is conservative
502 /// in case it is not sure that value is not GC the function returns true.
isGCValue(const Value * V,SelectionDAGBuilder & Builder)503 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
504 auto *Ty = V->getType();
505 if (!Ty->isPtrOrPtrVectorTy())
506 return false;
507 if (auto *GFI = Builder.GFI)
508 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
509 return *IsManaged;
510 return true; // conservative
511 }
512
513 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
514 /// lowering is described in lowerIncomingStatepointValue. This function is
515 /// responsible for lowering everything in the right position and playing some
516 /// tricks to avoid redundant stack manipulation where possible. On
517 /// completion, 'Ops' will contain ready to use operands for machine code
518 /// statepoint. The chain nodes will have already been created and the DAG root
519 /// will be set to the last value spilled (if any were).
520 static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SmallVectorImpl<SDValue> & GCPtrs,DenseMap<SDValue,int> & LowerAsVReg,SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)521 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
522 SmallVectorImpl<MachineMemOperand *> &MemRefs,
523 SmallVectorImpl<SDValue> &GCPtrs,
524 DenseMap<SDValue, int> &LowerAsVReg,
525 SelectionDAGBuilder::StatepointLoweringInfo &SI,
526 SelectionDAGBuilder &Builder) {
527 // Lower the deopt and gc arguments for this statepoint. Layout will be:
528 // deopt argument length, deopt arguments.., gc arguments...
529 #ifndef NDEBUG
530 if (auto *GFI = Builder.GFI) {
531 // Check that each of the gc pointer and bases we've gotten out of the
532 // safepoint is something the strategy thinks might be a pointer (or vector
533 // of pointers) into the GC heap. This is basically just here to help catch
534 // errors during statepoint insertion. TODO: This should actually be in the
535 // Verifier, but we can't get to the GCStrategy from there (yet).
536 GCStrategy &S = GFI->getStrategy();
537 for (const Value *V : SI.Bases) {
538 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
539 if (Opt) {
540 assert(Opt.value() &&
541 "non gc managed base pointer found in statepoint");
542 }
543 }
544 for (const Value *V : SI.Ptrs) {
545 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
546 if (Opt) {
547 assert(Opt.value() &&
548 "non gc managed derived pointer found in statepoint");
549 }
550 }
551 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
552 } else {
553 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
554 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
555 }
556 #endif
557
558 // Figure out what lowering strategy we're going to use for each part
559 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
560 // as "live-through". A "live-through" variable is one which is "live-in",
561 // "live-out", and live throughout the lifetime of the call (i.e. we can find
562 // it from any PC within the transitive callee of the statepoint). In
563 // particular, if the callee spills callee preserved registers we may not
564 // be able to find a value placed in that register during the call. This is
565 // fine for live-out, but not for live-through. If we were willing to make
566 // assumptions about the code generator producing the callee, we could
567 // potentially allow live-through values in callee saved registers.
568 const bool LiveInDeopt =
569 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
570
571 // Decide which deriver pointers will go on VRegs
572 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
573
574 // Pointers used on exceptional path of invoke statepoint.
575 // We cannot assing them to VRegs.
576 SmallSet<SDValue, 8> LPadPointers;
577 if (!UseRegistersForGCPointersInLandingPad)
578 if (const auto *StInvoke =
579 dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
580 LandingPadInst *LPI = StInvoke->getLandingPadInst();
581 for (const auto *Relocate : SI.GCRelocates)
582 if (Relocate->getOperand(0) == LPI) {
583 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
584 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
585 }
586 }
587
588 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
589
590 // List of unique lowered GC Pointer values.
591 SmallSetVector<SDValue, 16> LoweredGCPtrs;
592 // Map lowered GC Pointer value to the index in above vector
593 DenseMap<SDValue, unsigned> GCPtrIndexMap;
594
595 unsigned CurNumVRegs = 0;
596
597 auto canPassGCPtrOnVReg = [&](SDValue SD) {
598 if (SD.getValueType().isVector())
599 return false;
600 if (LPadPointers.count(SD))
601 return false;
602 return !willLowerDirectly(SD);
603 };
604
605 auto processGCPtr = [&](const Value *V) {
606 SDValue PtrSD = Builder.getValue(V);
607 if (!LoweredGCPtrs.insert(PtrSD))
608 return; // skip duplicates
609 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
610
611 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
612 if (LowerAsVReg.size() == MaxVRegPtrs)
613 return;
614 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
615 "IR and SD types disagree");
616 if (!canPassGCPtrOnVReg(PtrSD)) {
617 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
618 return;
619 }
620 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
621 LowerAsVReg[PtrSD] = CurNumVRegs++;
622 };
623
624 // Process derived pointers first to give them more chance to go on VReg.
625 for (const Value *V : SI.Ptrs)
626 processGCPtr(V);
627 for (const Value *V : SI.Bases)
628 processGCPtr(V);
629
630 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
631
632 auto requireSpillSlot = [&](const Value *V) {
633 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
634 Builder.getValue(V).getValueType()))
635 return true;
636 if (isGCValue(V, Builder))
637 return !LowerAsVReg.count(Builder.getValue(V));
638 return !(LiveInDeopt || UseRegistersForDeoptValues);
639 };
640
641 // Before we actually start lowering (and allocating spill slots for values),
642 // reserve any stack slots which we judge to be profitable to reuse for a
643 // particular value. This is purely an optimization over the code below and
644 // doesn't change semantics at all. It is important for performance that we
645 // reserve slots for both deopt and gc values before lowering either.
646 for (const Value *V : SI.DeoptState) {
647 if (requireSpillSlot(V))
648 reservePreviousStackSlotForValue(V, Builder);
649 }
650
651 for (const Value *V : SI.Ptrs) {
652 SDValue SDV = Builder.getValue(V);
653 if (!LowerAsVReg.count(SDV))
654 reservePreviousStackSlotForValue(V, Builder);
655 }
656
657 for (const Value *V : SI.Bases) {
658 SDValue SDV = Builder.getValue(V);
659 if (!LowerAsVReg.count(SDV))
660 reservePreviousStackSlotForValue(V, Builder);
661 }
662
663 // First, prefix the list with the number of unique values to be
664 // lowered. Note that this is the number of *Values* not the
665 // number of SDValues required to lower them.
666 const int NumVMSArgs = SI.DeoptState.size();
667 pushStackMapConstant(Ops, Builder, NumVMSArgs);
668
669 // The vm state arguments are lowered in an opaque manner. We do not know
670 // what type of values are contained within.
671 LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
672 for (const Value *V : SI.DeoptState) {
673 SDValue Incoming;
674 // If this is a function argument at a static frame index, generate it as
675 // the frame index.
676 if (const Argument *Arg = dyn_cast<Argument>(V)) {
677 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
678 if (FI != INT_MAX)
679 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
680 }
681 if (!Incoming.getNode())
682 Incoming = Builder.getValue(V);
683 LLVM_DEBUG(dbgs() << "Value " << *V
684 << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
685 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
686 Builder);
687 }
688
689 // Finally, go ahead and lower all the gc arguments.
690 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
691 for (SDValue SDV : LoweredGCPtrs)
692 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
693 Builder);
694
695 // Copy to out vector. LoweredGCPtrs will be empty after this point.
696 GCPtrs = LoweredGCPtrs.takeVector();
697
698 // If there are any explicit spill slots passed to the statepoint, record
699 // them, but otherwise do not do anything special. These are user provided
700 // allocas and give control over placement to the consumer. In this case,
701 // it is the contents of the slot which may get updated, not the pointer to
702 // the alloca
703 SmallVector<SDValue, 4> Allocas;
704 for (Value *V : SI.GCArgs) {
705 SDValue Incoming = Builder.getValue(V);
706 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
707 // This handles allocas as arguments to the statepoint
708 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
709 "Incoming value is a frame index!");
710 Allocas.push_back(Builder.DAG.getTargetFrameIndex(
711 FI->getIndex(), Builder.getFrameIndexTy()));
712
713 auto &MF = Builder.DAG.getMachineFunction();
714 auto *MMO = getMachineMemOperand(MF, *FI);
715 MemRefs.push_back(MMO);
716 }
717 }
718 pushStackMapConstant(Ops, Builder, Allocas.size());
719 Ops.append(Allocas.begin(), Allocas.end());
720
721 // Now construct GC base/derived map;
722 pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
723 SDLoc L = Builder.getCurSDLoc();
724 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
725 SDValue Base = Builder.getValue(SI.Bases[i]);
726 assert(GCPtrIndexMap.count(Base) && "base not found in index map");
727 Ops.push_back(
728 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
729 SDValue Derived = Builder.getValue(SI.Ptrs[i]);
730 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
731 Ops.push_back(
732 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
733 }
734 }
735
LowerAsSTATEPOINT(SelectionDAGBuilder::StatepointLoweringInfo & SI)736 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
737 SelectionDAGBuilder::StatepointLoweringInfo &SI) {
738 // The basic scheme here is that information about both the original call and
739 // the safepoint is encoded in the CallInst. We create a temporary call and
740 // lower it, then reverse engineer the calling sequence.
741
742 NumOfStatepoints++;
743 // Clear state
744 StatepointLowering.startNewStatepoint(*this);
745 assert(SI.Bases.size() == SI.Ptrs.size());
746
747 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
748 #ifndef NDEBUG
749 for (const auto *Reloc : SI.GCRelocates)
750 if (Reloc->getParent() == SI.StatepointInstr->getParent())
751 StatepointLowering.scheduleRelocCall(*Reloc);
752 #endif
753
754 // Lower statepoint vmstate and gcstate arguments
755
756 // All lowered meta args.
757 SmallVector<SDValue, 10> LoweredMetaArgs;
758 // Lowered GC pointers (subset of above).
759 SmallVector<SDValue, 16> LoweredGCArgs;
760 SmallVector<MachineMemOperand*, 16> MemRefs;
761 // Maps derived pointer SDValue to statepoint result of relocated pointer.
762 DenseMap<SDValue, int> LowerAsVReg;
763 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
764 SI, *this);
765
766 // Now that we've emitted the spills, we need to update the root so that the
767 // call sequence is ordered correctly.
768 SI.CLI.setChain(getRoot());
769
770 // Get call node, we will replace it later with statepoint
771 SDValue ReturnVal;
772 SDNode *CallNode;
773 std::tie(ReturnVal, CallNode) =
774 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
775
776 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
777 // nodes with all the appropriate arguments and return values.
778
779 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
780 SDValue Chain = CallNode->getOperand(0);
781
782 SDValue Glue;
783 bool CallHasIncomingGlue = CallNode->getGluedNode();
784 if (CallHasIncomingGlue) {
785 // Glue is always last operand
786 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
787 }
788
789 // Build the GC_TRANSITION_START node if necessary.
790 //
791 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
792 // order in which they appear in the call to the statepoint intrinsic. If
793 // any of the operands is a pointer-typed, that operand is immediately
794 // followed by a SRCVALUE for the pointer that may be used during lowering
795 // (e.g. to form MachinePointerInfo values for loads/stores).
796 const bool IsGCTransition =
797 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
798 (uint64_t)StatepointFlags::GCTransition;
799 if (IsGCTransition) {
800 SmallVector<SDValue, 8> TSOps;
801
802 // Add chain
803 TSOps.push_back(Chain);
804
805 // Add GC transition arguments
806 for (const Value *V : SI.GCTransitionArgs) {
807 TSOps.push_back(getValue(V));
808 if (V->getType()->isPointerTy())
809 TSOps.push_back(DAG.getSrcValue(V));
810 }
811
812 // Add glue if necessary
813 if (CallHasIncomingGlue)
814 TSOps.push_back(Glue);
815
816 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
817
818 SDValue GCTransitionStart =
819 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
820
821 Chain = GCTransitionStart.getValue(0);
822 Glue = GCTransitionStart.getValue(1);
823 }
824
825 // TODO: Currently, all of these operands are being marked as read/write in
826 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
827 // and flags to be read-only.
828 SmallVector<SDValue, 40> Ops;
829
830 // Add the <id> and <numBytes> constants.
831 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
832 Ops.push_back(
833 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
834
835 // Calculate and push starting position of vmstate arguments
836 // Get number of arguments incoming directly into call node
837 unsigned NumCallRegArgs =
838 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
839 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
840
841 // Add call target
842 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
843 Ops.push_back(CallTarget);
844
845 // Add call arguments
846 // Get position of register mask in the call
847 SDNode::op_iterator RegMaskIt;
848 if (CallHasIncomingGlue)
849 RegMaskIt = CallNode->op_end() - 2;
850 else
851 RegMaskIt = CallNode->op_end() - 1;
852 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
853
854 // Add a constant argument for the calling convention
855 pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
856
857 // Add a constant argument for the flags
858 uint64_t Flags = SI.StatepointFlags;
859 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
860 "Unknown flag used");
861 pushStackMapConstant(Ops, *this, Flags);
862
863 // Insert all vmstate and gcstate arguments
864 llvm::append_range(Ops, LoweredMetaArgs);
865
866 // Add register mask from call node
867 Ops.push_back(*RegMaskIt);
868
869 // Add chain
870 Ops.push_back(Chain);
871
872 // Same for the glue, but we add it only if original call had it
873 if (Glue.getNode())
874 Ops.push_back(Glue);
875
876 // Compute return values. Provide a glue output since we consume one as
877 // input. This allows someone else to chain off us as needed.
878 SmallVector<EVT, 8> NodeTys;
879 for (auto SD : LoweredGCArgs) {
880 if (!LowerAsVReg.count(SD))
881 continue;
882 NodeTys.push_back(SD.getValueType());
883 }
884 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
885 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
886 NodeTys.push_back(MVT::Other);
887 NodeTys.push_back(MVT::Glue);
888
889 unsigned NumResults = NodeTys.size();
890 MachineSDNode *StatepointMCNode =
891 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
892 DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
893
894 // For values lowered to tied-defs, create the virtual registers if used
895 // in other blocks. For local gc.relocate record appropriate statepoint
896 // result in StatepointLoweringState.
897 DenseMap<SDValue, Register> VirtRegs;
898 for (const auto *Relocate : SI.GCRelocates) {
899 Value *Derived = Relocate->getDerivedPtr();
900 SDValue SD = getValue(Derived);
901 if (!LowerAsVReg.count(SD))
902 continue;
903
904 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
905
906 // Handle local relocate. Note that different relocates might
907 // map to the same SDValue.
908 if (SI.StatepointInstr->getParent() == Relocate->getParent()) {
909 SDValue Res = StatepointLowering.getLocation(SD);
910 if (Res)
911 assert(Res == Relocated);
912 else
913 StatepointLowering.setLocation(SD, Relocated);
914 continue;
915 }
916
917 // Handle multiple gc.relocates of the same input efficiently.
918 if (VirtRegs.count(SD))
919 continue;
920
921 auto *RetTy = Relocate->getType();
922 Register Reg = FuncInfo.CreateRegs(RetTy);
923 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
924 DAG.getDataLayout(), Reg, RetTy, None);
925 SDValue Chain = DAG.getRoot();
926 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
927 PendingExports.push_back(Chain);
928
929 VirtRegs[SD] = Reg;
930 }
931
932 // Record for later use how each relocation was lowered. This is needed to
933 // allow later gc.relocates to mirror the lowering chosen.
934 const Instruction *StatepointInstr = SI.StatepointInstr;
935 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
936 for (const GCRelocateInst *Relocate : SI.GCRelocates) {
937 const Value *V = Relocate->getDerivedPtr();
938 SDValue SDV = getValue(V);
939 SDValue Loc = StatepointLowering.getLocation(SDV);
940
941 bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent());
942
943 RecordType Record;
944 if (IsLocal && LowerAsVReg.count(SDV)) {
945 // Result is already stored in StatepointLowering
946 Record.type = RecordType::SDValueNode;
947 } else if (LowerAsVReg.count(SDV)) {
948 Record.type = RecordType::VReg;
949 assert(VirtRegs.count(SDV));
950 Record.payload.Reg = VirtRegs[SDV];
951 } else if (Loc.getNode()) {
952 Record.type = RecordType::Spill;
953 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
954 } else {
955 Record.type = RecordType::NoRelocate;
956 // If we didn't relocate a value, we'll essentialy end up inserting an
957 // additional use of the original value when lowering the gc.relocate.
958 // We need to make sure the value is available at the new use, which
959 // might be in another block.
960 if (Relocate->getParent() != StatepointInstr->getParent())
961 ExportFromCurrentBlock(V);
962 }
963 RelocationMap[Relocate] = Record;
964 }
965
966
967
968 SDNode *SinkNode = StatepointMCNode;
969
970 // Build the GC_TRANSITION_END node if necessary.
971 //
972 // See the comment above regarding GC_TRANSITION_START for the layout of
973 // the operands to the GC_TRANSITION_END node.
974 if (IsGCTransition) {
975 SmallVector<SDValue, 8> TEOps;
976
977 // Add chain
978 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
979
980 // Add GC transition arguments
981 for (const Value *V : SI.GCTransitionArgs) {
982 TEOps.push_back(getValue(V));
983 if (V->getType()->isPointerTy())
984 TEOps.push_back(DAG.getSrcValue(V));
985 }
986
987 // Add glue
988 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
989
990 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
991
992 SDValue GCTransitionStart =
993 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
994
995 SinkNode = GCTransitionStart.getNode();
996 }
997
998 // Replace original call
999 // Call: ch,glue = CALL ...
1000 // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
1001 unsigned NumSinkValues = SinkNode->getNumValues();
1002 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
1003 SDValue(SinkNode, NumSinkValues - 1)};
1004 DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
1005 // Remove original call node
1006 DAG.DeleteNode(CallNode);
1007
1008 // Since we always emit CopyToRegs (even for local relocates), we must
1009 // update root, so that they are emitted before any local uses.
1010 (void)getControlRoot();
1011
1012 // TODO: A better future implementation would be to emit a single variable
1013 // argument, variable return value STATEPOINT node here and then hookup the
1014 // return value of each gc.relocate to the respective output of the
1015 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
1016 // to actually be possible today.
1017
1018 return ReturnVal;
1019 }
1020
1021 /// Return two gc.results if present. First result is a block local
1022 /// gc.result, second result is a non-block local gc.result. Corresponding
1023 /// entry will be nullptr if not present.
1024 static std::pair<const GCResultInst*, const GCResultInst*>
getGCResultLocality(const GCStatepointInst & S)1025 getGCResultLocality(const GCStatepointInst &S) {
1026 std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr);
1027 for (const auto *U : S.users()) {
1028 auto *GRI = dyn_cast<GCResultInst>(U);
1029 if (!GRI)
1030 continue;
1031 if (GRI->getParent() == S.getParent())
1032 Res.first = GRI;
1033 else
1034 Res.second = GRI;
1035 }
1036 return Res;
1037 }
1038
1039 void
LowerStatepoint(const GCStatepointInst & I,const BasicBlock * EHPadBB)1040 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
1041 const BasicBlock *EHPadBB /*= nullptr*/) {
1042 assert(I.getCallingConv() != CallingConv::AnyReg &&
1043 "anyregcc is not supported on statepoints!");
1044
1045 #ifndef NDEBUG
1046 // Check that the associated GCStrategy expects to encounter statepoints.
1047 assert(GFI->getStrategy().useStatepoints() &&
1048 "GCStrategy does not expect to encounter statepoints");
1049 #endif
1050
1051 SDValue ActualCallee;
1052 SDValue Callee = getValue(I.getActualCalledOperand());
1053
1054 if (I.getNumPatchBytes() > 0) {
1055 // If we've been asked to emit a nop sequence instead of a call instruction
1056 // for this statepoint then don't lower the call target, but use a constant
1057 // `undef` instead. Not lowering the call target lets statepoint clients
1058 // get away without providing a physical address for the symbolic call
1059 // target at link time.
1060 ActualCallee = DAG.getUNDEF(Callee.getValueType());
1061 } else {
1062 ActualCallee = Callee;
1063 }
1064
1065 StatepointLoweringInfo SI(DAG);
1066 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1067 I.getNumCallArgs(), ActualCallee,
1068 I.getActualReturnType(), false /* IsPatchPoint */);
1069
1070 // There may be duplication in the gc.relocate list; such as two copies of
1071 // each relocation on normal and exceptional path for an invoke. We only
1072 // need to spill once and record one copy in the stackmap, but we need to
1073 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best
1074 // handled as a CSE problem elsewhere.)
1075 // TODO: There a couple of major stackmap size optimizations we could do
1076 // here if we wished.
1077 // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1078 // record {B,B} if it's seen later.
1079 // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1080 // given that, we could change the format to record base pointer relocations
1081 // separately with half the space. This would require a format rev and a
1082 // fairly major rework of the STATEPOINT node though.
1083 SmallSet<SDValue, 8> Seen;
1084 for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1085 SI.GCRelocates.push_back(Relocate);
1086
1087 SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1088 if (Seen.insert(DerivedSD).second) {
1089 SI.Bases.push_back(Relocate->getBasePtr());
1090 SI.Ptrs.push_back(Relocate->getDerivedPtr());
1091 }
1092 }
1093
1094 // If we find a deopt value which isn't explicitly added, we need to
1095 // ensure it gets lowered such that gc cycles occurring before the
1096 // deoptimization event during the lifetime of the call don't invalidate
1097 // the pointer we're deopting with. Note that we assume that all
1098 // pointers passed to deopt are base pointers; relaxing that assumption
1099 // would require relatively large changes to how we represent relocations.
1100 for (Value *V : I.deopt_operands()) {
1101 if (!isGCValue(V, *this))
1102 continue;
1103 if (Seen.insert(getValue(V)).second) {
1104 SI.Bases.push_back(V);
1105 SI.Ptrs.push_back(V);
1106 }
1107 }
1108
1109 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1110 SI.StatepointInstr = &I;
1111 SI.ID = I.getID();
1112
1113 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1114 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1115 I.gc_transition_args_end());
1116
1117 SI.StatepointFlags = I.getFlags();
1118 SI.NumPatchBytes = I.getNumPatchBytes();
1119 SI.EHPadBB = EHPadBB;
1120
1121 SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1122
1123 // Export the result value if needed
1124 const auto GCResultLocality = getGCResultLocality(I);
1125
1126 if (!GCResultLocality.first && !GCResultLocality.second) {
1127 // The return value is not needed, just generate a poison value.
1128 // Note: This covers the void return case.
1129 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1130 return;
1131 }
1132
1133 if (GCResultLocality.first) {
1134 // Result value will be used in a same basic block. Don't export it or
1135 // perform any explicit register copies. The gc_result will simply grab
1136 // this value.
1137 setValue(&I, ReturnValue);
1138 }
1139
1140 if (!GCResultLocality.second)
1141 return;
1142 // Result value will be used in a different basic block so we need to export
1143 // it now. Default exporting mechanism will not work here because statepoint
1144 // call has a different type than the actual call. It means that by default
1145 // llvm will create export register of the wrong type (always i32 in our
1146 // case). So instead we need to create export register with correct type
1147 // manually.
1148 // TODO: To eliminate this problem we can remove gc.result intrinsics
1149 // completely and make statepoint call to return a tuple.
1150 Type *RetTy = GCResultLocality.second->getType();
1151 unsigned Reg = FuncInfo.CreateRegs(RetTy);
1152 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1153 DAG.getDataLayout(), Reg, RetTy,
1154 I.getCallingConv());
1155 SDValue Chain = DAG.getEntryNode();
1156
1157 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1158 PendingExports.push_back(Chain);
1159 FuncInfo.ValueMap[&I] = Reg;
1160 }
1161
LowerCallSiteWithDeoptBundleImpl(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB,bool VarArgDisallowed,bool ForceVoidReturnTy)1162 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1163 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1164 bool VarArgDisallowed, bool ForceVoidReturnTy) {
1165 StatepointLoweringInfo SI(DAG);
1166 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1167 populateCallLoweringInfo(
1168 SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee,
1169 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1170 false);
1171 if (!VarArgDisallowed)
1172 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1173
1174 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1175
1176 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1177
1178 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1179 SI.ID = SD.StatepointID.value_or(DefaultID);
1180 SI.NumPatchBytes = SD.NumPatchBytes.value_or(0);
1181
1182 SI.DeoptState =
1183 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1184 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1185 SI.EHPadBB = EHPadBB;
1186
1187 // NB! The GC arguments are deliberately left empty.
1188
1189 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1190 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1191 setValue(Call, ReturnVal);
1192 }
1193 }
1194
LowerCallSiteWithDeoptBundle(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB)1195 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1196 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1197 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1198 /* VarArgDisallowed = */ false,
1199 /* ForceVoidReturnTy = */ false);
1200 }
1201
visitGCResult(const GCResultInst & CI)1202 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1203 // The result value of the gc_result is simply the result of the actual
1204 // call. We've already emitted this, so just grab the value.
1205 const Value *SI = CI.getStatepoint();
1206 assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) &&
1207 "GetStatepoint must return one of two types");
1208 if (isa<UndefValue>(SI))
1209 return;
1210
1211 if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) {
1212 setValue(&CI, getValue(SI));
1213 return;
1214 }
1215 // Statepoint is in different basic block so we should have stored call
1216 // result in a virtual register.
1217 // We can not use default getValue() functionality to copy value from this
1218 // register because statepoint and actual call return types can be
1219 // different, and getValue() will use CopyFromReg of the wrong type,
1220 // which is always i32 in our case.
1221 Type *RetTy = CI.getType();
1222 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1223
1224 assert(CopyFromReg.getNode());
1225 setValue(&CI, CopyFromReg);
1226 }
1227
visitGCRelocate(const GCRelocateInst & Relocate)1228 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1229 const Value *Statepoint = Relocate.getStatepoint();
1230 #ifndef NDEBUG
1231 // Consistency check
1232 // We skip this check for relocates not in the same basic block as their
1233 // statepoint. It would be too expensive to preserve validation info through
1234 // different basic blocks.
1235 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
1236 "GetStatepoint must return one of two types");
1237 if (isa<UndefValue>(Statepoint))
1238 return;
1239
1240 if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent())
1241 StatepointLowering.relocCallVisited(Relocate);
1242
1243 auto *Ty = Relocate.getType()->getScalarType();
1244 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1245 assert(*IsManaged && "Non gc managed pointer relocated!");
1246 #endif
1247
1248 const Value *DerivedPtr = Relocate.getDerivedPtr();
1249 auto &RelocationMap =
1250 FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)];
1251 auto SlotIt = RelocationMap.find(&Relocate);
1252 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1253 const RecordType &Record = SlotIt->second;
1254
1255 // If relocation was done via virtual register..
1256 if (Record.type == RecordType::SDValueNode) {
1257 assert(cast<GCStatepointInst>(Statepoint)->getParent() ==
1258 Relocate.getParent() &&
1259 "Nonlocal gc.relocate mapped via SDValue");
1260 SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr));
1261 assert(SDV.getNode() && "empty SDValue");
1262 setValue(&Relocate, SDV);
1263 return;
1264 }
1265 if (Record.type == RecordType::VReg) {
1266 Register InReg = Record.payload.Reg;
1267 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1268 DAG.getDataLayout(), InReg, Relocate.getType(),
1269 None); // This is not an ABI copy.
1270 // We generate copy to/from regs even for local uses, hence we must
1271 // chain with current root to ensure proper ordering of copies w.r.t.
1272 // statepoint.
1273 SDValue Chain = DAG.getRoot();
1274 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1275 Chain, nullptr, nullptr);
1276 setValue(&Relocate, Relocation);
1277 return;
1278 }
1279
1280 if (Record.type == RecordType::Spill) {
1281 unsigned Index = Record.payload.FI;
1282 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1283
1284 // All the reloads are independent and are reading memory only modified by
1285 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1286 // this this let's CSE kick in for free and allows reordering of
1287 // instructions if possible. The lowering for statepoint sets the root,
1288 // so this is ordering all reloads with the either
1289 // a) the statepoint node itself, or
1290 // b) the entry of the current block for an invoke statepoint.
1291 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1292
1293 auto &MF = DAG.getMachineFunction();
1294 auto &MFI = MF.getFrameInfo();
1295 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1296 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1297 MFI.getObjectSize(Index),
1298 MFI.getObjectAlign(Index));
1299
1300 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1301 Relocate.getType());
1302
1303 SDValue SpillLoad =
1304 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1305 PendingLoads.push_back(SpillLoad.getValue(1));
1306
1307 assert(SpillLoad.getNode());
1308 setValue(&Relocate, SpillLoad);
1309 return;
1310 }
1311
1312 assert(Record.type == RecordType::NoRelocate);
1313 SDValue SD = getValue(DerivedPtr);
1314
1315 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1316 // Lowering relocate(undef) as arbitrary constant. Current constant value
1317 // is chosen such that it's unlikely to be a valid pointer.
1318 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1319 return;
1320 }
1321
1322 // We didn't need to spill these special cases (constants and allocas).
1323 // See the handling in spillIncomingValueForStatepoint for detail.
1324 setValue(&Relocate, SD);
1325 }
1326
LowerDeoptimizeCall(const CallInst * CI)1327 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1328 const auto &TLI = DAG.getTargetLoweringInfo();
1329 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1330 TLI.getPointerTy(DAG.getDataLayout()));
1331
1332 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1333 // call. We also do not lower the return value to any virtual register, and
1334 // change the immediately following return to a trap instruction.
1335 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1336 /* VarArgDisallowed = */ true,
1337 /* ForceVoidReturnTy = */ true);
1338 }
1339
LowerDeoptimizingReturn()1340 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1341 // We do not lower the return value from llvm.deoptimize to any virtual
1342 // register, and change the immediately following return to a trap
1343 // instruction.
1344 if (DAG.getTarget().Options.TrapUnreachable)
1345 DAG.setRoot(
1346 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1347 }
1348