1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/GCMetadata.h" 26 #include "llvm/CodeGen/GCStrategy.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 #include <iterator> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "statepoint-lowering" 58 59 STATISTIC(NumSlotsAllocatedForStatepoints, 60 "Number of stack slots allocated for statepoints"); 61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 62 STATISTIC(StatepointMaxSlotsRequired, 63 "Maximum number of stack slots required for a singe statepoint"); 64 65 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 66 SelectionDAGBuilder &Builder, uint64_t Value) { 67 SDLoc L = Builder.getCurSDLoc(); 68 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 69 MVT::i64)); 70 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 71 } 72 73 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 74 // Consistency check 75 assert(PendingGCRelocateCalls.empty() && 76 "Trying to visit statepoint before finished processing previous one"); 77 Locations.clear(); 78 NextSlotToAllocate = 0; 79 // Need to resize this on each safepoint - we need the two to stay in sync and 80 // the clear patterns of a SelectionDAGBuilder have no relation to 81 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 82 AllocatedStackSlots.clear(); 83 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 84 } 85 86 void StatepointLoweringState::clear() { 87 Locations.clear(); 88 AllocatedStackSlots.clear(); 89 assert(PendingGCRelocateCalls.empty() && 90 "cleared before statepoint sequence completed"); 91 } 92 93 SDValue 94 StatepointLoweringState::allocateStackSlot(EVT ValueType, 95 SelectionDAGBuilder &Builder) { 96 NumSlotsAllocatedForStatepoints++; 97 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 98 99 unsigned SpillSize = ValueType.getStoreSize(); 100 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 101 102 // First look for a previously created stack slot which is not in 103 // use (accounting for the fact arbitrary slots may already be 104 // reserved), or to create a new stack slot and use it. 105 106 const size_t NumSlots = AllocatedStackSlots.size(); 107 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 108 109 assert(AllocatedStackSlots.size() == 110 Builder.FuncInfo.StatepointStackSlots.size() && 111 "Broken invariant"); 112 113 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 114 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 115 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 116 if (MFI.getObjectSize(FI) == SpillSize) { 117 AllocatedStackSlots.set(NextSlotToAllocate); 118 // TODO: Is ValueType the right thing to use here? 119 return Builder.DAG.getFrameIndex(FI, ValueType); 120 } 121 } 122 } 123 124 // Couldn't find a free slot, so create a new one: 125 126 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 127 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 128 MFI.markAsStatepointSpillSlotObjectIndex(FI); 129 130 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 131 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 132 assert(AllocatedStackSlots.size() == 133 Builder.FuncInfo.StatepointStackSlots.size() && 134 "Broken invariant"); 135 136 StatepointMaxSlotsRequired.updateMax( 137 Builder.FuncInfo.StatepointStackSlots.size()); 138 139 return SpillSlot; 140 } 141 142 /// Utility function for reservePreviousStackSlotForValue. Tries to find 143 /// stack slot index to which we have spilled value for previous statepoints. 144 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 145 static Optional<int> findPreviousSpillSlot(const Value *Val, 146 SelectionDAGBuilder &Builder, 147 int LookUpDepth) { 148 // Can not look any further - give up now 149 if (LookUpDepth <= 0) 150 return None; 151 152 // Spill location is known for gc relocates 153 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 154 const auto &SpillMap = 155 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 156 157 auto It = SpillMap.find(Relocate->getDerivedPtr()); 158 if (It == SpillMap.end()) 159 return None; 160 161 return It->second; 162 } 163 164 // Look through bitcast instructions. 165 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 166 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 167 168 // Look through phi nodes 169 // All incoming values should have same known stack slot, otherwise result 170 // is unknown. 171 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 172 Optional<int> MergedResult = None; 173 174 for (auto &IncomingValue : Phi->incoming_values()) { 175 Optional<int> SpillSlot = 176 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 177 if (!SpillSlot.hasValue()) 178 return None; 179 180 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 181 return None; 182 183 MergedResult = SpillSlot; 184 } 185 return MergedResult; 186 } 187 188 // TODO: We can do better for PHI nodes. In cases like this: 189 // ptr = phi(relocated_pointer, not_relocated_pointer) 190 // statepoint(ptr) 191 // We will return that stack slot for ptr is unknown. And later we might 192 // assign different stack slots for ptr and relocated_pointer. This limits 193 // llvm's ability to remove redundant stores. 194 // Unfortunately it's hard to accomplish in current infrastructure. 195 // We use this function to eliminate spill store completely, while 196 // in example we still need to emit store, but instead of any location 197 // we need to use special "preferred" location. 198 199 // TODO: handle simple updates. If a value is modified and the original 200 // value is no longer live, it would be nice to put the modified value in the 201 // same slot. This allows folding of the memory accesses for some 202 // instructions types (like an increment). 203 // statepoint (i) 204 // i1 = i+1 205 // statepoint (i1) 206 // However we need to be careful for cases like this: 207 // statepoint(i) 208 // i1 = i+1 209 // statepoint(i, i1) 210 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 211 // put handling of simple modifications in this function like it's done 212 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 213 // which we visit values is unspecified. 214 215 // Don't know any information about this instruction 216 return None; 217 } 218 219 /// Try to find existing copies of the incoming values in stack slots used for 220 /// statepoint spilling. If we can find a spill slot for the incoming value, 221 /// mark that slot as allocated, and reuse the same slot for this safepoint. 222 /// This helps to avoid series of loads and stores that only serve to reshuffle 223 /// values on the stack between calls. 224 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 225 SelectionDAGBuilder &Builder) { 226 SDValue Incoming = Builder.getValue(IncomingValue); 227 228 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 229 // We won't need to spill this, so no need to check for previously 230 // allocated stack slots 231 return; 232 } 233 234 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 235 if (OldLocation.getNode()) 236 // Duplicates in input 237 return; 238 239 const int LookUpDepth = 6; 240 Optional<int> Index = 241 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 242 if (!Index.hasValue()) 243 return; 244 245 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 246 247 auto SlotIt = find(StatepointSlots, *Index); 248 assert(SlotIt != StatepointSlots.end() && 249 "Value spilled to the unknown stack slot"); 250 251 // This is one of our dedicated lowering slots 252 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 253 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 254 // stack slot already assigned to someone else, can't use it! 255 // TODO: currently we reserve space for gc arguments after doing 256 // normal allocation for deopt arguments. We should reserve for 257 // _all_ deopt and gc arguments, then start allocating. This 258 // will prevent some moves being inserted when vm state changes, 259 // but gc state doesn't between two calls. 260 return; 261 } 262 // Reserve this stack slot 263 Builder.StatepointLowering.reserveStackSlot(Offset); 264 265 // Cache this slot so we find it when going through the normal 266 // assignment loop. 267 SDValue Loc = 268 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 269 Builder.StatepointLowering.setLocation(Incoming, Loc); 270 } 271 272 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 273 /// is not required for correctness. It's purpose is to reduce the size of 274 /// StackMap section. It has no effect on the number of spill slots required 275 /// or the actual lowering. 276 static void 277 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 278 SmallVectorImpl<const Value *> &Ptrs, 279 SmallVectorImpl<const GCRelocateInst *> &Relocs, 280 SelectionDAGBuilder &Builder, 281 FunctionLoweringInfo::StatepointSpillMap &SSM) { 282 DenseMap<SDValue, const Value *> Seen; 283 284 SmallVector<const Value *, 64> NewBases, NewPtrs; 285 SmallVector<const GCRelocateInst *, 64> NewRelocs; 286 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 287 SDValue SD = Builder.getValue(Ptrs[i]); 288 auto SeenIt = Seen.find(SD); 289 290 if (SeenIt == Seen.end()) { 291 // Only add non-duplicates 292 NewBases.push_back(Bases[i]); 293 NewPtrs.push_back(Ptrs[i]); 294 NewRelocs.push_back(Relocs[i]); 295 Seen[SD] = Ptrs[i]; 296 } else { 297 // Duplicate pointer found, note in SSM and move on: 298 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 299 } 300 } 301 assert(Bases.size() >= NewBases.size()); 302 assert(Ptrs.size() >= NewPtrs.size()); 303 assert(Relocs.size() >= NewRelocs.size()); 304 Bases = NewBases; 305 Ptrs = NewPtrs; 306 Relocs = NewRelocs; 307 assert(Ptrs.size() == Bases.size()); 308 assert(Ptrs.size() == Relocs.size()); 309 } 310 311 /// Extract call from statepoint, lower it and return pointer to the 312 /// call node. Also update NodeMap so that getValue(statepoint) will 313 /// reference lowered call result 314 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 315 SelectionDAGBuilder::StatepointLoweringInfo &SI, 316 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 317 SDValue ReturnValue, CallEndVal; 318 std::tie(ReturnValue, CallEndVal) = 319 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 320 SDNode *CallEnd = CallEndVal.getNode(); 321 322 // Get a call instruction from the call sequence chain. Tail calls are not 323 // allowed. The following code is essentially reverse engineering X86's 324 // LowerCallTo. 325 // 326 // We are expecting DAG to have the following form: 327 // 328 // ch = eh_label (only in case of invoke statepoint) 329 // ch, glue = callseq_start ch 330 // ch, glue = X86::Call ch, glue 331 // ch, glue = callseq_end ch, glue 332 // get_return_value ch, glue 333 // 334 // get_return_value can either be a sequence of CopyFromReg instructions 335 // to grab the return value from the return register(s), or it can be a LOAD 336 // to load a value returned by reference via a stack slot. 337 338 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 339 if (HasDef) { 340 if (CallEnd->getOpcode() == ISD::LOAD) 341 CallEnd = CallEnd->getOperand(0).getNode(); 342 else 343 while (CallEnd->getOpcode() == ISD::CopyFromReg) 344 CallEnd = CallEnd->getOperand(0).getNode(); 345 } 346 347 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 348 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 349 } 350 351 /// Spill a value incoming to the statepoint. It might be either part of 352 /// vmstate 353 /// or gcstate. In both cases unconditionally spill it on the stack unless it 354 /// is a null constant. Return pair with first element being frame index 355 /// containing saved value and second element with outgoing chain from the 356 /// emitted store 357 static std::pair<SDValue, SDValue> 358 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 359 SelectionDAGBuilder &Builder) { 360 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 361 362 // Emit new store if we didn't do it for this ptr before 363 if (!Loc.getNode()) { 364 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 365 Builder); 366 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 367 // We use TargetFrameIndex so that isel will not select it into LEA 368 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 369 370 // TODO: We can create TokenFactor node instead of 371 // chaining stores one after another, this may allow 372 // a bit more optimal scheduling for them 373 374 #ifndef NDEBUG 375 // Right now we always allocate spill slots that are of the same 376 // size as the value we're about to spill (the size of spillee can 377 // vary since we spill vectors of pointers too). At some point we 378 // can consider allowing spills of smaller values to larger slots 379 // (i.e. change the '==' in the assert below to a '>='). 380 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 381 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 382 "Bad spill: stack slot does not match!"); 383 #endif 384 385 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 386 MachinePointerInfo::getFixedStack( 387 Builder.DAG.getMachineFunction(), Index)); 388 389 Builder.StatepointLowering.setLocation(Incoming, Loc); 390 } 391 392 assert(Loc.getNode()); 393 return std::make_pair(Loc, Chain); 394 } 395 396 /// Lower a single value incoming to a statepoint node. This value can be 397 /// either a deopt value or a gc value, the handling is the same. We special 398 /// case constants and allocas, then fall back to spilling if required. 399 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 400 SmallVectorImpl<SDValue> &Ops, 401 SelectionDAGBuilder &Builder) { 402 SDValue Chain = Builder.getRoot(); 403 404 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 405 // If the original value was a constant, make sure it gets recorded as 406 // such in the stackmap. This is required so that the consumer can 407 // parse any internal format to the deopt state. It also handles null 408 // pointers and other constant pointers in GC states. Note the constant 409 // vectors do not appear to actually hit this path and that anything larger 410 // than an i64 value (not type!) will fail asserts here. 411 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 412 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 413 // This handles allocas as arguments to the statepoint (this is only 414 // really meaningful for a deopt value. For GC, we'd be trying to 415 // relocate the address of the alloca itself?) 416 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 417 "Incoming value is a frame index!"); 418 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 419 Builder.getFrameIndexTy())); 420 } else if (LiveInOnly) { 421 // If this value is live in (not live-on-return, or live-through), we can 422 // treat it the same way patchpoint treats it's "live in" values. We'll 423 // end up folding some of these into stack references, but they'll be 424 // handled by the register allocator. Note that we do not have the notion 425 // of a late use so these values might be placed in registers which are 426 // clobbered by the call. This is fine for live-in. 427 Ops.push_back(Incoming); 428 } else { 429 // Otherwise, locate a spill slot and explicitly spill it so it 430 // can be found by the runtime later. We currently do not support 431 // tracking values through callee saved registers to their eventual 432 // spill location. This would be a useful optimization, but would 433 // need to be optional since it requires a lot of complexity on the 434 // runtime side which not all would support. 435 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 436 Ops.push_back(Res.first); 437 Chain = Res.second; 438 } 439 440 Builder.DAG.setRoot(Chain); 441 } 442 443 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 444 /// lowering is described in lowerIncomingStatepointValue. This function is 445 /// responsible for lowering everything in the right position and playing some 446 /// tricks to avoid redundant stack manipulation where possible. On 447 /// completion, 'Ops' will contain ready to use operands for machine code 448 /// statepoint. The chain nodes will have already been created and the DAG root 449 /// will be set to the last value spilled (if any were). 450 static void 451 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 452 SelectionDAGBuilder::StatepointLoweringInfo &SI, 453 SelectionDAGBuilder &Builder) { 454 // Lower the deopt and gc arguments for this statepoint. Layout will be: 455 // deopt argument length, deopt arguments.., gc arguments... 456 #ifndef NDEBUG 457 if (auto *GFI = Builder.GFI) { 458 // Check that each of the gc pointer and bases we've gotten out of the 459 // safepoint is something the strategy thinks might be a pointer (or vector 460 // of pointers) into the GC heap. This is basically just here to help catch 461 // errors during statepoint insertion. TODO: This should actually be in the 462 // Verifier, but we can't get to the GCStrategy from there (yet). 463 GCStrategy &S = GFI->getStrategy(); 464 for (const Value *V : SI.Bases) { 465 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 466 if (Opt.hasValue()) { 467 assert(Opt.getValue() && 468 "non gc managed base pointer found in statepoint"); 469 } 470 } 471 for (const Value *V : SI.Ptrs) { 472 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 473 if (Opt.hasValue()) { 474 assert(Opt.getValue() && 475 "non gc managed derived pointer found in statepoint"); 476 } 477 } 478 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 479 } else { 480 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 481 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 482 } 483 #endif 484 485 // Figure out what lowering strategy we're going to use for each part 486 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 487 // as "live-through". A "live-through" variable is one which is "live-in", 488 // "live-out", and live throughout the lifetime of the call (i.e. we can find 489 // it from any PC within the transitive callee of the statepoint). In 490 // particular, if the callee spills callee preserved registers we may not 491 // be able to find a value placed in that register during the call. This is 492 // fine for live-out, but not for live-through. If we were willing to make 493 // assumptions about the code generator producing the callee, we could 494 // potentially allow live-through values in callee saved registers. 495 const bool LiveInDeopt = 496 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 497 498 auto isGCValue =[&](const Value *V) { 499 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 500 }; 501 502 // Before we actually start lowering (and allocating spill slots for values), 503 // reserve any stack slots which we judge to be profitable to reuse for a 504 // particular value. This is purely an optimization over the code below and 505 // doesn't change semantics at all. It is important for performance that we 506 // reserve slots for both deopt and gc values before lowering either. 507 for (const Value *V : SI.DeoptState) { 508 if (!LiveInDeopt || isGCValue(V)) 509 reservePreviousStackSlotForValue(V, Builder); 510 } 511 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 512 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 513 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 514 } 515 516 // First, prefix the list with the number of unique values to be 517 // lowered. Note that this is the number of *Values* not the 518 // number of SDValues required to lower them. 519 const int NumVMSArgs = SI.DeoptState.size(); 520 pushStackMapConstant(Ops, Builder, NumVMSArgs); 521 522 // The vm state arguments are lowered in an opaque manner. We do not know 523 // what type of values are contained within. 524 for (const Value *V : SI.DeoptState) { 525 SDValue Incoming = Builder.getValue(V); 526 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 527 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); 528 } 529 530 // Finally, go ahead and lower all the gc arguments. There's no prefixed 531 // length for this one. After lowering, we'll have the base and pointer 532 // arrays interwoven with each (lowered) base pointer immediately followed by 533 // it's (lowered) derived pointer. i.e 534 // (base[0], ptr[0], base[1], ptr[1], ...) 535 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 536 const Value *Base = SI.Bases[i]; 537 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 538 Ops, Builder); 539 540 const Value *Ptr = SI.Ptrs[i]; 541 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 542 Ops, Builder); 543 } 544 545 // If there are any explicit spill slots passed to the statepoint, record 546 // them, but otherwise do not do anything special. These are user provided 547 // allocas and give control over placement to the consumer. In this case, 548 // it is the contents of the slot which may get updated, not the pointer to 549 // the alloca 550 for (Value *V : SI.GCArgs) { 551 SDValue Incoming = Builder.getValue(V); 552 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 553 // This handles allocas as arguments to the statepoint 554 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 555 "Incoming value is a frame index!"); 556 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 557 Builder.getFrameIndexTy())); 558 } 559 } 560 561 // Record computed locations for all lowered values. 562 // This can not be embedded in lowering loops as we need to record *all* 563 // values, while previous loops account only values with unique SDValues. 564 const Instruction *StatepointInstr = SI.StatepointInstr; 565 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 566 567 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 568 const Value *V = Relocate->getDerivedPtr(); 569 SDValue SDV = Builder.getValue(V); 570 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 571 572 if (Loc.getNode()) { 573 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 574 } else { 575 // Record value as visited, but not spilled. This is case for allocas 576 // and constants. For this values we can avoid emitting spill load while 577 // visiting corresponding gc_relocate. 578 // Actually we do not need to record them in this map at all. 579 // We do this only to check that we are not relocating any unvisited 580 // value. 581 SpillMap.SlotMap[V] = None; 582 583 // Default llvm mechanisms for exporting values which are used in 584 // different basic blocks does not work for gc relocates. 585 // Note that it would be incorrect to teach llvm that all relocates are 586 // uses of the corresponding values so that it would automatically 587 // export them. Relocates of the spilled values does not use original 588 // value. 589 if (Relocate->getParent() != StatepointInstr->getParent()) 590 Builder.ExportFromCurrentBlock(V); 591 } 592 } 593 } 594 595 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 596 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 597 // The basic scheme here is that information about both the original call and 598 // the safepoint is encoded in the CallInst. We create a temporary call and 599 // lower it, then reverse engineer the calling sequence. 600 601 NumOfStatepoints++; 602 // Clear state 603 StatepointLowering.startNewStatepoint(*this); 604 605 #ifndef NDEBUG 606 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 607 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 608 for (auto *Reloc : SI.GCRelocates) 609 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 610 StatepointLowering.scheduleRelocCall(*Reloc); 611 #endif 612 613 // Remove any redundant llvm::Values which map to the same SDValue as another 614 // input. Also has the effect of removing duplicates in the original 615 // llvm::Value input list as well. This is a useful optimization for 616 // reducing the size of the StackMap section. It has no other impact. 617 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 618 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 619 assert(SI.Bases.size() == SI.Ptrs.size() && 620 SI.Ptrs.size() == SI.GCRelocates.size()); 621 622 // Lower statepoint vmstate and gcstate arguments 623 SmallVector<SDValue, 10> LoweredMetaArgs; 624 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 625 626 // Now that we've emitted the spills, we need to update the root so that the 627 // call sequence is ordered correctly. 628 SI.CLI.setChain(getRoot()); 629 630 // Get call node, we will replace it later with statepoint 631 SDValue ReturnVal; 632 SDNode *CallNode; 633 std::tie(ReturnVal, CallNode) = 634 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 635 636 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 637 // nodes with all the appropriate arguments and return values. 638 639 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 640 SDValue Chain = CallNode->getOperand(0); 641 642 SDValue Glue; 643 bool CallHasIncomingGlue = CallNode->getGluedNode(); 644 if (CallHasIncomingGlue) { 645 // Glue is always last operand 646 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 647 } 648 649 // Build the GC_TRANSITION_START node if necessary. 650 // 651 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 652 // order in which they appear in the call to the statepoint intrinsic. If 653 // any of the operands is a pointer-typed, that operand is immediately 654 // followed by a SRCVALUE for the pointer that may be used during lowering 655 // (e.g. to form MachinePointerInfo values for loads/stores). 656 const bool IsGCTransition = 657 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 658 (uint64_t)StatepointFlags::GCTransition; 659 if (IsGCTransition) { 660 SmallVector<SDValue, 8> TSOps; 661 662 // Add chain 663 TSOps.push_back(Chain); 664 665 // Add GC transition arguments 666 for (const Value *V : SI.GCTransitionArgs) { 667 TSOps.push_back(getValue(V)); 668 if (V->getType()->isPointerTy()) 669 TSOps.push_back(DAG.getSrcValue(V)); 670 } 671 672 // Add glue if necessary 673 if (CallHasIncomingGlue) 674 TSOps.push_back(Glue); 675 676 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 677 678 SDValue GCTransitionStart = 679 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 680 681 Chain = GCTransitionStart.getValue(0); 682 Glue = GCTransitionStart.getValue(1); 683 } 684 685 // TODO: Currently, all of these operands are being marked as read/write in 686 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 687 // and flags to be read-only. 688 SmallVector<SDValue, 40> Ops; 689 690 // Add the <id> and <numBytes> constants. 691 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 692 Ops.push_back( 693 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 694 695 // Calculate and push starting position of vmstate arguments 696 // Get number of arguments incoming directly into call node 697 unsigned NumCallRegArgs = 698 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 699 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 700 701 // Add call target 702 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 703 Ops.push_back(CallTarget); 704 705 // Add call arguments 706 // Get position of register mask in the call 707 SDNode::op_iterator RegMaskIt; 708 if (CallHasIncomingGlue) 709 RegMaskIt = CallNode->op_end() - 2; 710 else 711 RegMaskIt = CallNode->op_end() - 1; 712 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 713 714 // Add a constant argument for the calling convention 715 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 716 717 // Add a constant argument for the flags 718 uint64_t Flags = SI.StatepointFlags; 719 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 720 "Unknown flag used"); 721 pushStackMapConstant(Ops, *this, Flags); 722 723 // Insert all vmstate and gcstate arguments 724 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 725 726 // Add register mask from call node 727 Ops.push_back(*RegMaskIt); 728 729 // Add chain 730 Ops.push_back(Chain); 731 732 // Same for the glue, but we add it only if original call had it 733 if (Glue.getNode()) 734 Ops.push_back(Glue); 735 736 // Compute return values. Provide a glue output since we consume one as 737 // input. This allows someone else to chain off us as needed. 738 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 739 740 SDNode *StatepointMCNode = 741 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 742 743 SDNode *SinkNode = StatepointMCNode; 744 745 // Build the GC_TRANSITION_END node if necessary. 746 // 747 // See the comment above regarding GC_TRANSITION_START for the layout of 748 // the operands to the GC_TRANSITION_END node. 749 if (IsGCTransition) { 750 SmallVector<SDValue, 8> TEOps; 751 752 // Add chain 753 TEOps.push_back(SDValue(StatepointMCNode, 0)); 754 755 // Add GC transition arguments 756 for (const Value *V : SI.GCTransitionArgs) { 757 TEOps.push_back(getValue(V)); 758 if (V->getType()->isPointerTy()) 759 TEOps.push_back(DAG.getSrcValue(V)); 760 } 761 762 // Add glue 763 TEOps.push_back(SDValue(StatepointMCNode, 1)); 764 765 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 766 767 SDValue GCTransitionStart = 768 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 769 770 SinkNode = GCTransitionStart.getNode(); 771 } 772 773 // Replace original call 774 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 775 // Remove original call node 776 DAG.DeleteNode(CallNode); 777 778 // DON'T set the root - under the assumption that it's already set past the 779 // inserted node we created. 780 781 // TODO: A better future implementation would be to emit a single variable 782 // argument, variable return value STATEPOINT node here and then hookup the 783 // return value of each gc.relocate to the respective output of the 784 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 785 // to actually be possible today. 786 787 return ReturnVal; 788 } 789 790 void 791 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 792 const BasicBlock *EHPadBB /*= nullptr*/) { 793 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 794 "anyregcc is not supported on statepoints!"); 795 796 #ifndef NDEBUG 797 // If this is a malformed statepoint, report it early to simplify debugging. 798 // This should catch any IR level mistake that's made when constructing or 799 // transforming statepoints. 800 ISP.verify(); 801 802 // Check that the associated GCStrategy expects to encounter statepoints. 803 assert(GFI->getStrategy().useStatepoints() && 804 "GCStrategy does not expect to encounter statepoints"); 805 #endif 806 807 SDValue ActualCallee; 808 809 if (ISP.getNumPatchBytes() > 0) { 810 // If we've been asked to emit a nop sequence instead of a call instruction 811 // for this statepoint then don't lower the call target, but use a constant 812 // `null` instead. Not lowering the call target lets statepoint clients get 813 // away without providing a physical address for the symbolic call target at 814 // link time. 815 816 const auto &TLI = DAG.getTargetLoweringInfo(); 817 const auto &DL = DAG.getDataLayout(); 818 819 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 820 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 821 } else { 822 ActualCallee = getValue(ISP.getCalledValue()); 823 } 824 825 StatepointLoweringInfo SI(DAG); 826 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 827 ImmutableStatepoint::CallArgsBeginPos, 828 ISP.getNumCallArgs(), ActualCallee, 829 ISP.getActualReturnType(), false /* IsPatchPoint */); 830 831 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 832 SI.GCRelocates.push_back(Relocate); 833 SI.Bases.push_back(Relocate->getBasePtr()); 834 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 835 } 836 837 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 838 SI.StatepointInstr = ISP.getInstruction(); 839 SI.GCTransitionArgs = 840 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 841 SI.ID = ISP.getID(); 842 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 843 SI.StatepointFlags = ISP.getFlags(); 844 SI.NumPatchBytes = ISP.getNumPatchBytes(); 845 SI.EHPadBB = EHPadBB; 846 847 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 848 849 // Export the result value if needed 850 const GCResultInst *GCResult = ISP.getGCResult(); 851 Type *RetTy = ISP.getActualReturnType(); 852 if (!RetTy->isVoidTy() && GCResult) { 853 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 854 // Result value will be used in a different basic block so we need to 855 // export it now. Default exporting mechanism will not work here because 856 // statepoint call has a different type than the actual call. It means 857 // that by default llvm will create export register of the wrong type 858 // (always i32 in our case). So instead we need to create export register 859 // with correct type manually. 860 // TODO: To eliminate this problem we can remove gc.result intrinsics 861 // completely and make statepoint call to return a tuple. 862 unsigned Reg = FuncInfo.CreateRegs(RetTy); 863 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 864 DAG.getDataLayout(), Reg, RetTy, 865 ISP.getCallSite().getCallingConv()); 866 SDValue Chain = DAG.getEntryNode(); 867 868 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 869 PendingExports.push_back(Chain); 870 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 871 } else { 872 // Result value will be used in a same basic block. Don't export it or 873 // perform any explicit register copies. 874 // We'll replace the actuall call node shortly. gc_result will grab 875 // this value. 876 setValue(ISP.getInstruction(), ReturnValue); 877 } 878 } else { 879 // The token value is never used from here on, just generate a poison value 880 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 881 } 882 } 883 884 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 885 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 886 bool VarArgDisallowed, bool ForceVoidReturnTy) { 887 StatepointLoweringInfo SI(DAG); 888 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 889 populateCallLoweringInfo( 890 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 891 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 892 false); 893 if (!VarArgDisallowed) 894 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 895 896 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 897 898 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 899 900 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 901 SI.ID = SD.StatepointID.getValueOr(DefaultID); 902 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 903 904 SI.DeoptState = 905 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 906 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 907 SI.EHPadBB = EHPadBB; 908 909 // NB! The GC arguments are deliberately left empty. 910 911 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 912 const Instruction *Inst = CS.getInstruction(); 913 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 914 setValue(Inst, ReturnVal); 915 } 916 } 917 918 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 919 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 920 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 921 /* VarArgDisallowed = */ false, 922 /* ForceVoidReturnTy = */ false); 923 } 924 925 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 926 // The result value of the gc_result is simply the result of the actual 927 // call. We've already emitted this, so just grab the value. 928 const Instruction *I = CI.getStatepoint(); 929 930 if (I->getParent() != CI.getParent()) { 931 // Statepoint is in different basic block so we should have stored call 932 // result in a virtual register. 933 // We can not use default getValue() functionality to copy value from this 934 // register because statepoint and actual call return types can be 935 // different, and getValue() will use CopyFromReg of the wrong type, 936 // which is always i32 in our case. 937 PointerType *CalleeType = cast<PointerType>( 938 ImmutableStatepoint(I).getCalledValue()->getType()); 939 Type *RetTy = 940 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 941 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 942 943 assert(CopyFromReg.getNode()); 944 setValue(&CI, CopyFromReg); 945 } else { 946 setValue(&CI, getValue(I)); 947 } 948 } 949 950 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 951 #ifndef NDEBUG 952 // Consistency check 953 // We skip this check for relocates not in the same basic block as their 954 // statepoint. It would be too expensive to preserve validation info through 955 // different basic blocks. 956 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 957 StatepointLowering.relocCallVisited(Relocate); 958 959 auto *Ty = Relocate.getType()->getScalarType(); 960 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 961 assert(*IsManaged && "Non gc managed pointer relocated!"); 962 #endif 963 964 const Value *DerivedPtr = Relocate.getDerivedPtr(); 965 SDValue SD = getValue(DerivedPtr); 966 967 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 968 auto SlotIt = SpillMap.find(DerivedPtr); 969 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 970 Optional<int> DerivedPtrLocation = SlotIt->second; 971 972 // We didn't need to spill these special cases (constants and allocas). 973 // See the handling in spillIncomingValueForStatepoint for detail. 974 if (!DerivedPtrLocation) { 975 setValue(&Relocate, SD); 976 return; 977 } 978 979 SDValue SpillSlot = 980 DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy()); 981 982 // Be conservative: flush all pending loads 983 // TODO: Probably we can be less restrictive on this, 984 // it may allow more scheduling opportunities. 985 SDValue Chain = getRoot(); 986 987 SDValue SpillLoad = 988 DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 989 Relocate.getType()), 990 getCurSDLoc(), Chain, SpillSlot, 991 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 992 *DerivedPtrLocation)); 993 994 // Again, be conservative, don't emit pending loads 995 DAG.setRoot(SpillLoad.getValue(1)); 996 997 assert(SpillLoad.getNode()); 998 setValue(&Relocate, SpillLoad); 999 } 1000 1001 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1002 const auto &TLI = DAG.getTargetLoweringInfo(); 1003 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1004 TLI.getPointerTy(DAG.getDataLayout())); 1005 1006 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1007 // call. We also do not lower the return value to any virtual register, and 1008 // change the immediately following return to a trap instruction. 1009 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1010 /* VarArgDisallowed = */ true, 1011 /* ForceVoidReturnTy = */ true); 1012 } 1013 1014 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1015 // We do not lower the return value from llvm.deoptimize to any virtual 1016 // register, and change the immediately following return to a trap 1017 // instruction. 1018 if (DAG.getTarget().Options.TrapUnreachable) 1019 DAG.setRoot( 1020 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1021 } 1022