1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file includes support code use by SelectionDAGBuilder when lowering a
11 // statepoint sequence in SelectionDAG IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "StatepointLowering.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/GCMetadata.h"
22 #include "llvm/CodeGen/GCStrategy.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/StackMaps.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "statepoint-lowering"
35 
36 STATISTIC(NumSlotsAllocatedForStatepoints,
37           "Number of stack slots allocated for statepoints");
38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
39 STATISTIC(StatepointMaxSlotsRequired,
40           "Maximum number of stack slots required for a singe statepoint");
41 
42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
43                                  SelectionDAGBuilder &Builder, uint64_t Value) {
44   SDLoc L = Builder.getCurSDLoc();
45   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
46                                               MVT::i64));
47   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
48 }
49 
50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
51   // Consistency check
52   assert(PendingGCRelocateCalls.empty() &&
53          "Trying to visit statepoint before finished processing previous one");
54   Locations.clear();
55   NextSlotToAllocate = 0;
56   // Need to resize this on each safepoint - we need the two to stay in sync and
57   // the clear patterns of a SelectionDAGBuilder have no relation to
58   // FunctionLoweringInfo.  SmallBitVector::reset initializes all bits to false.
59   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
60 }
61 
62 void StatepointLoweringState::clear() {
63   Locations.clear();
64   AllocatedStackSlots.clear();
65   assert(PendingGCRelocateCalls.empty() &&
66          "cleared before statepoint sequence completed");
67 }
68 
69 SDValue
70 StatepointLoweringState::allocateStackSlot(EVT ValueType,
71                                            SelectionDAGBuilder &Builder) {
72   NumSlotsAllocatedForStatepoints++;
73   auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
74 
75   unsigned SpillSize = ValueType.getSizeInBits() / 8;
76   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
77 
78   // First look for a previously created stack slot which is not in
79   // use (accounting for the fact arbitrary slots may already be
80   // reserved), or to create a new stack slot and use it.
81 
82   const size_t NumSlots = AllocatedStackSlots.size();
83   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
84 
85   // The stack slots in StatepointStackSlots beyond the first NumSlots were
86   // added in this instance of StatepointLoweringState, and cannot be re-used.
87   assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() &&
88          "Broken invariant");
89 
90   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
91     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
92       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
93       if (MFI->getObjectSize(FI) == SpillSize) {
94         AllocatedStackSlots.set(NextSlotToAllocate);
95         return Builder.DAG.getFrameIndex(FI, ValueType);
96       }
97     }
98   }
99 
100   // Couldn't find a free slot, so create a new one:
101 
102   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
103   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
104   MFI->markAsStatepointSpillSlotObjectIndex(FI);
105 
106   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
107 
108   StatepointMaxSlotsRequired = std::max<unsigned long>(
109       StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size());
110 
111   return SpillSlot;
112 }
113 
114 /// Utility function for reservePreviousStackSlotForValue. Tries to find
115 /// stack slot index to which we have spilled value for previous statepoints.
116 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
117 static Optional<int> findPreviousSpillSlot(const Value *Val,
118                                            SelectionDAGBuilder &Builder,
119                                            int LookUpDepth) {
120   // Can not look any further - give up now
121   if (LookUpDepth <= 0)
122     return None;
123 
124   // Spill location is known for gc relocates
125   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
126     const auto &SpillMap =
127         Builder.FuncInfo.StatepointRelocatedValues[Relocate->getStatepoint()];
128 
129     auto It = SpillMap.find(Relocate->getDerivedPtr());
130     if (It == SpillMap.end())
131       return None;
132 
133     return It->second;
134   }
135 
136   // Look through bitcast instructions.
137   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
138     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
139 
140   // Look through phi nodes
141   // All incoming values should have same known stack slot, otherwise result
142   // is unknown.
143   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
144     Optional<int> MergedResult = None;
145 
146     for (auto &IncomingValue : Phi->incoming_values()) {
147       Optional<int> SpillSlot =
148           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
149       if (!SpillSlot.hasValue())
150         return None;
151 
152       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
153         return None;
154 
155       MergedResult = SpillSlot;
156     }
157     return MergedResult;
158   }
159 
160   // TODO: We can do better for PHI nodes. In cases like this:
161   //   ptr = phi(relocated_pointer, not_relocated_pointer)
162   //   statepoint(ptr)
163   // We will return that stack slot for ptr is unknown. And later we might
164   // assign different stack slots for ptr and relocated_pointer. This limits
165   // llvm's ability to remove redundant stores.
166   // Unfortunately it's hard to accomplish in current infrastructure.
167   // We use this function to eliminate spill store completely, while
168   // in example we still need to emit store, but instead of any location
169   // we need to use special "preferred" location.
170 
171   // TODO: handle simple updates.  If a value is modified and the original
172   // value is no longer live, it would be nice to put the modified value in the
173   // same slot.  This allows folding of the memory accesses for some
174   // instructions types (like an increment).
175   //   statepoint (i)
176   //   i1 = i+1
177   //   statepoint (i1)
178   // However we need to be careful for cases like this:
179   //   statepoint(i)
180   //   i1 = i+1
181   //   statepoint(i, i1)
182   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
183   // put handling of simple modifications in this function like it's done
184   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
185   // which we visit values is unspecified.
186 
187   // Don't know any information about this instruction
188   return None;
189 }
190 
191 /// Try to find existing copies of the incoming values in stack slots used for
192 /// statepoint spilling.  If we can find a spill slot for the incoming value,
193 /// mark that slot as allocated, and reuse the same slot for this safepoint.
194 /// This helps to avoid series of loads and stores that only serve to reshuffle
195 /// values on the stack between calls.
196 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
197                                              SelectionDAGBuilder &Builder) {
198 
199   SDValue Incoming = Builder.getValue(IncomingValue);
200 
201   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
202     // We won't need to spill this, so no need to check for previously
203     // allocated stack slots
204     return;
205   }
206 
207   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
208   if (OldLocation.getNode())
209     // Duplicates in input
210     return;
211 
212   const int LookUpDepth = 6;
213   Optional<int> Index =
214       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
215   if (!Index.hasValue())
216     return;
217 
218   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
219 
220   auto SlotIt = find(StatepointSlots, *Index);
221   assert(SlotIt != StatepointSlots.end() &&
222          "Value spilled to the unknown stack slot");
223 
224   // This is one of our dedicated lowering slots
225   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
226   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
227     // stack slot already assigned to someone else, can't use it!
228     // TODO: currently we reserve space for gc arguments after doing
229     // normal allocation for deopt arguments.  We should reserve for
230     // _all_ deopt and gc arguments, then start allocating.  This
231     // will prevent some moves being inserted when vm state changes,
232     // but gc state doesn't between two calls.
233     return;
234   }
235   // Reserve this stack slot
236   Builder.StatepointLowering.reserveStackSlot(Offset);
237 
238   // Cache this slot so we find it when going through the normal
239   // assignment loop.
240   SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
241   Builder.StatepointLowering.setLocation(Incoming, Loc);
242 }
243 
244 /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
245 /// is not required for correctness.  It's purpose is to reduce the size of
246 /// StackMap section.  It has no effect on the number of spill slots required
247 /// or the actual lowering.
248 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
249                                    SmallVectorImpl<const Value *> &Ptrs,
250                                    SmallVectorImpl<const Value *> &Relocs,
251                                    SelectionDAGBuilder &Builder) {
252 
253   // This is horribly inefficient, but I don't care right now
254   SmallSet<SDValue, 32> Seen;
255 
256   SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
257   for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
258     SDValue SD = Builder.getValue(Ptrs[i]);
259     // Only add non-duplicates
260     if (Seen.count(SD) == 0) {
261       NewBases.push_back(Bases[i]);
262       NewPtrs.push_back(Ptrs[i]);
263       NewRelocs.push_back(Relocs[i]);
264     }
265     Seen.insert(SD);
266   }
267   assert(Bases.size() >= NewBases.size());
268   assert(Ptrs.size() >= NewPtrs.size());
269   assert(Relocs.size() >= NewRelocs.size());
270   Bases = NewBases;
271   Ptrs = NewPtrs;
272   Relocs = NewRelocs;
273   assert(Ptrs.size() == Bases.size());
274   assert(Ptrs.size() == Relocs.size());
275 }
276 
277 /// Extract call from statepoint, lower it and return pointer to the
278 /// call node. Also update NodeMap so that getValue(statepoint) will
279 /// reference lowered call result
280 static SDNode *
281 lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB,
282                         SelectionDAGBuilder &Builder,
283                         SmallVectorImpl<SDValue> &PendingExports) {
284 
285   ImmutableCallSite CS(ISP.getCallSite());
286 
287   SDValue ActualCallee;
288 
289   if (ISP.getNumPatchBytes() > 0) {
290     // If we've been asked to emit a nop sequence instead of a call instruction
291     // for this statepoint then don't lower the call target, but use a constant
292     // `null` instead.  Not lowering the call target lets statepoint clients get
293     // away without providing a physical address for the symbolic call target at
294     // link time.
295 
296     const auto &TLI = Builder.DAG.getTargetLoweringInfo();
297     const auto &DL = Builder.DAG.getDataLayout();
298 
299     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
300     ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(),
301                                            TLI.getPointerTy(DL, AS));
302   } else {
303     ActualCallee = Builder.getValue(ISP.getCalledValue());
304   }
305 
306   assert(CS.getCallingConv() != CallingConv::AnyReg &&
307          "anyregcc is not supported on statepoints!");
308 
309   Type *DefTy = ISP.getActualReturnType();
310   bool HasDef = !DefTy->isVoidTy();
311 
312   SDValue ReturnValue, CallEndVal;
313   std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands(
314       ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos,
315       ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB,
316       false /* IsPatchPoint */);
317 
318   SDNode *CallEnd = CallEndVal.getNode();
319 
320   // Get a call instruction from the call sequence chain.  Tail calls are not
321   // allowed.  The following code is essentially reverse engineering X86's
322   // LowerCallTo.
323   //
324   // We are expecting DAG to have the following form:
325   //
326   // ch = eh_label (only in case of invoke statepoint)
327   //   ch, glue = callseq_start ch
328   //   ch, glue = X86::Call ch, glue
329   //   ch, glue = callseq_end ch, glue
330   //   get_return_value ch, glue
331   //
332   // get_return_value can either be a sequence of CopyFromReg instructions
333   // to grab the return value from the return register(s), or it can be a LOAD
334   // to load a value returned by reference via a stack slot.
335 
336   if (HasDef) {
337     if (CallEnd->getOpcode() == ISD::LOAD)
338       CallEnd = CallEnd->getOperand(0).getNode();
339     else
340       while (CallEnd->getOpcode() == ISD::CopyFromReg)
341         CallEnd = CallEnd->getOperand(0).getNode();
342   }
343 
344   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
345 
346   // Export the result value if needed
347   const Instruction *GCResult = ISP.getGCResult();
348   if (HasDef && GCResult) {
349     if (GCResult->getParent() != CS.getParent()) {
350       // Result value will be used in a different basic block so we need to
351       // export it now.
352       // Default exporting mechanism will not work here because statepoint call
353       // has a different type than the actual call. It means that by default
354       // llvm will create export register of the wrong type (always i32 in our
355       // case). So instead we need to create export register with correct type
356       // manually.
357       // TODO: To eliminate this problem we can remove gc.result intrinsics
358       //       completely and make statepoint call to return a tuple.
359       unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType());
360       RegsForValue RFV(
361           *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(),
362           Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType());
363       SDValue Chain = Builder.DAG.getEntryNode();
364 
365       RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain,
366                         nullptr);
367       PendingExports.push_back(Chain);
368       Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg;
369     } else {
370       // Result value will be used in a same basic block. Don't export it or
371       // perform any explicit register copies.
372       // We'll replace the actuall call node shortly. gc_result will grab
373       // this value.
374       Builder.setValue(CS.getInstruction(), ReturnValue);
375     }
376   } else {
377     // The token value is never used from here on, just generate a poison value
378     Builder.setValue(CS.getInstruction(),
379                      Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc()));
380   }
381 
382   return CallEnd->getOperand(0).getNode();
383 }
384 
385 /// Callect all gc pointers coming into statepoint intrinsic, clean them up,
386 /// and return two arrays:
387 ///   Bases - base pointers incoming to this statepoint
388 ///   Ptrs - derived pointers incoming to this statepoint
389 ///   Relocs - the gc_relocate corresponding to each base/ptr pair
390 /// Elements of this arrays should be in one-to-one correspondence with each
391 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
392 static void getIncomingStatepointGCValues(
393     SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs,
394     SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite,
395     SelectionDAGBuilder &Builder) {
396   for (const GCRelocateInst *Relocate : StatepointSite.getRelocates()) {
397     Relocs.push_back(Relocate);
398     Bases.push_back(Relocate->getBasePtr());
399     Ptrs.push_back(Relocate->getDerivedPtr());
400   }
401 
402   // Remove any redundant llvm::Values which map to the same SDValue as another
403   // input.  Also has the effect of removing duplicates in the original
404   // llvm::Value input list as well.  This is a useful optimization for
405   // reducing the size of the StackMap section.  It has no other impact.
406   removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
407 
408   assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
409 }
410 
411 /// Spill a value incoming to the statepoint. It might be either part of
412 /// vmstate
413 /// or gcstate. In both cases unconditionally spill it on the stack unless it
414 /// is a null constant. Return pair with first element being frame index
415 /// containing saved value and second element with outgoing chain from the
416 /// emitted store
417 static std::pair<SDValue, SDValue>
418 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
419                              SelectionDAGBuilder &Builder) {
420   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
421 
422   // Emit new store if we didn't do it for this ptr before
423   if (!Loc.getNode()) {
424     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
425                                                        Builder);
426     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
427     // We use TargetFrameIndex so that isel will not select it into LEA
428     Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
429 
430     // TODO: We can create TokenFactor node instead of
431     //       chaining stores one after another, this may allow
432     //       a bit more optimal scheduling for them
433 
434 #ifndef NDEBUG
435     // Right now we always allocate spill slots that are of the same
436     // size as the value we're about to spill (the size of spillee can
437     // vary since we spill vectors of pointers too).  At some point we
438     // can consider allowing spills of smaller values to larger slots
439     // (i.e. change the '==' in the assert below to a '>=').
440     auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo();
441     assert((MFI->getObjectSize(Index) * 8) ==
442                Incoming.getValueType().getSizeInBits() &&
443            "Bad spill:  stack slot does not match!");
444 #endif
445 
446     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
447                                  MachinePointerInfo::getFixedStack(
448                                      Builder.DAG.getMachineFunction(), Index),
449                                  false, false, 0);
450 
451     Builder.StatepointLowering.setLocation(Incoming, Loc);
452   }
453 
454   assert(Loc.getNode());
455   return std::make_pair(Loc, Chain);
456 }
457 
458 /// Lower a single value incoming to a statepoint node.  This value can be
459 /// either a deopt value or a gc value, the handling is the same.  We special
460 /// case constants and allocas, then fall back to spilling if required.
461 static void lowerIncomingStatepointValue(SDValue Incoming,
462                                          SmallVectorImpl<SDValue> &Ops,
463                                          SelectionDAGBuilder &Builder) {
464   SDValue Chain = Builder.getRoot();
465 
466   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
467     // If the original value was a constant, make sure it gets recorded as
468     // such in the stackmap.  This is required so that the consumer can
469     // parse any internal format to the deopt state.  It also handles null
470     // pointers and other constant pointers in GC states.  Note the constant
471     // vectors do not appear to actually hit this path and that anything larger
472     // than an i64 value (not type!) will fail asserts here.
473     pushStackMapConstant(Ops, Builder, C->getSExtValue());
474   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
475     // This handles allocas as arguments to the statepoint (this is only
476     // really meaningful for a deopt value.  For GC, we'd be trying to
477     // relocate the address of the alloca itself?)
478     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
479                                                   Incoming.getValueType()));
480   } else {
481     // Otherwise, locate a spill slot and explicitly spill it so it
482     // can be found by the runtime later.  We currently do not support
483     // tracking values through callee saved registers to their eventual
484     // spill location.  This would be a useful optimization, but would
485     // need to be optional since it requires a lot of complexity on the
486     // runtime side which not all would support.
487     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
488     Ops.push_back(Res.first);
489     Chain = Res.second;
490   }
491 
492   Builder.DAG.setRoot(Chain);
493 }
494 
495 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
496 /// lowering is described in lowerIncomingStatepointValue.  This function is
497 /// responsible for lowering everything in the right position and playing some
498 /// tricks to avoid redundant stack manipulation where possible.  On
499 /// completion, 'Ops' will contain ready to use operands for machine code
500 /// statepoint. The chain nodes will have already been created and the DAG root
501 /// will be set to the last value spilled (if any were).
502 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
503                                     ImmutableStatepoint StatepointSite,
504                                     SelectionDAGBuilder &Builder) {
505 
506   // Lower the deopt and gc arguments for this statepoint.  Layout will
507   // be: deopt argument length, deopt arguments.., gc arguments...
508 
509   SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
510   getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
511                                 Builder);
512 
513 #ifndef NDEBUG
514   // Check that each of the gc pointer and bases we've gotten out of the
515   // safepoint is something the strategy thinks might be a pointer (or vector
516   // of pointers) into the GC heap.  This is basically just here to help catch
517   // errors during statepoint insertion. TODO: This should actually be in the
518   // Verifier, but we can't get to the GCStrategy from there (yet).
519   GCStrategy &S = Builder.GFI->getStrategy();
520   for (const Value *V : Bases) {
521     auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
522     if (Opt.hasValue()) {
523       assert(Opt.getValue() &&
524              "non gc managed base pointer found in statepoint");
525     }
526   }
527   for (const Value *V : Ptrs) {
528     auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
529     if (Opt.hasValue()) {
530       assert(Opt.getValue() &&
531              "non gc managed derived pointer found in statepoint");
532     }
533   }
534   for (const Value *V : Relocations) {
535     auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
536     if (Opt.hasValue()) {
537       assert(Opt.getValue() && "non gc managed pointer relocated");
538     }
539   }
540 #endif
541 
542   // Before we actually start lowering (and allocating spill slots for values),
543   // reserve any stack slots which we judge to be profitable to reuse for a
544   // particular value.  This is purely an optimization over the code below and
545   // doesn't change semantics at all.  It is important for performance that we
546   // reserve slots for both deopt and gc values before lowering either.
547   for (const Value *V : StatepointSite.vm_state_args()) {
548     reservePreviousStackSlotForValue(V, Builder);
549   }
550   for (unsigned i = 0; i < Bases.size(); ++i) {
551     reservePreviousStackSlotForValue(Bases[i], Builder);
552     reservePreviousStackSlotForValue(Ptrs[i], Builder);
553   }
554 
555   // First, prefix the list with the number of unique values to be
556   // lowered.  Note that this is the number of *Values* not the
557   // number of SDValues required to lower them.
558   const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
559   pushStackMapConstant(Ops, Builder, NumVMSArgs);
560 
561   assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
562                                      StatepointSite.vm_state_end()));
563 
564   // The vm state arguments are lowered in an opaque manner.  We do
565   // not know what type of values are contained within.  We skip the
566   // first one since that happens to be the total number we lowered
567   // explicitly just above.  We could have left it in the loop and
568   // not done it explicitly, but it's far easier to understand this
569   // way.
570   for (const Value *V : StatepointSite.vm_state_args()) {
571     SDValue Incoming = Builder.getValue(V);
572     lowerIncomingStatepointValue(Incoming, Ops, Builder);
573   }
574 
575   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
576   // length for this one.  After lowering, we'll have the base and pointer
577   // arrays interwoven with each (lowered) base pointer immediately followed by
578   // it's (lowered) derived pointer.  i.e
579   // (base[0], ptr[0], base[1], ptr[1], ...)
580   for (unsigned i = 0; i < Bases.size(); ++i) {
581     const Value *Base = Bases[i];
582     lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
583 
584     const Value *Ptr = Ptrs[i];
585     lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
586   }
587 
588   // If there are any explicit spill slots passed to the statepoint, record
589   // them, but otherwise do not do anything special.  These are user provided
590   // allocas and give control over placement to the consumer.  In this case,
591   // it is the contents of the slot which may get updated, not the pointer to
592   // the alloca
593   for (Value *V : StatepointSite.gc_args()) {
594     SDValue Incoming = Builder.getValue(V);
595     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
596       // This handles allocas as arguments to the statepoint
597       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
598                                                     Incoming.getValueType()));
599     }
600   }
601 
602   // Record computed locations for all lowered values.
603   // This can not be embedded in lowering loops as we need to record *all*
604   // values, while previous loops account only values with unique SDValues.
605   const Instruction *StatepointInstr =
606     StatepointSite.getCallSite().getInstruction();
607   auto &SpillMap = Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr];
608 
609   for (const GCRelocateInst *Relocate : StatepointSite.getRelocates()) {
610     const Value *V = Relocate->getDerivedPtr();
611     SDValue SDV = Builder.getValue(V);
612     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
613 
614     if (Loc.getNode()) {
615       SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
616     } else {
617       // Record value as visited, but not spilled. This is case for allocas
618       // and constants. For this values we can avoid emitting spill load while
619       // visiting corresponding gc_relocate.
620       // Actually we do not need to record them in this map at all.
621       // We do this only to check that we are not relocating any unvisited
622       // value.
623       SpillMap[V] = None;
624 
625       // Default llvm mechanisms for exporting values which are used in
626       // different basic blocks does not work for gc relocates.
627       // Note that it would be incorrect to teach llvm that all relocates are
628       // uses of the corresponding values so that it would automatically
629       // export them. Relocates of the spilled values does not use original
630       // value.
631       if (Relocate->getParent() != StatepointInstr->getParent())
632         Builder.ExportFromCurrentBlock(V);
633     }
634   }
635 }
636 
637 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
638   // Check some preconditions for sanity
639   assert(isStatepoint(&CI) &&
640          "Function called must be the statepoint function");
641 
642   LowerStatepoint(ImmutableStatepoint(&CI));
643 }
644 
645 void SelectionDAGBuilder::LowerStatepoint(
646     ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) {
647   // The basic scheme here is that information about both the original call and
648   // the safepoint is encoded in the CallInst.  We create a temporary call and
649   // lower it, then reverse engineer the calling sequence.
650 
651   NumOfStatepoints++;
652   // Clear state
653   StatepointLowering.startNewStatepoint(*this);
654 
655   ImmutableCallSite CS(ISP.getCallSite());
656 
657 #ifndef NDEBUG
658   // Consistency check. Check only relocates in the same basic block as thier
659   // statepoint.
660   for (const User *U : CS->users()) {
661     const CallInst *Call = cast<CallInst>(U);
662     if (isa<GCRelocateInst>(Call) && Call->getParent() == CS.getParent())
663       StatepointLowering.scheduleRelocCall(*Call);
664   }
665 #endif
666 
667 #ifndef NDEBUG
668   // If this is a malformed statepoint, report it early to simplify debugging.
669   // This should catch any IR level mistake that's made when constructing or
670   // transforming statepoints.
671   ISP.verify();
672 
673   // Check that the associated GCStrategy expects to encounter statepoints.
674   assert(GFI->getStrategy().useStatepoints() &&
675          "GCStrategy does not expect to encounter statepoints");
676 #endif
677 
678   // Lower statepoint vmstate and gcstate arguments
679   SmallVector<SDValue, 10> LoweredMetaArgs;
680   lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this);
681 
682   // Get call node, we will replace it later with statepoint
683   SDNode *CallNode =
684       lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports);
685 
686   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
687   // nodes with all the appropriate arguments and return values.
688 
689   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
690   SDValue Chain = CallNode->getOperand(0);
691 
692   SDValue Glue;
693   bool CallHasIncomingGlue = CallNode->getGluedNode();
694   if (CallHasIncomingGlue) {
695     // Glue is always last operand
696     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
697   }
698 
699   // Build the GC_TRANSITION_START node if necessary.
700   //
701   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
702   // order in which they appear in the call to the statepoint intrinsic. If
703   // any of the operands is a pointer-typed, that operand is immediately
704   // followed by a SRCVALUE for the pointer that may be used during lowering
705   // (e.g. to form MachinePointerInfo values for loads/stores).
706   const bool IsGCTransition =
707       (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) ==
708           (uint64_t)StatepointFlags::GCTransition;
709   if (IsGCTransition) {
710     SmallVector<SDValue, 8> TSOps;
711 
712     // Add chain
713     TSOps.push_back(Chain);
714 
715     // Add GC transition arguments
716     for (const Value *V : ISP.gc_transition_args()) {
717       TSOps.push_back(getValue(V));
718       if (V->getType()->isPointerTy())
719         TSOps.push_back(DAG.getSrcValue(V));
720     }
721 
722     // Add glue if necessary
723     if (CallHasIncomingGlue)
724       TSOps.push_back(Glue);
725 
726     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
727 
728     SDValue GCTransitionStart =
729         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
730 
731     Chain = GCTransitionStart.getValue(0);
732     Glue = GCTransitionStart.getValue(1);
733   }
734 
735   // TODO: Currently, all of these operands are being marked as read/write in
736   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
737   // and flags to be read-only.
738   SmallVector<SDValue, 40> Ops;
739 
740   // Add the <id> and <numBytes> constants.
741   Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64));
742   Ops.push_back(
743       DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32));
744 
745   // Calculate and push starting position of vmstate arguments
746   // Get number of arguments incoming directly into call node
747   unsigned NumCallRegArgs =
748       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
749   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
750 
751   // Add call target
752   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
753   Ops.push_back(CallTarget);
754 
755   // Add call arguments
756   // Get position of register mask in the call
757   SDNode::op_iterator RegMaskIt;
758   if (CallHasIncomingGlue)
759     RegMaskIt = CallNode->op_end() - 2;
760   else
761     RegMaskIt = CallNode->op_end() - 1;
762   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
763 
764   // Add a constant argument for the calling convention
765   pushStackMapConstant(Ops, *this, CS.getCallingConv());
766 
767   // Add a constant argument for the flags
768   uint64_t Flags = ISP.getFlags();
769   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
770          "Unknown flag used");
771   pushStackMapConstant(Ops, *this, Flags);
772 
773   // Insert all vmstate and gcstate arguments
774   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
775 
776   // Add register mask from call node
777   Ops.push_back(*RegMaskIt);
778 
779   // Add chain
780   Ops.push_back(Chain);
781 
782   // Same for the glue, but we add it only if original call had it
783   if (Glue.getNode())
784     Ops.push_back(Glue);
785 
786   // Compute return values.  Provide a glue output since we consume one as
787   // input.  This allows someone else to chain off us as needed.
788   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
789 
790   SDNode *StatepointMCNode =
791       DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
792 
793   SDNode *SinkNode = StatepointMCNode;
794 
795   // Build the GC_TRANSITION_END node if necessary.
796   //
797   // See the comment above regarding GC_TRANSITION_START for the layout of
798   // the operands to the GC_TRANSITION_END node.
799   if (IsGCTransition) {
800     SmallVector<SDValue, 8> TEOps;
801 
802     // Add chain
803     TEOps.push_back(SDValue(StatepointMCNode, 0));
804 
805     // Add GC transition arguments
806     for (const Value *V : ISP.gc_transition_args()) {
807       TEOps.push_back(getValue(V));
808       if (V->getType()->isPointerTy())
809         TEOps.push_back(DAG.getSrcValue(V));
810     }
811 
812     // Add glue
813     TEOps.push_back(SDValue(StatepointMCNode, 1));
814 
815     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
816 
817     SDValue GCTransitionStart =
818         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
819 
820     SinkNode = GCTransitionStart.getNode();
821   }
822 
823   // Replace original call
824   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
825   // Remove original call node
826   DAG.DeleteNode(CallNode);
827 
828   // DON'T set the root - under the assumption that it's already set past the
829   // inserted node we created.
830 
831   // TODO: A better future implementation would be to emit a single variable
832   // argument, variable return value STATEPOINT node here and then hookup the
833   // return value of each gc.relocate to the respective output of the
834   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
835   // to actually be possible today.
836 }
837 
838 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
839   // The result value of the gc_result is simply the result of the actual
840   // call.  We've already emitted this, so just grab the value.
841   Instruction *I = cast<Instruction>(CI.getArgOperand(0));
842   assert(isStatepoint(I) && "first argument must be a statepoint token");
843 
844   if (I->getParent() != CI.getParent()) {
845     // Statepoint is in different basic block so we should have stored call
846     // result in a virtual register.
847     // We can not use default getValue() functionality to copy value from this
848     // register because statepoint and actuall call return types can be
849     // different, and getValue() will use CopyFromReg of the wrong type,
850     // which is always i32 in our case.
851     PointerType *CalleeType = cast<PointerType>(
852         ImmutableStatepoint(I).getCalledValue()->getType());
853     Type *RetTy =
854         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
855     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
856 
857     assert(CopyFromReg.getNode());
858     setValue(&CI, CopyFromReg);
859   } else {
860     setValue(&CI, getValue(I));
861   }
862 }
863 
864 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
865 #ifndef NDEBUG
866   // Consistency check
867   // We skip this check for relocates not in the same basic block as thier
868   // statepoint. It would be too expensive to preserve validation info through
869   // different basic blocks.
870   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
871     StatepointLowering.relocCallVisited(Relocate);
872 #endif
873 
874   const Value *DerivedPtr = Relocate.getDerivedPtr();
875   SDValue SD = getValue(DerivedPtr);
876 
877   FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
878     FuncInfo.StatepointRelocatedValues[Relocate.getStatepoint()];
879 
880   // We should have recorded location for this pointer
881   assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value");
882   Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr];
883 
884   // We didn't need to spill these special cases (constants and allocas).
885   // See the handling in spillIncomingValueForStatepoint for detail.
886   if (!DerivedPtrLocation) {
887     setValue(&Relocate, SD);
888     return;
889   }
890 
891   SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
892                                               SD.getValueType());
893 
894   // Be conservative: flush all pending loads
895   // TODO: Probably we can be less restrictive on this,
896   // it may allow more scheduling opportunities.
897   SDValue Chain = getRoot();
898 
899   SDValue SpillLoad =
900       DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
901                   MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
902                                                     *DerivedPtrLocation),
903                   false, false, false, 0);
904 
905   // Again, be conservative, don't emit pending loads
906   DAG.setRoot(SpillLoad.getValue(1));
907 
908   assert(SpillLoad.getNode());
909   setValue(&Relocate, SpillLoad);
910 }
911