1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/GCMetadata.h" 22 #include "llvm/CodeGen/GCStrategy.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/StackMaps.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "statepoint-lowering" 35 36 STATISTIC(NumSlotsAllocatedForStatepoints, 37 "Number of stack slots allocated for statepoints"); 38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 39 STATISTIC(StatepointMaxSlotsRequired, 40 "Maximum number of stack slots required for a singe statepoint"); 41 42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 43 SelectionDAGBuilder &Builder, uint64_t Value) { 44 SDLoc L = Builder.getCurSDLoc(); 45 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 46 MVT::i64)); 47 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 48 } 49 50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 51 // Consistency check 52 assert(PendingGCRelocateCalls.empty() && 53 "Trying to visit statepoint before finished processing previous one"); 54 Locations.clear(); 55 NextSlotToAllocate = 0; 56 // Need to resize this on each safepoint - we need the two to stay in sync and 57 // the clear patterns of a SelectionDAGBuilder have no relation to 58 // FunctionLoweringInfo. SmallBitVector::reset initializes all bits to false. 59 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 60 } 61 62 void StatepointLoweringState::clear() { 63 Locations.clear(); 64 AllocatedStackSlots.clear(); 65 assert(PendingGCRelocateCalls.empty() && 66 "cleared before statepoint sequence completed"); 67 } 68 69 SDValue 70 StatepointLoweringState::allocateStackSlot(EVT ValueType, 71 SelectionDAGBuilder &Builder) { 72 NumSlotsAllocatedForStatepoints++; 73 auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 74 75 unsigned SpillSize = ValueType.getSizeInBits() / 8; 76 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 77 78 // First look for a previously created stack slot which is not in 79 // use (accounting for the fact arbitrary slots may already be 80 // reserved), or to create a new stack slot and use it. 81 82 const size_t NumSlots = AllocatedStackSlots.size(); 83 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 84 85 // The stack slots in StatepointStackSlots beyond the first NumSlots were 86 // added in this instance of StatepointLoweringState, and cannot be re-used. 87 assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() && 88 "Broken invariant"); 89 90 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 91 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 92 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 93 if (MFI->getObjectSize(FI) == SpillSize) { 94 AllocatedStackSlots.set(NextSlotToAllocate); 95 return Builder.DAG.getFrameIndex(FI, ValueType); 96 } 97 } 98 } 99 100 // Couldn't find a free slot, so create a new one: 101 102 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 103 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 104 MFI->markAsStatepointSpillSlotObjectIndex(FI); 105 106 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 107 108 StatepointMaxSlotsRequired = std::max<unsigned long>( 109 StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size()); 110 111 return SpillSlot; 112 } 113 114 /// Utility function for reservePreviousStackSlotForValue. Tries to find 115 /// stack slot index to which we have spilled value for previous statepoints. 116 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 117 static Optional<int> findPreviousSpillSlot(const Value *Val, 118 SelectionDAGBuilder &Builder, 119 int LookUpDepth) { 120 // Can not look any further - give up now 121 if (LookUpDepth <= 0) 122 return None; 123 124 // Spill location is known for gc relocates 125 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 126 const auto &SpillMap = 127 Builder.FuncInfo.StatepointRelocatedValues[Relocate->getStatepoint()]; 128 129 auto It = SpillMap.find(Relocate->getDerivedPtr()); 130 if (It == SpillMap.end()) 131 return None; 132 133 return It->second; 134 } 135 136 // Look through bitcast instructions. 137 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 138 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 139 140 // Look through phi nodes 141 // All incoming values should have same known stack slot, otherwise result 142 // is unknown. 143 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 144 Optional<int> MergedResult = None; 145 146 for (auto &IncomingValue : Phi->incoming_values()) { 147 Optional<int> SpillSlot = 148 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 149 if (!SpillSlot.hasValue()) 150 return None; 151 152 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 153 return None; 154 155 MergedResult = SpillSlot; 156 } 157 return MergedResult; 158 } 159 160 // TODO: We can do better for PHI nodes. In cases like this: 161 // ptr = phi(relocated_pointer, not_relocated_pointer) 162 // statepoint(ptr) 163 // We will return that stack slot for ptr is unknown. And later we might 164 // assign different stack slots for ptr and relocated_pointer. This limits 165 // llvm's ability to remove redundant stores. 166 // Unfortunately it's hard to accomplish in current infrastructure. 167 // We use this function to eliminate spill store completely, while 168 // in example we still need to emit store, but instead of any location 169 // we need to use special "preferred" location. 170 171 // TODO: handle simple updates. If a value is modified and the original 172 // value is no longer live, it would be nice to put the modified value in the 173 // same slot. This allows folding of the memory accesses for some 174 // instructions types (like an increment). 175 // statepoint (i) 176 // i1 = i+1 177 // statepoint (i1) 178 // However we need to be careful for cases like this: 179 // statepoint(i) 180 // i1 = i+1 181 // statepoint(i, i1) 182 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 183 // put handling of simple modifications in this function like it's done 184 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 185 // which we visit values is unspecified. 186 187 // Don't know any information about this instruction 188 return None; 189 } 190 191 /// Try to find existing copies of the incoming values in stack slots used for 192 /// statepoint spilling. If we can find a spill slot for the incoming value, 193 /// mark that slot as allocated, and reuse the same slot for this safepoint. 194 /// This helps to avoid series of loads and stores that only serve to reshuffle 195 /// values on the stack between calls. 196 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 197 SelectionDAGBuilder &Builder) { 198 199 SDValue Incoming = Builder.getValue(IncomingValue); 200 201 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 202 // We won't need to spill this, so no need to check for previously 203 // allocated stack slots 204 return; 205 } 206 207 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 208 if (OldLocation.getNode()) 209 // Duplicates in input 210 return; 211 212 const int LookUpDepth = 6; 213 Optional<int> Index = 214 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 215 if (!Index.hasValue()) 216 return; 217 218 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 219 220 auto SlotIt = find(StatepointSlots, *Index); 221 assert(SlotIt != StatepointSlots.end() && 222 "Value spilled to the unknown stack slot"); 223 224 // This is one of our dedicated lowering slots 225 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 226 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 227 // stack slot already assigned to someone else, can't use it! 228 // TODO: currently we reserve space for gc arguments after doing 229 // normal allocation for deopt arguments. We should reserve for 230 // _all_ deopt and gc arguments, then start allocating. This 231 // will prevent some moves being inserted when vm state changes, 232 // but gc state doesn't between two calls. 233 return; 234 } 235 // Reserve this stack slot 236 Builder.StatepointLowering.reserveStackSlot(Offset); 237 238 // Cache this slot so we find it when going through the normal 239 // assignment loop. 240 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 241 Builder.StatepointLowering.setLocation(Incoming, Loc); 242 } 243 244 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 245 /// is not required for correctness. It's purpose is to reduce the size of 246 /// StackMap section. It has no effect on the number of spill slots required 247 /// or the actual lowering. 248 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 249 SmallVectorImpl<const Value *> &Ptrs, 250 SmallVectorImpl<const Value *> &Relocs, 251 SelectionDAGBuilder &Builder) { 252 253 // This is horribly inefficient, but I don't care right now 254 SmallSet<SDValue, 32> Seen; 255 256 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 257 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 258 SDValue SD = Builder.getValue(Ptrs[i]); 259 // Only add non-duplicates 260 if (Seen.count(SD) == 0) { 261 NewBases.push_back(Bases[i]); 262 NewPtrs.push_back(Ptrs[i]); 263 NewRelocs.push_back(Relocs[i]); 264 } 265 Seen.insert(SD); 266 } 267 assert(Bases.size() >= NewBases.size()); 268 assert(Ptrs.size() >= NewPtrs.size()); 269 assert(Relocs.size() >= NewRelocs.size()); 270 Bases = NewBases; 271 Ptrs = NewPtrs; 272 Relocs = NewRelocs; 273 assert(Ptrs.size() == Bases.size()); 274 assert(Ptrs.size() == Relocs.size()); 275 } 276 277 /// Extract call from statepoint, lower it and return pointer to the 278 /// call node. Also update NodeMap so that getValue(statepoint) will 279 /// reference lowered call result 280 static SDNode * 281 lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB, 282 SelectionDAGBuilder &Builder, 283 SmallVectorImpl<SDValue> &PendingExports) { 284 285 ImmutableCallSite CS(ISP.getCallSite()); 286 287 SDValue ActualCallee; 288 289 if (ISP.getNumPatchBytes() > 0) { 290 // If we've been asked to emit a nop sequence instead of a call instruction 291 // for this statepoint then don't lower the call target, but use a constant 292 // `null` instead. Not lowering the call target lets statepoint clients get 293 // away without providing a physical address for the symbolic call target at 294 // link time. 295 296 const auto &TLI = Builder.DAG.getTargetLoweringInfo(); 297 const auto &DL = Builder.DAG.getDataLayout(); 298 299 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 300 ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(), 301 TLI.getPointerTy(DL, AS)); 302 } else { 303 ActualCallee = Builder.getValue(ISP.getCalledValue()); 304 } 305 306 assert(CS.getCallingConv() != CallingConv::AnyReg && 307 "anyregcc is not supported on statepoints!"); 308 309 Type *DefTy = ISP.getActualReturnType(); 310 bool HasDef = !DefTy->isVoidTy(); 311 312 SDValue ReturnValue, CallEndVal; 313 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( 314 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, 315 ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB, 316 false /* IsPatchPoint */); 317 318 SDNode *CallEnd = CallEndVal.getNode(); 319 320 // Get a call instruction from the call sequence chain. Tail calls are not 321 // allowed. The following code is essentially reverse engineering X86's 322 // LowerCallTo. 323 // 324 // We are expecting DAG to have the following form: 325 // 326 // ch = eh_label (only in case of invoke statepoint) 327 // ch, glue = callseq_start ch 328 // ch, glue = X86::Call ch, glue 329 // ch, glue = callseq_end ch, glue 330 // get_return_value ch, glue 331 // 332 // get_return_value can either be a sequence of CopyFromReg instructions 333 // to grab the return value from the return register(s), or it can be a LOAD 334 // to load a value returned by reference via a stack slot. 335 336 if (HasDef) { 337 if (CallEnd->getOpcode() == ISD::LOAD) 338 CallEnd = CallEnd->getOperand(0).getNode(); 339 else 340 while (CallEnd->getOpcode() == ISD::CopyFromReg) 341 CallEnd = CallEnd->getOperand(0).getNode(); 342 } 343 344 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 345 346 // Export the result value if needed 347 const Instruction *GCResult = ISP.getGCResult(); 348 if (HasDef && GCResult) { 349 if (GCResult->getParent() != CS.getParent()) { 350 // Result value will be used in a different basic block so we need to 351 // export it now. 352 // Default exporting mechanism will not work here because statepoint call 353 // has a different type than the actual call. It means that by default 354 // llvm will create export register of the wrong type (always i32 in our 355 // case). So instead we need to create export register with correct type 356 // manually. 357 // TODO: To eliminate this problem we can remove gc.result intrinsics 358 // completely and make statepoint call to return a tuple. 359 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); 360 RegsForValue RFV( 361 *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(), 362 Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType()); 363 SDValue Chain = Builder.DAG.getEntryNode(); 364 365 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, 366 nullptr); 367 PendingExports.push_back(Chain); 368 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; 369 } else { 370 // Result value will be used in a same basic block. Don't export it or 371 // perform any explicit register copies. 372 // We'll replace the actuall call node shortly. gc_result will grab 373 // this value. 374 Builder.setValue(CS.getInstruction(), ReturnValue); 375 } 376 } else { 377 // The token value is never used from here on, just generate a poison value 378 Builder.setValue(CS.getInstruction(), 379 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); 380 } 381 382 return CallEnd->getOperand(0).getNode(); 383 } 384 385 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 386 /// and return two arrays: 387 /// Bases - base pointers incoming to this statepoint 388 /// Ptrs - derived pointers incoming to this statepoint 389 /// Relocs - the gc_relocate corresponding to each base/ptr pair 390 /// Elements of this arrays should be in one-to-one correspondence with each 391 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 392 static void getIncomingStatepointGCValues( 393 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, 394 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, 395 SelectionDAGBuilder &Builder) { 396 for (const GCRelocateInst *Relocate : StatepointSite.getRelocates()) { 397 Relocs.push_back(Relocate); 398 Bases.push_back(Relocate->getBasePtr()); 399 Ptrs.push_back(Relocate->getDerivedPtr()); 400 } 401 402 // Remove any redundant llvm::Values which map to the same SDValue as another 403 // input. Also has the effect of removing duplicates in the original 404 // llvm::Value input list as well. This is a useful optimization for 405 // reducing the size of the StackMap section. It has no other impact. 406 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 407 408 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 409 } 410 411 /// Spill a value incoming to the statepoint. It might be either part of 412 /// vmstate 413 /// or gcstate. In both cases unconditionally spill it on the stack unless it 414 /// is a null constant. Return pair with first element being frame index 415 /// containing saved value and second element with outgoing chain from the 416 /// emitted store 417 static std::pair<SDValue, SDValue> 418 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 419 SelectionDAGBuilder &Builder) { 420 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 421 422 // Emit new store if we didn't do it for this ptr before 423 if (!Loc.getNode()) { 424 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 425 Builder); 426 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 427 // We use TargetFrameIndex so that isel will not select it into LEA 428 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 429 430 // TODO: We can create TokenFactor node instead of 431 // chaining stores one after another, this may allow 432 // a bit more optimal scheduling for them 433 434 #ifndef NDEBUG 435 // Right now we always allocate spill slots that are of the same 436 // size as the value we're about to spill (the size of spillee can 437 // vary since we spill vectors of pointers too). At some point we 438 // can consider allowing spills of smaller values to larger slots 439 // (i.e. change the '==' in the assert below to a '>='). 440 auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 441 assert((MFI->getObjectSize(Index) * 8) == 442 Incoming.getValueType().getSizeInBits() && 443 "Bad spill: stack slot does not match!"); 444 #endif 445 446 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 447 MachinePointerInfo::getFixedStack( 448 Builder.DAG.getMachineFunction(), Index), 449 false, false, 0); 450 451 Builder.StatepointLowering.setLocation(Incoming, Loc); 452 } 453 454 assert(Loc.getNode()); 455 return std::make_pair(Loc, Chain); 456 } 457 458 /// Lower a single value incoming to a statepoint node. This value can be 459 /// either a deopt value or a gc value, the handling is the same. We special 460 /// case constants and allocas, then fall back to spilling if required. 461 static void lowerIncomingStatepointValue(SDValue Incoming, 462 SmallVectorImpl<SDValue> &Ops, 463 SelectionDAGBuilder &Builder) { 464 SDValue Chain = Builder.getRoot(); 465 466 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 467 // If the original value was a constant, make sure it gets recorded as 468 // such in the stackmap. This is required so that the consumer can 469 // parse any internal format to the deopt state. It also handles null 470 // pointers and other constant pointers in GC states. Note the constant 471 // vectors do not appear to actually hit this path and that anything larger 472 // than an i64 value (not type!) will fail asserts here. 473 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 474 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 475 // This handles allocas as arguments to the statepoint (this is only 476 // really meaningful for a deopt value. For GC, we'd be trying to 477 // relocate the address of the alloca itself?) 478 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 479 Incoming.getValueType())); 480 } else { 481 // Otherwise, locate a spill slot and explicitly spill it so it 482 // can be found by the runtime later. We currently do not support 483 // tracking values through callee saved registers to their eventual 484 // spill location. This would be a useful optimization, but would 485 // need to be optional since it requires a lot of complexity on the 486 // runtime side which not all would support. 487 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 488 Ops.push_back(Res.first); 489 Chain = Res.second; 490 } 491 492 Builder.DAG.setRoot(Chain); 493 } 494 495 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 496 /// lowering is described in lowerIncomingStatepointValue. This function is 497 /// responsible for lowering everything in the right position and playing some 498 /// tricks to avoid redundant stack manipulation where possible. On 499 /// completion, 'Ops' will contain ready to use operands for machine code 500 /// statepoint. The chain nodes will have already been created and the DAG root 501 /// will be set to the last value spilled (if any were). 502 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 503 ImmutableStatepoint StatepointSite, 504 SelectionDAGBuilder &Builder) { 505 506 // Lower the deopt and gc arguments for this statepoint. Layout will 507 // be: deopt argument length, deopt arguments.., gc arguments... 508 509 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 510 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, 511 Builder); 512 513 #ifndef NDEBUG 514 // Check that each of the gc pointer and bases we've gotten out of the 515 // safepoint is something the strategy thinks might be a pointer (or vector 516 // of pointers) into the GC heap. This is basically just here to help catch 517 // errors during statepoint insertion. TODO: This should actually be in the 518 // Verifier, but we can't get to the GCStrategy from there (yet). 519 GCStrategy &S = Builder.GFI->getStrategy(); 520 for (const Value *V : Bases) { 521 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 522 if (Opt.hasValue()) { 523 assert(Opt.getValue() && 524 "non gc managed base pointer found in statepoint"); 525 } 526 } 527 for (const Value *V : Ptrs) { 528 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 529 if (Opt.hasValue()) { 530 assert(Opt.getValue() && 531 "non gc managed derived pointer found in statepoint"); 532 } 533 } 534 for (const Value *V : Relocations) { 535 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 536 if (Opt.hasValue()) { 537 assert(Opt.getValue() && "non gc managed pointer relocated"); 538 } 539 } 540 #endif 541 542 // Before we actually start lowering (and allocating spill slots for values), 543 // reserve any stack slots which we judge to be profitable to reuse for a 544 // particular value. This is purely an optimization over the code below and 545 // doesn't change semantics at all. It is important for performance that we 546 // reserve slots for both deopt and gc values before lowering either. 547 for (const Value *V : StatepointSite.vm_state_args()) { 548 reservePreviousStackSlotForValue(V, Builder); 549 } 550 for (unsigned i = 0; i < Bases.size(); ++i) { 551 reservePreviousStackSlotForValue(Bases[i], Builder); 552 reservePreviousStackSlotForValue(Ptrs[i], Builder); 553 } 554 555 // First, prefix the list with the number of unique values to be 556 // lowered. Note that this is the number of *Values* not the 557 // number of SDValues required to lower them. 558 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); 559 pushStackMapConstant(Ops, Builder, NumVMSArgs); 560 561 assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), 562 StatepointSite.vm_state_end())); 563 564 // The vm state arguments are lowered in an opaque manner. We do 565 // not know what type of values are contained within. We skip the 566 // first one since that happens to be the total number we lowered 567 // explicitly just above. We could have left it in the loop and 568 // not done it explicitly, but it's far easier to understand this 569 // way. 570 for (const Value *V : StatepointSite.vm_state_args()) { 571 SDValue Incoming = Builder.getValue(V); 572 lowerIncomingStatepointValue(Incoming, Ops, Builder); 573 } 574 575 // Finally, go ahead and lower all the gc arguments. There's no prefixed 576 // length for this one. After lowering, we'll have the base and pointer 577 // arrays interwoven with each (lowered) base pointer immediately followed by 578 // it's (lowered) derived pointer. i.e 579 // (base[0], ptr[0], base[1], ptr[1], ...) 580 for (unsigned i = 0; i < Bases.size(); ++i) { 581 const Value *Base = Bases[i]; 582 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 583 584 const Value *Ptr = Ptrs[i]; 585 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 586 } 587 588 // If there are any explicit spill slots passed to the statepoint, record 589 // them, but otherwise do not do anything special. These are user provided 590 // allocas and give control over placement to the consumer. In this case, 591 // it is the contents of the slot which may get updated, not the pointer to 592 // the alloca 593 for (Value *V : StatepointSite.gc_args()) { 594 SDValue Incoming = Builder.getValue(V); 595 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 596 // This handles allocas as arguments to the statepoint 597 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 598 Incoming.getValueType())); 599 } 600 } 601 602 // Record computed locations for all lowered values. 603 // This can not be embedded in lowering loops as we need to record *all* 604 // values, while previous loops account only values with unique SDValues. 605 const Instruction *StatepointInstr = 606 StatepointSite.getCallSite().getInstruction(); 607 auto &SpillMap = Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; 608 609 for (const GCRelocateInst *Relocate : StatepointSite.getRelocates()) { 610 const Value *V = Relocate->getDerivedPtr(); 611 SDValue SDV = Builder.getValue(V); 612 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 613 614 if (Loc.getNode()) { 615 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 616 } else { 617 // Record value as visited, but not spilled. This is case for allocas 618 // and constants. For this values we can avoid emitting spill load while 619 // visiting corresponding gc_relocate. 620 // Actually we do not need to record them in this map at all. 621 // We do this only to check that we are not relocating any unvisited 622 // value. 623 SpillMap[V] = None; 624 625 // Default llvm mechanisms for exporting values which are used in 626 // different basic blocks does not work for gc relocates. 627 // Note that it would be incorrect to teach llvm that all relocates are 628 // uses of the corresponding values so that it would automatically 629 // export them. Relocates of the spilled values does not use original 630 // value. 631 if (Relocate->getParent() != StatepointInstr->getParent()) 632 Builder.ExportFromCurrentBlock(V); 633 } 634 } 635 } 636 637 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 638 // Check some preconditions for sanity 639 assert(isStatepoint(&CI) && 640 "Function called must be the statepoint function"); 641 642 LowerStatepoint(ImmutableStatepoint(&CI)); 643 } 644 645 void SelectionDAGBuilder::LowerStatepoint( 646 ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) { 647 // The basic scheme here is that information about both the original call and 648 // the safepoint is encoded in the CallInst. We create a temporary call and 649 // lower it, then reverse engineer the calling sequence. 650 651 NumOfStatepoints++; 652 // Clear state 653 StatepointLowering.startNewStatepoint(*this); 654 655 ImmutableCallSite CS(ISP.getCallSite()); 656 657 #ifndef NDEBUG 658 // Consistency check. Check only relocates in the same basic block as thier 659 // statepoint. 660 for (const User *U : CS->users()) { 661 const CallInst *Call = cast<CallInst>(U); 662 if (isa<GCRelocateInst>(Call) && Call->getParent() == CS.getParent()) 663 StatepointLowering.scheduleRelocCall(*Call); 664 } 665 #endif 666 667 #ifndef NDEBUG 668 // If this is a malformed statepoint, report it early to simplify debugging. 669 // This should catch any IR level mistake that's made when constructing or 670 // transforming statepoints. 671 ISP.verify(); 672 673 // Check that the associated GCStrategy expects to encounter statepoints. 674 assert(GFI->getStrategy().useStatepoints() && 675 "GCStrategy does not expect to encounter statepoints"); 676 #endif 677 678 // Lower statepoint vmstate and gcstate arguments 679 SmallVector<SDValue, 10> LoweredMetaArgs; 680 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); 681 682 // Get call node, we will replace it later with statepoint 683 SDNode *CallNode = 684 lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports); 685 686 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 687 // nodes with all the appropriate arguments and return values. 688 689 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 690 SDValue Chain = CallNode->getOperand(0); 691 692 SDValue Glue; 693 bool CallHasIncomingGlue = CallNode->getGluedNode(); 694 if (CallHasIncomingGlue) { 695 // Glue is always last operand 696 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 697 } 698 699 // Build the GC_TRANSITION_START node if necessary. 700 // 701 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 702 // order in which they appear in the call to the statepoint intrinsic. If 703 // any of the operands is a pointer-typed, that operand is immediately 704 // followed by a SRCVALUE for the pointer that may be used during lowering 705 // (e.g. to form MachinePointerInfo values for loads/stores). 706 const bool IsGCTransition = 707 (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == 708 (uint64_t)StatepointFlags::GCTransition; 709 if (IsGCTransition) { 710 SmallVector<SDValue, 8> TSOps; 711 712 // Add chain 713 TSOps.push_back(Chain); 714 715 // Add GC transition arguments 716 for (const Value *V : ISP.gc_transition_args()) { 717 TSOps.push_back(getValue(V)); 718 if (V->getType()->isPointerTy()) 719 TSOps.push_back(DAG.getSrcValue(V)); 720 } 721 722 // Add glue if necessary 723 if (CallHasIncomingGlue) 724 TSOps.push_back(Glue); 725 726 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 727 728 SDValue GCTransitionStart = 729 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 730 731 Chain = GCTransitionStart.getValue(0); 732 Glue = GCTransitionStart.getValue(1); 733 } 734 735 // TODO: Currently, all of these operands are being marked as read/write in 736 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 737 // and flags to be read-only. 738 SmallVector<SDValue, 40> Ops; 739 740 // Add the <id> and <numBytes> constants. 741 Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); 742 Ops.push_back( 743 DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); 744 745 // Calculate and push starting position of vmstate arguments 746 // Get number of arguments incoming directly into call node 747 unsigned NumCallRegArgs = 748 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 749 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 750 751 // Add call target 752 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 753 Ops.push_back(CallTarget); 754 755 // Add call arguments 756 // Get position of register mask in the call 757 SDNode::op_iterator RegMaskIt; 758 if (CallHasIncomingGlue) 759 RegMaskIt = CallNode->op_end() - 2; 760 else 761 RegMaskIt = CallNode->op_end() - 1; 762 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 763 764 // Add a constant argument for the calling convention 765 pushStackMapConstant(Ops, *this, CS.getCallingConv()); 766 767 // Add a constant argument for the flags 768 uint64_t Flags = ISP.getFlags(); 769 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 770 "Unknown flag used"); 771 pushStackMapConstant(Ops, *this, Flags); 772 773 // Insert all vmstate and gcstate arguments 774 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 775 776 // Add register mask from call node 777 Ops.push_back(*RegMaskIt); 778 779 // Add chain 780 Ops.push_back(Chain); 781 782 // Same for the glue, but we add it only if original call had it 783 if (Glue.getNode()) 784 Ops.push_back(Glue); 785 786 // Compute return values. Provide a glue output since we consume one as 787 // input. This allows someone else to chain off us as needed. 788 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 789 790 SDNode *StatepointMCNode = 791 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 792 793 SDNode *SinkNode = StatepointMCNode; 794 795 // Build the GC_TRANSITION_END node if necessary. 796 // 797 // See the comment above regarding GC_TRANSITION_START for the layout of 798 // the operands to the GC_TRANSITION_END node. 799 if (IsGCTransition) { 800 SmallVector<SDValue, 8> TEOps; 801 802 // Add chain 803 TEOps.push_back(SDValue(StatepointMCNode, 0)); 804 805 // Add GC transition arguments 806 for (const Value *V : ISP.gc_transition_args()) { 807 TEOps.push_back(getValue(V)); 808 if (V->getType()->isPointerTy()) 809 TEOps.push_back(DAG.getSrcValue(V)); 810 } 811 812 // Add glue 813 TEOps.push_back(SDValue(StatepointMCNode, 1)); 814 815 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 816 817 SDValue GCTransitionStart = 818 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 819 820 SinkNode = GCTransitionStart.getNode(); 821 } 822 823 // Replace original call 824 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 825 // Remove original call node 826 DAG.DeleteNode(CallNode); 827 828 // DON'T set the root - under the assumption that it's already set past the 829 // inserted node we created. 830 831 // TODO: A better future implementation would be to emit a single variable 832 // argument, variable return value STATEPOINT node here and then hookup the 833 // return value of each gc.relocate to the respective output of the 834 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 835 // to actually be possible today. 836 } 837 838 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 839 // The result value of the gc_result is simply the result of the actual 840 // call. We've already emitted this, so just grab the value. 841 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 842 assert(isStatepoint(I) && "first argument must be a statepoint token"); 843 844 if (I->getParent() != CI.getParent()) { 845 // Statepoint is in different basic block so we should have stored call 846 // result in a virtual register. 847 // We can not use default getValue() functionality to copy value from this 848 // register because statepoint and actuall call return types can be 849 // different, and getValue() will use CopyFromReg of the wrong type, 850 // which is always i32 in our case. 851 PointerType *CalleeType = cast<PointerType>( 852 ImmutableStatepoint(I).getCalledValue()->getType()); 853 Type *RetTy = 854 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 855 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 856 857 assert(CopyFromReg.getNode()); 858 setValue(&CI, CopyFromReg); 859 } else { 860 setValue(&CI, getValue(I)); 861 } 862 } 863 864 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 865 #ifndef NDEBUG 866 // Consistency check 867 // We skip this check for relocates not in the same basic block as thier 868 // statepoint. It would be too expensive to preserve validation info through 869 // different basic blocks. 870 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 871 StatepointLowering.relocCallVisited(Relocate); 872 #endif 873 874 const Value *DerivedPtr = Relocate.getDerivedPtr(); 875 SDValue SD = getValue(DerivedPtr); 876 877 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 878 FuncInfo.StatepointRelocatedValues[Relocate.getStatepoint()]; 879 880 // We should have recorded location for this pointer 881 assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); 882 Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; 883 884 // We didn't need to spill these special cases (constants and allocas). 885 // See the handling in spillIncomingValueForStatepoint for detail. 886 if (!DerivedPtrLocation) { 887 setValue(&Relocate, SD); 888 return; 889 } 890 891 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 892 SD.getValueType()); 893 894 // Be conservative: flush all pending loads 895 // TODO: Probably we can be less restrictive on this, 896 // it may allow more scheduling opportunities. 897 SDValue Chain = getRoot(); 898 899 SDValue SpillLoad = 900 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 901 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 902 *DerivedPtrLocation), 903 false, false, false, 0); 904 905 // Again, be conservative, don't emit pending loads 906 DAG.setRoot(SpillLoad.getValue(1)); 907 908 assert(SpillLoad.getNode()); 909 setValue(&Relocate, SpillLoad); 910 } 911