1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/GCMetadata.h" 22 #include "llvm/CodeGen/GCStrategy.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/StackMaps.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "statepoint-lowering" 35 36 STATISTIC(NumSlotsAllocatedForStatepoints, 37 "Number of stack slots allocated for statepoints"); 38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 39 STATISTIC(StatepointMaxSlotsRequired, 40 "Maximum number of stack slots required for a singe statepoint"); 41 42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 43 SelectionDAGBuilder &Builder, uint64_t Value) { 44 SDLoc L = Builder.getCurSDLoc(); 45 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 46 MVT::i64)); 47 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 48 } 49 50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 51 // Consistency check 52 assert(PendingGCRelocateCalls.empty() && 53 "Trying to visit statepoint before finished processing previous one"); 54 Locations.clear(); 55 NextSlotToAllocate = 0; 56 // Need to resize this on each safepoint - we need the two to stay in sync and 57 // the clear patterns of a SelectionDAGBuilder have no relation to 58 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 59 AllocatedStackSlots.clear(); 60 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 61 } 62 63 void StatepointLoweringState::clear() { 64 Locations.clear(); 65 AllocatedStackSlots.clear(); 66 assert(PendingGCRelocateCalls.empty() && 67 "cleared before statepoint sequence completed"); 68 } 69 70 SDValue 71 StatepointLoweringState::allocateStackSlot(EVT ValueType, 72 SelectionDAGBuilder &Builder) { 73 NumSlotsAllocatedForStatepoints++; 74 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 75 76 unsigned SpillSize = ValueType.getSizeInBits() / 8; 77 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 78 79 // First look for a previously created stack slot which is not in 80 // use (accounting for the fact arbitrary slots may already be 81 // reserved), or to create a new stack slot and use it. 82 83 const size_t NumSlots = AllocatedStackSlots.size(); 84 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 85 86 assert(AllocatedStackSlots.size() == 87 Builder.FuncInfo.StatepointStackSlots.size() && 88 "Broken invariant"); 89 90 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 91 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 92 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 93 if (MFI.getObjectSize(FI) == SpillSize) { 94 AllocatedStackSlots.set(NextSlotToAllocate); 95 // TODO: Is ValueType the right thing to use here? 96 return Builder.DAG.getFrameIndex(FI, ValueType); 97 } 98 } 99 } 100 101 // Couldn't find a free slot, so create a new one: 102 103 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 104 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 105 MFI.markAsStatepointSpillSlotObjectIndex(FI); 106 107 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 108 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 109 assert(AllocatedStackSlots.size() == 110 Builder.FuncInfo.StatepointStackSlots.size() && 111 "Broken invariant"); 112 113 StatepointMaxSlotsRequired = std::max<unsigned long>( 114 StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size()); 115 116 return SpillSlot; 117 } 118 119 /// Utility function for reservePreviousStackSlotForValue. Tries to find 120 /// stack slot index to which we have spilled value for previous statepoints. 121 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 122 static Optional<int> findPreviousSpillSlot(const Value *Val, 123 SelectionDAGBuilder &Builder, 124 int LookUpDepth) { 125 // Can not look any further - give up now 126 if (LookUpDepth <= 0) 127 return None; 128 129 // Spill location is known for gc relocates 130 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 131 const auto &SpillMap = 132 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 133 134 auto It = SpillMap.find(Relocate->getDerivedPtr()); 135 if (It == SpillMap.end()) 136 return None; 137 138 return It->second; 139 } 140 141 // Look through bitcast instructions. 142 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 143 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 144 145 // Look through phi nodes 146 // All incoming values should have same known stack slot, otherwise result 147 // is unknown. 148 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 149 Optional<int> MergedResult = None; 150 151 for (auto &IncomingValue : Phi->incoming_values()) { 152 Optional<int> SpillSlot = 153 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 154 if (!SpillSlot.hasValue()) 155 return None; 156 157 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 158 return None; 159 160 MergedResult = SpillSlot; 161 } 162 return MergedResult; 163 } 164 165 // TODO: We can do better for PHI nodes. In cases like this: 166 // ptr = phi(relocated_pointer, not_relocated_pointer) 167 // statepoint(ptr) 168 // We will return that stack slot for ptr is unknown. And later we might 169 // assign different stack slots for ptr and relocated_pointer. This limits 170 // llvm's ability to remove redundant stores. 171 // Unfortunately it's hard to accomplish in current infrastructure. 172 // We use this function to eliminate spill store completely, while 173 // in example we still need to emit store, but instead of any location 174 // we need to use special "preferred" location. 175 176 // TODO: handle simple updates. If a value is modified and the original 177 // value is no longer live, it would be nice to put the modified value in the 178 // same slot. This allows folding of the memory accesses for some 179 // instructions types (like an increment). 180 // statepoint (i) 181 // i1 = i+1 182 // statepoint (i1) 183 // However we need to be careful for cases like this: 184 // statepoint(i) 185 // i1 = i+1 186 // statepoint(i, i1) 187 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 188 // put handling of simple modifications in this function like it's done 189 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 190 // which we visit values is unspecified. 191 192 // Don't know any information about this instruction 193 return None; 194 } 195 196 /// Try to find existing copies of the incoming values in stack slots used for 197 /// statepoint spilling. If we can find a spill slot for the incoming value, 198 /// mark that slot as allocated, and reuse the same slot for this safepoint. 199 /// This helps to avoid series of loads and stores that only serve to reshuffle 200 /// values on the stack between calls. 201 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 202 SelectionDAGBuilder &Builder) { 203 204 SDValue Incoming = Builder.getValue(IncomingValue); 205 206 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 207 // We won't need to spill this, so no need to check for previously 208 // allocated stack slots 209 return; 210 } 211 212 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 213 if (OldLocation.getNode()) 214 // Duplicates in input 215 return; 216 217 const int LookUpDepth = 6; 218 Optional<int> Index = 219 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 220 if (!Index.hasValue()) 221 return; 222 223 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 224 225 auto SlotIt = find(StatepointSlots, *Index); 226 assert(SlotIt != StatepointSlots.end() && 227 "Value spilled to the unknown stack slot"); 228 229 // This is one of our dedicated lowering slots 230 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 231 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 232 // stack slot already assigned to someone else, can't use it! 233 // TODO: currently we reserve space for gc arguments after doing 234 // normal allocation for deopt arguments. We should reserve for 235 // _all_ deopt and gc arguments, then start allocating. This 236 // will prevent some moves being inserted when vm state changes, 237 // but gc state doesn't between two calls. 238 return; 239 } 240 // Reserve this stack slot 241 Builder.StatepointLowering.reserveStackSlot(Offset); 242 243 // Cache this slot so we find it when going through the normal 244 // assignment loop. 245 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 246 Builder.StatepointLowering.setLocation(Incoming, Loc); 247 } 248 249 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 250 /// is not required for correctness. It's purpose is to reduce the size of 251 /// StackMap section. It has no effect on the number of spill slots required 252 /// or the actual lowering. 253 static void 254 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 255 SmallVectorImpl<const Value *> &Ptrs, 256 SmallVectorImpl<const GCRelocateInst *> &Relocs, 257 SelectionDAGBuilder &Builder, 258 FunctionLoweringInfo::StatepointSpillMap &SSM) { 259 DenseMap<SDValue, const Value *> Seen; 260 261 SmallVector<const Value *, 64> NewBases, NewPtrs; 262 SmallVector<const GCRelocateInst *, 64> NewRelocs; 263 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 264 SDValue SD = Builder.getValue(Ptrs[i]); 265 auto SeenIt = Seen.find(SD); 266 267 if (SeenIt == Seen.end()) { 268 // Only add non-duplicates 269 NewBases.push_back(Bases[i]); 270 NewPtrs.push_back(Ptrs[i]); 271 NewRelocs.push_back(Relocs[i]); 272 Seen[SD] = Ptrs[i]; 273 } else { 274 // Duplicate pointer found, note in SSM and move on: 275 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 276 } 277 } 278 assert(Bases.size() >= NewBases.size()); 279 assert(Ptrs.size() >= NewPtrs.size()); 280 assert(Relocs.size() >= NewRelocs.size()); 281 Bases = NewBases; 282 Ptrs = NewPtrs; 283 Relocs = NewRelocs; 284 assert(Ptrs.size() == Bases.size()); 285 assert(Ptrs.size() == Relocs.size()); 286 } 287 288 /// Extract call from statepoint, lower it and return pointer to the 289 /// call node. Also update NodeMap so that getValue(statepoint) will 290 /// reference lowered call result 291 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 292 SelectionDAGBuilder::StatepointLoweringInfo &SI, 293 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 294 295 SDValue ReturnValue, CallEndVal; 296 std::tie(ReturnValue, CallEndVal) = 297 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 298 SDNode *CallEnd = CallEndVal.getNode(); 299 300 // Get a call instruction from the call sequence chain. Tail calls are not 301 // allowed. The following code is essentially reverse engineering X86's 302 // LowerCallTo. 303 // 304 // We are expecting DAG to have the following form: 305 // 306 // ch = eh_label (only in case of invoke statepoint) 307 // ch, glue = callseq_start ch 308 // ch, glue = X86::Call ch, glue 309 // ch, glue = callseq_end ch, glue 310 // get_return_value ch, glue 311 // 312 // get_return_value can either be a sequence of CopyFromReg instructions 313 // to grab the return value from the return register(s), or it can be a LOAD 314 // to load a value returned by reference via a stack slot. 315 316 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 317 if (HasDef) { 318 if (CallEnd->getOpcode() == ISD::LOAD) 319 CallEnd = CallEnd->getOperand(0).getNode(); 320 else 321 while (CallEnd->getOpcode() == ISD::CopyFromReg) 322 CallEnd = CallEnd->getOperand(0).getNode(); 323 } 324 325 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 326 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 327 } 328 329 /// Spill a value incoming to the statepoint. It might be either part of 330 /// vmstate 331 /// or gcstate. In both cases unconditionally spill it on the stack unless it 332 /// is a null constant. Return pair with first element being frame index 333 /// containing saved value and second element with outgoing chain from the 334 /// emitted store 335 static std::pair<SDValue, SDValue> 336 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 337 SelectionDAGBuilder &Builder) { 338 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 339 340 // Emit new store if we didn't do it for this ptr before 341 if (!Loc.getNode()) { 342 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 343 Builder); 344 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 345 // We use TargetFrameIndex so that isel will not select it into LEA 346 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 347 348 // TODO: We can create TokenFactor node instead of 349 // chaining stores one after another, this may allow 350 // a bit more optimal scheduling for them 351 352 #ifndef NDEBUG 353 // Right now we always allocate spill slots that are of the same 354 // size as the value we're about to spill (the size of spillee can 355 // vary since we spill vectors of pointers too). At some point we 356 // can consider allowing spills of smaller values to larger slots 357 // (i.e. change the '==' in the assert below to a '>='). 358 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 359 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 360 "Bad spill: stack slot does not match!"); 361 #endif 362 363 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 364 MachinePointerInfo::getFixedStack( 365 Builder.DAG.getMachineFunction(), Index)); 366 367 Builder.StatepointLowering.setLocation(Incoming, Loc); 368 } 369 370 assert(Loc.getNode()); 371 return std::make_pair(Loc, Chain); 372 } 373 374 /// Lower a single value incoming to a statepoint node. This value can be 375 /// either a deopt value or a gc value, the handling is the same. We special 376 /// case constants and allocas, then fall back to spilling if required. 377 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 378 SmallVectorImpl<SDValue> &Ops, 379 SelectionDAGBuilder &Builder) { 380 SDValue Chain = Builder.getRoot(); 381 382 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 383 // If the original value was a constant, make sure it gets recorded as 384 // such in the stackmap. This is required so that the consumer can 385 // parse any internal format to the deopt state. It also handles null 386 // pointers and other constant pointers in GC states. Note the constant 387 // vectors do not appear to actually hit this path and that anything larger 388 // than an i64 value (not type!) will fail asserts here. 389 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 390 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 391 // This handles allocas as arguments to the statepoint (this is only 392 // really meaningful for a deopt value. For GC, we'd be trying to 393 // relocate the address of the alloca itself?) 394 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 395 Incoming.getValueType())); 396 } else if (LiveInOnly) { 397 // If this value is live in (not live-on-return, or live-through), we can 398 // treat it the same way patchpoint treats it's "live in" values. We'll 399 // end up folding some of these into stack references, but they'll be 400 // handled by the register allocator. Note that we do not have the notion 401 // of a late use so these values might be placed in registers which are 402 // clobbered by the call. This is fine for live-in. 403 Ops.push_back(Incoming); 404 } else { 405 // Otherwise, locate a spill slot and explicitly spill it so it 406 // can be found by the runtime later. We currently do not support 407 // tracking values through callee saved registers to their eventual 408 // spill location. This would be a useful optimization, but would 409 // need to be optional since it requires a lot of complexity on the 410 // runtime side which not all would support. 411 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 412 Ops.push_back(Res.first); 413 Chain = Res.second; 414 } 415 416 Builder.DAG.setRoot(Chain); 417 } 418 419 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 420 /// lowering is described in lowerIncomingStatepointValue. This function is 421 /// responsible for lowering everything in the right position and playing some 422 /// tricks to avoid redundant stack manipulation where possible. On 423 /// completion, 'Ops' will contain ready to use operands for machine code 424 /// statepoint. The chain nodes will have already been created and the DAG root 425 /// will be set to the last value spilled (if any were). 426 static void 427 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 428 SelectionDAGBuilder::StatepointLoweringInfo &SI, 429 SelectionDAGBuilder &Builder) { 430 // Lower the deopt and gc arguments for this statepoint. Layout will be: 431 // deopt argument length, deopt arguments.., gc arguments... 432 #ifndef NDEBUG 433 if (auto *GFI = Builder.GFI) { 434 // Check that each of the gc pointer and bases we've gotten out of the 435 // safepoint is something the strategy thinks might be a pointer (or vector 436 // of pointers) into the GC heap. This is basically just here to help catch 437 // errors during statepoint insertion. TODO: This should actually be in the 438 // Verifier, but we can't get to the GCStrategy from there (yet). 439 GCStrategy &S = GFI->getStrategy(); 440 for (const Value *V : SI.Bases) { 441 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 442 if (Opt.hasValue()) { 443 assert(Opt.getValue() && 444 "non gc managed base pointer found in statepoint"); 445 } 446 } 447 for (const Value *V : SI.Ptrs) { 448 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 449 if (Opt.hasValue()) { 450 assert(Opt.getValue() && 451 "non gc managed derived pointer found in statepoint"); 452 } 453 } 454 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 455 } else { 456 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 457 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 458 } 459 #endif 460 461 // Figure out what lowering strategy we're going to use for each part 462 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 463 // as "live-through". A "live-through" variable is one which is "live-in", 464 // "live-out", and live throughout the lifetime of the call (i.e. we can find 465 // it from any PC within the transitive callee of the statepoint). In 466 // particular, if the callee spills callee preserved registers we may not 467 // be able to find a value placed in that register during the call. This is 468 // fine for live-out, but not for live-through. If we were willing to make 469 // assumptions about the code generator producing the callee, we could 470 // potentially allow live-through values in callee saved registers. 471 const bool LiveInDeopt = 472 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 473 474 auto isGCValue =[&](const Value *V) { 475 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 476 }; 477 478 // Before we actually start lowering (and allocating spill slots for values), 479 // reserve any stack slots which we judge to be profitable to reuse for a 480 // particular value. This is purely an optimization over the code below and 481 // doesn't change semantics at all. It is important for performance that we 482 // reserve slots for both deopt and gc values before lowering either. 483 for (const Value *V : SI.DeoptState) { 484 if (!LiveInDeopt || isGCValue(V)) 485 reservePreviousStackSlotForValue(V, Builder); 486 } 487 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 488 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 489 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 490 } 491 492 // First, prefix the list with the number of unique values to be 493 // lowered. Note that this is the number of *Values* not the 494 // number of SDValues required to lower them. 495 const int NumVMSArgs = SI.DeoptState.size(); 496 pushStackMapConstant(Ops, Builder, NumVMSArgs); 497 498 // The vm state arguments are lowered in an opaque manner. We do not know 499 // what type of values are contained within. 500 for (const Value *V : SI.DeoptState) { 501 SDValue Incoming = Builder.getValue(V); 502 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 503 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); 504 } 505 506 // Finally, go ahead and lower all the gc arguments. There's no prefixed 507 // length for this one. After lowering, we'll have the base and pointer 508 // arrays interwoven with each (lowered) base pointer immediately followed by 509 // it's (lowered) derived pointer. i.e 510 // (base[0], ptr[0], base[1], ptr[1], ...) 511 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 512 const Value *Base = SI.Bases[i]; 513 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 514 Ops, Builder); 515 516 const Value *Ptr = SI.Ptrs[i]; 517 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 518 Ops, Builder); 519 } 520 521 // If there are any explicit spill slots passed to the statepoint, record 522 // them, but otherwise do not do anything special. These are user provided 523 // allocas and give control over placement to the consumer. In this case, 524 // it is the contents of the slot which may get updated, not the pointer to 525 // the alloca 526 for (Value *V : SI.GCArgs) { 527 SDValue Incoming = Builder.getValue(V); 528 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 529 // This handles allocas as arguments to the statepoint 530 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 531 Incoming.getValueType())); 532 } 533 } 534 535 // Record computed locations for all lowered values. 536 // This can not be embedded in lowering loops as we need to record *all* 537 // values, while previous loops account only values with unique SDValues. 538 const Instruction *StatepointInstr = SI.StatepointInstr; 539 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 540 541 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 542 const Value *V = Relocate->getDerivedPtr(); 543 SDValue SDV = Builder.getValue(V); 544 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 545 546 if (Loc.getNode()) { 547 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 548 } else { 549 // Record value as visited, but not spilled. This is case for allocas 550 // and constants. For this values we can avoid emitting spill load while 551 // visiting corresponding gc_relocate. 552 // Actually we do not need to record them in this map at all. 553 // We do this only to check that we are not relocating any unvisited 554 // value. 555 SpillMap.SlotMap[V] = None; 556 557 // Default llvm mechanisms for exporting values which are used in 558 // different basic blocks does not work for gc relocates. 559 // Note that it would be incorrect to teach llvm that all relocates are 560 // uses of the corresponding values so that it would automatically 561 // export them. Relocates of the spilled values does not use original 562 // value. 563 if (Relocate->getParent() != StatepointInstr->getParent()) 564 Builder.ExportFromCurrentBlock(V); 565 } 566 } 567 } 568 569 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 570 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 571 // The basic scheme here is that information about both the original call and 572 // the safepoint is encoded in the CallInst. We create a temporary call and 573 // lower it, then reverse engineer the calling sequence. 574 575 NumOfStatepoints++; 576 // Clear state 577 StatepointLowering.startNewStatepoint(*this); 578 579 #ifndef NDEBUG 580 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 581 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 582 for (auto *Reloc : SI.GCRelocates) 583 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 584 StatepointLowering.scheduleRelocCall(*Reloc); 585 #endif 586 587 // Remove any redundant llvm::Values which map to the same SDValue as another 588 // input. Also has the effect of removing duplicates in the original 589 // llvm::Value input list as well. This is a useful optimization for 590 // reducing the size of the StackMap section. It has no other impact. 591 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 592 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 593 assert(SI.Bases.size() == SI.Ptrs.size() && 594 SI.Ptrs.size() == SI.GCRelocates.size()); 595 596 // Lower statepoint vmstate and gcstate arguments 597 SmallVector<SDValue, 10> LoweredMetaArgs; 598 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 599 600 // Now that we've emitted the spills, we need to update the root so that the 601 // call sequence is ordered correctly. 602 SI.CLI.setChain(getRoot()); 603 604 // Get call node, we will replace it later with statepoint 605 SDValue ReturnVal; 606 SDNode *CallNode; 607 std::tie(ReturnVal, CallNode) = 608 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 609 610 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 611 // nodes with all the appropriate arguments and return values. 612 613 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 614 SDValue Chain = CallNode->getOperand(0); 615 616 SDValue Glue; 617 bool CallHasIncomingGlue = CallNode->getGluedNode(); 618 if (CallHasIncomingGlue) { 619 // Glue is always last operand 620 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 621 } 622 623 // Build the GC_TRANSITION_START node if necessary. 624 // 625 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 626 // order in which they appear in the call to the statepoint intrinsic. If 627 // any of the operands is a pointer-typed, that operand is immediately 628 // followed by a SRCVALUE for the pointer that may be used during lowering 629 // (e.g. to form MachinePointerInfo values for loads/stores). 630 const bool IsGCTransition = 631 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 632 (uint64_t)StatepointFlags::GCTransition; 633 if (IsGCTransition) { 634 SmallVector<SDValue, 8> TSOps; 635 636 // Add chain 637 TSOps.push_back(Chain); 638 639 // Add GC transition arguments 640 for (const Value *V : SI.GCTransitionArgs) { 641 TSOps.push_back(getValue(V)); 642 if (V->getType()->isPointerTy()) 643 TSOps.push_back(DAG.getSrcValue(V)); 644 } 645 646 // Add glue if necessary 647 if (CallHasIncomingGlue) 648 TSOps.push_back(Glue); 649 650 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 651 652 SDValue GCTransitionStart = 653 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 654 655 Chain = GCTransitionStart.getValue(0); 656 Glue = GCTransitionStart.getValue(1); 657 } 658 659 // TODO: Currently, all of these operands are being marked as read/write in 660 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 661 // and flags to be read-only. 662 SmallVector<SDValue, 40> Ops; 663 664 // Add the <id> and <numBytes> constants. 665 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 666 Ops.push_back( 667 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 668 669 // Calculate and push starting position of vmstate arguments 670 // Get number of arguments incoming directly into call node 671 unsigned NumCallRegArgs = 672 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 673 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 674 675 // Add call target 676 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 677 Ops.push_back(CallTarget); 678 679 // Add call arguments 680 // Get position of register mask in the call 681 SDNode::op_iterator RegMaskIt; 682 if (CallHasIncomingGlue) 683 RegMaskIt = CallNode->op_end() - 2; 684 else 685 RegMaskIt = CallNode->op_end() - 1; 686 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 687 688 // Add a constant argument for the calling convention 689 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 690 691 // Add a constant argument for the flags 692 uint64_t Flags = SI.StatepointFlags; 693 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 694 "Unknown flag used"); 695 pushStackMapConstant(Ops, *this, Flags); 696 697 // Insert all vmstate and gcstate arguments 698 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 699 700 // Add register mask from call node 701 Ops.push_back(*RegMaskIt); 702 703 // Add chain 704 Ops.push_back(Chain); 705 706 // Same for the glue, but we add it only if original call had it 707 if (Glue.getNode()) 708 Ops.push_back(Glue); 709 710 // Compute return values. Provide a glue output since we consume one as 711 // input. This allows someone else to chain off us as needed. 712 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 713 714 SDNode *StatepointMCNode = 715 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 716 717 SDNode *SinkNode = StatepointMCNode; 718 719 // Build the GC_TRANSITION_END node if necessary. 720 // 721 // See the comment above regarding GC_TRANSITION_START for the layout of 722 // the operands to the GC_TRANSITION_END node. 723 if (IsGCTransition) { 724 SmallVector<SDValue, 8> TEOps; 725 726 // Add chain 727 TEOps.push_back(SDValue(StatepointMCNode, 0)); 728 729 // Add GC transition arguments 730 for (const Value *V : SI.GCTransitionArgs) { 731 TEOps.push_back(getValue(V)); 732 if (V->getType()->isPointerTy()) 733 TEOps.push_back(DAG.getSrcValue(V)); 734 } 735 736 // Add glue 737 TEOps.push_back(SDValue(StatepointMCNode, 1)); 738 739 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 740 741 SDValue GCTransitionStart = 742 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 743 744 SinkNode = GCTransitionStart.getNode(); 745 } 746 747 // Replace original call 748 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 749 // Remove original call node 750 DAG.DeleteNode(CallNode); 751 752 // DON'T set the root - under the assumption that it's already set past the 753 // inserted node we created. 754 755 // TODO: A better future implementation would be to emit a single variable 756 // argument, variable return value STATEPOINT node here and then hookup the 757 // return value of each gc.relocate to the respective output of the 758 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 759 // to actually be possible today. 760 761 return ReturnVal; 762 } 763 764 void 765 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 766 const BasicBlock *EHPadBB /*= nullptr*/) { 767 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 768 "anyregcc is not supported on statepoints!"); 769 770 #ifndef NDEBUG 771 // If this is a malformed statepoint, report it early to simplify debugging. 772 // This should catch any IR level mistake that's made when constructing or 773 // transforming statepoints. 774 ISP.verify(); 775 776 // Check that the associated GCStrategy expects to encounter statepoints. 777 assert(GFI->getStrategy().useStatepoints() && 778 "GCStrategy does not expect to encounter statepoints"); 779 #endif 780 781 SDValue ActualCallee; 782 783 if (ISP.getNumPatchBytes() > 0) { 784 // If we've been asked to emit a nop sequence instead of a call instruction 785 // for this statepoint then don't lower the call target, but use a constant 786 // `null` instead. Not lowering the call target lets statepoint clients get 787 // away without providing a physical address for the symbolic call target at 788 // link time. 789 790 const auto &TLI = DAG.getTargetLoweringInfo(); 791 const auto &DL = DAG.getDataLayout(); 792 793 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 794 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 795 } else { 796 ActualCallee = getValue(ISP.getCalledValue()); 797 } 798 799 StatepointLoweringInfo SI(DAG); 800 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 801 ImmutableStatepoint::CallArgsBeginPos, 802 ISP.getNumCallArgs(), ActualCallee, 803 ISP.getActualReturnType(), false /* IsPatchPoint */); 804 805 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 806 SI.GCRelocates.push_back(Relocate); 807 SI.Bases.push_back(Relocate->getBasePtr()); 808 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 809 } 810 811 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 812 SI.StatepointInstr = ISP.getInstruction(); 813 SI.GCTransitionArgs = 814 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 815 SI.ID = ISP.getID(); 816 SI.DeoptState = ArrayRef<const Use>(ISP.vm_state_begin(), ISP.vm_state_end()); 817 SI.StatepointFlags = ISP.getFlags(); 818 SI.NumPatchBytes = ISP.getNumPatchBytes(); 819 SI.EHPadBB = EHPadBB; 820 821 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 822 823 // Export the result value if needed 824 const GCResultInst *GCResult = ISP.getGCResult(); 825 Type *RetTy = ISP.getActualReturnType(); 826 if (!RetTy->isVoidTy() && GCResult) { 827 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 828 // Result value will be used in a different basic block so we need to 829 // export it now. Default exporting mechanism will not work here because 830 // statepoint call has a different type than the actual call. It means 831 // that by default llvm will create export register of the wrong type 832 // (always i32 in our case). So instead we need to create export register 833 // with correct type manually. 834 // TODO: To eliminate this problem we can remove gc.result intrinsics 835 // completely and make statepoint call to return a tuple. 836 unsigned Reg = FuncInfo.CreateRegs(RetTy); 837 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 838 DAG.getDataLayout(), Reg, RetTy); 839 SDValue Chain = DAG.getEntryNode(); 840 841 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 842 PendingExports.push_back(Chain); 843 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 844 } else { 845 // Result value will be used in a same basic block. Don't export it or 846 // perform any explicit register copies. 847 // We'll replace the actuall call node shortly. gc_result will grab 848 // this value. 849 setValue(ISP.getInstruction(), ReturnValue); 850 } 851 } else { 852 // The token value is never used from here on, just generate a poison value 853 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 854 } 855 } 856 857 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 858 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 859 bool VarArgDisallowed, bool ForceVoidReturnTy) { 860 StatepointLoweringInfo SI(DAG); 861 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 862 populateCallLoweringInfo( 863 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 864 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 865 false); 866 if (!VarArgDisallowed) 867 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 868 869 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 870 871 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 872 873 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 874 SI.ID = SD.StatepointID.getValueOr(DefaultID); 875 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 876 877 SI.DeoptState = 878 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 879 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 880 SI.EHPadBB = EHPadBB; 881 882 // NB! The GC arguments are deliberately left empty. 883 884 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 885 const Instruction *Inst = CS.getInstruction(); 886 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 887 setValue(Inst, ReturnVal); 888 } 889 } 890 891 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 892 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 893 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 894 /* VarArgDisallowed = */ false, 895 /* ForceVoidReturnTy = */ false); 896 } 897 898 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 899 // The result value of the gc_result is simply the result of the actual 900 // call. We've already emitted this, so just grab the value. 901 const Instruction *I = CI.getStatepoint(); 902 903 if (I->getParent() != CI.getParent()) { 904 // Statepoint is in different basic block so we should have stored call 905 // result in a virtual register. 906 // We can not use default getValue() functionality to copy value from this 907 // register because statepoint and actual call return types can be 908 // different, and getValue() will use CopyFromReg of the wrong type, 909 // which is always i32 in our case. 910 PointerType *CalleeType = cast<PointerType>( 911 ImmutableStatepoint(I).getCalledValue()->getType()); 912 Type *RetTy = 913 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 914 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 915 916 assert(CopyFromReg.getNode()); 917 setValue(&CI, CopyFromReg); 918 } else { 919 setValue(&CI, getValue(I)); 920 } 921 } 922 923 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 924 #ifndef NDEBUG 925 // Consistency check 926 // We skip this check for relocates not in the same basic block as their 927 // statepoint. It would be too expensive to preserve validation info through 928 // different basic blocks. 929 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 930 StatepointLowering.relocCallVisited(Relocate); 931 932 auto *Ty = Relocate.getType()->getScalarType(); 933 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 934 assert(*IsManaged && "Non gc managed pointer relocated!"); 935 #endif 936 937 const Value *DerivedPtr = Relocate.getDerivedPtr(); 938 SDValue SD = getValue(DerivedPtr); 939 940 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 941 auto SlotIt = SpillMap.find(DerivedPtr); 942 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 943 Optional<int> DerivedPtrLocation = SlotIt->second; 944 945 // We didn't need to spill these special cases (constants and allocas). 946 // See the handling in spillIncomingValueForStatepoint for detail. 947 if (!DerivedPtrLocation) { 948 setValue(&Relocate, SD); 949 return; 950 } 951 952 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 953 SD.getValueType()); 954 955 // Be conservative: flush all pending loads 956 // TODO: Probably we can be less restrictive on this, 957 // it may allow more scheduling opportunities. 958 SDValue Chain = getRoot(); 959 960 SDValue SpillLoad = 961 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 962 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 963 *DerivedPtrLocation)); 964 965 // Again, be conservative, don't emit pending loads 966 DAG.setRoot(SpillLoad.getValue(1)); 967 968 assert(SpillLoad.getNode()); 969 setValue(&Relocate, SpillLoad); 970 } 971 972 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 973 const auto &TLI = DAG.getTargetLoweringInfo(); 974 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 975 TLI.getPointerTy(DAG.getDataLayout())); 976 977 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 978 // call. We also do not lower the return value to any virtual register, and 979 // change the immediately following return to a trap instruction. 980 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 981 /* VarArgDisallowed = */ true, 982 /* ForceVoidReturnTy = */ true); 983 } 984 985 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 986 // We do not lower the return value from llvm.deoptimize to any virtual 987 // register, and change the immediately following return to a trap 988 // instruction. 989 if (DAG.getTarget().Options.TrapUnreachable) 990 DAG.setRoot( 991 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 992 } 993