1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/GCStrategy.h" 26 #include "llvm/CodeGen/ISDOpcodes.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <iterator> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "statepoint-lowering" 57 58 STATISTIC(NumSlotsAllocatedForStatepoints, 59 "Number of stack slots allocated for statepoints"); 60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 61 STATISTIC(StatepointMaxSlotsRequired, 62 "Maximum number of stack slots required for a singe statepoint"); 63 64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 65 SelectionDAGBuilder &Builder, uint64_t Value) { 66 SDLoc L = Builder.getCurSDLoc(); 67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 68 MVT::i64)); 69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 70 } 71 72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 73 // Consistency check 74 assert(PendingGCRelocateCalls.empty() && 75 "Trying to visit statepoint before finished processing previous one"); 76 Locations.clear(); 77 NextSlotToAllocate = 0; 78 // Need to resize this on each safepoint - we need the two to stay in sync and 79 // the clear patterns of a SelectionDAGBuilder have no relation to 80 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 81 AllocatedStackSlots.clear(); 82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 83 } 84 85 void StatepointLoweringState::clear() { 86 Locations.clear(); 87 AllocatedStackSlots.clear(); 88 assert(PendingGCRelocateCalls.empty() && 89 "cleared before statepoint sequence completed"); 90 } 91 92 SDValue 93 StatepointLoweringState::allocateStackSlot(EVT ValueType, 94 SelectionDAGBuilder &Builder) { 95 NumSlotsAllocatedForStatepoints++; 96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 97 98 unsigned SpillSize = ValueType.getStoreSize(); 99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 100 101 // First look for a previously created stack slot which is not in 102 // use (accounting for the fact arbitrary slots may already be 103 // reserved), or to create a new stack slot and use it. 104 105 const size_t NumSlots = AllocatedStackSlots.size(); 106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 107 108 assert(AllocatedStackSlots.size() == 109 Builder.FuncInfo.StatepointStackSlots.size() && 110 "Broken invariant"); 111 112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 115 if (MFI.getObjectSize(FI) == SpillSize) { 116 AllocatedStackSlots.set(NextSlotToAllocate); 117 // TODO: Is ValueType the right thing to use here? 118 return Builder.DAG.getFrameIndex(FI, ValueType); 119 } 120 } 121 } 122 123 // Couldn't find a free slot, so create a new one: 124 125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 127 MFI.markAsStatepointSpillSlotObjectIndex(FI); 128 129 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 131 assert(AllocatedStackSlots.size() == 132 Builder.FuncInfo.StatepointStackSlots.size() && 133 "Broken invariant"); 134 135 StatepointMaxSlotsRequired.updateMax( 136 Builder.FuncInfo.StatepointStackSlots.size()); 137 138 return SpillSlot; 139 } 140 141 /// Utility function for reservePreviousStackSlotForValue. Tries to find 142 /// stack slot index to which we have spilled value for previous statepoints. 143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 144 static Optional<int> findPreviousSpillSlot(const Value *Val, 145 SelectionDAGBuilder &Builder, 146 int LookUpDepth) { 147 // Can not look any further - give up now 148 if (LookUpDepth <= 0) 149 return None; 150 151 // Spill location is known for gc relocates 152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 153 const auto &SpillMap = 154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 155 156 auto It = SpillMap.find(Relocate->getDerivedPtr()); 157 if (It == SpillMap.end()) 158 return None; 159 160 return It->second; 161 } 162 163 // Look through bitcast instructions. 164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 166 167 // Look through phi nodes 168 // All incoming values should have same known stack slot, otherwise result 169 // is unknown. 170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 171 Optional<int> MergedResult = None; 172 173 for (auto &IncomingValue : Phi->incoming_values()) { 174 Optional<int> SpillSlot = 175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 176 if (!SpillSlot.hasValue()) 177 return None; 178 179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 180 return None; 181 182 MergedResult = SpillSlot; 183 } 184 return MergedResult; 185 } 186 187 // TODO: We can do better for PHI nodes. In cases like this: 188 // ptr = phi(relocated_pointer, not_relocated_pointer) 189 // statepoint(ptr) 190 // We will return that stack slot for ptr is unknown. And later we might 191 // assign different stack slots for ptr and relocated_pointer. This limits 192 // llvm's ability to remove redundant stores. 193 // Unfortunately it's hard to accomplish in current infrastructure. 194 // We use this function to eliminate spill store completely, while 195 // in example we still need to emit store, but instead of any location 196 // we need to use special "preferred" location. 197 198 // TODO: handle simple updates. If a value is modified and the original 199 // value is no longer live, it would be nice to put the modified value in the 200 // same slot. This allows folding of the memory accesses for some 201 // instructions types (like an increment). 202 // statepoint (i) 203 // i1 = i+1 204 // statepoint (i1) 205 // However we need to be careful for cases like this: 206 // statepoint(i) 207 // i1 = i+1 208 // statepoint(i, i1) 209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 210 // put handling of simple modifications in this function like it's done 211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 212 // which we visit values is unspecified. 213 214 // Don't know any information about this instruction 215 return None; 216 } 217 218 /// Try to find existing copies of the incoming values in stack slots used for 219 /// statepoint spilling. If we can find a spill slot for the incoming value, 220 /// mark that slot as allocated, and reuse the same slot for this safepoint. 221 /// This helps to avoid series of loads and stores that only serve to reshuffle 222 /// values on the stack between calls. 223 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 224 SelectionDAGBuilder &Builder) { 225 SDValue Incoming = Builder.getValue(IncomingValue); 226 227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 228 // We won't need to spill this, so no need to check for previously 229 // allocated stack slots 230 return; 231 } 232 233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 234 if (OldLocation.getNode()) 235 // Duplicates in input 236 return; 237 238 const int LookUpDepth = 6; 239 Optional<int> Index = 240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 241 if (!Index.hasValue()) 242 return; 243 244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 245 246 auto SlotIt = find(StatepointSlots, *Index); 247 assert(SlotIt != StatepointSlots.end() && 248 "Value spilled to the unknown stack slot"); 249 250 // This is one of our dedicated lowering slots 251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 253 // stack slot already assigned to someone else, can't use it! 254 // TODO: currently we reserve space for gc arguments after doing 255 // normal allocation for deopt arguments. We should reserve for 256 // _all_ deopt and gc arguments, then start allocating. This 257 // will prevent some moves being inserted when vm state changes, 258 // but gc state doesn't between two calls. 259 return; 260 } 261 // Reserve this stack slot 262 Builder.StatepointLowering.reserveStackSlot(Offset); 263 264 // Cache this slot so we find it when going through the normal 265 // assignment loop. 266 SDValue Loc = 267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 268 Builder.StatepointLowering.setLocation(Incoming, Loc); 269 } 270 271 /// Extract call from statepoint, lower it and return pointer to the 272 /// call node. Also update NodeMap so that getValue(statepoint) will 273 /// reference lowered call result 274 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 275 SelectionDAGBuilder::StatepointLoweringInfo &SI, 276 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 277 SDValue ReturnValue, CallEndVal; 278 std::tie(ReturnValue, CallEndVal) = 279 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 280 SDNode *CallEnd = CallEndVal.getNode(); 281 282 // Get a call instruction from the call sequence chain. Tail calls are not 283 // allowed. The following code is essentially reverse engineering X86's 284 // LowerCallTo. 285 // 286 // We are expecting DAG to have the following form: 287 // 288 // ch = eh_label (only in case of invoke statepoint) 289 // ch, glue = callseq_start ch 290 // ch, glue = X86::Call ch, glue 291 // ch, glue = callseq_end ch, glue 292 // get_return_value ch, glue 293 // 294 // get_return_value can either be a sequence of CopyFromReg instructions 295 // to grab the return value from the return register(s), or it can be a LOAD 296 // to load a value returned by reference via a stack slot. 297 298 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 299 if (HasDef) { 300 if (CallEnd->getOpcode() == ISD::LOAD) 301 CallEnd = CallEnd->getOperand(0).getNode(); 302 else 303 while (CallEnd->getOpcode() == ISD::CopyFromReg) 304 CallEnd = CallEnd->getOperand(0).getNode(); 305 } 306 307 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 308 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 309 } 310 311 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 312 FrameIndexSDNode &FI) { 313 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 314 auto MMOFlags = MachineMemOperand::MOStore | 315 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 316 auto &MFI = MF.getFrameInfo(); 317 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 318 MFI.getObjectSize(FI.getIndex()), 319 MFI.getObjectAlign(FI.getIndex())); 320 } 321 322 /// Spill a value incoming to the statepoint. It might be either part of 323 /// vmstate 324 /// or gcstate. In both cases unconditionally spill it on the stack unless it 325 /// is a null constant. Return pair with first element being frame index 326 /// containing saved value and second element with outgoing chain from the 327 /// emitted store 328 static std::tuple<SDValue, SDValue, MachineMemOperand*> 329 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 330 SelectionDAGBuilder &Builder) { 331 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 332 MachineMemOperand* MMO = nullptr; 333 334 // Emit new store if we didn't do it for this ptr before 335 if (!Loc.getNode()) { 336 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 337 Builder); 338 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 339 // We use TargetFrameIndex so that isel will not select it into LEA 340 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 341 342 // Right now we always allocate spill slots that are of the same 343 // size as the value we're about to spill (the size of spillee can 344 // vary since we spill vectors of pointers too). At some point we 345 // can consider allowing spills of smaller values to larger slots 346 // (i.e. change the '==' in the assert below to a '>='). 347 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 348 assert((MFI.getObjectSize(Index) * 8) == 349 (int64_t)Incoming.getValueSizeInBits() && 350 "Bad spill: stack slot does not match!"); 351 352 // Note: Using the alignment of the spill slot (rather than the abi or 353 // preferred alignment) is required for correctness when dealing with spill 354 // slots with preferred alignments larger than frame alignment.. 355 auto &MF = Builder.DAG.getMachineFunction(); 356 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 357 auto *StoreMMO = MF.getMachineMemOperand( 358 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 359 MFI.getObjectAlign(Index)); 360 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 361 StoreMMO); 362 363 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 364 365 Builder.StatepointLowering.setLocation(Incoming, Loc); 366 } 367 368 assert(Loc.getNode()); 369 return std::make_tuple(Loc, Chain, MMO); 370 } 371 372 /// Lower a single value incoming to a statepoint node. This value can be 373 /// either a deopt value or a gc value, the handling is the same. We special 374 /// case constants and allocas, then fall back to spilling if required. 375 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 376 SmallVectorImpl<SDValue> &Ops, 377 SmallVectorImpl<MachineMemOperand*> &MemRefs, 378 SelectionDAGBuilder &Builder) { 379 // Note: We know all of these spills are independent, but don't bother to 380 // exploit that chain wise. DAGCombine will happily do so as needed, so 381 // doing it here would be a small compile time win at most. 382 SDValue Chain = Builder.getRoot(); 383 384 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 385 // If the original value was a constant, make sure it gets recorded as 386 // such in the stackmap. This is required so that the consumer can 387 // parse any internal format to the deopt state. It also handles null 388 // pointers and other constant pointers in GC states. Note the constant 389 // vectors do not appear to actually hit this path and that anything larger 390 // than an i64 value (not type!) will fail asserts here. 391 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 392 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 393 // This handles allocas as arguments to the statepoint (this is only 394 // really meaningful for a deopt value. For GC, we'd be trying to 395 // relocate the address of the alloca itself?) 396 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 397 "Incoming value is a frame index!"); 398 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 399 Builder.getFrameIndexTy())); 400 401 auto &MF = Builder.DAG.getMachineFunction(); 402 auto *MMO = getMachineMemOperand(MF, *FI); 403 MemRefs.push_back(MMO); 404 405 } else if (LiveInOnly) { 406 // If this value is live in (not live-on-return, or live-through), we can 407 // treat it the same way patchpoint treats it's "live in" values. We'll 408 // end up folding some of these into stack references, but they'll be 409 // handled by the register allocator. Note that we do not have the notion 410 // of a late use so these values might be placed in registers which are 411 // clobbered by the call. This is fine for live-in. 412 Ops.push_back(Incoming); 413 } else { 414 // Otherwise, locate a spill slot and explicitly spill it so it 415 // can be found by the runtime later. We currently do not support 416 // tracking values through callee saved registers to their eventual 417 // spill location. This would be a useful optimization, but would 418 // need to be optional since it requires a lot of complexity on the 419 // runtime side which not all would support. 420 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 421 Ops.push_back(std::get<0>(Res)); 422 if (auto *MMO = std::get<2>(Res)) 423 MemRefs.push_back(MMO); 424 Chain = std::get<1>(Res);; 425 } 426 427 Builder.DAG.setRoot(Chain); 428 } 429 430 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 431 /// lowering is described in lowerIncomingStatepointValue. This function is 432 /// responsible for lowering everything in the right position and playing some 433 /// tricks to avoid redundant stack manipulation where possible. On 434 /// completion, 'Ops' will contain ready to use operands for machine code 435 /// statepoint. The chain nodes will have already been created and the DAG root 436 /// will be set to the last value spilled (if any were). 437 static void 438 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 439 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 440 SelectionDAGBuilder &Builder) { 441 // Lower the deopt and gc arguments for this statepoint. Layout will be: 442 // deopt argument length, deopt arguments.., gc arguments... 443 #ifndef NDEBUG 444 if (auto *GFI = Builder.GFI) { 445 // Check that each of the gc pointer and bases we've gotten out of the 446 // safepoint is something the strategy thinks might be a pointer (or vector 447 // of pointers) into the GC heap. This is basically just here to help catch 448 // errors during statepoint insertion. TODO: This should actually be in the 449 // Verifier, but we can't get to the GCStrategy from there (yet). 450 GCStrategy &S = GFI->getStrategy(); 451 for (const Value *V : SI.Bases) { 452 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 453 if (Opt.hasValue()) { 454 assert(Opt.getValue() && 455 "non gc managed base pointer found in statepoint"); 456 } 457 } 458 for (const Value *V : SI.Ptrs) { 459 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 460 if (Opt.hasValue()) { 461 assert(Opt.getValue() && 462 "non gc managed derived pointer found in statepoint"); 463 } 464 } 465 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 466 } else { 467 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 468 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 469 } 470 #endif 471 472 // Figure out what lowering strategy we're going to use for each part 473 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 474 // as "live-through". A "live-through" variable is one which is "live-in", 475 // "live-out", and live throughout the lifetime of the call (i.e. we can find 476 // it from any PC within the transitive callee of the statepoint). In 477 // particular, if the callee spills callee preserved registers we may not 478 // be able to find a value placed in that register during the call. This is 479 // fine for live-out, but not for live-through. If we were willing to make 480 // assumptions about the code generator producing the callee, we could 481 // potentially allow live-through values in callee saved registers. 482 const bool LiveInDeopt = 483 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 484 485 auto isGCValue = [&](const Value *V) { 486 auto *Ty = V->getType(); 487 if (!Ty->isPtrOrPtrVectorTy()) 488 return false; 489 if (auto *GFI = Builder.GFI) 490 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 491 return *IsManaged; 492 return true; // conservative 493 }; 494 495 // Before we actually start lowering (and allocating spill slots for values), 496 // reserve any stack slots which we judge to be profitable to reuse for a 497 // particular value. This is purely an optimization over the code below and 498 // doesn't change semantics at all. It is important for performance that we 499 // reserve slots for both deopt and gc values before lowering either. 500 for (const Value *V : SI.DeoptState) { 501 if (!LiveInDeopt || isGCValue(V)) 502 reservePreviousStackSlotForValue(V, Builder); 503 } 504 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 505 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 506 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 507 } 508 509 // First, prefix the list with the number of unique values to be 510 // lowered. Note that this is the number of *Values* not the 511 // number of SDValues required to lower them. 512 const int NumVMSArgs = SI.DeoptState.size(); 513 pushStackMapConstant(Ops, Builder, NumVMSArgs); 514 515 // The vm state arguments are lowered in an opaque manner. We do not know 516 // what type of values are contained within. 517 for (const Value *V : SI.DeoptState) { 518 SDValue Incoming; 519 // If this is a function argument at a static frame index, generate it as 520 // the frame index. 521 if (const Argument *Arg = dyn_cast<Argument>(V)) { 522 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 523 if (FI != INT_MAX) 524 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 525 } 526 if (!Incoming.getNode()) 527 Incoming = Builder.getValue(V); 528 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 529 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder); 530 } 531 532 // Finally, go ahead and lower all the gc arguments. There's no prefixed 533 // length for this one. After lowering, we'll have the base and pointer 534 // arrays interwoven with each (lowered) base pointer immediately followed by 535 // it's (lowered) derived pointer. i.e 536 // (base[0], ptr[0], base[1], ptr[1], ...) 537 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 538 const Value *Base = SI.Bases[i]; 539 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 540 Ops, MemRefs, Builder); 541 542 const Value *Ptr = SI.Ptrs[i]; 543 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 544 Ops, MemRefs, Builder); 545 } 546 547 // If there are any explicit spill slots passed to the statepoint, record 548 // them, but otherwise do not do anything special. These are user provided 549 // allocas and give control over placement to the consumer. In this case, 550 // it is the contents of the slot which may get updated, not the pointer to 551 // the alloca 552 for (Value *V : SI.GCArgs) { 553 SDValue Incoming = Builder.getValue(V); 554 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 555 // This handles allocas as arguments to the statepoint 556 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 557 "Incoming value is a frame index!"); 558 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 559 Builder.getFrameIndexTy())); 560 561 auto &MF = Builder.DAG.getMachineFunction(); 562 auto *MMO = getMachineMemOperand(MF, *FI); 563 MemRefs.push_back(MMO); 564 } 565 } 566 567 // Record computed locations for all lowered values. 568 // This can not be embedded in lowering loops as we need to record *all* 569 // values, while previous loops account only values with unique SDValues. 570 const Instruction *StatepointInstr = SI.StatepointInstr; 571 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 572 573 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 574 const Value *V = Relocate->getDerivedPtr(); 575 SDValue SDV = Builder.getValue(V); 576 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 577 578 if (Loc.getNode()) { 579 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 580 } else { 581 // Record value as visited, but not spilled. This is case for allocas 582 // and constants. For this values we can avoid emitting spill load while 583 // visiting corresponding gc_relocate. 584 // Actually we do not need to record them in this map at all. 585 // We do this only to check that we are not relocating any unvisited 586 // value. 587 SpillMap[V] = None; 588 589 // Default llvm mechanisms for exporting values which are used in 590 // different basic blocks does not work for gc relocates. 591 // Note that it would be incorrect to teach llvm that all relocates are 592 // uses of the corresponding values so that it would automatically 593 // export them. Relocates of the spilled values does not use original 594 // value. 595 if (Relocate->getParent() != StatepointInstr->getParent()) 596 Builder.ExportFromCurrentBlock(V); 597 } 598 } 599 } 600 601 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 602 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 603 // The basic scheme here is that information about both the original call and 604 // the safepoint is encoded in the CallInst. We create a temporary call and 605 // lower it, then reverse engineer the calling sequence. 606 607 NumOfStatepoints++; 608 // Clear state 609 StatepointLowering.startNewStatepoint(*this); 610 assert(SI.Bases.size() == SI.Ptrs.size() && 611 SI.Ptrs.size() <= SI.GCRelocates.size()); 612 613 #ifndef NDEBUG 614 for (auto *Reloc : SI.GCRelocates) 615 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 616 StatepointLowering.scheduleRelocCall(*Reloc); 617 #endif 618 619 // Lower statepoint vmstate and gcstate arguments 620 SmallVector<SDValue, 10> LoweredMetaArgs; 621 SmallVector<MachineMemOperand*, 16> MemRefs; 622 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 623 624 // Now that we've emitted the spills, we need to update the root so that the 625 // call sequence is ordered correctly. 626 SI.CLI.setChain(getRoot()); 627 628 // Get call node, we will replace it later with statepoint 629 SDValue ReturnVal; 630 SDNode *CallNode; 631 std::tie(ReturnVal, CallNode) = 632 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 633 634 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 635 // nodes with all the appropriate arguments and return values. 636 637 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 638 SDValue Chain = CallNode->getOperand(0); 639 640 SDValue Glue; 641 bool CallHasIncomingGlue = CallNode->getGluedNode(); 642 if (CallHasIncomingGlue) { 643 // Glue is always last operand 644 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 645 } 646 647 // Build the GC_TRANSITION_START node if necessary. 648 // 649 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 650 // order in which they appear in the call to the statepoint intrinsic. If 651 // any of the operands is a pointer-typed, that operand is immediately 652 // followed by a SRCVALUE for the pointer that may be used during lowering 653 // (e.g. to form MachinePointerInfo values for loads/stores). 654 const bool IsGCTransition = 655 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 656 (uint64_t)StatepointFlags::GCTransition; 657 if (IsGCTransition) { 658 SmallVector<SDValue, 8> TSOps; 659 660 // Add chain 661 TSOps.push_back(Chain); 662 663 // Add GC transition arguments 664 for (const Value *V : SI.GCTransitionArgs) { 665 TSOps.push_back(getValue(V)); 666 if (V->getType()->isPointerTy()) 667 TSOps.push_back(DAG.getSrcValue(V)); 668 } 669 670 // Add glue if necessary 671 if (CallHasIncomingGlue) 672 TSOps.push_back(Glue); 673 674 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 675 676 SDValue GCTransitionStart = 677 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 678 679 Chain = GCTransitionStart.getValue(0); 680 Glue = GCTransitionStart.getValue(1); 681 } 682 683 // TODO: Currently, all of these operands are being marked as read/write in 684 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 685 // and flags to be read-only. 686 SmallVector<SDValue, 40> Ops; 687 688 // Add the <id> and <numBytes> constants. 689 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 690 Ops.push_back( 691 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 692 693 // Calculate and push starting position of vmstate arguments 694 // Get number of arguments incoming directly into call node 695 unsigned NumCallRegArgs = 696 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 697 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 698 699 // Add call target 700 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 701 Ops.push_back(CallTarget); 702 703 // Add call arguments 704 // Get position of register mask in the call 705 SDNode::op_iterator RegMaskIt; 706 if (CallHasIncomingGlue) 707 RegMaskIt = CallNode->op_end() - 2; 708 else 709 RegMaskIt = CallNode->op_end() - 1; 710 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 711 712 // Add a constant argument for the calling convention 713 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 714 715 // Add a constant argument for the flags 716 uint64_t Flags = SI.StatepointFlags; 717 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 718 "Unknown flag used"); 719 pushStackMapConstant(Ops, *this, Flags); 720 721 // Insert all vmstate and gcstate arguments 722 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 723 724 // Add register mask from call node 725 Ops.push_back(*RegMaskIt); 726 727 // Add chain 728 Ops.push_back(Chain); 729 730 // Same for the glue, but we add it only if original call had it 731 if (Glue.getNode()) 732 Ops.push_back(Glue); 733 734 // Compute return values. Provide a glue output since we consume one as 735 // input. This allows someone else to chain off us as needed. 736 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 737 738 MachineSDNode *StatepointMCNode = 739 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 740 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 741 742 SDNode *SinkNode = StatepointMCNode; 743 744 // Build the GC_TRANSITION_END node if necessary. 745 // 746 // See the comment above regarding GC_TRANSITION_START for the layout of 747 // the operands to the GC_TRANSITION_END node. 748 if (IsGCTransition) { 749 SmallVector<SDValue, 8> TEOps; 750 751 // Add chain 752 TEOps.push_back(SDValue(StatepointMCNode, 0)); 753 754 // Add GC transition arguments 755 for (const Value *V : SI.GCTransitionArgs) { 756 TEOps.push_back(getValue(V)); 757 if (V->getType()->isPointerTy()) 758 TEOps.push_back(DAG.getSrcValue(V)); 759 } 760 761 // Add glue 762 TEOps.push_back(SDValue(StatepointMCNode, 1)); 763 764 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 765 766 SDValue GCTransitionStart = 767 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 768 769 SinkNode = GCTransitionStart.getNode(); 770 } 771 772 // Replace original call 773 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 774 // Remove original call node 775 DAG.DeleteNode(CallNode); 776 777 // DON'T set the root - under the assumption that it's already set past the 778 // inserted node we created. 779 780 // TODO: A better future implementation would be to emit a single variable 781 // argument, variable return value STATEPOINT node here and then hookup the 782 // return value of each gc.relocate to the respective output of the 783 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 784 // to actually be possible today. 785 786 return ReturnVal; 787 } 788 789 void 790 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 791 const BasicBlock *EHPadBB /*= nullptr*/) { 792 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && 793 "anyregcc is not supported on statepoints!"); 794 795 #ifndef NDEBUG 796 // If this is a malformed statepoint, report it early to simplify debugging. 797 // This should catch any IR level mistake that's made when constructing or 798 // transforming statepoints. 799 ISP.verify(); 800 801 // Check that the associated GCStrategy expects to encounter statepoints. 802 assert(GFI->getStrategy().useStatepoints() && 803 "GCStrategy does not expect to encounter statepoints"); 804 #endif 805 806 SDValue ActualCallee; 807 808 if (ISP.getNumPatchBytes() > 0) { 809 // If we've been asked to emit a nop sequence instead of a call instruction 810 // for this statepoint then don't lower the call target, but use a constant 811 // `null` instead. Not lowering the call target lets statepoint clients get 812 // away without providing a physical address for the symbolic call target at 813 // link time. 814 815 const auto &TLI = DAG.getTargetLoweringInfo(); 816 const auto &DL = DAG.getDataLayout(); 817 818 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 819 ActualCallee = 820 DAG.getTargetConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 821 } else { 822 ActualCallee = getValue(ISP.getCalledValue()); 823 } 824 825 StatepointLoweringInfo SI(DAG); 826 populateCallLoweringInfo(SI.CLI, ISP.getCall(), 827 ImmutableStatepoint::CallArgsBeginPos, 828 ISP.getNumCallArgs(), ActualCallee, 829 ISP.getActualReturnType(), false /* IsPatchPoint */); 830 831 // There may be duplication in the gc.relocate list; such as two copies of 832 // each relocation on normal and exceptional path for an invoke. We only 833 // need to spill once and record one copy in the stackmap, but we need to 834 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 835 // handled as a CSE problem elsewhere.) 836 // TODO: There a couple of major stackmap size optimizations we could do 837 // here if we wished. 838 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 839 // record {B,B} if it's seen later. 840 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 841 // given that, we could change the format to record base pointer relocations 842 // separately with half the space. This would require a format rev and a 843 // fairly major rework of the STATEPOINT node though. 844 SmallSet<SDValue, 8> Seen; 845 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 846 SI.GCRelocates.push_back(Relocate); 847 848 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 849 if (Seen.insert(DerivedSD).second) { 850 SI.Bases.push_back(Relocate->getBasePtr()); 851 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 852 } 853 } 854 855 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 856 SI.StatepointInstr = ISP.getInstruction(); 857 SI.GCTransitionArgs = ArrayRef<const Use>(ISP.gc_transition_args_begin(), 858 ISP.gc_transition_args_end()); 859 SI.ID = ISP.getID(); 860 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 861 SI.StatepointFlags = ISP.getFlags(); 862 SI.NumPatchBytes = ISP.getNumPatchBytes(); 863 SI.EHPadBB = EHPadBB; 864 865 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 866 867 // Export the result value if needed 868 const GCResultInst *GCResult = ISP.getGCResult(); 869 Type *RetTy = ISP.getActualReturnType(); 870 if (!RetTy->isVoidTy() && GCResult) { 871 if (GCResult->getParent() != ISP.getCall()->getParent()) { 872 // Result value will be used in a different basic block so we need to 873 // export it now. Default exporting mechanism will not work here because 874 // statepoint call has a different type than the actual call. It means 875 // that by default llvm will create export register of the wrong type 876 // (always i32 in our case). So instead we need to create export register 877 // with correct type manually. 878 // TODO: To eliminate this problem we can remove gc.result intrinsics 879 // completely and make statepoint call to return a tuple. 880 unsigned Reg = FuncInfo.CreateRegs(RetTy); 881 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 882 DAG.getDataLayout(), Reg, RetTy, 883 ISP.getCall()->getCallingConv()); 884 SDValue Chain = DAG.getEntryNode(); 885 886 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 887 PendingExports.push_back(Chain); 888 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 889 } else { 890 // Result value will be used in a same basic block. Don't export it or 891 // perform any explicit register copies. 892 // We'll replace the actuall call node shortly. gc_result will grab 893 // this value. 894 setValue(ISP.getInstruction(), ReturnValue); 895 } 896 } else { 897 // The token value is never used from here on, just generate a poison value 898 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 899 } 900 } 901 902 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 903 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 904 bool VarArgDisallowed, bool ForceVoidReturnTy) { 905 StatepointLoweringInfo SI(DAG); 906 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 907 populateCallLoweringInfo( 908 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 909 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 910 false); 911 if (!VarArgDisallowed) 912 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 913 914 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 915 916 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 917 918 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 919 SI.ID = SD.StatepointID.getValueOr(DefaultID); 920 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 921 922 SI.DeoptState = 923 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 924 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 925 SI.EHPadBB = EHPadBB; 926 927 // NB! The GC arguments are deliberately left empty. 928 929 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 930 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 931 setValue(Call, ReturnVal); 932 } 933 } 934 935 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 936 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 937 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 938 /* VarArgDisallowed = */ false, 939 /* ForceVoidReturnTy = */ false); 940 } 941 942 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 943 // The result value of the gc_result is simply the result of the actual 944 // call. We've already emitted this, so just grab the value. 945 const Instruction *I = CI.getStatepoint(); 946 947 if (I->getParent() != CI.getParent()) { 948 // Statepoint is in different basic block so we should have stored call 949 // result in a virtual register. 950 // We can not use default getValue() functionality to copy value from this 951 // register because statepoint and actual call return types can be 952 // different, and getValue() will use CopyFromReg of the wrong type, 953 // which is always i32 in our case. 954 PointerType *CalleeType = cast<PointerType>( 955 ImmutableStatepoint(I).getCalledValue()->getType()); 956 Type *RetTy = 957 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 958 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 959 960 assert(CopyFromReg.getNode()); 961 setValue(&CI, CopyFromReg); 962 } else { 963 setValue(&CI, getValue(I)); 964 } 965 } 966 967 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 968 #ifndef NDEBUG 969 // Consistency check 970 // We skip this check for relocates not in the same basic block as their 971 // statepoint. It would be too expensive to preserve validation info through 972 // different basic blocks. 973 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 974 StatepointLowering.relocCallVisited(Relocate); 975 976 auto *Ty = Relocate.getType()->getScalarType(); 977 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 978 assert(*IsManaged && "Non gc managed pointer relocated!"); 979 #endif 980 981 const Value *DerivedPtr = Relocate.getDerivedPtr(); 982 SDValue SD = getValue(DerivedPtr); 983 984 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 985 auto SlotIt = SpillMap.find(DerivedPtr); 986 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 987 Optional<int> DerivedPtrLocation = SlotIt->second; 988 989 // We didn't need to spill these special cases (constants and allocas). 990 // See the handling in spillIncomingValueForStatepoint for detail. 991 if (!DerivedPtrLocation) { 992 setValue(&Relocate, SD); 993 return; 994 } 995 996 unsigned Index = *DerivedPtrLocation; 997 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 998 999 // All the reloads are independent and are reading memory only modified by 1000 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1001 // this this let's CSE kick in for free and allows reordering of instructions 1002 // if possible. The lowering for statepoint sets the root, so this is 1003 // ordering all reloads with the either a) the statepoint node itself, or b) 1004 // the entry of the current block for an invoke statepoint. 1005 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1006 1007 auto &MF = DAG.getMachineFunction(); 1008 auto &MFI = MF.getFrameInfo(); 1009 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1010 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1011 MFI.getObjectSize(Index), 1012 MFI.getObjectAlign(Index)); 1013 1014 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1015 Relocate.getType()); 1016 1017 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1018 SpillSlot, LoadMMO); 1019 PendingLoads.push_back(SpillLoad.getValue(1)); 1020 1021 assert(SpillLoad.getNode()); 1022 setValue(&Relocate, SpillLoad); 1023 } 1024 1025 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1026 const auto &TLI = DAG.getTargetLoweringInfo(); 1027 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1028 TLI.getPointerTy(DAG.getDataLayout())); 1029 1030 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1031 // call. We also do not lower the return value to any virtual register, and 1032 // change the immediately following return to a trap instruction. 1033 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1034 /* VarArgDisallowed = */ true, 1035 /* ForceVoidReturnTy = */ true); 1036 } 1037 1038 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1039 // We do not lower the return value from llvm.deoptimize to any virtual 1040 // register, and change the immediately following return to a trap 1041 // instruction. 1042 if (DAG.getTarget().Options.TrapUnreachable) 1043 DAG.setRoot( 1044 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1045 } 1046