1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 42 SelectionDAGBuilder &Builder, uint64_t Value) { 43 SDLoc L = Builder.getCurSDLoc(); 44 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 45 MVT::i64)); 46 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 47 } 48 49 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 50 // Consistency check 51 assert(PendingGCRelocateCalls.empty() && 52 "Trying to visit statepoint before finished processing previous one"); 53 Locations.clear(); 54 NextSlotToAllocate = 0; 55 // Need to resize this on each safepoint - we need the two to stay in 56 // sync and the clear patterns of a SelectionDAGBuilder have no relation 57 // to FunctionLoweringInfo. 58 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 59 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 60 AllocatedStackSlots[i] = false; 61 } 62 } 63 64 void StatepointLoweringState::clear() { 65 Locations.clear(); 66 AllocatedStackSlots.clear(); 67 assert(PendingGCRelocateCalls.empty() && 68 "cleared before statepoint sequence completed"); 69 } 70 71 SDValue 72 StatepointLoweringState::allocateStackSlot(EVT ValueType, 73 SelectionDAGBuilder &Builder) { 74 75 NumSlotsAllocatedForStatepoints++; 76 77 // The basic scheme here is to first look for a previously created stack slot 78 // which is not in use (accounting for the fact arbitrary slots may already 79 // be reserved), or to create a new stack slot and use it. 80 81 // If this doesn't succeed in 40000 iterations, something is seriously wrong 82 for (int i = 0; i < 40000; i++) { 83 assert(Builder.FuncInfo.StatepointStackSlots.size() == 84 AllocatedStackSlots.size() && 85 "broken invariant"); 86 const size_t NumSlots = AllocatedStackSlots.size(); 87 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 88 89 if (NextSlotToAllocate >= NumSlots) { 90 assert(NextSlotToAllocate == NumSlots); 91 // record stats 92 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 93 StatepointMaxSlotsRequired = NumSlots + 1; 94 } 95 96 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 97 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 98 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 99 AllocatedStackSlots.push_back(true); 100 return SpillSlot; 101 } 102 if (!AllocatedStackSlots[NextSlotToAllocate]) { 103 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 104 AllocatedStackSlots[NextSlotToAllocate] = true; 105 return Builder.DAG.getFrameIndex(FI, ValueType); 106 } 107 // Note: We deliberately choose to advance this only on the failing path. 108 // Doing so on the suceeding path involes a bit of complexity that caused a 109 // minor bug previously. Unless performance shows this matters, please 110 // keep this code as simple as possible. 111 NextSlotToAllocate++; 112 } 113 llvm_unreachable("infinite loop?"); 114 } 115 116 /// Try to find existing copies of the incoming values in stack slots used for 117 /// statepoint spilling. If we can find a spill slot for the incoming value, 118 /// mark that slot as allocated, and reuse the same slot for this safepoint. 119 /// This helps to avoid series of loads and stores that only serve to resuffle 120 /// values on the stack between calls. 121 static void reservePreviousStackSlotForValue(SDValue Incoming, 122 SelectionDAGBuilder &Builder) { 123 124 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 125 // We won't need to spill this, so no need to check for previously 126 // allocated stack slots 127 return; 128 } 129 130 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 131 if (Loc.getNode()) { 132 // duplicates in input 133 return; 134 } 135 136 // Search back for the load from a stack slot pattern to find the original 137 // slot we allocated for this value. We could extend this to deal with 138 // simple modification patterns, but simple dealing with trivial load/store 139 // sequences helps a lot already. 140 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) { 141 if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) { 142 const int Index = FI->getIndex(); 143 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 144 Builder.FuncInfo.StatepointStackSlots.end(), Index); 145 if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) { 146 // not one of the lowering stack slots, can't reuse! 147 // TODO: Actually, we probably could reuse the stack slot if the value 148 // hasn't changed at all, but we'd need to look for intervening writes 149 return; 150 } else { 151 // This is one of our dedicated lowering slots 152 const int Offset = 153 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 154 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 155 // stack slot already assigned to someone else, can't use it! 156 // TODO: currently we reserve space for gc arguments after doing 157 // normal allocation for deopt arguments. We should reserve for 158 // _all_ deopt and gc arguments, then start allocating. This 159 // will prevent some moves being inserted when vm state changes, 160 // but gc state doesn't between two calls. 161 return; 162 } 163 // Reserve this stack slot 164 Builder.StatepointLowering.reserveStackSlot(Offset); 165 } 166 167 // Cache this slot so we find it when going through the normal 168 // assignment loop. 169 SDValue Loc = 170 Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 171 172 Builder.StatepointLowering.setLocation(Incoming, Loc); 173 } 174 } 175 176 // TODO: handle case where a reloaded value flows through a phi to 177 // another safepoint. e.g. 178 // bb1: 179 // a' = relocated... 180 // bb2: % pred: bb1, bb3, bb4, etc. 181 // a_phi = phi(a', ...) 182 // statepoint ... a_phi 183 // NOTE: This will require reasoning about cross basic block values. This is 184 // decidedly non trivial and this might not be the right place to do it. We 185 // don't really have the information we need here... 186 187 // TODO: handle simple updates. If a value is modified and the original 188 // value is no longer live, it would be nice to put the modified value in the 189 // same slot. This allows folding of the memory accesses for some 190 // instructions types (like an increment). 191 // statepoint (i) 192 // i1 = i+1 193 // statepoint (i1) 194 } 195 196 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 197 /// is not required for correctness. It's purpose is to reduce the size of 198 /// StackMap section. It has no effect on the number of spill slots required 199 /// or the actual lowering. 200 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 201 SmallVectorImpl<const Value *> &Ptrs, 202 SmallVectorImpl<const Value *> &Relocs, 203 SelectionDAGBuilder &Builder) { 204 205 // This is horribly ineffecient, but I don't care right now 206 SmallSet<SDValue, 64> Seen; 207 208 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 209 for (size_t i = 0; i < Ptrs.size(); i++) { 210 SDValue SD = Builder.getValue(Ptrs[i]); 211 // Only add non-duplicates 212 if (Seen.count(SD) == 0) { 213 NewBases.push_back(Bases[i]); 214 NewPtrs.push_back(Ptrs[i]); 215 NewRelocs.push_back(Relocs[i]); 216 } 217 Seen.insert(SD); 218 } 219 assert(Bases.size() >= NewBases.size()); 220 assert(Ptrs.size() >= NewPtrs.size()); 221 assert(Relocs.size() >= NewRelocs.size()); 222 Bases = NewBases; 223 Ptrs = NewPtrs; 224 Relocs = NewRelocs; 225 assert(Ptrs.size() == Bases.size()); 226 assert(Ptrs.size() == Relocs.size()); 227 } 228 229 /// Extract call from statepoint, lower it and return pointer to the 230 /// call node. Also update NodeMap so that getValue(statepoint) will 231 /// reference lowered call result 232 static SDNode * 233 lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad, 234 SelectionDAGBuilder &Builder, 235 SmallVectorImpl<SDValue> &PendingExports) { 236 237 ImmutableCallSite CS(ISP.getCallSite()); 238 239 SDValue ActualCallee = Builder.getValue(ISP.getActualCallee()); 240 241 // Handle immediate and symbolic callees. 242 if (auto *ConstCallee = dyn_cast<ConstantSDNode>(ActualCallee.getNode())) 243 ActualCallee = Builder.DAG.getIntPtrConstant(ConstCallee->getZExtValue(), 244 Builder.getCurSDLoc(), 245 /*isTarget=*/true); 246 else if (auto *SymbolicCallee = 247 dyn_cast<GlobalAddressSDNode>(ActualCallee.getNode())) 248 ActualCallee = Builder.DAG.getTargetGlobalAddress( 249 SymbolicCallee->getGlobal(), SDLoc(SymbolicCallee), 250 SymbolicCallee->getValueType(0)); 251 252 assert(CS.getCallingConv() != CallingConv::AnyReg && 253 "anyregcc is not supported on statepoints!"); 254 255 Type *DefTy = ISP.getActualReturnType(); 256 bool HasDef = !DefTy->isVoidTy(); 257 258 SDValue ReturnValue, CallEndVal; 259 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( 260 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, 261 ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad, 262 false /* IsPatchPoint */); 263 264 SDNode *CallEnd = CallEndVal.getNode(); 265 266 // Get a call instruction from the call sequence chain. Tail calls are not 267 // allowed. The following code is essentially reverse engineering X86's 268 // LowerCallTo. 269 // 270 // We are expecting DAG to have the following form: 271 // 272 // ch = eh_label (only in case of invoke statepoint) 273 // ch, glue = callseq_start ch 274 // ch, glue = X86::Call ch, glue 275 // ch, glue = callseq_end ch, glue 276 // get_return_value ch, glue 277 // 278 // get_return_value can either be a CopyFromReg to grab the return value from 279 // %RAX, or it can be a LOAD to load a value returned by reference via a stack 280 // slot. 281 282 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg || 283 CallEnd->getOpcode() == ISD::LOAD)) 284 CallEnd = CallEnd->getOperand(0).getNode(); 285 286 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 287 288 if (HasDef) { 289 if (CS.isInvoke()) { 290 // Result value will be used in different basic block for invokes 291 // so we need to export it now. But statepoint call has a different type 292 // than the actuall call. It means that standart exporting mechanism will 293 // create register of the wrong type. So instead we need to create 294 // register with correct type and save value into it manually. 295 // TODO: To eliminate this problem we can remove gc.result intrinsics 296 // completelly and make statepoint call to return a tuple. 297 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); 298 RegsForValue RFV(*Builder.DAG.getContext(), 299 Builder.DAG.getTargetLoweringInfo(), Reg, 300 ISP.getActualReturnType()); 301 SDValue Chain = Builder.DAG.getEntryNode(); 302 303 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, 304 nullptr); 305 PendingExports.push_back(Chain); 306 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; 307 } else { 308 // The value of the statepoint itself will be the value of call itself. 309 // We'll replace the actually call node shortly. gc_result will grab 310 // this value. 311 Builder.setValue(CS.getInstruction(), ReturnValue); 312 } 313 } else { 314 // The token value is never used from here on, just generate a poison value 315 Builder.setValue(CS.getInstruction(), 316 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); 317 } 318 319 return CallEnd->getOperand(0).getNode(); 320 } 321 322 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 323 /// and return two arrays: 324 /// Bases - base pointers incoming to this statepoint 325 /// Ptrs - derived pointers incoming to this statepoint 326 /// Relocs - the gc_relocate corresponding to each base/ptr pair 327 /// Elements of this arrays should be in one-to-one correspondence with each 328 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 329 static void getIncomingStatepointGCValues( 330 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, 331 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, 332 SelectionDAGBuilder &Builder) { 333 for (GCRelocateOperands relocateOpers : 334 StatepointSite.getRelocates(StatepointSite)) { 335 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); 336 Bases.push_back(relocateOpers.getBasePtr()); 337 Ptrs.push_back(relocateOpers.getDerivedPtr()); 338 } 339 340 // Remove any redundant llvm::Values which map to the same SDValue as another 341 // input. Also has the effect of removing duplicates in the original 342 // llvm::Value input list as well. This is a useful optimization for 343 // reducing the size of the StackMap section. It has no other impact. 344 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 345 346 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 347 } 348 349 /// Spill a value incoming to the statepoint. It might be either part of 350 /// vmstate 351 /// or gcstate. In both cases unconditionally spill it on the stack unless it 352 /// is a null constant. Return pair with first element being frame index 353 /// containing saved value and second element with outgoing chain from the 354 /// emitted store 355 static std::pair<SDValue, SDValue> 356 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 357 SelectionDAGBuilder &Builder) { 358 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 359 360 // Emit new store if we didn't do it for this ptr before 361 if (!Loc.getNode()) { 362 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 363 Builder); 364 assert(isa<FrameIndexSDNode>(Loc)); 365 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 366 // We use TargetFrameIndex so that isel will not select it into LEA 367 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 368 369 // TODO: We can create TokenFactor node instead of 370 // chaining stores one after another, this may allow 371 // a bit more optimal scheduling for them 372 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 373 MachinePointerInfo::getFixedStack(Index), 374 false, false, 0); 375 376 Builder.StatepointLowering.setLocation(Incoming, Loc); 377 } 378 379 assert(Loc.getNode()); 380 return std::make_pair(Loc, Chain); 381 } 382 383 /// Lower a single value incoming to a statepoint node. This value can be 384 /// either a deopt value or a gc value, the handling is the same. We special 385 /// case constants and allocas, then fall back to spilling if required. 386 static void lowerIncomingStatepointValue(SDValue Incoming, 387 SmallVectorImpl<SDValue> &Ops, 388 SelectionDAGBuilder &Builder) { 389 SDValue Chain = Builder.getRoot(); 390 391 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 392 // If the original value was a constant, make sure it gets recorded as 393 // such in the stackmap. This is required so that the consumer can 394 // parse any internal format to the deopt state. It also handles null 395 // pointers and other constant pointers in GC states 396 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 397 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 398 // This handles allocas as arguments to the statepoint (this is only 399 // really meaningful for a deopt value. For GC, we'd be trying to 400 // relocate the address of the alloca itself?) 401 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 402 Incoming.getValueType())); 403 } else { 404 // Otherwise, locate a spill slot and explicitly spill it so it 405 // can be found by the runtime later. We currently do not support 406 // tracking values through callee saved registers to their eventual 407 // spill location. This would be a useful optimization, but would 408 // need to be optional since it requires a lot of complexity on the 409 // runtime side which not all would support. 410 std::pair<SDValue, SDValue> Res = 411 spillIncomingStatepointValue(Incoming, Chain, Builder); 412 Ops.push_back(Res.first); 413 Chain = Res.second; 414 } 415 416 Builder.DAG.setRoot(Chain); 417 } 418 419 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 420 /// lowering is described in lowerIncomingStatepointValue. This function is 421 /// responsible for lowering everything in the right position and playing some 422 /// tricks to avoid redundant stack manipulation where possible. On 423 /// completion, 'Ops' will contain ready to use operands for machine code 424 /// statepoint. The chain nodes will have already been created and the DAG root 425 /// will be set to the last value spilled (if any were). 426 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 427 ImmutableStatepoint StatepointSite, 428 SelectionDAGBuilder &Builder) { 429 430 // Lower the deopt and gc arguments for this statepoint. Layout will 431 // be: deopt argument length, deopt arguments.., gc arguments... 432 433 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 434 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, 435 Builder); 436 437 #ifndef NDEBUG 438 // Check that each of the gc pointer and bases we've gotten out of the 439 // safepoint is something the strategy thinks might be a pointer into the GC 440 // heap. This is basically just here to help catch errors during statepoint 441 // insertion. TODO: This should actually be in the Verifier, but we can't get 442 // to the GCStrategy from there (yet). 443 GCStrategy &S = Builder.GFI->getStrategy(); 444 for (const Value *V : Bases) { 445 auto Opt = S.isGCManagedPointer(V); 446 if (Opt.hasValue()) { 447 assert(Opt.getValue() && 448 "non gc managed base pointer found in statepoint"); 449 } 450 } 451 for (const Value *V : Ptrs) { 452 auto Opt = S.isGCManagedPointer(V); 453 if (Opt.hasValue()) { 454 assert(Opt.getValue() && 455 "non gc managed derived pointer found in statepoint"); 456 } 457 } 458 for (const Value *V : Relocations) { 459 auto Opt = S.isGCManagedPointer(V); 460 if (Opt.hasValue()) { 461 assert(Opt.getValue() && "non gc managed pointer relocated"); 462 } 463 } 464 #endif 465 466 // Before we actually start lowering (and allocating spill slots for values), 467 // reserve any stack slots which we judge to be profitable to reuse for a 468 // particular value. This is purely an optimization over the code below and 469 // doesn't change semantics at all. It is important for performance that we 470 // reserve slots for both deopt and gc values before lowering either. 471 for (const Value *V : StatepointSite.vm_state_args()) { 472 SDValue Incoming = Builder.getValue(V); 473 reservePreviousStackSlotForValue(Incoming, Builder); 474 } 475 for (unsigned i = 0; i < Bases.size(); ++i) { 476 const Value *Base = Bases[i]; 477 reservePreviousStackSlotForValue(Builder.getValue(Base), Builder); 478 479 const Value *Ptr = Ptrs[i]; 480 reservePreviousStackSlotForValue(Builder.getValue(Ptr), Builder); 481 } 482 483 // First, prefix the list with the number of unique values to be 484 // lowered. Note that this is the number of *Values* not the 485 // number of SDValues required to lower them. 486 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); 487 pushStackMapConstant(Ops, Builder, NumVMSArgs); 488 489 assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), 490 StatepointSite.vm_state_end())); 491 492 // The vm state arguments are lowered in an opaque manner. We do 493 // not know what type of values are contained within. We skip the 494 // first one since that happens to be the total number we lowered 495 // explicitly just above. We could have left it in the loop and 496 // not done it explicitly, but it's far easier to understand this 497 // way. 498 for (const Value *V : StatepointSite.vm_state_args()) { 499 SDValue Incoming = Builder.getValue(V); 500 lowerIncomingStatepointValue(Incoming, Ops, Builder); 501 } 502 503 // Finally, go ahead and lower all the gc arguments. There's no prefixed 504 // length for this one. After lowering, we'll have the base and pointer 505 // arrays interwoven with each (lowered) base pointer immediately followed by 506 // it's (lowered) derived pointer. i.e 507 // (base[0], ptr[0], base[1], ptr[1], ...) 508 for (unsigned i = 0; i < Bases.size(); ++i) { 509 const Value *Base = Bases[i]; 510 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 511 512 const Value *Ptr = Ptrs[i]; 513 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 514 } 515 516 // If there are any explicit spill slots passed to the statepoint, record 517 // them, but otherwise do not do anything special. These are user provided 518 // allocas and give control over placement to the consumer. In this case, 519 // it is the contents of the slot which may get updated, not the pointer to 520 // the alloca 521 for (Value *V : StatepointSite.gc_args()) { 522 SDValue Incoming = Builder.getValue(V); 523 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 524 // This handles allocas as arguments to the statepoint 525 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 526 Incoming.getValueType())); 527 } 528 } 529 530 // Record computed locations for all lowered values. 531 // This can not be embedded in lowering loops as we need to record *all* 532 // values, while previous loops account only values with unique SDValues. 533 const Instruction *StatepointInstr = 534 StatepointSite.getCallSite().getInstruction(); 535 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 536 Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; 537 538 for (GCRelocateOperands RelocateOpers : 539 StatepointSite.getRelocates(StatepointSite)) { 540 const Value *V = RelocateOpers.getDerivedPtr(); 541 SDValue SDV = Builder.getValue(V); 542 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 543 544 if (Loc.getNode()) { 545 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 546 } else { 547 // Record value as visited, but not spilled. This is case for allocas 548 // and constants. For this values we can avoid emiting spill load while 549 // visiting corresponding gc_relocate. 550 // Actually we do not need to record them in this map at all. 551 // We do this only to check that we are not relocating any unvisited value. 552 SpillMap[V] = None; 553 554 // Default llvm mechanisms for exporting values which are used in 555 // different basic blocks does not work for gc relocates. 556 // Note that it would be incorrect to teach llvm that all relocates are 557 // uses of the corresponging values so that it would automatically 558 // export them. Relocates of the spilled values does not use original 559 // value. 560 if (StatepointSite.getCallSite().isInvoke()) 561 Builder.ExportFromCurrentBlock(V); 562 } 563 } 564 } 565 566 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 567 // Check some preconditions for sanity 568 assert(isStatepoint(&CI) && 569 "function called must be the statepoint function"); 570 571 LowerStatepoint(ImmutableStatepoint(&CI)); 572 } 573 574 void SelectionDAGBuilder::LowerStatepoint( 575 ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) { 576 // The basic scheme here is that information about both the original call and 577 // the safepoint is encoded in the CallInst. We create a temporary call and 578 // lower it, then reverse engineer the calling sequence. 579 580 NumOfStatepoints++; 581 // Clear state 582 StatepointLowering.startNewStatepoint(*this); 583 584 ImmutableCallSite CS(ISP.getCallSite()); 585 586 #ifndef NDEBUG 587 // Consistency check. Don't do this for invokes. It would be too 588 // expensive to preserve this information across different basic blocks 589 if (!CS.isInvoke()) { 590 for (const User *U : CS->users()) { 591 const CallInst *Call = cast<CallInst>(U); 592 if (isGCRelocate(Call)) 593 StatepointLowering.scheduleRelocCall(*Call); 594 } 595 } 596 #endif 597 598 #ifndef NDEBUG 599 // If this is a malformed statepoint, report it early to simplify debugging. 600 // This should catch any IR level mistake that's made when constructing or 601 // transforming statepoints. 602 ISP.verify(); 603 604 // Check that the associated GCStrategy expects to encounter statepoints. 605 assert(GFI->getStrategy().useStatepoints() && 606 "GCStrategy does not expect to encounter statepoints"); 607 #endif 608 609 // Lower statepoint vmstate and gcstate arguments 610 SmallVector<SDValue, 10> LoweredMetaArgs; 611 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); 612 613 // Get call node, we will replace it later with statepoint 614 SDNode *CallNode = 615 lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports); 616 617 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 618 // nodes with all the appropriate arguments and return values. 619 620 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 621 SDValue Chain = CallNode->getOperand(0); 622 623 SDValue Glue; 624 bool CallHasIncomingGlue = CallNode->getGluedNode(); 625 if (CallHasIncomingGlue) { 626 // Glue is always last operand 627 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 628 } 629 630 // Build the GC_TRANSITION_START node if necessary. 631 // 632 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 633 // order in which they appear in the call to the statepoint intrinsic. If 634 // any of the operands is a pointer-typed, that operand is immediately 635 // followed by a SRCVALUE for the pointer that may be used during lowering 636 // (e.g. to form MachinePointerInfo values for loads/stores). 637 const bool IsGCTransition = 638 (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == 639 (uint64_t)StatepointFlags::GCTransition; 640 if (IsGCTransition) { 641 SmallVector<SDValue, 8> TSOps; 642 643 // Add chain 644 TSOps.push_back(Chain); 645 646 // Add GC transition arguments 647 for (const Value *V : ISP.gc_transition_args()) { 648 TSOps.push_back(getValue(V)); 649 if (V->getType()->isPointerTy()) 650 TSOps.push_back(DAG.getSrcValue(V)); 651 } 652 653 // Add glue if necessary 654 if (CallHasIncomingGlue) 655 TSOps.push_back(Glue); 656 657 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 658 659 SDValue GCTransitionStart = 660 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 661 662 Chain = GCTransitionStart.getValue(0); 663 Glue = GCTransitionStart.getValue(1); 664 } 665 666 // TODO: Currently, all of these operands are being marked as read/write in 667 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 668 // and flags to be read-only. 669 SmallVector<SDValue, 40> Ops; 670 671 // Add the <id> and <numBytes> constants. 672 Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); 673 Ops.push_back( 674 DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); 675 676 // Calculate and push starting position of vmstate arguments 677 // Get number of arguments incoming directly into call node 678 unsigned NumCallRegArgs = 679 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 680 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 681 682 // Add call target 683 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 684 Ops.push_back(CallTarget); 685 686 // Add call arguments 687 // Get position of register mask in the call 688 SDNode::op_iterator RegMaskIt; 689 if (CallHasIncomingGlue) 690 RegMaskIt = CallNode->op_end() - 2; 691 else 692 RegMaskIt = CallNode->op_end() - 1; 693 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 694 695 // Add a constant argument for the calling convention 696 pushStackMapConstant(Ops, *this, CS.getCallingConv()); 697 698 // Add a constant argument for the flags 699 uint64_t Flags = ISP.getFlags(); 700 assert( 701 ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) 702 && "unknown flag used"); 703 pushStackMapConstant(Ops, *this, Flags); 704 705 // Insert all vmstate and gcstate arguments 706 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 707 708 // Add register mask from call node 709 Ops.push_back(*RegMaskIt); 710 711 // Add chain 712 Ops.push_back(Chain); 713 714 // Same for the glue, but we add it only if original call had it 715 if (Glue.getNode()) 716 Ops.push_back(Glue); 717 718 // Compute return values. Provide a glue output since we consume one as 719 // input. This allows someone else to chain off us as needed. 720 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 721 722 SDNode *StatepointMCNode = 723 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 724 725 SDNode *SinkNode = StatepointMCNode; 726 727 // Build the GC_TRANSITION_END node if necessary. 728 // 729 // See the comment above regarding GC_TRANSITION_START for the layout of 730 // the operands to the GC_TRANSITION_END node. 731 if (IsGCTransition) { 732 SmallVector<SDValue, 8> TEOps; 733 734 // Add chain 735 TEOps.push_back(SDValue(StatepointMCNode, 0)); 736 737 // Add GC transition arguments 738 for (const Value *V : ISP.gc_transition_args()) { 739 TEOps.push_back(getValue(V)); 740 if (V->getType()->isPointerTy()) 741 TEOps.push_back(DAG.getSrcValue(V)); 742 } 743 744 // Add glue 745 TEOps.push_back(SDValue(StatepointMCNode, 1)); 746 747 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 748 749 SDValue GCTransitionStart = 750 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 751 752 SinkNode = GCTransitionStart.getNode(); 753 } 754 755 // Replace original call 756 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 757 // Remove originall call node 758 DAG.DeleteNode(CallNode); 759 760 // DON'T set the root - under the assumption that it's already set past the 761 // inserted node we created. 762 763 // TODO: A better future implementation would be to emit a single variable 764 // argument, variable return value STATEPOINT node here and then hookup the 765 // return value of each gc.relocate to the respective output of the 766 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 767 // to actually be possible today. 768 } 769 770 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 771 // The result value of the gc_result is simply the result of the actual 772 // call. We've already emitted this, so just grab the value. 773 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 774 assert(isStatepoint(I) && "first argument must be a statepoint token"); 775 776 if (isa<InvokeInst>(I)) { 777 // For invokes we should have stored call result in a virtual register. 778 // We can not use default getValue() functionality to copy value from this 779 // register because statepoint and actuall call return types can be 780 // different, and getValue() will use CopyFromReg of the wrong type, 781 // which is always i32 in our case. 782 PointerType *CalleeType = 783 cast<PointerType>(ImmutableStatepoint(I).getActualCallee()->getType()); 784 Type *RetTy = 785 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 786 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 787 788 assert(CopyFromReg.getNode()); 789 setValue(&CI, CopyFromReg); 790 } else { 791 setValue(&CI, getValue(I)); 792 } 793 } 794 795 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 796 GCRelocateOperands RelocateOpers(&CI); 797 798 #ifndef NDEBUG 799 // Consistency check 800 // We skip this check for invoke statepoints. It would be too expensive to 801 // preserve validation info through different basic blocks. 802 if (!RelocateOpers.isTiedToInvoke()) { 803 StatepointLowering.relocCallVisited(CI); 804 } 805 #endif 806 807 const Value *DerivedPtr = RelocateOpers.getDerivedPtr(); 808 SDValue SD = getValue(DerivedPtr); 809 810 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 811 FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()]; 812 813 // We should have recorded location for this pointer 814 assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); 815 Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; 816 817 // We didn't need to spill these special cases (constants and allocas). 818 // See the handling in spillIncomingValueForStatepoint for detail. 819 if (!DerivedPtrLocation) { 820 setValue(&CI, SD); 821 return; 822 } 823 824 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 825 SD.getValueType()); 826 827 // Be conservative: flush all pending loads 828 // TODO: Probably we can be less restrictive on this, 829 // it may allow more scheduling opprtunities 830 SDValue Chain = getRoot(); 831 832 SDValue SpillLoad = 833 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 834 MachinePointerInfo::getFixedStack(*DerivedPtrLocation), 835 false, false, false, 0); 836 837 // Again, be conservative, don't emit pending loads 838 DAG.setRoot(SpillLoad.getValue(1)); 839 840 assert(SpillLoad.getNode()); 841 setValue(&CI, SpillLoad); 842 } 843