1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 42 SelectionDAGBuilder &Builder, uint64_t Value) { 43 SDLoc L = Builder.getCurSDLoc(); 44 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 45 MVT::i64)); 46 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 47 } 48 49 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 50 // Consistency check 51 assert(PendingGCRelocateCalls.empty() && 52 "Trying to visit statepoint before finished processing previous one"); 53 Locations.clear(); 54 NextSlotToAllocate = 0; 55 // Need to resize this on each safepoint - we need the two to stay in 56 // sync and the clear patterns of a SelectionDAGBuilder have no relation 57 // to FunctionLoweringInfo. 58 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 59 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 60 AllocatedStackSlots[i] = false; 61 } 62 } 63 64 void StatepointLoweringState::clear() { 65 Locations.clear(); 66 AllocatedStackSlots.clear(); 67 assert(PendingGCRelocateCalls.empty() && 68 "cleared before statepoint sequence completed"); 69 } 70 71 SDValue 72 StatepointLoweringState::allocateStackSlot(EVT ValueType, 73 SelectionDAGBuilder &Builder) { 74 75 NumSlotsAllocatedForStatepoints++; 76 77 // The basic scheme here is to first look for a previously created stack slot 78 // which is not in use (accounting for the fact arbitrary slots may already 79 // be reserved), or to create a new stack slot and use it. 80 81 // If this doesn't succeed in 40000 iterations, something is seriously wrong 82 for (int i = 0; i < 40000; i++) { 83 assert(Builder.FuncInfo.StatepointStackSlots.size() == 84 AllocatedStackSlots.size() && 85 "broken invariant"); 86 const size_t NumSlots = AllocatedStackSlots.size(); 87 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 88 89 if (NextSlotToAllocate >= NumSlots) { 90 assert(NextSlotToAllocate == NumSlots); 91 // record stats 92 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 93 StatepointMaxSlotsRequired = NumSlots + 1; 94 } 95 96 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 97 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 98 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 99 AllocatedStackSlots.push_back(true); 100 return SpillSlot; 101 } 102 if (!AllocatedStackSlots[NextSlotToAllocate]) { 103 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 104 AllocatedStackSlots[NextSlotToAllocate] = true; 105 return Builder.DAG.getFrameIndex(FI, ValueType); 106 } 107 // Note: We deliberately choose to advance this only on the failing path. 108 // Doing so on the succeeding path involves a bit of complexity that caused 109 // a minor bug previously. Unless performance shows this matters, please 110 // keep this code as simple as possible. 111 NextSlotToAllocate++; 112 } 113 llvm_unreachable("infinite loop?"); 114 } 115 116 /// Utility function for reservePreviousStackSlotForValue. Tries to find 117 /// stack slot index to which we have spilled value for previous statepoints. 118 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 119 static Optional<int> findPreviousSpillSlot(const Value *Val, 120 SelectionDAGBuilder &Builder, 121 int LookUpDepth) { 122 // Can not look any further - give up now 123 if (LookUpDepth <= 0) 124 return Optional<int>(); 125 126 // Spill location is known for gc relocates 127 if (isGCRelocate(Val)) { 128 GCRelocateOperands RelocOps(cast<Instruction>(Val)); 129 130 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 131 Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()]; 132 133 auto It = SpillMap.find(RelocOps.getDerivedPtr()); 134 if (It == SpillMap.end()) 135 return Optional<int>(); 136 137 return It->second; 138 } 139 140 // Look through bitcast instructions. 141 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) { 142 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 143 } 144 145 // Look through phi nodes 146 // All incoming values should have same known stack slot, otherwise result 147 // is unknown. 148 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 149 Optional<int> MergedResult = None; 150 151 for (auto &IncomingValue : Phi->incoming_values()) { 152 Optional<int> SpillSlot = 153 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 154 if (!SpillSlot.hasValue()) 155 return Optional<int>(); 156 157 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 158 return Optional<int>(); 159 160 MergedResult = SpillSlot; 161 } 162 return MergedResult; 163 } 164 165 // TODO: We can do better for PHI nodes. In cases like this: 166 // ptr = phi(relocated_pointer, not_relocated_pointer) 167 // statepoint(ptr) 168 // We will return that stack slot for ptr is unknown. And later we might 169 // assign different stack slots for ptr and relocated_pointer. This limits 170 // llvm's ability to remove redundant stores. 171 // Unfortunately it's hard to accomplish in current infrastructure. 172 // We use this function to eliminate spill store completely, while 173 // in example we still need to emit store, but instead of any location 174 // we need to use special "preferred" location. 175 176 // TODO: handle simple updates. If a value is modified and the original 177 // value is no longer live, it would be nice to put the modified value in the 178 // same slot. This allows folding of the memory accesses for some 179 // instructions types (like an increment). 180 // statepoint (i) 181 // i1 = i+1 182 // statepoint (i1) 183 // However we need to be careful for cases like this: 184 // statepoint(i) 185 // i1 = i+1 186 // statepoint(i, i1) 187 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 188 // put handling of simple modifications in this function like it's done 189 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 190 // which we visit values is unspecified. 191 192 // Don't know any information about this instruction 193 return Optional<int>(); 194 } 195 196 /// Try to find existing copies of the incoming values in stack slots used for 197 /// statepoint spilling. If we can find a spill slot for the incoming value, 198 /// mark that slot as allocated, and reuse the same slot for this safepoint. 199 /// This helps to avoid series of loads and stores that only serve to reshuffle 200 /// values on the stack between calls. 201 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 202 SelectionDAGBuilder &Builder) { 203 204 SDValue Incoming = Builder.getValue(IncomingValue); 205 206 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 207 // We won't need to spill this, so no need to check for previously 208 // allocated stack slots 209 return; 210 } 211 212 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 213 if (OldLocation.getNode()) 214 // duplicates in input 215 return; 216 217 const int LookUpDepth = 6; 218 Optional<int> Index = 219 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 220 if (!Index.hasValue()) 221 return; 222 223 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 224 Builder.FuncInfo.StatepointStackSlots.end(), *Index); 225 assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() && 226 "value spilled to the unknown stack slot"); 227 228 // This is one of our dedicated lowering slots 229 const int Offset = 230 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 231 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 232 // stack slot already assigned to someone else, can't use it! 233 // TODO: currently we reserve space for gc arguments after doing 234 // normal allocation for deopt arguments. We should reserve for 235 // _all_ deopt and gc arguments, then start allocating. This 236 // will prevent some moves being inserted when vm state changes, 237 // but gc state doesn't between two calls. 238 return; 239 } 240 // Reserve this stack slot 241 Builder.StatepointLowering.reserveStackSlot(Offset); 242 243 // Cache this slot so we find it when going through the normal 244 // assignment loop. 245 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 246 Builder.StatepointLowering.setLocation(Incoming, Loc); 247 } 248 249 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 250 /// is not required for correctness. It's purpose is to reduce the size of 251 /// StackMap section. It has no effect on the number of spill slots required 252 /// or the actual lowering. 253 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 254 SmallVectorImpl<const Value *> &Ptrs, 255 SmallVectorImpl<const Value *> &Relocs, 256 SelectionDAGBuilder &Builder) { 257 258 // This is horribly inefficient, but I don't care right now 259 SmallSet<SDValue, 64> Seen; 260 261 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 262 for (size_t i = 0; i < Ptrs.size(); i++) { 263 SDValue SD = Builder.getValue(Ptrs[i]); 264 // Only add non-duplicates 265 if (Seen.count(SD) == 0) { 266 NewBases.push_back(Bases[i]); 267 NewPtrs.push_back(Ptrs[i]); 268 NewRelocs.push_back(Relocs[i]); 269 } 270 Seen.insert(SD); 271 } 272 assert(Bases.size() >= NewBases.size()); 273 assert(Ptrs.size() >= NewPtrs.size()); 274 assert(Relocs.size() >= NewRelocs.size()); 275 Bases = NewBases; 276 Ptrs = NewPtrs; 277 Relocs = NewRelocs; 278 assert(Ptrs.size() == Bases.size()); 279 assert(Ptrs.size() == Relocs.size()); 280 } 281 282 /// Extract call from statepoint, lower it and return pointer to the 283 /// call node. Also update NodeMap so that getValue(statepoint) will 284 /// reference lowered call result 285 static SDNode * 286 lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB, 287 SelectionDAGBuilder &Builder, 288 SmallVectorImpl<SDValue> &PendingExports) { 289 290 ImmutableCallSite CS(ISP.getCallSite()); 291 292 SDValue ActualCallee; 293 294 if (ISP.getNumPatchBytes() > 0) { 295 // If we've been asked to emit a nop sequence instead of a call instruction 296 // for this statepoint then don't lower the call target, but use a constant 297 // `null` instead. Not lowering the call target lets statepoint clients get 298 // away without providing a physical address for the symbolic call target at 299 // link time. 300 301 const auto &TLI = Builder.DAG.getTargetLoweringInfo(); 302 const auto &DL = Builder.DAG.getDataLayout(); 303 304 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 305 ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(), 306 TLI.getPointerTy(DL, AS)); 307 } else 308 ActualCallee = Builder.getValue(ISP.getCalledValue()); 309 310 assert(CS.getCallingConv() != CallingConv::AnyReg && 311 "anyregcc is not supported on statepoints!"); 312 313 Type *DefTy = ISP.getActualReturnType(); 314 bool HasDef = !DefTy->isVoidTy(); 315 316 SDValue ReturnValue, CallEndVal; 317 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( 318 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, 319 ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB, 320 false /* IsPatchPoint */); 321 322 SDNode *CallEnd = CallEndVal.getNode(); 323 324 // Get a call instruction from the call sequence chain. Tail calls are not 325 // allowed. The following code is essentially reverse engineering X86's 326 // LowerCallTo. 327 // 328 // We are expecting DAG to have the following form: 329 // 330 // ch = eh_label (only in case of invoke statepoint) 331 // ch, glue = callseq_start ch 332 // ch, glue = X86::Call ch, glue 333 // ch, glue = callseq_end ch, glue 334 // get_return_value ch, glue 335 // 336 // get_return_value can either be a CopyFromReg to grab the return value from 337 // %RAX, or it can be a LOAD to load a value returned by reference via a stack 338 // slot. 339 340 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg || 341 CallEnd->getOpcode() == ISD::LOAD)) 342 CallEnd = CallEnd->getOperand(0).getNode(); 343 344 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 345 346 // Export the result value if needed 347 const Instruction *GCResult = ISP.getGCResult(); 348 if (HasDef && GCResult) { 349 if (GCResult->getParent() != CS.getParent()) { 350 // Result value will be used in a different basic block so we need to 351 // export it now. 352 // Default exporting mechanism will not work here because statepoint call 353 // has a different type than the actual call. It means that by default 354 // llvm will create export register of the wrong type (always i32 in our 355 // case). So instead we need to create export register with correct type 356 // manually. 357 // TODO: To eliminate this problem we can remove gc.result intrinsics 358 // completely and make statepoint call to return a tuple. 359 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); 360 RegsForValue RFV( 361 *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(), 362 Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType()); 363 SDValue Chain = Builder.DAG.getEntryNode(); 364 365 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, 366 nullptr); 367 PendingExports.push_back(Chain); 368 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; 369 } else { 370 // Result value will be used in a same basic block. Don't export it or 371 // perform any explicit register copies. 372 // We'll replace the actuall call node shortly. gc_result will grab 373 // this value. 374 Builder.setValue(CS.getInstruction(), ReturnValue); 375 } 376 } else { 377 // The token value is never used from here on, just generate a poison value 378 Builder.setValue(CS.getInstruction(), 379 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); 380 } 381 382 return CallEnd->getOperand(0).getNode(); 383 } 384 385 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 386 /// and return two arrays: 387 /// Bases - base pointers incoming to this statepoint 388 /// Ptrs - derived pointers incoming to this statepoint 389 /// Relocs - the gc_relocate corresponding to each base/ptr pair 390 /// Elements of this arrays should be in one-to-one correspondence with each 391 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 392 static void getIncomingStatepointGCValues( 393 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, 394 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, 395 SelectionDAGBuilder &Builder) { 396 for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) { 397 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); 398 Bases.push_back(relocateOpers.getBasePtr()); 399 Ptrs.push_back(relocateOpers.getDerivedPtr()); 400 } 401 402 // Remove any redundant llvm::Values which map to the same SDValue as another 403 // input. Also has the effect of removing duplicates in the original 404 // llvm::Value input list as well. This is a useful optimization for 405 // reducing the size of the StackMap section. It has no other impact. 406 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 407 408 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 409 } 410 411 /// Spill a value incoming to the statepoint. It might be either part of 412 /// vmstate 413 /// or gcstate. In both cases unconditionally spill it on the stack unless it 414 /// is a null constant. Return pair with first element being frame index 415 /// containing saved value and second element with outgoing chain from the 416 /// emitted store 417 static std::pair<SDValue, SDValue> 418 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 419 SelectionDAGBuilder &Builder) { 420 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 421 422 // Emit new store if we didn't do it for this ptr before 423 if (!Loc.getNode()) { 424 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 425 Builder); 426 assert(isa<FrameIndexSDNode>(Loc)); 427 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 428 // We use TargetFrameIndex so that isel will not select it into LEA 429 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 430 431 // TODO: We can create TokenFactor node instead of 432 // chaining stores one after another, this may allow 433 // a bit more optimal scheduling for them 434 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 435 MachinePointerInfo::getFixedStack( 436 Builder.DAG.getMachineFunction(), Index), 437 false, false, 0); 438 439 Builder.StatepointLowering.setLocation(Incoming, Loc); 440 } 441 442 assert(Loc.getNode()); 443 return std::make_pair(Loc, Chain); 444 } 445 446 /// Lower a single value incoming to a statepoint node. This value can be 447 /// either a deopt value or a gc value, the handling is the same. We special 448 /// case constants and allocas, then fall back to spilling if required. 449 static void lowerIncomingStatepointValue(SDValue Incoming, 450 SmallVectorImpl<SDValue> &Ops, 451 SelectionDAGBuilder &Builder) { 452 SDValue Chain = Builder.getRoot(); 453 454 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 455 // If the original value was a constant, make sure it gets recorded as 456 // such in the stackmap. This is required so that the consumer can 457 // parse any internal format to the deopt state. It also handles null 458 // pointers and other constant pointers in GC states 459 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 460 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 461 // This handles allocas as arguments to the statepoint (this is only 462 // really meaningful for a deopt value. For GC, we'd be trying to 463 // relocate the address of the alloca itself?) 464 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 465 Incoming.getValueType())); 466 } else { 467 // Otherwise, locate a spill slot and explicitly spill it so it 468 // can be found by the runtime later. We currently do not support 469 // tracking values through callee saved registers to their eventual 470 // spill location. This would be a useful optimization, but would 471 // need to be optional since it requires a lot of complexity on the 472 // runtime side which not all would support. 473 std::pair<SDValue, SDValue> Res = 474 spillIncomingStatepointValue(Incoming, Chain, Builder); 475 Ops.push_back(Res.first); 476 Chain = Res.second; 477 } 478 479 Builder.DAG.setRoot(Chain); 480 } 481 482 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 483 /// lowering is described in lowerIncomingStatepointValue. This function is 484 /// responsible for lowering everything in the right position and playing some 485 /// tricks to avoid redundant stack manipulation where possible. On 486 /// completion, 'Ops' will contain ready to use operands for machine code 487 /// statepoint. The chain nodes will have already been created and the DAG root 488 /// will be set to the last value spilled (if any were). 489 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 490 ImmutableStatepoint StatepointSite, 491 SelectionDAGBuilder &Builder) { 492 493 // Lower the deopt and gc arguments for this statepoint. Layout will 494 // be: deopt argument length, deopt arguments.., gc arguments... 495 496 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 497 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, 498 Builder); 499 500 #ifndef NDEBUG 501 // Check that each of the gc pointer and bases we've gotten out of the 502 // safepoint is something the strategy thinks might be a pointer into the GC 503 // heap. This is basically just here to help catch errors during statepoint 504 // insertion. TODO: This should actually be in the Verifier, but we can't get 505 // to the GCStrategy from there (yet). 506 GCStrategy &S = Builder.GFI->getStrategy(); 507 for (const Value *V : Bases) { 508 auto Opt = S.isGCManagedPointer(V); 509 if (Opt.hasValue()) { 510 assert(Opt.getValue() && 511 "non gc managed base pointer found in statepoint"); 512 } 513 } 514 for (const Value *V : Ptrs) { 515 auto Opt = S.isGCManagedPointer(V); 516 if (Opt.hasValue()) { 517 assert(Opt.getValue() && 518 "non gc managed derived pointer found in statepoint"); 519 } 520 } 521 for (const Value *V : Relocations) { 522 auto Opt = S.isGCManagedPointer(V); 523 if (Opt.hasValue()) { 524 assert(Opt.getValue() && "non gc managed pointer relocated"); 525 } 526 } 527 #endif 528 529 // Before we actually start lowering (and allocating spill slots for values), 530 // reserve any stack slots which we judge to be profitable to reuse for a 531 // particular value. This is purely an optimization over the code below and 532 // doesn't change semantics at all. It is important for performance that we 533 // reserve slots for both deopt and gc values before lowering either. 534 for (const Value *V : StatepointSite.vm_state_args()) { 535 reservePreviousStackSlotForValue(V, Builder); 536 } 537 for (unsigned i = 0; i < Bases.size(); ++i) { 538 reservePreviousStackSlotForValue(Bases[i], Builder); 539 reservePreviousStackSlotForValue(Ptrs[i], Builder); 540 } 541 542 // First, prefix the list with the number of unique values to be 543 // lowered. Note that this is the number of *Values* not the 544 // number of SDValues required to lower them. 545 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); 546 pushStackMapConstant(Ops, Builder, NumVMSArgs); 547 548 assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), 549 StatepointSite.vm_state_end())); 550 551 // The vm state arguments are lowered in an opaque manner. We do 552 // not know what type of values are contained within. We skip the 553 // first one since that happens to be the total number we lowered 554 // explicitly just above. We could have left it in the loop and 555 // not done it explicitly, but it's far easier to understand this 556 // way. 557 for (const Value *V : StatepointSite.vm_state_args()) { 558 SDValue Incoming = Builder.getValue(V); 559 lowerIncomingStatepointValue(Incoming, Ops, Builder); 560 } 561 562 // Finally, go ahead and lower all the gc arguments. There's no prefixed 563 // length for this one. After lowering, we'll have the base and pointer 564 // arrays interwoven with each (lowered) base pointer immediately followed by 565 // it's (lowered) derived pointer. i.e 566 // (base[0], ptr[0], base[1], ptr[1], ...) 567 for (unsigned i = 0; i < Bases.size(); ++i) { 568 const Value *Base = Bases[i]; 569 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 570 571 const Value *Ptr = Ptrs[i]; 572 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 573 } 574 575 // If there are any explicit spill slots passed to the statepoint, record 576 // them, but otherwise do not do anything special. These are user provided 577 // allocas and give control over placement to the consumer. In this case, 578 // it is the contents of the slot which may get updated, not the pointer to 579 // the alloca 580 for (Value *V : StatepointSite.gc_args()) { 581 SDValue Incoming = Builder.getValue(V); 582 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 583 // This handles allocas as arguments to the statepoint 584 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 585 Incoming.getValueType())); 586 } 587 } 588 589 // Record computed locations for all lowered values. 590 // This can not be embedded in lowering loops as we need to record *all* 591 // values, while previous loops account only values with unique SDValues. 592 const Instruction *StatepointInstr = 593 StatepointSite.getCallSite().getInstruction(); 594 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 595 Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; 596 597 for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) { 598 const Value *V = RelocateOpers.getDerivedPtr(); 599 SDValue SDV = Builder.getValue(V); 600 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 601 602 if (Loc.getNode()) { 603 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 604 } else { 605 // Record value as visited, but not spilled. This is case for allocas 606 // and constants. For this values we can avoid emitting spill load while 607 // visiting corresponding gc_relocate. 608 // Actually we do not need to record them in this map at all. 609 // We do this only to check that we are not relocating any unvisited 610 // value. 611 SpillMap[V] = None; 612 613 // Default llvm mechanisms for exporting values which are used in 614 // different basic blocks does not work for gc relocates. 615 // Note that it would be incorrect to teach llvm that all relocates are 616 // uses of the corresponding values so that it would automatically 617 // export them. Relocates of the spilled values does not use original 618 // value. 619 if (RelocateOpers.getUnderlyingCallSite().getParent() != 620 StatepointInstr->getParent()) 621 Builder.ExportFromCurrentBlock(V); 622 } 623 } 624 } 625 626 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 627 // Check some preconditions for sanity 628 assert(isStatepoint(&CI) && 629 "function called must be the statepoint function"); 630 631 LowerStatepoint(ImmutableStatepoint(&CI)); 632 } 633 634 void SelectionDAGBuilder::LowerStatepoint( 635 ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) { 636 // The basic scheme here is that information about both the original call and 637 // the safepoint is encoded in the CallInst. We create a temporary call and 638 // lower it, then reverse engineer the calling sequence. 639 640 NumOfStatepoints++; 641 // Clear state 642 StatepointLowering.startNewStatepoint(*this); 643 644 ImmutableCallSite CS(ISP.getCallSite()); 645 646 #ifndef NDEBUG 647 // Consistency check. Check only relocates in the same basic block as thier 648 // statepoint. 649 for (const User *U : CS->users()) { 650 const CallInst *Call = cast<CallInst>(U); 651 if (isGCRelocate(Call) && Call->getParent() == CS.getParent()) 652 StatepointLowering.scheduleRelocCall(*Call); 653 } 654 #endif 655 656 #ifndef NDEBUG 657 // If this is a malformed statepoint, report it early to simplify debugging. 658 // This should catch any IR level mistake that's made when constructing or 659 // transforming statepoints. 660 ISP.verify(); 661 662 // Check that the associated GCStrategy expects to encounter statepoints. 663 assert(GFI->getStrategy().useStatepoints() && 664 "GCStrategy does not expect to encounter statepoints"); 665 #endif 666 667 // Lower statepoint vmstate and gcstate arguments 668 SmallVector<SDValue, 10> LoweredMetaArgs; 669 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); 670 671 // Get call node, we will replace it later with statepoint 672 SDNode *CallNode = 673 lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports); 674 675 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 676 // nodes with all the appropriate arguments and return values. 677 678 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 679 SDValue Chain = CallNode->getOperand(0); 680 681 SDValue Glue; 682 bool CallHasIncomingGlue = CallNode->getGluedNode(); 683 if (CallHasIncomingGlue) { 684 // Glue is always last operand 685 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 686 } 687 688 // Build the GC_TRANSITION_START node if necessary. 689 // 690 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 691 // order in which they appear in the call to the statepoint intrinsic. If 692 // any of the operands is a pointer-typed, that operand is immediately 693 // followed by a SRCVALUE for the pointer that may be used during lowering 694 // (e.g. to form MachinePointerInfo values for loads/stores). 695 const bool IsGCTransition = 696 (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == 697 (uint64_t)StatepointFlags::GCTransition; 698 if (IsGCTransition) { 699 SmallVector<SDValue, 8> TSOps; 700 701 // Add chain 702 TSOps.push_back(Chain); 703 704 // Add GC transition arguments 705 for (const Value *V : ISP.gc_transition_args()) { 706 TSOps.push_back(getValue(V)); 707 if (V->getType()->isPointerTy()) 708 TSOps.push_back(DAG.getSrcValue(V)); 709 } 710 711 // Add glue if necessary 712 if (CallHasIncomingGlue) 713 TSOps.push_back(Glue); 714 715 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 716 717 SDValue GCTransitionStart = 718 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 719 720 Chain = GCTransitionStart.getValue(0); 721 Glue = GCTransitionStart.getValue(1); 722 } 723 724 // TODO: Currently, all of these operands are being marked as read/write in 725 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 726 // and flags to be read-only. 727 SmallVector<SDValue, 40> Ops; 728 729 // Add the <id> and <numBytes> constants. 730 Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); 731 Ops.push_back( 732 DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); 733 734 // Calculate and push starting position of vmstate arguments 735 // Get number of arguments incoming directly into call node 736 unsigned NumCallRegArgs = 737 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 738 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 739 740 // Add call target 741 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 742 Ops.push_back(CallTarget); 743 744 // Add call arguments 745 // Get position of register mask in the call 746 SDNode::op_iterator RegMaskIt; 747 if (CallHasIncomingGlue) 748 RegMaskIt = CallNode->op_end() - 2; 749 else 750 RegMaskIt = CallNode->op_end() - 1; 751 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 752 753 // Add a constant argument for the calling convention 754 pushStackMapConstant(Ops, *this, CS.getCallingConv()); 755 756 // Add a constant argument for the flags 757 uint64_t Flags = ISP.getFlags(); 758 assert( 759 ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) 760 && "unknown flag used"); 761 pushStackMapConstant(Ops, *this, Flags); 762 763 // Insert all vmstate and gcstate arguments 764 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 765 766 // Add register mask from call node 767 Ops.push_back(*RegMaskIt); 768 769 // Add chain 770 Ops.push_back(Chain); 771 772 // Same for the glue, but we add it only if original call had it 773 if (Glue.getNode()) 774 Ops.push_back(Glue); 775 776 // Compute return values. Provide a glue output since we consume one as 777 // input. This allows someone else to chain off us as needed. 778 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 779 780 SDNode *StatepointMCNode = 781 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 782 783 SDNode *SinkNode = StatepointMCNode; 784 785 // Build the GC_TRANSITION_END node if necessary. 786 // 787 // See the comment above regarding GC_TRANSITION_START for the layout of 788 // the operands to the GC_TRANSITION_END node. 789 if (IsGCTransition) { 790 SmallVector<SDValue, 8> TEOps; 791 792 // Add chain 793 TEOps.push_back(SDValue(StatepointMCNode, 0)); 794 795 // Add GC transition arguments 796 for (const Value *V : ISP.gc_transition_args()) { 797 TEOps.push_back(getValue(V)); 798 if (V->getType()->isPointerTy()) 799 TEOps.push_back(DAG.getSrcValue(V)); 800 } 801 802 // Add glue 803 TEOps.push_back(SDValue(StatepointMCNode, 1)); 804 805 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 806 807 SDValue GCTransitionStart = 808 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 809 810 SinkNode = GCTransitionStart.getNode(); 811 } 812 813 // Replace original call 814 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 815 // Remove original call node 816 DAG.DeleteNode(CallNode); 817 818 // DON'T set the root - under the assumption that it's already set past the 819 // inserted node we created. 820 821 // TODO: A better future implementation would be to emit a single variable 822 // argument, variable return value STATEPOINT node here and then hookup the 823 // return value of each gc.relocate to the respective output of the 824 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 825 // to actually be possible today. 826 } 827 828 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 829 // The result value of the gc_result is simply the result of the actual 830 // call. We've already emitted this, so just grab the value. 831 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 832 assert(isStatepoint(I) && "first argument must be a statepoint token"); 833 834 if (I->getParent() != CI.getParent()) { 835 // Statepoint is in different basic block so we should have stored call 836 // result in a virtual register. 837 // We can not use default getValue() functionality to copy value from this 838 // register because statepoint and actuall call return types can be 839 // different, and getValue() will use CopyFromReg of the wrong type, 840 // which is always i32 in our case. 841 PointerType *CalleeType = cast<PointerType>( 842 ImmutableStatepoint(I).getCalledValue()->getType()); 843 Type *RetTy = 844 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 845 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 846 847 assert(CopyFromReg.getNode()); 848 setValue(&CI, CopyFromReg); 849 } else { 850 setValue(&CI, getValue(I)); 851 } 852 } 853 854 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 855 GCRelocateOperands RelocateOpers(&CI); 856 857 #ifndef NDEBUG 858 // Consistency check 859 // We skip this check for relocates not in the same basic block as thier 860 // statepoint. It would be too expensive to preserve validation info through 861 // different basic blocks. 862 if (RelocateOpers.getStatepoint()->getParent() == CI.getParent()) { 863 StatepointLowering.relocCallVisited(CI); 864 } 865 #endif 866 867 const Value *DerivedPtr = RelocateOpers.getDerivedPtr(); 868 SDValue SD = getValue(DerivedPtr); 869 870 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 871 FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()]; 872 873 // We should have recorded location for this pointer 874 assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); 875 Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; 876 877 // We didn't need to spill these special cases (constants and allocas). 878 // See the handling in spillIncomingValueForStatepoint for detail. 879 if (!DerivedPtrLocation) { 880 setValue(&CI, SD); 881 return; 882 } 883 884 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 885 SD.getValueType()); 886 887 // Be conservative: flush all pending loads 888 // TODO: Probably we can be less restrictive on this, 889 // it may allow more scheduling opportunities. 890 SDValue Chain = getRoot(); 891 892 SDValue SpillLoad = 893 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 894 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 895 *DerivedPtrLocation), 896 false, false, false, 0); 897 898 // Again, be conservative, don't emit pending loads 899 DAG.setRoot(SpillLoad.getValue(1)); 900 901 assert(SpillLoad.getNode()); 902 setValue(&CI, SpillLoad); 903 } 904