1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 42 SelectionDAGBuilder &Builder, uint64_t Value) { 43 SDLoc L = Builder.getCurSDLoc(); 44 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 45 MVT::i64)); 46 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 47 } 48 49 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 50 // Consistency check 51 assert(PendingGCRelocateCalls.empty() && 52 "Trying to visit statepoint before finished processing previous one"); 53 Locations.clear(); 54 NextSlotToAllocate = 0; 55 // Need to resize this on each safepoint - we need the two to stay in 56 // sync and the clear patterns of a SelectionDAGBuilder have no relation 57 // to FunctionLoweringInfo. 58 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 59 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 60 AllocatedStackSlots[i] = false; 61 } 62 } 63 64 void StatepointLoweringState::clear() { 65 Locations.clear(); 66 AllocatedStackSlots.clear(); 67 assert(PendingGCRelocateCalls.empty() && 68 "cleared before statepoint sequence completed"); 69 } 70 71 SDValue 72 StatepointLoweringState::allocateStackSlot(EVT ValueType, 73 SelectionDAGBuilder &Builder) { 74 75 NumSlotsAllocatedForStatepoints++; 76 77 // The basic scheme here is to first look for a previously created stack slot 78 // which is not in use (accounting for the fact arbitrary slots may already 79 // be reserved), or to create a new stack slot and use it. 80 81 // If this doesn't succeed in 40000 iterations, something is seriously wrong 82 for (int i = 0; i < 40000; i++) { 83 assert(Builder.FuncInfo.StatepointStackSlots.size() == 84 AllocatedStackSlots.size() && 85 "broken invariant"); 86 const size_t NumSlots = AllocatedStackSlots.size(); 87 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 88 89 if (NextSlotToAllocate >= NumSlots) { 90 assert(NextSlotToAllocate == NumSlots); 91 // record stats 92 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 93 StatepointMaxSlotsRequired = NumSlots + 1; 94 } 95 96 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 97 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 98 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 99 AllocatedStackSlots.push_back(true); 100 return SpillSlot; 101 } 102 if (!AllocatedStackSlots[NextSlotToAllocate]) { 103 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 104 AllocatedStackSlots[NextSlotToAllocate] = true; 105 return Builder.DAG.getFrameIndex(FI, ValueType); 106 } 107 // Note: We deliberately choose to advance this only on the failing path. 108 // Doing so on the succeeding path involves a bit of complexity that caused 109 // a minor bug previously. Unless performance shows this matters, please 110 // keep this code as simple as possible. 111 NextSlotToAllocate++; 112 } 113 llvm_unreachable("infinite loop?"); 114 } 115 116 /// Utility function for reservePreviousStackSlotForValue. Tries to find 117 /// stack slot index to which we have spilled value for previous statepoints. 118 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 119 static Optional<int> findPreviousSpillSlot(const Value *Val, 120 SelectionDAGBuilder &Builder, 121 int LookUpDepth) { 122 // Can not look any further - give up now 123 if (LookUpDepth <= 0) 124 return Optional<int>(); 125 126 // Spill location is known for gc relocates 127 if (isGCRelocate(Val)) { 128 GCRelocateOperands RelocOps(cast<Instruction>(Val)); 129 130 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 131 Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()]; 132 133 auto It = SpillMap.find(RelocOps.getDerivedPtr()); 134 if (It == SpillMap.end()) 135 return Optional<int>(); 136 137 return It->second; 138 } 139 140 // Look through bitcast instructions. 141 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) { 142 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 143 } 144 145 // Look through phi nodes 146 // All incoming values should have same known stack slot, otherwise result 147 // is unknown. 148 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 149 Optional<int> MergedResult = None; 150 151 for (auto &IncomingValue : Phi->incoming_values()) { 152 Optional<int> SpillSlot = 153 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 154 if (!SpillSlot.hasValue()) 155 return Optional<int>(); 156 157 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 158 return Optional<int>(); 159 160 MergedResult = SpillSlot; 161 } 162 return MergedResult; 163 } 164 165 // TODO: We can do better for PHI nodes. In cases like this: 166 // ptr = phi(relocated_pointer, not_relocated_pointer) 167 // statepoint(ptr) 168 // We will return that stack slot for ptr is unknown. And later we might 169 // assign different stack slots for ptr and relocated_pointer. This limits 170 // llvm's ability to remove redundant stores. 171 // Unfortunately it's hard to accomplish in current infrastructure. 172 // We use this function to eliminate spill store completely, while 173 // in example we still need to emit store, but instead of any location 174 // we need to use special "preferred" location. 175 176 // TODO: handle simple updates. If a value is modified and the original 177 // value is no longer live, it would be nice to put the modified value in the 178 // same slot. This allows folding of the memory accesses for some 179 // instructions types (like an increment). 180 // statepoint (i) 181 // i1 = i+1 182 // statepoint (i1) 183 // However we need to be careful for cases like this: 184 // statepoint(i) 185 // i1 = i+1 186 // statepoint(i, i1) 187 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 188 // put handling of simple modifications in this function like it's done 189 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 190 // which we visit values is unspecified. 191 192 // Don't know any information about this instruction 193 return Optional<int>(); 194 } 195 196 /// Try to find existing copies of the incoming values in stack slots used for 197 /// statepoint spilling. If we can find a spill slot for the incoming value, 198 /// mark that slot as allocated, and reuse the same slot for this safepoint. 199 /// This helps to avoid series of loads and stores that only serve to reshuffle 200 /// values on the stack between calls. 201 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 202 SelectionDAGBuilder &Builder) { 203 204 SDValue Incoming = Builder.getValue(IncomingValue); 205 206 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 207 // We won't need to spill this, so no need to check for previously 208 // allocated stack slots 209 return; 210 } 211 212 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 213 if (OldLocation.getNode()) 214 // duplicates in input 215 return; 216 217 const int LookUpDepth = 6; 218 Optional<int> Index = 219 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 220 if (!Index.hasValue()) 221 return; 222 223 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 224 Builder.FuncInfo.StatepointStackSlots.end(), *Index); 225 assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() && 226 "value spilled to the unknown stack slot"); 227 228 // This is one of our dedicated lowering slots 229 const int Offset = 230 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 231 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 232 // stack slot already assigned to someone else, can't use it! 233 // TODO: currently we reserve space for gc arguments after doing 234 // normal allocation for deopt arguments. We should reserve for 235 // _all_ deopt and gc arguments, then start allocating. This 236 // will prevent some moves being inserted when vm state changes, 237 // but gc state doesn't between two calls. 238 return; 239 } 240 // Reserve this stack slot 241 Builder.StatepointLowering.reserveStackSlot(Offset); 242 243 // Cache this slot so we find it when going through the normal 244 // assignment loop. 245 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 246 Builder.StatepointLowering.setLocation(Incoming, Loc); 247 } 248 249 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 250 /// is not required for correctness. It's purpose is to reduce the size of 251 /// StackMap section. It has no effect on the number of spill slots required 252 /// or the actual lowering. 253 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 254 SmallVectorImpl<const Value *> &Ptrs, 255 SmallVectorImpl<const Value *> &Relocs, 256 SelectionDAGBuilder &Builder) { 257 258 // This is horribly inefficient, but I don't care right now 259 SmallSet<SDValue, 64> Seen; 260 261 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 262 for (size_t i = 0; i < Ptrs.size(); i++) { 263 SDValue SD = Builder.getValue(Ptrs[i]); 264 // Only add non-duplicates 265 if (Seen.count(SD) == 0) { 266 NewBases.push_back(Bases[i]); 267 NewPtrs.push_back(Ptrs[i]); 268 NewRelocs.push_back(Relocs[i]); 269 } 270 Seen.insert(SD); 271 } 272 assert(Bases.size() >= NewBases.size()); 273 assert(Ptrs.size() >= NewPtrs.size()); 274 assert(Relocs.size() >= NewRelocs.size()); 275 Bases = NewBases; 276 Ptrs = NewPtrs; 277 Relocs = NewRelocs; 278 assert(Ptrs.size() == Bases.size()); 279 assert(Ptrs.size() == Relocs.size()); 280 } 281 282 /// Extract call from statepoint, lower it and return pointer to the 283 /// call node. Also update NodeMap so that getValue(statepoint) will 284 /// reference lowered call result 285 static SDNode * 286 lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB, 287 SelectionDAGBuilder &Builder, 288 SmallVectorImpl<SDValue> &PendingExports) { 289 290 ImmutableCallSite CS(ISP.getCallSite()); 291 292 SDValue ActualCallee; 293 294 if (ISP.getNumPatchBytes() > 0) { 295 // If we've been asked to emit a nop sequence instead of a call instruction 296 // for this statepoint then don't lower the call target, but use a constant 297 // `null` instead. Not lowering the call target lets statepoint clients get 298 // away without providing a physical address for the symbolic call target at 299 // link time. 300 301 const auto &TLI = Builder.DAG.getTargetLoweringInfo(); 302 const auto &DL = Builder.DAG.getDataLayout(); 303 304 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 305 ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(), 306 TLI.getPointerTy(DL, AS)); 307 } else 308 ActualCallee = Builder.getValue(ISP.getCalledValue()); 309 310 assert(CS.getCallingConv() != CallingConv::AnyReg && 311 "anyregcc is not supported on statepoints!"); 312 313 Type *DefTy = ISP.getActualReturnType(); 314 bool HasDef = !DefTy->isVoidTy(); 315 316 SDValue ReturnValue, CallEndVal; 317 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( 318 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, 319 ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB, 320 false /* IsPatchPoint */); 321 322 SDNode *CallEnd = CallEndVal.getNode(); 323 324 // Get a call instruction from the call sequence chain. Tail calls are not 325 // allowed. The following code is essentially reverse engineering X86's 326 // LowerCallTo. 327 // 328 // We are expecting DAG to have the following form: 329 // 330 // ch = eh_label (only in case of invoke statepoint) 331 // ch, glue = callseq_start ch 332 // ch, glue = X86::Call ch, glue 333 // ch, glue = callseq_end ch, glue 334 // get_return_value ch, glue 335 // 336 // get_return_value can either be a CopyFromReg to grab the return value from 337 // %RAX, or it can be a LOAD to load a value returned by reference via a stack 338 // slot. 339 340 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg || 341 CallEnd->getOpcode() == ISD::LOAD)) 342 CallEnd = CallEnd->getOperand(0).getNode(); 343 344 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 345 346 if (HasDef) { 347 if (CS.isInvoke()) { 348 // Result value will be used in different basic block for invokes 349 // so we need to export it now. But statepoint call has a different type 350 // than the actual call. It means that standard exporting mechanism will 351 // create register of the wrong type. So instead we need to create 352 // register with correct type and save value into it manually. 353 // TODO: To eliminate this problem we can remove gc.result intrinsics 354 // completely and make statepoint call to return a tuple. 355 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); 356 RegsForValue RFV( 357 *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(), 358 Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType()); 359 SDValue Chain = Builder.DAG.getEntryNode(); 360 361 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, 362 nullptr); 363 PendingExports.push_back(Chain); 364 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; 365 } else { 366 // The value of the statepoint itself will be the value of call itself. 367 // We'll replace the actually call node shortly. gc_result will grab 368 // this value. 369 Builder.setValue(CS.getInstruction(), ReturnValue); 370 } 371 } else { 372 // The token value is never used from here on, just generate a poison value 373 Builder.setValue(CS.getInstruction(), 374 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); 375 } 376 377 return CallEnd->getOperand(0).getNode(); 378 } 379 380 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 381 /// and return two arrays: 382 /// Bases - base pointers incoming to this statepoint 383 /// Ptrs - derived pointers incoming to this statepoint 384 /// Relocs - the gc_relocate corresponding to each base/ptr pair 385 /// Elements of this arrays should be in one-to-one correspondence with each 386 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 387 static void getIncomingStatepointGCValues( 388 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, 389 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, 390 SelectionDAGBuilder &Builder) { 391 for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) { 392 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); 393 Bases.push_back(relocateOpers.getBasePtr()); 394 Ptrs.push_back(relocateOpers.getDerivedPtr()); 395 } 396 397 // Remove any redundant llvm::Values which map to the same SDValue as another 398 // input. Also has the effect of removing duplicates in the original 399 // llvm::Value input list as well. This is a useful optimization for 400 // reducing the size of the StackMap section. It has no other impact. 401 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 402 403 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 404 } 405 406 /// Spill a value incoming to the statepoint. It might be either part of 407 /// vmstate 408 /// or gcstate. In both cases unconditionally spill it on the stack unless it 409 /// is a null constant. Return pair with first element being frame index 410 /// containing saved value and second element with outgoing chain from the 411 /// emitted store 412 static std::pair<SDValue, SDValue> 413 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 414 SelectionDAGBuilder &Builder) { 415 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 416 417 // Emit new store if we didn't do it for this ptr before 418 if (!Loc.getNode()) { 419 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 420 Builder); 421 assert(isa<FrameIndexSDNode>(Loc)); 422 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 423 // We use TargetFrameIndex so that isel will not select it into LEA 424 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 425 426 // TODO: We can create TokenFactor node instead of 427 // chaining stores one after another, this may allow 428 // a bit more optimal scheduling for them 429 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 430 MachinePointerInfo::getFixedStack( 431 Builder.DAG.getMachineFunction(), Index), 432 false, false, 0); 433 434 Builder.StatepointLowering.setLocation(Incoming, Loc); 435 } 436 437 assert(Loc.getNode()); 438 return std::make_pair(Loc, Chain); 439 } 440 441 /// Lower a single value incoming to a statepoint node. This value can be 442 /// either a deopt value or a gc value, the handling is the same. We special 443 /// case constants and allocas, then fall back to spilling if required. 444 static void lowerIncomingStatepointValue(SDValue Incoming, 445 SmallVectorImpl<SDValue> &Ops, 446 SelectionDAGBuilder &Builder) { 447 SDValue Chain = Builder.getRoot(); 448 449 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 450 // If the original value was a constant, make sure it gets recorded as 451 // such in the stackmap. This is required so that the consumer can 452 // parse any internal format to the deopt state. It also handles null 453 // pointers and other constant pointers in GC states 454 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 455 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 456 // This handles allocas as arguments to the statepoint (this is only 457 // really meaningful for a deopt value. For GC, we'd be trying to 458 // relocate the address of the alloca itself?) 459 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 460 Incoming.getValueType())); 461 } else { 462 // Otherwise, locate a spill slot and explicitly spill it so it 463 // can be found by the runtime later. We currently do not support 464 // tracking values through callee saved registers to their eventual 465 // spill location. This would be a useful optimization, but would 466 // need to be optional since it requires a lot of complexity on the 467 // runtime side which not all would support. 468 std::pair<SDValue, SDValue> Res = 469 spillIncomingStatepointValue(Incoming, Chain, Builder); 470 Ops.push_back(Res.first); 471 Chain = Res.second; 472 } 473 474 Builder.DAG.setRoot(Chain); 475 } 476 477 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 478 /// lowering is described in lowerIncomingStatepointValue. This function is 479 /// responsible for lowering everything in the right position and playing some 480 /// tricks to avoid redundant stack manipulation where possible. On 481 /// completion, 'Ops' will contain ready to use operands for machine code 482 /// statepoint. The chain nodes will have already been created and the DAG root 483 /// will be set to the last value spilled (if any were). 484 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 485 ImmutableStatepoint StatepointSite, 486 SelectionDAGBuilder &Builder) { 487 488 // Lower the deopt and gc arguments for this statepoint. Layout will 489 // be: deopt argument length, deopt arguments.., gc arguments... 490 491 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 492 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, 493 Builder); 494 495 #ifndef NDEBUG 496 // Check that each of the gc pointer and bases we've gotten out of the 497 // safepoint is something the strategy thinks might be a pointer into the GC 498 // heap. This is basically just here to help catch errors during statepoint 499 // insertion. TODO: This should actually be in the Verifier, but we can't get 500 // to the GCStrategy from there (yet). 501 GCStrategy &S = Builder.GFI->getStrategy(); 502 for (const Value *V : Bases) { 503 auto Opt = S.isGCManagedPointer(V); 504 if (Opt.hasValue()) { 505 assert(Opt.getValue() && 506 "non gc managed base pointer found in statepoint"); 507 } 508 } 509 for (const Value *V : Ptrs) { 510 auto Opt = S.isGCManagedPointer(V); 511 if (Opt.hasValue()) { 512 assert(Opt.getValue() && 513 "non gc managed derived pointer found in statepoint"); 514 } 515 } 516 for (const Value *V : Relocations) { 517 auto Opt = S.isGCManagedPointer(V); 518 if (Opt.hasValue()) { 519 assert(Opt.getValue() && "non gc managed pointer relocated"); 520 } 521 } 522 #endif 523 524 // Before we actually start lowering (and allocating spill slots for values), 525 // reserve any stack slots which we judge to be profitable to reuse for a 526 // particular value. This is purely an optimization over the code below and 527 // doesn't change semantics at all. It is important for performance that we 528 // reserve slots for both deopt and gc values before lowering either. 529 for (const Value *V : StatepointSite.vm_state_args()) { 530 reservePreviousStackSlotForValue(V, Builder); 531 } 532 for (unsigned i = 0; i < Bases.size(); ++i) { 533 reservePreviousStackSlotForValue(Bases[i], Builder); 534 reservePreviousStackSlotForValue(Ptrs[i], Builder); 535 } 536 537 // First, prefix the list with the number of unique values to be 538 // lowered. Note that this is the number of *Values* not the 539 // number of SDValues required to lower them. 540 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); 541 pushStackMapConstant(Ops, Builder, NumVMSArgs); 542 543 assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), 544 StatepointSite.vm_state_end())); 545 546 // The vm state arguments are lowered in an opaque manner. We do 547 // not know what type of values are contained within. We skip the 548 // first one since that happens to be the total number we lowered 549 // explicitly just above. We could have left it in the loop and 550 // not done it explicitly, but it's far easier to understand this 551 // way. 552 for (const Value *V : StatepointSite.vm_state_args()) { 553 SDValue Incoming = Builder.getValue(V); 554 lowerIncomingStatepointValue(Incoming, Ops, Builder); 555 } 556 557 // Finally, go ahead and lower all the gc arguments. There's no prefixed 558 // length for this one. After lowering, we'll have the base and pointer 559 // arrays interwoven with each (lowered) base pointer immediately followed by 560 // it's (lowered) derived pointer. i.e 561 // (base[0], ptr[0], base[1], ptr[1], ...) 562 for (unsigned i = 0; i < Bases.size(); ++i) { 563 const Value *Base = Bases[i]; 564 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 565 566 const Value *Ptr = Ptrs[i]; 567 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 568 } 569 570 // If there are any explicit spill slots passed to the statepoint, record 571 // them, but otherwise do not do anything special. These are user provided 572 // allocas and give control over placement to the consumer. In this case, 573 // it is the contents of the slot which may get updated, not the pointer to 574 // the alloca 575 for (Value *V : StatepointSite.gc_args()) { 576 SDValue Incoming = Builder.getValue(V); 577 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 578 // This handles allocas as arguments to the statepoint 579 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 580 Incoming.getValueType())); 581 } 582 } 583 584 // Record computed locations for all lowered values. 585 // This can not be embedded in lowering loops as we need to record *all* 586 // values, while previous loops account only values with unique SDValues. 587 const Instruction *StatepointInstr = 588 StatepointSite.getCallSite().getInstruction(); 589 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 590 Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; 591 592 for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) { 593 const Value *V = RelocateOpers.getDerivedPtr(); 594 SDValue SDV = Builder.getValue(V); 595 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 596 597 if (Loc.getNode()) { 598 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 599 } else { 600 // Record value as visited, but not spilled. This is case for allocas 601 // and constants. For this values we can avoid emitting spill load while 602 // visiting corresponding gc_relocate. 603 // Actually we do not need to record them in this map at all. 604 // We do this only to check that we are not relocating any unvisited 605 // value. 606 SpillMap[V] = None; 607 608 // Default llvm mechanisms for exporting values which are used in 609 // different basic blocks does not work for gc relocates. 610 // Note that it would be incorrect to teach llvm that all relocates are 611 // uses of the corresponding values so that it would automatically 612 // export them. Relocates of the spilled values does not use original 613 // value. 614 if (StatepointSite.getCallSite().isInvoke()) 615 Builder.ExportFromCurrentBlock(V); 616 } 617 } 618 } 619 620 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 621 // Check some preconditions for sanity 622 assert(isStatepoint(&CI) && 623 "function called must be the statepoint function"); 624 625 LowerStatepoint(ImmutableStatepoint(&CI)); 626 } 627 628 void SelectionDAGBuilder::LowerStatepoint( 629 ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) { 630 // The basic scheme here is that information about both the original call and 631 // the safepoint is encoded in the CallInst. We create a temporary call and 632 // lower it, then reverse engineer the calling sequence. 633 634 NumOfStatepoints++; 635 // Clear state 636 StatepointLowering.startNewStatepoint(*this); 637 638 ImmutableCallSite CS(ISP.getCallSite()); 639 640 #ifndef NDEBUG 641 // Consistency check. Don't do this for invokes. It would be too 642 // expensive to preserve this information across different basic blocks 643 if (!CS.isInvoke()) { 644 for (const User *U : CS->users()) { 645 const CallInst *Call = cast<CallInst>(U); 646 if (isGCRelocate(Call)) 647 StatepointLowering.scheduleRelocCall(*Call); 648 } 649 } 650 #endif 651 652 #ifndef NDEBUG 653 // If this is a malformed statepoint, report it early to simplify debugging. 654 // This should catch any IR level mistake that's made when constructing or 655 // transforming statepoints. 656 ISP.verify(); 657 658 // Check that the associated GCStrategy expects to encounter statepoints. 659 assert(GFI->getStrategy().useStatepoints() && 660 "GCStrategy does not expect to encounter statepoints"); 661 #endif 662 663 // Lower statepoint vmstate and gcstate arguments 664 SmallVector<SDValue, 10> LoweredMetaArgs; 665 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); 666 667 // Get call node, we will replace it later with statepoint 668 SDNode *CallNode = 669 lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports); 670 671 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 672 // nodes with all the appropriate arguments and return values. 673 674 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 675 SDValue Chain = CallNode->getOperand(0); 676 677 SDValue Glue; 678 bool CallHasIncomingGlue = CallNode->getGluedNode(); 679 if (CallHasIncomingGlue) { 680 // Glue is always last operand 681 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 682 } 683 684 // Build the GC_TRANSITION_START node if necessary. 685 // 686 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 687 // order in which they appear in the call to the statepoint intrinsic. If 688 // any of the operands is a pointer-typed, that operand is immediately 689 // followed by a SRCVALUE for the pointer that may be used during lowering 690 // (e.g. to form MachinePointerInfo values for loads/stores). 691 const bool IsGCTransition = 692 (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == 693 (uint64_t)StatepointFlags::GCTransition; 694 if (IsGCTransition) { 695 SmallVector<SDValue, 8> TSOps; 696 697 // Add chain 698 TSOps.push_back(Chain); 699 700 // Add GC transition arguments 701 for (const Value *V : ISP.gc_transition_args()) { 702 TSOps.push_back(getValue(V)); 703 if (V->getType()->isPointerTy()) 704 TSOps.push_back(DAG.getSrcValue(V)); 705 } 706 707 // Add glue if necessary 708 if (CallHasIncomingGlue) 709 TSOps.push_back(Glue); 710 711 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 712 713 SDValue GCTransitionStart = 714 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 715 716 Chain = GCTransitionStart.getValue(0); 717 Glue = GCTransitionStart.getValue(1); 718 } 719 720 // TODO: Currently, all of these operands are being marked as read/write in 721 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 722 // and flags to be read-only. 723 SmallVector<SDValue, 40> Ops; 724 725 // Add the <id> and <numBytes> constants. 726 Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); 727 Ops.push_back( 728 DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); 729 730 // Calculate and push starting position of vmstate arguments 731 // Get number of arguments incoming directly into call node 732 unsigned NumCallRegArgs = 733 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 734 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 735 736 // Add call target 737 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 738 Ops.push_back(CallTarget); 739 740 // Add call arguments 741 // Get position of register mask in the call 742 SDNode::op_iterator RegMaskIt; 743 if (CallHasIncomingGlue) 744 RegMaskIt = CallNode->op_end() - 2; 745 else 746 RegMaskIt = CallNode->op_end() - 1; 747 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 748 749 // Add a constant argument for the calling convention 750 pushStackMapConstant(Ops, *this, CS.getCallingConv()); 751 752 // Add a constant argument for the flags 753 uint64_t Flags = ISP.getFlags(); 754 assert( 755 ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) 756 && "unknown flag used"); 757 pushStackMapConstant(Ops, *this, Flags); 758 759 // Insert all vmstate and gcstate arguments 760 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 761 762 // Add register mask from call node 763 Ops.push_back(*RegMaskIt); 764 765 // Add chain 766 Ops.push_back(Chain); 767 768 // Same for the glue, but we add it only if original call had it 769 if (Glue.getNode()) 770 Ops.push_back(Glue); 771 772 // Compute return values. Provide a glue output since we consume one as 773 // input. This allows someone else to chain off us as needed. 774 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 775 776 SDNode *StatepointMCNode = 777 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 778 779 SDNode *SinkNode = StatepointMCNode; 780 781 // Build the GC_TRANSITION_END node if necessary. 782 // 783 // See the comment above regarding GC_TRANSITION_START for the layout of 784 // the operands to the GC_TRANSITION_END node. 785 if (IsGCTransition) { 786 SmallVector<SDValue, 8> TEOps; 787 788 // Add chain 789 TEOps.push_back(SDValue(StatepointMCNode, 0)); 790 791 // Add GC transition arguments 792 for (const Value *V : ISP.gc_transition_args()) { 793 TEOps.push_back(getValue(V)); 794 if (V->getType()->isPointerTy()) 795 TEOps.push_back(DAG.getSrcValue(V)); 796 } 797 798 // Add glue 799 TEOps.push_back(SDValue(StatepointMCNode, 1)); 800 801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 802 803 SDValue GCTransitionStart = 804 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 805 806 SinkNode = GCTransitionStart.getNode(); 807 } 808 809 // Replace original call 810 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 811 // Remove original call node 812 DAG.DeleteNode(CallNode); 813 814 // DON'T set the root - under the assumption that it's already set past the 815 // inserted node we created. 816 817 // TODO: A better future implementation would be to emit a single variable 818 // argument, variable return value STATEPOINT node here and then hookup the 819 // return value of each gc.relocate to the respective output of the 820 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 821 // to actually be possible today. 822 } 823 824 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 825 // The result value of the gc_result is simply the result of the actual 826 // call. We've already emitted this, so just grab the value. 827 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 828 assert(isStatepoint(I) && "first argument must be a statepoint token"); 829 830 if (isa<InvokeInst>(I)) { 831 // For invokes we should have stored call result in a virtual register. 832 // We can not use default getValue() functionality to copy value from this 833 // register because statepoint and actuall call return types can be 834 // different, and getValue() will use CopyFromReg of the wrong type, 835 // which is always i32 in our case. 836 PointerType *CalleeType = cast<PointerType>( 837 ImmutableStatepoint(I).getCalledValue()->getType()); 838 Type *RetTy = 839 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 840 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 841 842 assert(CopyFromReg.getNode()); 843 setValue(&CI, CopyFromReg); 844 } else { 845 setValue(&CI, getValue(I)); 846 } 847 } 848 849 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 850 GCRelocateOperands RelocateOpers(&CI); 851 852 #ifndef NDEBUG 853 // Consistency check 854 // We skip this check for invoke statepoints. It would be too expensive to 855 // preserve validation info through different basic blocks. 856 if (!RelocateOpers.isTiedToInvoke()) { 857 StatepointLowering.relocCallVisited(CI); 858 } 859 #endif 860 861 const Value *DerivedPtr = RelocateOpers.getDerivedPtr(); 862 SDValue SD = getValue(DerivedPtr); 863 864 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 865 FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()]; 866 867 // We should have recorded location for this pointer 868 assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); 869 Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; 870 871 // We didn't need to spill these special cases (constants and allocas). 872 // See the handling in spillIncomingValueForStatepoint for detail. 873 if (!DerivedPtrLocation) { 874 setValue(&CI, SD); 875 return; 876 } 877 878 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 879 SD.getValueType()); 880 881 // Be conservative: flush all pending loads 882 // TODO: Probably we can be less restrictive on this, 883 // it may allow more scheduling opportunities. 884 SDValue Chain = getRoot(); 885 886 SDValue SpillLoad = 887 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 888 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 889 *DerivedPtrLocation), 890 false, false, false, 0); 891 892 // Again, be conservative, don't emit pending loads 893 DAG.setRoot(SpillLoad.getValue(1)); 894 895 assert(SpillLoad.getNode()); 896 setValue(&CI, SpillLoad); 897 } 898