1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/GCStrategy.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Statepoint.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MachineValueType.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <iterator> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "statepoint-lowering" 60 61 STATISTIC(NumSlotsAllocatedForStatepoints, 62 "Number of stack slots allocated for statepoints"); 63 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 64 STATISTIC(StatepointMaxSlotsRequired, 65 "Maximum number of stack slots required for a singe statepoint"); 66 67 cl::opt<bool> UseRegistersForDeoptValues( 68 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 69 cl::desc("Allow using registers for non pointer deopt args")); 70 71 cl::opt<bool> UseRegistersForGCPointersInLandingPad( 72 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false), 73 cl::desc("Allow using registers for gc pointer in landing pad")); 74 75 cl::opt<unsigned> MaxRegistersForGCPointers( 76 "max-registers-for-gc-values", cl::Hidden, cl::init(0), 77 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in")); 78 79 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType; 80 81 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 82 SelectionDAGBuilder &Builder, uint64_t Value) { 83 SDLoc L = Builder.getCurSDLoc(); 84 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 85 MVT::i64)); 86 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 87 } 88 89 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 90 // Consistency check 91 assert(PendingGCRelocateCalls.empty() && 92 "Trying to visit statepoint before finished processing previous one"); 93 Locations.clear(); 94 NextSlotToAllocate = 0; 95 // Need to resize this on each safepoint - we need the two to stay in sync and 96 // the clear patterns of a SelectionDAGBuilder have no relation to 97 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 98 AllocatedStackSlots.clear(); 99 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 100 } 101 102 void StatepointLoweringState::clear() { 103 Locations.clear(); 104 AllocatedStackSlots.clear(); 105 assert(PendingGCRelocateCalls.empty() && 106 "cleared before statepoint sequence completed"); 107 } 108 109 SDValue 110 StatepointLoweringState::allocateStackSlot(EVT ValueType, 111 SelectionDAGBuilder &Builder) { 112 NumSlotsAllocatedForStatepoints++; 113 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 114 115 unsigned SpillSize = ValueType.getStoreSize(); 116 assert((SpillSize * 8) == 117 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8. 118 "Size not in bytes?"); 119 120 // First look for a previously created stack slot which is not in 121 // use (accounting for the fact arbitrary slots may already be 122 // reserved), or to create a new stack slot and use it. 123 124 const size_t NumSlots = AllocatedStackSlots.size(); 125 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 126 127 assert(AllocatedStackSlots.size() == 128 Builder.FuncInfo.StatepointStackSlots.size() && 129 "Broken invariant"); 130 131 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 132 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 133 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 134 if (MFI.getObjectSize(FI) == SpillSize) { 135 AllocatedStackSlots.set(NextSlotToAllocate); 136 // TODO: Is ValueType the right thing to use here? 137 return Builder.DAG.getFrameIndex(FI, ValueType); 138 } 139 } 140 } 141 142 // Couldn't find a free slot, so create a new one: 143 144 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 145 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 146 MFI.markAsStatepointSpillSlotObjectIndex(FI); 147 148 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 149 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 150 assert(AllocatedStackSlots.size() == 151 Builder.FuncInfo.StatepointStackSlots.size() && 152 "Broken invariant"); 153 154 StatepointMaxSlotsRequired.updateMax( 155 Builder.FuncInfo.StatepointStackSlots.size()); 156 157 return SpillSlot; 158 } 159 160 /// Utility function for reservePreviousStackSlotForValue. Tries to find 161 /// stack slot index to which we have spilled value for previous statepoints. 162 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 163 static Optional<int> findPreviousSpillSlot(const Value *Val, 164 SelectionDAGBuilder &Builder, 165 int LookUpDepth) { 166 // Can not look any further - give up now 167 if (LookUpDepth <= 0) 168 return None; 169 170 // Spill location is known for gc relocates 171 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 172 const auto &RelocationMap = 173 Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()]; 174 175 auto It = RelocationMap.find(Relocate); 176 if (It == RelocationMap.end()) 177 return None; 178 179 auto &Record = It->second; 180 if (Record.type != RecordType::Spill) 181 return None; 182 183 return Record.payload.FI; 184 } 185 186 // Look through bitcast instructions. 187 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 188 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 189 190 // Look through phi nodes 191 // All incoming values should have same known stack slot, otherwise result 192 // is unknown. 193 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 194 Optional<int> MergedResult = None; 195 196 for (auto &IncomingValue : Phi->incoming_values()) { 197 Optional<int> SpillSlot = 198 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 199 if (!SpillSlot.hasValue()) 200 return None; 201 202 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 203 return None; 204 205 MergedResult = SpillSlot; 206 } 207 return MergedResult; 208 } 209 210 // TODO: We can do better for PHI nodes. In cases like this: 211 // ptr = phi(relocated_pointer, not_relocated_pointer) 212 // statepoint(ptr) 213 // We will return that stack slot for ptr is unknown. And later we might 214 // assign different stack slots for ptr and relocated_pointer. This limits 215 // llvm's ability to remove redundant stores. 216 // Unfortunately it's hard to accomplish in current infrastructure. 217 // We use this function to eliminate spill store completely, while 218 // in example we still need to emit store, but instead of any location 219 // we need to use special "preferred" location. 220 221 // TODO: handle simple updates. If a value is modified and the original 222 // value is no longer live, it would be nice to put the modified value in the 223 // same slot. This allows folding of the memory accesses for some 224 // instructions types (like an increment). 225 // statepoint (i) 226 // i1 = i+1 227 // statepoint (i1) 228 // However we need to be careful for cases like this: 229 // statepoint(i) 230 // i1 = i+1 231 // statepoint(i, i1) 232 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 233 // put handling of simple modifications in this function like it's done 234 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 235 // which we visit values is unspecified. 236 237 // Don't know any information about this instruction 238 return None; 239 } 240 241 /// Return true if-and-only-if the given SDValue can be lowered as either a 242 /// constant argument or a stack reference. The key point is that the value 243 /// doesn't need to be spilled or tracked as a vreg use. 244 static bool willLowerDirectly(SDValue Incoming) { 245 // We are making an unchecked assumption that the frame size <= 2^16 as that 246 // is the largest offset which can be encoded in the stackmap format. 247 if (isa<FrameIndexSDNode>(Incoming)) 248 return true; 249 250 // The largest constant describeable in the StackMap format is 64 bits. 251 // Potential Optimization: Constants values are sign extended by consumer, 252 // and thus there are many constants of static type > 64 bits whose value 253 // happens to be sext(Con64) and could thus be lowered directly. 254 if (Incoming.getValueType().getSizeInBits() > 64) 255 return false; 256 257 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 258 Incoming.isUndef()); 259 } 260 261 /// Try to find existing copies of the incoming values in stack slots used for 262 /// statepoint spilling. If we can find a spill slot for the incoming value, 263 /// mark that slot as allocated, and reuse the same slot for this safepoint. 264 /// This helps to avoid series of loads and stores that only serve to reshuffle 265 /// values on the stack between calls. 266 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 267 SelectionDAGBuilder &Builder) { 268 SDValue Incoming = Builder.getValue(IncomingValue); 269 270 // If we won't spill this, we don't need to check for previously allocated 271 // stack slots. 272 if (willLowerDirectly(Incoming)) 273 return; 274 275 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 276 if (OldLocation.getNode()) 277 // Duplicates in input 278 return; 279 280 const int LookUpDepth = 6; 281 Optional<int> Index = 282 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 283 if (!Index.hasValue()) 284 return; 285 286 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 287 288 auto SlotIt = find(StatepointSlots, *Index); 289 assert(SlotIt != StatepointSlots.end() && 290 "Value spilled to the unknown stack slot"); 291 292 // This is one of our dedicated lowering slots 293 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 294 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 295 // stack slot already assigned to someone else, can't use it! 296 // TODO: currently we reserve space for gc arguments after doing 297 // normal allocation for deopt arguments. We should reserve for 298 // _all_ deopt and gc arguments, then start allocating. This 299 // will prevent some moves being inserted when vm state changes, 300 // but gc state doesn't between two calls. 301 return; 302 } 303 // Reserve this stack slot 304 Builder.StatepointLowering.reserveStackSlot(Offset); 305 306 // Cache this slot so we find it when going through the normal 307 // assignment loop. 308 SDValue Loc = 309 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 310 Builder.StatepointLowering.setLocation(Incoming, Loc); 311 } 312 313 /// Extract call from statepoint, lower it and return pointer to the 314 /// call node. Also update NodeMap so that getValue(statepoint) will 315 /// reference lowered call result 316 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 317 SelectionDAGBuilder::StatepointLoweringInfo &SI, 318 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 319 SDValue ReturnValue, CallEndVal; 320 std::tie(ReturnValue, CallEndVal) = 321 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 322 SDNode *CallEnd = CallEndVal.getNode(); 323 324 // Get a call instruction from the call sequence chain. Tail calls are not 325 // allowed. The following code is essentially reverse engineering X86's 326 // LowerCallTo. 327 // 328 // We are expecting DAG to have the following form: 329 // 330 // ch = eh_label (only in case of invoke statepoint) 331 // ch, glue = callseq_start ch 332 // ch, glue = X86::Call ch, glue 333 // ch, glue = callseq_end ch, glue 334 // get_return_value ch, glue 335 // 336 // get_return_value can either be a sequence of CopyFromReg instructions 337 // to grab the return value from the return register(s), or it can be a LOAD 338 // to load a value returned by reference via a stack slot. 339 340 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 341 if (HasDef) { 342 if (CallEnd->getOpcode() == ISD::LOAD) 343 CallEnd = CallEnd->getOperand(0).getNode(); 344 else 345 while (CallEnd->getOpcode() == ISD::CopyFromReg) 346 CallEnd = CallEnd->getOperand(0).getNode(); 347 } 348 349 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 350 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 351 } 352 353 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 354 FrameIndexSDNode &FI) { 355 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 356 auto MMOFlags = MachineMemOperand::MOStore | 357 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 358 auto &MFI = MF.getFrameInfo(); 359 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 360 MFI.getObjectSize(FI.getIndex()), 361 MFI.getObjectAlign(FI.getIndex())); 362 } 363 364 /// Spill a value incoming to the statepoint. It might be either part of 365 /// vmstate 366 /// or gcstate. In both cases unconditionally spill it on the stack unless it 367 /// is a null constant. Return pair with first element being frame index 368 /// containing saved value and second element with outgoing chain from the 369 /// emitted store 370 static std::tuple<SDValue, SDValue, MachineMemOperand*> 371 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 372 SelectionDAGBuilder &Builder) { 373 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 374 MachineMemOperand* MMO = nullptr; 375 376 // Emit new store if we didn't do it for this ptr before 377 if (!Loc.getNode()) { 378 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 379 Builder); 380 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 381 // We use TargetFrameIndex so that isel will not select it into LEA 382 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 383 384 // Right now we always allocate spill slots that are of the same 385 // size as the value we're about to spill (the size of spillee can 386 // vary since we spill vectors of pointers too). At some point we 387 // can consider allowing spills of smaller values to larger slots 388 // (i.e. change the '==' in the assert below to a '>='). 389 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 390 assert((MFI.getObjectSize(Index) * 8) == 391 (-8 & (7 + // Round up modulo 8. 392 (int64_t)Incoming.getValueSizeInBits())) && 393 "Bad spill: stack slot does not match!"); 394 395 // Note: Using the alignment of the spill slot (rather than the abi or 396 // preferred alignment) is required for correctness when dealing with spill 397 // slots with preferred alignments larger than frame alignment.. 398 auto &MF = Builder.DAG.getMachineFunction(); 399 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 400 auto *StoreMMO = MF.getMachineMemOperand( 401 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 402 MFI.getObjectAlign(Index)); 403 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 404 StoreMMO); 405 406 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 407 408 Builder.StatepointLowering.setLocation(Incoming, Loc); 409 } 410 411 assert(Loc.getNode()); 412 return std::make_tuple(Loc, Chain, MMO); 413 } 414 415 /// Lower a single value incoming to a statepoint node. This value can be 416 /// either a deopt value or a gc value, the handling is the same. We special 417 /// case constants and allocas, then fall back to spilling if required. 418 static void 419 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 420 SmallVectorImpl<SDValue> &Ops, 421 SmallVectorImpl<MachineMemOperand *> &MemRefs, 422 SelectionDAGBuilder &Builder) { 423 424 if (willLowerDirectly(Incoming)) { 425 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 426 // This handles allocas as arguments to the statepoint (this is only 427 // really meaningful for a deopt value. For GC, we'd be trying to 428 // relocate the address of the alloca itself?) 429 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 430 "Incoming value is a frame index!"); 431 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 432 Builder.getFrameIndexTy())); 433 434 auto &MF = Builder.DAG.getMachineFunction(); 435 auto *MMO = getMachineMemOperand(MF, *FI); 436 MemRefs.push_back(MMO); 437 return; 438 } 439 440 assert(Incoming.getValueType().getSizeInBits() <= 64); 441 442 if (Incoming.isUndef()) { 443 // Put an easily recognized constant that's unlikely to be a valid 444 // value so that uses of undef by the consumer of the stackmap is 445 // easily recognized. This is legal since the compiler is always 446 // allowed to chose an arbitrary value for undef. 447 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 448 return; 449 } 450 451 // If the original value was a constant, make sure it gets recorded as 452 // such in the stackmap. This is required so that the consumer can 453 // parse any internal format to the deopt state. It also handles null 454 // pointers and other constant pointers in GC states. 455 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 456 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 457 return; 458 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 459 pushStackMapConstant(Ops, Builder, 460 C->getValueAPF().bitcastToAPInt().getZExtValue()); 461 return; 462 } 463 464 llvm_unreachable("unhandled direct lowering case"); 465 } 466 467 468 469 if (!RequireSpillSlot) { 470 // If this value is live in (not live-on-return, or live-through), we can 471 // treat it the same way patchpoint treats it's "live in" values. We'll 472 // end up folding some of these into stack references, but they'll be 473 // handled by the register allocator. Note that we do not have the notion 474 // of a late use so these values might be placed in registers which are 475 // clobbered by the call. This is fine for live-in. For live-through 476 // fix-up pass should be executed to force spilling of such registers. 477 Ops.push_back(Incoming); 478 } else { 479 // Otherwise, locate a spill slot and explicitly spill it so it can be 480 // found by the runtime later. Note: We know all of these spills are 481 // independent, but don't bother to exploit that chain wise. DAGCombine 482 // will happily do so as needed, so doing it here would be a small compile 483 // time win at most. 484 SDValue Chain = Builder.getRoot(); 485 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 486 Ops.push_back(std::get<0>(Res)); 487 if (auto *MMO = std::get<2>(Res)) 488 MemRefs.push_back(MMO); 489 Chain = std::get<1>(Res);; 490 Builder.DAG.setRoot(Chain); 491 } 492 493 } 494 495 /// Return true if value V represents the GC value. The behavior is conservative 496 /// in case it is not sure that value is not GC the function returns true. 497 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) { 498 auto *Ty = V->getType(); 499 if (!Ty->isPtrOrPtrVectorTy()) 500 return false; 501 if (auto *GFI = Builder.GFI) 502 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 503 return *IsManaged; 504 return true; // conservative 505 } 506 507 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 508 /// lowering is described in lowerIncomingStatepointValue. This function is 509 /// responsible for lowering everything in the right position and playing some 510 /// tricks to avoid redundant stack manipulation where possible. On 511 /// completion, 'Ops' will contain ready to use operands for machine code 512 /// statepoint. The chain nodes will have already been created and the DAG root 513 /// will be set to the last value spilled (if any were). 514 static void 515 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 516 SmallVectorImpl<MachineMemOperand *> &MemRefs, 517 SmallVectorImpl<SDValue> &GCPtrs, 518 DenseMap<SDValue, int> &LowerAsVReg, 519 SelectionDAGBuilder::StatepointLoweringInfo &SI, 520 SelectionDAGBuilder &Builder) { 521 // Lower the deopt and gc arguments for this statepoint. Layout will be: 522 // deopt argument length, deopt arguments.., gc arguments... 523 #ifndef NDEBUG 524 if (auto *GFI = Builder.GFI) { 525 // Check that each of the gc pointer and bases we've gotten out of the 526 // safepoint is something the strategy thinks might be a pointer (or vector 527 // of pointers) into the GC heap. This is basically just here to help catch 528 // errors during statepoint insertion. TODO: This should actually be in the 529 // Verifier, but we can't get to the GCStrategy from there (yet). 530 GCStrategy &S = GFI->getStrategy(); 531 for (const Value *V : SI.Bases) { 532 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 533 if (Opt.hasValue()) { 534 assert(Opt.getValue() && 535 "non gc managed base pointer found in statepoint"); 536 } 537 } 538 for (const Value *V : SI.Ptrs) { 539 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 540 if (Opt.hasValue()) { 541 assert(Opt.getValue() && 542 "non gc managed derived pointer found in statepoint"); 543 } 544 } 545 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 546 } else { 547 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 548 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 549 } 550 #endif 551 552 // Figure out what lowering strategy we're going to use for each part 553 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 554 // as "live-through". A "live-through" variable is one which is "live-in", 555 // "live-out", and live throughout the lifetime of the call (i.e. we can find 556 // it from any PC within the transitive callee of the statepoint). In 557 // particular, if the callee spills callee preserved registers we may not 558 // be able to find a value placed in that register during the call. This is 559 // fine for live-out, but not for live-through. If we were willing to make 560 // assumptions about the code generator producing the callee, we could 561 // potentially allow live-through values in callee saved registers. 562 const bool LiveInDeopt = 563 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 564 565 // Decide which deriver pointers will go on VRegs 566 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue(); 567 568 // Pointers used on exceptional path of invoke statepoint. 569 // We cannot assing them to VRegs. 570 SmallSet<SDValue, 8> LPadPointers; 571 if (!UseRegistersForGCPointersInLandingPad) 572 if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) { 573 LandingPadInst *LPI = StInvoke->getLandingPadInst(); 574 for (auto *Relocate : SI.GCRelocates) 575 if (Relocate->getOperand(0) == LPI) { 576 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr())); 577 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr())); 578 } 579 } 580 581 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n"); 582 583 // List of unique lowered GC Pointer values. 584 SmallSetVector<SDValue, 16> LoweredGCPtrs; 585 // Map lowered GC Pointer value to the index in above vector 586 DenseMap<SDValue, unsigned> GCPtrIndexMap; 587 588 unsigned CurNumVRegs = 0; 589 590 auto canPassGCPtrOnVReg = [&](SDValue SD) { 591 if (SD.getValueType().isVector()) 592 return false; 593 if (LPadPointers.count(SD)) 594 return false; 595 return !willLowerDirectly(SD); 596 }; 597 598 auto processGCPtr = [&](const Value *V) { 599 SDValue PtrSD = Builder.getValue(V); 600 if (!LoweredGCPtrs.insert(PtrSD)) 601 return; // skip duplicates 602 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1; 603 604 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen"); 605 if (LowerAsVReg.size() == MaxVRegPtrs) 606 return; 607 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && 608 "IR and SD types disagree"); 609 if (!canPassGCPtrOnVReg(PtrSD)) { 610 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG)); 611 return; 612 } 613 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG)); 614 LowerAsVReg[PtrSD] = CurNumVRegs++; 615 }; 616 617 // Process derived pointers first to give them more chance to go on VReg. 618 for (const Value *V : SI.Ptrs) 619 processGCPtr(V); 620 for (const Value *V : SI.Bases) 621 processGCPtr(V); 622 623 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n"); 624 625 auto requireSpillSlot = [&](const Value *V) { 626 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal( 627 Builder.getValue(V).getValueType())) 628 return true; 629 if (isGCValue(V, Builder)) 630 return !LowerAsVReg.count(Builder.getValue(V)); 631 return !(LiveInDeopt || UseRegistersForDeoptValues); 632 }; 633 634 // Before we actually start lowering (and allocating spill slots for values), 635 // reserve any stack slots which we judge to be profitable to reuse for a 636 // particular value. This is purely an optimization over the code below and 637 // doesn't change semantics at all. It is important for performance that we 638 // reserve slots for both deopt and gc values before lowering either. 639 for (const Value *V : SI.DeoptState) { 640 if (requireSpillSlot(V)) 641 reservePreviousStackSlotForValue(V, Builder); 642 } 643 644 for (const Value *V : SI.Ptrs) { 645 SDValue SDV = Builder.getValue(V); 646 if (!LowerAsVReg.count(SDV)) 647 reservePreviousStackSlotForValue(V, Builder); 648 } 649 650 for (const Value *V : SI.Bases) { 651 SDValue SDV = Builder.getValue(V); 652 if (!LowerAsVReg.count(SDV)) 653 reservePreviousStackSlotForValue(V, Builder); 654 } 655 656 // First, prefix the list with the number of unique values to be 657 // lowered. Note that this is the number of *Values* not the 658 // number of SDValues required to lower them. 659 const int NumVMSArgs = SI.DeoptState.size(); 660 pushStackMapConstant(Ops, Builder, NumVMSArgs); 661 662 // The vm state arguments are lowered in an opaque manner. We do not know 663 // what type of values are contained within. 664 LLVM_DEBUG(dbgs() << "Lowering deopt state\n"); 665 for (const Value *V : SI.DeoptState) { 666 SDValue Incoming; 667 // If this is a function argument at a static frame index, generate it as 668 // the frame index. 669 if (const Argument *Arg = dyn_cast<Argument>(V)) { 670 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 671 if (FI != INT_MAX) 672 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 673 } 674 if (!Incoming.getNode()) 675 Incoming = Builder.getValue(V); 676 LLVM_DEBUG(dbgs() << "Value " << *V 677 << " requireSpillSlot = " << requireSpillSlot(V) << "\n"); 678 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 679 Builder); 680 } 681 682 // Finally, go ahead and lower all the gc arguments. 683 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size()); 684 for (SDValue SDV : LoweredGCPtrs) 685 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs, 686 Builder); 687 688 // Copy to out vector. LoweredGCPtrs will be empty after this point. 689 GCPtrs = LoweredGCPtrs.takeVector(); 690 691 // If there are any explicit spill slots passed to the statepoint, record 692 // them, but otherwise do not do anything special. These are user provided 693 // allocas and give control over placement to the consumer. In this case, 694 // it is the contents of the slot which may get updated, not the pointer to 695 // the alloca 696 SmallVector<SDValue, 4> Allocas; 697 for (Value *V : SI.GCArgs) { 698 SDValue Incoming = Builder.getValue(V); 699 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 700 // This handles allocas as arguments to the statepoint 701 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 702 "Incoming value is a frame index!"); 703 Allocas.push_back(Builder.DAG.getTargetFrameIndex( 704 FI->getIndex(), Builder.getFrameIndexTy())); 705 706 auto &MF = Builder.DAG.getMachineFunction(); 707 auto *MMO = getMachineMemOperand(MF, *FI); 708 MemRefs.push_back(MMO); 709 } 710 } 711 pushStackMapConstant(Ops, Builder, Allocas.size()); 712 Ops.append(Allocas.begin(), Allocas.end()); 713 714 // Now construct GC base/derived map; 715 pushStackMapConstant(Ops, Builder, SI.Ptrs.size()); 716 SDLoc L = Builder.getCurSDLoc(); 717 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) { 718 SDValue Base = Builder.getValue(SI.Bases[i]); 719 assert(GCPtrIndexMap.count(Base) && "base not found in index map"); 720 Ops.push_back( 721 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64)); 722 SDValue Derived = Builder.getValue(SI.Ptrs[i]); 723 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map"); 724 Ops.push_back( 725 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64)); 726 } 727 } 728 729 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 730 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 731 // The basic scheme here is that information about both the original call and 732 // the safepoint is encoded in the CallInst. We create a temporary call and 733 // lower it, then reverse engineer the calling sequence. 734 735 NumOfStatepoints++; 736 // Clear state 737 StatepointLowering.startNewStatepoint(*this); 738 assert(SI.Bases.size() == SI.Ptrs.size()); 739 740 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n"); 741 #ifndef NDEBUG 742 for (auto *Reloc : SI.GCRelocates) 743 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 744 StatepointLowering.scheduleRelocCall(*Reloc); 745 #endif 746 747 // Lower statepoint vmstate and gcstate arguments 748 749 // All lowered meta args. 750 SmallVector<SDValue, 10> LoweredMetaArgs; 751 // Lowered GC pointers (subset of above). 752 SmallVector<SDValue, 16> LoweredGCArgs; 753 SmallVector<MachineMemOperand*, 16> MemRefs; 754 // Maps derived pointer SDValue to statepoint result of relocated pointer. 755 DenseMap<SDValue, int> LowerAsVReg; 756 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg, 757 SI, *this); 758 759 // Now that we've emitted the spills, we need to update the root so that the 760 // call sequence is ordered correctly. 761 SI.CLI.setChain(getRoot()); 762 763 // Get call node, we will replace it later with statepoint 764 SDValue ReturnVal; 765 SDNode *CallNode; 766 std::tie(ReturnVal, CallNode) = 767 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 768 769 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 770 // nodes with all the appropriate arguments and return values. 771 772 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 773 SDValue Chain = CallNode->getOperand(0); 774 775 SDValue Glue; 776 bool CallHasIncomingGlue = CallNode->getGluedNode(); 777 if (CallHasIncomingGlue) { 778 // Glue is always last operand 779 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 780 } 781 782 // Build the GC_TRANSITION_START node if necessary. 783 // 784 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 785 // order in which they appear in the call to the statepoint intrinsic. If 786 // any of the operands is a pointer-typed, that operand is immediately 787 // followed by a SRCVALUE for the pointer that may be used during lowering 788 // (e.g. to form MachinePointerInfo values for loads/stores). 789 const bool IsGCTransition = 790 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 791 (uint64_t)StatepointFlags::GCTransition; 792 if (IsGCTransition) { 793 SmallVector<SDValue, 8> TSOps; 794 795 // Add chain 796 TSOps.push_back(Chain); 797 798 // Add GC transition arguments 799 for (const Value *V : SI.GCTransitionArgs) { 800 TSOps.push_back(getValue(V)); 801 if (V->getType()->isPointerTy()) 802 TSOps.push_back(DAG.getSrcValue(V)); 803 } 804 805 // Add glue if necessary 806 if (CallHasIncomingGlue) 807 TSOps.push_back(Glue); 808 809 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 810 811 SDValue GCTransitionStart = 812 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 813 814 Chain = GCTransitionStart.getValue(0); 815 Glue = GCTransitionStart.getValue(1); 816 } 817 818 // TODO: Currently, all of these operands are being marked as read/write in 819 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 820 // and flags to be read-only. 821 SmallVector<SDValue, 40> Ops; 822 823 // Add the <id> and <numBytes> constants. 824 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 825 Ops.push_back( 826 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 827 828 // Calculate and push starting position of vmstate arguments 829 // Get number of arguments incoming directly into call node 830 unsigned NumCallRegArgs = 831 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 832 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 833 834 // Add call target 835 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 836 Ops.push_back(CallTarget); 837 838 // Add call arguments 839 // Get position of register mask in the call 840 SDNode::op_iterator RegMaskIt; 841 if (CallHasIncomingGlue) 842 RegMaskIt = CallNode->op_end() - 2; 843 else 844 RegMaskIt = CallNode->op_end() - 1; 845 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 846 847 // Add a constant argument for the calling convention 848 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 849 850 // Add a constant argument for the flags 851 uint64_t Flags = SI.StatepointFlags; 852 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 853 "Unknown flag used"); 854 pushStackMapConstant(Ops, *this, Flags); 855 856 // Insert all vmstate and gcstate arguments 857 llvm::append_range(Ops, LoweredMetaArgs); 858 859 // Add register mask from call node 860 Ops.push_back(*RegMaskIt); 861 862 // Add chain 863 Ops.push_back(Chain); 864 865 // Same for the glue, but we add it only if original call had it 866 if (Glue.getNode()) 867 Ops.push_back(Glue); 868 869 // Compute return values. Provide a glue output since we consume one as 870 // input. This allows someone else to chain off us as needed. 871 SmallVector<EVT, 8> NodeTys; 872 for (auto SD : LoweredGCArgs) { 873 if (!LowerAsVReg.count(SD)) 874 continue; 875 NodeTys.push_back(SD.getValueType()); 876 } 877 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n"); 878 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"); 879 NodeTys.push_back(MVT::Other); 880 NodeTys.push_back(MVT::Glue); 881 882 unsigned NumResults = NodeTys.size(); 883 MachineSDNode *StatepointMCNode = 884 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 885 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 886 887 // For values lowered to tied-defs, create the virtual registers if used 888 // in other blocks. For local gc.relocate record appropriate statepoint 889 // result in StatepointLoweringState. 890 DenseMap<SDValue, Register> VirtRegs; 891 for (const auto *Relocate : SI.GCRelocates) { 892 Value *Derived = Relocate->getDerivedPtr(); 893 SDValue SD = getValue(Derived); 894 if (!LowerAsVReg.count(SD)) 895 continue; 896 897 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]); 898 899 // Handle local relocate. Note that different relocates might 900 // map to the same SDValue. 901 if (SI.StatepointInstr->getParent() == Relocate->getParent()) { 902 SDValue Res = StatepointLowering.getLocation(SD); 903 if (Res) 904 assert(Res == Relocated); 905 else 906 StatepointLowering.setLocation(SD, Relocated); 907 continue; 908 } 909 910 // Handle multiple gc.relocates of the same input efficiently. 911 if (VirtRegs.count(SD)) 912 continue; 913 914 auto *RetTy = Relocate->getType(); 915 Register Reg = FuncInfo.CreateRegs(RetTy); 916 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 917 DAG.getDataLayout(), Reg, RetTy, None); 918 SDValue Chain = DAG.getRoot(); 919 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr); 920 PendingExports.push_back(Chain); 921 922 VirtRegs[SD] = Reg; 923 } 924 925 // Record for later use how each relocation was lowered. This is needed to 926 // allow later gc.relocates to mirror the lowering chosen. 927 const Instruction *StatepointInstr = SI.StatepointInstr; 928 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr]; 929 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 930 const Value *V = Relocate->getDerivedPtr(); 931 SDValue SDV = getValue(V); 932 SDValue Loc = StatepointLowering.getLocation(SDV); 933 934 bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent()); 935 936 RecordType Record; 937 if (IsLocal && LowerAsVReg.count(SDV)) { 938 // Result is already stored in StatepointLowering 939 Record.type = RecordType::SDValueNode; 940 } else if (LowerAsVReg.count(SDV)) { 941 Record.type = RecordType::VReg; 942 assert(VirtRegs.count(SDV)); 943 Record.payload.Reg = VirtRegs[SDV]; 944 } else if (Loc.getNode()) { 945 Record.type = RecordType::Spill; 946 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 947 } else { 948 Record.type = RecordType::NoRelocate; 949 // If we didn't relocate a value, we'll essentialy end up inserting an 950 // additional use of the original value when lowering the gc.relocate. 951 // We need to make sure the value is available at the new use, which 952 // might be in another block. 953 if (Relocate->getParent() != StatepointInstr->getParent()) 954 ExportFromCurrentBlock(V); 955 } 956 RelocationMap[Relocate] = Record; 957 } 958 959 960 961 SDNode *SinkNode = StatepointMCNode; 962 963 // Build the GC_TRANSITION_END node if necessary. 964 // 965 // See the comment above regarding GC_TRANSITION_START for the layout of 966 // the operands to the GC_TRANSITION_END node. 967 if (IsGCTransition) { 968 SmallVector<SDValue, 8> TEOps; 969 970 // Add chain 971 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2)); 972 973 // Add GC transition arguments 974 for (const Value *V : SI.GCTransitionArgs) { 975 TEOps.push_back(getValue(V)); 976 if (V->getType()->isPointerTy()) 977 TEOps.push_back(DAG.getSrcValue(V)); 978 } 979 980 // Add glue 981 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1)); 982 983 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 984 985 SDValue GCTransitionStart = 986 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 987 988 SinkNode = GCTransitionStart.getNode(); 989 } 990 991 // Replace original call 992 // Call: ch,glue = CALL ... 993 // Statepoint: [gc relocates],ch,glue = STATEPOINT ... 994 unsigned NumSinkValues = SinkNode->getNumValues(); 995 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2), 996 SDValue(SinkNode, NumSinkValues - 1)}; 997 DAG.ReplaceAllUsesWith(CallNode, StatepointValues); 998 // Remove original call node 999 DAG.DeleteNode(CallNode); 1000 1001 // Since we always emit CopyToRegs (even for local relocates), we must 1002 // update root, so that they are emitted before any local uses. 1003 (void)getControlRoot(); 1004 1005 // TODO: A better future implementation would be to emit a single variable 1006 // argument, variable return value STATEPOINT node here and then hookup the 1007 // return value of each gc.relocate to the respective output of the 1008 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 1009 // to actually be possible today. 1010 1011 return ReturnVal; 1012 } 1013 1014 /// Return two gc.results if present. First result is a block local 1015 /// gc.result, second result is a non-block local gc.result. Corresponding 1016 /// entry will be nullptr if not present. 1017 static std::pair<const GCResultInst*, const GCResultInst*> 1018 getGCResultLocality(const GCStatepointInst &S) { 1019 std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr); 1020 for (auto *U : S.users()) { 1021 auto *GRI = dyn_cast<GCResultInst>(U); 1022 if (!GRI) 1023 continue; 1024 if (GRI->getParent() == S.getParent()) 1025 Res.first = GRI; 1026 else 1027 Res.second = GRI; 1028 } 1029 return Res; 1030 } 1031 1032 void 1033 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 1034 const BasicBlock *EHPadBB /*= nullptr*/) { 1035 assert(I.getCallingConv() != CallingConv::AnyReg && 1036 "anyregcc is not supported on statepoints!"); 1037 1038 #ifndef NDEBUG 1039 // Check that the associated GCStrategy expects to encounter statepoints. 1040 assert(GFI->getStrategy().useStatepoints() && 1041 "GCStrategy does not expect to encounter statepoints"); 1042 #endif 1043 1044 SDValue ActualCallee; 1045 SDValue Callee = getValue(I.getActualCalledOperand()); 1046 1047 if (I.getNumPatchBytes() > 0) { 1048 // If we've been asked to emit a nop sequence instead of a call instruction 1049 // for this statepoint then don't lower the call target, but use a constant 1050 // `undef` instead. Not lowering the call target lets statepoint clients 1051 // get away without providing a physical address for the symbolic call 1052 // target at link time. 1053 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 1054 } else { 1055 ActualCallee = Callee; 1056 } 1057 1058 StatepointLoweringInfo SI(DAG); 1059 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 1060 I.getNumCallArgs(), ActualCallee, 1061 I.getActualReturnType(), false /* IsPatchPoint */); 1062 1063 // There may be duplication in the gc.relocate list; such as two copies of 1064 // each relocation on normal and exceptional path for an invoke. We only 1065 // need to spill once and record one copy in the stackmap, but we need to 1066 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 1067 // handled as a CSE problem elsewhere.) 1068 // TODO: There a couple of major stackmap size optimizations we could do 1069 // here if we wished. 1070 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 1071 // record {B,B} if it's seen later. 1072 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 1073 // given that, we could change the format to record base pointer relocations 1074 // separately with half the space. This would require a format rev and a 1075 // fairly major rework of the STATEPOINT node though. 1076 SmallSet<SDValue, 8> Seen; 1077 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 1078 SI.GCRelocates.push_back(Relocate); 1079 1080 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 1081 if (Seen.insert(DerivedSD).second) { 1082 SI.Bases.push_back(Relocate->getBasePtr()); 1083 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 1084 } 1085 } 1086 1087 // If we find a deopt value which isn't explicitly added, we need to 1088 // ensure it gets lowered such that gc cycles occurring before the 1089 // deoptimization event during the lifetime of the call don't invalidate 1090 // the pointer we're deopting with. Note that we assume that all 1091 // pointers passed to deopt are base pointers; relaxing that assumption 1092 // would require relatively large changes to how we represent relocations. 1093 for (Value *V : I.deopt_operands()) { 1094 if (!isGCValue(V, *this)) 1095 continue; 1096 if (Seen.insert(getValue(V)).second) { 1097 SI.Bases.push_back(V); 1098 SI.Ptrs.push_back(V); 1099 } 1100 } 1101 1102 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 1103 SI.StatepointInstr = &I; 1104 SI.ID = I.getID(); 1105 1106 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 1107 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 1108 I.gc_transition_args_end()); 1109 1110 SI.StatepointFlags = I.getFlags(); 1111 SI.NumPatchBytes = I.getNumPatchBytes(); 1112 SI.EHPadBB = EHPadBB; 1113 1114 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 1115 1116 // Export the result value if needed 1117 const auto GCResultLocality = getGCResultLocality(I); 1118 1119 if (!GCResultLocality.first && !GCResultLocality.second) { 1120 // The return value is not needed, just generate a poison value. 1121 // Note: This covers the void return case. 1122 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 1123 return; 1124 } 1125 1126 if (GCResultLocality.first) { 1127 // Result value will be used in a same basic block. Don't export it or 1128 // perform any explicit register copies. The gc_result will simply grab 1129 // this value. 1130 setValue(&I, ReturnValue); 1131 } 1132 1133 if (!GCResultLocality.second) 1134 return; 1135 // Result value will be used in a different basic block so we need to export 1136 // it now. Default exporting mechanism will not work here because statepoint 1137 // call has a different type than the actual call. It means that by default 1138 // llvm will create export register of the wrong type (always i32 in our 1139 // case). So instead we need to create export register with correct type 1140 // manually. 1141 // TODO: To eliminate this problem we can remove gc.result intrinsics 1142 // completely and make statepoint call to return a tuple. 1143 Type *RetTy = GCResultLocality.second->getType(); 1144 unsigned Reg = FuncInfo.CreateRegs(RetTy); 1145 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1146 DAG.getDataLayout(), Reg, RetTy, 1147 I.getCallingConv()); 1148 SDValue Chain = DAG.getEntryNode(); 1149 1150 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 1151 PendingExports.push_back(Chain); 1152 FuncInfo.ValueMap[&I] = Reg; 1153 } 1154 1155 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 1156 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 1157 bool VarArgDisallowed, bool ForceVoidReturnTy) { 1158 StatepointLoweringInfo SI(DAG); 1159 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 1160 populateCallLoweringInfo( 1161 SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee, 1162 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 1163 false); 1164 if (!VarArgDisallowed) 1165 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 1166 1167 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 1168 1169 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 1170 1171 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1172 SI.ID = SD.StatepointID.getValueOr(DefaultID); 1173 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 1174 1175 SI.DeoptState = 1176 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 1177 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 1178 SI.EHPadBB = EHPadBB; 1179 1180 // NB! The GC arguments are deliberately left empty. 1181 1182 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 1183 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 1184 setValue(Call, ReturnVal); 1185 } 1186 } 1187 1188 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 1189 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 1190 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 1191 /* VarArgDisallowed = */ false, 1192 /* ForceVoidReturnTy = */ false); 1193 } 1194 1195 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 1196 // The result value of the gc_result is simply the result of the actual 1197 // call. We've already emitted this, so just grab the value. 1198 const GCStatepointInst *SI = CI.getStatepoint(); 1199 1200 if (SI->getParent() == CI.getParent()) { 1201 setValue(&CI, getValue(SI)); 1202 return; 1203 } 1204 // Statepoint is in different basic block so we should have stored call 1205 // result in a virtual register. 1206 // We can not use default getValue() functionality to copy value from this 1207 // register because statepoint and actual call return types can be 1208 // different, and getValue() will use CopyFromReg of the wrong type, 1209 // which is always i32 in our case. 1210 Type *RetTy = CI.getType(); 1211 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1212 1213 assert(CopyFromReg.getNode()); 1214 setValue(&CI, CopyFromReg); 1215 } 1216 1217 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1218 #ifndef NDEBUG 1219 // Consistency check 1220 // We skip this check for relocates not in the same basic block as their 1221 // statepoint. It would be too expensive to preserve validation info through 1222 // different basic blocks. 1223 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 1224 StatepointLowering.relocCallVisited(Relocate); 1225 1226 auto *Ty = Relocate.getType()->getScalarType(); 1227 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1228 assert(*IsManaged && "Non gc managed pointer relocated!"); 1229 #endif 1230 1231 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1232 auto &RelocationMap = 1233 FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()]; 1234 auto SlotIt = RelocationMap.find(&Relocate); 1235 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value"); 1236 const RecordType &Record = SlotIt->second; 1237 1238 // If relocation was done via virtual register.. 1239 if (Record.type == RecordType::SDValueNode) { 1240 assert(Relocate.getStatepoint()->getParent() == Relocate.getParent() && 1241 "Nonlocal gc.relocate mapped via SDValue"); 1242 SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr)); 1243 assert(SDV.getNode() && "empty SDValue"); 1244 setValue(&Relocate, SDV); 1245 return; 1246 } 1247 if (Record.type == RecordType::VReg) { 1248 Register InReg = Record.payload.Reg; 1249 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1250 DAG.getDataLayout(), InReg, Relocate.getType(), 1251 None); // This is not an ABI copy. 1252 // We generate copy to/from regs even for local uses, hence we must 1253 // chain with current root to ensure proper ordering of copies w.r.t. 1254 // statepoint. 1255 SDValue Chain = DAG.getRoot(); 1256 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 1257 Chain, nullptr, nullptr); 1258 setValue(&Relocate, Relocation); 1259 return; 1260 } 1261 1262 if (Record.type == RecordType::Spill) { 1263 unsigned Index = Record.payload.FI; 1264 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1265 1266 // All the reloads are independent and are reading memory only modified by 1267 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1268 // this this let's CSE kick in for free and allows reordering of 1269 // instructions if possible. The lowering for statepoint sets the root, 1270 // so this is ordering all reloads with the either 1271 // a) the statepoint node itself, or 1272 // b) the entry of the current block for an invoke statepoint. 1273 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1274 1275 auto &MF = DAG.getMachineFunction(); 1276 auto &MFI = MF.getFrameInfo(); 1277 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1278 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1279 MFI.getObjectSize(Index), 1280 MFI.getObjectAlign(Index)); 1281 1282 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1283 Relocate.getType()); 1284 1285 SDValue SpillLoad = 1286 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO); 1287 PendingLoads.push_back(SpillLoad.getValue(1)); 1288 1289 assert(SpillLoad.getNode()); 1290 setValue(&Relocate, SpillLoad); 1291 return; 1292 } 1293 1294 assert(Record.type == RecordType::NoRelocate); 1295 SDValue SD = getValue(DerivedPtr); 1296 1297 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1298 // Lowering relocate(undef) as arbitrary constant. Current constant value 1299 // is chosen such that it's unlikely to be a valid pointer. 1300 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1301 return; 1302 } 1303 1304 // We didn't need to spill these special cases (constants and allocas). 1305 // See the handling in spillIncomingValueForStatepoint for detail. 1306 setValue(&Relocate, SD); 1307 } 1308 1309 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1310 const auto &TLI = DAG.getTargetLoweringInfo(); 1311 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1312 TLI.getPointerTy(DAG.getDataLayout())); 1313 1314 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1315 // call. We also do not lower the return value to any virtual register, and 1316 // change the immediately following return to a trap instruction. 1317 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1318 /* VarArgDisallowed = */ true, 1319 /* ForceVoidReturnTy = */ true); 1320 } 1321 1322 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1323 // We do not lower the return value from llvm.deoptimize to any virtual 1324 // register, and change the immediately following return to a trap 1325 // instruction. 1326 if (DAG.getTarget().Options.TrapUnreachable) 1327 DAG.setRoot( 1328 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1329 } 1330