1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallBitVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/GCStrategy.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Statepoint.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/MachineValueType.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <iterator> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "statepoint-lowering" 60 61 STATISTIC(NumSlotsAllocatedForStatepoints, 62 "Number of stack slots allocated for statepoints"); 63 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 64 STATISTIC(StatepointMaxSlotsRequired, 65 "Maximum number of stack slots required for a singe statepoint"); 66 67 cl::opt<bool> UseRegistersForDeoptValues( 68 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 69 cl::desc("Allow using registers for non pointer deopt args")); 70 71 cl::opt<bool> UseRegistersForGCPointersInLandingPad( 72 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false), 73 cl::desc("Allow using registers for gc pointer in landing pad")); 74 75 cl::opt<unsigned> MaxRegistersForGCPointers( 76 "max-registers-for-gc-values", cl::Hidden, cl::init(0), 77 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in")); 78 79 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType; 80 81 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 82 SelectionDAGBuilder &Builder, uint64_t Value) { 83 SDLoc L = Builder.getCurSDLoc(); 84 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 85 MVT::i64)); 86 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 87 } 88 89 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 90 // Consistency check 91 assert(PendingGCRelocateCalls.empty() && 92 "Trying to visit statepoint before finished processing previous one"); 93 Locations.clear(); 94 NextSlotToAllocate = 0; 95 // Need to resize this on each safepoint - we need the two to stay in sync and 96 // the clear patterns of a SelectionDAGBuilder have no relation to 97 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 98 AllocatedStackSlots.clear(); 99 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 100 } 101 102 void StatepointLoweringState::clear() { 103 Locations.clear(); 104 AllocatedStackSlots.clear(); 105 assert(PendingGCRelocateCalls.empty() && 106 "cleared before statepoint sequence completed"); 107 } 108 109 SDValue 110 StatepointLoweringState::allocateStackSlot(EVT ValueType, 111 SelectionDAGBuilder &Builder) { 112 NumSlotsAllocatedForStatepoints++; 113 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 114 115 unsigned SpillSize = ValueType.getStoreSize(); 116 assert((SpillSize * 8) == 117 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8. 118 "Size not in bytes?"); 119 120 // First look for a previously created stack slot which is not in 121 // use (accounting for the fact arbitrary slots may already be 122 // reserved), or to create a new stack slot and use it. 123 124 const size_t NumSlots = AllocatedStackSlots.size(); 125 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 126 127 assert(AllocatedStackSlots.size() == 128 Builder.FuncInfo.StatepointStackSlots.size() && 129 "Broken invariant"); 130 131 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 132 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 133 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 134 if (MFI.getObjectSize(FI) == SpillSize) { 135 AllocatedStackSlots.set(NextSlotToAllocate); 136 // TODO: Is ValueType the right thing to use here? 137 return Builder.DAG.getFrameIndex(FI, ValueType); 138 } 139 } 140 } 141 142 // Couldn't find a free slot, so create a new one: 143 144 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 145 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 146 MFI.markAsStatepointSpillSlotObjectIndex(FI); 147 148 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 149 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 150 assert(AllocatedStackSlots.size() == 151 Builder.FuncInfo.StatepointStackSlots.size() && 152 "Broken invariant"); 153 154 StatepointMaxSlotsRequired.updateMax( 155 Builder.FuncInfo.StatepointStackSlots.size()); 156 157 return SpillSlot; 158 } 159 160 /// Utility function for reservePreviousStackSlotForValue. Tries to find 161 /// stack slot index to which we have spilled value for previous statepoints. 162 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 163 static Optional<int> findPreviousSpillSlot(const Value *Val, 164 SelectionDAGBuilder &Builder, 165 int LookUpDepth) { 166 // Can not look any further - give up now 167 if (LookUpDepth <= 0) 168 return None; 169 170 // Spill location is known for gc relocates 171 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 172 const auto &RelocationMap = 173 Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()]; 174 175 auto It = RelocationMap.find(Relocate); 176 if (It == RelocationMap.end()) 177 return None; 178 179 auto &Record = It->second; 180 if (Record.type != RecordType::Spill) 181 return None; 182 183 return Record.payload.FI; 184 } 185 186 // Look through bitcast instructions. 187 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 188 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 189 190 // Look through phi nodes 191 // All incoming values should have same known stack slot, otherwise result 192 // is unknown. 193 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 194 Optional<int> MergedResult = None; 195 196 for (const auto &IncomingValue : Phi->incoming_values()) { 197 Optional<int> SpillSlot = 198 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 199 if (!SpillSlot) 200 return None; 201 202 if (MergedResult && *MergedResult != *SpillSlot) 203 return None; 204 205 MergedResult = SpillSlot; 206 } 207 return MergedResult; 208 } 209 210 // TODO: We can do better for PHI nodes. In cases like this: 211 // ptr = phi(relocated_pointer, not_relocated_pointer) 212 // statepoint(ptr) 213 // We will return that stack slot for ptr is unknown. And later we might 214 // assign different stack slots for ptr and relocated_pointer. This limits 215 // llvm's ability to remove redundant stores. 216 // Unfortunately it's hard to accomplish in current infrastructure. 217 // We use this function to eliminate spill store completely, while 218 // in example we still need to emit store, but instead of any location 219 // we need to use special "preferred" location. 220 221 // TODO: handle simple updates. If a value is modified and the original 222 // value is no longer live, it would be nice to put the modified value in the 223 // same slot. This allows folding of the memory accesses for some 224 // instructions types (like an increment). 225 // statepoint (i) 226 // i1 = i+1 227 // statepoint (i1) 228 // However we need to be careful for cases like this: 229 // statepoint(i) 230 // i1 = i+1 231 // statepoint(i, i1) 232 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 233 // put handling of simple modifications in this function like it's done 234 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 235 // which we visit values is unspecified. 236 237 // Don't know any information about this instruction 238 return None; 239 } 240 241 /// Return true if-and-only-if the given SDValue can be lowered as either a 242 /// constant argument or a stack reference. The key point is that the value 243 /// doesn't need to be spilled or tracked as a vreg use. 244 static bool willLowerDirectly(SDValue Incoming) { 245 // We are making an unchecked assumption that the frame size <= 2^16 as that 246 // is the largest offset which can be encoded in the stackmap format. 247 if (isa<FrameIndexSDNode>(Incoming)) 248 return true; 249 250 // The largest constant describeable in the StackMap format is 64 bits. 251 // Potential Optimization: Constants values are sign extended by consumer, 252 // and thus there are many constants of static type > 64 bits whose value 253 // happens to be sext(Con64) and could thus be lowered directly. 254 if (Incoming.getValueType().getSizeInBits() > 64) 255 return false; 256 257 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 258 Incoming.isUndef()); 259 } 260 261 /// Try to find existing copies of the incoming values in stack slots used for 262 /// statepoint spilling. If we can find a spill slot for the incoming value, 263 /// mark that slot as allocated, and reuse the same slot for this safepoint. 264 /// This helps to avoid series of loads and stores that only serve to reshuffle 265 /// values on the stack between calls. 266 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 267 SelectionDAGBuilder &Builder) { 268 SDValue Incoming = Builder.getValue(IncomingValue); 269 270 // If we won't spill this, we don't need to check for previously allocated 271 // stack slots. 272 if (willLowerDirectly(Incoming)) 273 return; 274 275 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 276 if (OldLocation.getNode()) 277 // Duplicates in input 278 return; 279 280 const int LookUpDepth = 6; 281 Optional<int> Index = 282 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 283 if (!Index) 284 return; 285 286 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 287 288 auto SlotIt = find(StatepointSlots, *Index); 289 assert(SlotIt != StatepointSlots.end() && 290 "Value spilled to the unknown stack slot"); 291 292 // This is one of our dedicated lowering slots 293 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 294 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 295 // stack slot already assigned to someone else, can't use it! 296 // TODO: currently we reserve space for gc arguments after doing 297 // normal allocation for deopt arguments. We should reserve for 298 // _all_ deopt and gc arguments, then start allocating. This 299 // will prevent some moves being inserted when vm state changes, 300 // but gc state doesn't between two calls. 301 return; 302 } 303 // Reserve this stack slot 304 Builder.StatepointLowering.reserveStackSlot(Offset); 305 306 // Cache this slot so we find it when going through the normal 307 // assignment loop. 308 SDValue Loc = 309 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 310 Builder.StatepointLowering.setLocation(Incoming, Loc); 311 } 312 313 /// Extract call from statepoint, lower it and return pointer to the 314 /// call node. Also update NodeMap so that getValue(statepoint) will 315 /// reference lowered call result 316 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 317 SelectionDAGBuilder::StatepointLoweringInfo &SI, 318 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 319 SDValue ReturnValue, CallEndVal; 320 std::tie(ReturnValue, CallEndVal) = 321 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 322 SDNode *CallEnd = CallEndVal.getNode(); 323 324 // Get a call instruction from the call sequence chain. Tail calls are not 325 // allowed. The following code is essentially reverse engineering X86's 326 // LowerCallTo. 327 // 328 // We are expecting DAG to have the following form: 329 // 330 // ch = eh_label (only in case of invoke statepoint) 331 // ch, glue = callseq_start ch 332 // ch, glue = X86::Call ch, glue 333 // ch, glue = callseq_end ch, glue 334 // get_return_value ch, glue 335 // 336 // get_return_value can either be a sequence of CopyFromReg instructions 337 // to grab the return value from the return register(s), or it can be a LOAD 338 // to load a value returned by reference via a stack slot. 339 340 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 341 if (HasDef) { 342 if (CallEnd->getOpcode() == ISD::LOAD) 343 CallEnd = CallEnd->getOperand(0).getNode(); 344 else 345 while (CallEnd->getOpcode() == ISD::CopyFromReg) 346 CallEnd = CallEnd->getOperand(0).getNode(); 347 } 348 349 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 350 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 351 } 352 353 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 354 FrameIndexSDNode &FI) { 355 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 356 auto MMOFlags = MachineMemOperand::MOStore | 357 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 358 auto &MFI = MF.getFrameInfo(); 359 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 360 MFI.getObjectSize(FI.getIndex()), 361 MFI.getObjectAlign(FI.getIndex())); 362 } 363 364 /// Spill a value incoming to the statepoint. It might be either part of 365 /// vmstate 366 /// or gcstate. In both cases unconditionally spill it on the stack unless it 367 /// is a null constant. Return pair with first element being frame index 368 /// containing saved value and second element with outgoing chain from the 369 /// emitted store 370 static std::tuple<SDValue, SDValue, MachineMemOperand*> 371 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 372 SelectionDAGBuilder &Builder) { 373 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 374 MachineMemOperand* MMO = nullptr; 375 376 // Emit new store if we didn't do it for this ptr before 377 if (!Loc.getNode()) { 378 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 379 Builder); 380 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 381 // We use TargetFrameIndex so that isel will not select it into LEA 382 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 383 384 // Right now we always allocate spill slots that are of the same 385 // size as the value we're about to spill (the size of spillee can 386 // vary since we spill vectors of pointers too). At some point we 387 // can consider allowing spills of smaller values to larger slots 388 // (i.e. change the '==' in the assert below to a '>='). 389 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 390 assert((MFI.getObjectSize(Index) * 8) == 391 (-8 & (7 + // Round up modulo 8. 392 (int64_t)Incoming.getValueSizeInBits())) && 393 "Bad spill: stack slot does not match!"); 394 395 // Note: Using the alignment of the spill slot (rather than the abi or 396 // preferred alignment) is required for correctness when dealing with spill 397 // slots with preferred alignments larger than frame alignment.. 398 auto &MF = Builder.DAG.getMachineFunction(); 399 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 400 auto *StoreMMO = MF.getMachineMemOperand( 401 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 402 MFI.getObjectAlign(Index)); 403 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 404 StoreMMO); 405 406 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 407 408 Builder.StatepointLowering.setLocation(Incoming, Loc); 409 } 410 411 assert(Loc.getNode()); 412 return std::make_tuple(Loc, Chain, MMO); 413 } 414 415 /// Lower a single value incoming to a statepoint node. This value can be 416 /// either a deopt value or a gc value, the handling is the same. We special 417 /// case constants and allocas, then fall back to spilling if required. 418 static void 419 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 420 SmallVectorImpl<SDValue> &Ops, 421 SmallVectorImpl<MachineMemOperand *> &MemRefs, 422 SelectionDAGBuilder &Builder) { 423 424 if (willLowerDirectly(Incoming)) { 425 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 426 // This handles allocas as arguments to the statepoint (this is only 427 // really meaningful for a deopt value. For GC, we'd be trying to 428 // relocate the address of the alloca itself?) 429 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 430 "Incoming value is a frame index!"); 431 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 432 Builder.getFrameIndexTy())); 433 434 auto &MF = Builder.DAG.getMachineFunction(); 435 auto *MMO = getMachineMemOperand(MF, *FI); 436 MemRefs.push_back(MMO); 437 return; 438 } 439 440 assert(Incoming.getValueType().getSizeInBits() <= 64); 441 442 if (Incoming.isUndef()) { 443 // Put an easily recognized constant that's unlikely to be a valid 444 // value so that uses of undef by the consumer of the stackmap is 445 // easily recognized. This is legal since the compiler is always 446 // allowed to chose an arbitrary value for undef. 447 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 448 return; 449 } 450 451 // If the original value was a constant, make sure it gets recorded as 452 // such in the stackmap. This is required so that the consumer can 453 // parse any internal format to the deopt state. It also handles null 454 // pointers and other constant pointers in GC states. 455 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 456 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 457 return; 458 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 459 pushStackMapConstant(Ops, Builder, 460 C->getValueAPF().bitcastToAPInt().getZExtValue()); 461 return; 462 } 463 464 llvm_unreachable("unhandled direct lowering case"); 465 } 466 467 468 469 if (!RequireSpillSlot) { 470 // If this value is live in (not live-on-return, or live-through), we can 471 // treat it the same way patchpoint treats it's "live in" values. We'll 472 // end up folding some of these into stack references, but they'll be 473 // handled by the register allocator. Note that we do not have the notion 474 // of a late use so these values might be placed in registers which are 475 // clobbered by the call. This is fine for live-in. For live-through 476 // fix-up pass should be executed to force spilling of such registers. 477 Ops.push_back(Incoming); 478 } else { 479 // Otherwise, locate a spill slot and explicitly spill it so it can be 480 // found by the runtime later. Note: We know all of these spills are 481 // independent, but don't bother to exploit that chain wise. DAGCombine 482 // will happily do so as needed, so doing it here would be a small compile 483 // time win at most. 484 SDValue Chain = Builder.getRoot(); 485 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 486 Ops.push_back(std::get<0>(Res)); 487 if (auto *MMO = std::get<2>(Res)) 488 MemRefs.push_back(MMO); 489 Chain = std::get<1>(Res);; 490 Builder.DAG.setRoot(Chain); 491 } 492 493 } 494 495 /// Return true if value V represents the GC value. The behavior is conservative 496 /// in case it is not sure that value is not GC the function returns true. 497 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) { 498 auto *Ty = V->getType(); 499 if (!Ty->isPtrOrPtrVectorTy()) 500 return false; 501 if (auto *GFI = Builder.GFI) 502 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 503 return *IsManaged; 504 return true; // conservative 505 } 506 507 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 508 /// lowering is described in lowerIncomingStatepointValue. This function is 509 /// responsible for lowering everything in the right position and playing some 510 /// tricks to avoid redundant stack manipulation where possible. On 511 /// completion, 'Ops' will contain ready to use operands for machine code 512 /// statepoint. The chain nodes will have already been created and the DAG root 513 /// will be set to the last value spilled (if any were). 514 static void 515 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 516 SmallVectorImpl<MachineMemOperand *> &MemRefs, 517 SmallVectorImpl<SDValue> &GCPtrs, 518 DenseMap<SDValue, int> &LowerAsVReg, 519 SelectionDAGBuilder::StatepointLoweringInfo &SI, 520 SelectionDAGBuilder &Builder) { 521 // Lower the deopt and gc arguments for this statepoint. Layout will be: 522 // deopt argument length, deopt arguments.., gc arguments... 523 #ifndef NDEBUG 524 if (auto *GFI = Builder.GFI) { 525 // Check that each of the gc pointer and bases we've gotten out of the 526 // safepoint is something the strategy thinks might be a pointer (or vector 527 // of pointers) into the GC heap. This is basically just here to help catch 528 // errors during statepoint insertion. TODO: This should actually be in the 529 // Verifier, but we can't get to the GCStrategy from there (yet). 530 GCStrategy &S = GFI->getStrategy(); 531 for (const Value *V : SI.Bases) { 532 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 533 if (Opt) { 534 assert(Opt.value() && 535 "non gc managed base pointer found in statepoint"); 536 } 537 } 538 for (const Value *V : SI.Ptrs) { 539 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 540 if (Opt) { 541 assert(Opt.value() && 542 "non gc managed derived pointer found in statepoint"); 543 } 544 } 545 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 546 } else { 547 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 548 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 549 } 550 #endif 551 552 // Figure out what lowering strategy we're going to use for each part 553 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 554 // as "live-through". A "live-through" variable is one which is "live-in", 555 // "live-out", and live throughout the lifetime of the call (i.e. we can find 556 // it from any PC within the transitive callee of the statepoint). In 557 // particular, if the callee spills callee preserved registers we may not 558 // be able to find a value placed in that register during the call. This is 559 // fine for live-out, but not for live-through. If we were willing to make 560 // assumptions about the code generator producing the callee, we could 561 // potentially allow live-through values in callee saved registers. 562 const bool LiveInDeopt = 563 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 564 565 // Decide which deriver pointers will go on VRegs 566 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue(); 567 568 // Pointers used on exceptional path of invoke statepoint. 569 // We cannot assing them to VRegs. 570 SmallSet<SDValue, 8> LPadPointers; 571 if (!UseRegistersForGCPointersInLandingPad) 572 if (const auto *StInvoke = 573 dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) { 574 LandingPadInst *LPI = StInvoke->getLandingPadInst(); 575 for (const auto *Relocate : SI.GCRelocates) 576 if (Relocate->getOperand(0) == LPI) { 577 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr())); 578 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr())); 579 } 580 } 581 582 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n"); 583 584 // List of unique lowered GC Pointer values. 585 SmallSetVector<SDValue, 16> LoweredGCPtrs; 586 // Map lowered GC Pointer value to the index in above vector 587 DenseMap<SDValue, unsigned> GCPtrIndexMap; 588 589 unsigned CurNumVRegs = 0; 590 591 auto canPassGCPtrOnVReg = [&](SDValue SD) { 592 if (SD.getValueType().isVector()) 593 return false; 594 if (LPadPointers.count(SD)) 595 return false; 596 return !willLowerDirectly(SD); 597 }; 598 599 auto processGCPtr = [&](const Value *V) { 600 SDValue PtrSD = Builder.getValue(V); 601 if (!LoweredGCPtrs.insert(PtrSD)) 602 return; // skip duplicates 603 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1; 604 605 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen"); 606 if (LowerAsVReg.size() == MaxVRegPtrs) 607 return; 608 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && 609 "IR and SD types disagree"); 610 if (!canPassGCPtrOnVReg(PtrSD)) { 611 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG)); 612 return; 613 } 614 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG)); 615 LowerAsVReg[PtrSD] = CurNumVRegs++; 616 }; 617 618 // Process derived pointers first to give them more chance to go on VReg. 619 for (const Value *V : SI.Ptrs) 620 processGCPtr(V); 621 for (const Value *V : SI.Bases) 622 processGCPtr(V); 623 624 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n"); 625 626 auto requireSpillSlot = [&](const Value *V) { 627 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal( 628 Builder.getValue(V).getValueType())) 629 return true; 630 if (isGCValue(V, Builder)) 631 return !LowerAsVReg.count(Builder.getValue(V)); 632 return !(LiveInDeopt || UseRegistersForDeoptValues); 633 }; 634 635 // Before we actually start lowering (and allocating spill slots for values), 636 // reserve any stack slots which we judge to be profitable to reuse for a 637 // particular value. This is purely an optimization over the code below and 638 // doesn't change semantics at all. It is important for performance that we 639 // reserve slots for both deopt and gc values before lowering either. 640 for (const Value *V : SI.DeoptState) { 641 if (requireSpillSlot(V)) 642 reservePreviousStackSlotForValue(V, Builder); 643 } 644 645 for (const Value *V : SI.Ptrs) { 646 SDValue SDV = Builder.getValue(V); 647 if (!LowerAsVReg.count(SDV)) 648 reservePreviousStackSlotForValue(V, Builder); 649 } 650 651 for (const Value *V : SI.Bases) { 652 SDValue SDV = Builder.getValue(V); 653 if (!LowerAsVReg.count(SDV)) 654 reservePreviousStackSlotForValue(V, Builder); 655 } 656 657 // First, prefix the list with the number of unique values to be 658 // lowered. Note that this is the number of *Values* not the 659 // number of SDValues required to lower them. 660 const int NumVMSArgs = SI.DeoptState.size(); 661 pushStackMapConstant(Ops, Builder, NumVMSArgs); 662 663 // The vm state arguments are lowered in an opaque manner. We do not know 664 // what type of values are contained within. 665 LLVM_DEBUG(dbgs() << "Lowering deopt state\n"); 666 for (const Value *V : SI.DeoptState) { 667 SDValue Incoming; 668 // If this is a function argument at a static frame index, generate it as 669 // the frame index. 670 if (const Argument *Arg = dyn_cast<Argument>(V)) { 671 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 672 if (FI != INT_MAX) 673 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 674 } 675 if (!Incoming.getNode()) 676 Incoming = Builder.getValue(V); 677 LLVM_DEBUG(dbgs() << "Value " << *V 678 << " requireSpillSlot = " << requireSpillSlot(V) << "\n"); 679 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 680 Builder); 681 } 682 683 // Finally, go ahead and lower all the gc arguments. 684 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size()); 685 for (SDValue SDV : LoweredGCPtrs) 686 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs, 687 Builder); 688 689 // Copy to out vector. LoweredGCPtrs will be empty after this point. 690 GCPtrs = LoweredGCPtrs.takeVector(); 691 692 // If there are any explicit spill slots passed to the statepoint, record 693 // them, but otherwise do not do anything special. These are user provided 694 // allocas and give control over placement to the consumer. In this case, 695 // it is the contents of the slot which may get updated, not the pointer to 696 // the alloca 697 SmallVector<SDValue, 4> Allocas; 698 for (Value *V : SI.GCArgs) { 699 SDValue Incoming = Builder.getValue(V); 700 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 701 // This handles allocas as arguments to the statepoint 702 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 703 "Incoming value is a frame index!"); 704 Allocas.push_back(Builder.DAG.getTargetFrameIndex( 705 FI->getIndex(), Builder.getFrameIndexTy())); 706 707 auto &MF = Builder.DAG.getMachineFunction(); 708 auto *MMO = getMachineMemOperand(MF, *FI); 709 MemRefs.push_back(MMO); 710 } 711 } 712 pushStackMapConstant(Ops, Builder, Allocas.size()); 713 Ops.append(Allocas.begin(), Allocas.end()); 714 715 // Now construct GC base/derived map; 716 pushStackMapConstant(Ops, Builder, SI.Ptrs.size()); 717 SDLoc L = Builder.getCurSDLoc(); 718 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) { 719 SDValue Base = Builder.getValue(SI.Bases[i]); 720 assert(GCPtrIndexMap.count(Base) && "base not found in index map"); 721 Ops.push_back( 722 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64)); 723 SDValue Derived = Builder.getValue(SI.Ptrs[i]); 724 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map"); 725 Ops.push_back( 726 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64)); 727 } 728 } 729 730 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 731 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 732 // The basic scheme here is that information about both the original call and 733 // the safepoint is encoded in the CallInst. We create a temporary call and 734 // lower it, then reverse engineer the calling sequence. 735 736 NumOfStatepoints++; 737 // Clear state 738 StatepointLowering.startNewStatepoint(*this); 739 assert(SI.Bases.size() == SI.Ptrs.size()); 740 741 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n"); 742 #ifndef NDEBUG 743 for (const auto *Reloc : SI.GCRelocates) 744 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 745 StatepointLowering.scheduleRelocCall(*Reloc); 746 #endif 747 748 // Lower statepoint vmstate and gcstate arguments 749 750 // All lowered meta args. 751 SmallVector<SDValue, 10> LoweredMetaArgs; 752 // Lowered GC pointers (subset of above). 753 SmallVector<SDValue, 16> LoweredGCArgs; 754 SmallVector<MachineMemOperand*, 16> MemRefs; 755 // Maps derived pointer SDValue to statepoint result of relocated pointer. 756 DenseMap<SDValue, int> LowerAsVReg; 757 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg, 758 SI, *this); 759 760 // Now that we've emitted the spills, we need to update the root so that the 761 // call sequence is ordered correctly. 762 SI.CLI.setChain(getRoot()); 763 764 // Get call node, we will replace it later with statepoint 765 SDValue ReturnVal; 766 SDNode *CallNode; 767 std::tie(ReturnVal, CallNode) = 768 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 769 770 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 771 // nodes with all the appropriate arguments and return values. 772 773 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 774 SDValue Chain = CallNode->getOperand(0); 775 776 SDValue Glue; 777 bool CallHasIncomingGlue = CallNode->getGluedNode(); 778 if (CallHasIncomingGlue) { 779 // Glue is always last operand 780 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 781 } 782 783 // Build the GC_TRANSITION_START node if necessary. 784 // 785 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 786 // order in which they appear in the call to the statepoint intrinsic. If 787 // any of the operands is a pointer-typed, that operand is immediately 788 // followed by a SRCVALUE for the pointer that may be used during lowering 789 // (e.g. to form MachinePointerInfo values for loads/stores). 790 const bool IsGCTransition = 791 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 792 (uint64_t)StatepointFlags::GCTransition; 793 if (IsGCTransition) { 794 SmallVector<SDValue, 8> TSOps; 795 796 // Add chain 797 TSOps.push_back(Chain); 798 799 // Add GC transition arguments 800 for (const Value *V : SI.GCTransitionArgs) { 801 TSOps.push_back(getValue(V)); 802 if (V->getType()->isPointerTy()) 803 TSOps.push_back(DAG.getSrcValue(V)); 804 } 805 806 // Add glue if necessary 807 if (CallHasIncomingGlue) 808 TSOps.push_back(Glue); 809 810 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 811 812 SDValue GCTransitionStart = 813 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 814 815 Chain = GCTransitionStart.getValue(0); 816 Glue = GCTransitionStart.getValue(1); 817 } 818 819 // TODO: Currently, all of these operands are being marked as read/write in 820 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 821 // and flags to be read-only. 822 SmallVector<SDValue, 40> Ops; 823 824 // Add the <id> and <numBytes> constants. 825 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 826 Ops.push_back( 827 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 828 829 // Calculate and push starting position of vmstate arguments 830 // Get number of arguments incoming directly into call node 831 unsigned NumCallRegArgs = 832 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 833 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 834 835 // Add call target 836 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 837 Ops.push_back(CallTarget); 838 839 // Add call arguments 840 // Get position of register mask in the call 841 SDNode::op_iterator RegMaskIt; 842 if (CallHasIncomingGlue) 843 RegMaskIt = CallNode->op_end() - 2; 844 else 845 RegMaskIt = CallNode->op_end() - 1; 846 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 847 848 // Add a constant argument for the calling convention 849 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 850 851 // Add a constant argument for the flags 852 uint64_t Flags = SI.StatepointFlags; 853 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 854 "Unknown flag used"); 855 pushStackMapConstant(Ops, *this, Flags); 856 857 // Insert all vmstate and gcstate arguments 858 llvm::append_range(Ops, LoweredMetaArgs); 859 860 // Add register mask from call node 861 Ops.push_back(*RegMaskIt); 862 863 // Add chain 864 Ops.push_back(Chain); 865 866 // Same for the glue, but we add it only if original call had it 867 if (Glue.getNode()) 868 Ops.push_back(Glue); 869 870 // Compute return values. Provide a glue output since we consume one as 871 // input. This allows someone else to chain off us as needed. 872 SmallVector<EVT, 8> NodeTys; 873 for (auto SD : LoweredGCArgs) { 874 if (!LowerAsVReg.count(SD)) 875 continue; 876 NodeTys.push_back(SD.getValueType()); 877 } 878 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n"); 879 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"); 880 NodeTys.push_back(MVT::Other); 881 NodeTys.push_back(MVT::Glue); 882 883 unsigned NumResults = NodeTys.size(); 884 MachineSDNode *StatepointMCNode = 885 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 886 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 887 888 // For values lowered to tied-defs, create the virtual registers if used 889 // in other blocks. For local gc.relocate record appropriate statepoint 890 // result in StatepointLoweringState. 891 DenseMap<SDValue, Register> VirtRegs; 892 for (const auto *Relocate : SI.GCRelocates) { 893 Value *Derived = Relocate->getDerivedPtr(); 894 SDValue SD = getValue(Derived); 895 if (!LowerAsVReg.count(SD)) 896 continue; 897 898 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]); 899 900 // Handle local relocate. Note that different relocates might 901 // map to the same SDValue. 902 if (SI.StatepointInstr->getParent() == Relocate->getParent()) { 903 SDValue Res = StatepointLowering.getLocation(SD); 904 if (Res) 905 assert(Res == Relocated); 906 else 907 StatepointLowering.setLocation(SD, Relocated); 908 continue; 909 } 910 911 // Handle multiple gc.relocates of the same input efficiently. 912 if (VirtRegs.count(SD)) 913 continue; 914 915 auto *RetTy = Relocate->getType(); 916 Register Reg = FuncInfo.CreateRegs(RetTy); 917 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 918 DAG.getDataLayout(), Reg, RetTy, None); 919 SDValue Chain = DAG.getRoot(); 920 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr); 921 PendingExports.push_back(Chain); 922 923 VirtRegs[SD] = Reg; 924 } 925 926 // Record for later use how each relocation was lowered. This is needed to 927 // allow later gc.relocates to mirror the lowering chosen. 928 const Instruction *StatepointInstr = SI.StatepointInstr; 929 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr]; 930 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 931 const Value *V = Relocate->getDerivedPtr(); 932 SDValue SDV = getValue(V); 933 SDValue Loc = StatepointLowering.getLocation(SDV); 934 935 bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent()); 936 937 RecordType Record; 938 if (IsLocal && LowerAsVReg.count(SDV)) { 939 // Result is already stored in StatepointLowering 940 Record.type = RecordType::SDValueNode; 941 } else if (LowerAsVReg.count(SDV)) { 942 Record.type = RecordType::VReg; 943 assert(VirtRegs.count(SDV)); 944 Record.payload.Reg = VirtRegs[SDV]; 945 } else if (Loc.getNode()) { 946 Record.type = RecordType::Spill; 947 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 948 } else { 949 Record.type = RecordType::NoRelocate; 950 // If we didn't relocate a value, we'll essentialy end up inserting an 951 // additional use of the original value when lowering the gc.relocate. 952 // We need to make sure the value is available at the new use, which 953 // might be in another block. 954 if (Relocate->getParent() != StatepointInstr->getParent()) 955 ExportFromCurrentBlock(V); 956 } 957 RelocationMap[Relocate] = Record; 958 } 959 960 961 962 SDNode *SinkNode = StatepointMCNode; 963 964 // Build the GC_TRANSITION_END node if necessary. 965 // 966 // See the comment above regarding GC_TRANSITION_START for the layout of 967 // the operands to the GC_TRANSITION_END node. 968 if (IsGCTransition) { 969 SmallVector<SDValue, 8> TEOps; 970 971 // Add chain 972 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2)); 973 974 // Add GC transition arguments 975 for (const Value *V : SI.GCTransitionArgs) { 976 TEOps.push_back(getValue(V)); 977 if (V->getType()->isPointerTy()) 978 TEOps.push_back(DAG.getSrcValue(V)); 979 } 980 981 // Add glue 982 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1)); 983 984 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 985 986 SDValue GCTransitionStart = 987 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 988 989 SinkNode = GCTransitionStart.getNode(); 990 } 991 992 // Replace original call 993 // Call: ch,glue = CALL ... 994 // Statepoint: [gc relocates],ch,glue = STATEPOINT ... 995 unsigned NumSinkValues = SinkNode->getNumValues(); 996 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2), 997 SDValue(SinkNode, NumSinkValues - 1)}; 998 DAG.ReplaceAllUsesWith(CallNode, StatepointValues); 999 // Remove original call node 1000 DAG.DeleteNode(CallNode); 1001 1002 // Since we always emit CopyToRegs (even for local relocates), we must 1003 // update root, so that they are emitted before any local uses. 1004 (void)getControlRoot(); 1005 1006 // TODO: A better future implementation would be to emit a single variable 1007 // argument, variable return value STATEPOINT node here and then hookup the 1008 // return value of each gc.relocate to the respective output of the 1009 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 1010 // to actually be possible today. 1011 1012 return ReturnVal; 1013 } 1014 1015 /// Return two gc.results if present. First result is a block local 1016 /// gc.result, second result is a non-block local gc.result. Corresponding 1017 /// entry will be nullptr if not present. 1018 static std::pair<const GCResultInst*, const GCResultInst*> 1019 getGCResultLocality(const GCStatepointInst &S) { 1020 std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr); 1021 for (const auto *U : S.users()) { 1022 auto *GRI = dyn_cast<GCResultInst>(U); 1023 if (!GRI) 1024 continue; 1025 if (GRI->getParent() == S.getParent()) 1026 Res.first = GRI; 1027 else 1028 Res.second = GRI; 1029 } 1030 return Res; 1031 } 1032 1033 void 1034 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 1035 const BasicBlock *EHPadBB /*= nullptr*/) { 1036 assert(I.getCallingConv() != CallingConv::AnyReg && 1037 "anyregcc is not supported on statepoints!"); 1038 1039 #ifndef NDEBUG 1040 // Check that the associated GCStrategy expects to encounter statepoints. 1041 assert(GFI->getStrategy().useStatepoints() && 1042 "GCStrategy does not expect to encounter statepoints"); 1043 #endif 1044 1045 SDValue ActualCallee; 1046 SDValue Callee = getValue(I.getActualCalledOperand()); 1047 1048 if (I.getNumPatchBytes() > 0) { 1049 // If we've been asked to emit a nop sequence instead of a call instruction 1050 // for this statepoint then don't lower the call target, but use a constant 1051 // `undef` instead. Not lowering the call target lets statepoint clients 1052 // get away without providing a physical address for the symbolic call 1053 // target at link time. 1054 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 1055 } else { 1056 ActualCallee = Callee; 1057 } 1058 1059 StatepointLoweringInfo SI(DAG); 1060 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 1061 I.getNumCallArgs(), ActualCallee, 1062 I.getActualReturnType(), false /* IsPatchPoint */); 1063 1064 // There may be duplication in the gc.relocate list; such as two copies of 1065 // each relocation on normal and exceptional path for an invoke. We only 1066 // need to spill once and record one copy in the stackmap, but we need to 1067 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 1068 // handled as a CSE problem elsewhere.) 1069 // TODO: There a couple of major stackmap size optimizations we could do 1070 // here if we wished. 1071 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 1072 // record {B,B} if it's seen later. 1073 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 1074 // given that, we could change the format to record base pointer relocations 1075 // separately with half the space. This would require a format rev and a 1076 // fairly major rework of the STATEPOINT node though. 1077 SmallSet<SDValue, 8> Seen; 1078 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 1079 SI.GCRelocates.push_back(Relocate); 1080 1081 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 1082 if (Seen.insert(DerivedSD).second) { 1083 SI.Bases.push_back(Relocate->getBasePtr()); 1084 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 1085 } 1086 } 1087 1088 // If we find a deopt value which isn't explicitly added, we need to 1089 // ensure it gets lowered such that gc cycles occurring before the 1090 // deoptimization event during the lifetime of the call don't invalidate 1091 // the pointer we're deopting with. Note that we assume that all 1092 // pointers passed to deopt are base pointers; relaxing that assumption 1093 // would require relatively large changes to how we represent relocations. 1094 for (Value *V : I.deopt_operands()) { 1095 if (!isGCValue(V, *this)) 1096 continue; 1097 if (Seen.insert(getValue(V)).second) { 1098 SI.Bases.push_back(V); 1099 SI.Ptrs.push_back(V); 1100 } 1101 } 1102 1103 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 1104 SI.StatepointInstr = &I; 1105 SI.ID = I.getID(); 1106 1107 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 1108 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 1109 I.gc_transition_args_end()); 1110 1111 SI.StatepointFlags = I.getFlags(); 1112 SI.NumPatchBytes = I.getNumPatchBytes(); 1113 SI.EHPadBB = EHPadBB; 1114 1115 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 1116 1117 // Export the result value if needed 1118 const auto GCResultLocality = getGCResultLocality(I); 1119 1120 if (!GCResultLocality.first && !GCResultLocality.second) { 1121 // The return value is not needed, just generate a poison value. 1122 // Note: This covers the void return case. 1123 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 1124 return; 1125 } 1126 1127 if (GCResultLocality.first) { 1128 // Result value will be used in a same basic block. Don't export it or 1129 // perform any explicit register copies. The gc_result will simply grab 1130 // this value. 1131 setValue(&I, ReturnValue); 1132 } 1133 1134 if (!GCResultLocality.second) 1135 return; 1136 // Result value will be used in a different basic block so we need to export 1137 // it now. Default exporting mechanism will not work here because statepoint 1138 // call has a different type than the actual call. It means that by default 1139 // llvm will create export register of the wrong type (always i32 in our 1140 // case). So instead we need to create export register with correct type 1141 // manually. 1142 // TODO: To eliminate this problem we can remove gc.result intrinsics 1143 // completely and make statepoint call to return a tuple. 1144 Type *RetTy = GCResultLocality.second->getType(); 1145 unsigned Reg = FuncInfo.CreateRegs(RetTy); 1146 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1147 DAG.getDataLayout(), Reg, RetTy, 1148 I.getCallingConv()); 1149 SDValue Chain = DAG.getEntryNode(); 1150 1151 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 1152 PendingExports.push_back(Chain); 1153 FuncInfo.ValueMap[&I] = Reg; 1154 } 1155 1156 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 1157 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 1158 bool VarArgDisallowed, bool ForceVoidReturnTy) { 1159 StatepointLoweringInfo SI(DAG); 1160 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 1161 populateCallLoweringInfo( 1162 SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee, 1163 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 1164 false); 1165 if (!VarArgDisallowed) 1166 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 1167 1168 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 1169 1170 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 1171 1172 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1173 SI.ID = SD.StatepointID.value_or(DefaultID); 1174 SI.NumPatchBytes = SD.NumPatchBytes.value_or(0); 1175 1176 SI.DeoptState = 1177 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 1178 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 1179 SI.EHPadBB = EHPadBB; 1180 1181 // NB! The GC arguments are deliberately left empty. 1182 1183 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 1184 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 1185 setValue(Call, ReturnVal); 1186 } 1187 } 1188 1189 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 1190 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 1191 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 1192 /* VarArgDisallowed = */ false, 1193 /* ForceVoidReturnTy = */ false); 1194 } 1195 1196 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 1197 // The result value of the gc_result is simply the result of the actual 1198 // call. We've already emitted this, so just grab the value. 1199 const GCStatepointInst *SI = CI.getStatepoint(); 1200 1201 if (SI->getParent() == CI.getParent()) { 1202 setValue(&CI, getValue(SI)); 1203 return; 1204 } 1205 // Statepoint is in different basic block so we should have stored call 1206 // result in a virtual register. 1207 // We can not use default getValue() functionality to copy value from this 1208 // register because statepoint and actual call return types can be 1209 // different, and getValue() will use CopyFromReg of the wrong type, 1210 // which is always i32 in our case. 1211 Type *RetTy = CI.getType(); 1212 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1213 1214 assert(CopyFromReg.getNode()); 1215 setValue(&CI, CopyFromReg); 1216 } 1217 1218 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1219 #ifndef NDEBUG 1220 // Consistency check 1221 // We skip this check for relocates not in the same basic block as their 1222 // statepoint. It would be too expensive to preserve validation info through 1223 // different basic blocks. 1224 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 1225 StatepointLowering.relocCallVisited(Relocate); 1226 1227 auto *Ty = Relocate.getType()->getScalarType(); 1228 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1229 assert(*IsManaged && "Non gc managed pointer relocated!"); 1230 #endif 1231 1232 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1233 auto &RelocationMap = 1234 FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()]; 1235 auto SlotIt = RelocationMap.find(&Relocate); 1236 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value"); 1237 const RecordType &Record = SlotIt->second; 1238 1239 // If relocation was done via virtual register.. 1240 if (Record.type == RecordType::SDValueNode) { 1241 assert(Relocate.getStatepoint()->getParent() == Relocate.getParent() && 1242 "Nonlocal gc.relocate mapped via SDValue"); 1243 SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr)); 1244 assert(SDV.getNode() && "empty SDValue"); 1245 setValue(&Relocate, SDV); 1246 return; 1247 } 1248 if (Record.type == RecordType::VReg) { 1249 Register InReg = Record.payload.Reg; 1250 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1251 DAG.getDataLayout(), InReg, Relocate.getType(), 1252 None); // This is not an ABI copy. 1253 // We generate copy to/from regs even for local uses, hence we must 1254 // chain with current root to ensure proper ordering of copies w.r.t. 1255 // statepoint. 1256 SDValue Chain = DAG.getRoot(); 1257 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 1258 Chain, nullptr, nullptr); 1259 setValue(&Relocate, Relocation); 1260 return; 1261 } 1262 1263 if (Record.type == RecordType::Spill) { 1264 unsigned Index = Record.payload.FI; 1265 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1266 1267 // All the reloads are independent and are reading memory only modified by 1268 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1269 // this this let's CSE kick in for free and allows reordering of 1270 // instructions if possible. The lowering for statepoint sets the root, 1271 // so this is ordering all reloads with the either 1272 // a) the statepoint node itself, or 1273 // b) the entry of the current block for an invoke statepoint. 1274 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1275 1276 auto &MF = DAG.getMachineFunction(); 1277 auto &MFI = MF.getFrameInfo(); 1278 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1279 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1280 MFI.getObjectSize(Index), 1281 MFI.getObjectAlign(Index)); 1282 1283 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1284 Relocate.getType()); 1285 1286 SDValue SpillLoad = 1287 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO); 1288 PendingLoads.push_back(SpillLoad.getValue(1)); 1289 1290 assert(SpillLoad.getNode()); 1291 setValue(&Relocate, SpillLoad); 1292 return; 1293 } 1294 1295 assert(Record.type == RecordType::NoRelocate); 1296 SDValue SD = getValue(DerivedPtr); 1297 1298 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1299 // Lowering relocate(undef) as arbitrary constant. Current constant value 1300 // is chosen such that it's unlikely to be a valid pointer. 1301 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1302 return; 1303 } 1304 1305 // We didn't need to spill these special cases (constants and allocas). 1306 // See the handling in spillIncomingValueForStatepoint for detail. 1307 setValue(&Relocate, SD); 1308 } 1309 1310 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1311 const auto &TLI = DAG.getTargetLoweringInfo(); 1312 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1313 TLI.getPointerTy(DAG.getDataLayout())); 1314 1315 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1316 // call. We also do not lower the return value to any virtual register, and 1317 // change the immediately following return to a trap instruction. 1318 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1319 /* VarArgDisallowed = */ true, 1320 /* ForceVoidReturnTy = */ true); 1321 } 1322 1323 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1324 // We do not lower the return value from llvm.deoptimize to any virtual 1325 // register, and change the immediately following return to a trap 1326 // instruction. 1327 if (DAG.getTarget().Options.TrapUnreachable) 1328 DAG.setRoot( 1329 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1330 } 1331