1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/GCMetadata.h" 22 #include "llvm/CodeGen/GCStrategy.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/StackMaps.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "statepoint-lowering" 35 36 STATISTIC(NumSlotsAllocatedForStatepoints, 37 "Number of stack slots allocated for statepoints"); 38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 39 STATISTIC(StatepointMaxSlotsRequired, 40 "Maximum number of stack slots required for a singe statepoint"); 41 42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 43 SelectionDAGBuilder &Builder, uint64_t Value) { 44 SDLoc L = Builder.getCurSDLoc(); 45 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 46 MVT::i64)); 47 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 48 } 49 50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 51 // Consistency check 52 assert(PendingGCRelocateCalls.empty() && 53 "Trying to visit statepoint before finished processing previous one"); 54 Locations.clear(); 55 NextSlotToAllocate = 0; 56 // Need to resize this on each safepoint - we need the two to stay in 57 // sync and the clear patterns of a SelectionDAGBuilder have no relation 58 // to FunctionLoweringInfo. 59 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 60 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 61 AllocatedStackSlots[i] = false; 62 } 63 } 64 65 void StatepointLoweringState::clear() { 66 Locations.clear(); 67 AllocatedStackSlots.clear(); 68 assert(PendingGCRelocateCalls.empty() && 69 "cleared before statepoint sequence completed"); 70 } 71 72 SDValue 73 StatepointLoweringState::allocateStackSlot(EVT ValueType, 74 SelectionDAGBuilder &Builder) { 75 76 NumSlotsAllocatedForStatepoints++; 77 78 // The basic scheme here is to first look for a previously created stack slot 79 // which is not in use (accounting for the fact arbitrary slots may already 80 // be reserved), or to create a new stack slot and use it. 81 82 // If this doesn't succeed in 40000 iterations, something is seriously wrong 83 for (int i = 0; i < 40000; i++) { 84 assert(Builder.FuncInfo.StatepointStackSlots.size() == 85 AllocatedStackSlots.size() && 86 "broken invariant"); 87 const size_t NumSlots = AllocatedStackSlots.size(); 88 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 89 90 if (NextSlotToAllocate >= NumSlots) { 91 assert(NextSlotToAllocate == NumSlots); 92 // record stats 93 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 94 StatepointMaxSlotsRequired = NumSlots + 1; 95 } 96 97 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 98 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 99 auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 100 MFI->markAsStatepointSpillSlotObjectIndex(FI); 101 102 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 103 AllocatedStackSlots.push_back(true); 104 return SpillSlot; 105 } 106 if (!AllocatedStackSlots[NextSlotToAllocate]) { 107 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 108 AllocatedStackSlots[NextSlotToAllocate] = true; 109 return Builder.DAG.getFrameIndex(FI, ValueType); 110 } 111 // Note: We deliberately choose to advance this only on the failing path. 112 // Doing so on the succeeding path involves a bit of complexity that caused 113 // a minor bug previously. Unless performance shows this matters, please 114 // keep this code as simple as possible. 115 NextSlotToAllocate++; 116 } 117 llvm_unreachable("infinite loop?"); 118 } 119 120 /// Utility function for reservePreviousStackSlotForValue. Tries to find 121 /// stack slot index to which we have spilled value for previous statepoints. 122 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 123 static Optional<int> findPreviousSpillSlot(const Value *Val, 124 SelectionDAGBuilder &Builder, 125 int LookUpDepth) { 126 // Can not look any further - give up now 127 if (LookUpDepth <= 0) 128 return None; 129 130 // Spill location is known for gc relocates 131 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 132 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 133 Builder.FuncInfo.StatepointRelocatedValues[Relocate->getStatepoint()]; 134 135 auto It = SpillMap.find(Relocate->getDerivedPtr()); 136 if (It == SpillMap.end()) 137 return None; 138 139 return It->second; 140 } 141 142 // Look through bitcast instructions. 143 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) { 144 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 145 } 146 147 // Look through phi nodes 148 // All incoming values should have same known stack slot, otherwise result 149 // is unknown. 150 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 151 Optional<int> MergedResult = None; 152 153 for (auto &IncomingValue : Phi->incoming_values()) { 154 Optional<int> SpillSlot = 155 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 156 if (!SpillSlot.hasValue()) 157 return None; 158 159 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 160 return None; 161 162 MergedResult = SpillSlot; 163 } 164 return MergedResult; 165 } 166 167 // TODO: We can do better for PHI nodes. In cases like this: 168 // ptr = phi(relocated_pointer, not_relocated_pointer) 169 // statepoint(ptr) 170 // We will return that stack slot for ptr is unknown. And later we might 171 // assign different stack slots for ptr and relocated_pointer. This limits 172 // llvm's ability to remove redundant stores. 173 // Unfortunately it's hard to accomplish in current infrastructure. 174 // We use this function to eliminate spill store completely, while 175 // in example we still need to emit store, but instead of any location 176 // we need to use special "preferred" location. 177 178 // TODO: handle simple updates. If a value is modified and the original 179 // value is no longer live, it would be nice to put the modified value in the 180 // same slot. This allows folding of the memory accesses for some 181 // instructions types (like an increment). 182 // statepoint (i) 183 // i1 = i+1 184 // statepoint (i1) 185 // However we need to be careful for cases like this: 186 // statepoint(i) 187 // i1 = i+1 188 // statepoint(i, i1) 189 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 190 // put handling of simple modifications in this function like it's done 191 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 192 // which we visit values is unspecified. 193 194 // Don't know any information about this instruction 195 return None; 196 } 197 198 /// Try to find existing copies of the incoming values in stack slots used for 199 /// statepoint spilling. If we can find a spill slot for the incoming value, 200 /// mark that slot as allocated, and reuse the same slot for this safepoint. 201 /// This helps to avoid series of loads and stores that only serve to reshuffle 202 /// values on the stack between calls. 203 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 204 SelectionDAGBuilder &Builder) { 205 206 SDValue Incoming = Builder.getValue(IncomingValue); 207 208 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 209 // We won't need to spill this, so no need to check for previously 210 // allocated stack slots 211 return; 212 } 213 214 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 215 if (OldLocation.getNode()) 216 // duplicates in input 217 return; 218 219 const int LookUpDepth = 6; 220 Optional<int> Index = 221 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 222 if (!Index.hasValue()) 223 return; 224 225 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 226 Builder.FuncInfo.StatepointStackSlots.end(), *Index); 227 assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() && 228 "value spilled to the unknown stack slot"); 229 230 // This is one of our dedicated lowering slots 231 const int Offset = 232 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 233 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 234 // stack slot already assigned to someone else, can't use it! 235 // TODO: currently we reserve space for gc arguments after doing 236 // normal allocation for deopt arguments. We should reserve for 237 // _all_ deopt and gc arguments, then start allocating. This 238 // will prevent some moves being inserted when vm state changes, 239 // but gc state doesn't between two calls. 240 return; 241 } 242 // Reserve this stack slot 243 Builder.StatepointLowering.reserveStackSlot(Offset); 244 245 // Cache this slot so we find it when going through the normal 246 // assignment loop. 247 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 248 Builder.StatepointLowering.setLocation(Incoming, Loc); 249 } 250 251 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 252 /// is not required for correctness. It's purpose is to reduce the size of 253 /// StackMap section. It has no effect on the number of spill slots required 254 /// or the actual lowering. 255 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 256 SmallVectorImpl<const Value *> &Ptrs, 257 SmallVectorImpl<const Value *> &Relocs, 258 SelectionDAGBuilder &Builder) { 259 260 // This is horribly inefficient, but I don't care right now 261 SmallSet<SDValue, 32> Seen; 262 263 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 264 for (size_t i = 0; i < Ptrs.size(); i++) { 265 SDValue SD = Builder.getValue(Ptrs[i]); 266 // Only add non-duplicates 267 if (Seen.count(SD) == 0) { 268 NewBases.push_back(Bases[i]); 269 NewPtrs.push_back(Ptrs[i]); 270 NewRelocs.push_back(Relocs[i]); 271 } 272 Seen.insert(SD); 273 } 274 assert(Bases.size() >= NewBases.size()); 275 assert(Ptrs.size() >= NewPtrs.size()); 276 assert(Relocs.size() >= NewRelocs.size()); 277 Bases = NewBases; 278 Ptrs = NewPtrs; 279 Relocs = NewRelocs; 280 assert(Ptrs.size() == Bases.size()); 281 assert(Ptrs.size() == Relocs.size()); 282 } 283 284 /// Extract call from statepoint, lower it and return pointer to the 285 /// call node. Also update NodeMap so that getValue(statepoint) will 286 /// reference lowered call result 287 static SDNode * 288 lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB, 289 SelectionDAGBuilder &Builder, 290 SmallVectorImpl<SDValue> &PendingExports) { 291 292 ImmutableCallSite CS(ISP.getCallSite()); 293 294 SDValue ActualCallee; 295 296 if (ISP.getNumPatchBytes() > 0) { 297 // If we've been asked to emit a nop sequence instead of a call instruction 298 // for this statepoint then don't lower the call target, but use a constant 299 // `null` instead. Not lowering the call target lets statepoint clients get 300 // away without providing a physical address for the symbolic call target at 301 // link time. 302 303 const auto &TLI = Builder.DAG.getTargetLoweringInfo(); 304 const auto &DL = Builder.DAG.getDataLayout(); 305 306 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 307 ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(), 308 TLI.getPointerTy(DL, AS)); 309 } else 310 ActualCallee = Builder.getValue(ISP.getCalledValue()); 311 312 assert(CS.getCallingConv() != CallingConv::AnyReg && 313 "anyregcc is not supported on statepoints!"); 314 315 Type *DefTy = ISP.getActualReturnType(); 316 bool HasDef = !DefTy->isVoidTy(); 317 318 SDValue ReturnValue, CallEndVal; 319 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( 320 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, 321 ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB, 322 false /* IsPatchPoint */); 323 324 SDNode *CallEnd = CallEndVal.getNode(); 325 326 // Get a call instruction from the call sequence chain. Tail calls are not 327 // allowed. The following code is essentially reverse engineering X86's 328 // LowerCallTo. 329 // 330 // We are expecting DAG to have the following form: 331 // 332 // ch = eh_label (only in case of invoke statepoint) 333 // ch, glue = callseq_start ch 334 // ch, glue = X86::Call ch, glue 335 // ch, glue = callseq_end ch, glue 336 // get_return_value ch, glue 337 // 338 // get_return_value can either be a sequence of CopyFromReg instructions 339 // to grab the return value from the return register(s), or it can be a LOAD 340 // to load a value returned by reference via a stack slot. 341 342 if (HasDef) { 343 if (CallEnd->getOpcode() == ISD::LOAD) 344 CallEnd = CallEnd->getOperand(0).getNode(); 345 else 346 while (CallEnd->getOpcode() == ISD::CopyFromReg) 347 CallEnd = CallEnd->getOperand(0).getNode(); 348 } 349 350 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 351 352 // Export the result value if needed 353 const Instruction *GCResult = ISP.getGCResult(); 354 if (HasDef && GCResult) { 355 if (GCResult->getParent() != CS.getParent()) { 356 // Result value will be used in a different basic block so we need to 357 // export it now. 358 // Default exporting mechanism will not work here because statepoint call 359 // has a different type than the actual call. It means that by default 360 // llvm will create export register of the wrong type (always i32 in our 361 // case). So instead we need to create export register with correct type 362 // manually. 363 // TODO: To eliminate this problem we can remove gc.result intrinsics 364 // completely and make statepoint call to return a tuple. 365 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); 366 RegsForValue RFV( 367 *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(), 368 Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType()); 369 SDValue Chain = Builder.DAG.getEntryNode(); 370 371 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, 372 nullptr); 373 PendingExports.push_back(Chain); 374 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; 375 } else { 376 // Result value will be used in a same basic block. Don't export it or 377 // perform any explicit register copies. 378 // We'll replace the actuall call node shortly. gc_result will grab 379 // this value. 380 Builder.setValue(CS.getInstruction(), ReturnValue); 381 } 382 } else { 383 // The token value is never used from here on, just generate a poison value 384 Builder.setValue(CS.getInstruction(), 385 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); 386 } 387 388 return CallEnd->getOperand(0).getNode(); 389 } 390 391 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 392 /// and return two arrays: 393 /// Bases - base pointers incoming to this statepoint 394 /// Ptrs - derived pointers incoming to this statepoint 395 /// Relocs - the gc_relocate corresponding to each base/ptr pair 396 /// Elements of this arrays should be in one-to-one correspondence with each 397 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 398 static void getIncomingStatepointGCValues( 399 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, 400 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, 401 SelectionDAGBuilder &Builder) { 402 for (const GCRelocateInst *Relocate : StatepointSite.getRelocates()) { 403 Relocs.push_back(Relocate); 404 Bases.push_back(Relocate->getBasePtr()); 405 Ptrs.push_back(Relocate->getDerivedPtr()); 406 } 407 408 // Remove any redundant llvm::Values which map to the same SDValue as another 409 // input. Also has the effect of removing duplicates in the original 410 // llvm::Value input list as well. This is a useful optimization for 411 // reducing the size of the StackMap section. It has no other impact. 412 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 413 414 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 415 } 416 417 /// Spill a value incoming to the statepoint. It might be either part of 418 /// vmstate 419 /// or gcstate. In both cases unconditionally spill it on the stack unless it 420 /// is a null constant. Return pair with first element being frame index 421 /// containing saved value and second element with outgoing chain from the 422 /// emitted store 423 static std::pair<SDValue, SDValue> 424 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 425 SelectionDAGBuilder &Builder) { 426 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 427 428 // Emit new store if we didn't do it for this ptr before 429 if (!Loc.getNode()) { 430 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 431 Builder); 432 assert(isa<FrameIndexSDNode>(Loc)); 433 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 434 // We use TargetFrameIndex so that isel will not select it into LEA 435 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 436 437 // TODO: We can create TokenFactor node instead of 438 // chaining stores one after another, this may allow 439 // a bit more optimal scheduling for them 440 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 441 MachinePointerInfo::getFixedStack( 442 Builder.DAG.getMachineFunction(), Index), 443 false, false, 0); 444 445 Builder.StatepointLowering.setLocation(Incoming, Loc); 446 } 447 448 assert(Loc.getNode()); 449 return std::make_pair(Loc, Chain); 450 } 451 452 /// Lower a single value incoming to a statepoint node. This value can be 453 /// either a deopt value or a gc value, the handling is the same. We special 454 /// case constants and allocas, then fall back to spilling if required. 455 static void lowerIncomingStatepointValue(SDValue Incoming, 456 SmallVectorImpl<SDValue> &Ops, 457 SelectionDAGBuilder &Builder) { 458 SDValue Chain = Builder.getRoot(); 459 460 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 461 // If the original value was a constant, make sure it gets recorded as 462 // such in the stackmap. This is required so that the consumer can 463 // parse any internal format to the deopt state. It also handles null 464 // pointers and other constant pointers in GC states. Note the constant 465 // vectors do not appear to actually hit this path and that anything larger 466 // than an i64 value (not type!) will fail asserts here. 467 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 468 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 469 // This handles allocas as arguments to the statepoint (this is only 470 // really meaningful for a deopt value. For GC, we'd be trying to 471 // relocate the address of the alloca itself?) 472 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 473 Incoming.getValueType())); 474 } else { 475 // Otherwise, locate a spill slot and explicitly spill it so it 476 // can be found by the runtime later. We currently do not support 477 // tracking values through callee saved registers to their eventual 478 // spill location. This would be a useful optimization, but would 479 // need to be optional since it requires a lot of complexity on the 480 // runtime side which not all would support. 481 std::pair<SDValue, SDValue> Res = 482 spillIncomingStatepointValue(Incoming, Chain, Builder); 483 Ops.push_back(Res.first); 484 Chain = Res.second; 485 } 486 487 Builder.DAG.setRoot(Chain); 488 } 489 490 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 491 /// lowering is described in lowerIncomingStatepointValue. This function is 492 /// responsible for lowering everything in the right position and playing some 493 /// tricks to avoid redundant stack manipulation where possible. On 494 /// completion, 'Ops' will contain ready to use operands for machine code 495 /// statepoint. The chain nodes will have already been created and the DAG root 496 /// will be set to the last value spilled (if any were). 497 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 498 ImmutableStatepoint StatepointSite, 499 SelectionDAGBuilder &Builder) { 500 501 // Lower the deopt and gc arguments for this statepoint. Layout will 502 // be: deopt argument length, deopt arguments.., gc arguments... 503 504 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 505 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, 506 Builder); 507 508 #ifndef NDEBUG 509 // Check that each of the gc pointer and bases we've gotten out of the 510 // safepoint is something the strategy thinks might be a pointer (or vector 511 // of pointers) into the GC heap. This is basically just here to help catch 512 // errors during statepoint insertion. TODO: This should actually be in the 513 // Verifier, but we can't get to the GCStrategy from there (yet). 514 GCStrategy &S = Builder.GFI->getStrategy(); 515 for (const Value *V : Bases) { 516 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 517 if (Opt.hasValue()) { 518 assert(Opt.getValue() && 519 "non gc managed base pointer found in statepoint"); 520 } 521 } 522 for (const Value *V : Ptrs) { 523 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 524 if (Opt.hasValue()) { 525 assert(Opt.getValue() && 526 "non gc managed derived pointer found in statepoint"); 527 } 528 } 529 for (const Value *V : Relocations) { 530 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 531 if (Opt.hasValue()) { 532 assert(Opt.getValue() && "non gc managed pointer relocated"); 533 } 534 } 535 #endif 536 537 // Before we actually start lowering (and allocating spill slots for values), 538 // reserve any stack slots which we judge to be profitable to reuse for a 539 // particular value. This is purely an optimization over the code below and 540 // doesn't change semantics at all. It is important for performance that we 541 // reserve slots for both deopt and gc values before lowering either. 542 for (const Value *V : StatepointSite.vm_state_args()) { 543 reservePreviousStackSlotForValue(V, Builder); 544 } 545 for (unsigned i = 0; i < Bases.size(); ++i) { 546 reservePreviousStackSlotForValue(Bases[i], Builder); 547 reservePreviousStackSlotForValue(Ptrs[i], Builder); 548 } 549 550 // First, prefix the list with the number of unique values to be 551 // lowered. Note that this is the number of *Values* not the 552 // number of SDValues required to lower them. 553 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); 554 pushStackMapConstant(Ops, Builder, NumVMSArgs); 555 556 assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), 557 StatepointSite.vm_state_end())); 558 559 // The vm state arguments are lowered in an opaque manner. We do 560 // not know what type of values are contained within. We skip the 561 // first one since that happens to be the total number we lowered 562 // explicitly just above. We could have left it in the loop and 563 // not done it explicitly, but it's far easier to understand this 564 // way. 565 for (const Value *V : StatepointSite.vm_state_args()) { 566 SDValue Incoming = Builder.getValue(V); 567 lowerIncomingStatepointValue(Incoming, Ops, Builder); 568 } 569 570 // Finally, go ahead and lower all the gc arguments. There's no prefixed 571 // length for this one. After lowering, we'll have the base and pointer 572 // arrays interwoven with each (lowered) base pointer immediately followed by 573 // it's (lowered) derived pointer. i.e 574 // (base[0], ptr[0], base[1], ptr[1], ...) 575 for (unsigned i = 0; i < Bases.size(); ++i) { 576 const Value *Base = Bases[i]; 577 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 578 579 const Value *Ptr = Ptrs[i]; 580 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 581 } 582 583 // If there are any explicit spill slots passed to the statepoint, record 584 // them, but otherwise do not do anything special. These are user provided 585 // allocas and give control over placement to the consumer. In this case, 586 // it is the contents of the slot which may get updated, not the pointer to 587 // the alloca 588 for (Value *V : StatepointSite.gc_args()) { 589 SDValue Incoming = Builder.getValue(V); 590 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 591 // This handles allocas as arguments to the statepoint 592 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 593 Incoming.getValueType())); 594 } 595 } 596 597 // Record computed locations for all lowered values. 598 // This can not be embedded in lowering loops as we need to record *all* 599 // values, while previous loops account only values with unique SDValues. 600 const Instruction *StatepointInstr = 601 StatepointSite.getCallSite().getInstruction(); 602 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 603 Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; 604 605 for (const GCRelocateInst *Relocate : StatepointSite.getRelocates()) { 606 const Value *V = Relocate->getDerivedPtr(); 607 SDValue SDV = Builder.getValue(V); 608 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 609 610 if (Loc.getNode()) { 611 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 612 } else { 613 // Record value as visited, but not spilled. This is case for allocas 614 // and constants. For this values we can avoid emitting spill load while 615 // visiting corresponding gc_relocate. 616 // Actually we do not need to record them in this map at all. 617 // We do this only to check that we are not relocating any unvisited 618 // value. 619 SpillMap[V] = None; 620 621 // Default llvm mechanisms for exporting values which are used in 622 // different basic blocks does not work for gc relocates. 623 // Note that it would be incorrect to teach llvm that all relocates are 624 // uses of the corresponding values so that it would automatically 625 // export them. Relocates of the spilled values does not use original 626 // value. 627 if (Relocate->getParent() != StatepointInstr->getParent()) 628 Builder.ExportFromCurrentBlock(V); 629 } 630 } 631 } 632 633 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 634 // Check some preconditions for sanity 635 assert(isStatepoint(&CI) && 636 "function called must be the statepoint function"); 637 638 LowerStatepoint(ImmutableStatepoint(&CI)); 639 } 640 641 void SelectionDAGBuilder::LowerStatepoint( 642 ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) { 643 // The basic scheme here is that information about both the original call and 644 // the safepoint is encoded in the CallInst. We create a temporary call and 645 // lower it, then reverse engineer the calling sequence. 646 647 NumOfStatepoints++; 648 // Clear state 649 StatepointLowering.startNewStatepoint(*this); 650 651 ImmutableCallSite CS(ISP.getCallSite()); 652 653 #ifndef NDEBUG 654 // Consistency check. Check only relocates in the same basic block as thier 655 // statepoint. 656 for (const User *U : CS->users()) { 657 const CallInst *Call = cast<CallInst>(U); 658 if (isa<GCRelocateInst>(Call) && Call->getParent() == CS.getParent()) 659 StatepointLowering.scheduleRelocCall(*Call); 660 } 661 #endif 662 663 #ifndef NDEBUG 664 // If this is a malformed statepoint, report it early to simplify debugging. 665 // This should catch any IR level mistake that's made when constructing or 666 // transforming statepoints. 667 ISP.verify(); 668 669 // Check that the associated GCStrategy expects to encounter statepoints. 670 assert(GFI->getStrategy().useStatepoints() && 671 "GCStrategy does not expect to encounter statepoints"); 672 #endif 673 674 // Lower statepoint vmstate and gcstate arguments 675 SmallVector<SDValue, 10> LoweredMetaArgs; 676 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); 677 678 // Get call node, we will replace it later with statepoint 679 SDNode *CallNode = 680 lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports); 681 682 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 683 // nodes with all the appropriate arguments and return values. 684 685 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 686 SDValue Chain = CallNode->getOperand(0); 687 688 SDValue Glue; 689 bool CallHasIncomingGlue = CallNode->getGluedNode(); 690 if (CallHasIncomingGlue) { 691 // Glue is always last operand 692 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 693 } 694 695 // Build the GC_TRANSITION_START node if necessary. 696 // 697 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 698 // order in which they appear in the call to the statepoint intrinsic. If 699 // any of the operands is a pointer-typed, that operand is immediately 700 // followed by a SRCVALUE for the pointer that may be used during lowering 701 // (e.g. to form MachinePointerInfo values for loads/stores). 702 const bool IsGCTransition = 703 (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == 704 (uint64_t)StatepointFlags::GCTransition; 705 if (IsGCTransition) { 706 SmallVector<SDValue, 8> TSOps; 707 708 // Add chain 709 TSOps.push_back(Chain); 710 711 // Add GC transition arguments 712 for (const Value *V : ISP.gc_transition_args()) { 713 TSOps.push_back(getValue(V)); 714 if (V->getType()->isPointerTy()) 715 TSOps.push_back(DAG.getSrcValue(V)); 716 } 717 718 // Add glue if necessary 719 if (CallHasIncomingGlue) 720 TSOps.push_back(Glue); 721 722 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 723 724 SDValue GCTransitionStart = 725 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 726 727 Chain = GCTransitionStart.getValue(0); 728 Glue = GCTransitionStart.getValue(1); 729 } 730 731 // TODO: Currently, all of these operands are being marked as read/write in 732 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 733 // and flags to be read-only. 734 SmallVector<SDValue, 40> Ops; 735 736 // Add the <id> and <numBytes> constants. 737 Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); 738 Ops.push_back( 739 DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); 740 741 // Calculate and push starting position of vmstate arguments 742 // Get number of arguments incoming directly into call node 743 unsigned NumCallRegArgs = 744 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 745 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 746 747 // Add call target 748 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 749 Ops.push_back(CallTarget); 750 751 // Add call arguments 752 // Get position of register mask in the call 753 SDNode::op_iterator RegMaskIt; 754 if (CallHasIncomingGlue) 755 RegMaskIt = CallNode->op_end() - 2; 756 else 757 RegMaskIt = CallNode->op_end() - 1; 758 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 759 760 // Add a constant argument for the calling convention 761 pushStackMapConstant(Ops, *this, CS.getCallingConv()); 762 763 // Add a constant argument for the flags 764 uint64_t Flags = ISP.getFlags(); 765 assert( 766 ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) 767 && "unknown flag used"); 768 pushStackMapConstant(Ops, *this, Flags); 769 770 // Insert all vmstate and gcstate arguments 771 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 772 773 // Add register mask from call node 774 Ops.push_back(*RegMaskIt); 775 776 // Add chain 777 Ops.push_back(Chain); 778 779 // Same for the glue, but we add it only if original call had it 780 if (Glue.getNode()) 781 Ops.push_back(Glue); 782 783 // Compute return values. Provide a glue output since we consume one as 784 // input. This allows someone else to chain off us as needed. 785 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 786 787 SDNode *StatepointMCNode = 788 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 789 790 SDNode *SinkNode = StatepointMCNode; 791 792 // Build the GC_TRANSITION_END node if necessary. 793 // 794 // See the comment above regarding GC_TRANSITION_START for the layout of 795 // the operands to the GC_TRANSITION_END node. 796 if (IsGCTransition) { 797 SmallVector<SDValue, 8> TEOps; 798 799 // Add chain 800 TEOps.push_back(SDValue(StatepointMCNode, 0)); 801 802 // Add GC transition arguments 803 for (const Value *V : ISP.gc_transition_args()) { 804 TEOps.push_back(getValue(V)); 805 if (V->getType()->isPointerTy()) 806 TEOps.push_back(DAG.getSrcValue(V)); 807 } 808 809 // Add glue 810 TEOps.push_back(SDValue(StatepointMCNode, 1)); 811 812 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 813 814 SDValue GCTransitionStart = 815 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 816 817 SinkNode = GCTransitionStart.getNode(); 818 } 819 820 // Replace original call 821 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 822 // Remove original call node 823 DAG.DeleteNode(CallNode); 824 825 // DON'T set the root - under the assumption that it's already set past the 826 // inserted node we created. 827 828 // TODO: A better future implementation would be to emit a single variable 829 // argument, variable return value STATEPOINT node here and then hookup the 830 // return value of each gc.relocate to the respective output of the 831 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 832 // to actually be possible today. 833 } 834 835 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 836 // The result value of the gc_result is simply the result of the actual 837 // call. We've already emitted this, so just grab the value. 838 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 839 assert(isStatepoint(I) && "first argument must be a statepoint token"); 840 841 if (I->getParent() != CI.getParent()) { 842 // Statepoint is in different basic block so we should have stored call 843 // result in a virtual register. 844 // We can not use default getValue() functionality to copy value from this 845 // register because statepoint and actuall call return types can be 846 // different, and getValue() will use CopyFromReg of the wrong type, 847 // which is always i32 in our case. 848 PointerType *CalleeType = cast<PointerType>( 849 ImmutableStatepoint(I).getCalledValue()->getType()); 850 Type *RetTy = 851 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 852 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 853 854 assert(CopyFromReg.getNode()); 855 setValue(&CI, CopyFromReg); 856 } else { 857 setValue(&CI, getValue(I)); 858 } 859 } 860 861 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 862 #ifndef NDEBUG 863 // Consistency check 864 // We skip this check for relocates not in the same basic block as thier 865 // statepoint. It would be too expensive to preserve validation info through 866 // different basic blocks. 867 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) { 868 StatepointLowering.relocCallVisited(Relocate); 869 } 870 #endif 871 872 const Value *DerivedPtr = Relocate.getDerivedPtr(); 873 SDValue SD = getValue(DerivedPtr); 874 875 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 876 FuncInfo.StatepointRelocatedValues[Relocate.getStatepoint()]; 877 878 // We should have recorded location for this pointer 879 assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); 880 Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; 881 882 // We didn't need to spill these special cases (constants and allocas). 883 // See the handling in spillIncomingValueForStatepoint for detail. 884 if (!DerivedPtrLocation) { 885 setValue(&Relocate, SD); 886 return; 887 } 888 889 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 890 SD.getValueType()); 891 892 // Be conservative: flush all pending loads 893 // TODO: Probably we can be less restrictive on this, 894 // it may allow more scheduling opportunities. 895 SDValue Chain = getRoot(); 896 897 SDValue SpillLoad = 898 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 899 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 900 *DerivedPtrLocation), 901 false, false, false, 0); 902 903 // Again, be conservative, don't emit pending loads 904 DAG.setRoot(SpillLoad.getValue(1)); 905 906 assert(SpillLoad.getNode()); 907 setValue(&Relocate, SpillLoad); 908 } 909