1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 void 42 StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 43 // Consistency check 44 assert(PendingGCRelocateCalls.empty() && 45 "Trying to visit statepoint before finished processing previous one"); 46 Locations.clear(); 47 RelocLocations.clear(); 48 NextSlotToAllocate = 0; 49 // Need to resize this on each safepoint - we need the two to stay in 50 // sync and the clear patterns of a SelectionDAGBuilder have no relation 51 // to FunctionLoweringInfo. 52 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 53 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 54 AllocatedStackSlots[i] = false; 55 } 56 } 57 void StatepointLoweringState::clear() { 58 Locations.clear(); 59 RelocLocations.clear(); 60 AllocatedStackSlots.clear(); 61 assert(PendingGCRelocateCalls.empty() && 62 "cleared before statepoint sequence completed"); 63 } 64 65 SDValue 66 StatepointLoweringState::allocateStackSlot(EVT ValueType, 67 SelectionDAGBuilder &Builder) { 68 69 NumSlotsAllocatedForStatepoints++; 70 71 // The basic scheme here is to first look for a previously created stack slot 72 // which is not in use (accounting for the fact arbitrary slots may already 73 // be reserved), or to create a new stack slot and use it. 74 75 // If this doesn't succeed in 40000 iterations, something is seriously wrong 76 for (int i = 0; i < 40000; i++) { 77 assert(Builder.FuncInfo.StatepointStackSlots.size() == 78 AllocatedStackSlots.size() && 79 "broken invariant"); 80 const size_t NumSlots = AllocatedStackSlots.size(); 81 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 82 83 if (NextSlotToAllocate >= NumSlots) { 84 assert(NextSlotToAllocate == NumSlots); 85 // record stats 86 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 87 StatepointMaxSlotsRequired = NumSlots + 1; 88 } 89 90 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 91 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 92 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 93 AllocatedStackSlots.push_back(true); 94 return SpillSlot; 95 } 96 if (!AllocatedStackSlots[NextSlotToAllocate]) { 97 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 98 AllocatedStackSlots[NextSlotToAllocate] = true; 99 return Builder.DAG.getFrameIndex(FI, ValueType); 100 } 101 // Note: We deliberately choose to advance this only on the failing path. 102 // Doing so on the suceeding path involes a bit of complexity that caused a 103 // minor bug previously. Unless performance shows this matters, please 104 // keep this code as simple as possible. 105 NextSlotToAllocate++; 106 } 107 llvm_unreachable("infinite loop?"); 108 } 109 110 /// Try to find existing copies of the incoming values in stack slots used for 111 /// statepoint spilling. If we can find a spill slot for the incoming value, 112 /// mark that slot as allocated, and reuse the same slot for this safepoint. 113 /// This helps to avoid series of loads and stores that only serve to resuffle 114 /// values on the stack between calls. 115 static void reservePreviousStackSlotForValue(SDValue Incoming, 116 SelectionDAGBuilder &Builder) { 117 118 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 119 // We won't need to spill this, so no need to check for previously 120 // allocated stack slots 121 return; 122 } 123 124 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 125 if (Loc.getNode()) { 126 // duplicates in input 127 return; 128 } 129 130 // Search back for the load from a stack slot pattern to find the original 131 // slot we allocated for this value. We could extend this to deal with 132 // simple modification patterns, but simple dealing with trivial load/store 133 // sequences helps a lot already. 134 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) { 135 if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) { 136 const int Index = FI->getIndex(); 137 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 138 Builder.FuncInfo.StatepointStackSlots.end(), Index); 139 if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) { 140 // not one of the lowering stack slots, can't reuse! 141 // TODO: Actually, we probably could reuse the stack slot if the value 142 // hasn't changed at all, but we'd need to look for intervening writes 143 return; 144 } else { 145 // This is one of our dedicated lowering slots 146 const int Offset = 147 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 148 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 149 // stack slot already assigned to someone else, can't use it! 150 // TODO: currently we reserve space for gc arguments after doing 151 // normal allocation for deopt arguments. We should reserve for 152 // _all_ deopt and gc arguments, then start allocating. This 153 // will prevent some moves being inserted when vm state changes, 154 // but gc state doesn't between two calls. 155 return; 156 } 157 // Reserve this stack slot 158 Builder.StatepointLowering.reserveStackSlot(Offset); 159 } 160 161 // Cache this slot so we find it when going through the normal 162 // assignment loop. 163 SDValue Loc = 164 Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 165 166 Builder.StatepointLowering.setLocation(Incoming, Loc); 167 } 168 } 169 170 // TODO: handle case where a reloaded value flows through a phi to 171 // another safepoint. e.g. 172 // bb1: 173 // a' = relocated... 174 // bb2: % pred: bb1, bb3, bb4, etc. 175 // a_phi = phi(a', ...) 176 // statepoint ... a_phi 177 // NOTE: This will require reasoning about cross basic block values. This is 178 // decidedly non trivial and this might not be the right place to do it. We 179 // don't really have the information we need here... 180 181 // TODO: handle simple updates. If a value is modified and the original 182 // value is no longer live, it would be nice to put the modified value in the 183 // same slot. This allows folding of the memory accesses for some 184 // instructions types (like an increment). 185 // statepoint (i) 186 // i1 = i+1 187 // statepoint (i1) 188 } 189 190 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 191 /// is not required for correctness. It's purpose is to reduce the size of 192 /// StackMap section. It has no effect on the number of spill slots required 193 /// or the actual lowering. 194 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 195 SmallVectorImpl<const Value *> &Ptrs, 196 SmallVectorImpl<const Value *> &Relocs, 197 SelectionDAGBuilder &Builder) { 198 199 // This is horribly ineffecient, but I don't care right now 200 SmallSet<SDValue, 64> Seen; 201 202 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 203 for (size_t i = 0; i < Ptrs.size(); i++) { 204 SDValue SD = Builder.getValue(Ptrs[i]); 205 // Only add non-duplicates 206 if (Seen.count(SD) == 0) { 207 NewBases.push_back(Bases[i]); 208 NewPtrs.push_back(Ptrs[i]); 209 NewRelocs.push_back(Relocs[i]); 210 } 211 Seen.insert(SD); 212 } 213 assert(Bases.size() >= NewBases.size()); 214 assert(Ptrs.size() >= NewPtrs.size()); 215 assert(Relocs.size() >= NewRelocs.size()); 216 Bases = NewBases; 217 Ptrs = NewPtrs; 218 Relocs = NewRelocs; 219 assert(Ptrs.size() == Bases.size()); 220 assert(Ptrs.size() == Relocs.size()); 221 } 222 223 /// Extract call from statepoint, lower it and return pointer to the 224 /// call node. Also update NodeMap so that getValue(statepoint) will 225 /// reference lowered call result 226 static SDNode *lowerCallFromStatepoint(ImmutableStatepoint StatepointSite, 227 MachineBasicBlock *LandingPad, 228 SelectionDAGBuilder &Builder) { 229 230 ImmutableCallSite CS(StatepointSite.getCallSite()); 231 232 // Lower the actual call itself - This is a bit of a hack, but we want to 233 // avoid modifying the actual lowering code. This is similiar in intent to 234 // the LowerCallOperands mechanism used by PATCHPOINT, but is structured 235 // differently. Hopefully, this is slightly more robust w.r.t. calling 236 // convention, return values, and other function attributes. 237 Value *ActualCallee = const_cast<Value *>(StatepointSite.actualCallee()); 238 239 std::vector<Value *> Args; 240 CallInst::const_op_iterator arg_begin = StatepointSite.call_args_begin(); 241 CallInst::const_op_iterator arg_end = StatepointSite.call_args_end(); 242 Args.insert(Args.end(), arg_begin, arg_end); 243 // TODO: remove the creation of a new instruction! We should not be 244 // modifying the IR (even temporarily) at this point. 245 CallInst *Tmp = CallInst::Create(ActualCallee, Args); 246 Tmp->setTailCall(CS.isTailCall()); 247 Tmp->setCallingConv(CS.getCallingConv()); 248 Tmp->setAttributes(CS.getAttributes()); 249 Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false, LandingPad); 250 251 // Handle the return value of the call iff any. 252 const bool HasDef = !Tmp->getType()->isVoidTy(); 253 if (HasDef) { 254 if (CS.isInvoke()) { 255 // Result value will be used in different basic block for invokes 256 // so we need to export it now. But statepoint call has a different type 257 // than the actuall call. It means that standart exporting mechanism will 258 // create register of the wrong type. So instead we need to create 259 // register with correct type and save value into it manually. 260 // TODO: To eliminate this problem we can remove gc.result intrinsics 261 // completelly and make statepoint call to return a tuple. 262 unsigned reg = Builder.FuncInfo.CreateRegs(Tmp->getType()); 263 Builder.CopyValueToVirtualRegister(Tmp, reg); 264 Builder.FuncInfo.ValueMap[CS.getInstruction()] = reg; 265 } 266 else { 267 // The value of the statepoint itself will be the value of call itself. 268 // We'll replace the actually call node shortly. gc_result will grab 269 // this value. 270 Builder.setValue(CS.getInstruction(), Builder.getValue(Tmp)); 271 } 272 } else { 273 // The token value is never used from here on, just generate a poison value 274 Builder.setValue(CS.getInstruction(), Builder.DAG.getIntPtrConstant(-1)); 275 } 276 // Remove the fake entry we created so we don't have a hanging reference 277 // after we delete this node. 278 Builder.removeValue(Tmp); 279 delete Tmp; 280 Tmp = nullptr; 281 282 // Search for the call node 283 // The following code is essentially reverse engineering X86's 284 // LowerCallTo. 285 // We are expecting DAG to have the following form: 286 // ch = eh_label (only in case of invoke statepoint) 287 // ch, glue = callseq_start ch 288 // ch, glue = X86::Call ch, glue 289 // ch, glue = callseq_end ch, glue 290 // ch = eh_label ch (only in case of invoke statepoint) 291 // 292 // DAG root will be either last eh_label or callseq_end. 293 294 SDNode *CallNode = nullptr; 295 296 // We just emitted a call, so it should be last thing generated 297 SDValue Chain = Builder.DAG.getRoot(); 298 299 // Find closest CALLSEQ_END walking back through lowered nodes if needed 300 SDNode *CallEnd = Chain.getNode(); 301 int Sanity = 0; 302 while (CallEnd->getOpcode() != ISD::CALLSEQ_END) { 303 assert(CallEnd->getNumOperands() >= 1 && 304 CallEnd->getOperand(0).getValueType() == MVT::Other); 305 306 CallEnd = CallEnd->getOperand(0).getNode(); 307 308 assert(Sanity < 20 && "should have found call end already"); 309 Sanity++; 310 } 311 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 312 "Expected a callseq node."); 313 assert(CallEnd->getGluedNode()); 314 315 // Step back inside the CALLSEQ 316 CallNode = CallEnd->getGluedNode(); 317 return CallNode; 318 } 319 320 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 321 /// and return two arrays: 322 /// Bases - base pointers incoming to this statepoint 323 /// Ptrs - derived pointers incoming to this statepoint 324 /// Relocs - the gc_relocate corresponding to each base/ptr pair 325 /// Elements of this arrays should be in one-to-one correspondence with each 326 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 327 static void 328 getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases, 329 SmallVectorImpl<const Value *> &Ptrs, 330 SmallVectorImpl<const Value *> &Relocs, 331 ImmutableStatepoint StatepointSite, 332 SelectionDAGBuilder &Builder) { 333 for (GCRelocateOperands relocateOpers : 334 StatepointSite.getRelocates(StatepointSite)) { 335 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); 336 Bases.push_back(relocateOpers.basePtr()); 337 Ptrs.push_back(relocateOpers.derivedPtr()); 338 } 339 340 // Remove any redundant llvm::Values which map to the same SDValue as another 341 // input. Also has the effect of removing duplicates in the original 342 // llvm::Value input list as well. This is a useful optimization for 343 // reducing the size of the StackMap section. It has no other impact. 344 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 345 346 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 347 } 348 349 /// Spill a value incoming to the statepoint. It might be either part of 350 /// vmstate 351 /// or gcstate. In both cases unconditionally spill it on the stack unless it 352 /// is a null constant. Return pair with first element being frame index 353 /// containing saved value and second element with outgoing chain from the 354 /// emitted store 355 static std::pair<SDValue, SDValue> 356 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 357 SelectionDAGBuilder &Builder) { 358 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 359 360 // Emit new store if we didn't do it for this ptr before 361 if (!Loc.getNode()) { 362 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 363 Builder); 364 assert(isa<FrameIndexSDNode>(Loc)); 365 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 366 // We use TargetFrameIndex so that isel will not select it into LEA 367 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 368 369 // TODO: We can create TokenFactor node instead of 370 // chaining stores one after another, this may allow 371 // a bit more optimal scheduling for them 372 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 373 MachinePointerInfo::getFixedStack(Index), 374 false, false, 0); 375 376 Builder.StatepointLowering.setLocation(Incoming, Loc); 377 } 378 379 assert(Loc.getNode()); 380 return std::make_pair(Loc, Chain); 381 } 382 383 /// Lower a single value incoming to a statepoint node. This value can be 384 /// either a deopt value or a gc value, the handling is the same. We special 385 /// case constants and allocas, then fall back to spilling if required. 386 static void lowerIncomingStatepointValue(SDValue Incoming, 387 SmallVectorImpl<SDValue> &Ops, 388 SelectionDAGBuilder &Builder) { 389 SDValue Chain = Builder.getRoot(); 390 391 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 392 // If the original value was a constant, make sure it gets recorded as 393 // such in the stackmap. This is required so that the consumer can 394 // parse any internal format to the deopt state. It also handles null 395 // pointers and other constant pointers in GC states 396 Ops.push_back( 397 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 398 Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 399 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 400 // This handles allocas as arguments to the statepoint (this is only 401 // really meaningful for a deopt value. For GC, we'd be trying to 402 // relocate the address of the alloca itself?) 403 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 404 Incoming.getValueType())); 405 } else { 406 // Otherwise, locate a spill slot and explicitly spill it so it 407 // can be found by the runtime later. We currently do not support 408 // tracking values through callee saved registers to their eventual 409 // spill location. This would be a useful optimization, but would 410 // need to be optional since it requires a lot of complexity on the 411 // runtime side which not all would support. 412 std::pair<SDValue, SDValue> Res = 413 spillIncomingStatepointValue(Incoming, Chain, Builder); 414 Ops.push_back(Res.first); 415 Chain = Res.second; 416 } 417 418 Builder.DAG.setRoot(Chain); 419 } 420 421 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 422 /// lowering is described in lowerIncomingStatepointValue. This function is 423 /// responsible for lowering everything in the right position and playing some 424 /// tricks to avoid redundant stack manipulation where possible. On 425 /// completion, 'Ops' will contain ready to use operands for machine code 426 /// statepoint. The chain nodes will have already been created and the DAG root 427 /// will be set to the last value spilled (if any were). 428 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 429 ImmutableStatepoint StatepointSite, 430 SelectionDAGBuilder &Builder) { 431 432 // Lower the deopt and gc arguments for this statepoint. Layout will 433 // be: deopt argument length, deopt arguments.., gc arguments... 434 435 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 436 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, 437 StatepointSite, Builder); 438 439 #ifndef NDEBUG 440 // Check that each of the gc pointer and bases we've gotten out of the 441 // safepoint is something the strategy thinks might be a pointer into the GC 442 // heap. This is basically just here to help catch errors during statepoint 443 // insertion. TODO: This should actually be in the Verifier, but we can't get 444 // to the GCStrategy from there (yet). 445 GCStrategy &S = Builder.GFI->getStrategy(); 446 for (const Value *V : Bases) { 447 auto Opt = S.isGCManagedPointer(V); 448 if (Opt.hasValue()) { 449 assert(Opt.getValue() && 450 "non gc managed base pointer found in statepoint"); 451 } 452 } 453 for (const Value *V : Ptrs) { 454 auto Opt = S.isGCManagedPointer(V); 455 if (Opt.hasValue()) { 456 assert(Opt.getValue() && 457 "non gc managed derived pointer found in statepoint"); 458 } 459 } 460 for (const Value *V : Relocations) { 461 auto Opt = S.isGCManagedPointer(V); 462 if (Opt.hasValue()) { 463 assert(Opt.getValue() && "non gc managed pointer relocated"); 464 } 465 } 466 #endif 467 468 469 470 // Before we actually start lowering (and allocating spill slots for values), 471 // reserve any stack slots which we judge to be profitable to reuse for a 472 // particular value. This is purely an optimization over the code below and 473 // doesn't change semantics at all. It is important for performance that we 474 // reserve slots for both deopt and gc values before lowering either. 475 for (auto I = StatepointSite.vm_state_begin() + 1, 476 E = StatepointSite.vm_state_end(); 477 I != E; ++I) { 478 Value *V = *I; 479 SDValue Incoming = Builder.getValue(V); 480 reservePreviousStackSlotForValue(Incoming, Builder); 481 } 482 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 483 // Even elements will contain base, odd elements - derived ptr 484 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 485 SDValue Incoming = Builder.getValue(V); 486 reservePreviousStackSlotForValue(Incoming, Builder); 487 } 488 489 // First, prefix the list with the number of unique values to be 490 // lowered. Note that this is the number of *Values* not the 491 // number of SDValues required to lower them. 492 const int NumVMSArgs = StatepointSite.numTotalVMSArgs(); 493 Ops.push_back( 494 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 495 Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64)); 496 497 assert(NumVMSArgs + 1 == std::distance(StatepointSite.vm_state_begin(), 498 StatepointSite.vm_state_end())); 499 500 // The vm state arguments are lowered in an opaque manner. We do 501 // not know what type of values are contained within. We skip the 502 // first one since that happens to be the total number we lowered 503 // explicitly just above. We could have left it in the loop and 504 // not done it explicitly, but it's far easier to understand this 505 // way. 506 for (auto I = StatepointSite.vm_state_begin() + 1, 507 E = StatepointSite.vm_state_end(); 508 I != E; ++I) { 509 const Value *V = *I; 510 SDValue Incoming = Builder.getValue(V); 511 lowerIncomingStatepointValue(Incoming, Ops, Builder); 512 } 513 514 // Finally, go ahead and lower all the gc arguments. There's no prefixed 515 // length for this one. After lowering, we'll have the base and pointer 516 // arrays interwoven with each (lowered) base pointer immediately followed by 517 // it's (lowered) derived pointer. i.e 518 // (base[0], ptr[0], base[1], ptr[1], ...) 519 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 520 // Even elements will contain base, odd elements - derived ptr 521 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 522 SDValue Incoming = Builder.getValue(V); 523 lowerIncomingStatepointValue(Incoming, Ops, Builder); 524 } 525 526 // If there are any explicit spill slots passed to the statepoint, record 527 // them, but otherwise do not do anything special. These are user provided 528 // allocas and give control over placement to the consumer. In this case, 529 // it is the contents of the slot which may get updated, not the pointer to 530 // the alloca 531 for (Value *V : StatepointSite.gc_args()) { 532 SDValue Incoming = Builder.getValue(V); 533 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 534 // This handles allocas as arguments to the statepoint 535 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 536 Incoming.getValueType())); 537 538 } 539 } 540 } 541 542 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 543 // Check some preconditions for sanity 544 assert(isStatepoint(&CI) && 545 "function called must be the statepoint function"); 546 547 LowerStatepoint(ImmutableStatepoint(&CI)); 548 } 549 550 void 551 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 552 MachineBasicBlock *LandingPad/*=nullptr*/) { 553 // The basic scheme here is that information about both the original call and 554 // the safepoint is encoded in the CallInst. We create a temporary call and 555 // lower it, then reverse engineer the calling sequence. 556 557 NumOfStatepoints++; 558 // Clear state 559 StatepointLowering.startNewStatepoint(*this); 560 561 ImmutableCallSite CS(ISP.getCallSite()); 562 563 #ifndef NDEBUG 564 // Consistency check 565 for (const User *U : CS->users()) { 566 const CallInst *Call = cast<CallInst>(U); 567 if (isGCRelocate(Call)) 568 StatepointLowering.scheduleRelocCall(*Call); 569 } 570 #endif 571 572 #ifndef NDEBUG 573 // If this is a malformed statepoint, report it early to simplify debugging. 574 // This should catch any IR level mistake that's made when constructing or 575 // transforming statepoints. 576 ISP.verify(); 577 578 // Check that the associated GCStrategy expects to encounter statepoints. 579 // TODO: This if should become an assert. For now, we allow the GCStrategy 580 // to be optional for backwards compatibility. This will only last a short 581 // period (i.e. a couple of weeks). 582 assert(GFI->getStrategy().useStatepoints() && 583 "GCStrategy does not expect to encounter statepoints"); 584 #endif 585 586 // Lower statepoint vmstate and gcstate arguments 587 SmallVector<SDValue, 10> LoweredArgs; 588 lowerStatepointMetaArgs(LoweredArgs, ISP, *this); 589 590 // Get call node, we will replace it later with statepoint 591 SDNode *CallNode = lowerCallFromStatepoint(ISP, LandingPad, *this); 592 593 // Construct the actual STATEPOINT node with all the appropriate arguments 594 // and return values. 595 596 // TODO: Currently, all of these operands are being marked as read/write in 597 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 598 // and flags to be read-only. 599 SmallVector<SDValue, 40> Ops; 600 601 // Calculate and push starting position of vmstate arguments 602 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 603 SDValue Glue; 604 if (CallNode->getGluedNode()) { 605 // Glue is always last operand 606 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 607 } 608 // Get number of arguments incoming directly into call node 609 unsigned NumCallRegArgs = 610 CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3); 611 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 612 613 // Add call target 614 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 615 Ops.push_back(CallTarget); 616 617 // Add call arguments 618 // Get position of register mask in the call 619 SDNode::op_iterator RegMaskIt; 620 if (Glue.getNode()) 621 RegMaskIt = CallNode->op_end() - 2; 622 else 623 RegMaskIt = CallNode->op_end() - 1; 624 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 625 626 // Add a leading constant argument with the Flags and the calling convention 627 // masked together 628 CallingConv::ID CallConv = CS.getCallingConv(); 629 int Flags = dyn_cast<ConstantInt>(CS.getArgument(2))->getZExtValue(); 630 assert(Flags == 0 && "not expected to be used"); 631 Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 632 Ops.push_back( 633 DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64)); 634 635 // Insert all vmstate and gcstate arguments 636 Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end()); 637 638 // Add register mask from call node 639 Ops.push_back(*RegMaskIt); 640 641 // Add chain 642 Ops.push_back(CallNode->getOperand(0)); 643 644 // Same for the glue, but we add it only if original call had it 645 if (Glue.getNode()) 646 Ops.push_back(Glue); 647 648 // Compute return values. Provide a glue output since we consume one as 649 // input. This allows someone else to chain off us as needed. 650 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 651 652 SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT, 653 getCurSDLoc(), NodeTys, Ops); 654 655 // Replace original call 656 DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root 657 // Remove originall call node 658 DAG.DeleteNode(CallNode); 659 660 // DON'T set the root - under the assumption that it's already set past the 661 // inserted node we created. 662 663 // TODO: A better future implementation would be to emit a single variable 664 // argument, variable return value STATEPOINT node here and then hookup the 665 // return value of each gc.relocate to the respective output of the 666 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 667 // to actually be possible today. 668 } 669 670 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 671 // The result value of the gc_result is simply the result of the actual 672 // call. We've already emitted this, so just grab the value. 673 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 674 assert(isStatepoint(I) && 675 "first argument must be a statepoint token"); 676 677 if (isa<InvokeInst>(I)) { 678 // For invokes we should have stored call result in a virtual register. 679 // We can not use default getValue() functionality to copy value from this 680 // register because statepoint and actuall call return types can be 681 // different, and getValue() will use CopyFromReg of the wrong type, 682 // which is always i32 in our case. 683 PointerType *CalleeType = cast<PointerType>( 684 ImmutableStatepoint(I).actualCallee()->getType()); 685 Type *RetTy = cast<FunctionType>( 686 CalleeType->getElementType())->getReturnType(); 687 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 688 689 assert(CopyFromReg.getNode()); 690 setValue(&CI, CopyFromReg); 691 } 692 else { 693 setValue(&CI, getValue(I)); 694 } 695 } 696 697 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 698 #ifndef NDEBUG 699 // Consistency check 700 StatepointLowering.relocCallVisited(CI); 701 #endif 702 703 GCRelocateOperands relocateOpers(&CI); 704 SDValue SD = getValue(relocateOpers.derivedPtr()); 705 706 if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) { 707 // We didn't need to spill these special cases (constants and allocas). 708 // See the handling in spillIncomingValueForStatepoint for detail. 709 setValue(&CI, SD); 710 return; 711 } 712 713 SDValue Loc = StatepointLowering.getRelocLocation(SD); 714 // Emit new load if we did not emit it before 715 if (!Loc.getNode()) { 716 SDValue SpillSlot = StatepointLowering.getLocation(SD); 717 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 718 719 // Be conservative: flush all pending loads 720 // TODO: Probably we can be less restrictive on this, 721 // it may allow more scheduling opprtunities 722 SDValue Chain = getRoot(); 723 724 Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, 725 SpillSlot, MachinePointerInfo::getFixedStack(FI), false, 726 false, false, 0); 727 728 StatepointLowering.setRelocLocation(SD, Loc); 729 730 // Again, be conservative, don't emit pending loads 731 DAG.setRoot(Loc.getValue(1)); 732 } 733 734 assert(Loc.getNode()); 735 setValue(&CI, Loc); 736 } 737