1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 42 // Consistency check 43 assert(PendingGCRelocateCalls.empty() && 44 "Trying to visit statepoint before finished processing previous one"); 45 Locations.clear(); 46 RelocLocations.clear(); 47 NextSlotToAllocate = 0; 48 // Need to resize this on each safepoint - we need the two to stay in 49 // sync and the clear patterns of a SelectionDAGBuilder have no relation 50 // to FunctionLoweringInfo. 51 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 52 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 53 AllocatedStackSlots[i] = false; 54 } 55 } 56 void StatepointLoweringState::clear() { 57 Locations.clear(); 58 RelocLocations.clear(); 59 AllocatedStackSlots.clear(); 60 assert(PendingGCRelocateCalls.empty() && 61 "cleared before statepoint sequence completed"); 62 } 63 64 SDValue 65 StatepointLoweringState::allocateStackSlot(EVT ValueType, 66 SelectionDAGBuilder &Builder) { 67 68 NumSlotsAllocatedForStatepoints++; 69 70 // The basic scheme here is to first look for a previously created stack slot 71 // which is not in use (accounting for the fact arbitrary slots may already 72 // be reserved), or to create a new stack slot and use it. 73 74 // If this doesn't succeed in 40000 iterations, something is seriously wrong 75 for (int i = 0; i < 40000; i++) { 76 assert(Builder.FuncInfo.StatepointStackSlots.size() == 77 AllocatedStackSlots.size() && 78 "broken invariant"); 79 const size_t NumSlots = AllocatedStackSlots.size(); 80 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 81 82 if (NextSlotToAllocate >= NumSlots) { 83 assert(NextSlotToAllocate == NumSlots); 84 // record stats 85 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 86 StatepointMaxSlotsRequired = NumSlots + 1; 87 } 88 89 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 90 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 91 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 92 AllocatedStackSlots.push_back(true); 93 return SpillSlot; 94 } 95 if (!AllocatedStackSlots[NextSlotToAllocate]) { 96 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 97 AllocatedStackSlots[NextSlotToAllocate] = true; 98 return Builder.DAG.getFrameIndex(FI, ValueType); 99 } 100 // Note: We deliberately choose to advance this only on the failing path. 101 // Doing so on the suceeding path involes a bit of complexity that caused a 102 // minor bug previously. Unless performance shows this matters, please 103 // keep this code as simple as possible. 104 NextSlotToAllocate++; 105 } 106 llvm_unreachable("infinite loop?"); 107 } 108 109 /// Try to find existing copies of the incoming values in stack slots used for 110 /// statepoint spilling. If we can find a spill slot for the incoming value, 111 /// mark that slot as allocated, and reuse the same slot for this safepoint. 112 /// This helps to avoid series of loads and stores that only serve to resuffle 113 /// values on the stack between calls. 114 static void reservePreviousStackSlotForValue(SDValue Incoming, 115 SelectionDAGBuilder &Builder) { 116 117 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 118 // We won't need to spill this, so no need to check for previously 119 // allocated stack slots 120 return; 121 } 122 123 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 124 if (Loc.getNode()) { 125 // duplicates in input 126 return; 127 } 128 129 // Search back for the load from a stack slot pattern to find the original 130 // slot we allocated for this value. We could extend this to deal with 131 // simple modification patterns, but simple dealing with trivial load/store 132 // sequences helps a lot already. 133 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) { 134 if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) { 135 const int Index = FI->getIndex(); 136 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 137 Builder.FuncInfo.StatepointStackSlots.end(), Index); 138 if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) { 139 // not one of the lowering stack slots, can't reuse! 140 // TODO: Actually, we probably could reuse the stack slot if the value 141 // hasn't changed at all, but we'd need to look for intervening writes 142 return; 143 } else { 144 // This is one of our dedicated lowering slots 145 const int Offset = 146 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 147 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 148 // stack slot already assigned to someone else, can't use it! 149 // TODO: currently we reserve space for gc arguments after doing 150 // normal allocation for deopt arguments. We should reserve for 151 // _all_ deopt and gc arguments, then start allocating. This 152 // will prevent some moves being inserted when vm state changes, 153 // but gc state doesn't between two calls. 154 return; 155 } 156 // Reserve this stack slot 157 Builder.StatepointLowering.reserveStackSlot(Offset); 158 } 159 160 // Cache this slot so we find it when going through the normal 161 // assignment loop. 162 SDValue Loc = 163 Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 164 165 Builder.StatepointLowering.setLocation(Incoming, Loc); 166 } 167 } 168 169 // TODO: handle case where a reloaded value flows through a phi to 170 // another safepoint. e.g. 171 // bb1: 172 // a' = relocated... 173 // bb2: % pred: bb1, bb3, bb4, etc. 174 // a_phi = phi(a', ...) 175 // statepoint ... a_phi 176 // NOTE: This will require reasoning about cross basic block values. This is 177 // decidedly non trivial and this might not be the right place to do it. We 178 // don't really have the information we need here... 179 180 // TODO: handle simple updates. If a value is modified and the original 181 // value is no longer live, it would be nice to put the modified value in the 182 // same slot. This allows folding of the memory accesses for some 183 // instructions types (like an increment). 184 // statepoint (i) 185 // i1 = i+1 186 // statepoint (i1) 187 } 188 189 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 190 /// is not required for correctness. It's purpose is to reduce the size of 191 /// StackMap section. It has no effect on the number of spill slots required 192 /// or the actual lowering. 193 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 194 SmallVectorImpl<const Value *> &Ptrs, 195 SmallVectorImpl<const Value *> &Relocs, 196 SelectionDAGBuilder &Builder) { 197 198 // This is horribly ineffecient, but I don't care right now 199 SmallSet<SDValue, 64> Seen; 200 201 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 202 for (size_t i = 0; i < Ptrs.size(); i++) { 203 SDValue SD = Builder.getValue(Ptrs[i]); 204 // Only add non-duplicates 205 if (Seen.count(SD) == 0) { 206 NewBases.push_back(Bases[i]); 207 NewPtrs.push_back(Ptrs[i]); 208 NewRelocs.push_back(Relocs[i]); 209 } 210 Seen.insert(SD); 211 } 212 assert(Bases.size() >= NewBases.size()); 213 assert(Ptrs.size() >= NewPtrs.size()); 214 assert(Relocs.size() >= NewRelocs.size()); 215 Bases = NewBases; 216 Ptrs = NewPtrs; 217 Relocs = NewRelocs; 218 assert(Ptrs.size() == Bases.size()); 219 assert(Ptrs.size() == Relocs.size()); 220 } 221 222 /// Extract call from statepoint, lower it and return pointer to the 223 /// call node. Also update NodeMap so that getValue(statepoint) will 224 /// reference lowered call result 225 static SDNode * 226 lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad, 227 SelectionDAGBuilder &Builder, 228 SmallVectorImpl<SDValue> &PendingExports) { 229 230 ImmutableCallSite CS(ISP.getCallSite()); 231 232 SDValue ActualCallee = Builder.getValue(ISP.getActualCallee()); 233 234 // Handle immediate and symbolic callees. 235 if (auto *ConstCallee = dyn_cast<ConstantSDNode>(ActualCallee.getNode())) 236 ActualCallee = Builder.DAG.getIntPtrConstant(ConstCallee->getZExtValue(), 237 Builder.getCurSDLoc(), 238 /*isTarget=*/true); 239 else if (auto *SymbolicCallee = 240 dyn_cast<GlobalAddressSDNode>(ActualCallee.getNode())) 241 ActualCallee = Builder.DAG.getTargetGlobalAddress( 242 SymbolicCallee->getGlobal(), SDLoc(SymbolicCallee), 243 SymbolicCallee->getValueType(0)); 244 245 assert(CS.getCallingConv() != CallingConv::AnyReg && 246 "anyregcc is not supported on statepoints!"); 247 248 Type *DefTy = ISP.getActualReturnType(); 249 bool HasDef = !DefTy->isVoidTy(); 250 251 SDValue ReturnValue, CallEndVal; 252 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( 253 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, 254 ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad, 255 false /* IsPatchPoint */); 256 257 SDNode *CallEnd = CallEndVal.getNode(); 258 259 // Get a call instruction from the call sequence chain. Tail calls are not 260 // allowed. The following code is essentially reverse engineering X86's 261 // LowerCallTo. 262 // 263 // We are expecting DAG to have the following form: 264 // 265 // ch = eh_label (only in case of invoke statepoint) 266 // ch, glue = callseq_start ch 267 // ch, glue = X86::Call ch, glue 268 // ch, glue = callseq_end ch, glue 269 // get_return_value ch, glue 270 // 271 // get_return_value can either be a CopyFromReg to grab the return value from 272 // %RAX, or it can be a LOAD to load a value returned by reference via a stack 273 // slot. 274 275 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg || 276 CallEnd->getOpcode() == ISD::LOAD)) 277 CallEnd = CallEnd->getOperand(0).getNode(); 278 279 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 280 281 if (HasDef) { 282 if (CS.isInvoke()) { 283 // Result value will be used in different basic block for invokes 284 // so we need to export it now. But statepoint call has a different type 285 // than the actuall call. It means that standart exporting mechanism will 286 // create register of the wrong type. So instead we need to create 287 // register with correct type and save value into it manually. 288 // TODO: To eliminate this problem we can remove gc.result intrinsics 289 // completelly and make statepoint call to return a tuple. 290 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); 291 RegsForValue RFV(*Builder.DAG.getContext(), 292 Builder.DAG.getTargetLoweringInfo(), Reg, 293 ISP.getActualReturnType()); 294 SDValue Chain = Builder.DAG.getEntryNode(); 295 296 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, 297 nullptr); 298 PendingExports.push_back(Chain); 299 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; 300 } else { 301 // The value of the statepoint itself will be the value of call itself. 302 // We'll replace the actually call node shortly. gc_result will grab 303 // this value. 304 Builder.setValue(CS.getInstruction(), ReturnValue); 305 } 306 } else { 307 // The token value is never used from here on, just generate a poison value 308 Builder.setValue(CS.getInstruction(), 309 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); 310 } 311 312 return CallEnd->getOperand(0).getNode(); 313 } 314 315 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 316 /// and return two arrays: 317 /// Bases - base pointers incoming to this statepoint 318 /// Ptrs - derived pointers incoming to this statepoint 319 /// Relocs - the gc_relocate corresponding to each base/ptr pair 320 /// Elements of this arrays should be in one-to-one correspondence with each 321 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 322 static void getIncomingStatepointGCValues( 323 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, 324 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, 325 SelectionDAGBuilder &Builder) { 326 for (GCRelocateOperands relocateOpers : 327 StatepointSite.getRelocates(StatepointSite)) { 328 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); 329 Bases.push_back(relocateOpers.getBasePtr()); 330 Ptrs.push_back(relocateOpers.getDerivedPtr()); 331 } 332 333 // Remove any redundant llvm::Values which map to the same SDValue as another 334 // input. Also has the effect of removing duplicates in the original 335 // llvm::Value input list as well. This is a useful optimization for 336 // reducing the size of the StackMap section. It has no other impact. 337 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 338 339 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 340 } 341 342 /// Spill a value incoming to the statepoint. It might be either part of 343 /// vmstate 344 /// or gcstate. In both cases unconditionally spill it on the stack unless it 345 /// is a null constant. Return pair with first element being frame index 346 /// containing saved value and second element with outgoing chain from the 347 /// emitted store 348 static std::pair<SDValue, SDValue> 349 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 350 SelectionDAGBuilder &Builder) { 351 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 352 353 // Emit new store if we didn't do it for this ptr before 354 if (!Loc.getNode()) { 355 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 356 Builder); 357 assert(isa<FrameIndexSDNode>(Loc)); 358 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 359 // We use TargetFrameIndex so that isel will not select it into LEA 360 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 361 362 // TODO: We can create TokenFactor node instead of 363 // chaining stores one after another, this may allow 364 // a bit more optimal scheduling for them 365 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 366 MachinePointerInfo::getFixedStack(Index), 367 false, false, 0); 368 369 Builder.StatepointLowering.setLocation(Incoming, Loc); 370 } 371 372 assert(Loc.getNode()); 373 return std::make_pair(Loc, Chain); 374 } 375 376 /// Lower a single value incoming to a statepoint node. This value can be 377 /// either a deopt value or a gc value, the handling is the same. We special 378 /// case constants and allocas, then fall back to spilling if required. 379 static void lowerIncomingStatepointValue(SDValue Incoming, 380 SmallVectorImpl<SDValue> &Ops, 381 SelectionDAGBuilder &Builder) { 382 SDValue Chain = Builder.getRoot(); 383 384 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 385 // If the original value was a constant, make sure it gets recorded as 386 // such in the stackmap. This is required so that the consumer can 387 // parse any internal format to the deopt state. It also handles null 388 // pointers and other constant pointers in GC states 389 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, 390 Builder.getCurSDLoc(), 391 MVT::i64)); 392 Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), 393 Builder.getCurSDLoc(), 394 MVT::i64)); 395 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 396 // This handles allocas as arguments to the statepoint (this is only 397 // really meaningful for a deopt value. For GC, we'd be trying to 398 // relocate the address of the alloca itself?) 399 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 400 Incoming.getValueType())); 401 } else { 402 // Otherwise, locate a spill slot and explicitly spill it so it 403 // can be found by the runtime later. We currently do not support 404 // tracking values through callee saved registers to their eventual 405 // spill location. This would be a useful optimization, but would 406 // need to be optional since it requires a lot of complexity on the 407 // runtime side which not all would support. 408 std::pair<SDValue, SDValue> Res = 409 spillIncomingStatepointValue(Incoming, Chain, Builder); 410 Ops.push_back(Res.first); 411 Chain = Res.second; 412 } 413 414 Builder.DAG.setRoot(Chain); 415 } 416 417 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 418 /// lowering is described in lowerIncomingStatepointValue. This function is 419 /// responsible for lowering everything in the right position and playing some 420 /// tricks to avoid redundant stack manipulation where possible. On 421 /// completion, 'Ops' will contain ready to use operands for machine code 422 /// statepoint. The chain nodes will have already been created and the DAG root 423 /// will be set to the last value spilled (if any were). 424 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 425 ImmutableStatepoint StatepointSite, 426 SelectionDAGBuilder &Builder) { 427 428 // Lower the deopt and gc arguments for this statepoint. Layout will 429 // be: deopt argument length, deopt arguments.., gc arguments... 430 431 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 432 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, 433 Builder); 434 435 #ifndef NDEBUG 436 // Check that each of the gc pointer and bases we've gotten out of the 437 // safepoint is something the strategy thinks might be a pointer into the GC 438 // heap. This is basically just here to help catch errors during statepoint 439 // insertion. TODO: This should actually be in the Verifier, but we can't get 440 // to the GCStrategy from there (yet). 441 GCStrategy &S = Builder.GFI->getStrategy(); 442 for (const Value *V : Bases) { 443 auto Opt = S.isGCManagedPointer(V); 444 if (Opt.hasValue()) { 445 assert(Opt.getValue() && 446 "non gc managed base pointer found in statepoint"); 447 } 448 } 449 for (const Value *V : Ptrs) { 450 auto Opt = S.isGCManagedPointer(V); 451 if (Opt.hasValue()) { 452 assert(Opt.getValue() && 453 "non gc managed derived pointer found in statepoint"); 454 } 455 } 456 for (const Value *V : Relocations) { 457 auto Opt = S.isGCManagedPointer(V); 458 if (Opt.hasValue()) { 459 assert(Opt.getValue() && "non gc managed pointer relocated"); 460 } 461 } 462 #endif 463 464 // Before we actually start lowering (and allocating spill slots for values), 465 // reserve any stack slots which we judge to be profitable to reuse for a 466 // particular value. This is purely an optimization over the code below and 467 // doesn't change semantics at all. It is important for performance that we 468 // reserve slots for both deopt and gc values before lowering either. 469 for (auto I = StatepointSite.vm_state_begin() + 1, 470 E = StatepointSite.vm_state_end(); 471 I != E; ++I) { 472 Value *V = *I; 473 SDValue Incoming = Builder.getValue(V); 474 reservePreviousStackSlotForValue(Incoming, Builder); 475 } 476 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 477 // Even elements will contain base, odd elements - derived ptr 478 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 479 SDValue Incoming = Builder.getValue(V); 480 reservePreviousStackSlotForValue(Incoming, Builder); 481 } 482 483 // First, prefix the list with the number of unique values to be 484 // lowered. Note that this is the number of *Values* not the 485 // number of SDValues required to lower them. 486 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); 487 Ops.push_back( Builder.DAG.getTargetConstant(StackMaps::ConstantOp, 488 Builder.getCurSDLoc(), 489 MVT::i64)); 490 Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, Builder.getCurSDLoc(), 491 MVT::i64)); 492 493 assert(NumVMSArgs + 1 == std::distance(StatepointSite.vm_state_begin(), 494 StatepointSite.vm_state_end())); 495 496 // The vm state arguments are lowered in an opaque manner. We do 497 // not know what type of values are contained within. We skip the 498 // first one since that happens to be the total number we lowered 499 // explicitly just above. We could have left it in the loop and 500 // not done it explicitly, but it's far easier to understand this 501 // way. 502 for (auto I = StatepointSite.vm_state_begin() + 1, 503 E = StatepointSite.vm_state_end(); 504 I != E; ++I) { 505 const Value *V = *I; 506 SDValue Incoming = Builder.getValue(V); 507 lowerIncomingStatepointValue(Incoming, Ops, Builder); 508 } 509 510 // Finally, go ahead and lower all the gc arguments. There's no prefixed 511 // length for this one. After lowering, we'll have the base and pointer 512 // arrays interwoven with each (lowered) base pointer immediately followed by 513 // it's (lowered) derived pointer. i.e 514 // (base[0], ptr[0], base[1], ptr[1], ...) 515 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 516 // Even elements will contain base, odd elements - derived ptr 517 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 518 SDValue Incoming = Builder.getValue(V); 519 lowerIncomingStatepointValue(Incoming, Ops, Builder); 520 } 521 522 // If there are any explicit spill slots passed to the statepoint, record 523 // them, but otherwise do not do anything special. These are user provided 524 // allocas and give control over placement to the consumer. In this case, 525 // it is the contents of the slot which may get updated, not the pointer to 526 // the alloca 527 for (Value *V : StatepointSite.gc_args()) { 528 SDValue Incoming = Builder.getValue(V); 529 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 530 // This handles allocas as arguments to the statepoint 531 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 532 Incoming.getValueType())); 533 } 534 } 535 } 536 537 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 538 // Check some preconditions for sanity 539 assert(isStatepoint(&CI) && 540 "function called must be the statepoint function"); 541 542 LowerStatepoint(ImmutableStatepoint(&CI)); 543 } 544 545 void SelectionDAGBuilder::LowerStatepoint( 546 ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) { 547 // The basic scheme here is that information about both the original call and 548 // the safepoint is encoded in the CallInst. We create a temporary call and 549 // lower it, then reverse engineer the calling sequence. 550 551 NumOfStatepoints++; 552 // Clear state 553 StatepointLowering.startNewStatepoint(*this); 554 555 ImmutableCallSite CS(ISP.getCallSite()); 556 557 #ifndef NDEBUG 558 // Consistency check 559 for (const User *U : CS->users()) { 560 const CallInst *Call = cast<CallInst>(U); 561 if (isGCRelocate(Call)) 562 StatepointLowering.scheduleRelocCall(*Call); 563 } 564 #endif 565 566 #ifndef NDEBUG 567 // If this is a malformed statepoint, report it early to simplify debugging. 568 // This should catch any IR level mistake that's made when constructing or 569 // transforming statepoints. 570 ISP.verify(); 571 572 // Check that the associated GCStrategy expects to encounter statepoints. 573 // TODO: This if should become an assert. For now, we allow the GCStrategy 574 // to be optional for backwards compatibility. This will only last a short 575 // period (i.e. a couple of weeks). 576 assert(GFI->getStrategy().useStatepoints() && 577 "GCStrategy does not expect to encounter statepoints"); 578 #endif 579 580 // Lower statepoint vmstate and gcstate arguments 581 SmallVector<SDValue, 10> LoweredMetaArgs; 582 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); 583 584 // Get call node, we will replace it later with statepoint 585 SDNode *CallNode = 586 lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports); 587 588 // Construct the actual STATEPOINT node with all the appropriate arguments 589 // and return values. 590 591 // TODO: Currently, all of these operands are being marked as read/write in 592 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 593 // and flags to be read-only. 594 SmallVector<SDValue, 40> Ops; 595 596 // Calculate and push starting position of vmstate arguments 597 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 598 SDValue Glue; 599 if (CallNode->getGluedNode()) { 600 // Glue is always last operand 601 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 602 } 603 // Get number of arguments incoming directly into call node 604 unsigned NumCallRegArgs = 605 CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3); 606 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 607 608 // Add call target 609 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 610 Ops.push_back(CallTarget); 611 612 // Add call arguments 613 // Get position of register mask in the call 614 SDNode::op_iterator RegMaskIt; 615 if (Glue.getNode()) 616 RegMaskIt = CallNode->op_end() - 2; 617 else 618 RegMaskIt = CallNode->op_end() - 1; 619 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 620 621 // Add a leading constant argument with the Flags and the calling convention 622 // masked together 623 CallingConv::ID CallConv = CS.getCallingConv(); 624 int Flags = cast<ConstantInt>(CS.getArgument(2))->getZExtValue(); 625 assert(Flags == 0 && "not expected to be used"); 626 Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, getCurSDLoc(), 627 MVT::i64)); 628 Ops.push_back(DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), 629 getCurSDLoc(), MVT::i64)); 630 631 // Insert all vmstate and gcstate arguments 632 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 633 634 // Add register mask from call node 635 Ops.push_back(*RegMaskIt); 636 637 // Add chain 638 Ops.push_back(CallNode->getOperand(0)); 639 640 // Same for the glue, but we add it only if original call had it 641 if (Glue.getNode()) 642 Ops.push_back(Glue); 643 644 // Compute return values. Provide a glue output since we consume one as 645 // input. This allows someone else to chain off us as needed. 646 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 647 648 SDNode *StatepointMCNode = 649 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 650 651 // Replace original call 652 DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root 653 // Remove originall call node 654 DAG.DeleteNode(CallNode); 655 656 // DON'T set the root - under the assumption that it's already set past the 657 // inserted node we created. 658 659 // TODO: A better future implementation would be to emit a single variable 660 // argument, variable return value STATEPOINT node here and then hookup the 661 // return value of each gc.relocate to the respective output of the 662 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 663 // to actually be possible today. 664 } 665 666 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 667 // The result value of the gc_result is simply the result of the actual 668 // call. We've already emitted this, so just grab the value. 669 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 670 assert(isStatepoint(I) && "first argument must be a statepoint token"); 671 672 if (isa<InvokeInst>(I)) { 673 // For invokes we should have stored call result in a virtual register. 674 // We can not use default getValue() functionality to copy value from this 675 // register because statepoint and actuall call return types can be 676 // different, and getValue() will use CopyFromReg of the wrong type, 677 // which is always i32 in our case. 678 PointerType *CalleeType = 679 cast<PointerType>(ImmutableStatepoint(I).getActualCallee()->getType()); 680 Type *RetTy = 681 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 682 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 683 684 assert(CopyFromReg.getNode()); 685 setValue(&CI, CopyFromReg); 686 } else { 687 setValue(&CI, getValue(I)); 688 } 689 } 690 691 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 692 #ifndef NDEBUG 693 // Consistency check 694 StatepointLowering.relocCallVisited(CI); 695 #endif 696 697 GCRelocateOperands relocateOpers(&CI); 698 SDValue SD = getValue(relocateOpers.getDerivedPtr()); 699 700 if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) { 701 // We didn't need to spill these special cases (constants and allocas). 702 // See the handling in spillIncomingValueForStatepoint for detail. 703 setValue(&CI, SD); 704 return; 705 } 706 707 SDValue Loc = StatepointLowering.getRelocLocation(SD); 708 // Emit new load if we did not emit it before 709 if (!Loc.getNode()) { 710 SDValue SpillSlot = StatepointLowering.getLocation(SD); 711 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 712 713 // Be conservative: flush all pending loads 714 // TODO: Probably we can be less restrictive on this, 715 // it may allow more scheduling opprtunities 716 SDValue Chain = getRoot(); 717 718 Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 719 MachinePointerInfo::getFixedStack(FI), false, false, 720 false, 0); 721 722 StatepointLowering.setRelocLocation(SD, Loc); 723 724 // Again, be conservative, don't emit pending loads 725 DAG.setRoot(Loc.getValue(1)); 726 } 727 728 assert(Loc.getNode()); 729 setValue(&CI, Loc); 730 } 731