1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/GCMetadata.h"
26 #include "llvm/CodeGen/GCStrategy.h"
27 #include "llvm/CodeGen/ISDOpcodes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/StackMaps.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetOpcodes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Statepoint.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/MachineValueType.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "statepoint-lowering"
59 
60 STATISTIC(NumSlotsAllocatedForStatepoints,
61           "Number of stack slots allocated for statepoints");
62 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
63 STATISTIC(StatepointMaxSlotsRequired,
64           "Maximum number of stack slots required for a singe statepoint");
65 
66 cl::opt<bool> UseRegistersForDeoptValues(
67     "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
68     cl::desc("Allow using registers for non pointer deopt args"));
69 
70 cl::opt<unsigned> MaxRegistersForGCPointers(
71     "max-registers-for-gc-values", cl::Hidden, cl::init(0),
72     cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
73 
74 cl::opt<bool> AlwaysSpillBase("statepoint-always-spill-base", cl::Hidden,
75                               cl::init(true),
76                               cl::desc("Force spilling of base GC pointers"));
77 
78 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
79 
80 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
81                                  SelectionDAGBuilder &Builder, uint64_t Value) {
82   SDLoc L = Builder.getCurSDLoc();
83   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
84                                               MVT::i64));
85   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
86 }
87 
88 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
89   // Consistency check
90   assert(PendingGCRelocateCalls.empty() &&
91          "Trying to visit statepoint before finished processing previous one");
92   Locations.clear();
93   NextSlotToAllocate = 0;
94   // Need to resize this on each safepoint - we need the two to stay in sync and
95   // the clear patterns of a SelectionDAGBuilder have no relation to
96   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
97   AllocatedStackSlots.clear();
98   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
99 }
100 
101 void StatepointLoweringState::clear() {
102   Locations.clear();
103   AllocatedStackSlots.clear();
104   assert(PendingGCRelocateCalls.empty() &&
105          "cleared before statepoint sequence completed");
106 }
107 
108 SDValue
109 StatepointLoweringState::allocateStackSlot(EVT ValueType,
110                                            SelectionDAGBuilder &Builder) {
111   NumSlotsAllocatedForStatepoints++;
112   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
113 
114   unsigned SpillSize = ValueType.getStoreSize();
115   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
116 
117   // First look for a previously created stack slot which is not in
118   // use (accounting for the fact arbitrary slots may already be
119   // reserved), or to create a new stack slot and use it.
120 
121   const size_t NumSlots = AllocatedStackSlots.size();
122   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
123 
124   assert(AllocatedStackSlots.size() ==
125          Builder.FuncInfo.StatepointStackSlots.size() &&
126          "Broken invariant");
127 
128   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
129     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
130       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
131       if (MFI.getObjectSize(FI) == SpillSize) {
132         AllocatedStackSlots.set(NextSlotToAllocate);
133         // TODO: Is ValueType the right thing to use here?
134         return Builder.DAG.getFrameIndex(FI, ValueType);
135       }
136     }
137   }
138 
139   // Couldn't find a free slot, so create a new one:
140 
141   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
142   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
143   MFI.markAsStatepointSpillSlotObjectIndex(FI);
144 
145   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
146   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
147   assert(AllocatedStackSlots.size() ==
148          Builder.FuncInfo.StatepointStackSlots.size() &&
149          "Broken invariant");
150 
151   StatepointMaxSlotsRequired.updateMax(
152       Builder.FuncInfo.StatepointStackSlots.size());
153 
154   return SpillSlot;
155 }
156 
157 /// Utility function for reservePreviousStackSlotForValue. Tries to find
158 /// stack slot index to which we have spilled value for previous statepoints.
159 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
160 static Optional<int> findPreviousSpillSlot(const Value *Val,
161                                            SelectionDAGBuilder &Builder,
162                                            int LookUpDepth) {
163   // Can not look any further - give up now
164   if (LookUpDepth <= 0)
165     return None;
166 
167   // Spill location is known for gc relocates
168   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
169     const auto &RelocationMap =
170         Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];
171 
172     auto It = RelocationMap.find(Relocate->getDerivedPtr());
173     if (It == RelocationMap.end())
174       return None;
175 
176     auto &Record = It->second;
177     if (Record.type != RecordType::Spill)
178       return None;
179 
180     return Record.payload.FI;
181   }
182 
183   // Look through bitcast instructions.
184   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
185     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
186 
187   // Look through phi nodes
188   // All incoming values should have same known stack slot, otherwise result
189   // is unknown.
190   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
191     Optional<int> MergedResult = None;
192 
193     for (auto &IncomingValue : Phi->incoming_values()) {
194       Optional<int> SpillSlot =
195           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
196       if (!SpillSlot.hasValue())
197         return None;
198 
199       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
200         return None;
201 
202       MergedResult = SpillSlot;
203     }
204     return MergedResult;
205   }
206 
207   // TODO: We can do better for PHI nodes. In cases like this:
208   //   ptr = phi(relocated_pointer, not_relocated_pointer)
209   //   statepoint(ptr)
210   // We will return that stack slot for ptr is unknown. And later we might
211   // assign different stack slots for ptr and relocated_pointer. This limits
212   // llvm's ability to remove redundant stores.
213   // Unfortunately it's hard to accomplish in current infrastructure.
214   // We use this function to eliminate spill store completely, while
215   // in example we still need to emit store, but instead of any location
216   // we need to use special "preferred" location.
217 
218   // TODO: handle simple updates.  If a value is modified and the original
219   // value is no longer live, it would be nice to put the modified value in the
220   // same slot.  This allows folding of the memory accesses for some
221   // instructions types (like an increment).
222   //   statepoint (i)
223   //   i1 = i+1
224   //   statepoint (i1)
225   // However we need to be careful for cases like this:
226   //   statepoint(i)
227   //   i1 = i+1
228   //   statepoint(i, i1)
229   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
230   // put handling of simple modifications in this function like it's done
231   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
232   // which we visit values is unspecified.
233 
234   // Don't know any information about this instruction
235   return None;
236 }
237 
238 /// Return true if-and-only-if the given SDValue can be lowered as either a
239 /// constant argument or a stack reference.  The key point is that the value
240 /// doesn't need to be spilled or tracked as a vreg use.
241 static bool willLowerDirectly(SDValue Incoming) {
242   // We are making an unchecked assumption that the frame size <= 2^16 as that
243   // is the largest offset which can be encoded in the stackmap format.
244   if (isa<FrameIndexSDNode>(Incoming))
245     return true;
246 
247   // The largest constant describeable in the StackMap format is 64 bits.
248   // Potential Optimization:  Constants values are sign extended by consumer,
249   // and thus there are many constants of static type > 64 bits whose value
250   // happens to be sext(Con64) and could thus be lowered directly.
251   if (Incoming.getValueType().getSizeInBits() > 64)
252     return false;
253 
254   return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
255           Incoming.isUndef());
256 }
257 
258 /// Try to find existing copies of the incoming values in stack slots used for
259 /// statepoint spilling.  If we can find a spill slot for the incoming value,
260 /// mark that slot as allocated, and reuse the same slot for this safepoint.
261 /// This helps to avoid series of loads and stores that only serve to reshuffle
262 /// values on the stack between calls.
263 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
264                                              SelectionDAGBuilder &Builder) {
265   SDValue Incoming = Builder.getValue(IncomingValue);
266 
267   // If we won't spill this, we don't need to check for previously allocated
268   // stack slots.
269   if (willLowerDirectly(Incoming))
270     return;
271 
272   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
273   if (OldLocation.getNode())
274     // Duplicates in input
275     return;
276 
277   const int LookUpDepth = 6;
278   Optional<int> Index =
279       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
280   if (!Index.hasValue())
281     return;
282 
283   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
284 
285   auto SlotIt = find(StatepointSlots, *Index);
286   assert(SlotIt != StatepointSlots.end() &&
287          "Value spilled to the unknown stack slot");
288 
289   // This is one of our dedicated lowering slots
290   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
291   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
292     // stack slot already assigned to someone else, can't use it!
293     // TODO: currently we reserve space for gc arguments after doing
294     // normal allocation for deopt arguments.  We should reserve for
295     // _all_ deopt and gc arguments, then start allocating.  This
296     // will prevent some moves being inserted when vm state changes,
297     // but gc state doesn't between two calls.
298     return;
299   }
300   // Reserve this stack slot
301   Builder.StatepointLowering.reserveStackSlot(Offset);
302 
303   // Cache this slot so we find it when going through the normal
304   // assignment loop.
305   SDValue Loc =
306       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
307   Builder.StatepointLowering.setLocation(Incoming, Loc);
308 }
309 
310 /// Extract call from statepoint, lower it and return pointer to the
311 /// call node. Also update NodeMap so that getValue(statepoint) will
312 /// reference lowered call result
313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
314     SelectionDAGBuilder::StatepointLoweringInfo &SI,
315     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
316   SDValue ReturnValue, CallEndVal;
317   std::tie(ReturnValue, CallEndVal) =
318       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
319   SDNode *CallEnd = CallEndVal.getNode();
320 
321   // Get a call instruction from the call sequence chain.  Tail calls are not
322   // allowed.  The following code is essentially reverse engineering X86's
323   // LowerCallTo.
324   //
325   // We are expecting DAG to have the following form:
326   //
327   // ch = eh_label (only in case of invoke statepoint)
328   //   ch, glue = callseq_start ch
329   //   ch, glue = X86::Call ch, glue
330   //   ch, glue = callseq_end ch, glue
331   //   get_return_value ch, glue
332   //
333   // get_return_value can either be a sequence of CopyFromReg instructions
334   // to grab the return value from the return register(s), or it can be a LOAD
335   // to load a value returned by reference via a stack slot.
336 
337   bool HasDef = !SI.CLI.RetTy->isVoidTy();
338   if (HasDef) {
339     if (CallEnd->getOpcode() == ISD::LOAD)
340       CallEnd = CallEnd->getOperand(0).getNode();
341     else
342       while (CallEnd->getOpcode() == ISD::CopyFromReg)
343         CallEnd = CallEnd->getOperand(0).getNode();
344   }
345 
346   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
347   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
348 }
349 
350 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
351                                                FrameIndexSDNode &FI) {
352   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
353   auto MMOFlags = MachineMemOperand::MOStore |
354     MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
355   auto &MFI = MF.getFrameInfo();
356   return MF.getMachineMemOperand(PtrInfo, MMOFlags,
357                                  MFI.getObjectSize(FI.getIndex()),
358                                  MFI.getObjectAlign(FI.getIndex()));
359 }
360 
361 /// Spill a value incoming to the statepoint. It might be either part of
362 /// vmstate
363 /// or gcstate. In both cases unconditionally spill it on the stack unless it
364 /// is a null constant. Return pair with first element being frame index
365 /// containing saved value and second element with outgoing chain from the
366 /// emitted store
367 static std::tuple<SDValue, SDValue, MachineMemOperand*>
368 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
369                              SelectionDAGBuilder &Builder) {
370   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
371   MachineMemOperand* MMO = nullptr;
372 
373   // Emit new store if we didn't do it for this ptr before
374   if (!Loc.getNode()) {
375     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
376                                                        Builder);
377     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
378     // We use TargetFrameIndex so that isel will not select it into LEA
379     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
380 
381     // Right now we always allocate spill slots that are of the same
382     // size as the value we're about to spill (the size of spillee can
383     // vary since we spill vectors of pointers too).  At some point we
384     // can consider allowing spills of smaller values to larger slots
385     // (i.e. change the '==' in the assert below to a '>=').
386     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
387     assert((MFI.getObjectSize(Index) * 8) ==
388            (int64_t)Incoming.getValueSizeInBits() &&
389            "Bad spill:  stack slot does not match!");
390 
391     // Note: Using the alignment of the spill slot (rather than the abi or
392     // preferred alignment) is required for correctness when dealing with spill
393     // slots with preferred alignments larger than frame alignment..
394     auto &MF = Builder.DAG.getMachineFunction();
395     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
396     auto *StoreMMO = MF.getMachineMemOperand(
397         PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
398         MFI.getObjectAlign(Index));
399     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
400                                  StoreMMO);
401 
402     MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
403 
404     Builder.StatepointLowering.setLocation(Incoming, Loc);
405   }
406 
407   assert(Loc.getNode());
408   return std::make_tuple(Loc, Chain, MMO);
409 }
410 
411 /// Lower a single value incoming to a statepoint node.  This value can be
412 /// either a deopt value or a gc value, the handling is the same.  We special
413 /// case constants and allocas, then fall back to spilling if required.
414 static void
415 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
416                              SmallVectorImpl<SDValue> &Ops,
417                              SmallVectorImpl<MachineMemOperand *> &MemRefs,
418                              SelectionDAGBuilder &Builder) {
419 
420   if (willLowerDirectly(Incoming)) {
421     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
422       // This handles allocas as arguments to the statepoint (this is only
423       // really meaningful for a deopt value.  For GC, we'd be trying to
424       // relocate the address of the alloca itself?)
425       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
426              "Incoming value is a frame index!");
427       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
428                                                     Builder.getFrameIndexTy()));
429 
430       auto &MF = Builder.DAG.getMachineFunction();
431       auto *MMO = getMachineMemOperand(MF, *FI);
432       MemRefs.push_back(MMO);
433       return;
434     }
435 
436     assert(Incoming.getValueType().getSizeInBits() <= 64);
437 
438     if (Incoming.isUndef()) {
439       // Put an easily recognized constant that's unlikely to be a valid
440       // value so that uses of undef by the consumer of the stackmap is
441       // easily recognized. This is legal since the compiler is always
442       // allowed to chose an arbitrary value for undef.
443       pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
444       return;
445     }
446 
447     // If the original value was a constant, make sure it gets recorded as
448     // such in the stackmap.  This is required so that the consumer can
449     // parse any internal format to the deopt state.  It also handles null
450     // pointers and other constant pointers in GC states.
451     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
452       pushStackMapConstant(Ops, Builder, C->getSExtValue());
453       return;
454     } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
455       pushStackMapConstant(Ops, Builder,
456                            C->getValueAPF().bitcastToAPInt().getZExtValue());
457       return;
458     }
459 
460     llvm_unreachable("unhandled direct lowering case");
461   }
462 
463 
464 
465   if (!RequireSpillSlot) {
466     // If this value is live in (not live-on-return, or live-through), we can
467     // treat it the same way patchpoint treats it's "live in" values.  We'll
468     // end up folding some of these into stack references, but they'll be
469     // handled by the register allocator.  Note that we do not have the notion
470     // of a late use so these values might be placed in registers which are
471     // clobbered by the call.  This is fine for live-in. For live-through
472     // fix-up pass should be executed to force spilling of such registers.
473     Ops.push_back(Incoming);
474   } else {
475     // Otherwise, locate a spill slot and explicitly spill it so it can be
476     // found by the runtime later.  Note: We know all of these spills are
477     // independent, but don't bother to exploit that chain wise.  DAGCombine
478     // will happily do so as needed, so doing it here would be a small compile
479     // time win at most.
480     SDValue Chain = Builder.getRoot();
481     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
482     Ops.push_back(std::get<0>(Res));
483     if (auto *MMO = std::get<2>(Res))
484       MemRefs.push_back(MMO);
485     Chain = std::get<1>(Res);;
486     Builder.DAG.setRoot(Chain);
487   }
488 
489 }
490 
491 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
492 /// lowering is described in lowerIncomingStatepointValue.  This function is
493 /// responsible for lowering everything in the right position and playing some
494 /// tricks to avoid redundant stack manipulation where possible.  On
495 /// completion, 'Ops' will contain ready to use operands for machine code
496 /// statepoint. The chain nodes will have already been created and the DAG root
497 /// will be set to the last value spilled (if any were).
498 static void
499 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
500                         SmallVectorImpl<MachineMemOperand *> &MemRefs,
501                         DenseMap<SDValue, int> &LowerAsVReg,
502                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
503                         SelectionDAGBuilder &Builder) {
504   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
505   // deopt argument length, deopt arguments.., gc arguments...
506 #ifndef NDEBUG
507   if (auto *GFI = Builder.GFI) {
508     // Check that each of the gc pointer and bases we've gotten out of the
509     // safepoint is something the strategy thinks might be a pointer (or vector
510     // of pointers) into the GC heap.  This is basically just here to help catch
511     // errors during statepoint insertion. TODO: This should actually be in the
512     // Verifier, but we can't get to the GCStrategy from there (yet).
513     GCStrategy &S = GFI->getStrategy();
514     for (const Value *V : SI.Bases) {
515       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
516       if (Opt.hasValue()) {
517         assert(Opt.getValue() &&
518                "non gc managed base pointer found in statepoint");
519       }
520     }
521     for (const Value *V : SI.Ptrs) {
522       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
523       if (Opt.hasValue()) {
524         assert(Opt.getValue() &&
525                "non gc managed derived pointer found in statepoint");
526       }
527     }
528     assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
529   } else {
530     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
531     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
532   }
533 #endif
534 
535   // Figure out what lowering strategy we're going to use for each part
536   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
537   // as "live-through". A "live-through" variable is one which is "live-in",
538   // "live-out", and live throughout the lifetime of the call (i.e. we can find
539   // it from any PC within the transitive callee of the statepoint).  In
540   // particular, if the callee spills callee preserved registers we may not
541   // be able to find a value placed in that register during the call.  This is
542   // fine for live-out, but not for live-through.  If we were willing to make
543   // assumptions about the code generator producing the callee, we could
544   // potentially allow live-through values in callee saved registers.
545   const bool LiveInDeopt =
546     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
547 
548   // Decide which deriver pointers will go on VRegs
549   const unsigned MaxTiedRegs = 15; // Max  number of tied regs MI can have.
550   unsigned MaxVRegPtrs =
551       std::min(MaxTiedRegs, MaxRegistersForGCPointers.getValue());
552 
553   LLVM_DEBUG(dbgs() << "Desiding how to lower GC Pointers:\n");
554   unsigned CurNumVRegs = 0;
555   for (const Value *P : SI.Ptrs) {
556     if (LowerAsVReg.size() == MaxVRegPtrs)
557       break;
558     SDValue PtrSD = Builder.getValue(P);
559     if (willLowerDirectly(PtrSD) || P->getType()->isVectorTy()) {
560       LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
561       continue;
562     }
563     LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
564     LowerAsVReg[PtrSD] = CurNumVRegs++;
565   }
566   LLVM_DEBUG(dbgs() << LowerAsVReg.size()
567                     << " derived pointers will go in vregs\n");
568 
569   auto isGCValue = [&](const Value *V) {
570     auto *Ty = V->getType();
571     if (!Ty->isPtrOrPtrVectorTy())
572       return false;
573     if (auto *GFI = Builder.GFI)
574       if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
575         return *IsManaged;
576     return true; // conservative
577   };
578 
579   auto requireSpillSlot = [&](const Value *V) {
580     if (isGCValue(V))
581       return !LowerAsVReg.count(Builder.getValue(V));
582     return !(LiveInDeopt || UseRegistersForDeoptValues);
583   };
584 
585   // Before we actually start lowering (and allocating spill slots for values),
586   // reserve any stack slots which we judge to be profitable to reuse for a
587   // particular value.  This is purely an optimization over the code below and
588   // doesn't change semantics at all.  It is important for performance that we
589   // reserve slots for both deopt and gc values before lowering either.
590   for (const Value *V : SI.DeoptState) {
591     if (requireSpillSlot(V))
592       reservePreviousStackSlotForValue(V, Builder);
593   }
594 
595   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
596     SDValue SDV = Builder.getValue(SI.Bases[i]);
597     if (AlwaysSpillBase || !LowerAsVReg.count(SDV))
598       reservePreviousStackSlotForValue(SI.Bases[i], Builder);
599     SDV = Builder.getValue(SI.Ptrs[i]);
600     if (!LowerAsVReg.count(SDV))
601       reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
602   }
603 
604   // First, prefix the list with the number of unique values to be
605   // lowered.  Note that this is the number of *Values* not the
606   // number of SDValues required to lower them.
607   const int NumVMSArgs = SI.DeoptState.size();
608   pushStackMapConstant(Ops, Builder, NumVMSArgs);
609 
610   // The vm state arguments are lowered in an opaque manner.  We do not know
611   // what type of values are contained within.
612   LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
613   for (const Value *V : SI.DeoptState) {
614     SDValue Incoming;
615     // If this is a function argument at a static frame index, generate it as
616     // the frame index.
617     if (const Argument *Arg = dyn_cast<Argument>(V)) {
618       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
619       if (FI != INT_MAX)
620         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
621     }
622     if (!Incoming.getNode())
623       Incoming = Builder.getValue(V);
624     LLVM_DEBUG(dbgs() << "Value " << *V
625                       << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
626     lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
627                                  Builder);
628   }
629 
630   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
631   // length for this one.  After lowering, we'll have the base and pointer
632   // arrays interwoven with each (lowered) base pointer immediately followed by
633   // it's (lowered) derived pointer.  i.e
634   // (base[0], ptr[0], base[1], ptr[1], ...)
635   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
636     bool RequireSpillSlot;
637     SDValue Base = Builder.getValue(SI.Bases[i]);
638     RequireSpillSlot = AlwaysSpillBase || !LowerAsVReg.count(Base);
639     lowerIncomingStatepointValue(Base, RequireSpillSlot, Ops, MemRefs,
640                                  Builder);
641 
642     SDValue Derived = Builder.getValue(SI.Ptrs[i]);
643     RequireSpillSlot = !LowerAsVReg.count(Derived);
644     lowerIncomingStatepointValue(Derived, RequireSpillSlot, Ops, MemRefs,
645                                  Builder);
646   }
647 
648   // If there are any explicit spill slots passed to the statepoint, record
649   // them, but otherwise do not do anything special.  These are user provided
650   // allocas and give control over placement to the consumer.  In this case,
651   // it is the contents of the slot which may get updated, not the pointer to
652   // the alloca
653   for (Value *V : SI.GCArgs) {
654     SDValue Incoming = Builder.getValue(V);
655     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
656       // This handles allocas as arguments to the statepoint
657       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
658              "Incoming value is a frame index!");
659       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
660                                                     Builder.getFrameIndexTy()));
661 
662       auto &MF = Builder.DAG.getMachineFunction();
663       auto *MMO = getMachineMemOperand(MF, *FI);
664       MemRefs.push_back(MMO);
665     }
666   }
667 }
668 
669 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
670     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
671   // The basic scheme here is that information about both the original call and
672   // the safepoint is encoded in the CallInst.  We create a temporary call and
673   // lower it, then reverse engineer the calling sequence.
674 
675   NumOfStatepoints++;
676   // Clear state
677   StatepointLowering.startNewStatepoint(*this);
678   assert(SI.Bases.size() == SI.Ptrs.size() &&
679          SI.Ptrs.size() <= SI.GCRelocates.size());
680 
681   LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
682 #ifndef NDEBUG
683   for (auto *Reloc : SI.GCRelocates)
684     if (Reloc->getParent() == SI.StatepointInstr->getParent())
685       StatepointLowering.scheduleRelocCall(*Reloc);
686 #endif
687 
688   // Lower statepoint vmstate and gcstate arguments
689   SmallVector<SDValue, 10> LoweredMetaArgs;
690   SmallVector<MachineMemOperand*, 16> MemRefs;
691   // Maps derived pointer SDValue to statepoint result of relocated pointer.
692   DenseMap<SDValue, int> LowerAsVReg;
693   lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LowerAsVReg, SI, *this);
694 
695   // Now that we've emitted the spills, we need to update the root so that the
696   // call sequence is ordered correctly.
697   SI.CLI.setChain(getRoot());
698 
699   // Get call node, we will replace it later with statepoint
700   SDValue ReturnVal;
701   SDNode *CallNode;
702   std::tie(ReturnVal, CallNode) =
703       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
704 
705   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
706   // nodes with all the appropriate arguments and return values.
707 
708   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
709   SDValue Chain = CallNode->getOperand(0);
710 
711   SDValue Glue;
712   bool CallHasIncomingGlue = CallNode->getGluedNode();
713   if (CallHasIncomingGlue) {
714     // Glue is always last operand
715     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
716   }
717 
718   // Build the GC_TRANSITION_START node if necessary.
719   //
720   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
721   // order in which they appear in the call to the statepoint intrinsic. If
722   // any of the operands is a pointer-typed, that operand is immediately
723   // followed by a SRCVALUE for the pointer that may be used during lowering
724   // (e.g. to form MachinePointerInfo values for loads/stores).
725   const bool IsGCTransition =
726       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
727       (uint64_t)StatepointFlags::GCTransition;
728   if (IsGCTransition) {
729     SmallVector<SDValue, 8> TSOps;
730 
731     // Add chain
732     TSOps.push_back(Chain);
733 
734     // Add GC transition arguments
735     for (const Value *V : SI.GCTransitionArgs) {
736       TSOps.push_back(getValue(V));
737       if (V->getType()->isPointerTy())
738         TSOps.push_back(DAG.getSrcValue(V));
739     }
740 
741     // Add glue if necessary
742     if (CallHasIncomingGlue)
743       TSOps.push_back(Glue);
744 
745     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
746 
747     SDValue GCTransitionStart =
748         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
749 
750     Chain = GCTransitionStart.getValue(0);
751     Glue = GCTransitionStart.getValue(1);
752   }
753 
754   // TODO: Currently, all of these operands are being marked as read/write in
755   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
756   // and flags to be read-only.
757   SmallVector<SDValue, 40> Ops;
758 
759   // Add the <id> and <numBytes> constants.
760   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
761   Ops.push_back(
762       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
763 
764   // Calculate and push starting position of vmstate arguments
765   // Get number of arguments incoming directly into call node
766   unsigned NumCallRegArgs =
767       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
768   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
769 
770   // Add call target
771   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
772   Ops.push_back(CallTarget);
773 
774   // Add call arguments
775   // Get position of register mask in the call
776   SDNode::op_iterator RegMaskIt;
777   if (CallHasIncomingGlue)
778     RegMaskIt = CallNode->op_end() - 2;
779   else
780     RegMaskIt = CallNode->op_end() - 1;
781   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
782 
783   // Add a constant argument for the calling convention
784   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
785 
786   // Add a constant argument for the flags
787   uint64_t Flags = SI.StatepointFlags;
788   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
789          "Unknown flag used");
790   pushStackMapConstant(Ops, *this, Flags);
791 
792   // Insert all vmstate and gcstate arguments
793   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
794 
795   // Add register mask from call node
796   Ops.push_back(*RegMaskIt);
797 
798   // Add chain
799   Ops.push_back(Chain);
800 
801   // Same for the glue, but we add it only if original call had it
802   if (Glue.getNode())
803     Ops.push_back(Glue);
804 
805   // Compute return values.  Provide a glue output since we consume one as
806   // input.  This allows someone else to chain off us as needed.
807   SmallVector<EVT, 8> NodeTys;
808   for (auto &Ptr : SI.Ptrs) {
809     SDValue SD = getValue(Ptr);
810     if (!LowerAsVReg.count(SD))
811       continue;
812     NodeTys.push_back(SD.getValueType());
813   }
814   LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
815   assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
816   NodeTys.push_back(MVT::Other);
817   NodeTys.push_back(MVT::Glue);
818 
819   unsigned NumResults = NodeTys.size();
820   MachineSDNode *StatepointMCNode =
821     DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
822   DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
823 
824 
825   // For values lowered to tied-defs, create the virtual registers.  Note that
826   // for simplicity, we *always* create a vreg even within a single block.
827   DenseMap<const Value *, Register> VirtRegs;
828   for (const auto *Relocate : SI.GCRelocates) {
829     Value *Derived = Relocate->getDerivedPtr();
830     SDValue SD = getValue(Derived);
831     if (!LowerAsVReg.count(SD))
832       continue;
833 
834     // Handle multiple gc.relocates of the same input efficiently.
835     if (VirtRegs.count(Derived))
836       continue;
837 
838     SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
839 
840     auto *RetTy = Relocate->getType();
841     Register Reg = FuncInfo.CreateRegs(RetTy);
842     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
843                      DAG.getDataLayout(), Reg, RetTy, None);
844     SDValue Chain = DAG.getEntryNode();
845     RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
846     PendingExports.push_back(Chain);
847 
848     VirtRegs[Derived] = Reg;
849   }
850 
851   // Record for later use how each relocation was lowered.  This is needed to
852   // allow later gc.relocates to mirror the lowering chosen.
853   const Instruction *StatepointInstr = SI.StatepointInstr;
854   auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
855   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
856     const Value *V = Relocate->getDerivedPtr();
857     SDValue SDV = getValue(V);
858     SDValue Loc = StatepointLowering.getLocation(SDV);
859 
860     RecordType Record;
861     if (LowerAsVReg.count(SDV)) {
862       Record.type = RecordType::VReg;
863       assert(VirtRegs.count(V));
864       Record.payload.Reg = VirtRegs[V];
865     } else if (Loc.getNode()) {
866       Record.type = RecordType::Spill;
867       Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
868     } else {
869       Record.type = RecordType::NoRelocate;
870       // If we didn't relocate a value, we'll essentialy end up inserting an
871       // additional use of the original value when lowering the gc.relocate.
872       // We need to make sure the value is available at the new use, which
873       // might be in another block.
874       if (Relocate->getParent() != StatepointInstr->getParent())
875         ExportFromCurrentBlock(V);
876     }
877     RelocationMap[V] = Record;
878   }
879 
880 
881 
882   SDNode *SinkNode = StatepointMCNode;
883 
884   // Build the GC_TRANSITION_END node if necessary.
885   //
886   // See the comment above regarding GC_TRANSITION_START for the layout of
887   // the operands to the GC_TRANSITION_END node.
888   if (IsGCTransition) {
889     SmallVector<SDValue, 8> TEOps;
890 
891     // Add chain
892     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
893 
894     // Add GC transition arguments
895     for (const Value *V : SI.GCTransitionArgs) {
896       TEOps.push_back(getValue(V));
897       if (V->getType()->isPointerTy())
898         TEOps.push_back(DAG.getSrcValue(V));
899     }
900 
901     // Add glue
902     TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
903 
904     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
905 
906     SDValue GCTransitionStart =
907         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
908 
909     SinkNode = GCTransitionStart.getNode();
910   }
911 
912   // Replace original call
913   // Call: ch,glue = CALL ...
914   // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
915   unsigned NumSinkValues = SinkNode->getNumValues();
916   SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
917                                  SDValue(SinkNode, NumSinkValues - 1)};
918   DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
919   // Remove original call node
920   DAG.DeleteNode(CallNode);
921 
922   // DON'T set the root - under the assumption that it's already set past the
923   // inserted node we created.
924 
925   // TODO: A better future implementation would be to emit a single variable
926   // argument, variable return value STATEPOINT node here and then hookup the
927   // return value of each gc.relocate to the respective output of the
928   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
929   // to actually be possible today.
930 
931   return ReturnVal;
932 }
933 
934 void
935 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
936                                      const BasicBlock *EHPadBB /*= nullptr*/) {
937   assert(I.getCallingConv() != CallingConv::AnyReg &&
938          "anyregcc is not supported on statepoints!");
939 
940 #ifndef NDEBUG
941   // Check that the associated GCStrategy expects to encounter statepoints.
942   assert(GFI->getStrategy().useStatepoints() &&
943          "GCStrategy does not expect to encounter statepoints");
944 #endif
945 
946   SDValue ActualCallee;
947   SDValue Callee = getValue(I.getActualCalledOperand());
948 
949   if (I.getNumPatchBytes() > 0) {
950     // If we've been asked to emit a nop sequence instead of a call instruction
951     // for this statepoint then don't lower the call target, but use a constant
952     // `undef` instead.  Not lowering the call target lets statepoint clients
953     // get away without providing a physical address for the symbolic call
954     // target at link time.
955     ActualCallee = DAG.getUNDEF(Callee.getValueType());
956   } else {
957     ActualCallee = Callee;
958   }
959 
960   StatepointLoweringInfo SI(DAG);
961   populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
962                            I.getNumCallArgs(), ActualCallee,
963                            I.getActualReturnType(), false /* IsPatchPoint */);
964 
965   // There may be duplication in the gc.relocate list; such as two copies of
966   // each relocation on normal and exceptional path for an invoke.  We only
967   // need to spill once and record one copy in the stackmap, but we need to
968   // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
969   // handled as a CSE problem elsewhere.)
970   // TODO: There a couple of major stackmap size optimizations we could do
971   // here if we wished.
972   // 1) If we've encountered a derived pair {B, D}, we don't need to actually
973   // record {B,B} if it's seen later.
974   // 2) Due to rematerialization, actual derived pointers are somewhat rare;
975   // given that, we could change the format to record base pointer relocations
976   // separately with half the space. This would require a format rev and a
977   // fairly major rework of the STATEPOINT node though.
978   SmallSet<SDValue, 8> Seen;
979   for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
980     SI.GCRelocates.push_back(Relocate);
981 
982     SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
983     if (Seen.insert(DerivedSD).second) {
984       SI.Bases.push_back(Relocate->getBasePtr());
985       SI.Ptrs.push_back(Relocate->getDerivedPtr());
986     }
987   }
988 
989   SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
990   SI.StatepointInstr = &I;
991   SI.ID = I.getID();
992 
993   SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
994   SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
995                                             I.gc_transition_args_end());
996 
997   SI.StatepointFlags = I.getFlags();
998   SI.NumPatchBytes = I.getNumPatchBytes();
999   SI.EHPadBB = EHPadBB;
1000 
1001   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1002 
1003   // Export the result value if needed
1004   const GCResultInst *GCResult = I.getGCResult();
1005   Type *RetTy = I.getActualReturnType();
1006 
1007   if (RetTy->isVoidTy() || !GCResult) {
1008     // The return value is not needed, just generate a poison value.
1009     setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1010     return;
1011   }
1012 
1013   if (GCResult->getParent() == I.getParent()) {
1014     // Result value will be used in a same basic block. Don't export it or
1015     // perform any explicit register copies. The gc_result will simply grab
1016     // this value.
1017     setValue(&I, ReturnValue);
1018     return;
1019   }
1020 
1021   // Result value will be used in a different basic block so we need to export
1022   // it now.  Default exporting mechanism will not work here because statepoint
1023   // call has a different type than the actual call. It means that by default
1024   // llvm will create export register of the wrong type (always i32 in our
1025   // case). So instead we need to create export register with correct type
1026   // manually.
1027   // TODO: To eliminate this problem we can remove gc.result intrinsics
1028   //       completely and make statepoint call to return a tuple.
1029   unsigned Reg = FuncInfo.CreateRegs(RetTy);
1030   RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1031                    DAG.getDataLayout(), Reg, RetTy,
1032                    I.getCallingConv());
1033   SDValue Chain = DAG.getEntryNode();
1034 
1035   RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1036   PendingExports.push_back(Chain);
1037   FuncInfo.ValueMap[&I] = Reg;
1038 }
1039 
1040 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1041     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1042     bool VarArgDisallowed, bool ForceVoidReturnTy) {
1043   StatepointLoweringInfo SI(DAG);
1044   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1045   populateCallLoweringInfo(
1046       SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
1047       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1048       false);
1049   if (!VarArgDisallowed)
1050     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1051 
1052   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1053 
1054   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1055 
1056   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1057   SI.ID = SD.StatepointID.getValueOr(DefaultID);
1058   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
1059 
1060   SI.DeoptState =
1061       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1062   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1063   SI.EHPadBB = EHPadBB;
1064 
1065   // NB! The GC arguments are deliberately left empty.
1066 
1067   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1068     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1069     setValue(Call, ReturnVal);
1070   }
1071 }
1072 
1073 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1074     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1075   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1076                                    /* VarArgDisallowed = */ false,
1077                                    /* ForceVoidReturnTy  = */ false);
1078 }
1079 
1080 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1081   // The result value of the gc_result is simply the result of the actual
1082   // call.  We've already emitted this, so just grab the value.
1083   const GCStatepointInst *SI = CI.getStatepoint();
1084 
1085   if (SI->getParent() == CI.getParent()) {
1086     setValue(&CI, getValue(SI));
1087     return;
1088   }
1089   // Statepoint is in different basic block so we should have stored call
1090   // result in a virtual register.
1091   // We can not use default getValue() functionality to copy value from this
1092   // register because statepoint and actual call return types can be
1093   // different, and getValue() will use CopyFromReg of the wrong type,
1094   // which is always i32 in our case.
1095   Type *RetTy = SI->getActualReturnType();
1096   SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1097 
1098   assert(CopyFromReg.getNode());
1099   setValue(&CI, CopyFromReg);
1100 }
1101 
1102 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1103 #ifndef NDEBUG
1104   // Consistency check
1105   // We skip this check for relocates not in the same basic block as their
1106   // statepoint. It would be too expensive to preserve validation info through
1107   // different basic blocks.
1108   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
1109     StatepointLowering.relocCallVisited(Relocate);
1110 
1111   auto *Ty = Relocate.getType()->getScalarType();
1112   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1113     assert(*IsManaged && "Non gc managed pointer relocated!");
1114 #endif
1115 
1116   const Value *DerivedPtr = Relocate.getDerivedPtr();
1117   auto &RelocationMap =
1118     FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
1119   auto SlotIt = RelocationMap.find(DerivedPtr);
1120   assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1121   const RecordType &Record = SlotIt->second;
1122 
1123   // If relocation was done via virtual register..
1124   if (Record.type == RecordType::VReg) {
1125     Register InReg = Record.payload.Reg;
1126     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1127                      DAG.getDataLayout(), InReg, Relocate.getType(),
1128                      None); // This is not an ABI copy.
1129     SDValue Chain = DAG.getEntryNode();
1130     SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1131                                              Chain, nullptr, nullptr);
1132     setValue(&Relocate, Relocation);
1133     return;
1134   }
1135 
1136   SDValue SD = getValue(DerivedPtr);
1137 
1138   if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1139     // Lowering relocate(undef) as arbitrary constant. Current constant value
1140     // is chosen such that it's unlikely to be a valid pointer.
1141     setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1142     return;
1143   }
1144 
1145 
1146   // We didn't need to spill these special cases (constants and allocas).
1147   // See the handling in spillIncomingValueForStatepoint for detail.
1148   if (Record.type == RecordType::NoRelocate) {
1149     setValue(&Relocate, SD);
1150     return;
1151   }
1152 
1153   assert(Record.type == RecordType::Spill);
1154 
1155   unsigned Index = Record.payload.FI;;
1156   SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1157 
1158   // All the reloads are independent and are reading memory only modified by
1159   // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1160   // this this let's CSE kick in for free and allows reordering of instructions
1161   // if possible.  The lowering for statepoint sets the root, so this is
1162   // ordering all reloads with the either a) the statepoint node itself, or b)
1163   // the entry of the current block for an invoke statepoint.
1164   const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1165 
1166   auto &MF = DAG.getMachineFunction();
1167   auto &MFI = MF.getFrameInfo();
1168   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1169   auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1170                                           MFI.getObjectSize(Index),
1171                                           MFI.getObjectAlign(Index));
1172 
1173   auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1174                                                          Relocate.getType());
1175 
1176   SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1177                                   SpillSlot, LoadMMO);
1178   PendingLoads.push_back(SpillLoad.getValue(1));
1179 
1180   assert(SpillLoad.getNode());
1181   setValue(&Relocate, SpillLoad);
1182 }
1183 
1184 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1185   const auto &TLI = DAG.getTargetLoweringInfo();
1186   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1187                                          TLI.getPointerTy(DAG.getDataLayout()));
1188 
1189   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1190   // call.  We also do not lower the return value to any virtual register, and
1191   // change the immediately following return to a trap instruction.
1192   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1193                                    /* VarArgDisallowed = */ true,
1194                                    /* ForceVoidReturnTy = */ true);
1195 }
1196 
1197 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1198   // We do not lower the return value from llvm.deoptimize to any virtual
1199   // register, and change the immediately following return to a trap
1200   // instruction.
1201   if (DAG.getTarget().Options.TrapUnreachable)
1202     DAG.setRoot(
1203         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1204 }
1205