1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/GCStrategy.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <iterator>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "statepoint-lowering"
57 
58 STATISTIC(NumSlotsAllocatedForStatepoints,
59           "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired,
62           "Maximum number of stack slots required for a singe statepoint");
63 
64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
65                                  SelectionDAGBuilder &Builder, uint64_t Value) {
66   SDLoc L = Builder.getCurSDLoc();
67   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
68                                               MVT::i64));
69   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
70 }
71 
72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
73   // Consistency check
74   assert(PendingGCRelocateCalls.empty() &&
75          "Trying to visit statepoint before finished processing previous one");
76   Locations.clear();
77   NextSlotToAllocate = 0;
78   // Need to resize this on each safepoint - we need the two to stay in sync and
79   // the clear patterns of a SelectionDAGBuilder have no relation to
80   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
81   AllocatedStackSlots.clear();
82   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
83 }
84 
85 void StatepointLoweringState::clear() {
86   Locations.clear();
87   AllocatedStackSlots.clear();
88   assert(PendingGCRelocateCalls.empty() &&
89          "cleared before statepoint sequence completed");
90 }
91 
92 SDValue
93 StatepointLoweringState::allocateStackSlot(EVT ValueType,
94                                            SelectionDAGBuilder &Builder) {
95   NumSlotsAllocatedForStatepoints++;
96   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
97 
98   unsigned SpillSize = ValueType.getStoreSize();
99   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
100 
101   // First look for a previously created stack slot which is not in
102   // use (accounting for the fact arbitrary slots may already be
103   // reserved), or to create a new stack slot and use it.
104 
105   const size_t NumSlots = AllocatedStackSlots.size();
106   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
107 
108   assert(AllocatedStackSlots.size() ==
109          Builder.FuncInfo.StatepointStackSlots.size() &&
110          "Broken invariant");
111 
112   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
113     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
114       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
115       if (MFI.getObjectSize(FI) == SpillSize) {
116         AllocatedStackSlots.set(NextSlotToAllocate);
117         // TODO: Is ValueType the right thing to use here?
118         return Builder.DAG.getFrameIndex(FI, ValueType);
119       }
120     }
121   }
122 
123   // Couldn't find a free slot, so create a new one:
124 
125   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
126   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
127   MFI.markAsStatepointSpillSlotObjectIndex(FI);
128 
129   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
130   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
131   assert(AllocatedStackSlots.size() ==
132          Builder.FuncInfo.StatepointStackSlots.size() &&
133          "Broken invariant");
134 
135   StatepointMaxSlotsRequired.updateMax(
136       Builder.FuncInfo.StatepointStackSlots.size());
137 
138   return SpillSlot;
139 }
140 
141 /// Utility function for reservePreviousStackSlotForValue. Tries to find
142 /// stack slot index to which we have spilled value for previous statepoints.
143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144 static Optional<int> findPreviousSpillSlot(const Value *Val,
145                                            SelectionDAGBuilder &Builder,
146                                            int LookUpDepth) {
147   // Can not look any further - give up now
148   if (LookUpDepth <= 0)
149     return None;
150 
151   // Spill location is known for gc relocates
152   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
153     const auto &SpillMap =
154         Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
155 
156     auto It = SpillMap.find(Relocate->getDerivedPtr());
157     if (It == SpillMap.end())
158       return None;
159 
160     return It->second;
161   }
162 
163   // Look through bitcast instructions.
164   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
165     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
166 
167   // Look through phi nodes
168   // All incoming values should have same known stack slot, otherwise result
169   // is unknown.
170   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
171     Optional<int> MergedResult = None;
172 
173     for (auto &IncomingValue : Phi->incoming_values()) {
174       Optional<int> SpillSlot =
175           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
176       if (!SpillSlot.hasValue())
177         return None;
178 
179       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
180         return None;
181 
182       MergedResult = SpillSlot;
183     }
184     return MergedResult;
185   }
186 
187   // TODO: We can do better for PHI nodes. In cases like this:
188   //   ptr = phi(relocated_pointer, not_relocated_pointer)
189   //   statepoint(ptr)
190   // We will return that stack slot for ptr is unknown. And later we might
191   // assign different stack slots for ptr and relocated_pointer. This limits
192   // llvm's ability to remove redundant stores.
193   // Unfortunately it's hard to accomplish in current infrastructure.
194   // We use this function to eliminate spill store completely, while
195   // in example we still need to emit store, but instead of any location
196   // we need to use special "preferred" location.
197 
198   // TODO: handle simple updates.  If a value is modified and the original
199   // value is no longer live, it would be nice to put the modified value in the
200   // same slot.  This allows folding of the memory accesses for some
201   // instructions types (like an increment).
202   //   statepoint (i)
203   //   i1 = i+1
204   //   statepoint (i1)
205   // However we need to be careful for cases like this:
206   //   statepoint(i)
207   //   i1 = i+1
208   //   statepoint(i, i1)
209   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210   // put handling of simple modifications in this function like it's done
211   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212   // which we visit values is unspecified.
213 
214   // Don't know any information about this instruction
215   return None;
216 }
217 
218 /// Try to find existing copies of the incoming values in stack slots used for
219 /// statepoint spilling.  If we can find a spill slot for the incoming value,
220 /// mark that slot as allocated, and reuse the same slot for this safepoint.
221 /// This helps to avoid series of loads and stores that only serve to reshuffle
222 /// values on the stack between calls.
223 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
224                                              SelectionDAGBuilder &Builder) {
225   SDValue Incoming = Builder.getValue(IncomingValue);
226 
227   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
228     // We won't need to spill this, so no need to check for previously
229     // allocated stack slots
230     return;
231   }
232 
233   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
234   if (OldLocation.getNode())
235     // Duplicates in input
236     return;
237 
238   const int LookUpDepth = 6;
239   Optional<int> Index =
240       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
241   if (!Index.hasValue())
242     return;
243 
244   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
245 
246   auto SlotIt = find(StatepointSlots, *Index);
247   assert(SlotIt != StatepointSlots.end() &&
248          "Value spilled to the unknown stack slot");
249 
250   // This is one of our dedicated lowering slots
251   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
252   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
253     // stack slot already assigned to someone else, can't use it!
254     // TODO: currently we reserve space for gc arguments after doing
255     // normal allocation for deopt arguments.  We should reserve for
256     // _all_ deopt and gc arguments, then start allocating.  This
257     // will prevent some moves being inserted when vm state changes,
258     // but gc state doesn't between two calls.
259     return;
260   }
261   // Reserve this stack slot
262   Builder.StatepointLowering.reserveStackSlot(Offset);
263 
264   // Cache this slot so we find it when going through the normal
265   // assignment loop.
266   SDValue Loc =
267       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
268   Builder.StatepointLowering.setLocation(Incoming, Loc);
269 }
270 
271 /// Extract call from statepoint, lower it and return pointer to the
272 /// call node. Also update NodeMap so that getValue(statepoint) will
273 /// reference lowered call result
274 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
275     SelectionDAGBuilder::StatepointLoweringInfo &SI,
276     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
277   SDValue ReturnValue, CallEndVal;
278   std::tie(ReturnValue, CallEndVal) =
279       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
280   SDNode *CallEnd = CallEndVal.getNode();
281 
282   // Get a call instruction from the call sequence chain.  Tail calls are not
283   // allowed.  The following code is essentially reverse engineering X86's
284   // LowerCallTo.
285   //
286   // We are expecting DAG to have the following form:
287   //
288   // ch = eh_label (only in case of invoke statepoint)
289   //   ch, glue = callseq_start ch
290   //   ch, glue = X86::Call ch, glue
291   //   ch, glue = callseq_end ch, glue
292   //   get_return_value ch, glue
293   //
294   // get_return_value can either be a sequence of CopyFromReg instructions
295   // to grab the return value from the return register(s), or it can be a LOAD
296   // to load a value returned by reference via a stack slot.
297 
298   bool HasDef = !SI.CLI.RetTy->isVoidTy();
299   if (HasDef) {
300     if (CallEnd->getOpcode() == ISD::LOAD)
301       CallEnd = CallEnd->getOperand(0).getNode();
302     else
303       while (CallEnd->getOpcode() == ISD::CopyFromReg)
304         CallEnd = CallEnd->getOperand(0).getNode();
305   }
306 
307   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
308   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
309 }
310 
311 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
312                                                FrameIndexSDNode &FI) {
313   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
314   auto MMOFlags = MachineMemOperand::MOStore |
315     MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
316   auto &MFI = MF.getFrameInfo();
317   return MF.getMachineMemOperand(PtrInfo, MMOFlags,
318                                  MFI.getObjectSize(FI.getIndex()),
319                                  MFI.getObjectAlign(FI.getIndex()));
320 }
321 
322 /// Spill a value incoming to the statepoint. It might be either part of
323 /// vmstate
324 /// or gcstate. In both cases unconditionally spill it on the stack unless it
325 /// is a null constant. Return pair with first element being frame index
326 /// containing saved value and second element with outgoing chain from the
327 /// emitted store
328 static std::tuple<SDValue, SDValue, MachineMemOperand*>
329 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
330                              SelectionDAGBuilder &Builder) {
331   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
332   MachineMemOperand* MMO = nullptr;
333 
334   // Emit new store if we didn't do it for this ptr before
335   if (!Loc.getNode()) {
336     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
337                                                        Builder);
338     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
339     // We use TargetFrameIndex so that isel will not select it into LEA
340     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
341 
342     // Right now we always allocate spill slots that are of the same
343     // size as the value we're about to spill (the size of spillee can
344     // vary since we spill vectors of pointers too).  At some point we
345     // can consider allowing spills of smaller values to larger slots
346     // (i.e. change the '==' in the assert below to a '>=').
347     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
348     assert((MFI.getObjectSize(Index) * 8) ==
349            (int64_t)Incoming.getValueSizeInBits() &&
350            "Bad spill:  stack slot does not match!");
351 
352     // Note: Using the alignment of the spill slot (rather than the abi or
353     // preferred alignment) is required for correctness when dealing with spill
354     // slots with preferred alignments larger than frame alignment..
355     auto &MF = Builder.DAG.getMachineFunction();
356     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
357     auto *StoreMMO = MF.getMachineMemOperand(
358         PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
359         MFI.getObjectAlign(Index));
360     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
361                                  StoreMMO);
362 
363     MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
364 
365     Builder.StatepointLowering.setLocation(Incoming, Loc);
366   }
367 
368   assert(Loc.getNode());
369   return std::make_tuple(Loc, Chain, MMO);
370 }
371 
372 /// Lower a single value incoming to a statepoint node.  This value can be
373 /// either a deopt value or a gc value, the handling is the same.  We special
374 /// case constants and allocas, then fall back to spilling if required.
375 static void
376 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
377                              SmallVectorImpl<SDValue> &Ops,
378                              SmallVectorImpl<MachineMemOperand *> &MemRefs,
379                              SelectionDAGBuilder &Builder) {
380   // Note: We know all of these spills are independent, but don't bother to
381   // exploit that chain wise.  DAGCombine will happily do so as needed, so
382   // doing it here would be a small compile time win at most.
383   SDValue Chain = Builder.getRoot();
384 
385   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
386     // If the original value was a constant, make sure it gets recorded as
387     // such in the stackmap.  This is required so that the consumer can
388     // parse any internal format to the deopt state.  It also handles null
389     // pointers and other constant pointers in GC states.  Note the constant
390     // vectors do not appear to actually hit this path and that anything larger
391     // than an i64 value (not type!) will fail asserts here.
392     pushStackMapConstant(Ops, Builder, C->getSExtValue());
393   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
394     // This handles allocas as arguments to the statepoint (this is only
395     // really meaningful for a deopt value.  For GC, we'd be trying to
396     // relocate the address of the alloca itself?)
397     assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
398            "Incoming value is a frame index!");
399     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
400                                                   Builder.getFrameIndexTy()));
401 
402     auto &MF = Builder.DAG.getMachineFunction();
403     auto *MMO = getMachineMemOperand(MF, *FI);
404     MemRefs.push_back(MMO);
405 
406   } else if (!RequireSpillSlot) {
407     // If this value is live in (not live-on-return, or live-through), we can
408     // treat it the same way patchpoint treats it's "live in" values.  We'll
409     // end up folding some of these into stack references, but they'll be
410     // handled by the register allocator.  Note that we do not have the notion
411     // of a late use so these values might be placed in registers which are
412     // clobbered by the call.  This is fine for live-in.
413     Ops.push_back(Incoming);
414   } else {
415     // Otherwise, locate a spill slot and explicitly spill it so it
416     // can be found by the runtime later.  We currently do not support
417     // tracking values through callee saved registers to their eventual
418     // spill location.  This would be a useful optimization, but would
419     // need to be optional since it requires a lot of complexity on the
420     // runtime side which not all would support.
421     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
422     Ops.push_back(std::get<0>(Res));
423     if (auto *MMO = std::get<2>(Res))
424       MemRefs.push_back(MMO);
425     Chain = std::get<1>(Res);;
426   }
427 
428   Builder.DAG.setRoot(Chain);
429 }
430 
431 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
432 /// lowering is described in lowerIncomingStatepointValue.  This function is
433 /// responsible for lowering everything in the right position and playing some
434 /// tricks to avoid redundant stack manipulation where possible.  On
435 /// completion, 'Ops' will contain ready to use operands for machine code
436 /// statepoint. The chain nodes will have already been created and the DAG root
437 /// will be set to the last value spilled (if any were).
438 static void
439 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
440                         SmallVectorImpl<MachineMemOperand*> &MemRefs,                                    SelectionDAGBuilder::StatepointLoweringInfo &SI,
441                         SelectionDAGBuilder &Builder) {
442   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
443   // deopt argument length, deopt arguments.., gc arguments...
444 #ifndef NDEBUG
445   if (auto *GFI = Builder.GFI) {
446     // Check that each of the gc pointer and bases we've gotten out of the
447     // safepoint is something the strategy thinks might be a pointer (or vector
448     // of pointers) into the GC heap.  This is basically just here to help catch
449     // errors during statepoint insertion. TODO: This should actually be in the
450     // Verifier, but we can't get to the GCStrategy from there (yet).
451     GCStrategy &S = GFI->getStrategy();
452     for (const Value *V : SI.Bases) {
453       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
454       if (Opt.hasValue()) {
455         assert(Opt.getValue() &&
456                "non gc managed base pointer found in statepoint");
457       }
458     }
459     for (const Value *V : SI.Ptrs) {
460       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
461       if (Opt.hasValue()) {
462         assert(Opt.getValue() &&
463                "non gc managed derived pointer found in statepoint");
464       }
465     }
466     assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
467   } else {
468     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
469     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
470   }
471 #endif
472 
473   // Figure out what lowering strategy we're going to use for each part
474   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
475   // as "live-through". A "live-through" variable is one which is "live-in",
476   // "live-out", and live throughout the lifetime of the call (i.e. we can find
477   // it from any PC within the transitive callee of the statepoint).  In
478   // particular, if the callee spills callee preserved registers we may not
479   // be able to find a value placed in that register during the call.  This is
480   // fine for live-out, but not for live-through.  If we were willing to make
481   // assumptions about the code generator producing the callee, we could
482   // potentially allow live-through values in callee saved registers.
483   const bool LiveInDeopt =
484     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
485 
486   auto isGCValue = [&](const Value *V) {
487     auto *Ty = V->getType();
488     if (!Ty->isPtrOrPtrVectorTy())
489       return false;
490     if (auto *GFI = Builder.GFI)
491       if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
492         return *IsManaged;
493     return true; // conservative
494   };
495 
496   auto requireSpillSlot = [&](const Value *V) {
497     return !LiveInDeopt || isGCValue(V);
498   };
499 
500   // Before we actually start lowering (and allocating spill slots for values),
501   // reserve any stack slots which we judge to be profitable to reuse for a
502   // particular value.  This is purely an optimization over the code below and
503   // doesn't change semantics at all.  It is important for performance that we
504   // reserve slots for both deopt and gc values before lowering either.
505   for (const Value *V : SI.DeoptState) {
506     if (requireSpillSlot(V))
507       reservePreviousStackSlotForValue(V, Builder);
508   }
509   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
510     reservePreviousStackSlotForValue(SI.Bases[i], Builder);
511     reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
512   }
513 
514   // First, prefix the list with the number of unique values to be
515   // lowered.  Note that this is the number of *Values* not the
516   // number of SDValues required to lower them.
517   const int NumVMSArgs = SI.DeoptState.size();
518   pushStackMapConstant(Ops, Builder, NumVMSArgs);
519 
520   // The vm state arguments are lowered in an opaque manner.  We do not know
521   // what type of values are contained within.
522   for (const Value *V : SI.DeoptState) {
523     SDValue Incoming;
524     // If this is a function argument at a static frame index, generate it as
525     // the frame index.
526     if (const Argument *Arg = dyn_cast<Argument>(V)) {
527       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
528       if (FI != INT_MAX)
529         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
530     }
531     if (!Incoming.getNode())
532       Incoming = Builder.getValue(V);
533     lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
534                                  Builder);
535   }
536 
537   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
538   // length for this one.  After lowering, we'll have the base and pointer
539   // arrays interwoven with each (lowered) base pointer immediately followed by
540   // it's (lowered) derived pointer.  i.e
541   // (base[0], ptr[0], base[1], ptr[1], ...)
542   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
543     const Value *Base = SI.Bases[i];
544     lowerIncomingStatepointValue(Builder.getValue(Base),
545                                  /*RequireSpillSlot*/ true, Ops, MemRefs,
546                                  Builder);
547 
548     const Value *Ptr = SI.Ptrs[i];
549     lowerIncomingStatepointValue(Builder.getValue(Ptr),
550                                  /*RequireSpillSlot*/ true, Ops, MemRefs,
551                                  Builder);
552   }
553 
554   // If there are any explicit spill slots passed to the statepoint, record
555   // them, but otherwise do not do anything special.  These are user provided
556   // allocas and give control over placement to the consumer.  In this case,
557   // it is the contents of the slot which may get updated, not the pointer to
558   // the alloca
559   for (Value *V : SI.GCArgs) {
560     SDValue Incoming = Builder.getValue(V);
561     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
562       // This handles allocas as arguments to the statepoint
563       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
564              "Incoming value is a frame index!");
565       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
566                                                     Builder.getFrameIndexTy()));
567 
568       auto &MF = Builder.DAG.getMachineFunction();
569       auto *MMO = getMachineMemOperand(MF, *FI);
570       MemRefs.push_back(MMO);
571     }
572   }
573 
574   // Record computed locations for all lowered values.
575   // This can not be embedded in lowering loops as we need to record *all*
576   // values, while previous loops account only values with unique SDValues.
577   const Instruction *StatepointInstr = SI.StatepointInstr;
578   auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
579 
580   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
581     const Value *V = Relocate->getDerivedPtr();
582     SDValue SDV = Builder.getValue(V);
583     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
584 
585     if (Loc.getNode()) {
586       SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
587     } else {
588       // Record value as visited, but not spilled. This is case for allocas
589       // and constants. For this values we can avoid emitting spill load while
590       // visiting corresponding gc_relocate.
591       // Actually we do not need to record them in this map at all.
592       // We do this only to check that we are not relocating any unvisited
593       // value.
594       SpillMap[V] = None;
595 
596       // Default llvm mechanisms for exporting values which are used in
597       // different basic blocks does not work for gc relocates.
598       // Note that it would be incorrect to teach llvm that all relocates are
599       // uses of the corresponding values so that it would automatically
600       // export them. Relocates of the spilled values does not use original
601       // value.
602       if (Relocate->getParent() != StatepointInstr->getParent())
603         Builder.ExportFromCurrentBlock(V);
604     }
605   }
606 }
607 
608 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
609     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
610   // The basic scheme here is that information about both the original call and
611   // the safepoint is encoded in the CallInst.  We create a temporary call and
612   // lower it, then reverse engineer the calling sequence.
613 
614   NumOfStatepoints++;
615   // Clear state
616   StatepointLowering.startNewStatepoint(*this);
617   assert(SI.Bases.size() == SI.Ptrs.size() &&
618          SI.Ptrs.size() <= SI.GCRelocates.size());
619 
620 #ifndef NDEBUG
621   for (auto *Reloc : SI.GCRelocates)
622     if (Reloc->getParent() == SI.StatepointInstr->getParent())
623       StatepointLowering.scheduleRelocCall(*Reloc);
624 #endif
625 
626   // Lower statepoint vmstate and gcstate arguments
627   SmallVector<SDValue, 10> LoweredMetaArgs;
628   SmallVector<MachineMemOperand*, 16> MemRefs;
629   lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this);
630 
631   // Now that we've emitted the spills, we need to update the root so that the
632   // call sequence is ordered correctly.
633   SI.CLI.setChain(getRoot());
634 
635   // Get call node, we will replace it later with statepoint
636   SDValue ReturnVal;
637   SDNode *CallNode;
638   std::tie(ReturnVal, CallNode) =
639       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
640 
641   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
642   // nodes with all the appropriate arguments and return values.
643 
644   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
645   SDValue Chain = CallNode->getOperand(0);
646 
647   SDValue Glue;
648   bool CallHasIncomingGlue = CallNode->getGluedNode();
649   if (CallHasIncomingGlue) {
650     // Glue is always last operand
651     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
652   }
653 
654   // Build the GC_TRANSITION_START node if necessary.
655   //
656   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
657   // order in which they appear in the call to the statepoint intrinsic. If
658   // any of the operands is a pointer-typed, that operand is immediately
659   // followed by a SRCVALUE for the pointer that may be used during lowering
660   // (e.g. to form MachinePointerInfo values for loads/stores).
661   const bool IsGCTransition =
662       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
663       (uint64_t)StatepointFlags::GCTransition;
664   if (IsGCTransition) {
665     SmallVector<SDValue, 8> TSOps;
666 
667     // Add chain
668     TSOps.push_back(Chain);
669 
670     // Add GC transition arguments
671     for (const Value *V : SI.GCTransitionArgs) {
672       TSOps.push_back(getValue(V));
673       if (V->getType()->isPointerTy())
674         TSOps.push_back(DAG.getSrcValue(V));
675     }
676 
677     // Add glue if necessary
678     if (CallHasIncomingGlue)
679       TSOps.push_back(Glue);
680 
681     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
682 
683     SDValue GCTransitionStart =
684         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
685 
686     Chain = GCTransitionStart.getValue(0);
687     Glue = GCTransitionStart.getValue(1);
688   }
689 
690   // TODO: Currently, all of these operands are being marked as read/write in
691   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
692   // and flags to be read-only.
693   SmallVector<SDValue, 40> Ops;
694 
695   // Add the <id> and <numBytes> constants.
696   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
697   Ops.push_back(
698       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
699 
700   // Calculate and push starting position of vmstate arguments
701   // Get number of arguments incoming directly into call node
702   unsigned NumCallRegArgs =
703       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
704   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
705 
706   // Add call target
707   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
708   Ops.push_back(CallTarget);
709 
710   // Add call arguments
711   // Get position of register mask in the call
712   SDNode::op_iterator RegMaskIt;
713   if (CallHasIncomingGlue)
714     RegMaskIt = CallNode->op_end() - 2;
715   else
716     RegMaskIt = CallNode->op_end() - 1;
717   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
718 
719   // Add a constant argument for the calling convention
720   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
721 
722   // Add a constant argument for the flags
723   uint64_t Flags = SI.StatepointFlags;
724   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
725          "Unknown flag used");
726   pushStackMapConstant(Ops, *this, Flags);
727 
728   // Insert all vmstate and gcstate arguments
729   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
730 
731   // Add register mask from call node
732   Ops.push_back(*RegMaskIt);
733 
734   // Add chain
735   Ops.push_back(Chain);
736 
737   // Same for the glue, but we add it only if original call had it
738   if (Glue.getNode())
739     Ops.push_back(Glue);
740 
741   // Compute return values.  Provide a glue output since we consume one as
742   // input.  This allows someone else to chain off us as needed.
743   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
744 
745   MachineSDNode *StatepointMCNode =
746     DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
747   DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
748 
749   SDNode *SinkNode = StatepointMCNode;
750 
751   // Build the GC_TRANSITION_END node if necessary.
752   //
753   // See the comment above regarding GC_TRANSITION_START for the layout of
754   // the operands to the GC_TRANSITION_END node.
755   if (IsGCTransition) {
756     SmallVector<SDValue, 8> TEOps;
757 
758     // Add chain
759     TEOps.push_back(SDValue(StatepointMCNode, 0));
760 
761     // Add GC transition arguments
762     for (const Value *V : SI.GCTransitionArgs) {
763       TEOps.push_back(getValue(V));
764       if (V->getType()->isPointerTy())
765         TEOps.push_back(DAG.getSrcValue(V));
766     }
767 
768     // Add glue
769     TEOps.push_back(SDValue(StatepointMCNode, 1));
770 
771     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
772 
773     SDValue GCTransitionStart =
774         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
775 
776     SinkNode = GCTransitionStart.getNode();
777   }
778 
779   // Replace original call
780   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
781   // Remove original call node
782   DAG.DeleteNode(CallNode);
783 
784   // DON'T set the root - under the assumption that it's already set past the
785   // inserted node we created.
786 
787   // TODO: A better future implementation would be to emit a single variable
788   // argument, variable return value STATEPOINT node here and then hookup the
789   // return value of each gc.relocate to the respective output of the
790   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
791   // to actually be possible today.
792 
793   return ReturnVal;
794 }
795 
796 void
797 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
798                                      const BasicBlock *EHPadBB /*= nullptr*/) {
799   assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg &&
800          "anyregcc is not supported on statepoints!");
801 
802 #ifndef NDEBUG
803   // If this is a malformed statepoint, report it early to simplify debugging.
804   // This should catch any IR level mistake that's made when constructing or
805   // transforming statepoints.
806   ISP.verify();
807 
808   // Check that the associated GCStrategy expects to encounter statepoints.
809   assert(GFI->getStrategy().useStatepoints() &&
810          "GCStrategy does not expect to encounter statepoints");
811 #endif
812 
813   SDValue ActualCallee;
814   SDValue Callee = getValue(ISP.getCalledValue());
815 
816   if (ISP.getNumPatchBytes() > 0) {
817     // If we've been asked to emit a nop sequence instead of a call instruction
818     // for this statepoint then don't lower the call target, but use a constant
819     // `undef` instead.  Not lowering the call target lets statepoint clients
820     // get away without providing a physical address for the symbolic call
821     // target at link time.
822     ActualCallee = DAG.getUNDEF(Callee.getValueType());
823   } else {
824     ActualCallee = Callee;
825   }
826 
827   StatepointLoweringInfo SI(DAG);
828   populateCallLoweringInfo(SI.CLI, ISP.getCall(),
829                            ImmutableStatepoint::CallArgsBeginPos,
830                            ISP.getNumCallArgs(), ActualCallee,
831                            ISP.getActualReturnType(), false /* IsPatchPoint */);
832 
833   // There may be duplication in the gc.relocate list; such as two copies of
834   // each relocation on normal and exceptional path for an invoke.  We only
835   // need to spill once and record one copy in the stackmap, but we need to
836   // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
837   // handled as a CSE problem elsewhere.)
838   // TODO: There a couple of major stackmap size optimizations we could do
839   // here if we wished.
840   // 1) If we've encountered a derived pair {B, D}, we don't need to actually
841   // record {B,B} if it's seen later.
842   // 2) Due to rematerialization, actual derived pointers are somewhat rare;
843   // given that, we could change the format to record base pointer relocations
844   // separately with half the space. This would require a format rev and a
845   // fairly major rework of the STATEPOINT node though.
846   SmallSet<SDValue, 8> Seen;
847   for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
848     SI.GCRelocates.push_back(Relocate);
849 
850     SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
851     if (Seen.insert(DerivedSD).second) {
852       SI.Bases.push_back(Relocate->getBasePtr());
853       SI.Ptrs.push_back(Relocate->getDerivedPtr());
854     }
855   }
856 
857   SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
858   SI.StatepointInstr = ISP.getInstruction();
859   SI.GCTransitionArgs = ArrayRef<const Use>(ISP.gc_transition_args_begin(),
860                                             ISP.gc_transition_args_end());
861   SI.ID = ISP.getID();
862   SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
863   SI.StatepointFlags = ISP.getFlags();
864   SI.NumPatchBytes = ISP.getNumPatchBytes();
865   SI.EHPadBB = EHPadBB;
866 
867   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
868 
869   // Export the result value if needed
870   const GCResultInst *GCResult = ISP.getGCResult();
871   Type *RetTy = ISP.getActualReturnType();
872   if (!RetTy->isVoidTy() && GCResult) {
873     if (GCResult->getParent() != ISP.getCall()->getParent()) {
874       // Result value will be used in a different basic block so we need to
875       // export it now.  Default exporting mechanism will not work here because
876       // statepoint call has a different type than the actual call. It means
877       // that by default llvm will create export register of the wrong type
878       // (always i32 in our case). So instead we need to create export register
879       // with correct type manually.
880       // TODO: To eliminate this problem we can remove gc.result intrinsics
881       //       completely and make statepoint call to return a tuple.
882       unsigned Reg = FuncInfo.CreateRegs(RetTy);
883       RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
884                        DAG.getDataLayout(), Reg, RetTy,
885                        ISP.getCall()->getCallingConv());
886       SDValue Chain = DAG.getEntryNode();
887 
888       RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
889       PendingExports.push_back(Chain);
890       FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
891     } else {
892       // Result value will be used in a same basic block. Don't export it or
893       // perform any explicit register copies.
894       // We'll replace the actuall call node shortly. gc_result will grab
895       // this value.
896       setValue(ISP.getInstruction(), ReturnValue);
897     }
898   } else {
899     // The token value is never used from here on, just generate a poison value
900     setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
901   }
902 }
903 
904 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
905     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
906     bool VarArgDisallowed, bool ForceVoidReturnTy) {
907   StatepointLoweringInfo SI(DAG);
908   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
909   populateCallLoweringInfo(
910       SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
911       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
912       false);
913   if (!VarArgDisallowed)
914     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
915 
916   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
917 
918   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
919 
920   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
921   SI.ID = SD.StatepointID.getValueOr(DefaultID);
922   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
923 
924   SI.DeoptState =
925       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
926   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
927   SI.EHPadBB = EHPadBB;
928 
929   // NB! The GC arguments are deliberately left empty.
930 
931   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
932     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
933     setValue(Call, ReturnVal);
934   }
935 }
936 
937 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
938     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
939   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
940                                    /* VarArgDisallowed = */ false,
941                                    /* ForceVoidReturnTy  = */ false);
942 }
943 
944 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
945   // The result value of the gc_result is simply the result of the actual
946   // call.  We've already emitted this, so just grab the value.
947   const Instruction *I = CI.getStatepoint();
948 
949   if (I->getParent() != CI.getParent()) {
950     // Statepoint is in different basic block so we should have stored call
951     // result in a virtual register.
952     // We can not use default getValue() functionality to copy value from this
953     // register because statepoint and actual call return types can be
954     // different, and getValue() will use CopyFromReg of the wrong type,
955     // which is always i32 in our case.
956     PointerType *CalleeType = cast<PointerType>(
957         ImmutableStatepoint(I).getCalledValue()->getType());
958     Type *RetTy =
959         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
960     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
961 
962     assert(CopyFromReg.getNode());
963     setValue(&CI, CopyFromReg);
964   } else {
965     setValue(&CI, getValue(I));
966   }
967 }
968 
969 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
970 #ifndef NDEBUG
971   // Consistency check
972   // We skip this check for relocates not in the same basic block as their
973   // statepoint. It would be too expensive to preserve validation info through
974   // different basic blocks.
975   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
976     StatepointLowering.relocCallVisited(Relocate);
977 
978   auto *Ty = Relocate.getType()->getScalarType();
979   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
980     assert(*IsManaged && "Non gc managed pointer relocated!");
981 #endif
982 
983   const Value *DerivedPtr = Relocate.getDerivedPtr();
984   SDValue SD = getValue(DerivedPtr);
985 
986   auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
987   auto SlotIt = SpillMap.find(DerivedPtr);
988   assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
989   Optional<int> DerivedPtrLocation = SlotIt->second;
990 
991   // We didn't need to spill these special cases (constants and allocas).
992   // See the handling in spillIncomingValueForStatepoint for detail.
993   if (!DerivedPtrLocation) {
994     setValue(&Relocate, SD);
995     return;
996   }
997 
998   unsigned Index = *DerivedPtrLocation;
999   SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1000 
1001   // All the reloads are independent and are reading memory only modified by
1002   // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1003   // this this let's CSE kick in for free and allows reordering of instructions
1004   // if possible.  The lowering for statepoint sets the root, so this is
1005   // ordering all reloads with the either a) the statepoint node itself, or b)
1006   // the entry of the current block for an invoke statepoint.
1007   const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1008 
1009   auto &MF = DAG.getMachineFunction();
1010   auto &MFI = MF.getFrameInfo();
1011   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1012   auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1013                                           MFI.getObjectSize(Index),
1014                                           MFI.getObjectAlign(Index));
1015 
1016   auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1017                                                          Relocate.getType());
1018 
1019   SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1020                                   SpillSlot, LoadMMO);
1021   PendingLoads.push_back(SpillLoad.getValue(1));
1022 
1023   assert(SpillLoad.getNode());
1024   setValue(&Relocate, SpillLoad);
1025 }
1026 
1027 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1028   const auto &TLI = DAG.getTargetLoweringInfo();
1029   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1030                                          TLI.getPointerTy(DAG.getDataLayout()));
1031 
1032   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1033   // call.  We also do not lower the return value to any virtual register, and
1034   // change the immediately following return to a trap instruction.
1035   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1036                                    /* VarArgDisallowed = */ true,
1037                                    /* ForceVoidReturnTy = */ true);
1038 }
1039 
1040 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1041   // We do not lower the return value from llvm.deoptimize to any virtual
1042   // register, and change the immediately following return to a trap
1043   // instruction.
1044   if (DAG.getTarget().Options.TrapUnreachable)
1045     DAG.setRoot(
1046         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1047 }
1048