1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/GCStrategy.h" 26 #include "llvm/CodeGen/ISDOpcodes.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <iterator> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "statepoint-lowering" 57 58 STATISTIC(NumSlotsAllocatedForStatepoints, 59 "Number of stack slots allocated for statepoints"); 60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 61 STATISTIC(StatepointMaxSlotsRequired, 62 "Maximum number of stack slots required for a singe statepoint"); 63 64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 65 SelectionDAGBuilder &Builder, uint64_t Value) { 66 SDLoc L = Builder.getCurSDLoc(); 67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 68 MVT::i64)); 69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 70 } 71 72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 73 // Consistency check 74 assert(PendingGCRelocateCalls.empty() && 75 "Trying to visit statepoint before finished processing previous one"); 76 Locations.clear(); 77 NextSlotToAllocate = 0; 78 // Need to resize this on each safepoint - we need the two to stay in sync and 79 // the clear patterns of a SelectionDAGBuilder have no relation to 80 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 81 AllocatedStackSlots.clear(); 82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 83 } 84 85 void StatepointLoweringState::clear() { 86 Locations.clear(); 87 AllocatedStackSlots.clear(); 88 assert(PendingGCRelocateCalls.empty() && 89 "cleared before statepoint sequence completed"); 90 } 91 92 SDValue 93 StatepointLoweringState::allocateStackSlot(EVT ValueType, 94 SelectionDAGBuilder &Builder) { 95 NumSlotsAllocatedForStatepoints++; 96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 97 98 unsigned SpillSize = ValueType.getStoreSize(); 99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 100 101 // First look for a previously created stack slot which is not in 102 // use (accounting for the fact arbitrary slots may already be 103 // reserved), or to create a new stack slot and use it. 104 105 const size_t NumSlots = AllocatedStackSlots.size(); 106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 107 108 assert(AllocatedStackSlots.size() == 109 Builder.FuncInfo.StatepointStackSlots.size() && 110 "Broken invariant"); 111 112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 115 if (MFI.getObjectSize(FI) == SpillSize) { 116 AllocatedStackSlots.set(NextSlotToAllocate); 117 // TODO: Is ValueType the right thing to use here? 118 return Builder.DAG.getFrameIndex(FI, ValueType); 119 } 120 } 121 } 122 123 // Couldn't find a free slot, so create a new one: 124 125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 127 MFI.markAsStatepointSpillSlotObjectIndex(FI); 128 129 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 131 assert(AllocatedStackSlots.size() == 132 Builder.FuncInfo.StatepointStackSlots.size() && 133 "Broken invariant"); 134 135 StatepointMaxSlotsRequired.updateMax( 136 Builder.FuncInfo.StatepointStackSlots.size()); 137 138 return SpillSlot; 139 } 140 141 /// Utility function for reservePreviousStackSlotForValue. Tries to find 142 /// stack slot index to which we have spilled value for previous statepoints. 143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 144 static Optional<int> findPreviousSpillSlot(const Value *Val, 145 SelectionDAGBuilder &Builder, 146 int LookUpDepth) { 147 // Can not look any further - give up now 148 if (LookUpDepth <= 0) 149 return None; 150 151 // Spill location is known for gc relocates 152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 153 const auto &SpillMap = 154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 155 156 auto It = SpillMap.find(Relocate->getDerivedPtr()); 157 if (It == SpillMap.end()) 158 return None; 159 160 return It->second; 161 } 162 163 // Look through bitcast instructions. 164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 166 167 // Look through phi nodes 168 // All incoming values should have same known stack slot, otherwise result 169 // is unknown. 170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 171 Optional<int> MergedResult = None; 172 173 for (auto &IncomingValue : Phi->incoming_values()) { 174 Optional<int> SpillSlot = 175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 176 if (!SpillSlot.hasValue()) 177 return None; 178 179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 180 return None; 181 182 MergedResult = SpillSlot; 183 } 184 return MergedResult; 185 } 186 187 // TODO: We can do better for PHI nodes. In cases like this: 188 // ptr = phi(relocated_pointer, not_relocated_pointer) 189 // statepoint(ptr) 190 // We will return that stack slot for ptr is unknown. And later we might 191 // assign different stack slots for ptr and relocated_pointer. This limits 192 // llvm's ability to remove redundant stores. 193 // Unfortunately it's hard to accomplish in current infrastructure. 194 // We use this function to eliminate spill store completely, while 195 // in example we still need to emit store, but instead of any location 196 // we need to use special "preferred" location. 197 198 // TODO: handle simple updates. If a value is modified and the original 199 // value is no longer live, it would be nice to put the modified value in the 200 // same slot. This allows folding of the memory accesses for some 201 // instructions types (like an increment). 202 // statepoint (i) 203 // i1 = i+1 204 // statepoint (i1) 205 // However we need to be careful for cases like this: 206 // statepoint(i) 207 // i1 = i+1 208 // statepoint(i, i1) 209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 210 // put handling of simple modifications in this function like it's done 211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 212 // which we visit values is unspecified. 213 214 // Don't know any information about this instruction 215 return None; 216 } 217 218 /// Try to find existing copies of the incoming values in stack slots used for 219 /// statepoint spilling. If we can find a spill slot for the incoming value, 220 /// mark that slot as allocated, and reuse the same slot for this safepoint. 221 /// This helps to avoid series of loads and stores that only serve to reshuffle 222 /// values on the stack between calls. 223 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 224 SelectionDAGBuilder &Builder) { 225 SDValue Incoming = Builder.getValue(IncomingValue); 226 227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 228 // We won't need to spill this, so no need to check for previously 229 // allocated stack slots 230 return; 231 } 232 233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 234 if (OldLocation.getNode()) 235 // Duplicates in input 236 return; 237 238 const int LookUpDepth = 6; 239 Optional<int> Index = 240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 241 if (!Index.hasValue()) 242 return; 243 244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 245 246 auto SlotIt = find(StatepointSlots, *Index); 247 assert(SlotIt != StatepointSlots.end() && 248 "Value spilled to the unknown stack slot"); 249 250 // This is one of our dedicated lowering slots 251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 253 // stack slot already assigned to someone else, can't use it! 254 // TODO: currently we reserve space for gc arguments after doing 255 // normal allocation for deopt arguments. We should reserve for 256 // _all_ deopt and gc arguments, then start allocating. This 257 // will prevent some moves being inserted when vm state changes, 258 // but gc state doesn't between two calls. 259 return; 260 } 261 // Reserve this stack slot 262 Builder.StatepointLowering.reserveStackSlot(Offset); 263 264 // Cache this slot so we find it when going through the normal 265 // assignment loop. 266 SDValue Loc = 267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 268 Builder.StatepointLowering.setLocation(Incoming, Loc); 269 } 270 271 /// Extract call from statepoint, lower it and return pointer to the 272 /// call node. Also update NodeMap so that getValue(statepoint) will 273 /// reference lowered call result 274 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 275 SelectionDAGBuilder::StatepointLoweringInfo &SI, 276 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 277 SDValue ReturnValue, CallEndVal; 278 std::tie(ReturnValue, CallEndVal) = 279 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 280 SDNode *CallEnd = CallEndVal.getNode(); 281 282 // Get a call instruction from the call sequence chain. Tail calls are not 283 // allowed. The following code is essentially reverse engineering X86's 284 // LowerCallTo. 285 // 286 // We are expecting DAG to have the following form: 287 // 288 // ch = eh_label (only in case of invoke statepoint) 289 // ch, glue = callseq_start ch 290 // ch, glue = X86::Call ch, glue 291 // ch, glue = callseq_end ch, glue 292 // get_return_value ch, glue 293 // 294 // get_return_value can either be a sequence of CopyFromReg instructions 295 // to grab the return value from the return register(s), or it can be a LOAD 296 // to load a value returned by reference via a stack slot. 297 298 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 299 if (HasDef) { 300 if (CallEnd->getOpcode() == ISD::LOAD) 301 CallEnd = CallEnd->getOperand(0).getNode(); 302 else 303 while (CallEnd->getOpcode() == ISD::CopyFromReg) 304 CallEnd = CallEnd->getOperand(0).getNode(); 305 } 306 307 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 308 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 309 } 310 311 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 312 FrameIndexSDNode &FI) { 313 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 314 auto MMOFlags = MachineMemOperand::MOStore | 315 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 316 auto &MFI = MF.getFrameInfo(); 317 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 318 MFI.getObjectSize(FI.getIndex()), 319 MFI.getObjectAlign(FI.getIndex())); 320 } 321 322 /// Spill a value incoming to the statepoint. It might be either part of 323 /// vmstate 324 /// or gcstate. In both cases unconditionally spill it on the stack unless it 325 /// is a null constant. Return pair with first element being frame index 326 /// containing saved value and second element with outgoing chain from the 327 /// emitted store 328 static std::tuple<SDValue, SDValue, MachineMemOperand*> 329 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 330 SelectionDAGBuilder &Builder) { 331 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 332 MachineMemOperand* MMO = nullptr; 333 334 // Emit new store if we didn't do it for this ptr before 335 if (!Loc.getNode()) { 336 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 337 Builder); 338 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 339 // We use TargetFrameIndex so that isel will not select it into LEA 340 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 341 342 // Right now we always allocate spill slots that are of the same 343 // size as the value we're about to spill (the size of spillee can 344 // vary since we spill vectors of pointers too). At some point we 345 // can consider allowing spills of smaller values to larger slots 346 // (i.e. change the '==' in the assert below to a '>='). 347 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 348 assert((MFI.getObjectSize(Index) * 8) == 349 (int64_t)Incoming.getValueSizeInBits() && 350 "Bad spill: stack slot does not match!"); 351 352 // Note: Using the alignment of the spill slot (rather than the abi or 353 // preferred alignment) is required for correctness when dealing with spill 354 // slots with preferred alignments larger than frame alignment.. 355 auto &MF = Builder.DAG.getMachineFunction(); 356 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 357 auto *StoreMMO = MF.getMachineMemOperand( 358 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 359 MFI.getObjectAlign(Index)); 360 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 361 StoreMMO); 362 363 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 364 365 Builder.StatepointLowering.setLocation(Incoming, Loc); 366 } 367 368 assert(Loc.getNode()); 369 return std::make_tuple(Loc, Chain, MMO); 370 } 371 372 /// Lower a single value incoming to a statepoint node. This value can be 373 /// either a deopt value or a gc value, the handling is the same. We special 374 /// case constants and allocas, then fall back to spilling if required. 375 static void 376 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 377 SmallVectorImpl<SDValue> &Ops, 378 SmallVectorImpl<MachineMemOperand *> &MemRefs, 379 SelectionDAGBuilder &Builder) { 380 // Note: We know all of these spills are independent, but don't bother to 381 // exploit that chain wise. DAGCombine will happily do so as needed, so 382 // doing it here would be a small compile time win at most. 383 SDValue Chain = Builder.getRoot(); 384 385 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 386 // If the original value was a constant, make sure it gets recorded as 387 // such in the stackmap. This is required so that the consumer can 388 // parse any internal format to the deopt state. It also handles null 389 // pointers and other constant pointers in GC states. Note the constant 390 // vectors do not appear to actually hit this path and that anything larger 391 // than an i64 value (not type!) will fail asserts here. 392 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 393 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 394 // This handles allocas as arguments to the statepoint (this is only 395 // really meaningful for a deopt value. For GC, we'd be trying to 396 // relocate the address of the alloca itself?) 397 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 398 "Incoming value is a frame index!"); 399 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 400 Builder.getFrameIndexTy())); 401 402 auto &MF = Builder.DAG.getMachineFunction(); 403 auto *MMO = getMachineMemOperand(MF, *FI); 404 MemRefs.push_back(MMO); 405 406 } else if (!RequireSpillSlot) { 407 // If this value is live in (not live-on-return, or live-through), we can 408 // treat it the same way patchpoint treats it's "live in" values. We'll 409 // end up folding some of these into stack references, but they'll be 410 // handled by the register allocator. Note that we do not have the notion 411 // of a late use so these values might be placed in registers which are 412 // clobbered by the call. This is fine for live-in. 413 Ops.push_back(Incoming); 414 } else { 415 // Otherwise, locate a spill slot and explicitly spill it so it 416 // can be found by the runtime later. We currently do not support 417 // tracking values through callee saved registers to their eventual 418 // spill location. This would be a useful optimization, but would 419 // need to be optional since it requires a lot of complexity on the 420 // runtime side which not all would support. 421 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 422 Ops.push_back(std::get<0>(Res)); 423 if (auto *MMO = std::get<2>(Res)) 424 MemRefs.push_back(MMO); 425 Chain = std::get<1>(Res);; 426 } 427 428 Builder.DAG.setRoot(Chain); 429 } 430 431 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 432 /// lowering is described in lowerIncomingStatepointValue. This function is 433 /// responsible for lowering everything in the right position and playing some 434 /// tricks to avoid redundant stack manipulation where possible. On 435 /// completion, 'Ops' will contain ready to use operands for machine code 436 /// statepoint. The chain nodes will have already been created and the DAG root 437 /// will be set to the last value spilled (if any were). 438 static void 439 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 440 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 441 SelectionDAGBuilder &Builder) { 442 // Lower the deopt and gc arguments for this statepoint. Layout will be: 443 // deopt argument length, deopt arguments.., gc arguments... 444 #ifndef NDEBUG 445 if (auto *GFI = Builder.GFI) { 446 // Check that each of the gc pointer and bases we've gotten out of the 447 // safepoint is something the strategy thinks might be a pointer (or vector 448 // of pointers) into the GC heap. This is basically just here to help catch 449 // errors during statepoint insertion. TODO: This should actually be in the 450 // Verifier, but we can't get to the GCStrategy from there (yet). 451 GCStrategy &S = GFI->getStrategy(); 452 for (const Value *V : SI.Bases) { 453 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 454 if (Opt.hasValue()) { 455 assert(Opt.getValue() && 456 "non gc managed base pointer found in statepoint"); 457 } 458 } 459 for (const Value *V : SI.Ptrs) { 460 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 461 if (Opt.hasValue()) { 462 assert(Opt.getValue() && 463 "non gc managed derived pointer found in statepoint"); 464 } 465 } 466 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 467 } else { 468 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 469 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 470 } 471 #endif 472 473 // Figure out what lowering strategy we're going to use for each part 474 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 475 // as "live-through". A "live-through" variable is one which is "live-in", 476 // "live-out", and live throughout the lifetime of the call (i.e. we can find 477 // it from any PC within the transitive callee of the statepoint). In 478 // particular, if the callee spills callee preserved registers we may not 479 // be able to find a value placed in that register during the call. This is 480 // fine for live-out, but not for live-through. If we were willing to make 481 // assumptions about the code generator producing the callee, we could 482 // potentially allow live-through values in callee saved registers. 483 const bool LiveInDeopt = 484 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 485 486 auto isGCValue = [&](const Value *V) { 487 auto *Ty = V->getType(); 488 if (!Ty->isPtrOrPtrVectorTy()) 489 return false; 490 if (auto *GFI = Builder.GFI) 491 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 492 return *IsManaged; 493 return true; // conservative 494 }; 495 496 auto requireSpillSlot = [&](const Value *V) { 497 return !LiveInDeopt || isGCValue(V); 498 }; 499 500 // Before we actually start lowering (and allocating spill slots for values), 501 // reserve any stack slots which we judge to be profitable to reuse for a 502 // particular value. This is purely an optimization over the code below and 503 // doesn't change semantics at all. It is important for performance that we 504 // reserve slots for both deopt and gc values before lowering either. 505 for (const Value *V : SI.DeoptState) { 506 if (requireSpillSlot(V)) 507 reservePreviousStackSlotForValue(V, Builder); 508 } 509 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 510 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 511 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 512 } 513 514 // First, prefix the list with the number of unique values to be 515 // lowered. Note that this is the number of *Values* not the 516 // number of SDValues required to lower them. 517 const int NumVMSArgs = SI.DeoptState.size(); 518 pushStackMapConstant(Ops, Builder, NumVMSArgs); 519 520 // The vm state arguments are lowered in an opaque manner. We do not know 521 // what type of values are contained within. 522 for (const Value *V : SI.DeoptState) { 523 SDValue Incoming; 524 // If this is a function argument at a static frame index, generate it as 525 // the frame index. 526 if (const Argument *Arg = dyn_cast<Argument>(V)) { 527 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 528 if (FI != INT_MAX) 529 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 530 } 531 if (!Incoming.getNode()) 532 Incoming = Builder.getValue(V); 533 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 534 Builder); 535 } 536 537 // Finally, go ahead and lower all the gc arguments. There's no prefixed 538 // length for this one. After lowering, we'll have the base and pointer 539 // arrays interwoven with each (lowered) base pointer immediately followed by 540 // it's (lowered) derived pointer. i.e 541 // (base[0], ptr[0], base[1], ptr[1], ...) 542 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 543 const Value *Base = SI.Bases[i]; 544 lowerIncomingStatepointValue(Builder.getValue(Base), 545 /*RequireSpillSlot*/ true, Ops, MemRefs, 546 Builder); 547 548 const Value *Ptr = SI.Ptrs[i]; 549 lowerIncomingStatepointValue(Builder.getValue(Ptr), 550 /*RequireSpillSlot*/ true, Ops, MemRefs, 551 Builder); 552 } 553 554 // If there are any explicit spill slots passed to the statepoint, record 555 // them, but otherwise do not do anything special. These are user provided 556 // allocas and give control over placement to the consumer. In this case, 557 // it is the contents of the slot which may get updated, not the pointer to 558 // the alloca 559 for (Value *V : SI.GCArgs) { 560 SDValue Incoming = Builder.getValue(V); 561 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 562 // This handles allocas as arguments to the statepoint 563 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 564 "Incoming value is a frame index!"); 565 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 566 Builder.getFrameIndexTy())); 567 568 auto &MF = Builder.DAG.getMachineFunction(); 569 auto *MMO = getMachineMemOperand(MF, *FI); 570 MemRefs.push_back(MMO); 571 } 572 } 573 574 // Record computed locations for all lowered values. 575 // This can not be embedded in lowering loops as we need to record *all* 576 // values, while previous loops account only values with unique SDValues. 577 const Instruction *StatepointInstr = SI.StatepointInstr; 578 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 579 580 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 581 const Value *V = Relocate->getDerivedPtr(); 582 SDValue SDV = Builder.getValue(V); 583 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 584 585 if (Loc.getNode()) { 586 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 587 } else { 588 // Record value as visited, but not spilled. This is case for allocas 589 // and constants. For this values we can avoid emitting spill load while 590 // visiting corresponding gc_relocate. 591 // Actually we do not need to record them in this map at all. 592 // We do this only to check that we are not relocating any unvisited 593 // value. 594 SpillMap[V] = None; 595 596 // Default llvm mechanisms for exporting values which are used in 597 // different basic blocks does not work for gc relocates. 598 // Note that it would be incorrect to teach llvm that all relocates are 599 // uses of the corresponding values so that it would automatically 600 // export them. Relocates of the spilled values does not use original 601 // value. 602 if (Relocate->getParent() != StatepointInstr->getParent()) 603 Builder.ExportFromCurrentBlock(V); 604 } 605 } 606 } 607 608 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 609 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 610 // The basic scheme here is that information about both the original call and 611 // the safepoint is encoded in the CallInst. We create a temporary call and 612 // lower it, then reverse engineer the calling sequence. 613 614 NumOfStatepoints++; 615 // Clear state 616 StatepointLowering.startNewStatepoint(*this); 617 assert(SI.Bases.size() == SI.Ptrs.size() && 618 SI.Ptrs.size() <= SI.GCRelocates.size()); 619 620 #ifndef NDEBUG 621 for (auto *Reloc : SI.GCRelocates) 622 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 623 StatepointLowering.scheduleRelocCall(*Reloc); 624 #endif 625 626 // Lower statepoint vmstate and gcstate arguments 627 SmallVector<SDValue, 10> LoweredMetaArgs; 628 SmallVector<MachineMemOperand*, 16> MemRefs; 629 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 630 631 // Now that we've emitted the spills, we need to update the root so that the 632 // call sequence is ordered correctly. 633 SI.CLI.setChain(getRoot()); 634 635 // Get call node, we will replace it later with statepoint 636 SDValue ReturnVal; 637 SDNode *CallNode; 638 std::tie(ReturnVal, CallNode) = 639 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 640 641 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 642 // nodes with all the appropriate arguments and return values. 643 644 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 645 SDValue Chain = CallNode->getOperand(0); 646 647 SDValue Glue; 648 bool CallHasIncomingGlue = CallNode->getGluedNode(); 649 if (CallHasIncomingGlue) { 650 // Glue is always last operand 651 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 652 } 653 654 // Build the GC_TRANSITION_START node if necessary. 655 // 656 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 657 // order in which they appear in the call to the statepoint intrinsic. If 658 // any of the operands is a pointer-typed, that operand is immediately 659 // followed by a SRCVALUE for the pointer that may be used during lowering 660 // (e.g. to form MachinePointerInfo values for loads/stores). 661 const bool IsGCTransition = 662 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 663 (uint64_t)StatepointFlags::GCTransition; 664 if (IsGCTransition) { 665 SmallVector<SDValue, 8> TSOps; 666 667 // Add chain 668 TSOps.push_back(Chain); 669 670 // Add GC transition arguments 671 for (const Value *V : SI.GCTransitionArgs) { 672 TSOps.push_back(getValue(V)); 673 if (V->getType()->isPointerTy()) 674 TSOps.push_back(DAG.getSrcValue(V)); 675 } 676 677 // Add glue if necessary 678 if (CallHasIncomingGlue) 679 TSOps.push_back(Glue); 680 681 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 682 683 SDValue GCTransitionStart = 684 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 685 686 Chain = GCTransitionStart.getValue(0); 687 Glue = GCTransitionStart.getValue(1); 688 } 689 690 // TODO: Currently, all of these operands are being marked as read/write in 691 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 692 // and flags to be read-only. 693 SmallVector<SDValue, 40> Ops; 694 695 // Add the <id> and <numBytes> constants. 696 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 697 Ops.push_back( 698 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 699 700 // Calculate and push starting position of vmstate arguments 701 // Get number of arguments incoming directly into call node 702 unsigned NumCallRegArgs = 703 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 704 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 705 706 // Add call target 707 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 708 Ops.push_back(CallTarget); 709 710 // Add call arguments 711 // Get position of register mask in the call 712 SDNode::op_iterator RegMaskIt; 713 if (CallHasIncomingGlue) 714 RegMaskIt = CallNode->op_end() - 2; 715 else 716 RegMaskIt = CallNode->op_end() - 1; 717 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 718 719 // Add a constant argument for the calling convention 720 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 721 722 // Add a constant argument for the flags 723 uint64_t Flags = SI.StatepointFlags; 724 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 725 "Unknown flag used"); 726 pushStackMapConstant(Ops, *this, Flags); 727 728 // Insert all vmstate and gcstate arguments 729 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 730 731 // Add register mask from call node 732 Ops.push_back(*RegMaskIt); 733 734 // Add chain 735 Ops.push_back(Chain); 736 737 // Same for the glue, but we add it only if original call had it 738 if (Glue.getNode()) 739 Ops.push_back(Glue); 740 741 // Compute return values. Provide a glue output since we consume one as 742 // input. This allows someone else to chain off us as needed. 743 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 744 745 MachineSDNode *StatepointMCNode = 746 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 747 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 748 749 SDNode *SinkNode = StatepointMCNode; 750 751 // Build the GC_TRANSITION_END node if necessary. 752 // 753 // See the comment above regarding GC_TRANSITION_START for the layout of 754 // the operands to the GC_TRANSITION_END node. 755 if (IsGCTransition) { 756 SmallVector<SDValue, 8> TEOps; 757 758 // Add chain 759 TEOps.push_back(SDValue(StatepointMCNode, 0)); 760 761 // Add GC transition arguments 762 for (const Value *V : SI.GCTransitionArgs) { 763 TEOps.push_back(getValue(V)); 764 if (V->getType()->isPointerTy()) 765 TEOps.push_back(DAG.getSrcValue(V)); 766 } 767 768 // Add glue 769 TEOps.push_back(SDValue(StatepointMCNode, 1)); 770 771 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 772 773 SDValue GCTransitionStart = 774 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 775 776 SinkNode = GCTransitionStart.getNode(); 777 } 778 779 // Replace original call 780 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 781 // Remove original call node 782 DAG.DeleteNode(CallNode); 783 784 // DON'T set the root - under the assumption that it's already set past the 785 // inserted node we created. 786 787 // TODO: A better future implementation would be to emit a single variable 788 // argument, variable return value STATEPOINT node here and then hookup the 789 // return value of each gc.relocate to the respective output of the 790 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 791 // to actually be possible today. 792 793 return ReturnVal; 794 } 795 796 void 797 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 798 const BasicBlock *EHPadBB /*= nullptr*/) { 799 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && 800 "anyregcc is not supported on statepoints!"); 801 802 #ifndef NDEBUG 803 // If this is a malformed statepoint, report it early to simplify debugging. 804 // This should catch any IR level mistake that's made when constructing or 805 // transforming statepoints. 806 ISP.verify(); 807 808 // Check that the associated GCStrategy expects to encounter statepoints. 809 assert(GFI->getStrategy().useStatepoints() && 810 "GCStrategy does not expect to encounter statepoints"); 811 #endif 812 813 SDValue ActualCallee; 814 SDValue Callee = getValue(ISP.getCalledValue()); 815 816 if (ISP.getNumPatchBytes() > 0) { 817 // If we've been asked to emit a nop sequence instead of a call instruction 818 // for this statepoint then don't lower the call target, but use a constant 819 // `undef` instead. Not lowering the call target lets statepoint clients 820 // get away without providing a physical address for the symbolic call 821 // target at link time. 822 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 823 } else { 824 ActualCallee = Callee; 825 } 826 827 StatepointLoweringInfo SI(DAG); 828 populateCallLoweringInfo(SI.CLI, ISP.getCall(), 829 ImmutableStatepoint::CallArgsBeginPos, 830 ISP.getNumCallArgs(), ActualCallee, 831 ISP.getActualReturnType(), false /* IsPatchPoint */); 832 833 // There may be duplication in the gc.relocate list; such as two copies of 834 // each relocation on normal and exceptional path for an invoke. We only 835 // need to spill once and record one copy in the stackmap, but we need to 836 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 837 // handled as a CSE problem elsewhere.) 838 // TODO: There a couple of major stackmap size optimizations we could do 839 // here if we wished. 840 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 841 // record {B,B} if it's seen later. 842 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 843 // given that, we could change the format to record base pointer relocations 844 // separately with half the space. This would require a format rev and a 845 // fairly major rework of the STATEPOINT node though. 846 SmallSet<SDValue, 8> Seen; 847 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 848 SI.GCRelocates.push_back(Relocate); 849 850 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 851 if (Seen.insert(DerivedSD).second) { 852 SI.Bases.push_back(Relocate->getBasePtr()); 853 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 854 } 855 } 856 857 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 858 SI.StatepointInstr = ISP.getInstruction(); 859 SI.GCTransitionArgs = ArrayRef<const Use>(ISP.gc_transition_args_begin(), 860 ISP.gc_transition_args_end()); 861 SI.ID = ISP.getID(); 862 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 863 SI.StatepointFlags = ISP.getFlags(); 864 SI.NumPatchBytes = ISP.getNumPatchBytes(); 865 SI.EHPadBB = EHPadBB; 866 867 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 868 869 // Export the result value if needed 870 const GCResultInst *GCResult = ISP.getGCResult(); 871 Type *RetTy = ISP.getActualReturnType(); 872 if (!RetTy->isVoidTy() && GCResult) { 873 if (GCResult->getParent() != ISP.getCall()->getParent()) { 874 // Result value will be used in a different basic block so we need to 875 // export it now. Default exporting mechanism will not work here because 876 // statepoint call has a different type than the actual call. It means 877 // that by default llvm will create export register of the wrong type 878 // (always i32 in our case). So instead we need to create export register 879 // with correct type manually. 880 // TODO: To eliminate this problem we can remove gc.result intrinsics 881 // completely and make statepoint call to return a tuple. 882 unsigned Reg = FuncInfo.CreateRegs(RetTy); 883 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 884 DAG.getDataLayout(), Reg, RetTy, 885 ISP.getCall()->getCallingConv()); 886 SDValue Chain = DAG.getEntryNode(); 887 888 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 889 PendingExports.push_back(Chain); 890 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 891 } else { 892 // Result value will be used in a same basic block. Don't export it or 893 // perform any explicit register copies. 894 // We'll replace the actuall call node shortly. gc_result will grab 895 // this value. 896 setValue(ISP.getInstruction(), ReturnValue); 897 } 898 } else { 899 // The token value is never used from here on, just generate a poison value 900 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 901 } 902 } 903 904 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 905 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 906 bool VarArgDisallowed, bool ForceVoidReturnTy) { 907 StatepointLoweringInfo SI(DAG); 908 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 909 populateCallLoweringInfo( 910 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 911 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 912 false); 913 if (!VarArgDisallowed) 914 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 915 916 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 917 918 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 919 920 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 921 SI.ID = SD.StatepointID.getValueOr(DefaultID); 922 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 923 924 SI.DeoptState = 925 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 926 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 927 SI.EHPadBB = EHPadBB; 928 929 // NB! The GC arguments are deliberately left empty. 930 931 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 932 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 933 setValue(Call, ReturnVal); 934 } 935 } 936 937 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 938 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 939 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 940 /* VarArgDisallowed = */ false, 941 /* ForceVoidReturnTy = */ false); 942 } 943 944 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 945 // The result value of the gc_result is simply the result of the actual 946 // call. We've already emitted this, so just grab the value. 947 const Instruction *I = CI.getStatepoint(); 948 949 if (I->getParent() != CI.getParent()) { 950 // Statepoint is in different basic block so we should have stored call 951 // result in a virtual register. 952 // We can not use default getValue() functionality to copy value from this 953 // register because statepoint and actual call return types can be 954 // different, and getValue() will use CopyFromReg of the wrong type, 955 // which is always i32 in our case. 956 PointerType *CalleeType = cast<PointerType>( 957 ImmutableStatepoint(I).getCalledValue()->getType()); 958 Type *RetTy = 959 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 960 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 961 962 assert(CopyFromReg.getNode()); 963 setValue(&CI, CopyFromReg); 964 } else { 965 setValue(&CI, getValue(I)); 966 } 967 } 968 969 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 970 #ifndef NDEBUG 971 // Consistency check 972 // We skip this check for relocates not in the same basic block as their 973 // statepoint. It would be too expensive to preserve validation info through 974 // different basic blocks. 975 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 976 StatepointLowering.relocCallVisited(Relocate); 977 978 auto *Ty = Relocate.getType()->getScalarType(); 979 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 980 assert(*IsManaged && "Non gc managed pointer relocated!"); 981 #endif 982 983 const Value *DerivedPtr = Relocate.getDerivedPtr(); 984 SDValue SD = getValue(DerivedPtr); 985 986 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 987 auto SlotIt = SpillMap.find(DerivedPtr); 988 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 989 Optional<int> DerivedPtrLocation = SlotIt->second; 990 991 // We didn't need to spill these special cases (constants and allocas). 992 // See the handling in spillIncomingValueForStatepoint for detail. 993 if (!DerivedPtrLocation) { 994 setValue(&Relocate, SD); 995 return; 996 } 997 998 unsigned Index = *DerivedPtrLocation; 999 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1000 1001 // All the reloads are independent and are reading memory only modified by 1002 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1003 // this this let's CSE kick in for free and allows reordering of instructions 1004 // if possible. The lowering for statepoint sets the root, so this is 1005 // ordering all reloads with the either a) the statepoint node itself, or b) 1006 // the entry of the current block for an invoke statepoint. 1007 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1008 1009 auto &MF = DAG.getMachineFunction(); 1010 auto &MFI = MF.getFrameInfo(); 1011 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1012 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1013 MFI.getObjectSize(Index), 1014 MFI.getObjectAlign(Index)); 1015 1016 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1017 Relocate.getType()); 1018 1019 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1020 SpillSlot, LoadMMO); 1021 PendingLoads.push_back(SpillLoad.getValue(1)); 1022 1023 assert(SpillLoad.getNode()); 1024 setValue(&Relocate, SpillLoad); 1025 } 1026 1027 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1028 const auto &TLI = DAG.getTargetLoweringInfo(); 1029 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1030 TLI.getPointerTy(DAG.getDataLayout())); 1031 1032 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1033 // call. We also do not lower the return value to any virtual register, and 1034 // change the immediately following return to a trap instruction. 1035 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1036 /* VarArgDisallowed = */ true, 1037 /* ForceVoidReturnTy = */ true); 1038 } 1039 1040 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1041 // We do not lower the return value from llvm.deoptimize to any virtual 1042 // register, and change the immediately following return to a trap 1043 // instruction. 1044 if (DAG.getTarget().Options.TrapUnreachable) 1045 DAG.setRoot( 1046 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1047 } 1048