1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/GCMetadata.h" 20 #include "llvm/CodeGen/FunctionLoweringInfo.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 void 42 StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 43 // Consistency check 44 assert(PendingGCRelocateCalls.empty() && 45 "Trying to visit statepoint before finished processing previous one"); 46 Locations.clear(); 47 RelocLocations.clear(); 48 NextSlotToAllocate = 0; 49 // Need to resize this on each safepoint - we need the two to stay in 50 // sync and the clear patterns of a SelectionDAGBuilder have no relation 51 // to FunctionLoweringInfo. 52 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 53 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 54 AllocatedStackSlots[i] = false; 55 } 56 } 57 void StatepointLoweringState::clear() { 58 Locations.clear(); 59 RelocLocations.clear(); 60 AllocatedStackSlots.clear(); 61 assert(PendingGCRelocateCalls.empty() && 62 "cleared before statepoint sequence completed"); 63 } 64 65 SDValue 66 StatepointLoweringState::allocateStackSlot(EVT ValueType, 67 SelectionDAGBuilder &Builder) { 68 69 NumSlotsAllocatedForStatepoints++; 70 71 // The basic scheme here is to first look for a previously created stack slot 72 // which is not in use (accounting for the fact arbitrary slots may already 73 // be reserved), or to create a new stack slot and use it. 74 75 // If this doesn't succeed in 40000 iterations, something is seriously wrong 76 for (int i = 0; i < 40000; i++) { 77 assert(Builder.FuncInfo.StatepointStackSlots.size() == 78 AllocatedStackSlots.size() && 79 "broken invariant"); 80 const size_t NumSlots = AllocatedStackSlots.size(); 81 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 82 83 if (NextSlotToAllocate >= NumSlots) { 84 assert(NextSlotToAllocate == NumSlots); 85 // record stats 86 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 87 StatepointMaxSlotsRequired = NumSlots + 1; 88 } 89 90 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 91 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 92 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 93 AllocatedStackSlots.push_back(true); 94 return SpillSlot; 95 } 96 if (!AllocatedStackSlots[NextSlotToAllocate]) { 97 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 98 AllocatedStackSlots[NextSlotToAllocate] = true; 99 return Builder.DAG.getFrameIndex(FI, ValueType); 100 } 101 // Note: We deliberately choose to advance this only on the failing path. 102 // Doing so on the suceeding path involes a bit of complexity that caused a 103 // minor bug previously. Unless performance shows this matters, please 104 // keep this code as simple as possible. 105 NextSlotToAllocate++; 106 } 107 llvm_unreachable("infinite loop?"); 108 } 109 110 /// Try to find existing copies of the incoming values in stack slots used for 111 /// statepoint spilling. If we can find a spill slot for the incoming value, 112 /// mark that slot as allocated, and reuse the same slot for this safepoint. 113 /// This helps to avoid series of loads and stores that only serve to resuffle 114 /// values on the stack between calls. 115 static void reservePreviousStackSlotForValue(SDValue Incoming, 116 SelectionDAGBuilder &Builder) { 117 118 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 119 // We won't need to spill this, so no need to check for previously 120 // allocated stack slots 121 return; 122 } 123 124 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 125 if (Loc.getNode()) { 126 // duplicates in input 127 return; 128 } 129 130 // Search back for the load from a stack slot pattern to find the original 131 // slot we allocated for this value. We could extend this to deal with 132 // simple modification patterns, but simple dealing with trivial load/store 133 // sequences helps a lot already. 134 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) { 135 if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) { 136 const int Index = FI->getIndex(); 137 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 138 Builder.FuncInfo.StatepointStackSlots.end(), Index); 139 if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) { 140 // not one of the lowering stack slots, can't reuse! 141 // TODO: Actually, we probably could reuse the stack slot if the value 142 // hasn't changed at all, but we'd need to look for intervening writes 143 return; 144 } else { 145 // This is one of our dedicated lowering slots 146 const int Offset = 147 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 148 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 149 // stack slot already assigned to someone else, can't use it! 150 // TODO: currently we reserve space for gc arguments after doing 151 // normal allocation for deopt arguments. We should reserve for 152 // _all_ deopt and gc arguments, then start allocating. This 153 // will prevent some moves being inserted when vm state changes, 154 // but gc state doesn't between two calls. 155 return; 156 } 157 // Reserve this stack slot 158 Builder.StatepointLowering.reserveStackSlot(Offset); 159 } 160 161 // Cache this slot so we find it when going through the normal 162 // assignment loop. 163 SDValue Loc = 164 Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 165 166 Builder.StatepointLowering.setLocation(Incoming, Loc); 167 } 168 } 169 170 // TODO: handle case where a reloaded value flows through a phi to 171 // another safepoint. e.g. 172 // bb1: 173 // a' = relocated... 174 // bb2: % pred: bb1, bb3, bb4, etc. 175 // a_phi = phi(a', ...) 176 // statepoint ... a_phi 177 // NOTE: This will require reasoning about cross basic block values. This is 178 // decidedly non trivial and this might not be the right place to do it. We 179 // don't really have the information we need here... 180 181 // TODO: handle simple updates. If a value is modified and the original 182 // value is no longer live, it would be nice to put the modified value in the 183 // same slot. This allows folding of the memory accesses for some 184 // instructions types (like an increment). 185 // statepoint (i) 186 // i1 = i+1 187 // statepoint (i1) 188 } 189 190 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 191 /// is not required for correctness. It's purpose is to reduce the size of 192 /// StackMap section. It has no effect on the number of spill slots required 193 /// or the actual lowering. 194 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 195 SmallVectorImpl<const Value *> &Ptrs, 196 SmallVectorImpl<const Value *> &Relocs, 197 SelectionDAGBuilder &Builder) { 198 199 // This is horribly ineffecient, but I don't care right now 200 SmallSet<SDValue, 64> Seen; 201 202 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 203 for (size_t i = 0; i < Ptrs.size(); i++) { 204 SDValue SD = Builder.getValue(Ptrs[i]); 205 // Only add non-duplicates 206 if (Seen.count(SD) == 0) { 207 NewBases.push_back(Bases[i]); 208 NewPtrs.push_back(Ptrs[i]); 209 NewRelocs.push_back(Relocs[i]); 210 } 211 Seen.insert(SD); 212 } 213 assert(Bases.size() >= NewBases.size()); 214 assert(Ptrs.size() >= NewPtrs.size()); 215 assert(Relocs.size() >= NewRelocs.size()); 216 Bases = NewBases; 217 Ptrs = NewPtrs; 218 Relocs = NewRelocs; 219 assert(Ptrs.size() == Bases.size()); 220 assert(Ptrs.size() == Relocs.size()); 221 } 222 223 /// Extract call from statepoint, lower it and return pointer to the 224 /// call node. Also update NodeMap so that getValue(statepoint) will 225 /// reference lowered call result 226 static SDNode *lowerCallFromStatepoint(const CallInst &CI, 227 SelectionDAGBuilder &Builder) { 228 229 assert(Intrinsic::experimental_gc_statepoint == 230 dyn_cast<IntrinsicInst>(&CI)->getIntrinsicID() && 231 "function called must be the statepoint function"); 232 233 ImmutableStatepoint StatepointOperands(&CI); 234 235 // Lower the actual call itself - This is a bit of a hack, but we want to 236 // avoid modifying the actual lowering code. This is similiar in intent to 237 // the LowerCallOperands mechanism used by PATCHPOINT, but is structured 238 // differently. Hopefully, this is slightly more robust w.r.t. calling 239 // convention, return values, and other function attributes. 240 Value *ActualCallee = const_cast<Value *>(StatepointOperands.actualCallee()); 241 242 std::vector<Value *> Args; 243 CallInst::const_op_iterator arg_begin = StatepointOperands.call_args_begin(); 244 CallInst::const_op_iterator arg_end = StatepointOperands.call_args_end(); 245 Args.insert(Args.end(), arg_begin, arg_end); 246 // TODO: remove the creation of a new instruction! We should not be 247 // modifying the IR (even temporarily) at this point. 248 CallInst *Tmp = CallInst::Create(ActualCallee, Args); 249 Tmp->setTailCall(CI.isTailCall()); 250 Tmp->setCallingConv(CI.getCallingConv()); 251 Tmp->setAttributes(CI.getAttributes()); 252 Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false); 253 254 // Handle the return value of the call iff any. 255 const bool HasDef = !Tmp->getType()->isVoidTy(); 256 if (HasDef) { 257 // The value of the statepoint itself will be the value of call itself. 258 // We'll replace the actually call node shortly. gc_result will grab 259 // this value. 260 Builder.setValue(&CI, Builder.getValue(Tmp)); 261 } else { 262 // The token value is never used from here on, just generate a poison value 263 Builder.setValue(&CI, Builder.DAG.getIntPtrConstant(-1)); 264 } 265 // Remove the fake entry we created so we don't have a hanging reference 266 // after we delete this node. 267 Builder.removeValue(Tmp); 268 delete Tmp; 269 Tmp = nullptr; 270 271 // Search for the call node 272 // The following code is essentially reverse engineering X86's 273 // LowerCallTo. 274 SDNode *CallNode = nullptr; 275 276 // We just emitted a call, so it should be last thing generated 277 SDValue Chain = Builder.DAG.getRoot(); 278 279 // Find closest CALLSEQ_END walking back through lowered nodes if needed 280 SDNode *CallEnd = Chain.getNode(); 281 int Sanity = 0; 282 while (CallEnd->getOpcode() != ISD::CALLSEQ_END) { 283 CallEnd = CallEnd->getGluedNode(); 284 assert(CallEnd && "Can not find call node"); 285 assert(Sanity < 20 && "should have found call end already"); 286 Sanity++; 287 } 288 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 289 "Expected a callseq node."); 290 assert(CallEnd->getGluedNode()); 291 292 // Step back inside the CALLSEQ 293 CallNode = CallEnd->getGluedNode(); 294 return CallNode; 295 } 296 297 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 298 /// and return two arrays: 299 /// Bases - base pointers incoming to this statepoint 300 /// Ptrs - derived pointers incoming to this statepoint 301 /// Relocs - the gc_relocate corresponding to each base/ptr pair 302 /// Elements of this arrays should be in one-to-one correspondence with each 303 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 304 static void 305 getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases, 306 SmallVectorImpl<const Value *> &Ptrs, 307 SmallVectorImpl<const Value *> &Relocs, 308 ImmutableCallSite Statepoint, 309 SelectionDAGBuilder &Builder) { 310 // Search for relocated pointers. Note that working backwards from the 311 // gc_relocates ensures that we only get pairs which are actually relocated 312 // and used after the statepoint. 313 // TODO: This logic should probably become a utility function in Statepoint.h 314 for (const User *U : cast<CallInst>(Statepoint.getInstruction())->users()) { 315 if (!isGCRelocate(U)) { 316 continue; 317 } 318 GCRelocateOperands relocateOpers(U); 319 Relocs.push_back(cast<Value>(U)); 320 Bases.push_back(relocateOpers.basePtr()); 321 Ptrs.push_back(relocateOpers.derivedPtr()); 322 } 323 324 // Remove any redundant llvm::Values which map to the same SDValue as another 325 // input. Also has the effect of removing duplicates in the original 326 // llvm::Value input list as well. This is a useful optimization for 327 // reducing the size of the StackMap section. It has no other impact. 328 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 329 330 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 331 } 332 333 /// Spill a value incoming to the statepoint. It might be either part of 334 /// vmstate 335 /// or gcstate. In both cases unconditionally spill it on the stack unless it 336 /// is a null constant. Return pair with first element being frame index 337 /// containing saved value and second element with outgoing chain from the 338 /// emitted store 339 static std::pair<SDValue, SDValue> 340 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 341 SelectionDAGBuilder &Builder) { 342 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 343 344 // Emit new store if we didn't do it for this ptr before 345 if (!Loc.getNode()) { 346 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 347 Builder); 348 assert(isa<FrameIndexSDNode>(Loc)); 349 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 350 // We use TargetFrameIndex so that isel will not select it into LEA 351 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 352 353 // TODO: We can create TokenFactor node instead of 354 // chaining stores one after another, this may allow 355 // a bit more optimal scheduling for them 356 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 357 MachinePointerInfo::getFixedStack(Index), 358 false, false, 0); 359 360 Builder.StatepointLowering.setLocation(Incoming, Loc); 361 } 362 363 assert(Loc.getNode()); 364 return std::make_pair(Loc, Chain); 365 } 366 367 /// Lower a single value incoming to a statepoint node. This value can be 368 /// either a deopt value or a gc value, the handling is the same. We special 369 /// case constants and allocas, then fall back to spilling if required. 370 static void lowerIncomingStatepointValue(SDValue Incoming, 371 SmallVectorImpl<SDValue> &Ops, 372 SelectionDAGBuilder &Builder) { 373 SDValue Chain = Builder.getRoot(); 374 375 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 376 // If the original value was a constant, make sure it gets recorded as 377 // such in the stackmap. This is required so that the consumer can 378 // parse any internal format to the deopt state. It also handles null 379 // pointers and other constant pointers in GC states 380 Ops.push_back( 381 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 382 Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 383 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 384 // This handles allocas as arguments to the statepoint 385 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 386 Ops.push_back( 387 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 388 } else { 389 // Otherwise, locate a spill slot and explicitly spill it so it 390 // can be found by the runtime later. We currently do not support 391 // tracking values through callee saved registers to their eventual 392 // spill location. This would be a useful optimization, but would 393 // need to be optional since it requires a lot of complexity on the 394 // runtime side which not all would support. 395 std::pair<SDValue, SDValue> Res = 396 spillIncomingStatepointValue(Incoming, Chain, Builder); 397 Ops.push_back(Res.first); 398 Chain = Res.second; 399 } 400 401 Builder.DAG.setRoot(Chain); 402 } 403 404 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 405 /// lowering is described in lowerIncomingStatepointValue. This function is 406 /// responsible for lowering everything in the right position and playing some 407 /// tricks to avoid redundant stack manipulation where possible. On 408 /// completion, 'Ops' will contain ready to use operands for machine code 409 /// statepoint. The chain nodes will have already been created and the DAG root 410 /// will be set to the last value spilled (if any were). 411 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 412 ImmutableStatepoint Statepoint, 413 SelectionDAGBuilder &Builder) { 414 415 // Lower the deopt and gc arguments for this statepoint. Layout will 416 // be: deopt argument length, deopt arguments.., gc arguments... 417 418 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 419 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, 420 Statepoint.getCallSite(), Builder); 421 422 #ifndef NDEBUG 423 // Check that each of the gc pointer and bases we've gotten out of the 424 // safepoint is something the strategy thinks might be a pointer into the GC 425 // heap. This is basically just here to help catch errors during statepoint 426 // insertion. TODO: This should actually be in the Verifier, but we can't get 427 // to the GCStrategy from there (yet). 428 if (Builder.GFI) { 429 GCStrategy &S = Builder.GFI->getStrategy(); 430 for (const Value *V : Bases) { 431 auto Opt = S.isGCManagedPointer(V); 432 if (Opt.hasValue()) { 433 assert(Opt.getValue() && 434 "non gc managed base pointer found in statepoint"); 435 } 436 } 437 for (const Value *V : Ptrs) { 438 auto Opt = S.isGCManagedPointer(V); 439 if (Opt.hasValue()) { 440 assert(Opt.getValue() && 441 "non gc managed derived pointer found in statepoint"); 442 } 443 } 444 for (const Value *V : Relocations) { 445 auto Opt = S.isGCManagedPointer(V); 446 if (Opt.hasValue()) { 447 assert(Opt.getValue() && "non gc managed pointer relocated"); 448 } 449 } 450 } 451 #endif 452 453 454 455 // Before we actually start lowering (and allocating spill slots for values), 456 // reserve any stack slots which we judge to be profitable to reuse for a 457 // particular value. This is purely an optimization over the code below and 458 // doesn't change semantics at all. It is important for performance that we 459 // reserve slots for both deopt and gc values before lowering either. 460 for (auto I = Statepoint.vm_state_begin() + 1, E = Statepoint.vm_state_end(); 461 I != E; ++I) { 462 Value *V = *I; 463 SDValue Incoming = Builder.getValue(V); 464 reservePreviousStackSlotForValue(Incoming, Builder); 465 } 466 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 467 // Even elements will contain base, odd elements - derived ptr 468 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 469 SDValue Incoming = Builder.getValue(V); 470 reservePreviousStackSlotForValue(Incoming, Builder); 471 } 472 473 // First, prefix the list with the number of unique values to be 474 // lowered. Note that this is the number of *Values* not the 475 // number of SDValues required to lower them. 476 const int NumVMSArgs = Statepoint.numTotalVMSArgs(); 477 Ops.push_back( 478 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 479 Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64)); 480 481 assert(NumVMSArgs + 1 == std::distance(Statepoint.vm_state_begin(), 482 Statepoint.vm_state_end())); 483 484 // The vm state arguments are lowered in an opaque manner. We do 485 // not know what type of values are contained within. We skip the 486 // first one since that happens to be the total number we lowered 487 // explicitly just above. We could have left it in the loop and 488 // not done it explicitly, but it's far easier to understand this 489 // way. 490 for (auto I = Statepoint.vm_state_begin() + 1, E = Statepoint.vm_state_end(); 491 I != E; ++I) { 492 const Value *V = *I; 493 SDValue Incoming = Builder.getValue(V); 494 lowerIncomingStatepointValue(Incoming, Ops, Builder); 495 } 496 497 // Finally, go ahead and lower all the gc arguments. There's no prefixed 498 // length for this one. After lowering, we'll have the base and pointer 499 // arrays interwoven with each (lowered) base pointer immediately followed by 500 // it's (lowered) derived pointer. i.e 501 // (base[0], ptr[0], base[1], ptr[1], ...) 502 for (unsigned i = 0; i < Bases.size() * 2; ++i) { 503 // Even elements will contain base, odd elements - derived ptr 504 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2]; 505 SDValue Incoming = Builder.getValue(V); 506 lowerIncomingStatepointValue(Incoming, Ops, Builder); 507 } 508 } 509 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 510 // The basic scheme here is that information about both the original call and 511 // the safepoint is encoded in the CallInst. We create a temporary call and 512 // lower it, then reverse engineer the calling sequence. 513 514 // Check some preconditions for sanity 515 assert(isStatepoint(&CI) && 516 "function called must be the statepoint function"); 517 NumOfStatepoints++; 518 // Clear state 519 StatepointLowering.startNewStatepoint(*this); 520 521 #ifndef NDEBUG 522 // Consistency check 523 for (const User *U : CI.users()) { 524 const CallInst *Call = cast<CallInst>(U); 525 if (isGCRelocate(Call)) 526 StatepointLowering.scheduleRelocCall(*Call); 527 } 528 #endif 529 530 ImmutableStatepoint ISP(&CI); 531 #ifndef NDEBUG 532 // If this is a malformed statepoint, report it early to simplify debugging. 533 // This should catch any IR level mistake that's made when constructing or 534 // transforming statepoints. 535 ISP.verify(); 536 537 // Check that the associated GCStrategy expects to encounter statepoints. 538 // TODO: This if should become an assert. For now, we allow the GCStrategy 539 // to be optional for backwards compatibility. This will only last a short 540 // period (i.e. a couple of weeks). 541 if (GFI) { 542 assert(GFI->getStrategy().useStatepoints() && 543 "GCStrategy does not expect to encounter statepoints"); 544 } 545 #endif 546 547 548 // Lower statepoint vmstate and gcstate arguments 549 SmallVector<SDValue, 10> LoweredArgs; 550 lowerStatepointMetaArgs(LoweredArgs, ISP, *this); 551 552 // Get call node, we will replace it later with statepoint 553 SDNode *CallNode = lowerCallFromStatepoint(CI, *this); 554 555 // Construct the actual STATEPOINT node with all the appropriate arguments 556 // and return values. 557 558 // TODO: Currently, all of these operands are being marked as read/write in 559 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 560 // and flags to be read-only. 561 SmallVector<SDValue, 40> Ops; 562 563 // Calculate and push starting position of vmstate arguments 564 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 565 SDValue Glue; 566 if (CallNode->getGluedNode()) { 567 // Glue is always last operand 568 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 569 } 570 // Get number of arguments incoming directly into call node 571 unsigned NumCallRegArgs = 572 CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3); 573 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 574 575 // Add call target 576 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 577 Ops.push_back(CallTarget); 578 579 // Add call arguments 580 // Get position of register mask in the call 581 SDNode::op_iterator RegMaskIt; 582 if (Glue.getNode()) 583 RegMaskIt = CallNode->op_end() - 2; 584 else 585 RegMaskIt = CallNode->op_end() - 1; 586 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 587 588 // Add a leading constant argument with the Flags and the calling convention 589 // masked together 590 CallingConv::ID CallConv = CI.getCallingConv(); 591 int Flags = dyn_cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); 592 assert(Flags == 0 && "not expected to be used"); 593 Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 594 Ops.push_back( 595 DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64)); 596 597 // Insert all vmstate and gcstate arguments 598 Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end()); 599 600 // Add register mask from call node 601 Ops.push_back(*RegMaskIt); 602 603 // Add chain 604 Ops.push_back(CallNode->getOperand(0)); 605 606 // Same for the glue, but we add it only if original call had it 607 if (Glue.getNode()) 608 Ops.push_back(Glue); 609 610 // Compute return values 611 SmallVector<EVT, 21> ValueVTs; 612 ValueVTs.push_back(MVT::Other); 613 ValueVTs.push_back(MVT::Glue); // provide a glue output since we consume one 614 // as input. This allows someone else to chain 615 // off us as needed. 616 SDVTList NodeTys = DAG.getVTList(ValueVTs); 617 618 SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT, 619 getCurSDLoc(), NodeTys, Ops); 620 621 // Replace original call 622 DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root 623 // Remove originall call node 624 DAG.DeleteNode(CallNode); 625 626 // DON'T set the root - under the assumption that it's already set past the 627 // inserted node we created. 628 629 // TODO: A better future implementation would be to emit a single variable 630 // argument, variable return value STATEPOINT node here and then hookup the 631 // return value of each gc.relocate to the respective output of the 632 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 633 // to actually be possible today. 634 } 635 636 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 637 // The result value of the gc_result is simply the result of the actual 638 // call. We've already emitted this, so just grab the value. 639 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 640 assert(isStatepoint(I) && 641 "first argument must be a statepoint token"); 642 643 setValue(&CI, getValue(I)); 644 } 645 646 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 647 #ifndef NDEBUG 648 // Consistency check 649 StatepointLowering.relocCallVisited(CI); 650 #endif 651 652 GCRelocateOperands relocateOpers(&CI); 653 SDValue SD = getValue(relocateOpers.derivedPtr()); 654 655 if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) { 656 // We didn't need to spill these special cases (constants and allocas). 657 // See the handling in spillIncomingValueForStatepoint for detail. 658 setValue(&CI, SD); 659 return; 660 } 661 662 SDValue Loc = StatepointLowering.getRelocLocation(SD); 663 // Emit new load if we did not emit it before 664 if (!Loc.getNode()) { 665 SDValue SpillSlot = StatepointLowering.getLocation(SD); 666 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 667 668 // Be conservative: flush all pending loads 669 // TODO: Probably we can be less restrictive on this, 670 // it may allow more scheduling opprtunities 671 SDValue Chain = getRoot(); 672 673 Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, 674 SpillSlot, MachinePointerInfo::getFixedStack(FI), false, 675 false, false, 0); 676 677 StatepointLowering.setRelocLocation(SD, Loc); 678 679 // Again, be conservative, don't emit pending loads 680 DAG.setRoot(Loc.getValue(1)); 681 } 682 683 assert(Loc.getNode()); 684 setValue(&CI, Loc); 685 } 686