1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GCMetadata.h" 24 #include "llvm/CodeGen/GCStrategy.h" 25 #include "llvm/CodeGen/ISDOpcodes.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/RuntimeLibcalls.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Target/TargetMachine.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include <cassert> 47 #include <cstddef> 48 #include <cstdint> 49 #include <iterator> 50 #include <tuple> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "statepoint-lowering" 56 57 STATISTIC(NumSlotsAllocatedForStatepoints, 58 "Number of stack slots allocated for statepoints"); 59 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 60 STATISTIC(StatepointMaxSlotsRequired, 61 "Maximum number of stack slots required for a singe statepoint"); 62 63 cl::opt<bool> UseRegistersForDeoptValues( 64 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 65 cl::desc("Allow using registers for non pointer deopt args")); 66 67 cl::opt<unsigned> MaxRegistersForGCPointers( 68 "max-registers-for-gc-values", cl::Hidden, cl::init(0), 69 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in")); 70 71 cl::opt<bool> AlwaysSpillBase("statepoint-always-spill-base", cl::Hidden, 72 cl::init(true), 73 cl::desc("Force spilling of base GC pointers")); 74 75 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType; 76 77 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 78 SelectionDAGBuilder &Builder, uint64_t Value) { 79 SDLoc L = Builder.getCurSDLoc(); 80 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 81 MVT::i64)); 82 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 83 } 84 85 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 86 // Consistency check 87 assert(PendingGCRelocateCalls.empty() && 88 "Trying to visit statepoint before finished processing previous one"); 89 Locations.clear(); 90 NextSlotToAllocate = 0; 91 // Need to resize this on each safepoint - we need the two to stay in sync and 92 // the clear patterns of a SelectionDAGBuilder have no relation to 93 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 94 AllocatedStackSlots.clear(); 95 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 96 } 97 98 void StatepointLoweringState::clear() { 99 Locations.clear(); 100 AllocatedStackSlots.clear(); 101 assert(PendingGCRelocateCalls.empty() && 102 "cleared before statepoint sequence completed"); 103 } 104 105 SDValue 106 StatepointLoweringState::allocateStackSlot(EVT ValueType, 107 SelectionDAGBuilder &Builder) { 108 NumSlotsAllocatedForStatepoints++; 109 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 110 111 unsigned SpillSize = ValueType.getStoreSize(); 112 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 113 114 // First look for a previously created stack slot which is not in 115 // use (accounting for the fact arbitrary slots may already be 116 // reserved), or to create a new stack slot and use it. 117 118 const size_t NumSlots = AllocatedStackSlots.size(); 119 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 120 121 assert(AllocatedStackSlots.size() == 122 Builder.FuncInfo.StatepointStackSlots.size() && 123 "Broken invariant"); 124 125 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 126 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 127 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 128 if (MFI.getObjectSize(FI) == SpillSize) { 129 AllocatedStackSlots.set(NextSlotToAllocate); 130 // TODO: Is ValueType the right thing to use here? 131 return Builder.DAG.getFrameIndex(FI, ValueType); 132 } 133 } 134 } 135 136 // Couldn't find a free slot, so create a new one: 137 138 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 139 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 140 MFI.markAsStatepointSpillSlotObjectIndex(FI); 141 142 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 143 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 144 assert(AllocatedStackSlots.size() == 145 Builder.FuncInfo.StatepointStackSlots.size() && 146 "Broken invariant"); 147 148 StatepointMaxSlotsRequired.updateMax( 149 Builder.FuncInfo.StatepointStackSlots.size()); 150 151 return SpillSlot; 152 } 153 154 /// Utility function for reservePreviousStackSlotForValue. Tries to find 155 /// stack slot index to which we have spilled value for previous statepoints. 156 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 157 static Optional<int> findPreviousSpillSlot(const Value *Val, 158 SelectionDAGBuilder &Builder, 159 int LookUpDepth) { 160 // Can not look any further - give up now 161 if (LookUpDepth <= 0) 162 return None; 163 164 // Spill location is known for gc relocates 165 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 166 const auto &RelocationMap = 167 Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()]; 168 169 auto It = RelocationMap.find(Relocate->getDerivedPtr()); 170 if (It == RelocationMap.end()) 171 return None; 172 173 auto &Record = It->second; 174 if (Record.type != RecordType::Spill) 175 return None; 176 177 return Record.payload.FI; 178 } 179 180 // Look through bitcast instructions. 181 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 182 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 183 184 // Look through phi nodes 185 // All incoming values should have same known stack slot, otherwise result 186 // is unknown. 187 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 188 Optional<int> MergedResult = None; 189 190 for (auto &IncomingValue : Phi->incoming_values()) { 191 Optional<int> SpillSlot = 192 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 193 if (!SpillSlot.hasValue()) 194 return None; 195 196 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 197 return None; 198 199 MergedResult = SpillSlot; 200 } 201 return MergedResult; 202 } 203 204 // TODO: We can do better for PHI nodes. In cases like this: 205 // ptr = phi(relocated_pointer, not_relocated_pointer) 206 // statepoint(ptr) 207 // We will return that stack slot for ptr is unknown. And later we might 208 // assign different stack slots for ptr and relocated_pointer. This limits 209 // llvm's ability to remove redundant stores. 210 // Unfortunately it's hard to accomplish in current infrastructure. 211 // We use this function to eliminate spill store completely, while 212 // in example we still need to emit store, but instead of any location 213 // we need to use special "preferred" location. 214 215 // TODO: handle simple updates. If a value is modified and the original 216 // value is no longer live, it would be nice to put the modified value in the 217 // same slot. This allows folding of the memory accesses for some 218 // instructions types (like an increment). 219 // statepoint (i) 220 // i1 = i+1 221 // statepoint (i1) 222 // However we need to be careful for cases like this: 223 // statepoint(i) 224 // i1 = i+1 225 // statepoint(i, i1) 226 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 227 // put handling of simple modifications in this function like it's done 228 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 229 // which we visit values is unspecified. 230 231 // Don't know any information about this instruction 232 return None; 233 } 234 235 /// Return true if-and-only-if the given SDValue can be lowered as either a 236 /// constant argument or a stack reference. The key point is that the value 237 /// doesn't need to be spilled or tracked as a vreg use. 238 static bool willLowerDirectly(SDValue Incoming) { 239 // We are making an unchecked assumption that the frame size <= 2^16 as that 240 // is the largest offset which can be encoded in the stackmap format. 241 if (isa<FrameIndexSDNode>(Incoming)) 242 return true; 243 244 // The largest constant describeable in the StackMap format is 64 bits. 245 // Potential Optimization: Constants values are sign extended by consumer, 246 // and thus there are many constants of static type > 64 bits whose value 247 // happens to be sext(Con64) and could thus be lowered directly. 248 if (Incoming.getValueType().getSizeInBits() > 64) 249 return false; 250 251 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 252 Incoming.isUndef()); 253 } 254 255 /// Try to find existing copies of the incoming values in stack slots used for 256 /// statepoint spilling. If we can find a spill slot for the incoming value, 257 /// mark that slot as allocated, and reuse the same slot for this safepoint. 258 /// This helps to avoid series of loads and stores that only serve to reshuffle 259 /// values on the stack between calls. 260 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 261 SelectionDAGBuilder &Builder) { 262 SDValue Incoming = Builder.getValue(IncomingValue); 263 264 // If we won't spill this, we don't need to check for previously allocated 265 // stack slots. 266 if (willLowerDirectly(Incoming)) 267 return; 268 269 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 270 if (OldLocation.getNode()) 271 // Duplicates in input 272 return; 273 274 const int LookUpDepth = 6; 275 Optional<int> Index = 276 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 277 if (!Index.hasValue()) 278 return; 279 280 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 281 282 auto SlotIt = find(StatepointSlots, *Index); 283 assert(SlotIt != StatepointSlots.end() && 284 "Value spilled to the unknown stack slot"); 285 286 // This is one of our dedicated lowering slots 287 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 288 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 289 // stack slot already assigned to someone else, can't use it! 290 // TODO: currently we reserve space for gc arguments after doing 291 // normal allocation for deopt arguments. We should reserve for 292 // _all_ deopt and gc arguments, then start allocating. This 293 // will prevent some moves being inserted when vm state changes, 294 // but gc state doesn't between two calls. 295 return; 296 } 297 // Reserve this stack slot 298 Builder.StatepointLowering.reserveStackSlot(Offset); 299 300 // Cache this slot so we find it when going through the normal 301 // assignment loop. 302 SDValue Loc = 303 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 304 Builder.StatepointLowering.setLocation(Incoming, Loc); 305 } 306 307 /// Extract call from statepoint, lower it and return pointer to the 308 /// call node. Also update NodeMap so that getValue(statepoint) will 309 /// reference lowered call result 310 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 311 SelectionDAGBuilder::StatepointLoweringInfo &SI, 312 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 313 SDValue ReturnValue, CallEndVal; 314 std::tie(ReturnValue, CallEndVal) = 315 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 316 SDNode *CallEnd = CallEndVal.getNode(); 317 318 // Get a call instruction from the call sequence chain. Tail calls are not 319 // allowed. The following code is essentially reverse engineering X86's 320 // LowerCallTo. 321 // 322 // We are expecting DAG to have the following form: 323 // 324 // ch = eh_label (only in case of invoke statepoint) 325 // ch, glue = callseq_start ch 326 // ch, glue = X86::Call ch, glue 327 // ch, glue = callseq_end ch, glue 328 // get_return_value ch, glue 329 // 330 // get_return_value can either be a sequence of CopyFromReg instructions 331 // to grab the return value from the return register(s), or it can be a LOAD 332 // to load a value returned by reference via a stack slot. 333 334 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 335 if (HasDef) { 336 if (CallEnd->getOpcode() == ISD::LOAD) 337 CallEnd = CallEnd->getOperand(0).getNode(); 338 else 339 while (CallEnd->getOpcode() == ISD::CopyFromReg) 340 CallEnd = CallEnd->getOperand(0).getNode(); 341 } 342 343 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 344 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 345 } 346 347 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 348 FrameIndexSDNode &FI) { 349 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 350 auto MMOFlags = MachineMemOperand::MOStore | 351 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 352 auto &MFI = MF.getFrameInfo(); 353 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 354 MFI.getObjectSize(FI.getIndex()), 355 MFI.getObjectAlign(FI.getIndex())); 356 } 357 358 /// Spill a value incoming to the statepoint. It might be either part of 359 /// vmstate 360 /// or gcstate. In both cases unconditionally spill it on the stack unless it 361 /// is a null constant. Return pair with first element being frame index 362 /// containing saved value and second element with outgoing chain from the 363 /// emitted store 364 static std::tuple<SDValue, SDValue, MachineMemOperand*> 365 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 366 SelectionDAGBuilder &Builder) { 367 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 368 MachineMemOperand* MMO = nullptr; 369 370 // Emit new store if we didn't do it for this ptr before 371 if (!Loc.getNode()) { 372 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 373 Builder); 374 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 375 // We use TargetFrameIndex so that isel will not select it into LEA 376 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 377 378 // Right now we always allocate spill slots that are of the same 379 // size as the value we're about to spill (the size of spillee can 380 // vary since we spill vectors of pointers too). At some point we 381 // can consider allowing spills of smaller values to larger slots 382 // (i.e. change the '==' in the assert below to a '>='). 383 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 384 assert((MFI.getObjectSize(Index) * 8) == 385 (int64_t)Incoming.getValueSizeInBits() && 386 "Bad spill: stack slot does not match!"); 387 388 // Note: Using the alignment of the spill slot (rather than the abi or 389 // preferred alignment) is required for correctness when dealing with spill 390 // slots with preferred alignments larger than frame alignment.. 391 auto &MF = Builder.DAG.getMachineFunction(); 392 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 393 auto *StoreMMO = MF.getMachineMemOperand( 394 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 395 MFI.getObjectAlign(Index)); 396 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 397 StoreMMO); 398 399 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 400 401 Builder.StatepointLowering.setLocation(Incoming, Loc); 402 } 403 404 assert(Loc.getNode()); 405 return std::make_tuple(Loc, Chain, MMO); 406 } 407 408 /// Lower a single value incoming to a statepoint node. This value can be 409 /// either a deopt value or a gc value, the handling is the same. We special 410 /// case constants and allocas, then fall back to spilling if required. 411 static void 412 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 413 SmallVectorImpl<SDValue> &Ops, 414 SmallVectorImpl<MachineMemOperand *> &MemRefs, 415 SelectionDAGBuilder &Builder) { 416 417 if (willLowerDirectly(Incoming)) { 418 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 419 // This handles allocas as arguments to the statepoint (this is only 420 // really meaningful for a deopt value. For GC, we'd be trying to 421 // relocate the address of the alloca itself?) 422 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 423 "Incoming value is a frame index!"); 424 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 425 Builder.getFrameIndexTy())); 426 427 auto &MF = Builder.DAG.getMachineFunction(); 428 auto *MMO = getMachineMemOperand(MF, *FI); 429 MemRefs.push_back(MMO); 430 return; 431 } 432 433 assert(Incoming.getValueType().getSizeInBits() <= 64); 434 435 if (Incoming.isUndef()) { 436 // Put an easily recognized constant that's unlikely to be a valid 437 // value so that uses of undef by the consumer of the stackmap is 438 // easily recognized. This is legal since the compiler is always 439 // allowed to chose an arbitrary value for undef. 440 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 441 return; 442 } 443 444 // If the original value was a constant, make sure it gets recorded as 445 // such in the stackmap. This is required so that the consumer can 446 // parse any internal format to the deopt state. It also handles null 447 // pointers and other constant pointers in GC states. 448 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 449 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 450 return; 451 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 452 pushStackMapConstant(Ops, Builder, 453 C->getValueAPF().bitcastToAPInt().getZExtValue()); 454 return; 455 } 456 457 llvm_unreachable("unhandled direct lowering case"); 458 } 459 460 461 462 if (!RequireSpillSlot) { 463 // If this value is live in (not live-on-return, or live-through), we can 464 // treat it the same way patchpoint treats it's "live in" values. We'll 465 // end up folding some of these into stack references, but they'll be 466 // handled by the register allocator. Note that we do not have the notion 467 // of a late use so these values might be placed in registers which are 468 // clobbered by the call. This is fine for live-in. For live-through 469 // fix-up pass should be executed to force spilling of such registers. 470 Ops.push_back(Incoming); 471 } else { 472 // Otherwise, locate a spill slot and explicitly spill it so it can be 473 // found by the runtime later. Note: We know all of these spills are 474 // independent, but don't bother to exploit that chain wise. DAGCombine 475 // will happily do so as needed, so doing it here would be a small compile 476 // time win at most. 477 SDValue Chain = Builder.getRoot(); 478 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 479 Ops.push_back(std::get<0>(Res)); 480 if (auto *MMO = std::get<2>(Res)) 481 MemRefs.push_back(MMO); 482 Chain = std::get<1>(Res);; 483 Builder.DAG.setRoot(Chain); 484 } 485 486 } 487 488 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 489 /// lowering is described in lowerIncomingStatepointValue. This function is 490 /// responsible for lowering everything in the right position and playing some 491 /// tricks to avoid redundant stack manipulation where possible. On 492 /// completion, 'Ops' will contain ready to use operands for machine code 493 /// statepoint. The chain nodes will have already been created and the DAG root 494 /// will be set to the last value spilled (if any were). 495 static void 496 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 497 SmallVectorImpl<MachineMemOperand *> &MemRefs, 498 SmallVectorImpl<SDValue> &GCPtrs, 499 DenseMap<SDValue, int> &LowerAsVReg, 500 SelectionDAGBuilder::StatepointLoweringInfo &SI, 501 SelectionDAGBuilder &Builder) { 502 // Lower the deopt and gc arguments for this statepoint. Layout will be: 503 // deopt argument length, deopt arguments.., gc arguments... 504 #ifndef NDEBUG 505 if (auto *GFI = Builder.GFI) { 506 // Check that each of the gc pointer and bases we've gotten out of the 507 // safepoint is something the strategy thinks might be a pointer (or vector 508 // of pointers) into the GC heap. This is basically just here to help catch 509 // errors during statepoint insertion. TODO: This should actually be in the 510 // Verifier, but we can't get to the GCStrategy from there (yet). 511 GCStrategy &S = GFI->getStrategy(); 512 for (const Value *V : SI.Bases) { 513 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 514 if (Opt.hasValue()) { 515 assert(Opt.getValue() && 516 "non gc managed base pointer found in statepoint"); 517 } 518 } 519 for (const Value *V : SI.Ptrs) { 520 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 521 if (Opt.hasValue()) { 522 assert(Opt.getValue() && 523 "non gc managed derived pointer found in statepoint"); 524 } 525 } 526 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 527 } else { 528 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 529 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 530 } 531 #endif 532 533 // Figure out what lowering strategy we're going to use for each part 534 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 535 // as "live-through". A "live-through" variable is one which is "live-in", 536 // "live-out", and live throughout the lifetime of the call (i.e. we can find 537 // it from any PC within the transitive callee of the statepoint). In 538 // particular, if the callee spills callee preserved registers we may not 539 // be able to find a value placed in that register during the call. This is 540 // fine for live-out, but not for live-through. If we were willing to make 541 // assumptions about the code generator producing the callee, we could 542 // potentially allow live-through values in callee saved registers. 543 const bool LiveInDeopt = 544 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 545 546 // Decide which deriver pointers will go on VRegs 547 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue(); 548 549 // Pointers used on exceptional path of invoke statepoint. 550 // We cannot assing them to VRegs. 551 SmallSet<SDValue, 8> LPadPointers; 552 if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) { 553 LandingPadInst *LPI = StInvoke->getLandingPadInst(); 554 for (auto *Relocate : SI.GCRelocates) 555 if (Relocate->getOperand(0) == LPI) { 556 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr())); 557 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr())); 558 } 559 } 560 561 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n"); 562 563 // List of unique lowered GC Pointer values. 564 SmallSetVector<SDValue, 16> LoweredGCPtrs; 565 // Map lowered GC Pointer value to the index in above vector 566 DenseMap<SDValue, unsigned> GCPtrIndexMap; 567 568 unsigned CurNumVRegs = 0; 569 570 auto canPassGCPtrOnVReg = [&](SDValue SD) { 571 if (SD.getValueType().isVector()) 572 return false; 573 if (LPadPointers.count(SD)) 574 return false; 575 return !willLowerDirectly(SD); 576 }; 577 578 auto processGCPtr = [&](const Value *V) { 579 SDValue PtrSD = Builder.getValue(V); 580 if (!LoweredGCPtrs.insert(PtrSD)) 581 return; // skip duplicates 582 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1; 583 584 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen"); 585 if (LowerAsVReg.size() == MaxVRegPtrs) 586 return; 587 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() && 588 "IR and SD types disagree"); 589 if (!canPassGCPtrOnVReg(PtrSD)) { 590 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG)); 591 return; 592 } 593 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG)); 594 LowerAsVReg[PtrSD] = CurNumVRegs++; 595 }; 596 597 // Process derived pointers first to give them more chance to go on VReg. 598 for (const Value *V : SI.Ptrs) 599 processGCPtr(V); 600 for (const Value *V : SI.Bases) 601 processGCPtr(V); 602 603 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n"); 604 605 auto isGCValue = [&](const Value *V) { 606 auto *Ty = V->getType(); 607 if (!Ty->isPtrOrPtrVectorTy()) 608 return false; 609 if (auto *GFI = Builder.GFI) 610 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 611 return *IsManaged; 612 return true; // conservative 613 }; 614 615 auto requireSpillSlot = [&](const Value *V) { 616 if (isGCValue(V)) 617 return !LowerAsVReg.count(Builder.getValue(V)); 618 return !(LiveInDeopt || UseRegistersForDeoptValues); 619 }; 620 621 // Before we actually start lowering (and allocating spill slots for values), 622 // reserve any stack slots which we judge to be profitable to reuse for a 623 // particular value. This is purely an optimization over the code below and 624 // doesn't change semantics at all. It is important for performance that we 625 // reserve slots for both deopt and gc values before lowering either. 626 for (const Value *V : SI.DeoptState) { 627 if (requireSpillSlot(V)) 628 reservePreviousStackSlotForValue(V, Builder); 629 } 630 631 for (const Value *V : SI.Ptrs) { 632 SDValue SDV = Builder.getValue(V); 633 if (!LowerAsVReg.count(SDV)) 634 reservePreviousStackSlotForValue(V, Builder); 635 } 636 637 for (const Value *V : SI.Bases) { 638 SDValue SDV = Builder.getValue(V); 639 if (!LowerAsVReg.count(SDV)) 640 reservePreviousStackSlotForValue(V, Builder); 641 } 642 643 // First, prefix the list with the number of unique values to be 644 // lowered. Note that this is the number of *Values* not the 645 // number of SDValues required to lower them. 646 const int NumVMSArgs = SI.DeoptState.size(); 647 pushStackMapConstant(Ops, Builder, NumVMSArgs); 648 649 // The vm state arguments are lowered in an opaque manner. We do not know 650 // what type of values are contained within. 651 LLVM_DEBUG(dbgs() << "Lowering deopt state\n"); 652 for (const Value *V : SI.DeoptState) { 653 SDValue Incoming; 654 // If this is a function argument at a static frame index, generate it as 655 // the frame index. 656 if (const Argument *Arg = dyn_cast<Argument>(V)) { 657 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 658 if (FI != INT_MAX) 659 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 660 } 661 if (!Incoming.getNode()) 662 Incoming = Builder.getValue(V); 663 LLVM_DEBUG(dbgs() << "Value " << *V 664 << " requireSpillSlot = " << requireSpillSlot(V) << "\n"); 665 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 666 Builder); 667 } 668 669 // Finally, go ahead and lower all the gc arguments. 670 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size()); 671 for (SDValue SDV : LoweredGCPtrs) 672 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs, 673 Builder); 674 675 // Copy to out vector. LoweredGCPtrs will be empty after this point. 676 GCPtrs = LoweredGCPtrs.takeVector(); 677 678 // If there are any explicit spill slots passed to the statepoint, record 679 // them, but otherwise do not do anything special. These are user provided 680 // allocas and give control over placement to the consumer. In this case, 681 // it is the contents of the slot which may get updated, not the pointer to 682 // the alloca 683 SmallVector<SDValue, 4> Allocas; 684 for (Value *V : SI.GCArgs) { 685 SDValue Incoming = Builder.getValue(V); 686 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 687 // This handles allocas as arguments to the statepoint 688 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 689 "Incoming value is a frame index!"); 690 Allocas.push_back(Builder.DAG.getTargetFrameIndex( 691 FI->getIndex(), Builder.getFrameIndexTy())); 692 693 auto &MF = Builder.DAG.getMachineFunction(); 694 auto *MMO = getMachineMemOperand(MF, *FI); 695 MemRefs.push_back(MMO); 696 } 697 } 698 pushStackMapConstant(Ops, Builder, Allocas.size()); 699 Ops.append(Allocas.begin(), Allocas.end()); 700 701 // Now construct GC base/derived map; 702 pushStackMapConstant(Ops, Builder, SI.Ptrs.size()); 703 SDLoc L = Builder.getCurSDLoc(); 704 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) { 705 SDValue Base = Builder.getValue(SI.Bases[i]); 706 assert(GCPtrIndexMap.count(Base) && "base not found in index map"); 707 Ops.push_back( 708 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64)); 709 SDValue Derived = Builder.getValue(SI.Ptrs[i]); 710 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map"); 711 Ops.push_back( 712 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64)); 713 } 714 } 715 716 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 717 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 718 // The basic scheme here is that information about both the original call and 719 // the safepoint is encoded in the CallInst. We create a temporary call and 720 // lower it, then reverse engineer the calling sequence. 721 722 NumOfStatepoints++; 723 // Clear state 724 StatepointLowering.startNewStatepoint(*this); 725 assert(SI.Bases.size() == SI.Ptrs.size() && 726 SI.Ptrs.size() <= SI.GCRelocates.size()); 727 728 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n"); 729 #ifndef NDEBUG 730 for (auto *Reloc : SI.GCRelocates) 731 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 732 StatepointLowering.scheduleRelocCall(*Reloc); 733 #endif 734 735 // Lower statepoint vmstate and gcstate arguments 736 737 // All lowered meta args. 738 SmallVector<SDValue, 10> LoweredMetaArgs; 739 // Lowered GC pointers (subset of above). 740 SmallVector<SDValue, 16> LoweredGCArgs; 741 SmallVector<MachineMemOperand*, 16> MemRefs; 742 // Maps derived pointer SDValue to statepoint result of relocated pointer. 743 DenseMap<SDValue, int> LowerAsVReg; 744 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg, 745 SI, *this); 746 747 // Now that we've emitted the spills, we need to update the root so that the 748 // call sequence is ordered correctly. 749 SI.CLI.setChain(getRoot()); 750 751 // Get call node, we will replace it later with statepoint 752 SDValue ReturnVal; 753 SDNode *CallNode; 754 std::tie(ReturnVal, CallNode) = 755 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 756 757 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 758 // nodes with all the appropriate arguments and return values. 759 760 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 761 SDValue Chain = CallNode->getOperand(0); 762 763 SDValue Glue; 764 bool CallHasIncomingGlue = CallNode->getGluedNode(); 765 if (CallHasIncomingGlue) { 766 // Glue is always last operand 767 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 768 } 769 770 // Build the GC_TRANSITION_START node if necessary. 771 // 772 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 773 // order in which they appear in the call to the statepoint intrinsic. If 774 // any of the operands is a pointer-typed, that operand is immediately 775 // followed by a SRCVALUE for the pointer that may be used during lowering 776 // (e.g. to form MachinePointerInfo values for loads/stores). 777 const bool IsGCTransition = 778 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 779 (uint64_t)StatepointFlags::GCTransition; 780 if (IsGCTransition) { 781 SmallVector<SDValue, 8> TSOps; 782 783 // Add chain 784 TSOps.push_back(Chain); 785 786 // Add GC transition arguments 787 for (const Value *V : SI.GCTransitionArgs) { 788 TSOps.push_back(getValue(V)); 789 if (V->getType()->isPointerTy()) 790 TSOps.push_back(DAG.getSrcValue(V)); 791 } 792 793 // Add glue if necessary 794 if (CallHasIncomingGlue) 795 TSOps.push_back(Glue); 796 797 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 798 799 SDValue GCTransitionStart = 800 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 801 802 Chain = GCTransitionStart.getValue(0); 803 Glue = GCTransitionStart.getValue(1); 804 } 805 806 // TODO: Currently, all of these operands are being marked as read/write in 807 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 808 // and flags to be read-only. 809 SmallVector<SDValue, 40> Ops; 810 811 // Add the <id> and <numBytes> constants. 812 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 813 Ops.push_back( 814 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 815 816 // Calculate and push starting position of vmstate arguments 817 // Get number of arguments incoming directly into call node 818 unsigned NumCallRegArgs = 819 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 820 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 821 822 // Add call target 823 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 824 Ops.push_back(CallTarget); 825 826 // Add call arguments 827 // Get position of register mask in the call 828 SDNode::op_iterator RegMaskIt; 829 if (CallHasIncomingGlue) 830 RegMaskIt = CallNode->op_end() - 2; 831 else 832 RegMaskIt = CallNode->op_end() - 1; 833 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 834 835 // Add a constant argument for the calling convention 836 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 837 838 // Add a constant argument for the flags 839 uint64_t Flags = SI.StatepointFlags; 840 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 841 "Unknown flag used"); 842 pushStackMapConstant(Ops, *this, Flags); 843 844 // Insert all vmstate and gcstate arguments 845 llvm::append_range(Ops, LoweredMetaArgs); 846 847 // Add register mask from call node 848 Ops.push_back(*RegMaskIt); 849 850 // Add chain 851 Ops.push_back(Chain); 852 853 // Same for the glue, but we add it only if original call had it 854 if (Glue.getNode()) 855 Ops.push_back(Glue); 856 857 // Compute return values. Provide a glue output since we consume one as 858 // input. This allows someone else to chain off us as needed. 859 SmallVector<EVT, 8> NodeTys; 860 for (auto SD : LoweredGCArgs) { 861 if (!LowerAsVReg.count(SD)) 862 continue; 863 NodeTys.push_back(SD.getValueType()); 864 } 865 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n"); 866 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering"); 867 NodeTys.push_back(MVT::Other); 868 NodeTys.push_back(MVT::Glue); 869 870 unsigned NumResults = NodeTys.size(); 871 MachineSDNode *StatepointMCNode = 872 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 873 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 874 875 // For values lowered to tied-defs, create the virtual registers. Note that 876 // for simplicity, we *always* create a vreg even within a single block. 877 DenseMap<SDValue, Register> VirtRegs; 878 for (const auto *Relocate : SI.GCRelocates) { 879 Value *Derived = Relocate->getDerivedPtr(); 880 SDValue SD = getValue(Derived); 881 if (!LowerAsVReg.count(SD)) 882 continue; 883 884 // Handle multiple gc.relocates of the same input efficiently. 885 if (VirtRegs.count(SD)) 886 continue; 887 888 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]); 889 890 auto *RetTy = Relocate->getType(); 891 Register Reg = FuncInfo.CreateRegs(RetTy); 892 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 893 DAG.getDataLayout(), Reg, RetTy, None); 894 SDValue Chain = DAG.getRoot(); 895 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr); 896 PendingExports.push_back(Chain); 897 898 VirtRegs[SD] = Reg; 899 } 900 901 // Record for later use how each relocation was lowered. This is needed to 902 // allow later gc.relocates to mirror the lowering chosen. 903 const Instruction *StatepointInstr = SI.StatepointInstr; 904 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr]; 905 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 906 const Value *V = Relocate->getDerivedPtr(); 907 SDValue SDV = getValue(V); 908 SDValue Loc = StatepointLowering.getLocation(SDV); 909 910 RecordType Record; 911 if (LowerAsVReg.count(SDV)) { 912 Record.type = RecordType::VReg; 913 assert(VirtRegs.count(SDV)); 914 Record.payload.Reg = VirtRegs[SDV]; 915 } else if (Loc.getNode()) { 916 Record.type = RecordType::Spill; 917 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 918 } else { 919 Record.type = RecordType::NoRelocate; 920 // If we didn't relocate a value, we'll essentialy end up inserting an 921 // additional use of the original value when lowering the gc.relocate. 922 // We need to make sure the value is available at the new use, which 923 // might be in another block. 924 if (Relocate->getParent() != StatepointInstr->getParent()) 925 ExportFromCurrentBlock(V); 926 } 927 RelocationMap[V] = Record; 928 } 929 930 931 932 SDNode *SinkNode = StatepointMCNode; 933 934 // Build the GC_TRANSITION_END node if necessary. 935 // 936 // See the comment above regarding GC_TRANSITION_START for the layout of 937 // the operands to the GC_TRANSITION_END node. 938 if (IsGCTransition) { 939 SmallVector<SDValue, 8> TEOps; 940 941 // Add chain 942 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2)); 943 944 // Add GC transition arguments 945 for (const Value *V : SI.GCTransitionArgs) { 946 TEOps.push_back(getValue(V)); 947 if (V->getType()->isPointerTy()) 948 TEOps.push_back(DAG.getSrcValue(V)); 949 } 950 951 // Add glue 952 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1)); 953 954 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 955 956 SDValue GCTransitionStart = 957 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 958 959 SinkNode = GCTransitionStart.getNode(); 960 } 961 962 // Replace original call 963 // Call: ch,glue = CALL ... 964 // Statepoint: [gc relocates],ch,glue = STATEPOINT ... 965 unsigned NumSinkValues = SinkNode->getNumValues(); 966 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2), 967 SDValue(SinkNode, NumSinkValues - 1)}; 968 DAG.ReplaceAllUsesWith(CallNode, StatepointValues); 969 // Remove original call node 970 DAG.DeleteNode(CallNode); 971 972 // Since we always emit CopyToRegs (even for local relocates), we must 973 // update root, so that they are emitted before any local uses. 974 (void)getControlRoot(); 975 976 // TODO: A better future implementation would be to emit a single variable 977 // argument, variable return value STATEPOINT node here and then hookup the 978 // return value of each gc.relocate to the respective output of the 979 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 980 // to actually be possible today. 981 982 return ReturnVal; 983 } 984 985 void 986 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 987 const BasicBlock *EHPadBB /*= nullptr*/) { 988 assert(I.getCallingConv() != CallingConv::AnyReg && 989 "anyregcc is not supported on statepoints!"); 990 991 #ifndef NDEBUG 992 // Check that the associated GCStrategy expects to encounter statepoints. 993 assert(GFI->getStrategy().useStatepoints() && 994 "GCStrategy does not expect to encounter statepoints"); 995 #endif 996 997 SDValue ActualCallee; 998 SDValue Callee = getValue(I.getActualCalledOperand()); 999 1000 if (I.getNumPatchBytes() > 0) { 1001 // If we've been asked to emit a nop sequence instead of a call instruction 1002 // for this statepoint then don't lower the call target, but use a constant 1003 // `undef` instead. Not lowering the call target lets statepoint clients 1004 // get away without providing a physical address for the symbolic call 1005 // target at link time. 1006 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 1007 } else { 1008 ActualCallee = Callee; 1009 } 1010 1011 StatepointLoweringInfo SI(DAG); 1012 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 1013 I.getNumCallArgs(), ActualCallee, 1014 I.getActualReturnType(), false /* IsPatchPoint */); 1015 1016 // There may be duplication in the gc.relocate list; such as two copies of 1017 // each relocation on normal and exceptional path for an invoke. We only 1018 // need to spill once and record one copy in the stackmap, but we need to 1019 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 1020 // handled as a CSE problem elsewhere.) 1021 // TODO: There a couple of major stackmap size optimizations we could do 1022 // here if we wished. 1023 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 1024 // record {B,B} if it's seen later. 1025 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 1026 // given that, we could change the format to record base pointer relocations 1027 // separately with half the space. This would require a format rev and a 1028 // fairly major rework of the STATEPOINT node though. 1029 SmallSet<SDValue, 8> Seen; 1030 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 1031 SI.GCRelocates.push_back(Relocate); 1032 1033 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 1034 if (Seen.insert(DerivedSD).second) { 1035 SI.Bases.push_back(Relocate->getBasePtr()); 1036 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 1037 } 1038 } 1039 1040 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 1041 SI.StatepointInstr = &I; 1042 SI.ID = I.getID(); 1043 1044 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 1045 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 1046 I.gc_transition_args_end()); 1047 1048 SI.StatepointFlags = I.getFlags(); 1049 SI.NumPatchBytes = I.getNumPatchBytes(); 1050 SI.EHPadBB = EHPadBB; 1051 1052 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 1053 1054 // Export the result value if needed 1055 const GCResultInst *GCResult = I.getGCResult(); 1056 Type *RetTy = I.getActualReturnType(); 1057 1058 if (RetTy->isVoidTy() || !GCResult) { 1059 // The return value is not needed, just generate a poison value. 1060 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 1061 return; 1062 } 1063 1064 if (GCResult->getParent() == I.getParent()) { 1065 // Result value will be used in a same basic block. Don't export it or 1066 // perform any explicit register copies. The gc_result will simply grab 1067 // this value. 1068 setValue(&I, ReturnValue); 1069 return; 1070 } 1071 1072 // Result value will be used in a different basic block so we need to export 1073 // it now. Default exporting mechanism will not work here because statepoint 1074 // call has a different type than the actual call. It means that by default 1075 // llvm will create export register of the wrong type (always i32 in our 1076 // case). So instead we need to create export register with correct type 1077 // manually. 1078 // TODO: To eliminate this problem we can remove gc.result intrinsics 1079 // completely and make statepoint call to return a tuple. 1080 unsigned Reg = FuncInfo.CreateRegs(RetTy); 1081 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1082 DAG.getDataLayout(), Reg, RetTy, 1083 I.getCallingConv()); 1084 SDValue Chain = DAG.getEntryNode(); 1085 1086 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 1087 PendingExports.push_back(Chain); 1088 FuncInfo.ValueMap[&I] = Reg; 1089 } 1090 1091 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 1092 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 1093 bool VarArgDisallowed, bool ForceVoidReturnTy) { 1094 StatepointLoweringInfo SI(DAG); 1095 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 1096 populateCallLoweringInfo( 1097 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 1098 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 1099 false); 1100 if (!VarArgDisallowed) 1101 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 1102 1103 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 1104 1105 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 1106 1107 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1108 SI.ID = SD.StatepointID.getValueOr(DefaultID); 1109 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 1110 1111 SI.DeoptState = 1112 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 1113 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 1114 SI.EHPadBB = EHPadBB; 1115 1116 // NB! The GC arguments are deliberately left empty. 1117 1118 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 1119 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 1120 setValue(Call, ReturnVal); 1121 } 1122 } 1123 1124 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 1125 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 1126 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 1127 /* VarArgDisallowed = */ false, 1128 /* ForceVoidReturnTy = */ false); 1129 } 1130 1131 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 1132 // The result value of the gc_result is simply the result of the actual 1133 // call. We've already emitted this, so just grab the value. 1134 const GCStatepointInst *SI = CI.getStatepoint(); 1135 1136 if (SI->getParent() == CI.getParent()) { 1137 setValue(&CI, getValue(SI)); 1138 return; 1139 } 1140 // Statepoint is in different basic block so we should have stored call 1141 // result in a virtual register. 1142 // We can not use default getValue() functionality to copy value from this 1143 // register because statepoint and actual call return types can be 1144 // different, and getValue() will use CopyFromReg of the wrong type, 1145 // which is always i32 in our case. 1146 Type *RetTy = SI->getActualReturnType(); 1147 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy); 1148 1149 assert(CopyFromReg.getNode()); 1150 setValue(&CI, CopyFromReg); 1151 } 1152 1153 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 1154 #ifndef NDEBUG 1155 // Consistency check 1156 // We skip this check for relocates not in the same basic block as their 1157 // statepoint. It would be too expensive to preserve validation info through 1158 // different basic blocks. 1159 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 1160 StatepointLowering.relocCallVisited(Relocate); 1161 1162 auto *Ty = Relocate.getType()->getScalarType(); 1163 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 1164 assert(*IsManaged && "Non gc managed pointer relocated!"); 1165 #endif 1166 1167 const Value *DerivedPtr = Relocate.getDerivedPtr(); 1168 auto &RelocationMap = 1169 FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()]; 1170 auto SlotIt = RelocationMap.find(DerivedPtr); 1171 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value"); 1172 const RecordType &Record = SlotIt->second; 1173 1174 // If relocation was done via virtual register.. 1175 if (Record.type == RecordType::VReg) { 1176 Register InReg = Record.payload.Reg; 1177 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1178 DAG.getDataLayout(), InReg, Relocate.getType(), 1179 None); // This is not an ABI copy. 1180 // We generate copy to/from regs even for local uses, hence we must 1181 // chain with current root to ensure proper ordering of copies w.r.t. 1182 // statepoint. 1183 SDValue Chain = DAG.getRoot(); 1184 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 1185 Chain, nullptr, nullptr); 1186 setValue(&Relocate, Relocation); 1187 return; 1188 } 1189 1190 SDValue SD = getValue(DerivedPtr); 1191 1192 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1193 // Lowering relocate(undef) as arbitrary constant. Current constant value 1194 // is chosen such that it's unlikely to be a valid pointer. 1195 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1196 return; 1197 } 1198 1199 1200 // We didn't need to spill these special cases (constants and allocas). 1201 // See the handling in spillIncomingValueForStatepoint for detail. 1202 if (Record.type == RecordType::NoRelocate) { 1203 setValue(&Relocate, SD); 1204 return; 1205 } 1206 1207 assert(Record.type == RecordType::Spill); 1208 1209 unsigned Index = Record.payload.FI;; 1210 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1211 1212 // All the reloads are independent and are reading memory only modified by 1213 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1214 // this this let's CSE kick in for free and allows reordering of instructions 1215 // if possible. The lowering for statepoint sets the root, so this is 1216 // ordering all reloads with the either a) the statepoint node itself, or b) 1217 // the entry of the current block for an invoke statepoint. 1218 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1219 1220 auto &MF = DAG.getMachineFunction(); 1221 auto &MFI = MF.getFrameInfo(); 1222 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1223 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1224 MFI.getObjectSize(Index), 1225 MFI.getObjectAlign(Index)); 1226 1227 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1228 Relocate.getType()); 1229 1230 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1231 SpillSlot, LoadMMO); 1232 PendingLoads.push_back(SpillLoad.getValue(1)); 1233 1234 assert(SpillLoad.getNode()); 1235 setValue(&Relocate, SpillLoad); 1236 } 1237 1238 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1239 const auto &TLI = DAG.getTargetLoweringInfo(); 1240 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1241 TLI.getPointerTy(DAG.getDataLayout())); 1242 1243 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1244 // call. We also do not lower the return value to any virtual register, and 1245 // change the immediately following return to a trap instruction. 1246 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1247 /* VarArgDisallowed = */ true, 1248 /* ForceVoidReturnTy = */ true); 1249 } 1250 1251 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1252 // We do not lower the return value from llvm.deoptimize to any virtual 1253 // register, and change the immediately following return to a trap 1254 // instruction. 1255 if (DAG.getTarget().Options.TrapUnreachable) 1256 DAG.setRoot( 1257 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1258 } 1259