1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/GCMetadata.h" 26 #include "llvm/CodeGen/GCStrategy.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 #include <iterator> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "statepoint-lowering" 58 59 STATISTIC(NumSlotsAllocatedForStatepoints, 60 "Number of stack slots allocated for statepoints"); 61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 62 STATISTIC(StatepointMaxSlotsRequired, 63 "Maximum number of stack slots required for a singe statepoint"); 64 65 cl::opt<bool> UseRegistersForDeoptValues( 66 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 67 cl::desc("Allow using registers for non pointer deopt args")); 68 69 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 70 SelectionDAGBuilder &Builder, uint64_t Value) { 71 SDLoc L = Builder.getCurSDLoc(); 72 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 73 MVT::i64)); 74 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 75 } 76 77 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 78 // Consistency check 79 assert(PendingGCRelocateCalls.empty() && 80 "Trying to visit statepoint before finished processing previous one"); 81 Locations.clear(); 82 NextSlotToAllocate = 0; 83 // Need to resize this on each safepoint - we need the two to stay in sync and 84 // the clear patterns of a SelectionDAGBuilder have no relation to 85 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 86 AllocatedStackSlots.clear(); 87 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 88 } 89 90 void StatepointLoweringState::clear() { 91 Locations.clear(); 92 AllocatedStackSlots.clear(); 93 assert(PendingGCRelocateCalls.empty() && 94 "cleared before statepoint sequence completed"); 95 } 96 97 SDValue 98 StatepointLoweringState::allocateStackSlot(EVT ValueType, 99 SelectionDAGBuilder &Builder) { 100 NumSlotsAllocatedForStatepoints++; 101 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 102 103 unsigned SpillSize = ValueType.getStoreSize(); 104 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 105 106 // First look for a previously created stack slot which is not in 107 // use (accounting for the fact arbitrary slots may already be 108 // reserved), or to create a new stack slot and use it. 109 110 const size_t NumSlots = AllocatedStackSlots.size(); 111 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 112 113 assert(AllocatedStackSlots.size() == 114 Builder.FuncInfo.StatepointStackSlots.size() && 115 "Broken invariant"); 116 117 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 118 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 119 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 120 if (MFI.getObjectSize(FI) == SpillSize) { 121 AllocatedStackSlots.set(NextSlotToAllocate); 122 // TODO: Is ValueType the right thing to use here? 123 return Builder.DAG.getFrameIndex(FI, ValueType); 124 } 125 } 126 } 127 128 // Couldn't find a free slot, so create a new one: 129 130 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 131 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 132 MFI.markAsStatepointSpillSlotObjectIndex(FI); 133 134 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 135 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 136 assert(AllocatedStackSlots.size() == 137 Builder.FuncInfo.StatepointStackSlots.size() && 138 "Broken invariant"); 139 140 StatepointMaxSlotsRequired.updateMax( 141 Builder.FuncInfo.StatepointStackSlots.size()); 142 143 return SpillSlot; 144 } 145 146 /// Utility function for reservePreviousStackSlotForValue. Tries to find 147 /// stack slot index to which we have spilled value for previous statepoints. 148 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 149 static Optional<int> findPreviousSpillSlot(const Value *Val, 150 SelectionDAGBuilder &Builder, 151 int LookUpDepth) { 152 // Can not look any further - give up now 153 if (LookUpDepth <= 0) 154 return None; 155 156 // Spill location is known for gc relocates 157 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 158 const auto &SpillMap = 159 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 160 161 auto It = SpillMap.find(Relocate->getDerivedPtr()); 162 if (It == SpillMap.end()) 163 return None; 164 165 return It->second; 166 } 167 168 // Look through bitcast instructions. 169 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 170 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 171 172 // Look through phi nodes 173 // All incoming values should have same known stack slot, otherwise result 174 // is unknown. 175 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 176 Optional<int> MergedResult = None; 177 178 for (auto &IncomingValue : Phi->incoming_values()) { 179 Optional<int> SpillSlot = 180 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 181 if (!SpillSlot.hasValue()) 182 return None; 183 184 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 185 return None; 186 187 MergedResult = SpillSlot; 188 } 189 return MergedResult; 190 } 191 192 // TODO: We can do better for PHI nodes. In cases like this: 193 // ptr = phi(relocated_pointer, not_relocated_pointer) 194 // statepoint(ptr) 195 // We will return that stack slot for ptr is unknown. And later we might 196 // assign different stack slots for ptr and relocated_pointer. This limits 197 // llvm's ability to remove redundant stores. 198 // Unfortunately it's hard to accomplish in current infrastructure. 199 // We use this function to eliminate spill store completely, while 200 // in example we still need to emit store, but instead of any location 201 // we need to use special "preferred" location. 202 203 // TODO: handle simple updates. If a value is modified and the original 204 // value is no longer live, it would be nice to put the modified value in the 205 // same slot. This allows folding of the memory accesses for some 206 // instructions types (like an increment). 207 // statepoint (i) 208 // i1 = i+1 209 // statepoint (i1) 210 // However we need to be careful for cases like this: 211 // statepoint(i) 212 // i1 = i+1 213 // statepoint(i, i1) 214 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 215 // put handling of simple modifications in this function like it's done 216 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 217 // which we visit values is unspecified. 218 219 // Don't know any information about this instruction 220 return None; 221 } 222 223 /// Try to find existing copies of the incoming values in stack slots used for 224 /// statepoint spilling. If we can find a spill slot for the incoming value, 225 /// mark that slot as allocated, and reuse the same slot for this safepoint. 226 /// This helps to avoid series of loads and stores that only serve to reshuffle 227 /// values on the stack between calls. 228 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 229 SelectionDAGBuilder &Builder) { 230 SDValue Incoming = Builder.getValue(IncomingValue); 231 232 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 233 // We won't need to spill this, so no need to check for previously 234 // allocated stack slots 235 return; 236 } 237 238 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 239 if (OldLocation.getNode()) 240 // Duplicates in input 241 return; 242 243 const int LookUpDepth = 6; 244 Optional<int> Index = 245 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 246 if (!Index.hasValue()) 247 return; 248 249 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 250 251 auto SlotIt = find(StatepointSlots, *Index); 252 assert(SlotIt != StatepointSlots.end() && 253 "Value spilled to the unknown stack slot"); 254 255 // This is one of our dedicated lowering slots 256 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 257 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 258 // stack slot already assigned to someone else, can't use it! 259 // TODO: currently we reserve space for gc arguments after doing 260 // normal allocation for deopt arguments. We should reserve for 261 // _all_ deopt and gc arguments, then start allocating. This 262 // will prevent some moves being inserted when vm state changes, 263 // but gc state doesn't between two calls. 264 return; 265 } 266 // Reserve this stack slot 267 Builder.StatepointLowering.reserveStackSlot(Offset); 268 269 // Cache this slot so we find it when going through the normal 270 // assignment loop. 271 SDValue Loc = 272 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 273 Builder.StatepointLowering.setLocation(Incoming, Loc); 274 } 275 276 /// Extract call from statepoint, lower it and return pointer to the 277 /// call node. Also update NodeMap so that getValue(statepoint) will 278 /// reference lowered call result 279 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 280 SelectionDAGBuilder::StatepointLoweringInfo &SI, 281 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 282 SDValue ReturnValue, CallEndVal; 283 std::tie(ReturnValue, CallEndVal) = 284 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 285 SDNode *CallEnd = CallEndVal.getNode(); 286 287 // Get a call instruction from the call sequence chain. Tail calls are not 288 // allowed. The following code is essentially reverse engineering X86's 289 // LowerCallTo. 290 // 291 // We are expecting DAG to have the following form: 292 // 293 // ch = eh_label (only in case of invoke statepoint) 294 // ch, glue = callseq_start ch 295 // ch, glue = X86::Call ch, glue 296 // ch, glue = callseq_end ch, glue 297 // get_return_value ch, glue 298 // 299 // get_return_value can either be a sequence of CopyFromReg instructions 300 // to grab the return value from the return register(s), or it can be a LOAD 301 // to load a value returned by reference via a stack slot. 302 303 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 304 if (HasDef) { 305 if (CallEnd->getOpcode() == ISD::LOAD) 306 CallEnd = CallEnd->getOperand(0).getNode(); 307 else 308 while (CallEnd->getOpcode() == ISD::CopyFromReg) 309 CallEnd = CallEnd->getOperand(0).getNode(); 310 } 311 312 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 313 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 314 } 315 316 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 317 FrameIndexSDNode &FI) { 318 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 319 auto MMOFlags = MachineMemOperand::MOStore | 320 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 321 auto &MFI = MF.getFrameInfo(); 322 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 323 MFI.getObjectSize(FI.getIndex()), 324 MFI.getObjectAlign(FI.getIndex())); 325 } 326 327 /// Spill a value incoming to the statepoint. It might be either part of 328 /// vmstate 329 /// or gcstate. In both cases unconditionally spill it on the stack unless it 330 /// is a null constant. Return pair with first element being frame index 331 /// containing saved value and second element with outgoing chain from the 332 /// emitted store 333 static std::tuple<SDValue, SDValue, MachineMemOperand*> 334 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 335 SelectionDAGBuilder &Builder) { 336 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 337 MachineMemOperand* MMO = nullptr; 338 339 // Emit new store if we didn't do it for this ptr before 340 if (!Loc.getNode()) { 341 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 342 Builder); 343 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 344 // We use TargetFrameIndex so that isel will not select it into LEA 345 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 346 347 // Right now we always allocate spill slots that are of the same 348 // size as the value we're about to spill (the size of spillee can 349 // vary since we spill vectors of pointers too). At some point we 350 // can consider allowing spills of smaller values to larger slots 351 // (i.e. change the '==' in the assert below to a '>='). 352 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 353 assert((MFI.getObjectSize(Index) * 8) == 354 (int64_t)Incoming.getValueSizeInBits() && 355 "Bad spill: stack slot does not match!"); 356 357 // Note: Using the alignment of the spill slot (rather than the abi or 358 // preferred alignment) is required for correctness when dealing with spill 359 // slots with preferred alignments larger than frame alignment.. 360 auto &MF = Builder.DAG.getMachineFunction(); 361 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 362 auto *StoreMMO = MF.getMachineMemOperand( 363 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 364 MFI.getObjectAlign(Index)); 365 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 366 StoreMMO); 367 368 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 369 370 Builder.StatepointLowering.setLocation(Incoming, Loc); 371 } 372 373 assert(Loc.getNode()); 374 return std::make_tuple(Loc, Chain, MMO); 375 } 376 377 /// Lower a single value incoming to a statepoint node. This value can be 378 /// either a deopt value or a gc value, the handling is the same. We special 379 /// case constants and allocas, then fall back to spilling if required. 380 static void 381 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 382 SmallVectorImpl<SDValue> &Ops, 383 SmallVectorImpl<MachineMemOperand *> &MemRefs, 384 SelectionDAGBuilder &Builder) { 385 // Note: We know all of these spills are independent, but don't bother to 386 // exploit that chain wise. DAGCombine will happily do so as needed, so 387 // doing it here would be a small compile time win at most. 388 SDValue Chain = Builder.getRoot(); 389 390 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 391 // If the original value was a constant, make sure it gets recorded as 392 // such in the stackmap. This is required so that the consumer can 393 // parse any internal format to the deopt state. It also handles null 394 // pointers and other constant pointers in GC states. Note the constant 395 // vectors do not appear to actually hit this path and that anything larger 396 // than an i64 value (not type!) will fail asserts here. 397 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 398 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 399 // This handles allocas as arguments to the statepoint (this is only 400 // really meaningful for a deopt value. For GC, we'd be trying to 401 // relocate the address of the alloca itself?) 402 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 403 "Incoming value is a frame index!"); 404 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 405 Builder.getFrameIndexTy())); 406 407 auto &MF = Builder.DAG.getMachineFunction(); 408 auto *MMO = getMachineMemOperand(MF, *FI); 409 MemRefs.push_back(MMO); 410 411 } else if (!RequireSpillSlot) { 412 // If this value is live in (not live-on-return, or live-through), we can 413 // treat it the same way patchpoint treats it's "live in" values. We'll 414 // end up folding some of these into stack references, but they'll be 415 // handled by the register allocator. Note that we do not have the notion 416 // of a late use so these values might be placed in registers which are 417 // clobbered by the call. This is fine for live-in. For live-through 418 // fix-up pass should be executed to force spilling of such registers. 419 Ops.push_back(Incoming); 420 } else { 421 // Otherwise, locate a spill slot and explicitly spill it so it 422 // can be found by the runtime later. We currently do not support 423 // tracking values through callee saved registers to their eventual 424 // spill location. This would be a useful optimization, but would 425 // need to be optional since it requires a lot of complexity on the 426 // runtime side which not all would support. 427 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 428 Ops.push_back(std::get<0>(Res)); 429 if (auto *MMO = std::get<2>(Res)) 430 MemRefs.push_back(MMO); 431 Chain = std::get<1>(Res);; 432 } 433 434 Builder.DAG.setRoot(Chain); 435 } 436 437 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 438 /// lowering is described in lowerIncomingStatepointValue. This function is 439 /// responsible for lowering everything in the right position and playing some 440 /// tricks to avoid redundant stack manipulation where possible. On 441 /// completion, 'Ops' will contain ready to use operands for machine code 442 /// statepoint. The chain nodes will have already been created and the DAG root 443 /// will be set to the last value spilled (if any were). 444 static void 445 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 446 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 447 SelectionDAGBuilder &Builder) { 448 // Lower the deopt and gc arguments for this statepoint. Layout will be: 449 // deopt argument length, deopt arguments.., gc arguments... 450 #ifndef NDEBUG 451 if (auto *GFI = Builder.GFI) { 452 // Check that each of the gc pointer and bases we've gotten out of the 453 // safepoint is something the strategy thinks might be a pointer (or vector 454 // of pointers) into the GC heap. This is basically just here to help catch 455 // errors during statepoint insertion. TODO: This should actually be in the 456 // Verifier, but we can't get to the GCStrategy from there (yet). 457 GCStrategy &S = GFI->getStrategy(); 458 for (const Value *V : SI.Bases) { 459 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 460 if (Opt.hasValue()) { 461 assert(Opt.getValue() && 462 "non gc managed base pointer found in statepoint"); 463 } 464 } 465 for (const Value *V : SI.Ptrs) { 466 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 467 if (Opt.hasValue()) { 468 assert(Opt.getValue() && 469 "non gc managed derived pointer found in statepoint"); 470 } 471 } 472 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 473 } else { 474 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 475 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 476 } 477 #endif 478 479 // Figure out what lowering strategy we're going to use for each part 480 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 481 // as "live-through". A "live-through" variable is one which is "live-in", 482 // "live-out", and live throughout the lifetime of the call (i.e. we can find 483 // it from any PC within the transitive callee of the statepoint). In 484 // particular, if the callee spills callee preserved registers we may not 485 // be able to find a value placed in that register during the call. This is 486 // fine for live-out, but not for live-through. If we were willing to make 487 // assumptions about the code generator producing the callee, we could 488 // potentially allow live-through values in callee saved registers. 489 const bool LiveInDeopt = 490 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 491 492 auto isGCValue = [&](const Value *V) { 493 auto *Ty = V->getType(); 494 if (!Ty->isPtrOrPtrVectorTy()) 495 return false; 496 if (auto *GFI = Builder.GFI) 497 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 498 return *IsManaged; 499 return true; // conservative 500 }; 501 502 auto requireSpillSlot = [&](const Value *V) { 503 return !(LiveInDeopt || UseRegistersForDeoptValues) || isGCValue(V); 504 }; 505 506 // Before we actually start lowering (and allocating spill slots for values), 507 // reserve any stack slots which we judge to be profitable to reuse for a 508 // particular value. This is purely an optimization over the code below and 509 // doesn't change semantics at all. It is important for performance that we 510 // reserve slots for both deopt and gc values before lowering either. 511 for (const Value *V : SI.DeoptState) { 512 if (requireSpillSlot(V)) 513 reservePreviousStackSlotForValue(V, Builder); 514 } 515 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 516 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 517 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 518 } 519 520 // First, prefix the list with the number of unique values to be 521 // lowered. Note that this is the number of *Values* not the 522 // number of SDValues required to lower them. 523 const int NumVMSArgs = SI.DeoptState.size(); 524 pushStackMapConstant(Ops, Builder, NumVMSArgs); 525 526 // The vm state arguments are lowered in an opaque manner. We do not know 527 // what type of values are contained within. 528 for (const Value *V : SI.DeoptState) { 529 SDValue Incoming; 530 // If this is a function argument at a static frame index, generate it as 531 // the frame index. 532 if (const Argument *Arg = dyn_cast<Argument>(V)) { 533 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 534 if (FI != INT_MAX) 535 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 536 } 537 if (!Incoming.getNode()) 538 Incoming = Builder.getValue(V); 539 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 540 Builder); 541 } 542 543 // Finally, go ahead and lower all the gc arguments. There's no prefixed 544 // length for this one. After lowering, we'll have the base and pointer 545 // arrays interwoven with each (lowered) base pointer immediately followed by 546 // it's (lowered) derived pointer. i.e 547 // (base[0], ptr[0], base[1], ptr[1], ...) 548 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 549 const Value *Base = SI.Bases[i]; 550 lowerIncomingStatepointValue(Builder.getValue(Base), 551 /*RequireSpillSlot*/ true, Ops, MemRefs, 552 Builder); 553 554 const Value *Ptr = SI.Ptrs[i]; 555 lowerIncomingStatepointValue(Builder.getValue(Ptr), 556 /*RequireSpillSlot*/ true, Ops, MemRefs, 557 Builder); 558 } 559 560 // If there are any explicit spill slots passed to the statepoint, record 561 // them, but otherwise do not do anything special. These are user provided 562 // allocas and give control over placement to the consumer. In this case, 563 // it is the contents of the slot which may get updated, not the pointer to 564 // the alloca 565 for (Value *V : SI.GCArgs) { 566 SDValue Incoming = Builder.getValue(V); 567 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 568 // This handles allocas as arguments to the statepoint 569 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 570 "Incoming value is a frame index!"); 571 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 572 Builder.getFrameIndexTy())); 573 574 auto &MF = Builder.DAG.getMachineFunction(); 575 auto *MMO = getMachineMemOperand(MF, *FI); 576 MemRefs.push_back(MMO); 577 } 578 } 579 580 // Record computed locations for all lowered values. 581 // This can not be embedded in lowering loops as we need to record *all* 582 // values, while previous loops account only values with unique SDValues. 583 const Instruction *StatepointInstr = SI.StatepointInstr; 584 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 585 586 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 587 const Value *V = Relocate->getDerivedPtr(); 588 SDValue SDV = Builder.getValue(V); 589 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 590 591 if (Loc.getNode()) { 592 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 593 } else { 594 // Record value as visited, but not spilled. This is case for allocas 595 // and constants. For this values we can avoid emitting spill load while 596 // visiting corresponding gc_relocate. 597 // Actually we do not need to record them in this map at all. 598 // We do this only to check that we are not relocating any unvisited 599 // value. 600 SpillMap[V] = None; 601 602 // Default llvm mechanisms for exporting values which are used in 603 // different basic blocks does not work for gc relocates. 604 // Note that it would be incorrect to teach llvm that all relocates are 605 // uses of the corresponding values so that it would automatically 606 // export them. Relocates of the spilled values does not use original 607 // value. 608 if (Relocate->getParent() != StatepointInstr->getParent()) 609 Builder.ExportFromCurrentBlock(V); 610 } 611 } 612 } 613 614 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 615 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 616 // The basic scheme here is that information about both the original call and 617 // the safepoint is encoded in the CallInst. We create a temporary call and 618 // lower it, then reverse engineer the calling sequence. 619 620 NumOfStatepoints++; 621 // Clear state 622 StatepointLowering.startNewStatepoint(*this); 623 assert(SI.Bases.size() == SI.Ptrs.size() && 624 SI.Ptrs.size() <= SI.GCRelocates.size()); 625 626 #ifndef NDEBUG 627 for (auto *Reloc : SI.GCRelocates) 628 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 629 StatepointLowering.scheduleRelocCall(*Reloc); 630 #endif 631 632 // Lower statepoint vmstate and gcstate arguments 633 SmallVector<SDValue, 10> LoweredMetaArgs; 634 SmallVector<MachineMemOperand*, 16> MemRefs; 635 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 636 637 // Now that we've emitted the spills, we need to update the root so that the 638 // call sequence is ordered correctly. 639 SI.CLI.setChain(getRoot()); 640 641 // Get call node, we will replace it later with statepoint 642 SDValue ReturnVal; 643 SDNode *CallNode; 644 std::tie(ReturnVal, CallNode) = 645 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 646 647 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 648 // nodes with all the appropriate arguments and return values. 649 650 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 651 SDValue Chain = CallNode->getOperand(0); 652 653 SDValue Glue; 654 bool CallHasIncomingGlue = CallNode->getGluedNode(); 655 if (CallHasIncomingGlue) { 656 // Glue is always last operand 657 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 658 } 659 660 // Build the GC_TRANSITION_START node if necessary. 661 // 662 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 663 // order in which they appear in the call to the statepoint intrinsic. If 664 // any of the operands is a pointer-typed, that operand is immediately 665 // followed by a SRCVALUE for the pointer that may be used during lowering 666 // (e.g. to form MachinePointerInfo values for loads/stores). 667 const bool IsGCTransition = 668 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 669 (uint64_t)StatepointFlags::GCTransition; 670 if (IsGCTransition) { 671 SmallVector<SDValue, 8> TSOps; 672 673 // Add chain 674 TSOps.push_back(Chain); 675 676 // Add GC transition arguments 677 for (const Value *V : SI.GCTransitionArgs) { 678 TSOps.push_back(getValue(V)); 679 if (V->getType()->isPointerTy()) 680 TSOps.push_back(DAG.getSrcValue(V)); 681 } 682 683 // Add glue if necessary 684 if (CallHasIncomingGlue) 685 TSOps.push_back(Glue); 686 687 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 688 689 SDValue GCTransitionStart = 690 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 691 692 Chain = GCTransitionStart.getValue(0); 693 Glue = GCTransitionStart.getValue(1); 694 } 695 696 // TODO: Currently, all of these operands are being marked as read/write in 697 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 698 // and flags to be read-only. 699 SmallVector<SDValue, 40> Ops; 700 701 // Add the <id> and <numBytes> constants. 702 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 703 Ops.push_back( 704 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 705 706 // Calculate and push starting position of vmstate arguments 707 // Get number of arguments incoming directly into call node 708 unsigned NumCallRegArgs = 709 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 710 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 711 712 // Add call target 713 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 714 Ops.push_back(CallTarget); 715 716 // Add call arguments 717 // Get position of register mask in the call 718 SDNode::op_iterator RegMaskIt; 719 if (CallHasIncomingGlue) 720 RegMaskIt = CallNode->op_end() - 2; 721 else 722 RegMaskIt = CallNode->op_end() - 1; 723 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 724 725 // Add a constant argument for the calling convention 726 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 727 728 // Add a constant argument for the flags 729 uint64_t Flags = SI.StatepointFlags; 730 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 731 "Unknown flag used"); 732 pushStackMapConstant(Ops, *this, Flags); 733 734 // Insert all vmstate and gcstate arguments 735 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 736 737 // Add register mask from call node 738 Ops.push_back(*RegMaskIt); 739 740 // Add chain 741 Ops.push_back(Chain); 742 743 // Same for the glue, but we add it only if original call had it 744 if (Glue.getNode()) 745 Ops.push_back(Glue); 746 747 // Compute return values. Provide a glue output since we consume one as 748 // input. This allows someone else to chain off us as needed. 749 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 750 751 MachineSDNode *StatepointMCNode = 752 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 753 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 754 755 SDNode *SinkNode = StatepointMCNode; 756 757 // Build the GC_TRANSITION_END node if necessary. 758 // 759 // See the comment above regarding GC_TRANSITION_START for the layout of 760 // the operands to the GC_TRANSITION_END node. 761 if (IsGCTransition) { 762 SmallVector<SDValue, 8> TEOps; 763 764 // Add chain 765 TEOps.push_back(SDValue(StatepointMCNode, 0)); 766 767 // Add GC transition arguments 768 for (const Value *V : SI.GCTransitionArgs) { 769 TEOps.push_back(getValue(V)); 770 if (V->getType()->isPointerTy()) 771 TEOps.push_back(DAG.getSrcValue(V)); 772 } 773 774 // Add glue 775 TEOps.push_back(SDValue(StatepointMCNode, 1)); 776 777 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 778 779 SDValue GCTransitionStart = 780 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 781 782 SinkNode = GCTransitionStart.getNode(); 783 } 784 785 // Replace original call 786 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 787 // Remove original call node 788 DAG.DeleteNode(CallNode); 789 790 // DON'T set the root - under the assumption that it's already set past the 791 // inserted node we created. 792 793 // TODO: A better future implementation would be to emit a single variable 794 // argument, variable return value STATEPOINT node here and then hookup the 795 // return value of each gc.relocate to the respective output of the 796 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 797 // to actually be possible today. 798 799 return ReturnVal; 800 } 801 802 void 803 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 804 const BasicBlock *EHPadBB /*= nullptr*/) { 805 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && 806 "anyregcc is not supported on statepoints!"); 807 808 #ifndef NDEBUG 809 // If this is a malformed statepoint, report it early to simplify debugging. 810 // This should catch any IR level mistake that's made when constructing or 811 // transforming statepoints. 812 ISP.verify(); 813 814 // Check that the associated GCStrategy expects to encounter statepoints. 815 assert(GFI->getStrategy().useStatepoints() && 816 "GCStrategy does not expect to encounter statepoints"); 817 #endif 818 819 SDValue ActualCallee; 820 SDValue Callee = getValue(ISP.getCalledValue()); 821 822 if (ISP.getNumPatchBytes() > 0) { 823 // If we've been asked to emit a nop sequence instead of a call instruction 824 // for this statepoint then don't lower the call target, but use a constant 825 // `undef` instead. Not lowering the call target lets statepoint clients 826 // get away without providing a physical address for the symbolic call 827 // target at link time. 828 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 829 } else { 830 ActualCallee = Callee; 831 } 832 833 StatepointLoweringInfo SI(DAG); 834 populateCallLoweringInfo(SI.CLI, ISP.getCall(), 835 ImmutableStatepoint::CallArgsBeginPos, 836 ISP.getNumCallArgs(), ActualCallee, 837 ISP.getActualReturnType(), false /* IsPatchPoint */); 838 839 // There may be duplication in the gc.relocate list; such as two copies of 840 // each relocation on normal and exceptional path for an invoke. We only 841 // need to spill once and record one copy in the stackmap, but we need to 842 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 843 // handled as a CSE problem elsewhere.) 844 // TODO: There a couple of major stackmap size optimizations we could do 845 // here if we wished. 846 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 847 // record {B,B} if it's seen later. 848 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 849 // given that, we could change the format to record base pointer relocations 850 // separately with half the space. This would require a format rev and a 851 // fairly major rework of the STATEPOINT node though. 852 SmallSet<SDValue, 8> Seen; 853 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 854 SI.GCRelocates.push_back(Relocate); 855 856 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 857 if (Seen.insert(DerivedSD).second) { 858 SI.Bases.push_back(Relocate->getBasePtr()); 859 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 860 } 861 } 862 863 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 864 SI.StatepointInstr = ISP.getInstruction(); 865 SI.GCTransitionArgs = ArrayRef<const Use>(ISP.gc_transition_args_begin(), 866 ISP.gc_transition_args_end()); 867 SI.ID = ISP.getID(); 868 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 869 SI.StatepointFlags = ISP.getFlags(); 870 SI.NumPatchBytes = ISP.getNumPatchBytes(); 871 SI.EHPadBB = EHPadBB; 872 873 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 874 875 // Export the result value if needed 876 const GCResultInst *GCResult = ISP.getGCResult(); 877 Type *RetTy = ISP.getActualReturnType(); 878 if (!RetTy->isVoidTy() && GCResult) { 879 if (GCResult->getParent() != ISP.getCall()->getParent()) { 880 // Result value will be used in a different basic block so we need to 881 // export it now. Default exporting mechanism will not work here because 882 // statepoint call has a different type than the actual call. It means 883 // that by default llvm will create export register of the wrong type 884 // (always i32 in our case). So instead we need to create export register 885 // with correct type manually. 886 // TODO: To eliminate this problem we can remove gc.result intrinsics 887 // completely and make statepoint call to return a tuple. 888 unsigned Reg = FuncInfo.CreateRegs(RetTy); 889 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 890 DAG.getDataLayout(), Reg, RetTy, 891 ISP.getCall()->getCallingConv()); 892 SDValue Chain = DAG.getEntryNode(); 893 894 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 895 PendingExports.push_back(Chain); 896 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 897 } else { 898 // Result value will be used in a same basic block. Don't export it or 899 // perform any explicit register copies. 900 // We'll replace the actuall call node shortly. gc_result will grab 901 // this value. 902 setValue(ISP.getInstruction(), ReturnValue); 903 } 904 } else { 905 // The token value is never used from here on, just generate a poison value 906 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 907 } 908 } 909 910 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 911 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 912 bool VarArgDisallowed, bool ForceVoidReturnTy) { 913 StatepointLoweringInfo SI(DAG); 914 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 915 populateCallLoweringInfo( 916 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 917 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 918 false); 919 if (!VarArgDisallowed) 920 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 921 922 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 923 924 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 925 926 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 927 SI.ID = SD.StatepointID.getValueOr(DefaultID); 928 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 929 930 SI.DeoptState = 931 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 932 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 933 SI.EHPadBB = EHPadBB; 934 935 // NB! The GC arguments are deliberately left empty. 936 937 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 938 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 939 setValue(Call, ReturnVal); 940 } 941 } 942 943 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 944 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 945 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 946 /* VarArgDisallowed = */ false, 947 /* ForceVoidReturnTy = */ false); 948 } 949 950 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 951 // The result value of the gc_result is simply the result of the actual 952 // call. We've already emitted this, so just grab the value. 953 const Instruction *I = CI.getStatepoint(); 954 955 if (I->getParent() != CI.getParent()) { 956 // Statepoint is in different basic block so we should have stored call 957 // result in a virtual register. 958 // We can not use default getValue() functionality to copy value from this 959 // register because statepoint and actual call return types can be 960 // different, and getValue() will use CopyFromReg of the wrong type, 961 // which is always i32 in our case. 962 PointerType *CalleeType = cast<PointerType>( 963 ImmutableStatepoint(I).getCalledValue()->getType()); 964 Type *RetTy = 965 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 966 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 967 968 assert(CopyFromReg.getNode()); 969 setValue(&CI, CopyFromReg); 970 } else { 971 setValue(&CI, getValue(I)); 972 } 973 } 974 975 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 976 #ifndef NDEBUG 977 // Consistency check 978 // We skip this check for relocates not in the same basic block as their 979 // statepoint. It would be too expensive to preserve validation info through 980 // different basic blocks. 981 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 982 StatepointLowering.relocCallVisited(Relocate); 983 984 auto *Ty = Relocate.getType()->getScalarType(); 985 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 986 assert(*IsManaged && "Non gc managed pointer relocated!"); 987 #endif 988 989 const Value *DerivedPtr = Relocate.getDerivedPtr(); 990 SDValue SD = getValue(DerivedPtr); 991 992 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 993 auto SlotIt = SpillMap.find(DerivedPtr); 994 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 995 Optional<int> DerivedPtrLocation = SlotIt->second; 996 997 // We didn't need to spill these special cases (constants and allocas). 998 // See the handling in spillIncomingValueForStatepoint for detail. 999 if (!DerivedPtrLocation) { 1000 setValue(&Relocate, SD); 1001 return; 1002 } 1003 1004 unsigned Index = *DerivedPtrLocation; 1005 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1006 1007 // All the reloads are independent and are reading memory only modified by 1008 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1009 // this this let's CSE kick in for free and allows reordering of instructions 1010 // if possible. The lowering for statepoint sets the root, so this is 1011 // ordering all reloads with the either a) the statepoint node itself, or b) 1012 // the entry of the current block for an invoke statepoint. 1013 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1014 1015 auto &MF = DAG.getMachineFunction(); 1016 auto &MFI = MF.getFrameInfo(); 1017 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1018 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1019 MFI.getObjectSize(Index), 1020 MFI.getObjectAlign(Index)); 1021 1022 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1023 Relocate.getType()); 1024 1025 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1026 SpillSlot, LoadMMO); 1027 PendingLoads.push_back(SpillLoad.getValue(1)); 1028 1029 assert(SpillLoad.getNode()); 1030 setValue(&Relocate, SpillLoad); 1031 } 1032 1033 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1034 const auto &TLI = DAG.getTargetLoweringInfo(); 1035 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1036 TLI.getPointerTy(DAG.getDataLayout())); 1037 1038 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1039 // call. We also do not lower the return value to any virtual register, and 1040 // change the immediately following return to a trap instruction. 1041 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1042 /* VarArgDisallowed = */ true, 1043 /* ForceVoidReturnTy = */ true); 1044 } 1045 1046 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1047 // We do not lower the return value from llvm.deoptimize to any virtual 1048 // register, and change the immediately following return to a trap 1049 // instruction. 1050 if (DAG.getTarget().Options.TrapUnreachable) 1051 DAG.setRoot( 1052 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1053 } 1054