1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/GCMetadata.h" 22 #include "llvm/CodeGen/GCStrategy.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/StackMaps.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "statepoint-lowering" 35 36 STATISTIC(NumSlotsAllocatedForStatepoints, 37 "Number of stack slots allocated for statepoints"); 38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 39 STATISTIC(StatepointMaxSlotsRequired, 40 "Maximum number of stack slots required for a singe statepoint"); 41 42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 43 SelectionDAGBuilder &Builder, uint64_t Value) { 44 SDLoc L = Builder.getCurSDLoc(); 45 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 46 MVT::i64)); 47 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 48 } 49 50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 51 // Consistency check 52 assert(PendingGCRelocateCalls.empty() && 53 "Trying to visit statepoint before finished processing previous one"); 54 Locations.clear(); 55 NextSlotToAllocate = 0; 56 // Need to resize this on each safepoint - we need the two to stay in sync and 57 // the clear patterns of a SelectionDAGBuilder have no relation to 58 // FunctionLoweringInfo. SmallBitVector::reset initializes all bits to false. 59 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 60 } 61 62 void StatepointLoweringState::clear() { 63 Locations.clear(); 64 AllocatedStackSlots.clear(); 65 assert(PendingGCRelocateCalls.empty() && 66 "cleared before statepoint sequence completed"); 67 } 68 69 SDValue 70 StatepointLoweringState::allocateStackSlot(EVT ValueType, 71 SelectionDAGBuilder &Builder) { 72 NumSlotsAllocatedForStatepoints++; 73 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 74 75 unsigned SpillSize = ValueType.getSizeInBits() / 8; 76 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 77 78 // First look for a previously created stack slot which is not in 79 // use (accounting for the fact arbitrary slots may already be 80 // reserved), or to create a new stack slot and use it. 81 82 const size_t NumSlots = AllocatedStackSlots.size(); 83 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 84 85 // The stack slots in StatepointStackSlots beyond the first NumSlots were 86 // added in this instance of StatepointLoweringState, and cannot be re-used. 87 assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() && 88 "Broken invariant"); 89 90 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 91 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 92 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 93 if (MFI.getObjectSize(FI) == SpillSize) { 94 AllocatedStackSlots.set(NextSlotToAllocate); 95 return Builder.DAG.getFrameIndex(FI, ValueType); 96 } 97 } 98 } 99 100 // Couldn't find a free slot, so create a new one: 101 102 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 103 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 104 MFI.markAsStatepointSpillSlotObjectIndex(FI); 105 106 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 107 108 StatepointMaxSlotsRequired = std::max<unsigned long>( 109 StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size()); 110 111 return SpillSlot; 112 } 113 114 /// Utility function for reservePreviousStackSlotForValue. Tries to find 115 /// stack slot index to which we have spilled value for previous statepoints. 116 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 117 static Optional<int> findPreviousSpillSlot(const Value *Val, 118 SelectionDAGBuilder &Builder, 119 int LookUpDepth) { 120 // Can not look any further - give up now 121 if (LookUpDepth <= 0) 122 return None; 123 124 // Spill location is known for gc relocates 125 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 126 const auto &SpillMap = 127 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 128 129 auto It = SpillMap.find(Relocate->getDerivedPtr()); 130 if (It == SpillMap.end()) 131 return None; 132 133 return It->second; 134 } 135 136 // Look through bitcast instructions. 137 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 138 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 139 140 // Look through phi nodes 141 // All incoming values should have same known stack slot, otherwise result 142 // is unknown. 143 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 144 Optional<int> MergedResult = None; 145 146 for (auto &IncomingValue : Phi->incoming_values()) { 147 Optional<int> SpillSlot = 148 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 149 if (!SpillSlot.hasValue()) 150 return None; 151 152 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 153 return None; 154 155 MergedResult = SpillSlot; 156 } 157 return MergedResult; 158 } 159 160 // TODO: We can do better for PHI nodes. In cases like this: 161 // ptr = phi(relocated_pointer, not_relocated_pointer) 162 // statepoint(ptr) 163 // We will return that stack slot for ptr is unknown. And later we might 164 // assign different stack slots for ptr and relocated_pointer. This limits 165 // llvm's ability to remove redundant stores. 166 // Unfortunately it's hard to accomplish in current infrastructure. 167 // We use this function to eliminate spill store completely, while 168 // in example we still need to emit store, but instead of any location 169 // we need to use special "preferred" location. 170 171 // TODO: handle simple updates. If a value is modified and the original 172 // value is no longer live, it would be nice to put the modified value in the 173 // same slot. This allows folding of the memory accesses for some 174 // instructions types (like an increment). 175 // statepoint (i) 176 // i1 = i+1 177 // statepoint (i1) 178 // However we need to be careful for cases like this: 179 // statepoint(i) 180 // i1 = i+1 181 // statepoint(i, i1) 182 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 183 // put handling of simple modifications in this function like it's done 184 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 185 // which we visit values is unspecified. 186 187 // Don't know any information about this instruction 188 return None; 189 } 190 191 /// Try to find existing copies of the incoming values in stack slots used for 192 /// statepoint spilling. If we can find a spill slot for the incoming value, 193 /// mark that slot as allocated, and reuse the same slot for this safepoint. 194 /// This helps to avoid series of loads and stores that only serve to reshuffle 195 /// values on the stack between calls. 196 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 197 SelectionDAGBuilder &Builder) { 198 199 SDValue Incoming = Builder.getValue(IncomingValue); 200 201 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 202 // We won't need to spill this, so no need to check for previously 203 // allocated stack slots 204 return; 205 } 206 207 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 208 if (OldLocation.getNode()) 209 // Duplicates in input 210 return; 211 212 const int LookUpDepth = 6; 213 Optional<int> Index = 214 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 215 if (!Index.hasValue()) 216 return; 217 218 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 219 220 auto SlotIt = find(StatepointSlots, *Index); 221 assert(SlotIt != StatepointSlots.end() && 222 "Value spilled to the unknown stack slot"); 223 224 // This is one of our dedicated lowering slots 225 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 226 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 227 // stack slot already assigned to someone else, can't use it! 228 // TODO: currently we reserve space for gc arguments after doing 229 // normal allocation for deopt arguments. We should reserve for 230 // _all_ deopt and gc arguments, then start allocating. This 231 // will prevent some moves being inserted when vm state changes, 232 // but gc state doesn't between two calls. 233 return; 234 } 235 // Reserve this stack slot 236 Builder.StatepointLowering.reserveStackSlot(Offset); 237 238 // Cache this slot so we find it when going through the normal 239 // assignment loop. 240 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 241 Builder.StatepointLowering.setLocation(Incoming, Loc); 242 } 243 244 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 245 /// is not required for correctness. It's purpose is to reduce the size of 246 /// StackMap section. It has no effect on the number of spill slots required 247 /// or the actual lowering. 248 static void 249 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 250 SmallVectorImpl<const Value *> &Ptrs, 251 SmallVectorImpl<const GCRelocateInst *> &Relocs, 252 SelectionDAGBuilder &Builder, 253 FunctionLoweringInfo::StatepointSpillMap &SSM) { 254 DenseMap<SDValue, const Value *> Seen; 255 256 SmallVector<const Value *, 64> NewBases, NewPtrs; 257 SmallVector<const GCRelocateInst *, 64> NewRelocs; 258 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 259 SDValue SD = Builder.getValue(Ptrs[i]); 260 auto SeenIt = Seen.find(SD); 261 262 if (SeenIt == Seen.end()) { 263 // Only add non-duplicates 264 NewBases.push_back(Bases[i]); 265 NewPtrs.push_back(Ptrs[i]); 266 NewRelocs.push_back(Relocs[i]); 267 Seen[SD] = Ptrs[i]; 268 } else { 269 // Duplicate pointer found, note in SSM and move on: 270 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 271 } 272 } 273 assert(Bases.size() >= NewBases.size()); 274 assert(Ptrs.size() >= NewPtrs.size()); 275 assert(Relocs.size() >= NewRelocs.size()); 276 Bases = NewBases; 277 Ptrs = NewPtrs; 278 Relocs = NewRelocs; 279 assert(Ptrs.size() == Bases.size()); 280 assert(Ptrs.size() == Relocs.size()); 281 } 282 283 /// Extract call from statepoint, lower it and return pointer to the 284 /// call node. Also update NodeMap so that getValue(statepoint) will 285 /// reference lowered call result 286 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 287 SelectionDAGBuilder::StatepointLoweringInfo &SI, 288 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 289 290 SDValue ReturnValue, CallEndVal; 291 std::tie(ReturnValue, CallEndVal) = 292 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 293 SDNode *CallEnd = CallEndVal.getNode(); 294 295 // Get a call instruction from the call sequence chain. Tail calls are not 296 // allowed. The following code is essentially reverse engineering X86's 297 // LowerCallTo. 298 // 299 // We are expecting DAG to have the following form: 300 // 301 // ch = eh_label (only in case of invoke statepoint) 302 // ch, glue = callseq_start ch 303 // ch, glue = X86::Call ch, glue 304 // ch, glue = callseq_end ch, glue 305 // get_return_value ch, glue 306 // 307 // get_return_value can either be a sequence of CopyFromReg instructions 308 // to grab the return value from the return register(s), or it can be a LOAD 309 // to load a value returned by reference via a stack slot. 310 311 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 312 if (HasDef) { 313 if (CallEnd->getOpcode() == ISD::LOAD) 314 CallEnd = CallEnd->getOperand(0).getNode(); 315 else 316 while (CallEnd->getOpcode() == ISD::CopyFromReg) 317 CallEnd = CallEnd->getOperand(0).getNode(); 318 } 319 320 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 321 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 322 } 323 324 /// Spill a value incoming to the statepoint. It might be either part of 325 /// vmstate 326 /// or gcstate. In both cases unconditionally spill it on the stack unless it 327 /// is a null constant. Return pair with first element being frame index 328 /// containing saved value and second element with outgoing chain from the 329 /// emitted store 330 static std::pair<SDValue, SDValue> 331 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 332 SelectionDAGBuilder &Builder) { 333 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 334 335 // Emit new store if we didn't do it for this ptr before 336 if (!Loc.getNode()) { 337 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 338 Builder); 339 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 340 // We use TargetFrameIndex so that isel will not select it into LEA 341 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 342 343 // TODO: We can create TokenFactor node instead of 344 // chaining stores one after another, this may allow 345 // a bit more optimal scheduling for them 346 347 #ifndef NDEBUG 348 // Right now we always allocate spill slots that are of the same 349 // size as the value we're about to spill (the size of spillee can 350 // vary since we spill vectors of pointers too). At some point we 351 // can consider allowing spills of smaller values to larger slots 352 // (i.e. change the '==' in the assert below to a '>='). 353 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 354 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 355 "Bad spill: stack slot does not match!"); 356 #endif 357 358 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 359 MachinePointerInfo::getFixedStack( 360 Builder.DAG.getMachineFunction(), Index)); 361 362 Builder.StatepointLowering.setLocation(Incoming, Loc); 363 } 364 365 assert(Loc.getNode()); 366 return std::make_pair(Loc, Chain); 367 } 368 369 /// Lower a single value incoming to a statepoint node. This value can be 370 /// either a deopt value or a gc value, the handling is the same. We special 371 /// case constants and allocas, then fall back to spilling if required. 372 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 373 SmallVectorImpl<SDValue> &Ops, 374 SelectionDAGBuilder &Builder) { 375 SDValue Chain = Builder.getRoot(); 376 377 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 378 // If the original value was a constant, make sure it gets recorded as 379 // such in the stackmap. This is required so that the consumer can 380 // parse any internal format to the deopt state. It also handles null 381 // pointers and other constant pointers in GC states. Note the constant 382 // vectors do not appear to actually hit this path and that anything larger 383 // than an i64 value (not type!) will fail asserts here. 384 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 385 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 386 // This handles allocas as arguments to the statepoint (this is only 387 // really meaningful for a deopt value. For GC, we'd be trying to 388 // relocate the address of the alloca itself?) 389 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 390 Incoming.getValueType())); 391 } else if (LiveInOnly) { 392 // If this value is live in (not live-on-return, or live-through), we can 393 // treat it the same way patchpoint treats it's "live in" values. We'll 394 // end up folding some of these into stack references, but they'll be 395 // handled by the register allocator. Note that we do not have the notion 396 // of a late use so these values might be placed in registers which are 397 // clobbered by the call. This is fine for live-in. 398 Ops.push_back(Incoming); 399 } else { 400 // Otherwise, locate a spill slot and explicitly spill it so it 401 // can be found by the runtime later. We currently do not support 402 // tracking values through callee saved registers to their eventual 403 // spill location. This would be a useful optimization, but would 404 // need to be optional since it requires a lot of complexity on the 405 // runtime side which not all would support. 406 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 407 Ops.push_back(Res.first); 408 Chain = Res.second; 409 } 410 411 Builder.DAG.setRoot(Chain); 412 } 413 414 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 415 /// lowering is described in lowerIncomingStatepointValue. This function is 416 /// responsible for lowering everything in the right position and playing some 417 /// tricks to avoid redundant stack manipulation where possible. On 418 /// completion, 'Ops' will contain ready to use operands for machine code 419 /// statepoint. The chain nodes will have already been created and the DAG root 420 /// will be set to the last value spilled (if any were). 421 static void 422 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 423 SelectionDAGBuilder::StatepointLoweringInfo &SI, 424 SelectionDAGBuilder &Builder) { 425 // Lower the deopt and gc arguments for this statepoint. Layout will be: 426 // deopt argument length, deopt arguments.., gc arguments... 427 #ifndef NDEBUG 428 if (auto *GFI = Builder.GFI) { 429 // Check that each of the gc pointer and bases we've gotten out of the 430 // safepoint is something the strategy thinks might be a pointer (or vector 431 // of pointers) into the GC heap. This is basically just here to help catch 432 // errors during statepoint insertion. TODO: This should actually be in the 433 // Verifier, but we can't get to the GCStrategy from there (yet). 434 GCStrategy &S = GFI->getStrategy(); 435 for (const Value *V : SI.Bases) { 436 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 437 if (Opt.hasValue()) { 438 assert(Opt.getValue() && 439 "non gc managed base pointer found in statepoint"); 440 } 441 } 442 for (const Value *V : SI.Ptrs) { 443 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 444 if (Opt.hasValue()) { 445 assert(Opt.getValue() && 446 "non gc managed derived pointer found in statepoint"); 447 } 448 } 449 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 450 } else { 451 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 452 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 453 } 454 #endif 455 456 // Figure out what lowering strategy we're going to use for each part 457 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 458 // as "live-through". A "live-through" variable is one which is "live-in", 459 // "live-out", and live throughout the lifetime of the call (i.e. we can find 460 // it from any PC within the transitive callee of the statepoint). In 461 // particular, if the callee spills callee preserved registers we may not 462 // be able to find a value placed in that register during the call. This is 463 // fine for live-out, but not for live-through. If we were willing to make 464 // assumptions about the code generator producing the callee, we could 465 // potentially allow live-through values in callee saved registers. 466 const bool LiveInDeopt = 467 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 468 469 auto isGCValue =[&](const Value *V) { 470 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 471 }; 472 473 // Before we actually start lowering (and allocating spill slots for values), 474 // reserve any stack slots which we judge to be profitable to reuse for a 475 // particular value. This is purely an optimization over the code below and 476 // doesn't change semantics at all. It is important for performance that we 477 // reserve slots for both deopt and gc values before lowering either. 478 for (const Value *V : SI.DeoptState) { 479 if (!LiveInDeopt || isGCValue(V)) 480 reservePreviousStackSlotForValue(V, Builder); 481 } 482 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 483 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 484 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 485 } 486 487 // First, prefix the list with the number of unique values to be 488 // lowered. Note that this is the number of *Values* not the 489 // number of SDValues required to lower them. 490 const int NumVMSArgs = SI.DeoptState.size(); 491 pushStackMapConstant(Ops, Builder, NumVMSArgs); 492 493 // The vm state arguments are lowered in an opaque manner. We do not know 494 // what type of values are contained within. 495 for (const Value *V : SI.DeoptState) { 496 SDValue Incoming = Builder.getValue(V); 497 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 498 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); 499 } 500 501 // Finally, go ahead and lower all the gc arguments. There's no prefixed 502 // length for this one. After lowering, we'll have the base and pointer 503 // arrays interwoven with each (lowered) base pointer immediately followed by 504 // it's (lowered) derived pointer. i.e 505 // (base[0], ptr[0], base[1], ptr[1], ...) 506 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 507 const Value *Base = SI.Bases[i]; 508 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 509 Ops, Builder); 510 511 const Value *Ptr = SI.Ptrs[i]; 512 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 513 Ops, Builder); 514 } 515 516 // If there are any explicit spill slots passed to the statepoint, record 517 // them, but otherwise do not do anything special. These are user provided 518 // allocas and give control over placement to the consumer. In this case, 519 // it is the contents of the slot which may get updated, not the pointer to 520 // the alloca 521 for (Value *V : SI.GCArgs) { 522 SDValue Incoming = Builder.getValue(V); 523 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 524 // This handles allocas as arguments to the statepoint 525 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 526 Incoming.getValueType())); 527 } 528 } 529 530 // Record computed locations for all lowered values. 531 // This can not be embedded in lowering loops as we need to record *all* 532 // values, while previous loops account only values with unique SDValues. 533 const Instruction *StatepointInstr = SI.StatepointInstr; 534 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 535 536 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 537 const Value *V = Relocate->getDerivedPtr(); 538 SDValue SDV = Builder.getValue(V); 539 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 540 541 if (Loc.getNode()) { 542 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 543 } else { 544 // Record value as visited, but not spilled. This is case for allocas 545 // and constants. For this values we can avoid emitting spill load while 546 // visiting corresponding gc_relocate. 547 // Actually we do not need to record them in this map at all. 548 // We do this only to check that we are not relocating any unvisited 549 // value. 550 SpillMap.SlotMap[V] = None; 551 552 // Default llvm mechanisms for exporting values which are used in 553 // different basic blocks does not work for gc relocates. 554 // Note that it would be incorrect to teach llvm that all relocates are 555 // uses of the corresponding values so that it would automatically 556 // export them. Relocates of the spilled values does not use original 557 // value. 558 if (Relocate->getParent() != StatepointInstr->getParent()) 559 Builder.ExportFromCurrentBlock(V); 560 } 561 } 562 } 563 564 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 565 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 566 // The basic scheme here is that information about both the original call and 567 // the safepoint is encoded in the CallInst. We create a temporary call and 568 // lower it, then reverse engineer the calling sequence. 569 570 NumOfStatepoints++; 571 // Clear state 572 StatepointLowering.startNewStatepoint(*this); 573 574 #ifndef NDEBUG 575 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 576 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 577 for (auto *Reloc : SI.GCRelocates) 578 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 579 StatepointLowering.scheduleRelocCall(*Reloc); 580 #endif 581 582 // Remove any redundant llvm::Values which map to the same SDValue as another 583 // input. Also has the effect of removing duplicates in the original 584 // llvm::Value input list as well. This is a useful optimization for 585 // reducing the size of the StackMap section. It has no other impact. 586 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 587 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 588 assert(SI.Bases.size() == SI.Ptrs.size() && 589 SI.Ptrs.size() == SI.GCRelocates.size()); 590 591 // Lower statepoint vmstate and gcstate arguments 592 SmallVector<SDValue, 10> LoweredMetaArgs; 593 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 594 595 // Now that we've emitted the spills, we need to update the root so that the 596 // call sequence is ordered correctly. 597 SI.CLI.setChain(getRoot()); 598 599 // Get call node, we will replace it later with statepoint 600 SDValue ReturnVal; 601 SDNode *CallNode; 602 std::tie(ReturnVal, CallNode) = 603 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 604 605 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 606 // nodes with all the appropriate arguments and return values. 607 608 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 609 SDValue Chain = CallNode->getOperand(0); 610 611 SDValue Glue; 612 bool CallHasIncomingGlue = CallNode->getGluedNode(); 613 if (CallHasIncomingGlue) { 614 // Glue is always last operand 615 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 616 } 617 618 // Build the GC_TRANSITION_START node if necessary. 619 // 620 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 621 // order in which they appear in the call to the statepoint intrinsic. If 622 // any of the operands is a pointer-typed, that operand is immediately 623 // followed by a SRCVALUE for the pointer that may be used during lowering 624 // (e.g. to form MachinePointerInfo values for loads/stores). 625 const bool IsGCTransition = 626 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 627 (uint64_t)StatepointFlags::GCTransition; 628 if (IsGCTransition) { 629 SmallVector<SDValue, 8> TSOps; 630 631 // Add chain 632 TSOps.push_back(Chain); 633 634 // Add GC transition arguments 635 for (const Value *V : SI.GCTransitionArgs) { 636 TSOps.push_back(getValue(V)); 637 if (V->getType()->isPointerTy()) 638 TSOps.push_back(DAG.getSrcValue(V)); 639 } 640 641 // Add glue if necessary 642 if (CallHasIncomingGlue) 643 TSOps.push_back(Glue); 644 645 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 646 647 SDValue GCTransitionStart = 648 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 649 650 Chain = GCTransitionStart.getValue(0); 651 Glue = GCTransitionStart.getValue(1); 652 } 653 654 // TODO: Currently, all of these operands are being marked as read/write in 655 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 656 // and flags to be read-only. 657 SmallVector<SDValue, 40> Ops; 658 659 // Add the <id> and <numBytes> constants. 660 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 661 Ops.push_back( 662 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 663 664 // Calculate and push starting position of vmstate arguments 665 // Get number of arguments incoming directly into call node 666 unsigned NumCallRegArgs = 667 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 668 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 669 670 // Add call target 671 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 672 Ops.push_back(CallTarget); 673 674 // Add call arguments 675 // Get position of register mask in the call 676 SDNode::op_iterator RegMaskIt; 677 if (CallHasIncomingGlue) 678 RegMaskIt = CallNode->op_end() - 2; 679 else 680 RegMaskIt = CallNode->op_end() - 1; 681 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 682 683 // Add a constant argument for the calling convention 684 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 685 686 // Add a constant argument for the flags 687 uint64_t Flags = SI.StatepointFlags; 688 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 689 "Unknown flag used"); 690 pushStackMapConstant(Ops, *this, Flags); 691 692 // Insert all vmstate and gcstate arguments 693 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 694 695 // Add register mask from call node 696 Ops.push_back(*RegMaskIt); 697 698 // Add chain 699 Ops.push_back(Chain); 700 701 // Same for the glue, but we add it only if original call had it 702 if (Glue.getNode()) 703 Ops.push_back(Glue); 704 705 // Compute return values. Provide a glue output since we consume one as 706 // input. This allows someone else to chain off us as needed. 707 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 708 709 SDNode *StatepointMCNode = 710 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 711 712 SDNode *SinkNode = StatepointMCNode; 713 714 // Build the GC_TRANSITION_END node if necessary. 715 // 716 // See the comment above regarding GC_TRANSITION_START for the layout of 717 // the operands to the GC_TRANSITION_END node. 718 if (IsGCTransition) { 719 SmallVector<SDValue, 8> TEOps; 720 721 // Add chain 722 TEOps.push_back(SDValue(StatepointMCNode, 0)); 723 724 // Add GC transition arguments 725 for (const Value *V : SI.GCTransitionArgs) { 726 TEOps.push_back(getValue(V)); 727 if (V->getType()->isPointerTy()) 728 TEOps.push_back(DAG.getSrcValue(V)); 729 } 730 731 // Add glue 732 TEOps.push_back(SDValue(StatepointMCNode, 1)); 733 734 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 735 736 SDValue GCTransitionStart = 737 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 738 739 SinkNode = GCTransitionStart.getNode(); 740 } 741 742 // Replace original call 743 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 744 // Remove original call node 745 DAG.DeleteNode(CallNode); 746 747 // DON'T set the root - under the assumption that it's already set past the 748 // inserted node we created. 749 750 // TODO: A better future implementation would be to emit a single variable 751 // argument, variable return value STATEPOINT node here and then hookup the 752 // return value of each gc.relocate to the respective output of the 753 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 754 // to actually be possible today. 755 756 return ReturnVal; 757 } 758 759 void 760 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 761 const BasicBlock *EHPadBB /*= nullptr*/) { 762 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 763 "anyregcc is not supported on statepoints!"); 764 765 #ifndef NDEBUG 766 // If this is a malformed statepoint, report it early to simplify debugging. 767 // This should catch any IR level mistake that's made when constructing or 768 // transforming statepoints. 769 ISP.verify(); 770 771 // Check that the associated GCStrategy expects to encounter statepoints. 772 assert(GFI->getStrategy().useStatepoints() && 773 "GCStrategy does not expect to encounter statepoints"); 774 #endif 775 776 SDValue ActualCallee; 777 778 if (ISP.getNumPatchBytes() > 0) { 779 // If we've been asked to emit a nop sequence instead of a call instruction 780 // for this statepoint then don't lower the call target, but use a constant 781 // `null` instead. Not lowering the call target lets statepoint clients get 782 // away without providing a physical address for the symbolic call target at 783 // link time. 784 785 const auto &TLI = DAG.getTargetLoweringInfo(); 786 const auto &DL = DAG.getDataLayout(); 787 788 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 789 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 790 } else { 791 ActualCallee = getValue(ISP.getCalledValue()); 792 } 793 794 StatepointLoweringInfo SI(DAG); 795 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 796 ImmutableStatepoint::CallArgsBeginPos, 797 ISP.getNumCallArgs(), ActualCallee, 798 ISP.getActualReturnType(), false /* IsPatchPoint */); 799 800 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 801 SI.GCRelocates.push_back(Relocate); 802 SI.Bases.push_back(Relocate->getBasePtr()); 803 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 804 } 805 806 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 807 SI.StatepointInstr = ISP.getInstruction(); 808 SI.GCTransitionArgs = 809 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 810 SI.ID = ISP.getID(); 811 SI.DeoptState = ArrayRef<const Use>(ISP.vm_state_begin(), ISP.vm_state_end()); 812 SI.StatepointFlags = ISP.getFlags(); 813 SI.NumPatchBytes = ISP.getNumPatchBytes(); 814 SI.EHPadBB = EHPadBB; 815 816 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 817 818 // Export the result value if needed 819 const GCResultInst *GCResult = ISP.getGCResult(); 820 Type *RetTy = ISP.getActualReturnType(); 821 if (!RetTy->isVoidTy() && GCResult) { 822 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 823 // Result value will be used in a different basic block so we need to 824 // export it now. Default exporting mechanism will not work here because 825 // statepoint call has a different type than the actual call. It means 826 // that by default llvm will create export register of the wrong type 827 // (always i32 in our case). So instead we need to create export register 828 // with correct type manually. 829 // TODO: To eliminate this problem we can remove gc.result intrinsics 830 // completely and make statepoint call to return a tuple. 831 unsigned Reg = FuncInfo.CreateRegs(RetTy); 832 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 833 DAG.getDataLayout(), Reg, RetTy); 834 SDValue Chain = DAG.getEntryNode(); 835 836 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 837 PendingExports.push_back(Chain); 838 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 839 } else { 840 // Result value will be used in a same basic block. Don't export it or 841 // perform any explicit register copies. 842 // We'll replace the actuall call node shortly. gc_result will grab 843 // this value. 844 setValue(ISP.getInstruction(), ReturnValue); 845 } 846 } else { 847 // The token value is never used from here on, just generate a poison value 848 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 849 } 850 } 851 852 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 853 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 854 bool VarArgDisallowed, bool ForceVoidReturnTy) { 855 StatepointLoweringInfo SI(DAG); 856 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 857 populateCallLoweringInfo( 858 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 859 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 860 false); 861 if (!VarArgDisallowed) 862 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 863 864 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 865 866 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 867 868 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 869 SI.ID = SD.StatepointID.getValueOr(DefaultID); 870 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 871 872 SI.DeoptState = 873 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 874 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 875 SI.EHPadBB = EHPadBB; 876 877 // NB! The GC arguments are deliberately left empty. 878 879 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 880 const Instruction *Inst = CS.getInstruction(); 881 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 882 setValue(Inst, ReturnVal); 883 } 884 } 885 886 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 887 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 888 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 889 /* VarArgDisallowed = */ false, 890 /* ForceVoidReturnTy = */ false); 891 } 892 893 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 894 // The result value of the gc_result is simply the result of the actual 895 // call. We've already emitted this, so just grab the value. 896 const Instruction *I = CI.getStatepoint(); 897 898 if (I->getParent() != CI.getParent()) { 899 // Statepoint is in different basic block so we should have stored call 900 // result in a virtual register. 901 // We can not use default getValue() functionality to copy value from this 902 // register because statepoint and actual call return types can be 903 // different, and getValue() will use CopyFromReg of the wrong type, 904 // which is always i32 in our case. 905 PointerType *CalleeType = cast<PointerType>( 906 ImmutableStatepoint(I).getCalledValue()->getType()); 907 Type *RetTy = 908 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 909 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 910 911 assert(CopyFromReg.getNode()); 912 setValue(&CI, CopyFromReg); 913 } else { 914 setValue(&CI, getValue(I)); 915 } 916 } 917 918 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 919 #ifndef NDEBUG 920 // Consistency check 921 // We skip this check for relocates not in the same basic block as thier 922 // statepoint. It would be too expensive to preserve validation info through 923 // different basic blocks. 924 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 925 StatepointLowering.relocCallVisited(Relocate); 926 927 auto *Ty = Relocate.getType()->getScalarType(); 928 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 929 assert(*IsManaged && "Non gc managed pointer relocated!"); 930 #endif 931 932 const Value *DerivedPtr = Relocate.getDerivedPtr(); 933 SDValue SD = getValue(DerivedPtr); 934 935 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 936 auto SlotIt = SpillMap.find(DerivedPtr); 937 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 938 Optional<int> DerivedPtrLocation = SlotIt->second; 939 940 // We didn't need to spill these special cases (constants and allocas). 941 // See the handling in spillIncomingValueForStatepoint for detail. 942 if (!DerivedPtrLocation) { 943 setValue(&Relocate, SD); 944 return; 945 } 946 947 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 948 SD.getValueType()); 949 950 // Be conservative: flush all pending loads 951 // TODO: Probably we can be less restrictive on this, 952 // it may allow more scheduling opportunities. 953 SDValue Chain = getRoot(); 954 955 SDValue SpillLoad = 956 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 957 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 958 *DerivedPtrLocation)); 959 960 // Again, be conservative, don't emit pending loads 961 DAG.setRoot(SpillLoad.getValue(1)); 962 963 assert(SpillLoad.getNode()); 964 setValue(&Relocate, SpillLoad); 965 } 966 967 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 968 const auto &TLI = DAG.getTargetLoweringInfo(); 969 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 970 TLI.getPointerTy(DAG.getDataLayout())); 971 972 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 973 // call. We also do not lower the return value to any virtual register, and 974 // change the immediately following return to a trap instruction. 975 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 976 /* VarArgDisallowed = */ true, 977 /* ForceVoidReturnTy = */ true); 978 } 979 980 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 981 // We do not lower the return value from llvm.deoptimize to any virtual 982 // register, and change the immediately following return to a trap 983 // instruction. 984 if (DAG.getTarget().Options.TrapUnreachable) 985 DAG.setRoot( 986 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 987 } 988