1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/GCStrategy.h" 26 #include "llvm/CodeGen/ISDOpcodes.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <iterator> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "statepoint-lowering" 57 58 STATISTIC(NumSlotsAllocatedForStatepoints, 59 "Number of stack slots allocated for statepoints"); 60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 61 STATISTIC(StatepointMaxSlotsRequired, 62 "Maximum number of stack slots required for a singe statepoint"); 63 64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 65 SelectionDAGBuilder &Builder, uint64_t Value) { 66 SDLoc L = Builder.getCurSDLoc(); 67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 68 MVT::i64)); 69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 70 } 71 72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 73 // Consistency check 74 assert(PendingGCRelocateCalls.empty() && 75 "Trying to visit statepoint before finished processing previous one"); 76 Locations.clear(); 77 NextSlotToAllocate = 0; 78 // Need to resize this on each safepoint - we need the two to stay in sync and 79 // the clear patterns of a SelectionDAGBuilder have no relation to 80 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 81 AllocatedStackSlots.clear(); 82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 83 } 84 85 void StatepointLoweringState::clear() { 86 Locations.clear(); 87 AllocatedStackSlots.clear(); 88 assert(PendingGCRelocateCalls.empty() && 89 "cleared before statepoint sequence completed"); 90 } 91 92 SDValue 93 StatepointLoweringState::allocateStackSlot(EVT ValueType, 94 SelectionDAGBuilder &Builder) { 95 NumSlotsAllocatedForStatepoints++; 96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 97 98 unsigned SpillSize = ValueType.getStoreSize(); 99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 100 101 // First look for a previously created stack slot which is not in 102 // use (accounting for the fact arbitrary slots may already be 103 // reserved), or to create a new stack slot and use it. 104 105 const size_t NumSlots = AllocatedStackSlots.size(); 106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 107 108 assert(AllocatedStackSlots.size() == 109 Builder.FuncInfo.StatepointStackSlots.size() && 110 "Broken invariant"); 111 112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 115 if (MFI.getObjectSize(FI) == SpillSize) { 116 AllocatedStackSlots.set(NextSlotToAllocate); 117 // TODO: Is ValueType the right thing to use here? 118 return Builder.DAG.getFrameIndex(FI, ValueType); 119 } 120 } 121 } 122 123 // Couldn't find a free slot, so create a new one: 124 125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 127 MFI.markAsStatepointSpillSlotObjectIndex(FI); 128 129 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 131 assert(AllocatedStackSlots.size() == 132 Builder.FuncInfo.StatepointStackSlots.size() && 133 "Broken invariant"); 134 135 StatepointMaxSlotsRequired.updateMax( 136 Builder.FuncInfo.StatepointStackSlots.size()); 137 138 return SpillSlot; 139 } 140 141 /// Utility function for reservePreviousStackSlotForValue. Tries to find 142 /// stack slot index to which we have spilled value for previous statepoints. 143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 144 static Optional<int> findPreviousSpillSlot(const Value *Val, 145 SelectionDAGBuilder &Builder, 146 int LookUpDepth) { 147 // Can not look any further - give up now 148 if (LookUpDepth <= 0) 149 return None; 150 151 // Spill location is known for gc relocates 152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 153 const auto &SpillMap = 154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 155 156 auto It = SpillMap.find(Relocate->getDerivedPtr()); 157 if (It == SpillMap.end()) 158 return None; 159 160 return It->second; 161 } 162 163 // Look through bitcast instructions. 164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 166 167 // Look through phi nodes 168 // All incoming values should have same known stack slot, otherwise result 169 // is unknown. 170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 171 Optional<int> MergedResult = None; 172 173 for (auto &IncomingValue : Phi->incoming_values()) { 174 Optional<int> SpillSlot = 175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 176 if (!SpillSlot.hasValue()) 177 return None; 178 179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 180 return None; 181 182 MergedResult = SpillSlot; 183 } 184 return MergedResult; 185 } 186 187 // TODO: We can do better for PHI nodes. In cases like this: 188 // ptr = phi(relocated_pointer, not_relocated_pointer) 189 // statepoint(ptr) 190 // We will return that stack slot for ptr is unknown. And later we might 191 // assign different stack slots for ptr and relocated_pointer. This limits 192 // llvm's ability to remove redundant stores. 193 // Unfortunately it's hard to accomplish in current infrastructure. 194 // We use this function to eliminate spill store completely, while 195 // in example we still need to emit store, but instead of any location 196 // we need to use special "preferred" location. 197 198 // TODO: handle simple updates. If a value is modified and the original 199 // value is no longer live, it would be nice to put the modified value in the 200 // same slot. This allows folding of the memory accesses for some 201 // instructions types (like an increment). 202 // statepoint (i) 203 // i1 = i+1 204 // statepoint (i1) 205 // However we need to be careful for cases like this: 206 // statepoint(i) 207 // i1 = i+1 208 // statepoint(i, i1) 209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 210 // put handling of simple modifications in this function like it's done 211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 212 // which we visit values is unspecified. 213 214 // Don't know any information about this instruction 215 return None; 216 } 217 218 /// Try to find existing copies of the incoming values in stack slots used for 219 /// statepoint spilling. If we can find a spill slot for the incoming value, 220 /// mark that slot as allocated, and reuse the same slot for this safepoint. 221 /// This helps to avoid series of loads and stores that only serve to reshuffle 222 /// values on the stack between calls. 223 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 224 SelectionDAGBuilder &Builder) { 225 SDValue Incoming = Builder.getValue(IncomingValue); 226 227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 228 // We won't need to spill this, so no need to check for previously 229 // allocated stack slots 230 return; 231 } 232 233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 234 if (OldLocation.getNode()) 235 // Duplicates in input 236 return; 237 238 const int LookUpDepth = 6; 239 Optional<int> Index = 240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 241 if (!Index.hasValue()) 242 return; 243 244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 245 246 auto SlotIt = find(StatepointSlots, *Index); 247 assert(SlotIt != StatepointSlots.end() && 248 "Value spilled to the unknown stack slot"); 249 250 // This is one of our dedicated lowering slots 251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 253 // stack slot already assigned to someone else, can't use it! 254 // TODO: currently we reserve space for gc arguments after doing 255 // normal allocation for deopt arguments. We should reserve for 256 // _all_ deopt and gc arguments, then start allocating. This 257 // will prevent some moves being inserted when vm state changes, 258 // but gc state doesn't between two calls. 259 return; 260 } 261 // Reserve this stack slot 262 Builder.StatepointLowering.reserveStackSlot(Offset); 263 264 // Cache this slot so we find it when going through the normal 265 // assignment loop. 266 SDValue Loc = 267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 268 Builder.StatepointLowering.setLocation(Incoming, Loc); 269 } 270 271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 272 /// is not required for correctness. It's purpose is to reduce the size of 273 /// StackMap section. It has no effect on the number of spill slots required 274 /// or the actual lowering. 275 static void 276 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 277 SmallVectorImpl<const Value *> &Ptrs, 278 SmallVectorImpl<const GCRelocateInst *> &Relocs, 279 SelectionDAGBuilder &Builder, 280 FunctionLoweringInfo::StatepointSpillMap &SSM) { 281 DenseMap<SDValue, const Value *> Seen; 282 283 SmallVector<const Value *, 64> NewBases, NewPtrs; 284 SmallVector<const GCRelocateInst *, 64> NewRelocs; 285 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 286 SDValue SD = Builder.getValue(Ptrs[i]); 287 auto SeenIt = Seen.find(SD); 288 289 if (SeenIt == Seen.end()) { 290 // Only add non-duplicates 291 NewBases.push_back(Bases[i]); 292 NewPtrs.push_back(Ptrs[i]); 293 NewRelocs.push_back(Relocs[i]); 294 Seen[SD] = Ptrs[i]; 295 } else { 296 // Duplicate pointer found, note in SSM and move on: 297 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 298 } 299 } 300 assert(Bases.size() >= NewBases.size()); 301 assert(Ptrs.size() >= NewPtrs.size()); 302 assert(Relocs.size() >= NewRelocs.size()); 303 Bases = NewBases; 304 Ptrs = NewPtrs; 305 Relocs = NewRelocs; 306 assert(Ptrs.size() == Bases.size()); 307 assert(Ptrs.size() == Relocs.size()); 308 } 309 310 /// Extract call from statepoint, lower it and return pointer to the 311 /// call node. Also update NodeMap so that getValue(statepoint) will 312 /// reference lowered call result 313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 314 SelectionDAGBuilder::StatepointLoweringInfo &SI, 315 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 316 SDValue ReturnValue, CallEndVal; 317 std::tie(ReturnValue, CallEndVal) = 318 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 319 SDNode *CallEnd = CallEndVal.getNode(); 320 321 // Get a call instruction from the call sequence chain. Tail calls are not 322 // allowed. The following code is essentially reverse engineering X86's 323 // LowerCallTo. 324 // 325 // We are expecting DAG to have the following form: 326 // 327 // ch = eh_label (only in case of invoke statepoint) 328 // ch, glue = callseq_start ch 329 // ch, glue = X86::Call ch, glue 330 // ch, glue = callseq_end ch, glue 331 // get_return_value ch, glue 332 // 333 // get_return_value can either be a sequence of CopyFromReg instructions 334 // to grab the return value from the return register(s), or it can be a LOAD 335 // to load a value returned by reference via a stack slot. 336 337 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 338 if (HasDef) { 339 if (CallEnd->getOpcode() == ISD::LOAD) 340 CallEnd = CallEnd->getOperand(0).getNode(); 341 else 342 while (CallEnd->getOpcode() == ISD::CopyFromReg) 343 CallEnd = CallEnd->getOperand(0).getNode(); 344 } 345 346 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 347 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 348 } 349 350 /// Spill a value incoming to the statepoint. It might be either part of 351 /// vmstate 352 /// or gcstate. In both cases unconditionally spill it on the stack unless it 353 /// is a null constant. Return pair with first element being frame index 354 /// containing saved value and second element with outgoing chain from the 355 /// emitted store 356 static std::pair<SDValue, SDValue> 357 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 358 SelectionDAGBuilder &Builder) { 359 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 360 361 // Emit new store if we didn't do it for this ptr before 362 if (!Loc.getNode()) { 363 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 364 Builder); 365 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 366 // We use TargetFrameIndex so that isel will not select it into LEA 367 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 368 369 #ifndef NDEBUG 370 // Right now we always allocate spill slots that are of the same 371 // size as the value we're about to spill (the size of spillee can 372 // vary since we spill vectors of pointers too). At some point we 373 // can consider allowing spills of smaller values to larger slots 374 // (i.e. change the '==' in the assert below to a '>='). 375 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 376 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 377 "Bad spill: stack slot does not match!"); 378 #endif 379 380 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 381 MachinePointerInfo::getFixedStack( 382 Builder.DAG.getMachineFunction(), Index)); 383 384 Builder.StatepointLowering.setLocation(Incoming, Loc); 385 } 386 387 assert(Loc.getNode()); 388 return std::make_pair(Loc, Chain); 389 } 390 391 /// Lower a single value incoming to a statepoint node. This value can be 392 /// either a deopt value or a gc value, the handling is the same. We special 393 /// case constants and allocas, then fall back to spilling if required. 394 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 395 SmallVectorImpl<SDValue> &Ops, 396 SelectionDAGBuilder &Builder) { 397 // Note: We know all of these spills are independent, but don't bother to 398 // exploit that chain wise. DAGCombine will happily do so as needed, so 399 // doing it here would be a small compile time win at most. 400 SDValue Chain = Builder.getRoot(); 401 402 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 403 // If the original value was a constant, make sure it gets recorded as 404 // such in the stackmap. This is required so that the consumer can 405 // parse any internal format to the deopt state. It also handles null 406 // pointers and other constant pointers in GC states. Note the constant 407 // vectors do not appear to actually hit this path and that anything larger 408 // than an i64 value (not type!) will fail asserts here. 409 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 410 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 411 // This handles allocas as arguments to the statepoint (this is only 412 // really meaningful for a deopt value. For GC, we'd be trying to 413 // relocate the address of the alloca itself?) 414 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 415 "Incoming value is a frame index!"); 416 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 417 Builder.getFrameIndexTy())); 418 } else if (LiveInOnly) { 419 // If this value is live in (not live-on-return, or live-through), we can 420 // treat it the same way patchpoint treats it's "live in" values. We'll 421 // end up folding some of these into stack references, but they'll be 422 // handled by the register allocator. Note that we do not have the notion 423 // of a late use so these values might be placed in registers which are 424 // clobbered by the call. This is fine for live-in. 425 Ops.push_back(Incoming); 426 } else { 427 // Otherwise, locate a spill slot and explicitly spill it so it 428 // can be found by the runtime later. We currently do not support 429 // tracking values through callee saved registers to their eventual 430 // spill location. This would be a useful optimization, but would 431 // need to be optional since it requires a lot of complexity on the 432 // runtime side which not all would support. 433 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 434 Ops.push_back(Res.first); 435 Chain = Res.second; 436 } 437 438 Builder.DAG.setRoot(Chain); 439 } 440 441 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 442 /// lowering is described in lowerIncomingStatepointValue. This function is 443 /// responsible for lowering everything in the right position and playing some 444 /// tricks to avoid redundant stack manipulation where possible. On 445 /// completion, 'Ops' will contain ready to use operands for machine code 446 /// statepoint. The chain nodes will have already been created and the DAG root 447 /// will be set to the last value spilled (if any were). 448 static void 449 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 450 SelectionDAGBuilder::StatepointLoweringInfo &SI, 451 SelectionDAGBuilder &Builder) { 452 // Lower the deopt and gc arguments for this statepoint. Layout will be: 453 // deopt argument length, deopt arguments.., gc arguments... 454 #ifndef NDEBUG 455 if (auto *GFI = Builder.GFI) { 456 // Check that each of the gc pointer and bases we've gotten out of the 457 // safepoint is something the strategy thinks might be a pointer (or vector 458 // of pointers) into the GC heap. This is basically just here to help catch 459 // errors during statepoint insertion. TODO: This should actually be in the 460 // Verifier, but we can't get to the GCStrategy from there (yet). 461 GCStrategy &S = GFI->getStrategy(); 462 for (const Value *V : SI.Bases) { 463 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 464 if (Opt.hasValue()) { 465 assert(Opt.getValue() && 466 "non gc managed base pointer found in statepoint"); 467 } 468 } 469 for (const Value *V : SI.Ptrs) { 470 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 471 if (Opt.hasValue()) { 472 assert(Opt.getValue() && 473 "non gc managed derived pointer found in statepoint"); 474 } 475 } 476 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 477 } else { 478 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 479 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 480 } 481 #endif 482 483 // Figure out what lowering strategy we're going to use for each part 484 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 485 // as "live-through". A "live-through" variable is one which is "live-in", 486 // "live-out", and live throughout the lifetime of the call (i.e. we can find 487 // it from any PC within the transitive callee of the statepoint). In 488 // particular, if the callee spills callee preserved registers we may not 489 // be able to find a value placed in that register during the call. This is 490 // fine for live-out, but not for live-through. If we were willing to make 491 // assumptions about the code generator producing the callee, we could 492 // potentially allow live-through values in callee saved registers. 493 const bool LiveInDeopt = 494 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 495 496 auto isGCValue =[&](const Value *V) { 497 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 498 }; 499 500 // Before we actually start lowering (and allocating spill slots for values), 501 // reserve any stack slots which we judge to be profitable to reuse for a 502 // particular value. This is purely an optimization over the code below and 503 // doesn't change semantics at all. It is important for performance that we 504 // reserve slots for both deopt and gc values before lowering either. 505 for (const Value *V : SI.DeoptState) { 506 if (!LiveInDeopt || isGCValue(V)) 507 reservePreviousStackSlotForValue(V, Builder); 508 } 509 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 510 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 511 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 512 } 513 514 // First, prefix the list with the number of unique values to be 515 // lowered. Note that this is the number of *Values* not the 516 // number of SDValues required to lower them. 517 const int NumVMSArgs = SI.DeoptState.size(); 518 pushStackMapConstant(Ops, Builder, NumVMSArgs); 519 520 // The vm state arguments are lowered in an opaque manner. We do not know 521 // what type of values are contained within. 522 for (const Value *V : SI.DeoptState) { 523 SDValue Incoming; 524 // If this is a function argument at a static frame index, generate it as 525 // the frame index. 526 if (const Argument *Arg = dyn_cast<Argument>(V)) { 527 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 528 if (FI != INT_MAX) 529 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 530 } 531 if (!Incoming.getNode()) 532 Incoming = Builder.getValue(V); 533 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 534 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); 535 } 536 537 // Finally, go ahead and lower all the gc arguments. There's no prefixed 538 // length for this one. After lowering, we'll have the base and pointer 539 // arrays interwoven with each (lowered) base pointer immediately followed by 540 // it's (lowered) derived pointer. i.e 541 // (base[0], ptr[0], base[1], ptr[1], ...) 542 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 543 const Value *Base = SI.Bases[i]; 544 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 545 Ops, Builder); 546 547 const Value *Ptr = SI.Ptrs[i]; 548 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 549 Ops, Builder); 550 } 551 552 // If there are any explicit spill slots passed to the statepoint, record 553 // them, but otherwise do not do anything special. These are user provided 554 // allocas and give control over placement to the consumer. In this case, 555 // it is the contents of the slot which may get updated, not the pointer to 556 // the alloca 557 for (Value *V : SI.GCArgs) { 558 SDValue Incoming = Builder.getValue(V); 559 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 560 // This handles allocas as arguments to the statepoint 561 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 562 "Incoming value is a frame index!"); 563 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 564 Builder.getFrameIndexTy())); 565 } 566 } 567 568 // Record computed locations for all lowered values. 569 // This can not be embedded in lowering loops as we need to record *all* 570 // values, while previous loops account only values with unique SDValues. 571 const Instruction *StatepointInstr = SI.StatepointInstr; 572 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 573 574 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 575 const Value *V = Relocate->getDerivedPtr(); 576 SDValue SDV = Builder.getValue(V); 577 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 578 579 if (Loc.getNode()) { 580 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 581 } else { 582 // Record value as visited, but not spilled. This is case for allocas 583 // and constants. For this values we can avoid emitting spill load while 584 // visiting corresponding gc_relocate. 585 // Actually we do not need to record them in this map at all. 586 // We do this only to check that we are not relocating any unvisited 587 // value. 588 SpillMap.SlotMap[V] = None; 589 590 // Default llvm mechanisms for exporting values which are used in 591 // different basic blocks does not work for gc relocates. 592 // Note that it would be incorrect to teach llvm that all relocates are 593 // uses of the corresponding values so that it would automatically 594 // export them. Relocates of the spilled values does not use original 595 // value. 596 if (Relocate->getParent() != StatepointInstr->getParent()) 597 Builder.ExportFromCurrentBlock(V); 598 } 599 } 600 } 601 602 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 603 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 604 // The basic scheme here is that information about both the original call and 605 // the safepoint is encoded in the CallInst. We create a temporary call and 606 // lower it, then reverse engineer the calling sequence. 607 608 NumOfStatepoints++; 609 // Clear state 610 StatepointLowering.startNewStatepoint(*this); 611 612 #ifndef NDEBUG 613 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 614 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 615 for (auto *Reloc : SI.GCRelocates) 616 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 617 StatepointLowering.scheduleRelocCall(*Reloc); 618 #endif 619 620 // Remove any redundant llvm::Values which map to the same SDValue as another 621 // input. Also has the effect of removing duplicates in the original 622 // llvm::Value input list as well. This is a useful optimization for 623 // reducing the size of the StackMap section. It has no other impact. 624 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 625 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 626 assert(SI.Bases.size() == SI.Ptrs.size() && 627 SI.Ptrs.size() == SI.GCRelocates.size()); 628 629 // Lower statepoint vmstate and gcstate arguments 630 SmallVector<SDValue, 10> LoweredMetaArgs; 631 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 632 633 // Now that we've emitted the spills, we need to update the root so that the 634 // call sequence is ordered correctly. 635 SI.CLI.setChain(getRoot()); 636 637 // Get call node, we will replace it later with statepoint 638 SDValue ReturnVal; 639 SDNode *CallNode; 640 std::tie(ReturnVal, CallNode) = 641 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 642 643 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 644 // nodes with all the appropriate arguments and return values. 645 646 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 647 SDValue Chain = CallNode->getOperand(0); 648 649 SDValue Glue; 650 bool CallHasIncomingGlue = CallNode->getGluedNode(); 651 if (CallHasIncomingGlue) { 652 // Glue is always last operand 653 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 654 } 655 656 // Build the GC_TRANSITION_START node if necessary. 657 // 658 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 659 // order in which they appear in the call to the statepoint intrinsic. If 660 // any of the operands is a pointer-typed, that operand is immediately 661 // followed by a SRCVALUE for the pointer that may be used during lowering 662 // (e.g. to form MachinePointerInfo values for loads/stores). 663 const bool IsGCTransition = 664 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 665 (uint64_t)StatepointFlags::GCTransition; 666 if (IsGCTransition) { 667 SmallVector<SDValue, 8> TSOps; 668 669 // Add chain 670 TSOps.push_back(Chain); 671 672 // Add GC transition arguments 673 for (const Value *V : SI.GCTransitionArgs) { 674 TSOps.push_back(getValue(V)); 675 if (V->getType()->isPointerTy()) 676 TSOps.push_back(DAG.getSrcValue(V)); 677 } 678 679 // Add glue if necessary 680 if (CallHasIncomingGlue) 681 TSOps.push_back(Glue); 682 683 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 684 685 SDValue GCTransitionStart = 686 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 687 688 Chain = GCTransitionStart.getValue(0); 689 Glue = GCTransitionStart.getValue(1); 690 } 691 692 // TODO: Currently, all of these operands are being marked as read/write in 693 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 694 // and flags to be read-only. 695 SmallVector<SDValue, 40> Ops; 696 697 // Add the <id> and <numBytes> constants. 698 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 699 Ops.push_back( 700 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 701 702 // Calculate and push starting position of vmstate arguments 703 // Get number of arguments incoming directly into call node 704 unsigned NumCallRegArgs = 705 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 706 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 707 708 // Add call target 709 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 710 Ops.push_back(CallTarget); 711 712 // Add call arguments 713 // Get position of register mask in the call 714 SDNode::op_iterator RegMaskIt; 715 if (CallHasIncomingGlue) 716 RegMaskIt = CallNode->op_end() - 2; 717 else 718 RegMaskIt = CallNode->op_end() - 1; 719 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 720 721 // Add a constant argument for the calling convention 722 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 723 724 // Add a constant argument for the flags 725 uint64_t Flags = SI.StatepointFlags; 726 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 727 "Unknown flag used"); 728 pushStackMapConstant(Ops, *this, Flags); 729 730 // Insert all vmstate and gcstate arguments 731 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 732 733 // Add register mask from call node 734 Ops.push_back(*RegMaskIt); 735 736 // Add chain 737 Ops.push_back(Chain); 738 739 // Same for the glue, but we add it only if original call had it 740 if (Glue.getNode()) 741 Ops.push_back(Glue); 742 743 // Compute return values. Provide a glue output since we consume one as 744 // input. This allows someone else to chain off us as needed. 745 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 746 747 SDNode *StatepointMCNode = 748 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 749 750 SDNode *SinkNode = StatepointMCNode; 751 752 // Build the GC_TRANSITION_END node if necessary. 753 // 754 // See the comment above regarding GC_TRANSITION_START for the layout of 755 // the operands to the GC_TRANSITION_END node. 756 if (IsGCTransition) { 757 SmallVector<SDValue, 8> TEOps; 758 759 // Add chain 760 TEOps.push_back(SDValue(StatepointMCNode, 0)); 761 762 // Add GC transition arguments 763 for (const Value *V : SI.GCTransitionArgs) { 764 TEOps.push_back(getValue(V)); 765 if (V->getType()->isPointerTy()) 766 TEOps.push_back(DAG.getSrcValue(V)); 767 } 768 769 // Add glue 770 TEOps.push_back(SDValue(StatepointMCNode, 1)); 771 772 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 773 774 SDValue GCTransitionStart = 775 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 776 777 SinkNode = GCTransitionStart.getNode(); 778 } 779 780 // Replace original call 781 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 782 // Remove original call node 783 DAG.DeleteNode(CallNode); 784 785 // DON'T set the root - under the assumption that it's already set past the 786 // inserted node we created. 787 788 // TODO: A better future implementation would be to emit a single variable 789 // argument, variable return value STATEPOINT node here and then hookup the 790 // return value of each gc.relocate to the respective output of the 791 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 792 // to actually be possible today. 793 794 return ReturnVal; 795 } 796 797 void 798 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 799 const BasicBlock *EHPadBB /*= nullptr*/) { 800 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && 801 "anyregcc is not supported on statepoints!"); 802 803 #ifndef NDEBUG 804 // If this is a malformed statepoint, report it early to simplify debugging. 805 // This should catch any IR level mistake that's made when constructing or 806 // transforming statepoints. 807 ISP.verify(); 808 809 // Check that the associated GCStrategy expects to encounter statepoints. 810 assert(GFI->getStrategy().useStatepoints() && 811 "GCStrategy does not expect to encounter statepoints"); 812 #endif 813 814 SDValue ActualCallee; 815 816 if (ISP.getNumPatchBytes() > 0) { 817 // If we've been asked to emit a nop sequence instead of a call instruction 818 // for this statepoint then don't lower the call target, but use a constant 819 // `null` instead. Not lowering the call target lets statepoint clients get 820 // away without providing a physical address for the symbolic call target at 821 // link time. 822 823 const auto &TLI = DAG.getTargetLoweringInfo(); 824 const auto &DL = DAG.getDataLayout(); 825 826 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 827 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 828 } else { 829 ActualCallee = getValue(ISP.getCalledValue()); 830 } 831 832 StatepointLoweringInfo SI(DAG); 833 populateCallLoweringInfo(SI.CLI, ISP.getCall(), 834 ImmutableStatepoint::CallArgsBeginPos, 835 ISP.getNumCallArgs(), ActualCallee, 836 ISP.getActualReturnType(), false /* IsPatchPoint */); 837 838 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 839 SI.GCRelocates.push_back(Relocate); 840 SI.Bases.push_back(Relocate->getBasePtr()); 841 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 842 } 843 844 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 845 SI.StatepointInstr = ISP.getInstruction(); 846 SI.GCTransitionArgs = 847 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 848 SI.ID = ISP.getID(); 849 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 850 SI.StatepointFlags = ISP.getFlags(); 851 SI.NumPatchBytes = ISP.getNumPatchBytes(); 852 SI.EHPadBB = EHPadBB; 853 854 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 855 856 // Export the result value if needed 857 const GCResultInst *GCResult = ISP.getGCResult(); 858 Type *RetTy = ISP.getActualReturnType(); 859 if (!RetTy->isVoidTy() && GCResult) { 860 if (GCResult->getParent() != ISP.getCall()->getParent()) { 861 // Result value will be used in a different basic block so we need to 862 // export it now. Default exporting mechanism will not work here because 863 // statepoint call has a different type than the actual call. It means 864 // that by default llvm will create export register of the wrong type 865 // (always i32 in our case). So instead we need to create export register 866 // with correct type manually. 867 // TODO: To eliminate this problem we can remove gc.result intrinsics 868 // completely and make statepoint call to return a tuple. 869 unsigned Reg = FuncInfo.CreateRegs(RetTy); 870 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 871 DAG.getDataLayout(), Reg, RetTy, 872 ISP.getCall()->getCallingConv()); 873 SDValue Chain = DAG.getEntryNode(); 874 875 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 876 PendingExports.push_back(Chain); 877 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 878 } else { 879 // Result value will be used in a same basic block. Don't export it or 880 // perform any explicit register copies. 881 // We'll replace the actuall call node shortly. gc_result will grab 882 // this value. 883 setValue(ISP.getInstruction(), ReturnValue); 884 } 885 } else { 886 // The token value is never used from here on, just generate a poison value 887 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 888 } 889 } 890 891 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 892 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 893 bool VarArgDisallowed, bool ForceVoidReturnTy) { 894 StatepointLoweringInfo SI(DAG); 895 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 896 populateCallLoweringInfo( 897 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 898 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 899 false); 900 if (!VarArgDisallowed) 901 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 902 903 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 904 905 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 906 907 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 908 SI.ID = SD.StatepointID.getValueOr(DefaultID); 909 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 910 911 SI.DeoptState = 912 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 913 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 914 SI.EHPadBB = EHPadBB; 915 916 // NB! The GC arguments are deliberately left empty. 917 918 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 919 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 920 setValue(Call, ReturnVal); 921 } 922 } 923 924 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 925 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 926 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 927 /* VarArgDisallowed = */ false, 928 /* ForceVoidReturnTy = */ false); 929 } 930 931 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 932 // The result value of the gc_result is simply the result of the actual 933 // call. We've already emitted this, so just grab the value. 934 const Instruction *I = CI.getStatepoint(); 935 936 if (I->getParent() != CI.getParent()) { 937 // Statepoint is in different basic block so we should have stored call 938 // result in a virtual register. 939 // We can not use default getValue() functionality to copy value from this 940 // register because statepoint and actual call return types can be 941 // different, and getValue() will use CopyFromReg of the wrong type, 942 // which is always i32 in our case. 943 PointerType *CalleeType = cast<PointerType>( 944 ImmutableStatepoint(I).getCalledValue()->getType()); 945 Type *RetTy = 946 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 947 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 948 949 assert(CopyFromReg.getNode()); 950 setValue(&CI, CopyFromReg); 951 } else { 952 setValue(&CI, getValue(I)); 953 } 954 } 955 956 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 957 #ifndef NDEBUG 958 // Consistency check 959 // We skip this check for relocates not in the same basic block as their 960 // statepoint. It would be too expensive to preserve validation info through 961 // different basic blocks. 962 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 963 StatepointLowering.relocCallVisited(Relocate); 964 965 auto *Ty = Relocate.getType()->getScalarType(); 966 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 967 assert(*IsManaged && "Non gc managed pointer relocated!"); 968 #endif 969 970 const Value *DerivedPtr = Relocate.getDerivedPtr(); 971 SDValue SD = getValue(DerivedPtr); 972 973 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 974 auto SlotIt = SpillMap.find(DerivedPtr); 975 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 976 Optional<int> DerivedPtrLocation = SlotIt->second; 977 978 // We didn't need to spill these special cases (constants and allocas). 979 // See the handling in spillIncomingValueForStatepoint for detail. 980 if (!DerivedPtrLocation) { 981 setValue(&Relocate, SD); 982 return; 983 } 984 985 SDValue SpillSlot = 986 DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy()); 987 988 // Note: We know all of these reloads are independent, but don't bother to 989 // exploit that chain wise. DAGCombine will happily do so as needed, so 990 // doing it here would be a small compile time win at most. 991 SDValue Chain = getRoot(); 992 993 SDValue SpillLoad = 994 DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 995 Relocate.getType()), 996 getCurSDLoc(), Chain, SpillSlot, 997 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 998 *DerivedPtrLocation)); 999 1000 DAG.setRoot(SpillLoad.getValue(1)); 1001 1002 assert(SpillLoad.getNode()); 1003 setValue(&Relocate, SpillLoad); 1004 } 1005 1006 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1007 const auto &TLI = DAG.getTargetLoweringInfo(); 1008 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1009 TLI.getPointerTy(DAG.getDataLayout())); 1010 1011 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1012 // call. We also do not lower the return value to any virtual register, and 1013 // change the immediately following return to a trap instruction. 1014 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1015 /* VarArgDisallowed = */ true, 1016 /* ForceVoidReturnTy = */ true); 1017 } 1018 1019 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1020 // We do not lower the return value from llvm.deoptimize to any virtual 1021 // register, and change the immediately following return to a trap 1022 // instruction. 1023 if (DAG.getTarget().Options.TrapUnreachable) 1024 DAG.setRoot( 1025 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1026 } 1027