1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/GCStrategy.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <iterator>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "statepoint-lowering"
57 
58 STATISTIC(NumSlotsAllocatedForStatepoints,
59           "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired,
62           "Maximum number of stack slots required for a singe statepoint");
63 
64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
65                                  SelectionDAGBuilder &Builder, uint64_t Value) {
66   SDLoc L = Builder.getCurSDLoc();
67   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
68                                               MVT::i64));
69   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
70 }
71 
72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
73   // Consistency check
74   assert(PendingGCRelocateCalls.empty() &&
75          "Trying to visit statepoint before finished processing previous one");
76   Locations.clear();
77   NextSlotToAllocate = 0;
78   // Need to resize this on each safepoint - we need the two to stay in sync and
79   // the clear patterns of a SelectionDAGBuilder have no relation to
80   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
81   AllocatedStackSlots.clear();
82   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
83 }
84 
85 void StatepointLoweringState::clear() {
86   Locations.clear();
87   AllocatedStackSlots.clear();
88   assert(PendingGCRelocateCalls.empty() &&
89          "cleared before statepoint sequence completed");
90 }
91 
92 SDValue
93 StatepointLoweringState::allocateStackSlot(EVT ValueType,
94                                            SelectionDAGBuilder &Builder) {
95   NumSlotsAllocatedForStatepoints++;
96   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
97 
98   unsigned SpillSize = ValueType.getStoreSize();
99   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
100 
101   // First look for a previously created stack slot which is not in
102   // use (accounting for the fact arbitrary slots may already be
103   // reserved), or to create a new stack slot and use it.
104 
105   const size_t NumSlots = AllocatedStackSlots.size();
106   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
107 
108   assert(AllocatedStackSlots.size() ==
109          Builder.FuncInfo.StatepointStackSlots.size() &&
110          "Broken invariant");
111 
112   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
113     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
114       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
115       if (MFI.getObjectSize(FI) == SpillSize) {
116         AllocatedStackSlots.set(NextSlotToAllocate);
117         // TODO: Is ValueType the right thing to use here?
118         return Builder.DAG.getFrameIndex(FI, ValueType);
119       }
120     }
121   }
122 
123   // Couldn't find a free slot, so create a new one:
124 
125   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
126   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
127   MFI.markAsStatepointSpillSlotObjectIndex(FI);
128 
129   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
130   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
131   assert(AllocatedStackSlots.size() ==
132          Builder.FuncInfo.StatepointStackSlots.size() &&
133          "Broken invariant");
134 
135   StatepointMaxSlotsRequired.updateMax(
136       Builder.FuncInfo.StatepointStackSlots.size());
137 
138   return SpillSlot;
139 }
140 
141 /// Utility function for reservePreviousStackSlotForValue. Tries to find
142 /// stack slot index to which we have spilled value for previous statepoints.
143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144 static Optional<int> findPreviousSpillSlot(const Value *Val,
145                                            SelectionDAGBuilder &Builder,
146                                            int LookUpDepth) {
147   // Can not look any further - give up now
148   if (LookUpDepth <= 0)
149     return None;
150 
151   // Spill location is known for gc relocates
152   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
153     const auto &SpillMap =
154         Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
155 
156     auto It = SpillMap.find(Relocate->getDerivedPtr());
157     if (It == SpillMap.end())
158       return None;
159 
160     return It->second;
161   }
162 
163   // Look through bitcast instructions.
164   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
165     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
166 
167   // Look through phi nodes
168   // All incoming values should have same known stack slot, otherwise result
169   // is unknown.
170   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
171     Optional<int> MergedResult = None;
172 
173     for (auto &IncomingValue : Phi->incoming_values()) {
174       Optional<int> SpillSlot =
175           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
176       if (!SpillSlot.hasValue())
177         return None;
178 
179       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
180         return None;
181 
182       MergedResult = SpillSlot;
183     }
184     return MergedResult;
185   }
186 
187   // TODO: We can do better for PHI nodes. In cases like this:
188   //   ptr = phi(relocated_pointer, not_relocated_pointer)
189   //   statepoint(ptr)
190   // We will return that stack slot for ptr is unknown. And later we might
191   // assign different stack slots for ptr and relocated_pointer. This limits
192   // llvm's ability to remove redundant stores.
193   // Unfortunately it's hard to accomplish in current infrastructure.
194   // We use this function to eliminate spill store completely, while
195   // in example we still need to emit store, but instead of any location
196   // we need to use special "preferred" location.
197 
198   // TODO: handle simple updates.  If a value is modified and the original
199   // value is no longer live, it would be nice to put the modified value in the
200   // same slot.  This allows folding of the memory accesses for some
201   // instructions types (like an increment).
202   //   statepoint (i)
203   //   i1 = i+1
204   //   statepoint (i1)
205   // However we need to be careful for cases like this:
206   //   statepoint(i)
207   //   i1 = i+1
208   //   statepoint(i, i1)
209   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210   // put handling of simple modifications in this function like it's done
211   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212   // which we visit values is unspecified.
213 
214   // Don't know any information about this instruction
215   return None;
216 }
217 
218 /// Try to find existing copies of the incoming values in stack slots used for
219 /// statepoint spilling.  If we can find a spill slot for the incoming value,
220 /// mark that slot as allocated, and reuse the same slot for this safepoint.
221 /// This helps to avoid series of loads and stores that only serve to reshuffle
222 /// values on the stack between calls.
223 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
224                                              SelectionDAGBuilder &Builder) {
225   SDValue Incoming = Builder.getValue(IncomingValue);
226 
227   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
228     // We won't need to spill this, so no need to check for previously
229     // allocated stack slots
230     return;
231   }
232 
233   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
234   if (OldLocation.getNode())
235     // Duplicates in input
236     return;
237 
238   const int LookUpDepth = 6;
239   Optional<int> Index =
240       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
241   if (!Index.hasValue())
242     return;
243 
244   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
245 
246   auto SlotIt = find(StatepointSlots, *Index);
247   assert(SlotIt != StatepointSlots.end() &&
248          "Value spilled to the unknown stack slot");
249 
250   // This is one of our dedicated lowering slots
251   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
252   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
253     // stack slot already assigned to someone else, can't use it!
254     // TODO: currently we reserve space for gc arguments after doing
255     // normal allocation for deopt arguments.  We should reserve for
256     // _all_ deopt and gc arguments, then start allocating.  This
257     // will prevent some moves being inserted when vm state changes,
258     // but gc state doesn't between two calls.
259     return;
260   }
261   // Reserve this stack slot
262   Builder.StatepointLowering.reserveStackSlot(Offset);
263 
264   // Cache this slot so we find it when going through the normal
265   // assignment loop.
266   SDValue Loc =
267       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
268   Builder.StatepointLowering.setLocation(Incoming, Loc);
269 }
270 
271 /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
272 /// is not required for correctness.  It's purpose is to reduce the size of
273 /// StackMap section.  It has no effect on the number of spill slots required
274 /// or the actual lowering.
275 static void
276 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
277                       SmallVectorImpl<const Value *> &Ptrs,
278                       SmallVectorImpl<const GCRelocateInst *> &Relocs,
279                       SelectionDAGBuilder &Builder,
280                       FunctionLoweringInfo::StatepointSpillMap &SSM) {
281   DenseMap<SDValue, const Value *> Seen;
282 
283   SmallVector<const Value *, 64> NewBases, NewPtrs;
284   SmallVector<const GCRelocateInst *, 64> NewRelocs;
285   for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
286     SDValue SD = Builder.getValue(Ptrs[i]);
287     auto SeenIt = Seen.find(SD);
288 
289     if (SeenIt == Seen.end()) {
290       // Only add non-duplicates
291       NewBases.push_back(Bases[i]);
292       NewPtrs.push_back(Ptrs[i]);
293       NewRelocs.push_back(Relocs[i]);
294       Seen[SD] = Ptrs[i];
295     } else {
296       // Duplicate pointer found, note in SSM and move on:
297       SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
298     }
299   }
300   assert(Bases.size() >= NewBases.size());
301   assert(Ptrs.size() >= NewPtrs.size());
302   assert(Relocs.size() >= NewRelocs.size());
303   Bases = NewBases;
304   Ptrs = NewPtrs;
305   Relocs = NewRelocs;
306   assert(Ptrs.size() == Bases.size());
307   assert(Ptrs.size() == Relocs.size());
308 }
309 
310 /// Extract call from statepoint, lower it and return pointer to the
311 /// call node. Also update NodeMap so that getValue(statepoint) will
312 /// reference lowered call result
313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
314     SelectionDAGBuilder::StatepointLoweringInfo &SI,
315     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
316   SDValue ReturnValue, CallEndVal;
317   std::tie(ReturnValue, CallEndVal) =
318       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
319   SDNode *CallEnd = CallEndVal.getNode();
320 
321   // Get a call instruction from the call sequence chain.  Tail calls are not
322   // allowed.  The following code is essentially reverse engineering X86's
323   // LowerCallTo.
324   //
325   // We are expecting DAG to have the following form:
326   //
327   // ch = eh_label (only in case of invoke statepoint)
328   //   ch, glue = callseq_start ch
329   //   ch, glue = X86::Call ch, glue
330   //   ch, glue = callseq_end ch, glue
331   //   get_return_value ch, glue
332   //
333   // get_return_value can either be a sequence of CopyFromReg instructions
334   // to grab the return value from the return register(s), or it can be a LOAD
335   // to load a value returned by reference via a stack slot.
336 
337   bool HasDef = !SI.CLI.RetTy->isVoidTy();
338   if (HasDef) {
339     if (CallEnd->getOpcode() == ISD::LOAD)
340       CallEnd = CallEnd->getOperand(0).getNode();
341     else
342       while (CallEnd->getOpcode() == ISD::CopyFromReg)
343         CallEnd = CallEnd->getOperand(0).getNode();
344   }
345 
346   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
347   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
348 }
349 
350 /// Spill a value incoming to the statepoint. It might be either part of
351 /// vmstate
352 /// or gcstate. In both cases unconditionally spill it on the stack unless it
353 /// is a null constant. Return pair with first element being frame index
354 /// containing saved value and second element with outgoing chain from the
355 /// emitted store
356 static std::pair<SDValue, SDValue>
357 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
358                              SelectionDAGBuilder &Builder) {
359   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
360 
361   // Emit new store if we didn't do it for this ptr before
362   if (!Loc.getNode()) {
363     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
364                                                        Builder);
365     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
366     // We use TargetFrameIndex so that isel will not select it into LEA
367     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
368 
369 #ifndef NDEBUG
370     // Right now we always allocate spill slots that are of the same
371     // size as the value we're about to spill (the size of spillee can
372     // vary since we spill vectors of pointers too).  At some point we
373     // can consider allowing spills of smaller values to larger slots
374     // (i.e. change the '==' in the assert below to a '>=').
375     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
376     assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
377            "Bad spill:  stack slot does not match!");
378 #endif
379 
380     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
381                                  MachinePointerInfo::getFixedStack(
382                                      Builder.DAG.getMachineFunction(), Index));
383 
384     Builder.StatepointLowering.setLocation(Incoming, Loc);
385   }
386 
387   assert(Loc.getNode());
388   return std::make_pair(Loc, Chain);
389 }
390 
391 /// Lower a single value incoming to a statepoint node.  This value can be
392 /// either a deopt value or a gc value, the handling is the same.  We special
393 /// case constants and allocas, then fall back to spilling if required.
394 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
395                                          SmallVectorImpl<SDValue> &Ops,
396                                          SelectionDAGBuilder &Builder) {
397   // Note: We know all of these spills are independent, but don't bother to
398   // exploit that chain wise.  DAGCombine will happily do so as needed, so
399   // doing it here would be a small compile time win at most.
400   SDValue Chain = Builder.getRoot();
401 
402   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
403     // If the original value was a constant, make sure it gets recorded as
404     // such in the stackmap.  This is required so that the consumer can
405     // parse any internal format to the deopt state.  It also handles null
406     // pointers and other constant pointers in GC states.  Note the constant
407     // vectors do not appear to actually hit this path and that anything larger
408     // than an i64 value (not type!) will fail asserts here.
409     pushStackMapConstant(Ops, Builder, C->getSExtValue());
410   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
411     // This handles allocas as arguments to the statepoint (this is only
412     // really meaningful for a deopt value.  For GC, we'd be trying to
413     // relocate the address of the alloca itself?)
414     assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
415            "Incoming value is a frame index!");
416     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
417                                                   Builder.getFrameIndexTy()));
418   } else if (LiveInOnly) {
419     // If this value is live in (not live-on-return, or live-through), we can
420     // treat it the same way patchpoint treats it's "live in" values.  We'll
421     // end up folding some of these into stack references, but they'll be
422     // handled by the register allocator.  Note that we do not have the notion
423     // of a late use so these values might be placed in registers which are
424     // clobbered by the call.  This is fine for live-in.
425     Ops.push_back(Incoming);
426   } else {
427     // Otherwise, locate a spill slot and explicitly spill it so it
428     // can be found by the runtime later.  We currently do not support
429     // tracking values through callee saved registers to their eventual
430     // spill location.  This would be a useful optimization, but would
431     // need to be optional since it requires a lot of complexity on the
432     // runtime side which not all would support.
433     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
434     Ops.push_back(Res.first);
435     Chain = Res.second;
436   }
437 
438   Builder.DAG.setRoot(Chain);
439 }
440 
441 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
442 /// lowering is described in lowerIncomingStatepointValue.  This function is
443 /// responsible for lowering everything in the right position and playing some
444 /// tricks to avoid redundant stack manipulation where possible.  On
445 /// completion, 'Ops' will contain ready to use operands for machine code
446 /// statepoint. The chain nodes will have already been created and the DAG root
447 /// will be set to the last value spilled (if any were).
448 static void
449 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
450                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
451                         SelectionDAGBuilder &Builder) {
452   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
453   // deopt argument length, deopt arguments.., gc arguments...
454 #ifndef NDEBUG
455   if (auto *GFI = Builder.GFI) {
456     // Check that each of the gc pointer and bases we've gotten out of the
457     // safepoint is something the strategy thinks might be a pointer (or vector
458     // of pointers) into the GC heap.  This is basically just here to help catch
459     // errors during statepoint insertion. TODO: This should actually be in the
460     // Verifier, but we can't get to the GCStrategy from there (yet).
461     GCStrategy &S = GFI->getStrategy();
462     for (const Value *V : SI.Bases) {
463       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
464       if (Opt.hasValue()) {
465         assert(Opt.getValue() &&
466                "non gc managed base pointer found in statepoint");
467       }
468     }
469     for (const Value *V : SI.Ptrs) {
470       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
471       if (Opt.hasValue()) {
472         assert(Opt.getValue() &&
473                "non gc managed derived pointer found in statepoint");
474       }
475     }
476     assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
477   } else {
478     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
479     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
480   }
481 #endif
482 
483   // Figure out what lowering strategy we're going to use for each part
484   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
485   // as "live-through". A "live-through" variable is one which is "live-in",
486   // "live-out", and live throughout the lifetime of the call (i.e. we can find
487   // it from any PC within the transitive callee of the statepoint).  In
488   // particular, if the callee spills callee preserved registers we may not
489   // be able to find a value placed in that register during the call.  This is
490   // fine for live-out, but not for live-through.  If we were willing to make
491   // assumptions about the code generator producing the callee, we could
492   // potentially allow live-through values in callee saved registers.
493   const bool LiveInDeopt =
494     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
495 
496   auto isGCValue =[&](const Value *V) {
497     return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
498   };
499 
500   // Before we actually start lowering (and allocating spill slots for values),
501   // reserve any stack slots which we judge to be profitable to reuse for a
502   // particular value.  This is purely an optimization over the code below and
503   // doesn't change semantics at all.  It is important for performance that we
504   // reserve slots for both deopt and gc values before lowering either.
505   for (const Value *V : SI.DeoptState) {
506     if (!LiveInDeopt || isGCValue(V))
507       reservePreviousStackSlotForValue(V, Builder);
508   }
509   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
510     reservePreviousStackSlotForValue(SI.Bases[i], Builder);
511     reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
512   }
513 
514   // First, prefix the list with the number of unique values to be
515   // lowered.  Note that this is the number of *Values* not the
516   // number of SDValues required to lower them.
517   const int NumVMSArgs = SI.DeoptState.size();
518   pushStackMapConstant(Ops, Builder, NumVMSArgs);
519 
520   // The vm state arguments are lowered in an opaque manner.  We do not know
521   // what type of values are contained within.
522   for (const Value *V : SI.DeoptState) {
523     SDValue Incoming;
524     // If this is a function argument at a static frame index, generate it as
525     // the frame index.
526     if (const Argument *Arg = dyn_cast<Argument>(V)) {
527       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
528       if (FI != INT_MAX)
529         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
530     }
531     if (!Incoming.getNode())
532       Incoming = Builder.getValue(V);
533     const bool LiveInValue = LiveInDeopt && !isGCValue(V);
534     lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder);
535   }
536 
537   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
538   // length for this one.  After lowering, we'll have the base and pointer
539   // arrays interwoven with each (lowered) base pointer immediately followed by
540   // it's (lowered) derived pointer.  i.e
541   // (base[0], ptr[0], base[1], ptr[1], ...)
542   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
543     const Value *Base = SI.Bases[i];
544     lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
545                                  Ops, Builder);
546 
547     const Value *Ptr = SI.Ptrs[i];
548     lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
549                                  Ops, Builder);
550   }
551 
552   // If there are any explicit spill slots passed to the statepoint, record
553   // them, but otherwise do not do anything special.  These are user provided
554   // allocas and give control over placement to the consumer.  In this case,
555   // it is the contents of the slot which may get updated, not the pointer to
556   // the alloca
557   for (Value *V : SI.GCArgs) {
558     SDValue Incoming = Builder.getValue(V);
559     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
560       // This handles allocas as arguments to the statepoint
561       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
562              "Incoming value is a frame index!");
563       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
564                                                     Builder.getFrameIndexTy()));
565     }
566   }
567 
568   // Record computed locations for all lowered values.
569   // This can not be embedded in lowering loops as we need to record *all*
570   // values, while previous loops account only values with unique SDValues.
571   const Instruction *StatepointInstr = SI.StatepointInstr;
572   auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
573 
574   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
575     const Value *V = Relocate->getDerivedPtr();
576     SDValue SDV = Builder.getValue(V);
577     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
578 
579     if (Loc.getNode()) {
580       SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
581     } else {
582       // Record value as visited, but not spilled. This is case for allocas
583       // and constants. For this values we can avoid emitting spill load while
584       // visiting corresponding gc_relocate.
585       // Actually we do not need to record them in this map at all.
586       // We do this only to check that we are not relocating any unvisited
587       // value.
588       SpillMap.SlotMap[V] = None;
589 
590       // Default llvm mechanisms for exporting values which are used in
591       // different basic blocks does not work for gc relocates.
592       // Note that it would be incorrect to teach llvm that all relocates are
593       // uses of the corresponding values so that it would automatically
594       // export them. Relocates of the spilled values does not use original
595       // value.
596       if (Relocate->getParent() != StatepointInstr->getParent())
597         Builder.ExportFromCurrentBlock(V);
598     }
599   }
600 }
601 
602 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
603     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
604   // The basic scheme here is that information about both the original call and
605   // the safepoint is encoded in the CallInst.  We create a temporary call and
606   // lower it, then reverse engineer the calling sequence.
607 
608   NumOfStatepoints++;
609   // Clear state
610   StatepointLowering.startNewStatepoint(*this);
611 
612 #ifndef NDEBUG
613   // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
614   // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
615   for (auto *Reloc : SI.GCRelocates)
616     if (Reloc->getParent() == SI.StatepointInstr->getParent())
617       StatepointLowering.scheduleRelocCall(*Reloc);
618 #endif
619 
620   // Remove any redundant llvm::Values which map to the same SDValue as another
621   // input.  Also has the effect of removing duplicates in the original
622   // llvm::Value input list as well.  This is a useful optimization for
623   // reducing the size of the StackMap section.  It has no other impact.
624   removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
625                         FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
626   assert(SI.Bases.size() == SI.Ptrs.size() &&
627          SI.Ptrs.size() == SI.GCRelocates.size());
628 
629   // Lower statepoint vmstate and gcstate arguments
630   SmallVector<SDValue, 10> LoweredMetaArgs;
631   lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this);
632 
633   // Now that we've emitted the spills, we need to update the root so that the
634   // call sequence is ordered correctly.
635   SI.CLI.setChain(getRoot());
636 
637   // Get call node, we will replace it later with statepoint
638   SDValue ReturnVal;
639   SDNode *CallNode;
640   std::tie(ReturnVal, CallNode) =
641       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
642 
643   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
644   // nodes with all the appropriate arguments and return values.
645 
646   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
647   SDValue Chain = CallNode->getOperand(0);
648 
649   SDValue Glue;
650   bool CallHasIncomingGlue = CallNode->getGluedNode();
651   if (CallHasIncomingGlue) {
652     // Glue is always last operand
653     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
654   }
655 
656   // Build the GC_TRANSITION_START node if necessary.
657   //
658   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
659   // order in which they appear in the call to the statepoint intrinsic. If
660   // any of the operands is a pointer-typed, that operand is immediately
661   // followed by a SRCVALUE for the pointer that may be used during lowering
662   // (e.g. to form MachinePointerInfo values for loads/stores).
663   const bool IsGCTransition =
664       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
665       (uint64_t)StatepointFlags::GCTransition;
666   if (IsGCTransition) {
667     SmallVector<SDValue, 8> TSOps;
668 
669     // Add chain
670     TSOps.push_back(Chain);
671 
672     // Add GC transition arguments
673     for (const Value *V : SI.GCTransitionArgs) {
674       TSOps.push_back(getValue(V));
675       if (V->getType()->isPointerTy())
676         TSOps.push_back(DAG.getSrcValue(V));
677     }
678 
679     // Add glue if necessary
680     if (CallHasIncomingGlue)
681       TSOps.push_back(Glue);
682 
683     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
684 
685     SDValue GCTransitionStart =
686         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
687 
688     Chain = GCTransitionStart.getValue(0);
689     Glue = GCTransitionStart.getValue(1);
690   }
691 
692   // TODO: Currently, all of these operands are being marked as read/write in
693   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
694   // and flags to be read-only.
695   SmallVector<SDValue, 40> Ops;
696 
697   // Add the <id> and <numBytes> constants.
698   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
699   Ops.push_back(
700       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
701 
702   // Calculate and push starting position of vmstate arguments
703   // Get number of arguments incoming directly into call node
704   unsigned NumCallRegArgs =
705       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
706   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
707 
708   // Add call target
709   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
710   Ops.push_back(CallTarget);
711 
712   // Add call arguments
713   // Get position of register mask in the call
714   SDNode::op_iterator RegMaskIt;
715   if (CallHasIncomingGlue)
716     RegMaskIt = CallNode->op_end() - 2;
717   else
718     RegMaskIt = CallNode->op_end() - 1;
719   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
720 
721   // Add a constant argument for the calling convention
722   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
723 
724   // Add a constant argument for the flags
725   uint64_t Flags = SI.StatepointFlags;
726   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
727          "Unknown flag used");
728   pushStackMapConstant(Ops, *this, Flags);
729 
730   // Insert all vmstate and gcstate arguments
731   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
732 
733   // Add register mask from call node
734   Ops.push_back(*RegMaskIt);
735 
736   // Add chain
737   Ops.push_back(Chain);
738 
739   // Same for the glue, but we add it only if original call had it
740   if (Glue.getNode())
741     Ops.push_back(Glue);
742 
743   // Compute return values.  Provide a glue output since we consume one as
744   // input.  This allows someone else to chain off us as needed.
745   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
746 
747   SDNode *StatepointMCNode =
748       DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
749 
750   SDNode *SinkNode = StatepointMCNode;
751 
752   // Build the GC_TRANSITION_END node if necessary.
753   //
754   // See the comment above regarding GC_TRANSITION_START for the layout of
755   // the operands to the GC_TRANSITION_END node.
756   if (IsGCTransition) {
757     SmallVector<SDValue, 8> TEOps;
758 
759     // Add chain
760     TEOps.push_back(SDValue(StatepointMCNode, 0));
761 
762     // Add GC transition arguments
763     for (const Value *V : SI.GCTransitionArgs) {
764       TEOps.push_back(getValue(V));
765       if (V->getType()->isPointerTy())
766         TEOps.push_back(DAG.getSrcValue(V));
767     }
768 
769     // Add glue
770     TEOps.push_back(SDValue(StatepointMCNode, 1));
771 
772     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
773 
774     SDValue GCTransitionStart =
775         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
776 
777     SinkNode = GCTransitionStart.getNode();
778   }
779 
780   // Replace original call
781   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
782   // Remove original call node
783   DAG.DeleteNode(CallNode);
784 
785   // DON'T set the root - under the assumption that it's already set past the
786   // inserted node we created.
787 
788   // TODO: A better future implementation would be to emit a single variable
789   // argument, variable return value STATEPOINT node here and then hookup the
790   // return value of each gc.relocate to the respective output of the
791   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
792   // to actually be possible today.
793 
794   return ReturnVal;
795 }
796 
797 void
798 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
799                                      const BasicBlock *EHPadBB /*= nullptr*/) {
800   assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg &&
801          "anyregcc is not supported on statepoints!");
802 
803 #ifndef NDEBUG
804   // If this is a malformed statepoint, report it early to simplify debugging.
805   // This should catch any IR level mistake that's made when constructing or
806   // transforming statepoints.
807   ISP.verify();
808 
809   // Check that the associated GCStrategy expects to encounter statepoints.
810   assert(GFI->getStrategy().useStatepoints() &&
811          "GCStrategy does not expect to encounter statepoints");
812 #endif
813 
814   SDValue ActualCallee;
815 
816   if (ISP.getNumPatchBytes() > 0) {
817     // If we've been asked to emit a nop sequence instead of a call instruction
818     // for this statepoint then don't lower the call target, but use a constant
819     // `null` instead.  Not lowering the call target lets statepoint clients get
820     // away without providing a physical address for the symbolic call target at
821     // link time.
822 
823     const auto &TLI = DAG.getTargetLoweringInfo();
824     const auto &DL = DAG.getDataLayout();
825 
826     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
827     ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
828   } else {
829     ActualCallee = getValue(ISP.getCalledValue());
830   }
831 
832   StatepointLoweringInfo SI(DAG);
833   populateCallLoweringInfo(SI.CLI, ISP.getCall(),
834                            ImmutableStatepoint::CallArgsBeginPos,
835                            ISP.getNumCallArgs(), ActualCallee,
836                            ISP.getActualReturnType(), false /* IsPatchPoint */);
837 
838   for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
839     SI.GCRelocates.push_back(Relocate);
840     SI.Bases.push_back(Relocate->getBasePtr());
841     SI.Ptrs.push_back(Relocate->getDerivedPtr());
842   }
843 
844   SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
845   SI.StatepointInstr = ISP.getInstruction();
846   SI.GCTransitionArgs =
847       ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
848   SI.ID = ISP.getID();
849   SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
850   SI.StatepointFlags = ISP.getFlags();
851   SI.NumPatchBytes = ISP.getNumPatchBytes();
852   SI.EHPadBB = EHPadBB;
853 
854   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
855 
856   // Export the result value if needed
857   const GCResultInst *GCResult = ISP.getGCResult();
858   Type *RetTy = ISP.getActualReturnType();
859   if (!RetTy->isVoidTy() && GCResult) {
860     if (GCResult->getParent() != ISP.getCall()->getParent()) {
861       // Result value will be used in a different basic block so we need to
862       // export it now.  Default exporting mechanism will not work here because
863       // statepoint call has a different type than the actual call. It means
864       // that by default llvm will create export register of the wrong type
865       // (always i32 in our case). So instead we need to create export register
866       // with correct type manually.
867       // TODO: To eliminate this problem we can remove gc.result intrinsics
868       //       completely and make statepoint call to return a tuple.
869       unsigned Reg = FuncInfo.CreateRegs(RetTy);
870       RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
871                        DAG.getDataLayout(), Reg, RetTy,
872                        ISP.getCall()->getCallingConv());
873       SDValue Chain = DAG.getEntryNode();
874 
875       RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
876       PendingExports.push_back(Chain);
877       FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
878     } else {
879       // Result value will be used in a same basic block. Don't export it or
880       // perform any explicit register copies.
881       // We'll replace the actuall call node shortly. gc_result will grab
882       // this value.
883       setValue(ISP.getInstruction(), ReturnValue);
884     }
885   } else {
886     // The token value is never used from here on, just generate a poison value
887     setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
888   }
889 }
890 
891 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
892     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
893     bool VarArgDisallowed, bool ForceVoidReturnTy) {
894   StatepointLoweringInfo SI(DAG);
895   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
896   populateCallLoweringInfo(
897       SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
898       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
899       false);
900   if (!VarArgDisallowed)
901     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
902 
903   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
904 
905   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
906 
907   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
908   SI.ID = SD.StatepointID.getValueOr(DefaultID);
909   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
910 
911   SI.DeoptState =
912       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
913   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
914   SI.EHPadBB = EHPadBB;
915 
916   // NB! The GC arguments are deliberately left empty.
917 
918   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
919     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
920     setValue(Call, ReturnVal);
921   }
922 }
923 
924 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
925     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
926   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
927                                    /* VarArgDisallowed = */ false,
928                                    /* ForceVoidReturnTy  = */ false);
929 }
930 
931 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
932   // The result value of the gc_result is simply the result of the actual
933   // call.  We've already emitted this, so just grab the value.
934   const Instruction *I = CI.getStatepoint();
935 
936   if (I->getParent() != CI.getParent()) {
937     // Statepoint is in different basic block so we should have stored call
938     // result in a virtual register.
939     // We can not use default getValue() functionality to copy value from this
940     // register because statepoint and actual call return types can be
941     // different, and getValue() will use CopyFromReg of the wrong type,
942     // which is always i32 in our case.
943     PointerType *CalleeType = cast<PointerType>(
944         ImmutableStatepoint(I).getCalledValue()->getType());
945     Type *RetTy =
946         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
947     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
948 
949     assert(CopyFromReg.getNode());
950     setValue(&CI, CopyFromReg);
951   } else {
952     setValue(&CI, getValue(I));
953   }
954 }
955 
956 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
957 #ifndef NDEBUG
958   // Consistency check
959   // We skip this check for relocates not in the same basic block as their
960   // statepoint. It would be too expensive to preserve validation info through
961   // different basic blocks.
962   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
963     StatepointLowering.relocCallVisited(Relocate);
964 
965   auto *Ty = Relocate.getType()->getScalarType();
966   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
967     assert(*IsManaged && "Non gc managed pointer relocated!");
968 #endif
969 
970   const Value *DerivedPtr = Relocate.getDerivedPtr();
971   SDValue SD = getValue(DerivedPtr);
972 
973   auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
974   auto SlotIt = SpillMap.find(DerivedPtr);
975   assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
976   Optional<int> DerivedPtrLocation = SlotIt->second;
977 
978   // We didn't need to spill these special cases (constants and allocas).
979   // See the handling in spillIncomingValueForStatepoint for detail.
980   if (!DerivedPtrLocation) {
981     setValue(&Relocate, SD);
982     return;
983   }
984 
985   SDValue SpillSlot =
986     DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy());
987 
988   // Note: We know all of these reloads are independent, but don't bother to
989   // exploit that chain wise.  DAGCombine will happily do so as needed, so
990   // doing it here would be a small compile time win at most.
991   SDValue Chain = getRoot();
992 
993   SDValue SpillLoad =
994       DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
995                                                            Relocate.getType()),
996                   getCurSDLoc(), Chain, SpillSlot,
997                   MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
998                                                     *DerivedPtrLocation));
999 
1000   DAG.setRoot(SpillLoad.getValue(1));
1001 
1002   assert(SpillLoad.getNode());
1003   setValue(&Relocate, SpillLoad);
1004 }
1005 
1006 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1007   const auto &TLI = DAG.getTargetLoweringInfo();
1008   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1009                                          TLI.getPointerTy(DAG.getDataLayout()));
1010 
1011   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1012   // call.  We also do not lower the return value to any virtual register, and
1013   // change the immediately following return to a trap instruction.
1014   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1015                                    /* VarArgDisallowed = */ true,
1016                                    /* ForceVoidReturnTy = */ true);
1017 }
1018 
1019 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1020   // We do not lower the return value from llvm.deoptimize to any virtual
1021   // register, and change the immediately following return to a trap
1022   // instruction.
1023   if (DAG.getTarget().Options.TrapUnreachable)
1024     DAG.setRoot(
1025         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1026 }
1027