1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Statepoint.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "statepoint-lowering" 34 35 STATISTIC(NumSlotsAllocatedForStatepoints, 36 "Number of stack slots allocated for statepoints"); 37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 38 STATISTIC(StatepointMaxSlotsRequired, 39 "Maximum number of stack slots required for a singe statepoint"); 40 41 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 42 SelectionDAGBuilder &Builder, uint64_t Value) { 43 SDLoc L = Builder.getCurSDLoc(); 44 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 45 MVT::i64)); 46 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 47 } 48 49 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 50 // Consistency check 51 assert(PendingGCRelocateCalls.empty() && 52 "Trying to visit statepoint before finished processing previous one"); 53 Locations.clear(); 54 NextSlotToAllocate = 0; 55 // Need to resize this on each safepoint - we need the two to stay in 56 // sync and the clear patterns of a SelectionDAGBuilder have no relation 57 // to FunctionLoweringInfo. 58 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 59 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) { 60 AllocatedStackSlots[i] = false; 61 } 62 } 63 64 void StatepointLoweringState::clear() { 65 Locations.clear(); 66 AllocatedStackSlots.clear(); 67 assert(PendingGCRelocateCalls.empty() && 68 "cleared before statepoint sequence completed"); 69 } 70 71 SDValue 72 StatepointLoweringState::allocateStackSlot(EVT ValueType, 73 SelectionDAGBuilder &Builder) { 74 75 NumSlotsAllocatedForStatepoints++; 76 77 // The basic scheme here is to first look for a previously created stack slot 78 // which is not in use (accounting for the fact arbitrary slots may already 79 // be reserved), or to create a new stack slot and use it. 80 81 // If this doesn't succeed in 40000 iterations, something is seriously wrong 82 for (int i = 0; i < 40000; i++) { 83 assert(Builder.FuncInfo.StatepointStackSlots.size() == 84 AllocatedStackSlots.size() && 85 "broken invariant"); 86 const size_t NumSlots = AllocatedStackSlots.size(); 87 assert(NextSlotToAllocate <= NumSlots && "broken invariant"); 88 89 if (NextSlotToAllocate >= NumSlots) { 90 assert(NextSlotToAllocate == NumSlots); 91 // record stats 92 if (NumSlots + 1 > StatepointMaxSlotsRequired) { 93 StatepointMaxSlotsRequired = NumSlots + 1; 94 } 95 96 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 97 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 98 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 99 AllocatedStackSlots.push_back(true); 100 return SpillSlot; 101 } 102 if (!AllocatedStackSlots[NextSlotToAllocate]) { 103 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 104 AllocatedStackSlots[NextSlotToAllocate] = true; 105 return Builder.DAG.getFrameIndex(FI, ValueType); 106 } 107 // Note: We deliberately choose to advance this only on the failing path. 108 // Doing so on the suceeding path involes a bit of complexity that caused a 109 // minor bug previously. Unless performance shows this matters, please 110 // keep this code as simple as possible. 111 NextSlotToAllocate++; 112 } 113 llvm_unreachable("infinite loop?"); 114 } 115 116 /// Utility function for reservePreviousStackSlotForValue. Tries to find 117 /// stack slot index to which we have spilled value for previous statepoints. 118 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 119 static Optional<int> findPreviousSpillSlot(const Value *Val, 120 SelectionDAGBuilder &Builder, 121 int LookUpDepth) { 122 // Can not look any futher - give up now 123 if (LookUpDepth <= 0) 124 return Optional<int>(); 125 126 // Spill location is known for gc relocates 127 if (isGCRelocate(Val)) { 128 GCRelocateOperands RelocOps(cast<Instruction>(Val)); 129 130 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 131 Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()]; 132 133 auto It = SpillMap.find(RelocOps.getDerivedPtr()); 134 if (It == SpillMap.end()) 135 return Optional<int>(); 136 137 return It->second; 138 } 139 140 // Look through bitcast instructions. 141 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) { 142 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 143 } 144 145 // Look through phi nodes 146 // All incoming values should have same known stack slot, otherwise result 147 // is unknown. 148 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 149 Optional<int> MergedResult = None; 150 151 for (auto &IncomingValue : Phi->incoming_values()) { 152 Optional<int> SpillSlot = 153 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 154 if (!SpillSlot.hasValue()) 155 return Optional<int>(); 156 157 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 158 return Optional<int>(); 159 160 MergedResult = SpillSlot; 161 } 162 return MergedResult; 163 } 164 165 // TODO: We can do better for PHI nodes. In cases like this: 166 // ptr = phi(relocated_pointer, not_relocated_pointer) 167 // statepoint(ptr) 168 // We will return that stack slot for ptr is unknown. And later we might 169 // assign different stack slots for ptr and relocated_pointer. This limits 170 // llvm's ability to remove redundant stores. 171 // Unfortunately it's hard to accomplish in current infrastructure. 172 // We use this function to eliminate spill store completely, while 173 // in example we still need to emit store, but instead of any location 174 // we need to use special "preferred" location. 175 176 // TODO: handle simple updates. If a value is modified and the original 177 // value is no longer live, it would be nice to put the modified value in the 178 // same slot. This allows folding of the memory accesses for some 179 // instructions types (like an increment). 180 // statepoint (i) 181 // i1 = i+1 182 // statepoint (i1) 183 // However we need to be careful for cases like this: 184 // statepoint(i) 185 // i1 = i+1 186 // statepoint(i, i1) 187 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 188 // put handling of simple modifications in this function like it's done 189 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 190 // which we visit values is unspecified. 191 192 // Don't know any information about this instruction 193 return Optional<int>(); 194 } 195 196 /// Try to find existing copies of the incoming values in stack slots used for 197 /// statepoint spilling. If we can find a spill slot for the incoming value, 198 /// mark that slot as allocated, and reuse the same slot for this safepoint. 199 /// This helps to avoid series of loads and stores that only serve to resuffle 200 /// values on the stack between calls. 201 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 202 SelectionDAGBuilder &Builder) { 203 204 SDValue Incoming = Builder.getValue(IncomingValue); 205 206 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 207 // We won't need to spill this, so no need to check for previously 208 // allocated stack slots 209 return; 210 } 211 212 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 213 if (OldLocation.getNode()) 214 // duplicates in input 215 return; 216 217 const int LookUpDepth = 6; 218 Optional<int> Index = 219 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 220 if (!Index.hasValue()) 221 return; 222 223 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(), 224 Builder.FuncInfo.StatepointStackSlots.end(), *Index); 225 assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() && 226 "value spilled to the unknown stack slot"); 227 228 // This is one of our dedicated lowering slots 229 const int Offset = 230 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr); 231 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 232 // stack slot already assigned to someone else, can't use it! 233 // TODO: currently we reserve space for gc arguments after doing 234 // normal allocation for deopt arguments. We should reserve for 235 // _all_ deopt and gc arguments, then start allocating. This 236 // will prevent some moves being inserted when vm state changes, 237 // but gc state doesn't between two calls. 238 return; 239 } 240 // Reserve this stack slot 241 Builder.StatepointLowering.reserveStackSlot(Offset); 242 243 // Cache this slot so we find it when going through the normal 244 // assignment loop. 245 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 246 Builder.StatepointLowering.setLocation(Incoming, Loc); 247 } 248 249 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 250 /// is not required for correctness. It's purpose is to reduce the size of 251 /// StackMap section. It has no effect on the number of spill slots required 252 /// or the actual lowering. 253 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases, 254 SmallVectorImpl<const Value *> &Ptrs, 255 SmallVectorImpl<const Value *> &Relocs, 256 SelectionDAGBuilder &Builder) { 257 258 // This is horribly ineffecient, but I don't care right now 259 SmallSet<SDValue, 64> Seen; 260 261 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs; 262 for (size_t i = 0; i < Ptrs.size(); i++) { 263 SDValue SD = Builder.getValue(Ptrs[i]); 264 // Only add non-duplicates 265 if (Seen.count(SD) == 0) { 266 NewBases.push_back(Bases[i]); 267 NewPtrs.push_back(Ptrs[i]); 268 NewRelocs.push_back(Relocs[i]); 269 } 270 Seen.insert(SD); 271 } 272 assert(Bases.size() >= NewBases.size()); 273 assert(Ptrs.size() >= NewPtrs.size()); 274 assert(Relocs.size() >= NewRelocs.size()); 275 Bases = NewBases; 276 Ptrs = NewPtrs; 277 Relocs = NewRelocs; 278 assert(Ptrs.size() == Bases.size()); 279 assert(Ptrs.size() == Relocs.size()); 280 } 281 282 /// Extract call from statepoint, lower it and return pointer to the 283 /// call node. Also update NodeMap so that getValue(statepoint) will 284 /// reference lowered call result 285 static SDNode * 286 lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad, 287 SelectionDAGBuilder &Builder, 288 SmallVectorImpl<SDValue> &PendingExports) { 289 290 ImmutableCallSite CS(ISP.getCallSite()); 291 292 SDValue ActualCallee = Builder.getValue(ISP.getCalledValue()); 293 294 assert(CS.getCallingConv() != CallingConv::AnyReg && 295 "anyregcc is not supported on statepoints!"); 296 297 Type *DefTy = ISP.getActualReturnType(); 298 bool HasDef = !DefTy->isVoidTy(); 299 300 SDValue ReturnValue, CallEndVal; 301 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands( 302 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos, 303 ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad, 304 false /* IsPatchPoint */); 305 306 SDNode *CallEnd = CallEndVal.getNode(); 307 308 // Get a call instruction from the call sequence chain. Tail calls are not 309 // allowed. The following code is essentially reverse engineering X86's 310 // LowerCallTo. 311 // 312 // We are expecting DAG to have the following form: 313 // 314 // ch = eh_label (only in case of invoke statepoint) 315 // ch, glue = callseq_start ch 316 // ch, glue = X86::Call ch, glue 317 // ch, glue = callseq_end ch, glue 318 // get_return_value ch, glue 319 // 320 // get_return_value can either be a CopyFromReg to grab the return value from 321 // %RAX, or it can be a LOAD to load a value returned by reference via a stack 322 // slot. 323 324 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg || 325 CallEnd->getOpcode() == ISD::LOAD)) 326 CallEnd = CallEnd->getOperand(0).getNode(); 327 328 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 329 330 if (HasDef) { 331 if (CS.isInvoke()) { 332 // Result value will be used in different basic block for invokes 333 // so we need to export it now. But statepoint call has a different type 334 // than the actuall call. It means that standart exporting mechanism will 335 // create register of the wrong type. So instead we need to create 336 // register with correct type and save value into it manually. 337 // TODO: To eliminate this problem we can remove gc.result intrinsics 338 // completelly and make statepoint call to return a tuple. 339 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType()); 340 RegsForValue RFV( 341 *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(), 342 Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType()); 343 SDValue Chain = Builder.DAG.getEntryNode(); 344 345 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain, 346 nullptr); 347 PendingExports.push_back(Chain); 348 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg; 349 } else { 350 // The value of the statepoint itself will be the value of call itself. 351 // We'll replace the actually call node shortly. gc_result will grab 352 // this value. 353 Builder.setValue(CS.getInstruction(), ReturnValue); 354 } 355 } else { 356 // The token value is never used from here on, just generate a poison value 357 Builder.setValue(CS.getInstruction(), 358 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc())); 359 } 360 361 return CallEnd->getOperand(0).getNode(); 362 } 363 364 /// Callect all gc pointers coming into statepoint intrinsic, clean them up, 365 /// and return two arrays: 366 /// Bases - base pointers incoming to this statepoint 367 /// Ptrs - derived pointers incoming to this statepoint 368 /// Relocs - the gc_relocate corresponding to each base/ptr pair 369 /// Elements of this arrays should be in one-to-one correspondence with each 370 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call 371 static void getIncomingStatepointGCValues( 372 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs, 373 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite, 374 SelectionDAGBuilder &Builder) { 375 for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) { 376 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction()); 377 Bases.push_back(relocateOpers.getBasePtr()); 378 Ptrs.push_back(relocateOpers.getDerivedPtr()); 379 } 380 381 // Remove any redundant llvm::Values which map to the same SDValue as another 382 // input. Also has the effect of removing duplicates in the original 383 // llvm::Value input list as well. This is a useful optimization for 384 // reducing the size of the StackMap section. It has no other impact. 385 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder); 386 387 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size()); 388 } 389 390 /// Spill a value incoming to the statepoint. It might be either part of 391 /// vmstate 392 /// or gcstate. In both cases unconditionally spill it on the stack unless it 393 /// is a null constant. Return pair with first element being frame index 394 /// containing saved value and second element with outgoing chain from the 395 /// emitted store 396 static std::pair<SDValue, SDValue> 397 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 398 SelectionDAGBuilder &Builder) { 399 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 400 401 // Emit new store if we didn't do it for this ptr before 402 if (!Loc.getNode()) { 403 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 404 Builder); 405 assert(isa<FrameIndexSDNode>(Loc)); 406 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 407 // We use TargetFrameIndex so that isel will not select it into LEA 408 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 409 410 // TODO: We can create TokenFactor node instead of 411 // chaining stores one after another, this may allow 412 // a bit more optimal scheduling for them 413 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 414 MachinePointerInfo::getFixedStack(Index), 415 false, false, 0); 416 417 Builder.StatepointLowering.setLocation(Incoming, Loc); 418 } 419 420 assert(Loc.getNode()); 421 return std::make_pair(Loc, Chain); 422 } 423 424 /// Lower a single value incoming to a statepoint node. This value can be 425 /// either a deopt value or a gc value, the handling is the same. We special 426 /// case constants and allocas, then fall back to spilling if required. 427 static void lowerIncomingStatepointValue(SDValue Incoming, 428 SmallVectorImpl<SDValue> &Ops, 429 SelectionDAGBuilder &Builder) { 430 SDValue Chain = Builder.getRoot(); 431 432 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 433 // If the original value was a constant, make sure it gets recorded as 434 // such in the stackmap. This is required so that the consumer can 435 // parse any internal format to the deopt state. It also handles null 436 // pointers and other constant pointers in GC states 437 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 438 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 439 // This handles allocas as arguments to the statepoint (this is only 440 // really meaningful for a deopt value. For GC, we'd be trying to 441 // relocate the address of the alloca itself?) 442 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 443 Incoming.getValueType())); 444 } else { 445 // Otherwise, locate a spill slot and explicitly spill it so it 446 // can be found by the runtime later. We currently do not support 447 // tracking values through callee saved registers to their eventual 448 // spill location. This would be a useful optimization, but would 449 // need to be optional since it requires a lot of complexity on the 450 // runtime side which not all would support. 451 std::pair<SDValue, SDValue> Res = 452 spillIncomingStatepointValue(Incoming, Chain, Builder); 453 Ops.push_back(Res.first); 454 Chain = Res.second; 455 } 456 457 Builder.DAG.setRoot(Chain); 458 } 459 460 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 461 /// lowering is described in lowerIncomingStatepointValue. This function is 462 /// responsible for lowering everything in the right position and playing some 463 /// tricks to avoid redundant stack manipulation where possible. On 464 /// completion, 'Ops' will contain ready to use operands for machine code 465 /// statepoint. The chain nodes will have already been created and the DAG root 466 /// will be set to the last value spilled (if any were). 467 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 468 ImmutableStatepoint StatepointSite, 469 SelectionDAGBuilder &Builder) { 470 471 // Lower the deopt and gc arguments for this statepoint. Layout will 472 // be: deopt argument length, deopt arguments.., gc arguments... 473 474 SmallVector<const Value *, 64> Bases, Ptrs, Relocations; 475 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite, 476 Builder); 477 478 #ifndef NDEBUG 479 // Check that each of the gc pointer and bases we've gotten out of the 480 // safepoint is something the strategy thinks might be a pointer into the GC 481 // heap. This is basically just here to help catch errors during statepoint 482 // insertion. TODO: This should actually be in the Verifier, but we can't get 483 // to the GCStrategy from there (yet). 484 GCStrategy &S = Builder.GFI->getStrategy(); 485 for (const Value *V : Bases) { 486 auto Opt = S.isGCManagedPointer(V); 487 if (Opt.hasValue()) { 488 assert(Opt.getValue() && 489 "non gc managed base pointer found in statepoint"); 490 } 491 } 492 for (const Value *V : Ptrs) { 493 auto Opt = S.isGCManagedPointer(V); 494 if (Opt.hasValue()) { 495 assert(Opt.getValue() && 496 "non gc managed derived pointer found in statepoint"); 497 } 498 } 499 for (const Value *V : Relocations) { 500 auto Opt = S.isGCManagedPointer(V); 501 if (Opt.hasValue()) { 502 assert(Opt.getValue() && "non gc managed pointer relocated"); 503 } 504 } 505 #endif 506 507 // Before we actually start lowering (and allocating spill slots for values), 508 // reserve any stack slots which we judge to be profitable to reuse for a 509 // particular value. This is purely an optimization over the code below and 510 // doesn't change semantics at all. It is important for performance that we 511 // reserve slots for both deopt and gc values before lowering either. 512 for (const Value *V : StatepointSite.vm_state_args()) { 513 reservePreviousStackSlotForValue(V, Builder); 514 } 515 for (unsigned i = 0; i < Bases.size(); ++i) { 516 reservePreviousStackSlotForValue(Bases[i], Builder); 517 reservePreviousStackSlotForValue(Ptrs[i], Builder); 518 } 519 520 // First, prefix the list with the number of unique values to be 521 // lowered. Note that this is the number of *Values* not the 522 // number of SDValues required to lower them. 523 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs(); 524 pushStackMapConstant(Ops, Builder, NumVMSArgs); 525 526 assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(), 527 StatepointSite.vm_state_end())); 528 529 // The vm state arguments are lowered in an opaque manner. We do 530 // not know what type of values are contained within. We skip the 531 // first one since that happens to be the total number we lowered 532 // explicitly just above. We could have left it in the loop and 533 // not done it explicitly, but it's far easier to understand this 534 // way. 535 for (const Value *V : StatepointSite.vm_state_args()) { 536 SDValue Incoming = Builder.getValue(V); 537 lowerIncomingStatepointValue(Incoming, Ops, Builder); 538 } 539 540 // Finally, go ahead and lower all the gc arguments. There's no prefixed 541 // length for this one. After lowering, we'll have the base and pointer 542 // arrays interwoven with each (lowered) base pointer immediately followed by 543 // it's (lowered) derived pointer. i.e 544 // (base[0], ptr[0], base[1], ptr[1], ...) 545 for (unsigned i = 0; i < Bases.size(); ++i) { 546 const Value *Base = Bases[i]; 547 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 548 549 const Value *Ptr = Ptrs[i]; 550 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 551 } 552 553 // If there are any explicit spill slots passed to the statepoint, record 554 // them, but otherwise do not do anything special. These are user provided 555 // allocas and give control over placement to the consumer. In this case, 556 // it is the contents of the slot which may get updated, not the pointer to 557 // the alloca 558 for (Value *V : StatepointSite.gc_args()) { 559 SDValue Incoming = Builder.getValue(V); 560 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 561 // This handles allocas as arguments to the statepoint 562 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 563 Incoming.getValueType())); 564 } 565 } 566 567 // Record computed locations for all lowered values. 568 // This can not be embedded in lowering loops as we need to record *all* 569 // values, while previous loops account only values with unique SDValues. 570 const Instruction *StatepointInstr = 571 StatepointSite.getCallSite().getInstruction(); 572 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 573 Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr]; 574 575 for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) { 576 const Value *V = RelocateOpers.getDerivedPtr(); 577 SDValue SDV = Builder.getValue(V); 578 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 579 580 if (Loc.getNode()) { 581 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 582 } else { 583 // Record value as visited, but not spilled. This is case for allocas 584 // and constants. For this values we can avoid emiting spill load while 585 // visiting corresponding gc_relocate. 586 // Actually we do not need to record them in this map at all. 587 // We do this only to check that we are not relocating any unvisited value. 588 SpillMap[V] = None; 589 590 // Default llvm mechanisms for exporting values which are used in 591 // different basic blocks does not work for gc relocates. 592 // Note that it would be incorrect to teach llvm that all relocates are 593 // uses of the corresponging values so that it would automatically 594 // export them. Relocates of the spilled values does not use original 595 // value. 596 if (StatepointSite.getCallSite().isInvoke()) 597 Builder.ExportFromCurrentBlock(V); 598 } 599 } 600 } 601 602 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) { 603 // Check some preconditions for sanity 604 assert(isStatepoint(&CI) && 605 "function called must be the statepoint function"); 606 607 LowerStatepoint(ImmutableStatepoint(&CI)); 608 } 609 610 void SelectionDAGBuilder::LowerStatepoint( 611 ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) { 612 // The basic scheme here is that information about both the original call and 613 // the safepoint is encoded in the CallInst. We create a temporary call and 614 // lower it, then reverse engineer the calling sequence. 615 616 NumOfStatepoints++; 617 // Clear state 618 StatepointLowering.startNewStatepoint(*this); 619 620 ImmutableCallSite CS(ISP.getCallSite()); 621 622 #ifndef NDEBUG 623 // Consistency check. Don't do this for invokes. It would be too 624 // expensive to preserve this information across different basic blocks 625 if (!CS.isInvoke()) { 626 for (const User *U : CS->users()) { 627 const CallInst *Call = cast<CallInst>(U); 628 if (isGCRelocate(Call)) 629 StatepointLowering.scheduleRelocCall(*Call); 630 } 631 } 632 #endif 633 634 #ifndef NDEBUG 635 // If this is a malformed statepoint, report it early to simplify debugging. 636 // This should catch any IR level mistake that's made when constructing or 637 // transforming statepoints. 638 ISP.verify(); 639 640 // Check that the associated GCStrategy expects to encounter statepoints. 641 assert(GFI->getStrategy().useStatepoints() && 642 "GCStrategy does not expect to encounter statepoints"); 643 #endif 644 645 // Lower statepoint vmstate and gcstate arguments 646 SmallVector<SDValue, 10> LoweredMetaArgs; 647 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this); 648 649 // Get call node, we will replace it later with statepoint 650 SDNode *CallNode = 651 lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports); 652 653 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 654 // nodes with all the appropriate arguments and return values. 655 656 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 657 SDValue Chain = CallNode->getOperand(0); 658 659 SDValue Glue; 660 bool CallHasIncomingGlue = CallNode->getGluedNode(); 661 if (CallHasIncomingGlue) { 662 // Glue is always last operand 663 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 664 } 665 666 // Build the GC_TRANSITION_START node if necessary. 667 // 668 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 669 // order in which they appear in the call to the statepoint intrinsic. If 670 // any of the operands is a pointer-typed, that operand is immediately 671 // followed by a SRCVALUE for the pointer that may be used during lowering 672 // (e.g. to form MachinePointerInfo values for loads/stores). 673 const bool IsGCTransition = 674 (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) == 675 (uint64_t)StatepointFlags::GCTransition; 676 if (IsGCTransition) { 677 SmallVector<SDValue, 8> TSOps; 678 679 // Add chain 680 TSOps.push_back(Chain); 681 682 // Add GC transition arguments 683 for (const Value *V : ISP.gc_transition_args()) { 684 TSOps.push_back(getValue(V)); 685 if (V->getType()->isPointerTy()) 686 TSOps.push_back(DAG.getSrcValue(V)); 687 } 688 689 // Add glue if necessary 690 if (CallHasIncomingGlue) 691 TSOps.push_back(Glue); 692 693 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 694 695 SDValue GCTransitionStart = 696 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 697 698 Chain = GCTransitionStart.getValue(0); 699 Glue = GCTransitionStart.getValue(1); 700 } 701 702 // TODO: Currently, all of these operands are being marked as read/write in 703 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 704 // and flags to be read-only. 705 SmallVector<SDValue, 40> Ops; 706 707 // Add the <id> and <numBytes> constants. 708 Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64)); 709 Ops.push_back( 710 DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32)); 711 712 // Calculate and push starting position of vmstate arguments 713 // Get number of arguments incoming directly into call node 714 unsigned NumCallRegArgs = 715 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 716 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 717 718 // Add call target 719 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 720 Ops.push_back(CallTarget); 721 722 // Add call arguments 723 // Get position of register mask in the call 724 SDNode::op_iterator RegMaskIt; 725 if (CallHasIncomingGlue) 726 RegMaskIt = CallNode->op_end() - 2; 727 else 728 RegMaskIt = CallNode->op_end() - 1; 729 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 730 731 // Add a constant argument for the calling convention 732 pushStackMapConstant(Ops, *this, CS.getCallingConv()); 733 734 // Add a constant argument for the flags 735 uint64_t Flags = ISP.getFlags(); 736 assert( 737 ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) 738 && "unknown flag used"); 739 pushStackMapConstant(Ops, *this, Flags); 740 741 // Insert all vmstate and gcstate arguments 742 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 743 744 // Add register mask from call node 745 Ops.push_back(*RegMaskIt); 746 747 // Add chain 748 Ops.push_back(Chain); 749 750 // Same for the glue, but we add it only if original call had it 751 if (Glue.getNode()) 752 Ops.push_back(Glue); 753 754 // Compute return values. Provide a glue output since we consume one as 755 // input. This allows someone else to chain off us as needed. 756 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 757 758 SDNode *StatepointMCNode = 759 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 760 761 SDNode *SinkNode = StatepointMCNode; 762 763 // Build the GC_TRANSITION_END node if necessary. 764 // 765 // See the comment above regarding GC_TRANSITION_START for the layout of 766 // the operands to the GC_TRANSITION_END node. 767 if (IsGCTransition) { 768 SmallVector<SDValue, 8> TEOps; 769 770 // Add chain 771 TEOps.push_back(SDValue(StatepointMCNode, 0)); 772 773 // Add GC transition arguments 774 for (const Value *V : ISP.gc_transition_args()) { 775 TEOps.push_back(getValue(V)); 776 if (V->getType()->isPointerTy()) 777 TEOps.push_back(DAG.getSrcValue(V)); 778 } 779 780 // Add glue 781 TEOps.push_back(SDValue(StatepointMCNode, 1)); 782 783 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 784 785 SDValue GCTransitionStart = 786 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 787 788 SinkNode = GCTransitionStart.getNode(); 789 } 790 791 // Replace original call 792 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 793 // Remove originall call node 794 DAG.DeleteNode(CallNode); 795 796 // DON'T set the root - under the assumption that it's already set past the 797 // inserted node we created. 798 799 // TODO: A better future implementation would be to emit a single variable 800 // argument, variable return value STATEPOINT node here and then hookup the 801 // return value of each gc.relocate to the respective output of the 802 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 803 // to actually be possible today. 804 } 805 806 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) { 807 // The result value of the gc_result is simply the result of the actual 808 // call. We've already emitted this, so just grab the value. 809 Instruction *I = cast<Instruction>(CI.getArgOperand(0)); 810 assert(isStatepoint(I) && "first argument must be a statepoint token"); 811 812 if (isa<InvokeInst>(I)) { 813 // For invokes we should have stored call result in a virtual register. 814 // We can not use default getValue() functionality to copy value from this 815 // register because statepoint and actuall call return types can be 816 // different, and getValue() will use CopyFromReg of the wrong type, 817 // which is always i32 in our case. 818 PointerType *CalleeType = cast<PointerType>( 819 ImmutableStatepoint(I).getCalledValue()->getType()); 820 Type *RetTy = 821 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 822 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 823 824 assert(CopyFromReg.getNode()); 825 setValue(&CI, CopyFromReg); 826 } else { 827 setValue(&CI, getValue(I)); 828 } 829 } 830 831 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) { 832 GCRelocateOperands RelocateOpers(&CI); 833 834 #ifndef NDEBUG 835 // Consistency check 836 // We skip this check for invoke statepoints. It would be too expensive to 837 // preserve validation info through different basic blocks. 838 if (!RelocateOpers.isTiedToInvoke()) { 839 StatepointLowering.relocCallVisited(CI); 840 } 841 #endif 842 843 const Value *DerivedPtr = RelocateOpers.getDerivedPtr(); 844 SDValue SD = getValue(DerivedPtr); 845 846 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap = 847 FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()]; 848 849 // We should have recorded location for this pointer 850 assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value"); 851 Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr]; 852 853 // We didn't need to spill these special cases (constants and allocas). 854 // See the handling in spillIncomingValueForStatepoint for detail. 855 if (!DerivedPtrLocation) { 856 setValue(&CI, SD); 857 return; 858 } 859 860 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 861 SD.getValueType()); 862 863 // Be conservative: flush all pending loads 864 // TODO: Probably we can be less restrictive on this, 865 // it may allow more scheduling opprtunities 866 SDValue Chain = getRoot(); 867 868 SDValue SpillLoad = 869 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 870 MachinePointerInfo::getFixedStack(*DerivedPtrLocation), 871 false, false, false, 0); 872 873 // Again, be conservative, don't emit pending loads 874 DAG.setRoot(SpillLoad.getValue(1)); 875 876 assert(SpillLoad.getNode()); 877 setValue(&CI, SpillLoad); 878 } 879