1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/GCMetadata.h" 22 #include "llvm/CodeGen/GCStrategy.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/StackMaps.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "statepoint-lowering" 35 36 STATISTIC(NumSlotsAllocatedForStatepoints, 37 "Number of stack slots allocated for statepoints"); 38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 39 STATISTIC(StatepointMaxSlotsRequired, 40 "Maximum number of stack slots required for a singe statepoint"); 41 42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 43 SelectionDAGBuilder &Builder, uint64_t Value) { 44 SDLoc L = Builder.getCurSDLoc(); 45 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 46 MVT::i64)); 47 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 48 } 49 50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 51 // Consistency check 52 assert(PendingGCRelocateCalls.empty() && 53 "Trying to visit statepoint before finished processing previous one"); 54 Locations.clear(); 55 NextSlotToAllocate = 0; 56 // Need to resize this on each safepoint - we need the two to stay in sync and 57 // the clear patterns of a SelectionDAGBuilder have no relation to 58 // FunctionLoweringInfo. SmallBitVector::reset initializes all bits to false. 59 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 60 } 61 62 void StatepointLoweringState::clear() { 63 Locations.clear(); 64 AllocatedStackSlots.clear(); 65 assert(PendingGCRelocateCalls.empty() && 66 "cleared before statepoint sequence completed"); 67 } 68 69 SDValue 70 StatepointLoweringState::allocateStackSlot(EVT ValueType, 71 SelectionDAGBuilder &Builder) { 72 NumSlotsAllocatedForStatepoints++; 73 auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 74 75 unsigned SpillSize = ValueType.getSizeInBits() / 8; 76 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 77 78 // First look for a previously created stack slot which is not in 79 // use (accounting for the fact arbitrary slots may already be 80 // reserved), or to create a new stack slot and use it. 81 82 const size_t NumSlots = AllocatedStackSlots.size(); 83 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 84 85 // The stack slots in StatepointStackSlots beyond the first NumSlots were 86 // added in this instance of StatepointLoweringState, and cannot be re-used. 87 assert(NumSlots <= Builder.FuncInfo.StatepointStackSlots.size() && 88 "Broken invariant"); 89 90 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 91 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 92 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 93 if (MFI->getObjectSize(FI) == SpillSize) { 94 AllocatedStackSlots.set(NextSlotToAllocate); 95 return Builder.DAG.getFrameIndex(FI, ValueType); 96 } 97 } 98 } 99 100 // Couldn't find a free slot, so create a new one: 101 102 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 103 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 104 MFI->markAsStatepointSpillSlotObjectIndex(FI); 105 106 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 107 108 StatepointMaxSlotsRequired = std::max<unsigned long>( 109 StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size()); 110 111 return SpillSlot; 112 } 113 114 /// Utility function for reservePreviousStackSlotForValue. Tries to find 115 /// stack slot index to which we have spilled value for previous statepoints. 116 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 117 static Optional<int> findPreviousSpillSlot(const Value *Val, 118 SelectionDAGBuilder &Builder, 119 int LookUpDepth) { 120 // Can not look any further - give up now 121 if (LookUpDepth <= 0) 122 return None; 123 124 // Spill location is known for gc relocates 125 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 126 const auto &SpillMap = 127 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 128 129 auto It = SpillMap.find(Relocate->getDerivedPtr()); 130 if (It == SpillMap.end()) 131 return None; 132 133 return It->second; 134 } 135 136 // Look through bitcast instructions. 137 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 138 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 139 140 // Look through phi nodes 141 // All incoming values should have same known stack slot, otherwise result 142 // is unknown. 143 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 144 Optional<int> MergedResult = None; 145 146 for (auto &IncomingValue : Phi->incoming_values()) { 147 Optional<int> SpillSlot = 148 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 149 if (!SpillSlot.hasValue()) 150 return None; 151 152 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 153 return None; 154 155 MergedResult = SpillSlot; 156 } 157 return MergedResult; 158 } 159 160 // TODO: We can do better for PHI nodes. In cases like this: 161 // ptr = phi(relocated_pointer, not_relocated_pointer) 162 // statepoint(ptr) 163 // We will return that stack slot for ptr is unknown. And later we might 164 // assign different stack slots for ptr and relocated_pointer. This limits 165 // llvm's ability to remove redundant stores. 166 // Unfortunately it's hard to accomplish in current infrastructure. 167 // We use this function to eliminate spill store completely, while 168 // in example we still need to emit store, but instead of any location 169 // we need to use special "preferred" location. 170 171 // TODO: handle simple updates. If a value is modified and the original 172 // value is no longer live, it would be nice to put the modified value in the 173 // same slot. This allows folding of the memory accesses for some 174 // instructions types (like an increment). 175 // statepoint (i) 176 // i1 = i+1 177 // statepoint (i1) 178 // However we need to be careful for cases like this: 179 // statepoint(i) 180 // i1 = i+1 181 // statepoint(i, i1) 182 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 183 // put handling of simple modifications in this function like it's done 184 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 185 // which we visit values is unspecified. 186 187 // Don't know any information about this instruction 188 return None; 189 } 190 191 /// Try to find existing copies of the incoming values in stack slots used for 192 /// statepoint spilling. If we can find a spill slot for the incoming value, 193 /// mark that slot as allocated, and reuse the same slot for this safepoint. 194 /// This helps to avoid series of loads and stores that only serve to reshuffle 195 /// values on the stack between calls. 196 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 197 SelectionDAGBuilder &Builder) { 198 199 SDValue Incoming = Builder.getValue(IncomingValue); 200 201 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 202 // We won't need to spill this, so no need to check for previously 203 // allocated stack slots 204 return; 205 } 206 207 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 208 if (OldLocation.getNode()) 209 // Duplicates in input 210 return; 211 212 const int LookUpDepth = 6; 213 Optional<int> Index = 214 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 215 if (!Index.hasValue()) 216 return; 217 218 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 219 220 auto SlotIt = find(StatepointSlots, *Index); 221 assert(SlotIt != StatepointSlots.end() && 222 "Value spilled to the unknown stack slot"); 223 224 // This is one of our dedicated lowering slots 225 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 226 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 227 // stack slot already assigned to someone else, can't use it! 228 // TODO: currently we reserve space for gc arguments after doing 229 // normal allocation for deopt arguments. We should reserve for 230 // _all_ deopt and gc arguments, then start allocating. This 231 // will prevent some moves being inserted when vm state changes, 232 // but gc state doesn't between two calls. 233 return; 234 } 235 // Reserve this stack slot 236 Builder.StatepointLowering.reserveStackSlot(Offset); 237 238 // Cache this slot so we find it when going through the normal 239 // assignment loop. 240 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType()); 241 Builder.StatepointLowering.setLocation(Incoming, Loc); 242 } 243 244 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 245 /// is not required for correctness. It's purpose is to reduce the size of 246 /// StackMap section. It has no effect on the number of spill slots required 247 /// or the actual lowering. 248 static void 249 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 250 SmallVectorImpl<const Value *> &Ptrs, 251 SmallVectorImpl<const GCRelocateInst *> &Relocs, 252 SelectionDAGBuilder &Builder, 253 FunctionLoweringInfo::StatepointSpillMap &SSM) { 254 DenseMap<SDValue, const Value *> Seen; 255 256 SmallVector<const Value *, 64> NewBases, NewPtrs; 257 SmallVector<const GCRelocateInst *, 64> NewRelocs; 258 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 259 SDValue SD = Builder.getValue(Ptrs[i]); 260 auto SeenIt = Seen.find(SD); 261 262 if (SeenIt == Seen.end()) { 263 // Only add non-duplicates 264 NewBases.push_back(Bases[i]); 265 NewPtrs.push_back(Ptrs[i]); 266 NewRelocs.push_back(Relocs[i]); 267 Seen[SD] = Ptrs[i]; 268 } else { 269 // Duplicate pointer found, note in SSM and move on: 270 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 271 } 272 } 273 assert(Bases.size() >= NewBases.size()); 274 assert(Ptrs.size() >= NewPtrs.size()); 275 assert(Relocs.size() >= NewRelocs.size()); 276 Bases = NewBases; 277 Ptrs = NewPtrs; 278 Relocs = NewRelocs; 279 assert(Ptrs.size() == Bases.size()); 280 assert(Ptrs.size() == Relocs.size()); 281 } 282 283 /// Extract call from statepoint, lower it and return pointer to the 284 /// call node. Also update NodeMap so that getValue(statepoint) will 285 /// reference lowered call result 286 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 287 SelectionDAGBuilder::StatepointLoweringInfo &SI, 288 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 289 290 SDValue ReturnValue, CallEndVal; 291 std::tie(ReturnValue, CallEndVal) = 292 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 293 SDNode *CallEnd = CallEndVal.getNode(); 294 295 // Get a call instruction from the call sequence chain. Tail calls are not 296 // allowed. The following code is essentially reverse engineering X86's 297 // LowerCallTo. 298 // 299 // We are expecting DAG to have the following form: 300 // 301 // ch = eh_label (only in case of invoke statepoint) 302 // ch, glue = callseq_start ch 303 // ch, glue = X86::Call ch, glue 304 // ch, glue = callseq_end ch, glue 305 // get_return_value ch, glue 306 // 307 // get_return_value can either be a sequence of CopyFromReg instructions 308 // to grab the return value from the return register(s), or it can be a LOAD 309 // to load a value returned by reference via a stack slot. 310 311 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 312 if (HasDef) { 313 if (CallEnd->getOpcode() == ISD::LOAD) 314 CallEnd = CallEnd->getOperand(0).getNode(); 315 else 316 while (CallEnd->getOpcode() == ISD::CopyFromReg) 317 CallEnd = CallEnd->getOperand(0).getNode(); 318 } 319 320 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 321 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 322 } 323 324 /// Spill a value incoming to the statepoint. It might be either part of 325 /// vmstate 326 /// or gcstate. In both cases unconditionally spill it on the stack unless it 327 /// is a null constant. Return pair with first element being frame index 328 /// containing saved value and second element with outgoing chain from the 329 /// emitted store 330 static std::pair<SDValue, SDValue> 331 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 332 SelectionDAGBuilder &Builder) { 333 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 334 335 // Emit new store if we didn't do it for this ptr before 336 if (!Loc.getNode()) { 337 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 338 Builder); 339 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 340 // We use TargetFrameIndex so that isel will not select it into LEA 341 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType()); 342 343 // TODO: We can create TokenFactor node instead of 344 // chaining stores one after another, this may allow 345 // a bit more optimal scheduling for them 346 347 #ifndef NDEBUG 348 // Right now we always allocate spill slots that are of the same 349 // size as the value we're about to spill (the size of spillee can 350 // vary since we spill vectors of pointers too). At some point we 351 // can consider allowing spills of smaller values to larger slots 352 // (i.e. change the '==' in the assert below to a '>='). 353 auto *MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 354 assert((MFI->getObjectSize(Index) * 8) == 355 Incoming.getValueType().getSizeInBits() && 356 "Bad spill: stack slot does not match!"); 357 #endif 358 359 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 360 MachinePointerInfo::getFixedStack( 361 Builder.DAG.getMachineFunction(), Index)); 362 363 Builder.StatepointLowering.setLocation(Incoming, Loc); 364 } 365 366 assert(Loc.getNode()); 367 return std::make_pair(Loc, Chain); 368 } 369 370 /// Lower a single value incoming to a statepoint node. This value can be 371 /// either a deopt value or a gc value, the handling is the same. We special 372 /// case constants and allocas, then fall back to spilling if required. 373 static void lowerIncomingStatepointValue(SDValue Incoming, 374 SmallVectorImpl<SDValue> &Ops, 375 SelectionDAGBuilder &Builder) { 376 SDValue Chain = Builder.getRoot(); 377 378 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 379 // If the original value was a constant, make sure it gets recorded as 380 // such in the stackmap. This is required so that the consumer can 381 // parse any internal format to the deopt state. It also handles null 382 // pointers and other constant pointers in GC states. Note the constant 383 // vectors do not appear to actually hit this path and that anything larger 384 // than an i64 value (not type!) will fail asserts here. 385 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 386 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 387 // This handles allocas as arguments to the statepoint (this is only 388 // really meaningful for a deopt value. For GC, we'd be trying to 389 // relocate the address of the alloca itself?) 390 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 391 Incoming.getValueType())); 392 } else { 393 // Otherwise, locate a spill slot and explicitly spill it so it 394 // can be found by the runtime later. We currently do not support 395 // tracking values through callee saved registers to their eventual 396 // spill location. This would be a useful optimization, but would 397 // need to be optional since it requires a lot of complexity on the 398 // runtime side which not all would support. 399 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 400 Ops.push_back(Res.first); 401 Chain = Res.second; 402 } 403 404 Builder.DAG.setRoot(Chain); 405 } 406 407 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 408 /// lowering is described in lowerIncomingStatepointValue. This function is 409 /// responsible for lowering everything in the right position and playing some 410 /// tricks to avoid redundant stack manipulation where possible. On 411 /// completion, 'Ops' will contain ready to use operands for machine code 412 /// statepoint. The chain nodes will have already been created and the DAG root 413 /// will be set to the last value spilled (if any were). 414 static void 415 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 416 SelectionDAGBuilder::StatepointLoweringInfo &SI, 417 SelectionDAGBuilder &Builder) { 418 // Lower the deopt and gc arguments for this statepoint. Layout will be: 419 // deopt argument length, deopt arguments.., gc arguments... 420 #ifndef NDEBUG 421 if (auto *GFI = Builder.GFI) { 422 // Check that each of the gc pointer and bases we've gotten out of the 423 // safepoint is something the strategy thinks might be a pointer (or vector 424 // of pointers) into the GC heap. This is basically just here to help catch 425 // errors during statepoint insertion. TODO: This should actually be in the 426 // Verifier, but we can't get to the GCStrategy from there (yet). 427 GCStrategy &S = GFI->getStrategy(); 428 for (const Value *V : SI.Bases) { 429 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 430 if (Opt.hasValue()) { 431 assert(Opt.getValue() && 432 "non gc managed base pointer found in statepoint"); 433 } 434 } 435 for (const Value *V : SI.Ptrs) { 436 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 437 if (Opt.hasValue()) { 438 assert(Opt.getValue() && 439 "non gc managed derived pointer found in statepoint"); 440 } 441 } 442 } else { 443 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 444 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 445 } 446 #endif 447 448 // Before we actually start lowering (and allocating spill slots for values), 449 // reserve any stack slots which we judge to be profitable to reuse for a 450 // particular value. This is purely an optimization over the code below and 451 // doesn't change semantics at all. It is important for performance that we 452 // reserve slots for both deopt and gc values before lowering either. 453 for (const Value *V : SI.DeoptState) { 454 reservePreviousStackSlotForValue(V, Builder); 455 } 456 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 457 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 458 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 459 } 460 461 // First, prefix the list with the number of unique values to be 462 // lowered. Note that this is the number of *Values* not the 463 // number of SDValues required to lower them. 464 const int NumVMSArgs = SI.DeoptState.size(); 465 pushStackMapConstant(Ops, Builder, NumVMSArgs); 466 467 // The vm state arguments are lowered in an opaque manner. We do not know 468 // what type of values are contained within. 469 for (const Value *V : SI.DeoptState) { 470 SDValue Incoming = Builder.getValue(V); 471 lowerIncomingStatepointValue(Incoming, Ops, Builder); 472 } 473 474 // Finally, go ahead and lower all the gc arguments. There's no prefixed 475 // length for this one. After lowering, we'll have the base and pointer 476 // arrays interwoven with each (lowered) base pointer immediately followed by 477 // it's (lowered) derived pointer. i.e 478 // (base[0], ptr[0], base[1], ptr[1], ...) 479 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 480 const Value *Base = SI.Bases[i]; 481 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder); 482 483 const Value *Ptr = SI.Ptrs[i]; 484 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder); 485 } 486 487 // If there are any explicit spill slots passed to the statepoint, record 488 // them, but otherwise do not do anything special. These are user provided 489 // allocas and give control over placement to the consumer. In this case, 490 // it is the contents of the slot which may get updated, not the pointer to 491 // the alloca 492 for (Value *V : SI.GCArgs) { 493 SDValue Incoming = Builder.getValue(V); 494 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 495 // This handles allocas as arguments to the statepoint 496 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 497 Incoming.getValueType())); 498 } 499 } 500 501 // Record computed locations for all lowered values. 502 // This can not be embedded in lowering loops as we need to record *all* 503 // values, while previous loops account only values with unique SDValues. 504 const Instruction *StatepointInstr = SI.StatepointInstr; 505 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 506 507 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 508 const Value *V = Relocate->getDerivedPtr(); 509 SDValue SDV = Builder.getValue(V); 510 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 511 512 if (Loc.getNode()) { 513 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 514 } else { 515 // Record value as visited, but not spilled. This is case for allocas 516 // and constants. For this values we can avoid emitting spill load while 517 // visiting corresponding gc_relocate. 518 // Actually we do not need to record them in this map at all. 519 // We do this only to check that we are not relocating any unvisited 520 // value. 521 SpillMap.SlotMap[V] = None; 522 523 // Default llvm mechanisms for exporting values which are used in 524 // different basic blocks does not work for gc relocates. 525 // Note that it would be incorrect to teach llvm that all relocates are 526 // uses of the corresponding values so that it would automatically 527 // export them. Relocates of the spilled values does not use original 528 // value. 529 if (Relocate->getParent() != StatepointInstr->getParent()) 530 Builder.ExportFromCurrentBlock(V); 531 } 532 } 533 } 534 535 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 536 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 537 // The basic scheme here is that information about both the original call and 538 // the safepoint is encoded in the CallInst. We create a temporary call and 539 // lower it, then reverse engineer the calling sequence. 540 541 NumOfStatepoints++; 542 // Clear state 543 StatepointLowering.startNewStatepoint(*this); 544 545 #ifndef NDEBUG 546 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 547 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 548 for (auto *Reloc : SI.GCRelocates) 549 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 550 StatepointLowering.scheduleRelocCall(*Reloc); 551 #endif 552 553 // Remove any redundant llvm::Values which map to the same SDValue as another 554 // input. Also has the effect of removing duplicates in the original 555 // llvm::Value input list as well. This is a useful optimization for 556 // reducing the size of the StackMap section. It has no other impact. 557 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 558 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 559 assert(SI.Bases.size() == SI.Ptrs.size() && 560 SI.Ptrs.size() == SI.GCRelocates.size()); 561 562 // Lower statepoint vmstate and gcstate arguments 563 SmallVector<SDValue, 10> LoweredMetaArgs; 564 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 565 566 // Now that we've emitted the spills, we need to update the root so that the 567 // call sequence is ordered correctly. 568 SI.CLI.setChain(getRoot()); 569 570 // Get call node, we will replace it later with statepoint 571 SDValue ReturnVal; 572 SDNode *CallNode; 573 std::tie(ReturnVal, CallNode) = 574 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 575 576 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 577 // nodes with all the appropriate arguments and return values. 578 579 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 580 SDValue Chain = CallNode->getOperand(0); 581 582 SDValue Glue; 583 bool CallHasIncomingGlue = CallNode->getGluedNode(); 584 if (CallHasIncomingGlue) { 585 // Glue is always last operand 586 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 587 } 588 589 // Build the GC_TRANSITION_START node if necessary. 590 // 591 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 592 // order in which they appear in the call to the statepoint intrinsic. If 593 // any of the operands is a pointer-typed, that operand is immediately 594 // followed by a SRCVALUE for the pointer that may be used during lowering 595 // (e.g. to form MachinePointerInfo values for loads/stores). 596 const bool IsGCTransition = 597 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 598 (uint64_t)StatepointFlags::GCTransition; 599 if (IsGCTransition) { 600 SmallVector<SDValue, 8> TSOps; 601 602 // Add chain 603 TSOps.push_back(Chain); 604 605 // Add GC transition arguments 606 for (const Value *V : SI.GCTransitionArgs) { 607 TSOps.push_back(getValue(V)); 608 if (V->getType()->isPointerTy()) 609 TSOps.push_back(DAG.getSrcValue(V)); 610 } 611 612 // Add glue if necessary 613 if (CallHasIncomingGlue) 614 TSOps.push_back(Glue); 615 616 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 617 618 SDValue GCTransitionStart = 619 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 620 621 Chain = GCTransitionStart.getValue(0); 622 Glue = GCTransitionStart.getValue(1); 623 } 624 625 // TODO: Currently, all of these operands are being marked as read/write in 626 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 627 // and flags to be read-only. 628 SmallVector<SDValue, 40> Ops; 629 630 // Add the <id> and <numBytes> constants. 631 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 632 Ops.push_back( 633 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 634 635 // Calculate and push starting position of vmstate arguments 636 // Get number of arguments incoming directly into call node 637 unsigned NumCallRegArgs = 638 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 639 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 640 641 // Add call target 642 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 643 Ops.push_back(CallTarget); 644 645 // Add call arguments 646 // Get position of register mask in the call 647 SDNode::op_iterator RegMaskIt; 648 if (CallHasIncomingGlue) 649 RegMaskIt = CallNode->op_end() - 2; 650 else 651 RegMaskIt = CallNode->op_end() - 1; 652 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 653 654 // Add a constant argument for the calling convention 655 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 656 657 // Add a constant argument for the flags 658 uint64_t Flags = SI.StatepointFlags; 659 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 660 "Unknown flag used"); 661 pushStackMapConstant(Ops, *this, Flags); 662 663 // Insert all vmstate and gcstate arguments 664 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 665 666 // Add register mask from call node 667 Ops.push_back(*RegMaskIt); 668 669 // Add chain 670 Ops.push_back(Chain); 671 672 // Same for the glue, but we add it only if original call had it 673 if (Glue.getNode()) 674 Ops.push_back(Glue); 675 676 // Compute return values. Provide a glue output since we consume one as 677 // input. This allows someone else to chain off us as needed. 678 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 679 680 SDNode *StatepointMCNode = 681 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 682 683 SDNode *SinkNode = StatepointMCNode; 684 685 // Build the GC_TRANSITION_END node if necessary. 686 // 687 // See the comment above regarding GC_TRANSITION_START for the layout of 688 // the operands to the GC_TRANSITION_END node. 689 if (IsGCTransition) { 690 SmallVector<SDValue, 8> TEOps; 691 692 // Add chain 693 TEOps.push_back(SDValue(StatepointMCNode, 0)); 694 695 // Add GC transition arguments 696 for (const Value *V : SI.GCTransitionArgs) { 697 TEOps.push_back(getValue(V)); 698 if (V->getType()->isPointerTy()) 699 TEOps.push_back(DAG.getSrcValue(V)); 700 } 701 702 // Add glue 703 TEOps.push_back(SDValue(StatepointMCNode, 1)); 704 705 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 706 707 SDValue GCTransitionStart = 708 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 709 710 SinkNode = GCTransitionStart.getNode(); 711 } 712 713 // Replace original call 714 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 715 // Remove original call node 716 DAG.DeleteNode(CallNode); 717 718 // DON'T set the root - under the assumption that it's already set past the 719 // inserted node we created. 720 721 // TODO: A better future implementation would be to emit a single variable 722 // argument, variable return value STATEPOINT node here and then hookup the 723 // return value of each gc.relocate to the respective output of the 724 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 725 // to actually be possible today. 726 727 return ReturnVal; 728 } 729 730 void 731 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 732 const BasicBlock *EHPadBB /*= nullptr*/) { 733 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 734 "anyregcc is not supported on statepoints!"); 735 736 #ifndef NDEBUG 737 // If this is a malformed statepoint, report it early to simplify debugging. 738 // This should catch any IR level mistake that's made when constructing or 739 // transforming statepoints. 740 ISP.verify(); 741 742 // Check that the associated GCStrategy expects to encounter statepoints. 743 assert(GFI->getStrategy().useStatepoints() && 744 "GCStrategy does not expect to encounter statepoints"); 745 #endif 746 747 SDValue ActualCallee; 748 749 if (ISP.getNumPatchBytes() > 0) { 750 // If we've been asked to emit a nop sequence instead of a call instruction 751 // for this statepoint then don't lower the call target, but use a constant 752 // `null` instead. Not lowering the call target lets statepoint clients get 753 // away without providing a physical address for the symbolic call target at 754 // link time. 755 756 const auto &TLI = DAG.getTargetLoweringInfo(); 757 const auto &DL = DAG.getDataLayout(); 758 759 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 760 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 761 } else { 762 ActualCallee = getValue(ISP.getCalledValue()); 763 } 764 765 StatepointLoweringInfo SI(DAG); 766 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 767 ImmutableStatepoint::CallArgsBeginPos, 768 ISP.getNumCallArgs(), ActualCallee, 769 ISP.getActualReturnType(), false /* IsPatchPoint */); 770 771 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 772 SI.GCRelocates.push_back(Relocate); 773 SI.Bases.push_back(Relocate->getBasePtr()); 774 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 775 } 776 777 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 778 SI.StatepointInstr = ISP.getInstruction(); 779 SI.GCTransitionArgs = 780 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 781 SI.ID = ISP.getID(); 782 SI.DeoptState = ArrayRef<const Use>(ISP.vm_state_begin(), ISP.vm_state_end()); 783 SI.StatepointFlags = ISP.getFlags(); 784 SI.NumPatchBytes = ISP.getNumPatchBytes(); 785 SI.EHPadBB = EHPadBB; 786 787 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 788 789 // Export the result value if needed 790 const GCResultInst *GCResult = ISP.getGCResult(); 791 Type *RetTy = ISP.getActualReturnType(); 792 if (!RetTy->isVoidTy() && GCResult) { 793 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 794 // Result value will be used in a different basic block so we need to 795 // export it now. Default exporting mechanism will not work here because 796 // statepoint call has a different type than the actual call. It means 797 // that by default llvm will create export register of the wrong type 798 // (always i32 in our case). So instead we need to create export register 799 // with correct type manually. 800 // TODO: To eliminate this problem we can remove gc.result intrinsics 801 // completely and make statepoint call to return a tuple. 802 unsigned Reg = FuncInfo.CreateRegs(RetTy); 803 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 804 DAG.getDataLayout(), Reg, RetTy); 805 SDValue Chain = DAG.getEntryNode(); 806 807 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 808 PendingExports.push_back(Chain); 809 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 810 } else { 811 // Result value will be used in a same basic block. Don't export it or 812 // perform any explicit register copies. 813 // We'll replace the actuall call node shortly. gc_result will grab 814 // this value. 815 setValue(ISP.getInstruction(), ReturnValue); 816 } 817 } else { 818 // The token value is never used from here on, just generate a poison value 819 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 820 } 821 } 822 823 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 824 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 825 bool VarArgDisallowed, bool ForceVoidReturnTy) { 826 StatepointLoweringInfo SI(DAG); 827 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 828 populateCallLoweringInfo( 829 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 830 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 831 false); 832 if (!VarArgDisallowed) 833 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 834 835 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 836 837 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 838 839 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 840 SI.ID = SD.StatepointID.getValueOr(DefaultID); 841 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 842 843 SI.DeoptState = 844 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 845 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 846 SI.EHPadBB = EHPadBB; 847 848 // NB! The GC arguments are deliberately left empty. 849 850 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 851 const Instruction *Inst = CS.getInstruction(); 852 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 853 setValue(Inst, ReturnVal); 854 } 855 } 856 857 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 858 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 859 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 860 /* VarArgDisallowed = */ false, 861 /* ForceVoidReturnTy = */ false); 862 } 863 864 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 865 // The result value of the gc_result is simply the result of the actual 866 // call. We've already emitted this, so just grab the value. 867 const Instruction *I = CI.getStatepoint(); 868 869 if (I->getParent() != CI.getParent()) { 870 // Statepoint is in different basic block so we should have stored call 871 // result in a virtual register. 872 // We can not use default getValue() functionality to copy value from this 873 // register because statepoint and actual call return types can be 874 // different, and getValue() will use CopyFromReg of the wrong type, 875 // which is always i32 in our case. 876 PointerType *CalleeType = cast<PointerType>( 877 ImmutableStatepoint(I).getCalledValue()->getType()); 878 Type *RetTy = 879 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 880 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 881 882 assert(CopyFromReg.getNode()); 883 setValue(&CI, CopyFromReg); 884 } else { 885 setValue(&CI, getValue(I)); 886 } 887 } 888 889 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 890 #ifndef NDEBUG 891 // Consistency check 892 // We skip this check for relocates not in the same basic block as thier 893 // statepoint. It would be too expensive to preserve validation info through 894 // different basic blocks. 895 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 896 StatepointLowering.relocCallVisited(Relocate); 897 898 auto *Ty = Relocate.getType()->getScalarType(); 899 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 900 assert(*IsManaged && "Non gc managed pointer relocated!"); 901 #endif 902 903 const Value *DerivedPtr = Relocate.getDerivedPtr(); 904 SDValue SD = getValue(DerivedPtr); 905 906 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 907 auto SlotIt = SpillMap.find(DerivedPtr); 908 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 909 Optional<int> DerivedPtrLocation = SlotIt->second; 910 911 // We didn't need to spill these special cases (constants and allocas). 912 // See the handling in spillIncomingValueForStatepoint for detail. 913 if (!DerivedPtrLocation) { 914 setValue(&Relocate, SD); 915 return; 916 } 917 918 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation, 919 SD.getValueType()); 920 921 // Be conservative: flush all pending loads 922 // TODO: Probably we can be less restrictive on this, 923 // it may allow more scheduling opportunities. 924 SDValue Chain = getRoot(); 925 926 SDValue SpillLoad = 927 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot, 928 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 929 *DerivedPtrLocation)); 930 931 // Again, be conservative, don't emit pending loads 932 DAG.setRoot(SpillLoad.getValue(1)); 933 934 assert(SpillLoad.getNode()); 935 setValue(&Relocate, SpillLoad); 936 } 937 938 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 939 const auto &TLI = DAG.getTargetLoweringInfo(); 940 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 941 TLI.getPointerTy(DAG.getDataLayout())); 942 943 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 944 // call. We also do not lower the return value to any virtual register, and 945 // change the immediately following return to a trap instruction. 946 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 947 /* VarArgDisallowed = */ true, 948 /* ForceVoidReturnTy = */ true); 949 } 950 951 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 952 // We do not lower the return value from llvm.deoptimize to any virtual 953 // register, and change the immediately following return to a trap 954 // instruction. 955 if (DAG.getTarget().Options.TrapUnreachable) 956 DAG.setRoot( 957 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 958 } 959