1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file includes support code use by SelectionDAGBuilder when lowering a 11 // statepoint sequence in SelectionDAG IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "StatepointLowering.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/GCMetadata.h" 21 #include "llvm/CodeGen/GCStrategy.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/StackMaps.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Statepoint.h" 30 #include "llvm/Target/TargetLowering.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "statepoint-lowering" 35 36 STATISTIC(NumSlotsAllocatedForStatepoints, 37 "Number of stack slots allocated for statepoints"); 38 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 39 STATISTIC(StatepointMaxSlotsRequired, 40 "Maximum number of stack slots required for a singe statepoint"); 41 42 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 43 SelectionDAGBuilder &Builder, uint64_t Value) { 44 SDLoc L = Builder.getCurSDLoc(); 45 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 46 MVT::i64)); 47 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 48 } 49 50 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 51 // Consistency check 52 assert(PendingGCRelocateCalls.empty() && 53 "Trying to visit statepoint before finished processing previous one"); 54 Locations.clear(); 55 NextSlotToAllocate = 0; 56 // Need to resize this on each safepoint - we need the two to stay in sync and 57 // the clear patterns of a SelectionDAGBuilder have no relation to 58 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 59 AllocatedStackSlots.clear(); 60 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 61 } 62 63 void StatepointLoweringState::clear() { 64 Locations.clear(); 65 AllocatedStackSlots.clear(); 66 assert(PendingGCRelocateCalls.empty() && 67 "cleared before statepoint sequence completed"); 68 } 69 70 SDValue 71 StatepointLoweringState::allocateStackSlot(EVT ValueType, 72 SelectionDAGBuilder &Builder) { 73 NumSlotsAllocatedForStatepoints++; 74 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 75 76 unsigned SpillSize = ValueType.getSizeInBits() / 8; 77 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 78 79 // First look for a previously created stack slot which is not in 80 // use (accounting for the fact arbitrary slots may already be 81 // reserved), or to create a new stack slot and use it. 82 83 const size_t NumSlots = AllocatedStackSlots.size(); 84 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 85 86 assert(AllocatedStackSlots.size() == 87 Builder.FuncInfo.StatepointStackSlots.size() && 88 "Broken invariant"); 89 90 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 91 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 92 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 93 if (MFI.getObjectSize(FI) == SpillSize) { 94 AllocatedStackSlots.set(NextSlotToAllocate); 95 // TODO: Is ValueType the right thing to use here? 96 return Builder.DAG.getFrameIndex(FI, ValueType); 97 } 98 } 99 } 100 101 // Couldn't find a free slot, so create a new one: 102 103 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 104 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 105 MFI.markAsStatepointSpillSlotObjectIndex(FI); 106 107 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 108 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 109 assert(AllocatedStackSlots.size() == 110 Builder.FuncInfo.StatepointStackSlots.size() && 111 "Broken invariant"); 112 113 StatepointMaxSlotsRequired.updateMax( 114 Builder.FuncInfo.StatepointStackSlots.size()); 115 116 return SpillSlot; 117 } 118 119 /// Utility function for reservePreviousStackSlotForValue. Tries to find 120 /// stack slot index to which we have spilled value for previous statepoints. 121 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 122 static Optional<int> findPreviousSpillSlot(const Value *Val, 123 SelectionDAGBuilder &Builder, 124 int LookUpDepth) { 125 // Can not look any further - give up now 126 if (LookUpDepth <= 0) 127 return None; 128 129 // Spill location is known for gc relocates 130 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 131 const auto &SpillMap = 132 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 133 134 auto It = SpillMap.find(Relocate->getDerivedPtr()); 135 if (It == SpillMap.end()) 136 return None; 137 138 return It->second; 139 } 140 141 // Look through bitcast instructions. 142 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 143 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 144 145 // Look through phi nodes 146 // All incoming values should have same known stack slot, otherwise result 147 // is unknown. 148 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 149 Optional<int> MergedResult = None; 150 151 for (auto &IncomingValue : Phi->incoming_values()) { 152 Optional<int> SpillSlot = 153 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 154 if (!SpillSlot.hasValue()) 155 return None; 156 157 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 158 return None; 159 160 MergedResult = SpillSlot; 161 } 162 return MergedResult; 163 } 164 165 // TODO: We can do better for PHI nodes. In cases like this: 166 // ptr = phi(relocated_pointer, not_relocated_pointer) 167 // statepoint(ptr) 168 // We will return that stack slot for ptr is unknown. And later we might 169 // assign different stack slots for ptr and relocated_pointer. This limits 170 // llvm's ability to remove redundant stores. 171 // Unfortunately it's hard to accomplish in current infrastructure. 172 // We use this function to eliminate spill store completely, while 173 // in example we still need to emit store, but instead of any location 174 // we need to use special "preferred" location. 175 176 // TODO: handle simple updates. If a value is modified and the original 177 // value is no longer live, it would be nice to put the modified value in the 178 // same slot. This allows folding of the memory accesses for some 179 // instructions types (like an increment). 180 // statepoint (i) 181 // i1 = i+1 182 // statepoint (i1) 183 // However we need to be careful for cases like this: 184 // statepoint(i) 185 // i1 = i+1 186 // statepoint(i, i1) 187 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 188 // put handling of simple modifications in this function like it's done 189 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 190 // which we visit values is unspecified. 191 192 // Don't know any information about this instruction 193 return None; 194 } 195 196 /// Try to find existing copies of the incoming values in stack slots used for 197 /// statepoint spilling. If we can find a spill slot for the incoming value, 198 /// mark that slot as allocated, and reuse the same slot for this safepoint. 199 /// This helps to avoid series of loads and stores that only serve to reshuffle 200 /// values on the stack between calls. 201 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 202 SelectionDAGBuilder &Builder) { 203 204 SDValue Incoming = Builder.getValue(IncomingValue); 205 206 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 207 // We won't need to spill this, so no need to check for previously 208 // allocated stack slots 209 return; 210 } 211 212 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 213 if (OldLocation.getNode()) 214 // Duplicates in input 215 return; 216 217 const int LookUpDepth = 6; 218 Optional<int> Index = 219 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 220 if (!Index.hasValue()) 221 return; 222 223 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 224 225 auto SlotIt = find(StatepointSlots, *Index); 226 assert(SlotIt != StatepointSlots.end() && 227 "Value spilled to the unknown stack slot"); 228 229 // This is one of our dedicated lowering slots 230 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 231 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 232 // stack slot already assigned to someone else, can't use it! 233 // TODO: currently we reserve space for gc arguments after doing 234 // normal allocation for deopt arguments. We should reserve for 235 // _all_ deopt and gc arguments, then start allocating. This 236 // will prevent some moves being inserted when vm state changes, 237 // but gc state doesn't between two calls. 238 return; 239 } 240 // Reserve this stack slot 241 Builder.StatepointLowering.reserveStackSlot(Offset); 242 243 // Cache this slot so we find it when going through the normal 244 // assignment loop. 245 SDValue Loc = 246 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 247 Builder.StatepointLowering.setLocation(Incoming, Loc); 248 } 249 250 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 251 /// is not required for correctness. It's purpose is to reduce the size of 252 /// StackMap section. It has no effect on the number of spill slots required 253 /// or the actual lowering. 254 static void 255 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 256 SmallVectorImpl<const Value *> &Ptrs, 257 SmallVectorImpl<const GCRelocateInst *> &Relocs, 258 SelectionDAGBuilder &Builder, 259 FunctionLoweringInfo::StatepointSpillMap &SSM) { 260 DenseMap<SDValue, const Value *> Seen; 261 262 SmallVector<const Value *, 64> NewBases, NewPtrs; 263 SmallVector<const GCRelocateInst *, 64> NewRelocs; 264 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 265 SDValue SD = Builder.getValue(Ptrs[i]); 266 auto SeenIt = Seen.find(SD); 267 268 if (SeenIt == Seen.end()) { 269 // Only add non-duplicates 270 NewBases.push_back(Bases[i]); 271 NewPtrs.push_back(Ptrs[i]); 272 NewRelocs.push_back(Relocs[i]); 273 Seen[SD] = Ptrs[i]; 274 } else { 275 // Duplicate pointer found, note in SSM and move on: 276 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 277 } 278 } 279 assert(Bases.size() >= NewBases.size()); 280 assert(Ptrs.size() >= NewPtrs.size()); 281 assert(Relocs.size() >= NewRelocs.size()); 282 Bases = NewBases; 283 Ptrs = NewPtrs; 284 Relocs = NewRelocs; 285 assert(Ptrs.size() == Bases.size()); 286 assert(Ptrs.size() == Relocs.size()); 287 } 288 289 /// Extract call from statepoint, lower it and return pointer to the 290 /// call node. Also update NodeMap so that getValue(statepoint) will 291 /// reference lowered call result 292 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 293 SelectionDAGBuilder::StatepointLoweringInfo &SI, 294 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 295 296 SDValue ReturnValue, CallEndVal; 297 std::tie(ReturnValue, CallEndVal) = 298 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 299 SDNode *CallEnd = CallEndVal.getNode(); 300 301 // Get a call instruction from the call sequence chain. Tail calls are not 302 // allowed. The following code is essentially reverse engineering X86's 303 // LowerCallTo. 304 // 305 // We are expecting DAG to have the following form: 306 // 307 // ch = eh_label (only in case of invoke statepoint) 308 // ch, glue = callseq_start ch 309 // ch, glue = X86::Call ch, glue 310 // ch, glue = callseq_end ch, glue 311 // get_return_value ch, glue 312 // 313 // get_return_value can either be a sequence of CopyFromReg instructions 314 // to grab the return value from the return register(s), or it can be a LOAD 315 // to load a value returned by reference via a stack slot. 316 317 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 318 if (HasDef) { 319 if (CallEnd->getOpcode() == ISD::LOAD) 320 CallEnd = CallEnd->getOperand(0).getNode(); 321 else 322 while (CallEnd->getOpcode() == ISD::CopyFromReg) 323 CallEnd = CallEnd->getOperand(0).getNode(); 324 } 325 326 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 327 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 328 } 329 330 /// Spill a value incoming to the statepoint. It might be either part of 331 /// vmstate 332 /// or gcstate. In both cases unconditionally spill it on the stack unless it 333 /// is a null constant. Return pair with first element being frame index 334 /// containing saved value and second element with outgoing chain from the 335 /// emitted store 336 static std::pair<SDValue, SDValue> 337 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 338 SelectionDAGBuilder &Builder) { 339 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 340 341 // Emit new store if we didn't do it for this ptr before 342 if (!Loc.getNode()) { 343 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 344 Builder); 345 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 346 // We use TargetFrameIndex so that isel will not select it into LEA 347 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 348 349 // TODO: We can create TokenFactor node instead of 350 // chaining stores one after another, this may allow 351 // a bit more optimal scheduling for them 352 353 #ifndef NDEBUG 354 // Right now we always allocate spill slots that are of the same 355 // size as the value we're about to spill (the size of spillee can 356 // vary since we spill vectors of pointers too). At some point we 357 // can consider allowing spills of smaller values to larger slots 358 // (i.e. change the '==' in the assert below to a '>='). 359 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 360 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 361 "Bad spill: stack slot does not match!"); 362 #endif 363 364 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 365 MachinePointerInfo::getFixedStack( 366 Builder.DAG.getMachineFunction(), Index)); 367 368 Builder.StatepointLowering.setLocation(Incoming, Loc); 369 } 370 371 assert(Loc.getNode()); 372 return std::make_pair(Loc, Chain); 373 } 374 375 /// Lower a single value incoming to a statepoint node. This value can be 376 /// either a deopt value or a gc value, the handling is the same. We special 377 /// case constants and allocas, then fall back to spilling if required. 378 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 379 SmallVectorImpl<SDValue> &Ops, 380 SelectionDAGBuilder &Builder) { 381 SDValue Chain = Builder.getRoot(); 382 383 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 384 // If the original value was a constant, make sure it gets recorded as 385 // such in the stackmap. This is required so that the consumer can 386 // parse any internal format to the deopt state. It also handles null 387 // pointers and other constant pointers in GC states. Note the constant 388 // vectors do not appear to actually hit this path and that anything larger 389 // than an i64 value (not type!) will fail asserts here. 390 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 391 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 392 // This handles allocas as arguments to the statepoint (this is only 393 // really meaningful for a deopt value. For GC, we'd be trying to 394 // relocate the address of the alloca itself?) 395 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 396 "Incoming value is a frame index!"); 397 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 398 Builder.getFrameIndexTy())); 399 } else if (LiveInOnly) { 400 // If this value is live in (not live-on-return, or live-through), we can 401 // treat it the same way patchpoint treats it's "live in" values. We'll 402 // end up folding some of these into stack references, but they'll be 403 // handled by the register allocator. Note that we do not have the notion 404 // of a late use so these values might be placed in registers which are 405 // clobbered by the call. This is fine for live-in. 406 Ops.push_back(Incoming); 407 } else { 408 // Otherwise, locate a spill slot and explicitly spill it so it 409 // can be found by the runtime later. We currently do not support 410 // tracking values through callee saved registers to their eventual 411 // spill location. This would be a useful optimization, but would 412 // need to be optional since it requires a lot of complexity on the 413 // runtime side which not all would support. 414 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 415 Ops.push_back(Res.first); 416 Chain = Res.second; 417 } 418 419 Builder.DAG.setRoot(Chain); 420 } 421 422 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 423 /// lowering is described in lowerIncomingStatepointValue. This function is 424 /// responsible for lowering everything in the right position and playing some 425 /// tricks to avoid redundant stack manipulation where possible. On 426 /// completion, 'Ops' will contain ready to use operands for machine code 427 /// statepoint. The chain nodes will have already been created and the DAG root 428 /// will be set to the last value spilled (if any were). 429 static void 430 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 431 SelectionDAGBuilder::StatepointLoweringInfo &SI, 432 SelectionDAGBuilder &Builder) { 433 // Lower the deopt and gc arguments for this statepoint. Layout will be: 434 // deopt argument length, deopt arguments.., gc arguments... 435 #ifndef NDEBUG 436 if (auto *GFI = Builder.GFI) { 437 // Check that each of the gc pointer and bases we've gotten out of the 438 // safepoint is something the strategy thinks might be a pointer (or vector 439 // of pointers) into the GC heap. This is basically just here to help catch 440 // errors during statepoint insertion. TODO: This should actually be in the 441 // Verifier, but we can't get to the GCStrategy from there (yet). 442 GCStrategy &S = GFI->getStrategy(); 443 for (const Value *V : SI.Bases) { 444 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 445 if (Opt.hasValue()) { 446 assert(Opt.getValue() && 447 "non gc managed base pointer found in statepoint"); 448 } 449 } 450 for (const Value *V : SI.Ptrs) { 451 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 452 if (Opt.hasValue()) { 453 assert(Opt.getValue() && 454 "non gc managed derived pointer found in statepoint"); 455 } 456 } 457 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 458 } else { 459 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 460 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 461 } 462 #endif 463 464 // Figure out what lowering strategy we're going to use for each part 465 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 466 // as "live-through". A "live-through" variable is one which is "live-in", 467 // "live-out", and live throughout the lifetime of the call (i.e. we can find 468 // it from any PC within the transitive callee of the statepoint). In 469 // particular, if the callee spills callee preserved registers we may not 470 // be able to find a value placed in that register during the call. This is 471 // fine for live-out, but not for live-through. If we were willing to make 472 // assumptions about the code generator producing the callee, we could 473 // potentially allow live-through values in callee saved registers. 474 const bool LiveInDeopt = 475 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 476 477 auto isGCValue =[&](const Value *V) { 478 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 479 }; 480 481 // Before we actually start lowering (and allocating spill slots for values), 482 // reserve any stack slots which we judge to be profitable to reuse for a 483 // particular value. This is purely an optimization over the code below and 484 // doesn't change semantics at all. It is important for performance that we 485 // reserve slots for both deopt and gc values before lowering either. 486 for (const Value *V : SI.DeoptState) { 487 if (!LiveInDeopt || isGCValue(V)) 488 reservePreviousStackSlotForValue(V, Builder); 489 } 490 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 491 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 492 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 493 } 494 495 // First, prefix the list with the number of unique values to be 496 // lowered. Note that this is the number of *Values* not the 497 // number of SDValues required to lower them. 498 const int NumVMSArgs = SI.DeoptState.size(); 499 pushStackMapConstant(Ops, Builder, NumVMSArgs); 500 501 // The vm state arguments are lowered in an opaque manner. We do not know 502 // what type of values are contained within. 503 for (const Value *V : SI.DeoptState) { 504 SDValue Incoming = Builder.getValue(V); 505 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 506 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); 507 } 508 509 // Finally, go ahead and lower all the gc arguments. There's no prefixed 510 // length for this one. After lowering, we'll have the base and pointer 511 // arrays interwoven with each (lowered) base pointer immediately followed by 512 // it's (lowered) derived pointer. i.e 513 // (base[0], ptr[0], base[1], ptr[1], ...) 514 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 515 const Value *Base = SI.Bases[i]; 516 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 517 Ops, Builder); 518 519 const Value *Ptr = SI.Ptrs[i]; 520 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 521 Ops, Builder); 522 } 523 524 // If there are any explicit spill slots passed to the statepoint, record 525 // them, but otherwise do not do anything special. These are user provided 526 // allocas and give control over placement to the consumer. In this case, 527 // it is the contents of the slot which may get updated, not the pointer to 528 // the alloca 529 for (Value *V : SI.GCArgs) { 530 SDValue Incoming = Builder.getValue(V); 531 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 532 // This handles allocas as arguments to the statepoint 533 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 534 "Incoming value is a frame index!"); 535 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 536 Builder.getFrameIndexTy())); 537 } 538 } 539 540 // Record computed locations for all lowered values. 541 // This can not be embedded in lowering loops as we need to record *all* 542 // values, while previous loops account only values with unique SDValues. 543 const Instruction *StatepointInstr = SI.StatepointInstr; 544 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 545 546 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 547 const Value *V = Relocate->getDerivedPtr(); 548 SDValue SDV = Builder.getValue(V); 549 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 550 551 if (Loc.getNode()) { 552 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 553 } else { 554 // Record value as visited, but not spilled. This is case for allocas 555 // and constants. For this values we can avoid emitting spill load while 556 // visiting corresponding gc_relocate. 557 // Actually we do not need to record them in this map at all. 558 // We do this only to check that we are not relocating any unvisited 559 // value. 560 SpillMap.SlotMap[V] = None; 561 562 // Default llvm mechanisms for exporting values which are used in 563 // different basic blocks does not work for gc relocates. 564 // Note that it would be incorrect to teach llvm that all relocates are 565 // uses of the corresponding values so that it would automatically 566 // export them. Relocates of the spilled values does not use original 567 // value. 568 if (Relocate->getParent() != StatepointInstr->getParent()) 569 Builder.ExportFromCurrentBlock(V); 570 } 571 } 572 } 573 574 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 575 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 576 // The basic scheme here is that information about both the original call and 577 // the safepoint is encoded in the CallInst. We create a temporary call and 578 // lower it, then reverse engineer the calling sequence. 579 580 NumOfStatepoints++; 581 // Clear state 582 StatepointLowering.startNewStatepoint(*this); 583 584 #ifndef NDEBUG 585 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 586 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 587 for (auto *Reloc : SI.GCRelocates) 588 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 589 StatepointLowering.scheduleRelocCall(*Reloc); 590 #endif 591 592 // Remove any redundant llvm::Values which map to the same SDValue as another 593 // input. Also has the effect of removing duplicates in the original 594 // llvm::Value input list as well. This is a useful optimization for 595 // reducing the size of the StackMap section. It has no other impact. 596 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 597 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 598 assert(SI.Bases.size() == SI.Ptrs.size() && 599 SI.Ptrs.size() == SI.GCRelocates.size()); 600 601 // Lower statepoint vmstate and gcstate arguments 602 SmallVector<SDValue, 10> LoweredMetaArgs; 603 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 604 605 // Now that we've emitted the spills, we need to update the root so that the 606 // call sequence is ordered correctly. 607 SI.CLI.setChain(getRoot()); 608 609 // Get call node, we will replace it later with statepoint 610 SDValue ReturnVal; 611 SDNode *CallNode; 612 std::tie(ReturnVal, CallNode) = 613 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 614 615 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 616 // nodes with all the appropriate arguments and return values. 617 618 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 619 SDValue Chain = CallNode->getOperand(0); 620 621 SDValue Glue; 622 bool CallHasIncomingGlue = CallNode->getGluedNode(); 623 if (CallHasIncomingGlue) { 624 // Glue is always last operand 625 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 626 } 627 628 // Build the GC_TRANSITION_START node if necessary. 629 // 630 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 631 // order in which they appear in the call to the statepoint intrinsic. If 632 // any of the operands is a pointer-typed, that operand is immediately 633 // followed by a SRCVALUE for the pointer that may be used during lowering 634 // (e.g. to form MachinePointerInfo values for loads/stores). 635 const bool IsGCTransition = 636 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 637 (uint64_t)StatepointFlags::GCTransition; 638 if (IsGCTransition) { 639 SmallVector<SDValue, 8> TSOps; 640 641 // Add chain 642 TSOps.push_back(Chain); 643 644 // Add GC transition arguments 645 for (const Value *V : SI.GCTransitionArgs) { 646 TSOps.push_back(getValue(V)); 647 if (V->getType()->isPointerTy()) 648 TSOps.push_back(DAG.getSrcValue(V)); 649 } 650 651 // Add glue if necessary 652 if (CallHasIncomingGlue) 653 TSOps.push_back(Glue); 654 655 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 656 657 SDValue GCTransitionStart = 658 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 659 660 Chain = GCTransitionStart.getValue(0); 661 Glue = GCTransitionStart.getValue(1); 662 } 663 664 // TODO: Currently, all of these operands are being marked as read/write in 665 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 666 // and flags to be read-only. 667 SmallVector<SDValue, 40> Ops; 668 669 // Add the <id> and <numBytes> constants. 670 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 671 Ops.push_back( 672 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 673 674 // Calculate and push starting position of vmstate arguments 675 // Get number of arguments incoming directly into call node 676 unsigned NumCallRegArgs = 677 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 678 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 679 680 // Add call target 681 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 682 Ops.push_back(CallTarget); 683 684 // Add call arguments 685 // Get position of register mask in the call 686 SDNode::op_iterator RegMaskIt; 687 if (CallHasIncomingGlue) 688 RegMaskIt = CallNode->op_end() - 2; 689 else 690 RegMaskIt = CallNode->op_end() - 1; 691 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 692 693 // Add a constant argument for the calling convention 694 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 695 696 // Add a constant argument for the flags 697 uint64_t Flags = SI.StatepointFlags; 698 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 699 "Unknown flag used"); 700 pushStackMapConstant(Ops, *this, Flags); 701 702 // Insert all vmstate and gcstate arguments 703 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 704 705 // Add register mask from call node 706 Ops.push_back(*RegMaskIt); 707 708 // Add chain 709 Ops.push_back(Chain); 710 711 // Same for the glue, but we add it only if original call had it 712 if (Glue.getNode()) 713 Ops.push_back(Glue); 714 715 // Compute return values. Provide a glue output since we consume one as 716 // input. This allows someone else to chain off us as needed. 717 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 718 719 SDNode *StatepointMCNode = 720 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 721 722 SDNode *SinkNode = StatepointMCNode; 723 724 // Build the GC_TRANSITION_END node if necessary. 725 // 726 // See the comment above regarding GC_TRANSITION_START for the layout of 727 // the operands to the GC_TRANSITION_END node. 728 if (IsGCTransition) { 729 SmallVector<SDValue, 8> TEOps; 730 731 // Add chain 732 TEOps.push_back(SDValue(StatepointMCNode, 0)); 733 734 // Add GC transition arguments 735 for (const Value *V : SI.GCTransitionArgs) { 736 TEOps.push_back(getValue(V)); 737 if (V->getType()->isPointerTy()) 738 TEOps.push_back(DAG.getSrcValue(V)); 739 } 740 741 // Add glue 742 TEOps.push_back(SDValue(StatepointMCNode, 1)); 743 744 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 745 746 SDValue GCTransitionStart = 747 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 748 749 SinkNode = GCTransitionStart.getNode(); 750 } 751 752 // Replace original call 753 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 754 // Remove original call node 755 DAG.DeleteNode(CallNode); 756 757 // DON'T set the root - under the assumption that it's already set past the 758 // inserted node we created. 759 760 // TODO: A better future implementation would be to emit a single variable 761 // argument, variable return value STATEPOINT node here and then hookup the 762 // return value of each gc.relocate to the respective output of the 763 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 764 // to actually be possible today. 765 766 return ReturnVal; 767 } 768 769 void 770 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 771 const BasicBlock *EHPadBB /*= nullptr*/) { 772 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 773 "anyregcc is not supported on statepoints!"); 774 775 #ifndef NDEBUG 776 // If this is a malformed statepoint, report it early to simplify debugging. 777 // This should catch any IR level mistake that's made when constructing or 778 // transforming statepoints. 779 ISP.verify(); 780 781 // Check that the associated GCStrategy expects to encounter statepoints. 782 assert(GFI->getStrategy().useStatepoints() && 783 "GCStrategy does not expect to encounter statepoints"); 784 #endif 785 786 SDValue ActualCallee; 787 788 if (ISP.getNumPatchBytes() > 0) { 789 // If we've been asked to emit a nop sequence instead of a call instruction 790 // for this statepoint then don't lower the call target, but use a constant 791 // `null` instead. Not lowering the call target lets statepoint clients get 792 // away without providing a physical address for the symbolic call target at 793 // link time. 794 795 const auto &TLI = DAG.getTargetLoweringInfo(); 796 const auto &DL = DAG.getDataLayout(); 797 798 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 799 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 800 } else { 801 ActualCallee = getValue(ISP.getCalledValue()); 802 } 803 804 StatepointLoweringInfo SI(DAG); 805 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 806 ImmutableStatepoint::CallArgsBeginPos, 807 ISP.getNumCallArgs(), ActualCallee, 808 ISP.getActualReturnType(), false /* IsPatchPoint */); 809 810 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 811 SI.GCRelocates.push_back(Relocate); 812 SI.Bases.push_back(Relocate->getBasePtr()); 813 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 814 } 815 816 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 817 SI.StatepointInstr = ISP.getInstruction(); 818 SI.GCTransitionArgs = 819 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 820 SI.ID = ISP.getID(); 821 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 822 SI.StatepointFlags = ISP.getFlags(); 823 SI.NumPatchBytes = ISP.getNumPatchBytes(); 824 SI.EHPadBB = EHPadBB; 825 826 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 827 828 // Export the result value if needed 829 const GCResultInst *GCResult = ISP.getGCResult(); 830 Type *RetTy = ISP.getActualReturnType(); 831 if (!RetTy->isVoidTy() && GCResult) { 832 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 833 // Result value will be used in a different basic block so we need to 834 // export it now. Default exporting mechanism will not work here because 835 // statepoint call has a different type than the actual call. It means 836 // that by default llvm will create export register of the wrong type 837 // (always i32 in our case). So instead we need to create export register 838 // with correct type manually. 839 // TODO: To eliminate this problem we can remove gc.result intrinsics 840 // completely and make statepoint call to return a tuple. 841 unsigned Reg = FuncInfo.CreateRegs(RetTy); 842 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 843 DAG.getDataLayout(), Reg, RetTy); 844 SDValue Chain = DAG.getEntryNode(); 845 846 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 847 PendingExports.push_back(Chain); 848 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 849 } else { 850 // Result value will be used in a same basic block. Don't export it or 851 // perform any explicit register copies. 852 // We'll replace the actuall call node shortly. gc_result will grab 853 // this value. 854 setValue(ISP.getInstruction(), ReturnValue); 855 } 856 } else { 857 // The token value is never used from here on, just generate a poison value 858 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 859 } 860 } 861 862 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 863 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 864 bool VarArgDisallowed, bool ForceVoidReturnTy) { 865 StatepointLoweringInfo SI(DAG); 866 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 867 populateCallLoweringInfo( 868 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 869 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 870 false); 871 if (!VarArgDisallowed) 872 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 873 874 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 875 876 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 877 878 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 879 SI.ID = SD.StatepointID.getValueOr(DefaultID); 880 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 881 882 SI.DeoptState = 883 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 884 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 885 SI.EHPadBB = EHPadBB; 886 887 // NB! The GC arguments are deliberately left empty. 888 889 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 890 const Instruction *Inst = CS.getInstruction(); 891 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 892 setValue(Inst, ReturnVal); 893 } 894 } 895 896 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 897 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 898 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 899 /* VarArgDisallowed = */ false, 900 /* ForceVoidReturnTy = */ false); 901 } 902 903 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 904 // The result value of the gc_result is simply the result of the actual 905 // call. We've already emitted this, so just grab the value. 906 const Instruction *I = CI.getStatepoint(); 907 908 if (I->getParent() != CI.getParent()) { 909 // Statepoint is in different basic block so we should have stored call 910 // result in a virtual register. 911 // We can not use default getValue() functionality to copy value from this 912 // register because statepoint and actual call return types can be 913 // different, and getValue() will use CopyFromReg of the wrong type, 914 // which is always i32 in our case. 915 PointerType *CalleeType = cast<PointerType>( 916 ImmutableStatepoint(I).getCalledValue()->getType()); 917 Type *RetTy = 918 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 919 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 920 921 assert(CopyFromReg.getNode()); 922 setValue(&CI, CopyFromReg); 923 } else { 924 setValue(&CI, getValue(I)); 925 } 926 } 927 928 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 929 #ifndef NDEBUG 930 // Consistency check 931 // We skip this check for relocates not in the same basic block as their 932 // statepoint. It would be too expensive to preserve validation info through 933 // different basic blocks. 934 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 935 StatepointLowering.relocCallVisited(Relocate); 936 937 auto *Ty = Relocate.getType()->getScalarType(); 938 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 939 assert(*IsManaged && "Non gc managed pointer relocated!"); 940 #endif 941 942 const Value *DerivedPtr = Relocate.getDerivedPtr(); 943 SDValue SD = getValue(DerivedPtr); 944 945 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 946 auto SlotIt = SpillMap.find(DerivedPtr); 947 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 948 Optional<int> DerivedPtrLocation = SlotIt->second; 949 950 // We didn't need to spill these special cases (constants and allocas). 951 // See the handling in spillIncomingValueForStatepoint for detail. 952 if (!DerivedPtrLocation) { 953 setValue(&Relocate, SD); 954 return; 955 } 956 957 SDValue SpillSlot = 958 DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy()); 959 960 // Be conservative: flush all pending loads 961 // TODO: Probably we can be less restrictive on this, 962 // it may allow more scheduling opportunities. 963 SDValue Chain = getRoot(); 964 965 SDValue SpillLoad = 966 DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 967 Relocate.getType()), 968 getCurSDLoc(), Chain, SpillSlot, 969 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 970 *DerivedPtrLocation)); 971 972 // Again, be conservative, don't emit pending loads 973 DAG.setRoot(SpillLoad.getValue(1)); 974 975 assert(SpillLoad.getNode()); 976 setValue(&Relocate, SpillLoad); 977 } 978 979 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 980 const auto &TLI = DAG.getTargetLoweringInfo(); 981 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 982 TLI.getPointerTy(DAG.getDataLayout())); 983 984 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 985 // call. We also do not lower the return value to any virtual register, and 986 // change the immediately following return to a trap instruction. 987 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 988 /* VarArgDisallowed = */ true, 989 /* ForceVoidReturnTy = */ true); 990 } 991 992 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 993 // We do not lower the return value from llvm.deoptimize to any virtual 994 // register, and change the immediately following return to a trap 995 // instruction. 996 if (DAG.getTarget().Options.TrapUnreachable) 997 DAG.setRoot( 998 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 999 } 1000