1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/GCMetadata.h" 26 #include "llvm/CodeGen/GCStrategy.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 #include <iterator> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "statepoint-lowering" 58 59 STATISTIC(NumSlotsAllocatedForStatepoints, 60 "Number of stack slots allocated for statepoints"); 61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 62 STATISTIC(StatepointMaxSlotsRequired, 63 "Maximum number of stack slots required for a singe statepoint"); 64 65 cl::opt<bool> UseRegistersForDeoptValues( 66 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 67 cl::desc("Allow using registers for non pointer deopt args")); 68 69 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 70 SelectionDAGBuilder &Builder, uint64_t Value) { 71 SDLoc L = Builder.getCurSDLoc(); 72 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 73 MVT::i64)); 74 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 75 } 76 77 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 78 // Consistency check 79 assert(PendingGCRelocateCalls.empty() && 80 "Trying to visit statepoint before finished processing previous one"); 81 Locations.clear(); 82 NextSlotToAllocate = 0; 83 // Need to resize this on each safepoint - we need the two to stay in sync and 84 // the clear patterns of a SelectionDAGBuilder have no relation to 85 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 86 AllocatedStackSlots.clear(); 87 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 88 } 89 90 void StatepointLoweringState::clear() { 91 Locations.clear(); 92 AllocatedStackSlots.clear(); 93 assert(PendingGCRelocateCalls.empty() && 94 "cleared before statepoint sequence completed"); 95 } 96 97 SDValue 98 StatepointLoweringState::allocateStackSlot(EVT ValueType, 99 SelectionDAGBuilder &Builder) { 100 NumSlotsAllocatedForStatepoints++; 101 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 102 103 unsigned SpillSize = ValueType.getStoreSize(); 104 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 105 106 // First look for a previously created stack slot which is not in 107 // use (accounting for the fact arbitrary slots may already be 108 // reserved), or to create a new stack slot and use it. 109 110 const size_t NumSlots = AllocatedStackSlots.size(); 111 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 112 113 assert(AllocatedStackSlots.size() == 114 Builder.FuncInfo.StatepointStackSlots.size() && 115 "Broken invariant"); 116 117 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 118 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 119 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 120 if (MFI.getObjectSize(FI) == SpillSize) { 121 AllocatedStackSlots.set(NextSlotToAllocate); 122 // TODO: Is ValueType the right thing to use here? 123 return Builder.DAG.getFrameIndex(FI, ValueType); 124 } 125 } 126 } 127 128 // Couldn't find a free slot, so create a new one: 129 130 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 131 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 132 MFI.markAsStatepointSpillSlotObjectIndex(FI); 133 134 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 135 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 136 assert(AllocatedStackSlots.size() == 137 Builder.FuncInfo.StatepointStackSlots.size() && 138 "Broken invariant"); 139 140 StatepointMaxSlotsRequired.updateMax( 141 Builder.FuncInfo.StatepointStackSlots.size()); 142 143 return SpillSlot; 144 } 145 146 /// Utility function for reservePreviousStackSlotForValue. Tries to find 147 /// stack slot index to which we have spilled value for previous statepoints. 148 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 149 static Optional<int> findPreviousSpillSlot(const Value *Val, 150 SelectionDAGBuilder &Builder, 151 int LookUpDepth) { 152 // Can not look any further - give up now 153 if (LookUpDepth <= 0) 154 return None; 155 156 // Spill location is known for gc relocates 157 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 158 const auto &SpillMap = 159 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 160 161 auto It = SpillMap.find(Relocate->getDerivedPtr()); 162 if (It == SpillMap.end()) 163 return None; 164 165 return It->second; 166 } 167 168 // Look through bitcast instructions. 169 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 170 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 171 172 // Look through phi nodes 173 // All incoming values should have same known stack slot, otherwise result 174 // is unknown. 175 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 176 Optional<int> MergedResult = None; 177 178 for (auto &IncomingValue : Phi->incoming_values()) { 179 Optional<int> SpillSlot = 180 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 181 if (!SpillSlot.hasValue()) 182 return None; 183 184 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 185 return None; 186 187 MergedResult = SpillSlot; 188 } 189 return MergedResult; 190 } 191 192 // TODO: We can do better for PHI nodes. In cases like this: 193 // ptr = phi(relocated_pointer, not_relocated_pointer) 194 // statepoint(ptr) 195 // We will return that stack slot for ptr is unknown. And later we might 196 // assign different stack slots for ptr and relocated_pointer. This limits 197 // llvm's ability to remove redundant stores. 198 // Unfortunately it's hard to accomplish in current infrastructure. 199 // We use this function to eliminate spill store completely, while 200 // in example we still need to emit store, but instead of any location 201 // we need to use special "preferred" location. 202 203 // TODO: handle simple updates. If a value is modified and the original 204 // value is no longer live, it would be nice to put the modified value in the 205 // same slot. This allows folding of the memory accesses for some 206 // instructions types (like an increment). 207 // statepoint (i) 208 // i1 = i+1 209 // statepoint (i1) 210 // However we need to be careful for cases like this: 211 // statepoint(i) 212 // i1 = i+1 213 // statepoint(i, i1) 214 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 215 // put handling of simple modifications in this function like it's done 216 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 217 // which we visit values is unspecified. 218 219 // Don't know any information about this instruction 220 return None; 221 } 222 223 /// Try to find existing copies of the incoming values in stack slots used for 224 /// statepoint spilling. If we can find a spill slot for the incoming value, 225 /// mark that slot as allocated, and reuse the same slot for this safepoint. 226 /// This helps to avoid series of loads and stores that only serve to reshuffle 227 /// values on the stack between calls. 228 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 229 SelectionDAGBuilder &Builder) { 230 SDValue Incoming = Builder.getValue(IncomingValue); 231 232 if (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 233 isa<FrameIndexSDNode>(Incoming)) { 234 // We won't need to spill this, so no need to check for previously 235 // allocated stack slots 236 return; 237 } 238 239 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 240 if (OldLocation.getNode()) 241 // Duplicates in input 242 return; 243 244 const int LookUpDepth = 6; 245 Optional<int> Index = 246 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 247 if (!Index.hasValue()) 248 return; 249 250 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 251 252 auto SlotIt = find(StatepointSlots, *Index); 253 assert(SlotIt != StatepointSlots.end() && 254 "Value spilled to the unknown stack slot"); 255 256 // This is one of our dedicated lowering slots 257 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 258 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 259 // stack slot already assigned to someone else, can't use it! 260 // TODO: currently we reserve space for gc arguments after doing 261 // normal allocation for deopt arguments. We should reserve for 262 // _all_ deopt and gc arguments, then start allocating. This 263 // will prevent some moves being inserted when vm state changes, 264 // but gc state doesn't between two calls. 265 return; 266 } 267 // Reserve this stack slot 268 Builder.StatepointLowering.reserveStackSlot(Offset); 269 270 // Cache this slot so we find it when going through the normal 271 // assignment loop. 272 SDValue Loc = 273 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 274 Builder.StatepointLowering.setLocation(Incoming, Loc); 275 } 276 277 /// Extract call from statepoint, lower it and return pointer to the 278 /// call node. Also update NodeMap so that getValue(statepoint) will 279 /// reference lowered call result 280 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 281 SelectionDAGBuilder::StatepointLoweringInfo &SI, 282 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 283 SDValue ReturnValue, CallEndVal; 284 std::tie(ReturnValue, CallEndVal) = 285 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 286 SDNode *CallEnd = CallEndVal.getNode(); 287 288 // Get a call instruction from the call sequence chain. Tail calls are not 289 // allowed. The following code is essentially reverse engineering X86's 290 // LowerCallTo. 291 // 292 // We are expecting DAG to have the following form: 293 // 294 // ch = eh_label (only in case of invoke statepoint) 295 // ch, glue = callseq_start ch 296 // ch, glue = X86::Call ch, glue 297 // ch, glue = callseq_end ch, glue 298 // get_return_value ch, glue 299 // 300 // get_return_value can either be a sequence of CopyFromReg instructions 301 // to grab the return value from the return register(s), or it can be a LOAD 302 // to load a value returned by reference via a stack slot. 303 304 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 305 if (HasDef) { 306 if (CallEnd->getOpcode() == ISD::LOAD) 307 CallEnd = CallEnd->getOperand(0).getNode(); 308 else 309 while (CallEnd->getOpcode() == ISD::CopyFromReg) 310 CallEnd = CallEnd->getOperand(0).getNode(); 311 } 312 313 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 314 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 315 } 316 317 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 318 FrameIndexSDNode &FI) { 319 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 320 auto MMOFlags = MachineMemOperand::MOStore | 321 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 322 auto &MFI = MF.getFrameInfo(); 323 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 324 MFI.getObjectSize(FI.getIndex()), 325 MFI.getObjectAlign(FI.getIndex())); 326 } 327 328 /// Spill a value incoming to the statepoint. It might be either part of 329 /// vmstate 330 /// or gcstate. In both cases unconditionally spill it on the stack unless it 331 /// is a null constant. Return pair with first element being frame index 332 /// containing saved value and second element with outgoing chain from the 333 /// emitted store 334 static std::tuple<SDValue, SDValue, MachineMemOperand*> 335 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 336 SelectionDAGBuilder &Builder) { 337 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 338 MachineMemOperand* MMO = nullptr; 339 340 // Emit new store if we didn't do it for this ptr before 341 if (!Loc.getNode()) { 342 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 343 Builder); 344 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 345 // We use TargetFrameIndex so that isel will not select it into LEA 346 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 347 348 // Right now we always allocate spill slots that are of the same 349 // size as the value we're about to spill (the size of spillee can 350 // vary since we spill vectors of pointers too). At some point we 351 // can consider allowing spills of smaller values to larger slots 352 // (i.e. change the '==' in the assert below to a '>='). 353 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 354 assert((MFI.getObjectSize(Index) * 8) == 355 (int64_t)Incoming.getValueSizeInBits() && 356 "Bad spill: stack slot does not match!"); 357 358 // Note: Using the alignment of the spill slot (rather than the abi or 359 // preferred alignment) is required for correctness when dealing with spill 360 // slots with preferred alignments larger than frame alignment.. 361 auto &MF = Builder.DAG.getMachineFunction(); 362 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 363 auto *StoreMMO = MF.getMachineMemOperand( 364 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 365 MFI.getObjectAlign(Index)); 366 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 367 StoreMMO); 368 369 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 370 371 Builder.StatepointLowering.setLocation(Incoming, Loc); 372 } 373 374 assert(Loc.getNode()); 375 return std::make_tuple(Loc, Chain, MMO); 376 } 377 378 /// Lower a single value incoming to a statepoint node. This value can be 379 /// either a deopt value or a gc value, the handling is the same. We special 380 /// case constants and allocas, then fall back to spilling if required. 381 static void 382 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 383 SmallVectorImpl<SDValue> &Ops, 384 SmallVectorImpl<MachineMemOperand *> &MemRefs, 385 SelectionDAGBuilder &Builder) { 386 // Note: We know all of these spills are independent, but don't bother to 387 // exploit that chain wise. DAGCombine will happily do so as needed, so 388 // doing it here would be a small compile time win at most. 389 SDValue Chain = Builder.getRoot(); 390 391 // If the original value was a constant, make sure it gets recorded as 392 // such in the stackmap. This is required so that the consumer can 393 // parse any internal format to the deopt state. It also handles null 394 // pointers and other constant pointers in GC states. Note the constant 395 // vectors do not appear to actually hit this path and that anything larger 396 // than an i64 value (not type!) will fail asserts here. 397 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 398 pushStackMapConstant(Ops, Builder, 399 C->getValueAPF().bitcastToAPInt().getZExtValue()); 400 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 401 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 402 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 403 // This handles allocas as arguments to the statepoint (this is only 404 // really meaningful for a deopt value. For GC, we'd be trying to 405 // relocate the address of the alloca itself?) 406 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 407 "Incoming value is a frame index!"); 408 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 409 Builder.getFrameIndexTy())); 410 411 auto &MF = Builder.DAG.getMachineFunction(); 412 auto *MMO = getMachineMemOperand(MF, *FI); 413 MemRefs.push_back(MMO); 414 415 } else if (!RequireSpillSlot) { 416 // If this value is live in (not live-on-return, or live-through), we can 417 // treat it the same way patchpoint treats it's "live in" values. We'll 418 // end up folding some of these into stack references, but they'll be 419 // handled by the register allocator. Note that we do not have the notion 420 // of a late use so these values might be placed in registers which are 421 // clobbered by the call. This is fine for live-in. For live-through 422 // fix-up pass should be executed to force spilling of such registers. 423 Ops.push_back(Incoming); 424 } else { 425 // Otherwise, locate a spill slot and explicitly spill it so it 426 // can be found by the runtime later. We currently do not support 427 // tracking values through callee saved registers to their eventual 428 // spill location. This would be a useful optimization, but would 429 // need to be optional since it requires a lot of complexity on the 430 // runtime side which not all would support. 431 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 432 Ops.push_back(std::get<0>(Res)); 433 if (auto *MMO = std::get<2>(Res)) 434 MemRefs.push_back(MMO); 435 Chain = std::get<1>(Res);; 436 } 437 438 Builder.DAG.setRoot(Chain); 439 } 440 441 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 442 /// lowering is described in lowerIncomingStatepointValue. This function is 443 /// responsible for lowering everything in the right position and playing some 444 /// tricks to avoid redundant stack manipulation where possible. On 445 /// completion, 'Ops' will contain ready to use operands for machine code 446 /// statepoint. The chain nodes will have already been created and the DAG root 447 /// will be set to the last value spilled (if any were). 448 static void 449 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 450 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 451 SelectionDAGBuilder &Builder) { 452 // Lower the deopt and gc arguments for this statepoint. Layout will be: 453 // deopt argument length, deopt arguments.., gc arguments... 454 #ifndef NDEBUG 455 if (auto *GFI = Builder.GFI) { 456 // Check that each of the gc pointer and bases we've gotten out of the 457 // safepoint is something the strategy thinks might be a pointer (or vector 458 // of pointers) into the GC heap. This is basically just here to help catch 459 // errors during statepoint insertion. TODO: This should actually be in the 460 // Verifier, but we can't get to the GCStrategy from there (yet). 461 GCStrategy &S = GFI->getStrategy(); 462 for (const Value *V : SI.Bases) { 463 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 464 if (Opt.hasValue()) { 465 assert(Opt.getValue() && 466 "non gc managed base pointer found in statepoint"); 467 } 468 } 469 for (const Value *V : SI.Ptrs) { 470 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 471 if (Opt.hasValue()) { 472 assert(Opt.getValue() && 473 "non gc managed derived pointer found in statepoint"); 474 } 475 } 476 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 477 } else { 478 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 479 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 480 } 481 #endif 482 483 // Figure out what lowering strategy we're going to use for each part 484 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 485 // as "live-through". A "live-through" variable is one which is "live-in", 486 // "live-out", and live throughout the lifetime of the call (i.e. we can find 487 // it from any PC within the transitive callee of the statepoint). In 488 // particular, if the callee spills callee preserved registers we may not 489 // be able to find a value placed in that register during the call. This is 490 // fine for live-out, but not for live-through. If we were willing to make 491 // assumptions about the code generator producing the callee, we could 492 // potentially allow live-through values in callee saved registers. 493 const bool LiveInDeopt = 494 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 495 496 auto isGCValue = [&](const Value *V) { 497 auto *Ty = V->getType(); 498 if (!Ty->isPtrOrPtrVectorTy()) 499 return false; 500 if (auto *GFI = Builder.GFI) 501 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 502 return *IsManaged; 503 return true; // conservative 504 }; 505 506 auto requireSpillSlot = [&](const Value *V) { 507 return !(LiveInDeopt || UseRegistersForDeoptValues) || isGCValue(V); 508 }; 509 510 // Before we actually start lowering (and allocating spill slots for values), 511 // reserve any stack slots which we judge to be profitable to reuse for a 512 // particular value. This is purely an optimization over the code below and 513 // doesn't change semantics at all. It is important for performance that we 514 // reserve slots for both deopt and gc values before lowering either. 515 for (const Value *V : SI.DeoptState) { 516 if (requireSpillSlot(V)) 517 reservePreviousStackSlotForValue(V, Builder); 518 } 519 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 520 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 521 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 522 } 523 524 // First, prefix the list with the number of unique values to be 525 // lowered. Note that this is the number of *Values* not the 526 // number of SDValues required to lower them. 527 const int NumVMSArgs = SI.DeoptState.size(); 528 pushStackMapConstant(Ops, Builder, NumVMSArgs); 529 530 // The vm state arguments are lowered in an opaque manner. We do not know 531 // what type of values are contained within. 532 for (const Value *V : SI.DeoptState) { 533 SDValue Incoming; 534 // If this is a function argument at a static frame index, generate it as 535 // the frame index. 536 if (const Argument *Arg = dyn_cast<Argument>(V)) { 537 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 538 if (FI != INT_MAX) 539 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 540 } 541 if (!Incoming.getNode()) 542 Incoming = Builder.getValue(V); 543 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 544 Builder); 545 } 546 547 // Finally, go ahead and lower all the gc arguments. There's no prefixed 548 // length for this one. After lowering, we'll have the base and pointer 549 // arrays interwoven with each (lowered) base pointer immediately followed by 550 // it's (lowered) derived pointer. i.e 551 // (base[0], ptr[0], base[1], ptr[1], ...) 552 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 553 const Value *Base = SI.Bases[i]; 554 lowerIncomingStatepointValue(Builder.getValue(Base), 555 /*RequireSpillSlot*/ true, Ops, MemRefs, 556 Builder); 557 558 const Value *Ptr = SI.Ptrs[i]; 559 lowerIncomingStatepointValue(Builder.getValue(Ptr), 560 /*RequireSpillSlot*/ true, Ops, MemRefs, 561 Builder); 562 } 563 564 // If there are any explicit spill slots passed to the statepoint, record 565 // them, but otherwise do not do anything special. These are user provided 566 // allocas and give control over placement to the consumer. In this case, 567 // it is the contents of the slot which may get updated, not the pointer to 568 // the alloca 569 for (Value *V : SI.GCArgs) { 570 SDValue Incoming = Builder.getValue(V); 571 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 572 // This handles allocas as arguments to the statepoint 573 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 574 "Incoming value is a frame index!"); 575 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 576 Builder.getFrameIndexTy())); 577 578 auto &MF = Builder.DAG.getMachineFunction(); 579 auto *MMO = getMachineMemOperand(MF, *FI); 580 MemRefs.push_back(MMO); 581 } 582 } 583 584 // Record computed locations for all lowered values. 585 // This can not be embedded in lowering loops as we need to record *all* 586 // values, while previous loops account only values with unique SDValues. 587 const Instruction *StatepointInstr = SI.StatepointInstr; 588 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 589 590 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 591 const Value *V = Relocate->getDerivedPtr(); 592 SDValue SDV = Builder.getValue(V); 593 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 594 595 if (Loc.getNode()) { 596 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 597 } else { 598 // Record value as visited, but not spilled. This is case for allocas 599 // and constants. For this values we can avoid emitting spill load while 600 // visiting corresponding gc_relocate. 601 // Actually we do not need to record them in this map at all. 602 // We do this only to check that we are not relocating any unvisited 603 // value. 604 SpillMap[V] = None; 605 606 // Default llvm mechanisms for exporting values which are used in 607 // different basic blocks does not work for gc relocates. 608 // Note that it would be incorrect to teach llvm that all relocates are 609 // uses of the corresponding values so that it would automatically 610 // export them. Relocates of the spilled values does not use original 611 // value. 612 if (Relocate->getParent() != StatepointInstr->getParent()) 613 Builder.ExportFromCurrentBlock(V); 614 } 615 } 616 } 617 618 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 619 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 620 // The basic scheme here is that information about both the original call and 621 // the safepoint is encoded in the CallInst. We create a temporary call and 622 // lower it, then reverse engineer the calling sequence. 623 624 NumOfStatepoints++; 625 // Clear state 626 StatepointLowering.startNewStatepoint(*this); 627 assert(SI.Bases.size() == SI.Ptrs.size() && 628 SI.Ptrs.size() <= SI.GCRelocates.size()); 629 630 #ifndef NDEBUG 631 for (auto *Reloc : SI.GCRelocates) 632 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 633 StatepointLowering.scheduleRelocCall(*Reloc); 634 #endif 635 636 // Lower statepoint vmstate and gcstate arguments 637 SmallVector<SDValue, 10> LoweredMetaArgs; 638 SmallVector<MachineMemOperand*, 16> MemRefs; 639 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 640 641 // Now that we've emitted the spills, we need to update the root so that the 642 // call sequence is ordered correctly. 643 SI.CLI.setChain(getRoot()); 644 645 // Get call node, we will replace it later with statepoint 646 SDValue ReturnVal; 647 SDNode *CallNode; 648 std::tie(ReturnVal, CallNode) = 649 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 650 651 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 652 // nodes with all the appropriate arguments and return values. 653 654 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 655 SDValue Chain = CallNode->getOperand(0); 656 657 SDValue Glue; 658 bool CallHasIncomingGlue = CallNode->getGluedNode(); 659 if (CallHasIncomingGlue) { 660 // Glue is always last operand 661 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 662 } 663 664 // Build the GC_TRANSITION_START node if necessary. 665 // 666 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 667 // order in which they appear in the call to the statepoint intrinsic. If 668 // any of the operands is a pointer-typed, that operand is immediately 669 // followed by a SRCVALUE for the pointer that may be used during lowering 670 // (e.g. to form MachinePointerInfo values for loads/stores). 671 const bool IsGCTransition = 672 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 673 (uint64_t)StatepointFlags::GCTransition; 674 if (IsGCTransition) { 675 SmallVector<SDValue, 8> TSOps; 676 677 // Add chain 678 TSOps.push_back(Chain); 679 680 // Add GC transition arguments 681 for (const Value *V : SI.GCTransitionArgs) { 682 TSOps.push_back(getValue(V)); 683 if (V->getType()->isPointerTy()) 684 TSOps.push_back(DAG.getSrcValue(V)); 685 } 686 687 // Add glue if necessary 688 if (CallHasIncomingGlue) 689 TSOps.push_back(Glue); 690 691 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 692 693 SDValue GCTransitionStart = 694 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 695 696 Chain = GCTransitionStart.getValue(0); 697 Glue = GCTransitionStart.getValue(1); 698 } 699 700 // TODO: Currently, all of these operands are being marked as read/write in 701 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 702 // and flags to be read-only. 703 SmallVector<SDValue, 40> Ops; 704 705 // Add the <id> and <numBytes> constants. 706 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 707 Ops.push_back( 708 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 709 710 // Calculate and push starting position of vmstate arguments 711 // Get number of arguments incoming directly into call node 712 unsigned NumCallRegArgs = 713 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 714 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 715 716 // Add call target 717 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 718 Ops.push_back(CallTarget); 719 720 // Add call arguments 721 // Get position of register mask in the call 722 SDNode::op_iterator RegMaskIt; 723 if (CallHasIncomingGlue) 724 RegMaskIt = CallNode->op_end() - 2; 725 else 726 RegMaskIt = CallNode->op_end() - 1; 727 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 728 729 // Add a constant argument for the calling convention 730 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 731 732 // Add a constant argument for the flags 733 uint64_t Flags = SI.StatepointFlags; 734 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 735 "Unknown flag used"); 736 pushStackMapConstant(Ops, *this, Flags); 737 738 // Insert all vmstate and gcstate arguments 739 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 740 741 // Add register mask from call node 742 Ops.push_back(*RegMaskIt); 743 744 // Add chain 745 Ops.push_back(Chain); 746 747 // Same for the glue, but we add it only if original call had it 748 if (Glue.getNode()) 749 Ops.push_back(Glue); 750 751 // Compute return values. Provide a glue output since we consume one as 752 // input. This allows someone else to chain off us as needed. 753 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 754 755 MachineSDNode *StatepointMCNode = 756 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 757 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 758 759 SDNode *SinkNode = StatepointMCNode; 760 761 // Build the GC_TRANSITION_END node if necessary. 762 // 763 // See the comment above regarding GC_TRANSITION_START for the layout of 764 // the operands to the GC_TRANSITION_END node. 765 if (IsGCTransition) { 766 SmallVector<SDValue, 8> TEOps; 767 768 // Add chain 769 TEOps.push_back(SDValue(StatepointMCNode, 0)); 770 771 // Add GC transition arguments 772 for (const Value *V : SI.GCTransitionArgs) { 773 TEOps.push_back(getValue(V)); 774 if (V->getType()->isPointerTy()) 775 TEOps.push_back(DAG.getSrcValue(V)); 776 } 777 778 // Add glue 779 TEOps.push_back(SDValue(StatepointMCNode, 1)); 780 781 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 782 783 SDValue GCTransitionStart = 784 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 785 786 SinkNode = GCTransitionStart.getNode(); 787 } 788 789 // Replace original call 790 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 791 // Remove original call node 792 DAG.DeleteNode(CallNode); 793 794 // DON'T set the root - under the assumption that it's already set past the 795 // inserted node we created. 796 797 // TODO: A better future implementation would be to emit a single variable 798 // argument, variable return value STATEPOINT node here and then hookup the 799 // return value of each gc.relocate to the respective output of the 800 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 801 // to actually be possible today. 802 803 return ReturnVal; 804 } 805 806 void 807 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 808 const BasicBlock *EHPadBB /*= nullptr*/) { 809 assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && 810 "anyregcc is not supported on statepoints!"); 811 812 #ifndef NDEBUG 813 // If this is a malformed statepoint, report it early to simplify debugging. 814 // This should catch any IR level mistake that's made when constructing or 815 // transforming statepoints. 816 ISP.verify(); 817 818 // Check that the associated GCStrategy expects to encounter statepoints. 819 assert(GFI->getStrategy().useStatepoints() && 820 "GCStrategy does not expect to encounter statepoints"); 821 #endif 822 823 SDValue ActualCallee; 824 SDValue Callee = getValue(ISP.getCalledValue()); 825 826 if (ISP.getNumPatchBytes() > 0) { 827 // If we've been asked to emit a nop sequence instead of a call instruction 828 // for this statepoint then don't lower the call target, but use a constant 829 // `undef` instead. Not lowering the call target lets statepoint clients 830 // get away without providing a physical address for the symbolic call 831 // target at link time. 832 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 833 } else { 834 ActualCallee = Callee; 835 } 836 837 StatepointLoweringInfo SI(DAG); 838 populateCallLoweringInfo(SI.CLI, ISP.getCall(), 839 ImmutableStatepoint::CallArgsBeginPos, 840 ISP.getNumCallArgs(), ActualCallee, 841 ISP.getActualReturnType(), false /* IsPatchPoint */); 842 843 // There may be duplication in the gc.relocate list; such as two copies of 844 // each relocation on normal and exceptional path for an invoke. We only 845 // need to spill once and record one copy in the stackmap, but we need to 846 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 847 // handled as a CSE problem elsewhere.) 848 // TODO: There a couple of major stackmap size optimizations we could do 849 // here if we wished. 850 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 851 // record {B,B} if it's seen later. 852 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 853 // given that, we could change the format to record base pointer relocations 854 // separately with half the space. This would require a format rev and a 855 // fairly major rework of the STATEPOINT node though. 856 SmallSet<SDValue, 8> Seen; 857 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 858 SI.GCRelocates.push_back(Relocate); 859 860 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 861 if (Seen.insert(DerivedSD).second) { 862 SI.Bases.push_back(Relocate->getBasePtr()); 863 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 864 } 865 } 866 867 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 868 SI.StatepointInstr = ISP.getInstruction(); 869 SI.GCTransitionArgs = ArrayRef<const Use>(ISP.gc_transition_args_begin(), 870 ISP.gc_transition_args_end()); 871 SI.ID = ISP.getID(); 872 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 873 SI.StatepointFlags = ISP.getFlags(); 874 SI.NumPatchBytes = ISP.getNumPatchBytes(); 875 SI.EHPadBB = EHPadBB; 876 877 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 878 879 // Export the result value if needed 880 const GCResultInst *GCResult = ISP.getGCResult(); 881 Type *RetTy = ISP.getActualReturnType(); 882 if (!RetTy->isVoidTy() && GCResult) { 883 if (GCResult->getParent() != ISP.getCall()->getParent()) { 884 // Result value will be used in a different basic block so we need to 885 // export it now. Default exporting mechanism will not work here because 886 // statepoint call has a different type than the actual call. It means 887 // that by default llvm will create export register of the wrong type 888 // (always i32 in our case). So instead we need to create export register 889 // with correct type manually. 890 // TODO: To eliminate this problem we can remove gc.result intrinsics 891 // completely and make statepoint call to return a tuple. 892 unsigned Reg = FuncInfo.CreateRegs(RetTy); 893 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 894 DAG.getDataLayout(), Reg, RetTy, 895 ISP.getCall()->getCallingConv()); 896 SDValue Chain = DAG.getEntryNode(); 897 898 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 899 PendingExports.push_back(Chain); 900 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 901 } else { 902 // Result value will be used in a same basic block. Don't export it or 903 // perform any explicit register copies. 904 // We'll replace the actuall call node shortly. gc_result will grab 905 // this value. 906 setValue(ISP.getInstruction(), ReturnValue); 907 } 908 } else { 909 // The token value is never used from here on, just generate a poison value 910 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 911 } 912 } 913 914 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 915 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 916 bool VarArgDisallowed, bool ForceVoidReturnTy) { 917 StatepointLoweringInfo SI(DAG); 918 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 919 populateCallLoweringInfo( 920 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 921 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 922 false); 923 if (!VarArgDisallowed) 924 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 925 926 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 927 928 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 929 930 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 931 SI.ID = SD.StatepointID.getValueOr(DefaultID); 932 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 933 934 SI.DeoptState = 935 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 936 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 937 SI.EHPadBB = EHPadBB; 938 939 // NB! The GC arguments are deliberately left empty. 940 941 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 942 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 943 setValue(Call, ReturnVal); 944 } 945 } 946 947 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 948 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 949 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 950 /* VarArgDisallowed = */ false, 951 /* ForceVoidReturnTy = */ false); 952 } 953 954 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 955 // The result value of the gc_result is simply the result of the actual 956 // call. We've already emitted this, so just grab the value. 957 const Instruction *I = CI.getStatepoint(); 958 959 if (I->getParent() != CI.getParent()) { 960 // Statepoint is in different basic block so we should have stored call 961 // result in a virtual register. 962 // We can not use default getValue() functionality to copy value from this 963 // register because statepoint and actual call return types can be 964 // different, and getValue() will use CopyFromReg of the wrong type, 965 // which is always i32 in our case. 966 PointerType *CalleeType = cast<PointerType>( 967 ImmutableStatepoint(I).getCalledValue()->getType()); 968 Type *RetTy = 969 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 970 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 971 972 assert(CopyFromReg.getNode()); 973 setValue(&CI, CopyFromReg); 974 } else { 975 setValue(&CI, getValue(I)); 976 } 977 } 978 979 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 980 #ifndef NDEBUG 981 // Consistency check 982 // We skip this check for relocates not in the same basic block as their 983 // statepoint. It would be too expensive to preserve validation info through 984 // different basic blocks. 985 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 986 StatepointLowering.relocCallVisited(Relocate); 987 988 auto *Ty = Relocate.getType()->getScalarType(); 989 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 990 assert(*IsManaged && "Non gc managed pointer relocated!"); 991 #endif 992 993 const Value *DerivedPtr = Relocate.getDerivedPtr(); 994 SDValue SD = getValue(DerivedPtr); 995 996 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 997 auto SlotIt = SpillMap.find(DerivedPtr); 998 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 999 Optional<int> DerivedPtrLocation = SlotIt->second; 1000 1001 // We didn't need to spill these special cases (constants and allocas). 1002 // See the handling in spillIncomingValueForStatepoint for detail. 1003 if (!DerivedPtrLocation) { 1004 setValue(&Relocate, SD); 1005 return; 1006 } 1007 1008 unsigned Index = *DerivedPtrLocation; 1009 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1010 1011 // All the reloads are independent and are reading memory only modified by 1012 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1013 // this this let's CSE kick in for free and allows reordering of instructions 1014 // if possible. The lowering for statepoint sets the root, so this is 1015 // ordering all reloads with the either a) the statepoint node itself, or b) 1016 // the entry of the current block for an invoke statepoint. 1017 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1018 1019 auto &MF = DAG.getMachineFunction(); 1020 auto &MFI = MF.getFrameInfo(); 1021 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1022 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1023 MFI.getObjectSize(Index), 1024 MFI.getObjectAlign(Index)); 1025 1026 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1027 Relocate.getType()); 1028 1029 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1030 SpillSlot, LoadMMO); 1031 PendingLoads.push_back(SpillLoad.getValue(1)); 1032 1033 assert(SpillLoad.getNode()); 1034 setValue(&Relocate, SpillLoad); 1035 } 1036 1037 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1038 const auto &TLI = DAG.getTargetLoweringInfo(); 1039 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1040 TLI.getPointerTy(DAG.getDataLayout())); 1041 1042 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1043 // call. We also do not lower the return value to any virtual register, and 1044 // change the immediately following return to a trap instruction. 1045 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1046 /* VarArgDisallowed = */ true, 1047 /* ForceVoidReturnTy = */ true); 1048 } 1049 1050 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1051 // We do not lower the return value from llvm.deoptimize to any virtual 1052 // register, and change the immediately following return to a trap 1053 // instruction. 1054 if (DAG.getTarget().Options.TrapUnreachable) 1055 DAG.setRoot( 1056 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1057 } 1058