1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/GCStrategy.h" 26 #include "llvm/CodeGen/ISDOpcodes.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/SelectionDAG.h" 32 #include "llvm/CodeGen/SelectionDAGNodes.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <cassert> 48 #include <cstddef> 49 #include <cstdint> 50 #include <iterator> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "statepoint-lowering" 57 58 STATISTIC(NumSlotsAllocatedForStatepoints, 59 "Number of stack slots allocated for statepoints"); 60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 61 STATISTIC(StatepointMaxSlotsRequired, 62 "Maximum number of stack slots required for a singe statepoint"); 63 64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 65 SelectionDAGBuilder &Builder, uint64_t Value) { 66 SDLoc L = Builder.getCurSDLoc(); 67 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 68 MVT::i64)); 69 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 70 } 71 72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 73 // Consistency check 74 assert(PendingGCRelocateCalls.empty() && 75 "Trying to visit statepoint before finished processing previous one"); 76 Locations.clear(); 77 NextSlotToAllocate = 0; 78 // Need to resize this on each safepoint - we need the two to stay in sync and 79 // the clear patterns of a SelectionDAGBuilder have no relation to 80 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 81 AllocatedStackSlots.clear(); 82 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 83 } 84 85 void StatepointLoweringState::clear() { 86 Locations.clear(); 87 AllocatedStackSlots.clear(); 88 assert(PendingGCRelocateCalls.empty() && 89 "cleared before statepoint sequence completed"); 90 } 91 92 SDValue 93 StatepointLoweringState::allocateStackSlot(EVT ValueType, 94 SelectionDAGBuilder &Builder) { 95 NumSlotsAllocatedForStatepoints++; 96 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 97 98 unsigned SpillSize = ValueType.getStoreSize(); 99 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 100 101 // First look for a previously created stack slot which is not in 102 // use (accounting for the fact arbitrary slots may already be 103 // reserved), or to create a new stack slot and use it. 104 105 const size_t NumSlots = AllocatedStackSlots.size(); 106 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 107 108 assert(AllocatedStackSlots.size() == 109 Builder.FuncInfo.StatepointStackSlots.size() && 110 "Broken invariant"); 111 112 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 113 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 114 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 115 if (MFI.getObjectSize(FI) == SpillSize) { 116 AllocatedStackSlots.set(NextSlotToAllocate); 117 // TODO: Is ValueType the right thing to use here? 118 return Builder.DAG.getFrameIndex(FI, ValueType); 119 } 120 } 121 } 122 123 // Couldn't find a free slot, so create a new one: 124 125 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 126 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 127 MFI.markAsStatepointSpillSlotObjectIndex(FI); 128 129 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 130 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 131 assert(AllocatedStackSlots.size() == 132 Builder.FuncInfo.StatepointStackSlots.size() && 133 "Broken invariant"); 134 135 StatepointMaxSlotsRequired.updateMax( 136 Builder.FuncInfo.StatepointStackSlots.size()); 137 138 return SpillSlot; 139 } 140 141 /// Utility function for reservePreviousStackSlotForValue. Tries to find 142 /// stack slot index to which we have spilled value for previous statepoints. 143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 144 static Optional<int> findPreviousSpillSlot(const Value *Val, 145 SelectionDAGBuilder &Builder, 146 int LookUpDepth) { 147 // Can not look any further - give up now 148 if (LookUpDepth <= 0) 149 return None; 150 151 // Spill location is known for gc relocates 152 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 153 const auto &SpillMap = 154 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 155 156 auto It = SpillMap.find(Relocate->getDerivedPtr()); 157 if (It == SpillMap.end()) 158 return None; 159 160 return It->second; 161 } 162 163 // Look through bitcast instructions. 164 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 165 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 166 167 // Look through phi nodes 168 // All incoming values should have same known stack slot, otherwise result 169 // is unknown. 170 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 171 Optional<int> MergedResult = None; 172 173 for (auto &IncomingValue : Phi->incoming_values()) { 174 Optional<int> SpillSlot = 175 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 176 if (!SpillSlot.hasValue()) 177 return None; 178 179 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 180 return None; 181 182 MergedResult = SpillSlot; 183 } 184 return MergedResult; 185 } 186 187 // TODO: We can do better for PHI nodes. In cases like this: 188 // ptr = phi(relocated_pointer, not_relocated_pointer) 189 // statepoint(ptr) 190 // We will return that stack slot for ptr is unknown. And later we might 191 // assign different stack slots for ptr and relocated_pointer. This limits 192 // llvm's ability to remove redundant stores. 193 // Unfortunately it's hard to accomplish in current infrastructure. 194 // We use this function to eliminate spill store completely, while 195 // in example we still need to emit store, but instead of any location 196 // we need to use special "preferred" location. 197 198 // TODO: handle simple updates. If a value is modified and the original 199 // value is no longer live, it would be nice to put the modified value in the 200 // same slot. This allows folding of the memory accesses for some 201 // instructions types (like an increment). 202 // statepoint (i) 203 // i1 = i+1 204 // statepoint (i1) 205 // However we need to be careful for cases like this: 206 // statepoint(i) 207 // i1 = i+1 208 // statepoint(i, i1) 209 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 210 // put handling of simple modifications in this function like it's done 211 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 212 // which we visit values is unspecified. 213 214 // Don't know any information about this instruction 215 return None; 216 } 217 218 /// Try to find existing copies of the incoming values in stack slots used for 219 /// statepoint spilling. If we can find a spill slot for the incoming value, 220 /// mark that slot as allocated, and reuse the same slot for this safepoint. 221 /// This helps to avoid series of loads and stores that only serve to reshuffle 222 /// values on the stack between calls. 223 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 224 SelectionDAGBuilder &Builder) { 225 SDValue Incoming = Builder.getValue(IncomingValue); 226 227 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { 228 // We won't need to spill this, so no need to check for previously 229 // allocated stack slots 230 return; 231 } 232 233 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 234 if (OldLocation.getNode()) 235 // Duplicates in input 236 return; 237 238 const int LookUpDepth = 6; 239 Optional<int> Index = 240 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 241 if (!Index.hasValue()) 242 return; 243 244 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 245 246 auto SlotIt = find(StatepointSlots, *Index); 247 assert(SlotIt != StatepointSlots.end() && 248 "Value spilled to the unknown stack slot"); 249 250 // This is one of our dedicated lowering slots 251 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 252 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 253 // stack slot already assigned to someone else, can't use it! 254 // TODO: currently we reserve space for gc arguments after doing 255 // normal allocation for deopt arguments. We should reserve for 256 // _all_ deopt and gc arguments, then start allocating. This 257 // will prevent some moves being inserted when vm state changes, 258 // but gc state doesn't between two calls. 259 return; 260 } 261 // Reserve this stack slot 262 Builder.StatepointLowering.reserveStackSlot(Offset); 263 264 // Cache this slot so we find it when going through the normal 265 // assignment loop. 266 SDValue Loc = 267 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 268 Builder.StatepointLowering.setLocation(Incoming, Loc); 269 } 270 271 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This 272 /// is not required for correctness. It's purpose is to reduce the size of 273 /// StackMap section. It has no effect on the number of spill slots required 274 /// or the actual lowering. 275 static void 276 removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, 277 SmallVectorImpl<const Value *> &Ptrs, 278 SmallVectorImpl<const GCRelocateInst *> &Relocs, 279 SelectionDAGBuilder &Builder, 280 FunctionLoweringInfo::StatepointSpillMap &SSM) { 281 DenseMap<SDValue, const Value *> Seen; 282 283 SmallVector<const Value *, 64> NewBases, NewPtrs; 284 SmallVector<const GCRelocateInst *, 64> NewRelocs; 285 for (size_t i = 0, e = Ptrs.size(); i < e; i++) { 286 SDValue SD = Builder.getValue(Ptrs[i]); 287 auto SeenIt = Seen.find(SD); 288 289 if (SeenIt == Seen.end()) { 290 // Only add non-duplicates 291 NewBases.push_back(Bases[i]); 292 NewPtrs.push_back(Ptrs[i]); 293 NewRelocs.push_back(Relocs[i]); 294 Seen[SD] = Ptrs[i]; 295 } else { 296 // Duplicate pointer found, note in SSM and move on: 297 SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; 298 } 299 } 300 assert(Bases.size() >= NewBases.size()); 301 assert(Ptrs.size() >= NewPtrs.size()); 302 assert(Relocs.size() >= NewRelocs.size()); 303 Bases = NewBases; 304 Ptrs = NewPtrs; 305 Relocs = NewRelocs; 306 assert(Ptrs.size() == Bases.size()); 307 assert(Ptrs.size() == Relocs.size()); 308 } 309 310 /// Extract call from statepoint, lower it and return pointer to the 311 /// call node. Also update NodeMap so that getValue(statepoint) will 312 /// reference lowered call result 313 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 314 SelectionDAGBuilder::StatepointLoweringInfo &SI, 315 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 316 SDValue ReturnValue, CallEndVal; 317 std::tie(ReturnValue, CallEndVal) = 318 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 319 SDNode *CallEnd = CallEndVal.getNode(); 320 321 // Get a call instruction from the call sequence chain. Tail calls are not 322 // allowed. The following code is essentially reverse engineering X86's 323 // LowerCallTo. 324 // 325 // We are expecting DAG to have the following form: 326 // 327 // ch = eh_label (only in case of invoke statepoint) 328 // ch, glue = callseq_start ch 329 // ch, glue = X86::Call ch, glue 330 // ch, glue = callseq_end ch, glue 331 // get_return_value ch, glue 332 // 333 // get_return_value can either be a sequence of CopyFromReg instructions 334 // to grab the return value from the return register(s), or it can be a LOAD 335 // to load a value returned by reference via a stack slot. 336 337 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 338 if (HasDef) { 339 if (CallEnd->getOpcode() == ISD::LOAD) 340 CallEnd = CallEnd->getOperand(0).getNode(); 341 else 342 while (CallEnd->getOpcode() == ISD::CopyFromReg) 343 CallEnd = CallEnd->getOperand(0).getNode(); 344 } 345 346 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 347 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 348 } 349 350 /// Spill a value incoming to the statepoint. It might be either part of 351 /// vmstate 352 /// or gcstate. In both cases unconditionally spill it on the stack unless it 353 /// is a null constant. Return pair with first element being frame index 354 /// containing saved value and second element with outgoing chain from the 355 /// emitted store 356 static std::pair<SDValue, SDValue> 357 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 358 SelectionDAGBuilder &Builder) { 359 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 360 361 // Emit new store if we didn't do it for this ptr before 362 if (!Loc.getNode()) { 363 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 364 Builder); 365 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 366 // We use TargetFrameIndex so that isel will not select it into LEA 367 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 368 369 // TODO: We can create TokenFactor node instead of 370 // chaining stores one after another, this may allow 371 // a bit more optimal scheduling for them 372 373 #ifndef NDEBUG 374 // Right now we always allocate spill slots that are of the same 375 // size as the value we're about to spill (the size of spillee can 376 // vary since we spill vectors of pointers too). At some point we 377 // can consider allowing spills of smaller values to larger slots 378 // (i.e. change the '==' in the assert below to a '>='). 379 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 380 assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() && 381 "Bad spill: stack slot does not match!"); 382 #endif 383 384 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 385 MachinePointerInfo::getFixedStack( 386 Builder.DAG.getMachineFunction(), Index)); 387 388 Builder.StatepointLowering.setLocation(Incoming, Loc); 389 } 390 391 assert(Loc.getNode()); 392 return std::make_pair(Loc, Chain); 393 } 394 395 /// Lower a single value incoming to a statepoint node. This value can be 396 /// either a deopt value or a gc value, the handling is the same. We special 397 /// case constants and allocas, then fall back to spilling if required. 398 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, 399 SmallVectorImpl<SDValue> &Ops, 400 SelectionDAGBuilder &Builder) { 401 SDValue Chain = Builder.getRoot(); 402 403 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 404 // If the original value was a constant, make sure it gets recorded as 405 // such in the stackmap. This is required so that the consumer can 406 // parse any internal format to the deopt state. It also handles null 407 // pointers and other constant pointers in GC states. Note the constant 408 // vectors do not appear to actually hit this path and that anything larger 409 // than an i64 value (not type!) will fail asserts here. 410 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 411 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 412 // This handles allocas as arguments to the statepoint (this is only 413 // really meaningful for a deopt value. For GC, we'd be trying to 414 // relocate the address of the alloca itself?) 415 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 416 "Incoming value is a frame index!"); 417 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 418 Builder.getFrameIndexTy())); 419 } else if (LiveInOnly) { 420 // If this value is live in (not live-on-return, or live-through), we can 421 // treat it the same way patchpoint treats it's "live in" values. We'll 422 // end up folding some of these into stack references, but they'll be 423 // handled by the register allocator. Note that we do not have the notion 424 // of a late use so these values might be placed in registers which are 425 // clobbered by the call. This is fine for live-in. 426 Ops.push_back(Incoming); 427 } else { 428 // Otherwise, locate a spill slot and explicitly spill it so it 429 // can be found by the runtime later. We currently do not support 430 // tracking values through callee saved registers to their eventual 431 // spill location. This would be a useful optimization, but would 432 // need to be optional since it requires a lot of complexity on the 433 // runtime side which not all would support. 434 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 435 Ops.push_back(Res.first); 436 Chain = Res.second; 437 } 438 439 Builder.DAG.setRoot(Chain); 440 } 441 442 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 443 /// lowering is described in lowerIncomingStatepointValue. This function is 444 /// responsible for lowering everything in the right position and playing some 445 /// tricks to avoid redundant stack manipulation where possible. On 446 /// completion, 'Ops' will contain ready to use operands for machine code 447 /// statepoint. The chain nodes will have already been created and the DAG root 448 /// will be set to the last value spilled (if any were). 449 static void 450 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 451 SelectionDAGBuilder::StatepointLoweringInfo &SI, 452 SelectionDAGBuilder &Builder) { 453 // Lower the deopt and gc arguments for this statepoint. Layout will be: 454 // deopt argument length, deopt arguments.., gc arguments... 455 #ifndef NDEBUG 456 if (auto *GFI = Builder.GFI) { 457 // Check that each of the gc pointer and bases we've gotten out of the 458 // safepoint is something the strategy thinks might be a pointer (or vector 459 // of pointers) into the GC heap. This is basically just here to help catch 460 // errors during statepoint insertion. TODO: This should actually be in the 461 // Verifier, but we can't get to the GCStrategy from there (yet). 462 GCStrategy &S = GFI->getStrategy(); 463 for (const Value *V : SI.Bases) { 464 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 465 if (Opt.hasValue()) { 466 assert(Opt.getValue() && 467 "non gc managed base pointer found in statepoint"); 468 } 469 } 470 for (const Value *V : SI.Ptrs) { 471 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 472 if (Opt.hasValue()) { 473 assert(Opt.getValue() && 474 "non gc managed derived pointer found in statepoint"); 475 } 476 } 477 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 478 } else { 479 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 480 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 481 } 482 #endif 483 484 // Figure out what lowering strategy we're going to use for each part 485 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 486 // as "live-through". A "live-through" variable is one which is "live-in", 487 // "live-out", and live throughout the lifetime of the call (i.e. we can find 488 // it from any PC within the transitive callee of the statepoint). In 489 // particular, if the callee spills callee preserved registers we may not 490 // be able to find a value placed in that register during the call. This is 491 // fine for live-out, but not for live-through. If we were willing to make 492 // assumptions about the code generator producing the callee, we could 493 // potentially allow live-through values in callee saved registers. 494 const bool LiveInDeopt = 495 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 496 497 auto isGCValue =[&](const Value *V) { 498 return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); 499 }; 500 501 // Before we actually start lowering (and allocating spill slots for values), 502 // reserve any stack slots which we judge to be profitable to reuse for a 503 // particular value. This is purely an optimization over the code below and 504 // doesn't change semantics at all. It is important for performance that we 505 // reserve slots for both deopt and gc values before lowering either. 506 for (const Value *V : SI.DeoptState) { 507 if (!LiveInDeopt || isGCValue(V)) 508 reservePreviousStackSlotForValue(V, Builder); 509 } 510 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 511 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 512 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 513 } 514 515 // First, prefix the list with the number of unique values to be 516 // lowered. Note that this is the number of *Values* not the 517 // number of SDValues required to lower them. 518 const int NumVMSArgs = SI.DeoptState.size(); 519 pushStackMapConstant(Ops, Builder, NumVMSArgs); 520 521 // The vm state arguments are lowered in an opaque manner. We do not know 522 // what type of values are contained within. 523 for (const Value *V : SI.DeoptState) { 524 SDValue Incoming; 525 // If this is a function argument at a static frame index, generate it as 526 // the frame index. 527 if (const Argument *Arg = dyn_cast<Argument>(V)) { 528 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 529 if (FI != INT_MAX) 530 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 531 } 532 if (!Incoming.getNode()) 533 Incoming = Builder.getValue(V); 534 const bool LiveInValue = LiveInDeopt && !isGCValue(V); 535 lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder); 536 } 537 538 // Finally, go ahead and lower all the gc arguments. There's no prefixed 539 // length for this one. After lowering, we'll have the base and pointer 540 // arrays interwoven with each (lowered) base pointer immediately followed by 541 // it's (lowered) derived pointer. i.e 542 // (base[0], ptr[0], base[1], ptr[1], ...) 543 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 544 const Value *Base = SI.Bases[i]; 545 lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, 546 Ops, Builder); 547 548 const Value *Ptr = SI.Ptrs[i]; 549 lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, 550 Ops, Builder); 551 } 552 553 // If there are any explicit spill slots passed to the statepoint, record 554 // them, but otherwise do not do anything special. These are user provided 555 // allocas and give control over placement to the consumer. In this case, 556 // it is the contents of the slot which may get updated, not the pointer to 557 // the alloca 558 for (Value *V : SI.GCArgs) { 559 SDValue Incoming = Builder.getValue(V); 560 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 561 // This handles allocas as arguments to the statepoint 562 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 563 "Incoming value is a frame index!"); 564 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 565 Builder.getFrameIndexTy())); 566 } 567 } 568 569 // Record computed locations for all lowered values. 570 // This can not be embedded in lowering loops as we need to record *all* 571 // values, while previous loops account only values with unique SDValues. 572 const Instruction *StatepointInstr = SI.StatepointInstr; 573 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 574 575 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 576 const Value *V = Relocate->getDerivedPtr(); 577 SDValue SDV = Builder.getValue(V); 578 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 579 580 if (Loc.getNode()) { 581 SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 582 } else { 583 // Record value as visited, but not spilled. This is case for allocas 584 // and constants. For this values we can avoid emitting spill load while 585 // visiting corresponding gc_relocate. 586 // Actually we do not need to record them in this map at all. 587 // We do this only to check that we are not relocating any unvisited 588 // value. 589 SpillMap.SlotMap[V] = None; 590 591 // Default llvm mechanisms for exporting values which are used in 592 // different basic blocks does not work for gc relocates. 593 // Note that it would be incorrect to teach llvm that all relocates are 594 // uses of the corresponding values so that it would automatically 595 // export them. Relocates of the spilled values does not use original 596 // value. 597 if (Relocate->getParent() != StatepointInstr->getParent()) 598 Builder.ExportFromCurrentBlock(V); 599 } 600 } 601 } 602 603 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 604 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 605 // The basic scheme here is that information about both the original call and 606 // the safepoint is encoded in the CallInst. We create a temporary call and 607 // lower it, then reverse engineer the calling sequence. 608 609 NumOfStatepoints++; 610 // Clear state 611 StatepointLowering.startNewStatepoint(*this); 612 613 #ifndef NDEBUG 614 // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ 615 // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. 616 for (auto *Reloc : SI.GCRelocates) 617 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 618 StatepointLowering.scheduleRelocCall(*Reloc); 619 #endif 620 621 // Remove any redundant llvm::Values which map to the same SDValue as another 622 // input. Also has the effect of removing duplicates in the original 623 // llvm::Value input list as well. This is a useful optimization for 624 // reducing the size of the StackMap section. It has no other impact. 625 removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, 626 FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); 627 assert(SI.Bases.size() == SI.Ptrs.size() && 628 SI.Ptrs.size() == SI.GCRelocates.size()); 629 630 // Lower statepoint vmstate and gcstate arguments 631 SmallVector<SDValue, 10> LoweredMetaArgs; 632 lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this); 633 634 // Now that we've emitted the spills, we need to update the root so that the 635 // call sequence is ordered correctly. 636 SI.CLI.setChain(getRoot()); 637 638 // Get call node, we will replace it later with statepoint 639 SDValue ReturnVal; 640 SDNode *CallNode; 641 std::tie(ReturnVal, CallNode) = 642 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 643 644 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 645 // nodes with all the appropriate arguments and return values. 646 647 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 648 SDValue Chain = CallNode->getOperand(0); 649 650 SDValue Glue; 651 bool CallHasIncomingGlue = CallNode->getGluedNode(); 652 if (CallHasIncomingGlue) { 653 // Glue is always last operand 654 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 655 } 656 657 // Build the GC_TRANSITION_START node if necessary. 658 // 659 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 660 // order in which they appear in the call to the statepoint intrinsic. If 661 // any of the operands is a pointer-typed, that operand is immediately 662 // followed by a SRCVALUE for the pointer that may be used during lowering 663 // (e.g. to form MachinePointerInfo values for loads/stores). 664 const bool IsGCTransition = 665 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 666 (uint64_t)StatepointFlags::GCTransition; 667 if (IsGCTransition) { 668 SmallVector<SDValue, 8> TSOps; 669 670 // Add chain 671 TSOps.push_back(Chain); 672 673 // Add GC transition arguments 674 for (const Value *V : SI.GCTransitionArgs) { 675 TSOps.push_back(getValue(V)); 676 if (V->getType()->isPointerTy()) 677 TSOps.push_back(DAG.getSrcValue(V)); 678 } 679 680 // Add glue if necessary 681 if (CallHasIncomingGlue) 682 TSOps.push_back(Glue); 683 684 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 685 686 SDValue GCTransitionStart = 687 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 688 689 Chain = GCTransitionStart.getValue(0); 690 Glue = GCTransitionStart.getValue(1); 691 } 692 693 // TODO: Currently, all of these operands are being marked as read/write in 694 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 695 // and flags to be read-only. 696 SmallVector<SDValue, 40> Ops; 697 698 // Add the <id> and <numBytes> constants. 699 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 700 Ops.push_back( 701 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 702 703 // Calculate and push starting position of vmstate arguments 704 // Get number of arguments incoming directly into call node 705 unsigned NumCallRegArgs = 706 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 707 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 708 709 // Add call target 710 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 711 Ops.push_back(CallTarget); 712 713 // Add call arguments 714 // Get position of register mask in the call 715 SDNode::op_iterator RegMaskIt; 716 if (CallHasIncomingGlue) 717 RegMaskIt = CallNode->op_end() - 2; 718 else 719 RegMaskIt = CallNode->op_end() - 1; 720 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 721 722 // Add a constant argument for the calling convention 723 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 724 725 // Add a constant argument for the flags 726 uint64_t Flags = SI.StatepointFlags; 727 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 728 "Unknown flag used"); 729 pushStackMapConstant(Ops, *this, Flags); 730 731 // Insert all vmstate and gcstate arguments 732 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 733 734 // Add register mask from call node 735 Ops.push_back(*RegMaskIt); 736 737 // Add chain 738 Ops.push_back(Chain); 739 740 // Same for the glue, but we add it only if original call had it 741 if (Glue.getNode()) 742 Ops.push_back(Glue); 743 744 // Compute return values. Provide a glue output since we consume one as 745 // input. This allows someone else to chain off us as needed. 746 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 747 748 SDNode *StatepointMCNode = 749 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 750 751 SDNode *SinkNode = StatepointMCNode; 752 753 // Build the GC_TRANSITION_END node if necessary. 754 // 755 // See the comment above regarding GC_TRANSITION_START for the layout of 756 // the operands to the GC_TRANSITION_END node. 757 if (IsGCTransition) { 758 SmallVector<SDValue, 8> TEOps; 759 760 // Add chain 761 TEOps.push_back(SDValue(StatepointMCNode, 0)); 762 763 // Add GC transition arguments 764 for (const Value *V : SI.GCTransitionArgs) { 765 TEOps.push_back(getValue(V)); 766 if (V->getType()->isPointerTy()) 767 TEOps.push_back(DAG.getSrcValue(V)); 768 } 769 770 // Add glue 771 TEOps.push_back(SDValue(StatepointMCNode, 1)); 772 773 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 774 775 SDValue GCTransitionStart = 776 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 777 778 SinkNode = GCTransitionStart.getNode(); 779 } 780 781 // Replace original call 782 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 783 // Remove original call node 784 DAG.DeleteNode(CallNode); 785 786 // DON'T set the root - under the assumption that it's already set past the 787 // inserted node we created. 788 789 // TODO: A better future implementation would be to emit a single variable 790 // argument, variable return value STATEPOINT node here and then hookup the 791 // return value of each gc.relocate to the respective output of the 792 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 793 // to actually be possible today. 794 795 return ReturnVal; 796 } 797 798 void 799 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, 800 const BasicBlock *EHPadBB /*= nullptr*/) { 801 assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg && 802 "anyregcc is not supported on statepoints!"); 803 804 #ifndef NDEBUG 805 // If this is a malformed statepoint, report it early to simplify debugging. 806 // This should catch any IR level mistake that's made when constructing or 807 // transforming statepoints. 808 ISP.verify(); 809 810 // Check that the associated GCStrategy expects to encounter statepoints. 811 assert(GFI->getStrategy().useStatepoints() && 812 "GCStrategy does not expect to encounter statepoints"); 813 #endif 814 815 SDValue ActualCallee; 816 817 if (ISP.getNumPatchBytes() > 0) { 818 // If we've been asked to emit a nop sequence instead of a call instruction 819 // for this statepoint then don't lower the call target, but use a constant 820 // `null` instead. Not lowering the call target lets statepoint clients get 821 // away without providing a physical address for the symbolic call target at 822 // link time. 823 824 const auto &TLI = DAG.getTargetLoweringInfo(); 825 const auto &DL = DAG.getDataLayout(); 826 827 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); 828 ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); 829 } else { 830 ActualCallee = getValue(ISP.getCalledValue()); 831 } 832 833 StatepointLoweringInfo SI(DAG); 834 populateCallLoweringInfo(SI.CLI, ISP.getCallSite(), 835 ImmutableStatepoint::CallArgsBeginPos, 836 ISP.getNumCallArgs(), ActualCallee, 837 ISP.getActualReturnType(), false /* IsPatchPoint */); 838 839 for (const GCRelocateInst *Relocate : ISP.getRelocates()) { 840 SI.GCRelocates.push_back(Relocate); 841 SI.Bases.push_back(Relocate->getBasePtr()); 842 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 843 } 844 845 SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 846 SI.StatepointInstr = ISP.getInstruction(); 847 SI.GCTransitionArgs = 848 ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); 849 SI.ID = ISP.getID(); 850 SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); 851 SI.StatepointFlags = ISP.getFlags(); 852 SI.NumPatchBytes = ISP.getNumPatchBytes(); 853 SI.EHPadBB = EHPadBB; 854 855 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 856 857 // Export the result value if needed 858 const GCResultInst *GCResult = ISP.getGCResult(); 859 Type *RetTy = ISP.getActualReturnType(); 860 if (!RetTy->isVoidTy() && GCResult) { 861 if (GCResult->getParent() != ISP.getCallSite().getParent()) { 862 // Result value will be used in a different basic block so we need to 863 // export it now. Default exporting mechanism will not work here because 864 // statepoint call has a different type than the actual call. It means 865 // that by default llvm will create export register of the wrong type 866 // (always i32 in our case). So instead we need to create export register 867 // with correct type manually. 868 // TODO: To eliminate this problem we can remove gc.result intrinsics 869 // completely and make statepoint call to return a tuple. 870 unsigned Reg = FuncInfo.CreateRegs(RetTy); 871 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 872 DAG.getDataLayout(), Reg, RetTy, 873 ISP.getCallSite().getCallingConv()); 874 SDValue Chain = DAG.getEntryNode(); 875 876 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 877 PendingExports.push_back(Chain); 878 FuncInfo.ValueMap[ISP.getInstruction()] = Reg; 879 } else { 880 // Result value will be used in a same basic block. Don't export it or 881 // perform any explicit register copies. 882 // We'll replace the actuall call node shortly. gc_result will grab 883 // this value. 884 setValue(ISP.getInstruction(), ReturnValue); 885 } 886 } else { 887 // The token value is never used from here on, just generate a poison value 888 setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); 889 } 890 } 891 892 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 893 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB, 894 bool VarArgDisallowed, bool ForceVoidReturnTy) { 895 StatepointLoweringInfo SI(DAG); 896 unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin(); 897 populateCallLoweringInfo( 898 SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee, 899 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(), 900 false); 901 if (!VarArgDisallowed) 902 SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg(); 903 904 auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt); 905 906 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 907 908 auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes()); 909 SI.ID = SD.StatepointID.getValueOr(DefaultID); 910 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 911 912 SI.DeoptState = 913 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 914 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 915 SI.EHPadBB = EHPadBB; 916 917 // NB! The GC arguments are deliberately left empty. 918 919 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 920 const Instruction *Inst = CS.getInstruction(); 921 ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal); 922 setValue(Inst, ReturnVal); 923 } 924 } 925 926 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 927 ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) { 928 LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB, 929 /* VarArgDisallowed = */ false, 930 /* ForceVoidReturnTy = */ false); 931 } 932 933 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 934 // The result value of the gc_result is simply the result of the actual 935 // call. We've already emitted this, so just grab the value. 936 const Instruction *I = CI.getStatepoint(); 937 938 if (I->getParent() != CI.getParent()) { 939 // Statepoint is in different basic block so we should have stored call 940 // result in a virtual register. 941 // We can not use default getValue() functionality to copy value from this 942 // register because statepoint and actual call return types can be 943 // different, and getValue() will use CopyFromReg of the wrong type, 944 // which is always i32 in our case. 945 PointerType *CalleeType = cast<PointerType>( 946 ImmutableStatepoint(I).getCalledValue()->getType()); 947 Type *RetTy = 948 cast<FunctionType>(CalleeType->getElementType())->getReturnType(); 949 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 950 951 assert(CopyFromReg.getNode()); 952 setValue(&CI, CopyFromReg); 953 } else { 954 setValue(&CI, getValue(I)); 955 } 956 } 957 958 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 959 #ifndef NDEBUG 960 // Consistency check 961 // We skip this check for relocates not in the same basic block as their 962 // statepoint. It would be too expensive to preserve validation info through 963 // different basic blocks. 964 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 965 StatepointLowering.relocCallVisited(Relocate); 966 967 auto *Ty = Relocate.getType()->getScalarType(); 968 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 969 assert(*IsManaged && "Non gc managed pointer relocated!"); 970 #endif 971 972 const Value *DerivedPtr = Relocate.getDerivedPtr(); 973 SDValue SD = getValue(DerivedPtr); 974 975 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 976 auto SlotIt = SpillMap.find(DerivedPtr); 977 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 978 Optional<int> DerivedPtrLocation = SlotIt->second; 979 980 // We didn't need to spill these special cases (constants and allocas). 981 // See the handling in spillIncomingValueForStatepoint for detail. 982 if (!DerivedPtrLocation) { 983 setValue(&Relocate, SD); 984 return; 985 } 986 987 SDValue SpillSlot = 988 DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy()); 989 990 // Be conservative: flush all pending loads 991 // TODO: Probably we can be less restrictive on this, 992 // it may allow more scheduling opportunities. 993 SDValue Chain = getRoot(); 994 995 SDValue SpillLoad = 996 DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 997 Relocate.getType()), 998 getCurSDLoc(), Chain, SpillSlot, 999 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 1000 *DerivedPtrLocation)); 1001 1002 // Again, be conservative, don't emit pending loads 1003 DAG.setRoot(SpillLoad.getValue(1)); 1004 1005 assert(SpillLoad.getNode()); 1006 setValue(&Relocate, SpillLoad); 1007 } 1008 1009 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1010 const auto &TLI = DAG.getTargetLoweringInfo(); 1011 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1012 TLI.getPointerTy(DAG.getDataLayout())); 1013 1014 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1015 // call. We also do not lower the return value to any virtual register, and 1016 // change the immediately following return to a trap instruction. 1017 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1018 /* VarArgDisallowed = */ true, 1019 /* ForceVoidReturnTy = */ true); 1020 } 1021 1022 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1023 // We do not lower the return value from llvm.deoptimize to any virtual 1024 // register, and change the immediately following return to a trap 1025 // instruction. 1026 if (DAG.getTarget().Options.TrapUnreachable) 1027 DAG.setRoot( 1028 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1029 } 1030