1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/GCStrategy.h"
26 #include "llvm/CodeGen/ISDOpcodes.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <iterator>
51 #include <tuple>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "statepoint-lowering"
57 
58 STATISTIC(NumSlotsAllocatedForStatepoints,
59           "Number of stack slots allocated for statepoints");
60 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
61 STATISTIC(StatepointMaxSlotsRequired,
62           "Maximum number of stack slots required for a singe statepoint");
63 
64 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
65                                  SelectionDAGBuilder &Builder, uint64_t Value) {
66   SDLoc L = Builder.getCurSDLoc();
67   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
68                                               MVT::i64));
69   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
70 }
71 
72 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
73   // Consistency check
74   assert(PendingGCRelocateCalls.empty() &&
75          "Trying to visit statepoint before finished processing previous one");
76   Locations.clear();
77   NextSlotToAllocate = 0;
78   // Need to resize this on each safepoint - we need the two to stay in sync and
79   // the clear patterns of a SelectionDAGBuilder have no relation to
80   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
81   AllocatedStackSlots.clear();
82   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
83 }
84 
85 void StatepointLoweringState::clear() {
86   Locations.clear();
87   AllocatedStackSlots.clear();
88   assert(PendingGCRelocateCalls.empty() &&
89          "cleared before statepoint sequence completed");
90 }
91 
92 SDValue
93 StatepointLoweringState::allocateStackSlot(EVT ValueType,
94                                            SelectionDAGBuilder &Builder) {
95   NumSlotsAllocatedForStatepoints++;
96   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
97 
98   unsigned SpillSize = ValueType.getStoreSize();
99   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
100 
101   // First look for a previously created stack slot which is not in
102   // use (accounting for the fact arbitrary slots may already be
103   // reserved), or to create a new stack slot and use it.
104 
105   const size_t NumSlots = AllocatedStackSlots.size();
106   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
107 
108   assert(AllocatedStackSlots.size() ==
109          Builder.FuncInfo.StatepointStackSlots.size() &&
110          "Broken invariant");
111 
112   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
113     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
114       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
115       if (MFI.getObjectSize(FI) == SpillSize) {
116         AllocatedStackSlots.set(NextSlotToAllocate);
117         // TODO: Is ValueType the right thing to use here?
118         return Builder.DAG.getFrameIndex(FI, ValueType);
119       }
120     }
121   }
122 
123   // Couldn't find a free slot, so create a new one:
124 
125   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
126   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
127   MFI.markAsStatepointSpillSlotObjectIndex(FI);
128 
129   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
130   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
131   assert(AllocatedStackSlots.size() ==
132          Builder.FuncInfo.StatepointStackSlots.size() &&
133          "Broken invariant");
134 
135   StatepointMaxSlotsRequired.updateMax(
136       Builder.FuncInfo.StatepointStackSlots.size());
137 
138   return SpillSlot;
139 }
140 
141 /// Utility function for reservePreviousStackSlotForValue. Tries to find
142 /// stack slot index to which we have spilled value for previous statepoints.
143 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
144 static Optional<int> findPreviousSpillSlot(const Value *Val,
145                                            SelectionDAGBuilder &Builder,
146                                            int LookUpDepth) {
147   // Can not look any further - give up now
148   if (LookUpDepth <= 0)
149     return None;
150 
151   // Spill location is known for gc relocates
152   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
153     const auto &SpillMap =
154         Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
155 
156     auto It = SpillMap.find(Relocate->getDerivedPtr());
157     if (It == SpillMap.end())
158       return None;
159 
160     return It->second;
161   }
162 
163   // Look through bitcast instructions.
164   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
165     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
166 
167   // Look through phi nodes
168   // All incoming values should have same known stack slot, otherwise result
169   // is unknown.
170   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
171     Optional<int> MergedResult = None;
172 
173     for (auto &IncomingValue : Phi->incoming_values()) {
174       Optional<int> SpillSlot =
175           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
176       if (!SpillSlot.hasValue())
177         return None;
178 
179       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
180         return None;
181 
182       MergedResult = SpillSlot;
183     }
184     return MergedResult;
185   }
186 
187   // TODO: We can do better for PHI nodes. In cases like this:
188   //   ptr = phi(relocated_pointer, not_relocated_pointer)
189   //   statepoint(ptr)
190   // We will return that stack slot for ptr is unknown. And later we might
191   // assign different stack slots for ptr and relocated_pointer. This limits
192   // llvm's ability to remove redundant stores.
193   // Unfortunately it's hard to accomplish in current infrastructure.
194   // We use this function to eliminate spill store completely, while
195   // in example we still need to emit store, but instead of any location
196   // we need to use special "preferred" location.
197 
198   // TODO: handle simple updates.  If a value is modified and the original
199   // value is no longer live, it would be nice to put the modified value in the
200   // same slot.  This allows folding of the memory accesses for some
201   // instructions types (like an increment).
202   //   statepoint (i)
203   //   i1 = i+1
204   //   statepoint (i1)
205   // However we need to be careful for cases like this:
206   //   statepoint(i)
207   //   i1 = i+1
208   //   statepoint(i, i1)
209   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
210   // put handling of simple modifications in this function like it's done
211   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
212   // which we visit values is unspecified.
213 
214   // Don't know any information about this instruction
215   return None;
216 }
217 
218 /// Try to find existing copies of the incoming values in stack slots used for
219 /// statepoint spilling.  If we can find a spill slot for the incoming value,
220 /// mark that slot as allocated, and reuse the same slot for this safepoint.
221 /// This helps to avoid series of loads and stores that only serve to reshuffle
222 /// values on the stack between calls.
223 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
224                                              SelectionDAGBuilder &Builder) {
225   SDValue Incoming = Builder.getValue(IncomingValue);
226 
227   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
228     // We won't need to spill this, so no need to check for previously
229     // allocated stack slots
230     return;
231   }
232 
233   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
234   if (OldLocation.getNode())
235     // Duplicates in input
236     return;
237 
238   const int LookUpDepth = 6;
239   Optional<int> Index =
240       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
241   if (!Index.hasValue())
242     return;
243 
244   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
245 
246   auto SlotIt = find(StatepointSlots, *Index);
247   assert(SlotIt != StatepointSlots.end() &&
248          "Value spilled to the unknown stack slot");
249 
250   // This is one of our dedicated lowering slots
251   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
252   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
253     // stack slot already assigned to someone else, can't use it!
254     // TODO: currently we reserve space for gc arguments after doing
255     // normal allocation for deopt arguments.  We should reserve for
256     // _all_ deopt and gc arguments, then start allocating.  This
257     // will prevent some moves being inserted when vm state changes,
258     // but gc state doesn't between two calls.
259     return;
260   }
261   // Reserve this stack slot
262   Builder.StatepointLowering.reserveStackSlot(Offset);
263 
264   // Cache this slot so we find it when going through the normal
265   // assignment loop.
266   SDValue Loc =
267       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
268   Builder.StatepointLowering.setLocation(Incoming, Loc);
269 }
270 
271 /// Extract call from statepoint, lower it and return pointer to the
272 /// call node. Also update NodeMap so that getValue(statepoint) will
273 /// reference lowered call result
274 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
275     SelectionDAGBuilder::StatepointLoweringInfo &SI,
276     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
277   SDValue ReturnValue, CallEndVal;
278   std::tie(ReturnValue, CallEndVal) =
279       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
280   SDNode *CallEnd = CallEndVal.getNode();
281 
282   // Get a call instruction from the call sequence chain.  Tail calls are not
283   // allowed.  The following code is essentially reverse engineering X86's
284   // LowerCallTo.
285   //
286   // We are expecting DAG to have the following form:
287   //
288   // ch = eh_label (only in case of invoke statepoint)
289   //   ch, glue = callseq_start ch
290   //   ch, glue = X86::Call ch, glue
291   //   ch, glue = callseq_end ch, glue
292   //   get_return_value ch, glue
293   //
294   // get_return_value can either be a sequence of CopyFromReg instructions
295   // to grab the return value from the return register(s), or it can be a LOAD
296   // to load a value returned by reference via a stack slot.
297 
298   bool HasDef = !SI.CLI.RetTy->isVoidTy();
299   if (HasDef) {
300     if (CallEnd->getOpcode() == ISD::LOAD)
301       CallEnd = CallEnd->getOperand(0).getNode();
302     else
303       while (CallEnd->getOpcode() == ISD::CopyFromReg)
304         CallEnd = CallEnd->getOperand(0).getNode();
305   }
306 
307   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
308   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
309 }
310 
311 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
312                                                FrameIndexSDNode &FI) {
313   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
314   auto MMOFlags = MachineMemOperand::MOStore |
315     MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
316   auto &MFI = MF.getFrameInfo();
317   return MF.getMachineMemOperand(PtrInfo, MMOFlags,
318                                  MFI.getObjectSize(FI.getIndex()),
319                                  MFI.getObjectAlign(FI.getIndex()));
320 }
321 
322 /// Spill a value incoming to the statepoint. It might be either part of
323 /// vmstate
324 /// or gcstate. In both cases unconditionally spill it on the stack unless it
325 /// is a null constant. Return pair with first element being frame index
326 /// containing saved value and second element with outgoing chain from the
327 /// emitted store
328 static std::tuple<SDValue, SDValue, MachineMemOperand*>
329 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
330                              SelectionDAGBuilder &Builder) {
331   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
332   MachineMemOperand* MMO = nullptr;
333 
334   // Emit new store if we didn't do it for this ptr before
335   if (!Loc.getNode()) {
336     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
337                                                        Builder);
338     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
339     // We use TargetFrameIndex so that isel will not select it into LEA
340     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
341 
342     // Right now we always allocate spill slots that are of the same
343     // size as the value we're about to spill (the size of spillee can
344     // vary since we spill vectors of pointers too).  At some point we
345     // can consider allowing spills of smaller values to larger slots
346     // (i.e. change the '==' in the assert below to a '>=').
347     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
348     assert((MFI.getObjectSize(Index) * 8) ==
349            (int64_t)Incoming.getValueSizeInBits() &&
350            "Bad spill:  stack slot does not match!");
351 
352     // Note: Using the alignment of the spill slot (rather than the abi or
353     // preferred alignment) is required for correctness when dealing with spill
354     // slots with preferred alignments larger than frame alignment..
355     auto &MF = Builder.DAG.getMachineFunction();
356     auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
357     auto *StoreMMO = MF.getMachineMemOperand(
358         PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
359         MFI.getObjectAlign(Index));
360     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
361                                  StoreMMO);
362 
363     MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
364 
365     Builder.StatepointLowering.setLocation(Incoming, Loc);
366   }
367 
368   assert(Loc.getNode());
369   return std::make_tuple(Loc, Chain, MMO);
370 }
371 
372 /// Lower a single value incoming to a statepoint node.  This value can be
373 /// either a deopt value or a gc value, the handling is the same.  We special
374 /// case constants and allocas, then fall back to spilling if required.
375 static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
376                                          SmallVectorImpl<SDValue> &Ops,
377                                          SmallVectorImpl<MachineMemOperand*> &MemRefs,
378                                          SelectionDAGBuilder &Builder) {
379   // Note: We know all of these spills are independent, but don't bother to
380   // exploit that chain wise.  DAGCombine will happily do so as needed, so
381   // doing it here would be a small compile time win at most.
382   SDValue Chain = Builder.getRoot();
383 
384   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
385     // If the original value was a constant, make sure it gets recorded as
386     // such in the stackmap.  This is required so that the consumer can
387     // parse any internal format to the deopt state.  It also handles null
388     // pointers and other constant pointers in GC states.  Note the constant
389     // vectors do not appear to actually hit this path and that anything larger
390     // than an i64 value (not type!) will fail asserts here.
391     pushStackMapConstant(Ops, Builder, C->getSExtValue());
392   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
393     // This handles allocas as arguments to the statepoint (this is only
394     // really meaningful for a deopt value.  For GC, we'd be trying to
395     // relocate the address of the alloca itself?)
396     assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
397            "Incoming value is a frame index!");
398     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
399                                                   Builder.getFrameIndexTy()));
400 
401     auto &MF = Builder.DAG.getMachineFunction();
402     auto *MMO = getMachineMemOperand(MF, *FI);
403     MemRefs.push_back(MMO);
404 
405   } else if (LiveInOnly) {
406     // If this value is live in (not live-on-return, or live-through), we can
407     // treat it the same way patchpoint treats it's "live in" values.  We'll
408     // end up folding some of these into stack references, but they'll be
409     // handled by the register allocator.  Note that we do not have the notion
410     // of a late use so these values might be placed in registers which are
411     // clobbered by the call.  This is fine for live-in.
412     Ops.push_back(Incoming);
413   } else {
414     // Otherwise, locate a spill slot and explicitly spill it so it
415     // can be found by the runtime later.  We currently do not support
416     // tracking values through callee saved registers to their eventual
417     // spill location.  This would be a useful optimization, but would
418     // need to be optional since it requires a lot of complexity on the
419     // runtime side which not all would support.
420     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
421     Ops.push_back(std::get<0>(Res));
422     if (auto *MMO = std::get<2>(Res))
423       MemRefs.push_back(MMO);
424     Chain = std::get<1>(Res);;
425   }
426 
427   Builder.DAG.setRoot(Chain);
428 }
429 
430 /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
431 /// lowering is described in lowerIncomingStatepointValue.  This function is
432 /// responsible for lowering everything in the right position and playing some
433 /// tricks to avoid redundant stack manipulation where possible.  On
434 /// completion, 'Ops' will contain ready to use operands for machine code
435 /// statepoint. The chain nodes will have already been created and the DAG root
436 /// will be set to the last value spilled (if any were).
437 static void
438 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
439                         SmallVectorImpl<MachineMemOperand*> &MemRefs,                                    SelectionDAGBuilder::StatepointLoweringInfo &SI,
440                         SelectionDAGBuilder &Builder) {
441   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
442   // deopt argument length, deopt arguments.., gc arguments...
443 #ifndef NDEBUG
444   if (auto *GFI = Builder.GFI) {
445     // Check that each of the gc pointer and bases we've gotten out of the
446     // safepoint is something the strategy thinks might be a pointer (or vector
447     // of pointers) into the GC heap.  This is basically just here to help catch
448     // errors during statepoint insertion. TODO: This should actually be in the
449     // Verifier, but we can't get to the GCStrategy from there (yet).
450     GCStrategy &S = GFI->getStrategy();
451     for (const Value *V : SI.Bases) {
452       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
453       if (Opt.hasValue()) {
454         assert(Opt.getValue() &&
455                "non gc managed base pointer found in statepoint");
456       }
457     }
458     for (const Value *V : SI.Ptrs) {
459       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
460       if (Opt.hasValue()) {
461         assert(Opt.getValue() &&
462                "non gc managed derived pointer found in statepoint");
463       }
464     }
465     assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
466   } else {
467     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
468     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
469   }
470 #endif
471 
472   // Figure out what lowering strategy we're going to use for each part
473   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
474   // as "live-through". A "live-through" variable is one which is "live-in",
475   // "live-out", and live throughout the lifetime of the call (i.e. we can find
476   // it from any PC within the transitive callee of the statepoint).  In
477   // particular, if the callee spills callee preserved registers we may not
478   // be able to find a value placed in that register during the call.  This is
479   // fine for live-out, but not for live-through.  If we were willing to make
480   // assumptions about the code generator producing the callee, we could
481   // potentially allow live-through values in callee saved registers.
482   const bool LiveInDeopt =
483     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
484 
485   auto isGCValue =[&](const Value *V) {
486     return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
487   };
488 
489   // Before we actually start lowering (and allocating spill slots for values),
490   // reserve any stack slots which we judge to be profitable to reuse for a
491   // particular value.  This is purely an optimization over the code below and
492   // doesn't change semantics at all.  It is important for performance that we
493   // reserve slots for both deopt and gc values before lowering either.
494   for (const Value *V : SI.DeoptState) {
495     if (!LiveInDeopt || isGCValue(V))
496       reservePreviousStackSlotForValue(V, Builder);
497   }
498   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
499     reservePreviousStackSlotForValue(SI.Bases[i], Builder);
500     reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
501   }
502 
503   // First, prefix the list with the number of unique values to be
504   // lowered.  Note that this is the number of *Values* not the
505   // number of SDValues required to lower them.
506   const int NumVMSArgs = SI.DeoptState.size();
507   pushStackMapConstant(Ops, Builder, NumVMSArgs);
508 
509   // The vm state arguments are lowered in an opaque manner.  We do not know
510   // what type of values are contained within.
511   for (const Value *V : SI.DeoptState) {
512     SDValue Incoming;
513     // If this is a function argument at a static frame index, generate it as
514     // the frame index.
515     if (const Argument *Arg = dyn_cast<Argument>(V)) {
516       int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
517       if (FI != INT_MAX)
518         Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
519     }
520     if (!Incoming.getNode())
521       Incoming = Builder.getValue(V);
522     const bool LiveInValue = LiveInDeopt && !isGCValue(V);
523     lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder);
524   }
525 
526   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
527   // length for this one.  After lowering, we'll have the base and pointer
528   // arrays interwoven with each (lowered) base pointer immediately followed by
529   // it's (lowered) derived pointer.  i.e
530   // (base[0], ptr[0], base[1], ptr[1], ...)
531   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
532     const Value *Base = SI.Bases[i];
533     lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
534                                  Ops, MemRefs, Builder);
535 
536     const Value *Ptr = SI.Ptrs[i];
537     lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
538                                  Ops, MemRefs, Builder);
539   }
540 
541   // If there are any explicit spill slots passed to the statepoint, record
542   // them, but otherwise do not do anything special.  These are user provided
543   // allocas and give control over placement to the consumer.  In this case,
544   // it is the contents of the slot which may get updated, not the pointer to
545   // the alloca
546   for (Value *V : SI.GCArgs) {
547     SDValue Incoming = Builder.getValue(V);
548     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
549       // This handles allocas as arguments to the statepoint
550       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
551              "Incoming value is a frame index!");
552       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
553                                                     Builder.getFrameIndexTy()));
554 
555       auto &MF = Builder.DAG.getMachineFunction();
556       auto *MMO = getMachineMemOperand(MF, *FI);
557       MemRefs.push_back(MMO);
558     }
559   }
560 
561   // Record computed locations for all lowered values.
562   // This can not be embedded in lowering loops as we need to record *all*
563   // values, while previous loops account only values with unique SDValues.
564   const Instruction *StatepointInstr = SI.StatepointInstr;
565   auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
566 
567   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
568     const Value *V = Relocate->getDerivedPtr();
569     SDValue SDV = Builder.getValue(V);
570     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
571 
572     if (Loc.getNode()) {
573       SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
574     } else {
575       // Record value as visited, but not spilled. This is case for allocas
576       // and constants. For this values we can avoid emitting spill load while
577       // visiting corresponding gc_relocate.
578       // Actually we do not need to record them in this map at all.
579       // We do this only to check that we are not relocating any unvisited
580       // value.
581       SpillMap[V] = None;
582 
583       // Default llvm mechanisms for exporting values which are used in
584       // different basic blocks does not work for gc relocates.
585       // Note that it would be incorrect to teach llvm that all relocates are
586       // uses of the corresponding values so that it would automatically
587       // export them. Relocates of the spilled values does not use original
588       // value.
589       if (Relocate->getParent() != StatepointInstr->getParent())
590         Builder.ExportFromCurrentBlock(V);
591     }
592   }
593 }
594 
595 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
596     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
597   // The basic scheme here is that information about both the original call and
598   // the safepoint is encoded in the CallInst.  We create a temporary call and
599   // lower it, then reverse engineer the calling sequence.
600 
601   NumOfStatepoints++;
602   // Clear state
603   StatepointLowering.startNewStatepoint(*this);
604   assert(SI.Bases.size() == SI.Ptrs.size() &&
605          SI.Ptrs.size() <= SI.GCRelocates.size());
606 
607 #ifndef NDEBUG
608   for (auto *Reloc : SI.GCRelocates)
609     if (Reloc->getParent() == SI.StatepointInstr->getParent())
610       StatepointLowering.scheduleRelocCall(*Reloc);
611 #endif
612 
613   // Lower statepoint vmstate and gcstate arguments
614   SmallVector<SDValue, 10> LoweredMetaArgs;
615   SmallVector<MachineMemOperand*, 16> MemRefs;
616   lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this);
617 
618   // Now that we've emitted the spills, we need to update the root so that the
619   // call sequence is ordered correctly.
620   SI.CLI.setChain(getRoot());
621 
622   // Get call node, we will replace it later with statepoint
623   SDValue ReturnVal;
624   SDNode *CallNode;
625   std::tie(ReturnVal, CallNode) =
626       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
627 
628   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
629   // nodes with all the appropriate arguments and return values.
630 
631   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
632   SDValue Chain = CallNode->getOperand(0);
633 
634   SDValue Glue;
635   bool CallHasIncomingGlue = CallNode->getGluedNode();
636   if (CallHasIncomingGlue) {
637     // Glue is always last operand
638     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
639   }
640 
641   // Build the GC_TRANSITION_START node if necessary.
642   //
643   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
644   // order in which they appear in the call to the statepoint intrinsic. If
645   // any of the operands is a pointer-typed, that operand is immediately
646   // followed by a SRCVALUE for the pointer that may be used during lowering
647   // (e.g. to form MachinePointerInfo values for loads/stores).
648   const bool IsGCTransition =
649       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
650       (uint64_t)StatepointFlags::GCTransition;
651   if (IsGCTransition) {
652     SmallVector<SDValue, 8> TSOps;
653 
654     // Add chain
655     TSOps.push_back(Chain);
656 
657     // Add GC transition arguments
658     for (const Value *V : SI.GCTransitionArgs) {
659       TSOps.push_back(getValue(V));
660       if (V->getType()->isPointerTy())
661         TSOps.push_back(DAG.getSrcValue(V));
662     }
663 
664     // Add glue if necessary
665     if (CallHasIncomingGlue)
666       TSOps.push_back(Glue);
667 
668     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
669 
670     SDValue GCTransitionStart =
671         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
672 
673     Chain = GCTransitionStart.getValue(0);
674     Glue = GCTransitionStart.getValue(1);
675   }
676 
677   // TODO: Currently, all of these operands are being marked as read/write in
678   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
679   // and flags to be read-only.
680   SmallVector<SDValue, 40> Ops;
681 
682   // Add the <id> and <numBytes> constants.
683   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
684   Ops.push_back(
685       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
686 
687   // Calculate and push starting position of vmstate arguments
688   // Get number of arguments incoming directly into call node
689   unsigned NumCallRegArgs =
690       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
691   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
692 
693   // Add call target
694   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
695   Ops.push_back(CallTarget);
696 
697   // Add call arguments
698   // Get position of register mask in the call
699   SDNode::op_iterator RegMaskIt;
700   if (CallHasIncomingGlue)
701     RegMaskIt = CallNode->op_end() - 2;
702   else
703     RegMaskIt = CallNode->op_end() - 1;
704   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
705 
706   // Add a constant argument for the calling convention
707   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
708 
709   // Add a constant argument for the flags
710   uint64_t Flags = SI.StatepointFlags;
711   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
712          "Unknown flag used");
713   pushStackMapConstant(Ops, *this, Flags);
714 
715   // Insert all vmstate and gcstate arguments
716   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
717 
718   // Add register mask from call node
719   Ops.push_back(*RegMaskIt);
720 
721   // Add chain
722   Ops.push_back(Chain);
723 
724   // Same for the glue, but we add it only if original call had it
725   if (Glue.getNode())
726     Ops.push_back(Glue);
727 
728   // Compute return values.  Provide a glue output since we consume one as
729   // input.  This allows someone else to chain off us as needed.
730   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
731 
732   MachineSDNode *StatepointMCNode =
733     DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
734   DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
735 
736   SDNode *SinkNode = StatepointMCNode;
737 
738   // Build the GC_TRANSITION_END node if necessary.
739   //
740   // See the comment above regarding GC_TRANSITION_START for the layout of
741   // the operands to the GC_TRANSITION_END node.
742   if (IsGCTransition) {
743     SmallVector<SDValue, 8> TEOps;
744 
745     // Add chain
746     TEOps.push_back(SDValue(StatepointMCNode, 0));
747 
748     // Add GC transition arguments
749     for (const Value *V : SI.GCTransitionArgs) {
750       TEOps.push_back(getValue(V));
751       if (V->getType()->isPointerTy())
752         TEOps.push_back(DAG.getSrcValue(V));
753     }
754 
755     // Add glue
756     TEOps.push_back(SDValue(StatepointMCNode, 1));
757 
758     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
759 
760     SDValue GCTransitionStart =
761         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
762 
763     SinkNode = GCTransitionStart.getNode();
764   }
765 
766   // Replace original call
767   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
768   // Remove original call node
769   DAG.DeleteNode(CallNode);
770 
771   // DON'T set the root - under the assumption that it's already set past the
772   // inserted node we created.
773 
774   // TODO: A better future implementation would be to emit a single variable
775   // argument, variable return value STATEPOINT node here and then hookup the
776   // return value of each gc.relocate to the respective output of the
777   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
778   // to actually be possible today.
779 
780   return ReturnVal;
781 }
782 
783 void
784 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
785                                      const BasicBlock *EHPadBB /*= nullptr*/) {
786   assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg &&
787          "anyregcc is not supported on statepoints!");
788 
789 #ifndef NDEBUG
790   // If this is a malformed statepoint, report it early to simplify debugging.
791   // This should catch any IR level mistake that's made when constructing or
792   // transforming statepoints.
793   ISP.verify();
794 
795   // Check that the associated GCStrategy expects to encounter statepoints.
796   assert(GFI->getStrategy().useStatepoints() &&
797          "GCStrategy does not expect to encounter statepoints");
798 #endif
799 
800   SDValue ActualCallee;
801 
802   if (ISP.getNumPatchBytes() > 0) {
803     // If we've been asked to emit a nop sequence instead of a call instruction
804     // for this statepoint then don't lower the call target, but use a constant
805     // `null` instead.  Not lowering the call target lets statepoint clients get
806     // away without providing a physical address for the symbolic call target at
807     // link time.
808 
809     const auto &TLI = DAG.getTargetLoweringInfo();
810     const auto &DL = DAG.getDataLayout();
811 
812     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
813     ActualCallee =
814         DAG.getTargetConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
815   } else {
816     ActualCallee = getValue(ISP.getCalledValue());
817   }
818 
819   StatepointLoweringInfo SI(DAG);
820   populateCallLoweringInfo(SI.CLI, ISP.getCall(),
821                            ImmutableStatepoint::CallArgsBeginPos,
822                            ISP.getNumCallArgs(), ActualCallee,
823                            ISP.getActualReturnType(), false /* IsPatchPoint */);
824 
825   // There may be duplication in the gc.relocate list; such as two copies of
826   // each relocation on normal and exceptional path for an invoke.  We only
827   // need to spill once and record one copy in the stackmap, but we need to
828   // reload once per gc.relocate.  (Dedupping gc.relocates is trickier and best
829   // handled as a CSE problem elsewhere.)
830   // TODO: There a couple of major stackmap size optimizations we could do
831   // here if we wished.
832   // 1) If we've encountered a derived pair {B, D}, we don't need to actually
833   // record {B,B} if it's seen later.
834   // 2) Due to rematerialization, actual derived pointers are somewhat rare;
835   // given that, we could change the format to record base pointer relocations
836   // separately with half the space. This would require a format rev and a
837   // fairly major rework of the STATEPOINT node though.
838   SmallSet<SDValue, 8> Seen;
839   for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
840     SI.GCRelocates.push_back(Relocate);
841 
842     SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
843     if (Seen.insert(DerivedSD).second) {
844       SI.Bases.push_back(Relocate->getBasePtr());
845       SI.Ptrs.push_back(Relocate->getDerivedPtr());
846     }
847   }
848 
849   SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
850   SI.StatepointInstr = ISP.getInstruction();
851   SI.GCTransitionArgs = ArrayRef<const Use>(ISP.gc_transition_args_begin(),
852                                             ISP.gc_transition_args_end());
853   SI.ID = ISP.getID();
854   SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
855   SI.StatepointFlags = ISP.getFlags();
856   SI.NumPatchBytes = ISP.getNumPatchBytes();
857   SI.EHPadBB = EHPadBB;
858 
859   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
860 
861   // Export the result value if needed
862   const GCResultInst *GCResult = ISP.getGCResult();
863   Type *RetTy = ISP.getActualReturnType();
864   if (!RetTy->isVoidTy() && GCResult) {
865     if (GCResult->getParent() != ISP.getCall()->getParent()) {
866       // Result value will be used in a different basic block so we need to
867       // export it now.  Default exporting mechanism will not work here because
868       // statepoint call has a different type than the actual call. It means
869       // that by default llvm will create export register of the wrong type
870       // (always i32 in our case). So instead we need to create export register
871       // with correct type manually.
872       // TODO: To eliminate this problem we can remove gc.result intrinsics
873       //       completely and make statepoint call to return a tuple.
874       unsigned Reg = FuncInfo.CreateRegs(RetTy);
875       RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
876                        DAG.getDataLayout(), Reg, RetTy,
877                        ISP.getCall()->getCallingConv());
878       SDValue Chain = DAG.getEntryNode();
879 
880       RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
881       PendingExports.push_back(Chain);
882       FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
883     } else {
884       // Result value will be used in a same basic block. Don't export it or
885       // perform any explicit register copies.
886       // We'll replace the actuall call node shortly. gc_result will grab
887       // this value.
888       setValue(ISP.getInstruction(), ReturnValue);
889     }
890   } else {
891     // The token value is never used from here on, just generate a poison value
892     setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
893   }
894 }
895 
896 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
897     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
898     bool VarArgDisallowed, bool ForceVoidReturnTy) {
899   StatepointLoweringInfo SI(DAG);
900   unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
901   populateCallLoweringInfo(
902       SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
903       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
904       false);
905   if (!VarArgDisallowed)
906     SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
907 
908   auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
909 
910   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
911 
912   auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
913   SI.ID = SD.StatepointID.getValueOr(DefaultID);
914   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
915 
916   SI.DeoptState =
917       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
918   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
919   SI.EHPadBB = EHPadBB;
920 
921   // NB! The GC arguments are deliberately left empty.
922 
923   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
924     ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
925     setValue(Call, ReturnVal);
926   }
927 }
928 
929 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
930     const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
931   LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
932                                    /* VarArgDisallowed = */ false,
933                                    /* ForceVoidReturnTy  = */ false);
934 }
935 
936 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
937   // The result value of the gc_result is simply the result of the actual
938   // call.  We've already emitted this, so just grab the value.
939   const Instruction *I = CI.getStatepoint();
940 
941   if (I->getParent() != CI.getParent()) {
942     // Statepoint is in different basic block so we should have stored call
943     // result in a virtual register.
944     // We can not use default getValue() functionality to copy value from this
945     // register because statepoint and actual call return types can be
946     // different, and getValue() will use CopyFromReg of the wrong type,
947     // which is always i32 in our case.
948     PointerType *CalleeType = cast<PointerType>(
949         ImmutableStatepoint(I).getCalledValue()->getType());
950     Type *RetTy =
951         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
952     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
953 
954     assert(CopyFromReg.getNode());
955     setValue(&CI, CopyFromReg);
956   } else {
957     setValue(&CI, getValue(I));
958   }
959 }
960 
961 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
962 #ifndef NDEBUG
963   // Consistency check
964   // We skip this check for relocates not in the same basic block as their
965   // statepoint. It would be too expensive to preserve validation info through
966   // different basic blocks.
967   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
968     StatepointLowering.relocCallVisited(Relocate);
969 
970   auto *Ty = Relocate.getType()->getScalarType();
971   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
972     assert(*IsManaged && "Non gc managed pointer relocated!");
973 #endif
974 
975   const Value *DerivedPtr = Relocate.getDerivedPtr();
976   SDValue SD = getValue(DerivedPtr);
977 
978   auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
979   auto SlotIt = SpillMap.find(DerivedPtr);
980   assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
981   Optional<int> DerivedPtrLocation = SlotIt->second;
982 
983   // We didn't need to spill these special cases (constants and allocas).
984   // See the handling in spillIncomingValueForStatepoint for detail.
985   if (!DerivedPtrLocation) {
986     setValue(&Relocate, SD);
987     return;
988   }
989 
990   unsigned Index = *DerivedPtrLocation;
991   SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
992 
993   // All the reloads are independent and are reading memory only modified by
994   // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
995   // this this let's CSE kick in for free and allows reordering of instructions
996   // if possible.  The lowering for statepoint sets the root, so this is
997   // ordering all reloads with the either a) the statepoint node itself, or b)
998   // the entry of the current block for an invoke statepoint.
999   const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1000 
1001   auto &MF = DAG.getMachineFunction();
1002   auto &MFI = MF.getFrameInfo();
1003   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1004   auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1005                                           MFI.getObjectSize(Index),
1006                                           MFI.getObjectAlign(Index));
1007 
1008   auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1009                                                          Relocate.getType());
1010 
1011   SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1012                                   SpillSlot, LoadMMO);
1013   PendingLoads.push_back(SpillLoad.getValue(1));
1014 
1015   assert(SpillLoad.getNode());
1016   setValue(&Relocate, SpillLoad);
1017 }
1018 
1019 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1020   const auto &TLI = DAG.getTargetLoweringInfo();
1021   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1022                                          TLI.getPointerTy(DAG.getDataLayout()));
1023 
1024   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1025   // call.  We also do not lower the return value to any virtual register, and
1026   // change the immediately following return to a trap instruction.
1027   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1028                                    /* VarArgDisallowed = */ true,
1029                                    /* ForceVoidReturnTy = */ true);
1030 }
1031 
1032 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1033   // We do not lower the return value from llvm.deoptimize to any virtual
1034   // register, and change the immediately following return to a trap
1035   // instruction.
1036   if (DAG.getTarget().Options.TrapUnreachable)
1037     DAG.setRoot(
1038         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1039 }
1040