1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file includes support code use by SelectionDAGBuilder when lowering a 10 // statepoint sequence in SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "StatepointLowering.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/FunctionLoweringInfo.h" 25 #include "llvm/CodeGen/GCMetadata.h" 26 #include "llvm/CodeGen/GCStrategy.h" 27 #include "llvm/CodeGen/ISDOpcodes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/RuntimeLibcalls.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/StackMaps.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/MachineValueType.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstddef> 51 #include <cstdint> 52 #include <iterator> 53 #include <tuple> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "statepoint-lowering" 59 60 STATISTIC(NumSlotsAllocatedForStatepoints, 61 "Number of stack slots allocated for statepoints"); 62 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); 63 STATISTIC(StatepointMaxSlotsRequired, 64 "Maximum number of stack slots required for a singe statepoint"); 65 66 cl::opt<bool> UseRegistersForDeoptValues( 67 "use-registers-for-deopt-values", cl::Hidden, cl::init(false), 68 cl::desc("Allow using registers for non pointer deopt args")); 69 70 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, 71 SelectionDAGBuilder &Builder, uint64_t Value) { 72 SDLoc L = Builder.getCurSDLoc(); 73 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, 74 MVT::i64)); 75 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); 76 } 77 78 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { 79 // Consistency check 80 assert(PendingGCRelocateCalls.empty() && 81 "Trying to visit statepoint before finished processing previous one"); 82 Locations.clear(); 83 NextSlotToAllocate = 0; 84 // Need to resize this on each safepoint - we need the two to stay in sync and 85 // the clear patterns of a SelectionDAGBuilder have no relation to 86 // FunctionLoweringInfo. Also need to ensure used bits get cleared. 87 AllocatedStackSlots.clear(); 88 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); 89 } 90 91 void StatepointLoweringState::clear() { 92 Locations.clear(); 93 AllocatedStackSlots.clear(); 94 assert(PendingGCRelocateCalls.empty() && 95 "cleared before statepoint sequence completed"); 96 } 97 98 SDValue 99 StatepointLoweringState::allocateStackSlot(EVT ValueType, 100 SelectionDAGBuilder &Builder) { 101 NumSlotsAllocatedForStatepoints++; 102 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 103 104 unsigned SpillSize = ValueType.getStoreSize(); 105 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); 106 107 // First look for a previously created stack slot which is not in 108 // use (accounting for the fact arbitrary slots may already be 109 // reserved), or to create a new stack slot and use it. 110 111 const size_t NumSlots = AllocatedStackSlots.size(); 112 assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); 113 114 assert(AllocatedStackSlots.size() == 115 Builder.FuncInfo.StatepointStackSlots.size() && 116 "Broken invariant"); 117 118 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { 119 if (!AllocatedStackSlots.test(NextSlotToAllocate)) { 120 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; 121 if (MFI.getObjectSize(FI) == SpillSize) { 122 AllocatedStackSlots.set(NextSlotToAllocate); 123 // TODO: Is ValueType the right thing to use here? 124 return Builder.DAG.getFrameIndex(FI, ValueType); 125 } 126 } 127 } 128 129 // Couldn't find a free slot, so create a new one: 130 131 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); 132 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 133 MFI.markAsStatepointSpillSlotObjectIndex(FI); 134 135 Builder.FuncInfo.StatepointStackSlots.push_back(FI); 136 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); 137 assert(AllocatedStackSlots.size() == 138 Builder.FuncInfo.StatepointStackSlots.size() && 139 "Broken invariant"); 140 141 StatepointMaxSlotsRequired.updateMax( 142 Builder.FuncInfo.StatepointStackSlots.size()); 143 144 return SpillSlot; 145 } 146 147 /// Utility function for reservePreviousStackSlotForValue. Tries to find 148 /// stack slot index to which we have spilled value for previous statepoints. 149 /// LookUpDepth specifies maximum DFS depth this function is allowed to look. 150 static Optional<int> findPreviousSpillSlot(const Value *Val, 151 SelectionDAGBuilder &Builder, 152 int LookUpDepth) { 153 // Can not look any further - give up now 154 if (LookUpDepth <= 0) 155 return None; 156 157 // Spill location is known for gc relocates 158 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { 159 const auto &SpillMap = 160 Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; 161 162 auto It = SpillMap.find(Relocate->getDerivedPtr()); 163 if (It == SpillMap.end()) 164 return None; 165 166 return It->second; 167 } 168 169 // Look through bitcast instructions. 170 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) 171 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); 172 173 // Look through phi nodes 174 // All incoming values should have same known stack slot, otherwise result 175 // is unknown. 176 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { 177 Optional<int> MergedResult = None; 178 179 for (auto &IncomingValue : Phi->incoming_values()) { 180 Optional<int> SpillSlot = 181 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); 182 if (!SpillSlot.hasValue()) 183 return None; 184 185 if (MergedResult.hasValue() && *MergedResult != *SpillSlot) 186 return None; 187 188 MergedResult = SpillSlot; 189 } 190 return MergedResult; 191 } 192 193 // TODO: We can do better for PHI nodes. In cases like this: 194 // ptr = phi(relocated_pointer, not_relocated_pointer) 195 // statepoint(ptr) 196 // We will return that stack slot for ptr is unknown. And later we might 197 // assign different stack slots for ptr and relocated_pointer. This limits 198 // llvm's ability to remove redundant stores. 199 // Unfortunately it's hard to accomplish in current infrastructure. 200 // We use this function to eliminate spill store completely, while 201 // in example we still need to emit store, but instead of any location 202 // we need to use special "preferred" location. 203 204 // TODO: handle simple updates. If a value is modified and the original 205 // value is no longer live, it would be nice to put the modified value in the 206 // same slot. This allows folding of the memory accesses for some 207 // instructions types (like an increment). 208 // statepoint (i) 209 // i1 = i+1 210 // statepoint (i1) 211 // However we need to be careful for cases like this: 212 // statepoint(i) 213 // i1 = i+1 214 // statepoint(i, i1) 215 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just 216 // put handling of simple modifications in this function like it's done 217 // for bitcasts we might end up reserving i's slot for 'i+1' because order in 218 // which we visit values is unspecified. 219 220 // Don't know any information about this instruction 221 return None; 222 } 223 224 /// Try to find existing copies of the incoming values in stack slots used for 225 /// statepoint spilling. If we can find a spill slot for the incoming value, 226 /// mark that slot as allocated, and reuse the same slot for this safepoint. 227 /// This helps to avoid series of loads and stores that only serve to reshuffle 228 /// values on the stack between calls. 229 static void reservePreviousStackSlotForValue(const Value *IncomingValue, 230 SelectionDAGBuilder &Builder) { 231 SDValue Incoming = Builder.getValue(IncomingValue); 232 233 if (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) || 234 isa<FrameIndexSDNode>(Incoming) || Incoming.isUndef()) { 235 // We won't need to spill this, so no need to check for previously 236 // allocated stack slots 237 return; 238 } 239 240 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); 241 if (OldLocation.getNode()) 242 // Duplicates in input 243 return; 244 245 const int LookUpDepth = 6; 246 Optional<int> Index = 247 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); 248 if (!Index.hasValue()) 249 return; 250 251 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; 252 253 auto SlotIt = find(StatepointSlots, *Index); 254 assert(SlotIt != StatepointSlots.end() && 255 "Value spilled to the unknown stack slot"); 256 257 // This is one of our dedicated lowering slots 258 const int Offset = std::distance(StatepointSlots.begin(), SlotIt); 259 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { 260 // stack slot already assigned to someone else, can't use it! 261 // TODO: currently we reserve space for gc arguments after doing 262 // normal allocation for deopt arguments. We should reserve for 263 // _all_ deopt and gc arguments, then start allocating. This 264 // will prevent some moves being inserted when vm state changes, 265 // but gc state doesn't between two calls. 266 return; 267 } 268 // Reserve this stack slot 269 Builder.StatepointLowering.reserveStackSlot(Offset); 270 271 // Cache this slot so we find it when going through the normal 272 // assignment loop. 273 SDValue Loc = 274 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); 275 Builder.StatepointLowering.setLocation(Incoming, Loc); 276 } 277 278 /// Extract call from statepoint, lower it and return pointer to the 279 /// call node. Also update NodeMap so that getValue(statepoint) will 280 /// reference lowered call result 281 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( 282 SelectionDAGBuilder::StatepointLoweringInfo &SI, 283 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { 284 SDValue ReturnValue, CallEndVal; 285 std::tie(ReturnValue, CallEndVal) = 286 Builder.lowerInvokable(SI.CLI, SI.EHPadBB); 287 SDNode *CallEnd = CallEndVal.getNode(); 288 289 // Get a call instruction from the call sequence chain. Tail calls are not 290 // allowed. The following code is essentially reverse engineering X86's 291 // LowerCallTo. 292 // 293 // We are expecting DAG to have the following form: 294 // 295 // ch = eh_label (only in case of invoke statepoint) 296 // ch, glue = callseq_start ch 297 // ch, glue = X86::Call ch, glue 298 // ch, glue = callseq_end ch, glue 299 // get_return_value ch, glue 300 // 301 // get_return_value can either be a sequence of CopyFromReg instructions 302 // to grab the return value from the return register(s), or it can be a LOAD 303 // to load a value returned by reference via a stack slot. 304 305 bool HasDef = !SI.CLI.RetTy->isVoidTy(); 306 if (HasDef) { 307 if (CallEnd->getOpcode() == ISD::LOAD) 308 CallEnd = CallEnd->getOperand(0).getNode(); 309 else 310 while (CallEnd->getOpcode() == ISD::CopyFromReg) 311 CallEnd = CallEnd->getOperand(0).getNode(); 312 } 313 314 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); 315 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); 316 } 317 318 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, 319 FrameIndexSDNode &FI) { 320 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); 321 auto MMOFlags = MachineMemOperand::MOStore | 322 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; 323 auto &MFI = MF.getFrameInfo(); 324 return MF.getMachineMemOperand(PtrInfo, MMOFlags, 325 MFI.getObjectSize(FI.getIndex()), 326 MFI.getObjectAlign(FI.getIndex())); 327 } 328 329 /// Spill a value incoming to the statepoint. It might be either part of 330 /// vmstate 331 /// or gcstate. In both cases unconditionally spill it on the stack unless it 332 /// is a null constant. Return pair with first element being frame index 333 /// containing saved value and second element with outgoing chain from the 334 /// emitted store 335 static std::tuple<SDValue, SDValue, MachineMemOperand*> 336 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, 337 SelectionDAGBuilder &Builder) { 338 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); 339 MachineMemOperand* MMO = nullptr; 340 341 // Emit new store if we didn't do it for this ptr before 342 if (!Loc.getNode()) { 343 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), 344 Builder); 345 int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); 346 // We use TargetFrameIndex so that isel will not select it into LEA 347 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); 348 349 // Right now we always allocate spill slots that are of the same 350 // size as the value we're about to spill (the size of spillee can 351 // vary since we spill vectors of pointers too). At some point we 352 // can consider allowing spills of smaller values to larger slots 353 // (i.e. change the '==' in the assert below to a '>='). 354 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); 355 assert((MFI.getObjectSize(Index) * 8) == 356 (int64_t)Incoming.getValueSizeInBits() && 357 "Bad spill: stack slot does not match!"); 358 359 // Note: Using the alignment of the spill slot (rather than the abi or 360 // preferred alignment) is required for correctness when dealing with spill 361 // slots with preferred alignments larger than frame alignment.. 362 auto &MF = Builder.DAG.getMachineFunction(); 363 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 364 auto *StoreMMO = MF.getMachineMemOperand( 365 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index), 366 MFI.getObjectAlign(Index)); 367 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, 368 StoreMMO); 369 370 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); 371 372 Builder.StatepointLowering.setLocation(Incoming, Loc); 373 } 374 375 assert(Loc.getNode()); 376 return std::make_tuple(Loc, Chain, MMO); 377 } 378 379 /// Lower a single value incoming to a statepoint node. This value can be 380 /// either a deopt value or a gc value, the handling is the same. We special 381 /// case constants and allocas, then fall back to spilling if required. 382 static void 383 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot, 384 SmallVectorImpl<SDValue> &Ops, 385 SmallVectorImpl<MachineMemOperand *> &MemRefs, 386 SelectionDAGBuilder &Builder) { 387 // Note: We know all of these spills are independent, but don't bother to 388 // exploit that chain wise. DAGCombine will happily do so as needed, so 389 // doing it here would be a small compile time win at most. 390 SDValue Chain = Builder.getRoot(); 391 392 if (Incoming.isUndef() && Incoming.getValueType().getSizeInBits() <= 64) { 393 // Put an easily recognized constant that's unlikely to be a valid 394 // value so that uses of undef by the consumer of the stackmap is 395 // easily recognized. This is legal since the compiler is always 396 // allowed to chose an arbitrary value for undef. 397 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE); 398 return; 399 } 400 401 // If the original value was a constant, make sure it gets recorded as 402 // such in the stackmap. This is required so that the consumer can 403 // parse any internal format to the deopt state. It also handles null 404 // pointers and other constant pointers in GC states. Note the constant 405 // vectors do not appear to actually hit this path and that anything larger 406 // than an i64 value (not type!) will fail asserts here. 407 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) { 408 pushStackMapConstant(Ops, Builder, 409 C->getValueAPF().bitcastToAPInt().getZExtValue()); 410 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { 411 pushStackMapConstant(Ops, Builder, C->getSExtValue()); 412 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 413 // This handles allocas as arguments to the statepoint (this is only 414 // really meaningful for a deopt value. For GC, we'd be trying to 415 // relocate the address of the alloca itself?) 416 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 417 "Incoming value is a frame index!"); 418 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 419 Builder.getFrameIndexTy())); 420 421 auto &MF = Builder.DAG.getMachineFunction(); 422 auto *MMO = getMachineMemOperand(MF, *FI); 423 MemRefs.push_back(MMO); 424 425 } else if (!RequireSpillSlot) { 426 // If this value is live in (not live-on-return, or live-through), we can 427 // treat it the same way patchpoint treats it's "live in" values. We'll 428 // end up folding some of these into stack references, but they'll be 429 // handled by the register allocator. Note that we do not have the notion 430 // of a late use so these values might be placed in registers which are 431 // clobbered by the call. This is fine for live-in. For live-through 432 // fix-up pass should be executed to force spilling of such registers. 433 Ops.push_back(Incoming); 434 } else { 435 // Otherwise, locate a spill slot and explicitly spill it so it 436 // can be found by the runtime later. We currently do not support 437 // tracking values through callee saved registers to their eventual 438 // spill location. This would be a useful optimization, but would 439 // need to be optional since it requires a lot of complexity on the 440 // runtime side which not all would support. 441 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); 442 Ops.push_back(std::get<0>(Res)); 443 if (auto *MMO = std::get<2>(Res)) 444 MemRefs.push_back(MMO); 445 Chain = std::get<1>(Res);; 446 } 447 448 Builder.DAG.setRoot(Chain); 449 } 450 451 /// Lower deopt state and gc pointer arguments of the statepoint. The actual 452 /// lowering is described in lowerIncomingStatepointValue. This function is 453 /// responsible for lowering everything in the right position and playing some 454 /// tricks to avoid redundant stack manipulation where possible. On 455 /// completion, 'Ops' will contain ready to use operands for machine code 456 /// statepoint. The chain nodes will have already been created and the DAG root 457 /// will be set to the last value spilled (if any were). 458 static void 459 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, 460 SmallVectorImpl<MachineMemOperand*> &MemRefs, SelectionDAGBuilder::StatepointLoweringInfo &SI, 461 SelectionDAGBuilder &Builder) { 462 // Lower the deopt and gc arguments for this statepoint. Layout will be: 463 // deopt argument length, deopt arguments.., gc arguments... 464 #ifndef NDEBUG 465 if (auto *GFI = Builder.GFI) { 466 // Check that each of the gc pointer and bases we've gotten out of the 467 // safepoint is something the strategy thinks might be a pointer (or vector 468 // of pointers) into the GC heap. This is basically just here to help catch 469 // errors during statepoint insertion. TODO: This should actually be in the 470 // Verifier, but we can't get to the GCStrategy from there (yet). 471 GCStrategy &S = GFI->getStrategy(); 472 for (const Value *V : SI.Bases) { 473 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 474 if (Opt.hasValue()) { 475 assert(Opt.getValue() && 476 "non gc managed base pointer found in statepoint"); 477 } 478 } 479 for (const Value *V : SI.Ptrs) { 480 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); 481 if (Opt.hasValue()) { 482 assert(Opt.getValue() && 483 "non gc managed derived pointer found in statepoint"); 484 } 485 } 486 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); 487 } else { 488 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); 489 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); 490 } 491 #endif 492 493 // Figure out what lowering strategy we're going to use for each part 494 // Note: Is is conservatively correct to lower both "live-in" and "live-out" 495 // as "live-through". A "live-through" variable is one which is "live-in", 496 // "live-out", and live throughout the lifetime of the call (i.e. we can find 497 // it from any PC within the transitive callee of the statepoint). In 498 // particular, if the callee spills callee preserved registers we may not 499 // be able to find a value placed in that register during the call. This is 500 // fine for live-out, but not for live-through. If we were willing to make 501 // assumptions about the code generator producing the callee, we could 502 // potentially allow live-through values in callee saved registers. 503 const bool LiveInDeopt = 504 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; 505 506 auto isGCValue = [&](const Value *V) { 507 auto *Ty = V->getType(); 508 if (!Ty->isPtrOrPtrVectorTy()) 509 return false; 510 if (auto *GFI = Builder.GFI) 511 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 512 return *IsManaged; 513 return true; // conservative 514 }; 515 516 auto requireSpillSlot = [&](const Value *V) { 517 return !(LiveInDeopt || UseRegistersForDeoptValues) || isGCValue(V); 518 }; 519 520 // Before we actually start lowering (and allocating spill slots for values), 521 // reserve any stack slots which we judge to be profitable to reuse for a 522 // particular value. This is purely an optimization over the code below and 523 // doesn't change semantics at all. It is important for performance that we 524 // reserve slots for both deopt and gc values before lowering either. 525 for (const Value *V : SI.DeoptState) { 526 if (requireSpillSlot(V)) 527 reservePreviousStackSlotForValue(V, Builder); 528 } 529 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 530 reservePreviousStackSlotForValue(SI.Bases[i], Builder); 531 reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); 532 } 533 534 // First, prefix the list with the number of unique values to be 535 // lowered. Note that this is the number of *Values* not the 536 // number of SDValues required to lower them. 537 const int NumVMSArgs = SI.DeoptState.size(); 538 pushStackMapConstant(Ops, Builder, NumVMSArgs); 539 540 // The vm state arguments are lowered in an opaque manner. We do not know 541 // what type of values are contained within. 542 for (const Value *V : SI.DeoptState) { 543 SDValue Incoming; 544 // If this is a function argument at a static frame index, generate it as 545 // the frame index. 546 if (const Argument *Arg = dyn_cast<Argument>(V)) { 547 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); 548 if (FI != INT_MAX) 549 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); 550 } 551 if (!Incoming.getNode()) 552 Incoming = Builder.getValue(V); 553 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs, 554 Builder); 555 } 556 557 // Finally, go ahead and lower all the gc arguments. There's no prefixed 558 // length for this one. After lowering, we'll have the base and pointer 559 // arrays interwoven with each (lowered) base pointer immediately followed by 560 // it's (lowered) derived pointer. i.e 561 // (base[0], ptr[0], base[1], ptr[1], ...) 562 for (unsigned i = 0; i < SI.Bases.size(); ++i) { 563 const Value *Base = SI.Bases[i]; 564 lowerIncomingStatepointValue(Builder.getValue(Base), 565 /*RequireSpillSlot*/ true, Ops, MemRefs, 566 Builder); 567 568 const Value *Ptr = SI.Ptrs[i]; 569 lowerIncomingStatepointValue(Builder.getValue(Ptr), 570 /*RequireSpillSlot*/ true, Ops, MemRefs, 571 Builder); 572 } 573 574 // If there are any explicit spill slots passed to the statepoint, record 575 // them, but otherwise do not do anything special. These are user provided 576 // allocas and give control over placement to the consumer. In this case, 577 // it is the contents of the slot which may get updated, not the pointer to 578 // the alloca 579 for (Value *V : SI.GCArgs) { 580 SDValue Incoming = Builder.getValue(V); 581 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { 582 // This handles allocas as arguments to the statepoint 583 assert(Incoming.getValueType() == Builder.getFrameIndexTy() && 584 "Incoming value is a frame index!"); 585 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 586 Builder.getFrameIndexTy())); 587 588 auto &MF = Builder.DAG.getMachineFunction(); 589 auto *MMO = getMachineMemOperand(MF, *FI); 590 MemRefs.push_back(MMO); 591 } 592 } 593 594 // Record computed locations for all lowered values. 595 // This can not be embedded in lowering loops as we need to record *all* 596 // values, while previous loops account only values with unique SDValues. 597 const Instruction *StatepointInstr = SI.StatepointInstr; 598 auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; 599 600 for (const GCRelocateInst *Relocate : SI.GCRelocates) { 601 const Value *V = Relocate->getDerivedPtr(); 602 SDValue SDV = Builder.getValue(V); 603 SDValue Loc = Builder.StatepointLowering.getLocation(SDV); 604 605 if (Loc.getNode()) { 606 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); 607 } else { 608 // Record value as visited, but not spilled. This is case for allocas 609 // and constants. For this values we can avoid emitting spill load while 610 // visiting corresponding gc_relocate. 611 // Actually we do not need to record them in this map at all. 612 // We do this only to check that we are not relocating any unvisited 613 // value. 614 SpillMap[V] = None; 615 616 // Default llvm mechanisms for exporting values which are used in 617 // different basic blocks does not work for gc relocates. 618 // Note that it would be incorrect to teach llvm that all relocates are 619 // uses of the corresponding values so that it would automatically 620 // export them. Relocates of the spilled values does not use original 621 // value. 622 if (Relocate->getParent() != StatepointInstr->getParent()) 623 Builder.ExportFromCurrentBlock(V); 624 } 625 } 626 } 627 628 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( 629 SelectionDAGBuilder::StatepointLoweringInfo &SI) { 630 // The basic scheme here is that information about both the original call and 631 // the safepoint is encoded in the CallInst. We create a temporary call and 632 // lower it, then reverse engineer the calling sequence. 633 634 NumOfStatepoints++; 635 // Clear state 636 StatepointLowering.startNewStatepoint(*this); 637 assert(SI.Bases.size() == SI.Ptrs.size() && 638 SI.Ptrs.size() <= SI.GCRelocates.size()); 639 640 #ifndef NDEBUG 641 for (auto *Reloc : SI.GCRelocates) 642 if (Reloc->getParent() == SI.StatepointInstr->getParent()) 643 StatepointLowering.scheduleRelocCall(*Reloc); 644 #endif 645 646 // Lower statepoint vmstate and gcstate arguments 647 SmallVector<SDValue, 10> LoweredMetaArgs; 648 SmallVector<MachineMemOperand*, 16> MemRefs; 649 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); 650 651 // Now that we've emitted the spills, we need to update the root so that the 652 // call sequence is ordered correctly. 653 SI.CLI.setChain(getRoot()); 654 655 // Get call node, we will replace it later with statepoint 656 SDValue ReturnVal; 657 SDNode *CallNode; 658 std::tie(ReturnVal, CallNode) = 659 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); 660 661 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END 662 // nodes with all the appropriate arguments and return values. 663 664 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 665 SDValue Chain = CallNode->getOperand(0); 666 667 SDValue Glue; 668 bool CallHasIncomingGlue = CallNode->getGluedNode(); 669 if (CallHasIncomingGlue) { 670 // Glue is always last operand 671 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); 672 } 673 674 // Build the GC_TRANSITION_START node if necessary. 675 // 676 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the 677 // order in which they appear in the call to the statepoint intrinsic. If 678 // any of the operands is a pointer-typed, that operand is immediately 679 // followed by a SRCVALUE for the pointer that may be used during lowering 680 // (e.g. to form MachinePointerInfo values for loads/stores). 681 const bool IsGCTransition = 682 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == 683 (uint64_t)StatepointFlags::GCTransition; 684 if (IsGCTransition) { 685 SmallVector<SDValue, 8> TSOps; 686 687 // Add chain 688 TSOps.push_back(Chain); 689 690 // Add GC transition arguments 691 for (const Value *V : SI.GCTransitionArgs) { 692 TSOps.push_back(getValue(V)); 693 if (V->getType()->isPointerTy()) 694 TSOps.push_back(DAG.getSrcValue(V)); 695 } 696 697 // Add glue if necessary 698 if (CallHasIncomingGlue) 699 TSOps.push_back(Glue); 700 701 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 702 703 SDValue GCTransitionStart = 704 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); 705 706 Chain = GCTransitionStart.getValue(0); 707 Glue = GCTransitionStart.getValue(1); 708 } 709 710 // TODO: Currently, all of these operands are being marked as read/write in 711 // PrologEpilougeInserter.cpp, we should special case the VMState arguments 712 // and flags to be read-only. 713 SmallVector<SDValue, 40> Ops; 714 715 // Add the <id> and <numBytes> constants. 716 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); 717 Ops.push_back( 718 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); 719 720 // Calculate and push starting position of vmstate arguments 721 // Get number of arguments incoming directly into call node 722 unsigned NumCallRegArgs = 723 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); 724 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); 725 726 // Add call target 727 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); 728 Ops.push_back(CallTarget); 729 730 // Add call arguments 731 // Get position of register mask in the call 732 SDNode::op_iterator RegMaskIt; 733 if (CallHasIncomingGlue) 734 RegMaskIt = CallNode->op_end() - 2; 735 else 736 RegMaskIt = CallNode->op_end() - 1; 737 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); 738 739 // Add a constant argument for the calling convention 740 pushStackMapConstant(Ops, *this, SI.CLI.CallConv); 741 742 // Add a constant argument for the flags 743 uint64_t Flags = SI.StatepointFlags; 744 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && 745 "Unknown flag used"); 746 pushStackMapConstant(Ops, *this, Flags); 747 748 // Insert all vmstate and gcstate arguments 749 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); 750 751 // Add register mask from call node 752 Ops.push_back(*RegMaskIt); 753 754 // Add chain 755 Ops.push_back(Chain); 756 757 // Same for the glue, but we add it only if original call had it 758 if (Glue.getNode()) 759 Ops.push_back(Glue); 760 761 // Compute return values. Provide a glue output since we consume one as 762 // input. This allows someone else to chain off us as needed. 763 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 764 765 MachineSDNode *StatepointMCNode = 766 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); 767 DAG.setNodeMemRefs(StatepointMCNode, MemRefs); 768 769 SDNode *SinkNode = StatepointMCNode; 770 771 // Build the GC_TRANSITION_END node if necessary. 772 // 773 // See the comment above regarding GC_TRANSITION_START for the layout of 774 // the operands to the GC_TRANSITION_END node. 775 if (IsGCTransition) { 776 SmallVector<SDValue, 8> TEOps; 777 778 // Add chain 779 TEOps.push_back(SDValue(StatepointMCNode, 0)); 780 781 // Add GC transition arguments 782 for (const Value *V : SI.GCTransitionArgs) { 783 TEOps.push_back(getValue(V)); 784 if (V->getType()->isPointerTy()) 785 TEOps.push_back(DAG.getSrcValue(V)); 786 } 787 788 // Add glue 789 TEOps.push_back(SDValue(StatepointMCNode, 1)); 790 791 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 792 793 SDValue GCTransitionStart = 794 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); 795 796 SinkNode = GCTransitionStart.getNode(); 797 } 798 799 // Replace original call 800 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root 801 // Remove original call node 802 DAG.DeleteNode(CallNode); 803 804 // DON'T set the root - under the assumption that it's already set past the 805 // inserted node we created. 806 807 // TODO: A better future implementation would be to emit a single variable 808 // argument, variable return value STATEPOINT node here and then hookup the 809 // return value of each gc.relocate to the respective output of the 810 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear 811 // to actually be possible today. 812 813 return ReturnVal; 814 } 815 816 void 817 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I, 818 const BasicBlock *EHPadBB /*= nullptr*/) { 819 assert(I.getCallingConv() != CallingConv::AnyReg && 820 "anyregcc is not supported on statepoints!"); 821 822 #ifndef NDEBUG 823 // Check that the associated GCStrategy expects to encounter statepoints. 824 assert(GFI->getStrategy().useStatepoints() && 825 "GCStrategy does not expect to encounter statepoints"); 826 #endif 827 828 SDValue ActualCallee; 829 SDValue Callee = getValue(I.getActualCalledOperand()); 830 831 if (I.getNumPatchBytes() > 0) { 832 // If we've been asked to emit a nop sequence instead of a call instruction 833 // for this statepoint then don't lower the call target, but use a constant 834 // `undef` instead. Not lowering the call target lets statepoint clients 835 // get away without providing a physical address for the symbolic call 836 // target at link time. 837 ActualCallee = DAG.getUNDEF(Callee.getValueType()); 838 } else { 839 ActualCallee = Callee; 840 } 841 842 StatepointLoweringInfo SI(DAG); 843 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos, 844 I.getNumCallArgs(), ActualCallee, 845 I.getActualReturnType(), false /* IsPatchPoint */); 846 847 // There may be duplication in the gc.relocate list; such as two copies of 848 // each relocation on normal and exceptional path for an invoke. We only 849 // need to spill once and record one copy in the stackmap, but we need to 850 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best 851 // handled as a CSE problem elsewhere.) 852 // TODO: There a couple of major stackmap size optimizations we could do 853 // here if we wished. 854 // 1) If we've encountered a derived pair {B, D}, we don't need to actually 855 // record {B,B} if it's seen later. 856 // 2) Due to rematerialization, actual derived pointers are somewhat rare; 857 // given that, we could change the format to record base pointer relocations 858 // separately with half the space. This would require a format rev and a 859 // fairly major rework of the STATEPOINT node though. 860 SmallSet<SDValue, 8> Seen; 861 for (const GCRelocateInst *Relocate : I.getGCRelocates()) { 862 SI.GCRelocates.push_back(Relocate); 863 864 SDValue DerivedSD = getValue(Relocate->getDerivedPtr()); 865 if (Seen.insert(DerivedSD).second) { 866 SI.Bases.push_back(Relocate->getBasePtr()); 867 SI.Ptrs.push_back(Relocate->getDerivedPtr()); 868 } 869 } 870 871 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end()); 872 SI.StatepointInstr = &I; 873 SI.ID = I.getID(); 874 875 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end()); 876 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(), 877 I.gc_transition_args_end()); 878 879 SI.StatepointFlags = I.getFlags(); 880 SI.NumPatchBytes = I.getNumPatchBytes(); 881 SI.EHPadBB = EHPadBB; 882 883 SDValue ReturnValue = LowerAsSTATEPOINT(SI); 884 885 // Export the result value if needed 886 const GCResultInst *GCResult = I.getGCResult(); 887 Type *RetTy = I.getActualReturnType(); 888 if (!RetTy->isVoidTy() && GCResult) { 889 if (GCResult->getParent() != I.getParent()) { 890 // Result value will be used in a different basic block so we need to 891 // export it now. Default exporting mechanism will not work here because 892 // statepoint call has a different type than the actual call. It means 893 // that by default llvm will create export register of the wrong type 894 // (always i32 in our case). So instead we need to create export register 895 // with correct type manually. 896 // TODO: To eliminate this problem we can remove gc.result intrinsics 897 // completely and make statepoint call to return a tuple. 898 unsigned Reg = FuncInfo.CreateRegs(RetTy); 899 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 900 DAG.getDataLayout(), Reg, RetTy, 901 I.getCallingConv()); 902 SDValue Chain = DAG.getEntryNode(); 903 904 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); 905 PendingExports.push_back(Chain); 906 FuncInfo.ValueMap[&I] = Reg; 907 } else { 908 // Result value will be used in a same basic block. Don't export it or 909 // perform any explicit register copies. 910 // We'll replace the actuall call node shortly. gc_result will grab 911 // this value. 912 setValue(&I, ReturnValue); 913 } 914 } else { 915 // The token value is never used from here on, just generate a poison value 916 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc())); 917 } 918 } 919 920 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( 921 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, 922 bool VarArgDisallowed, bool ForceVoidReturnTy) { 923 StatepointLoweringInfo SI(DAG); 924 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); 925 populateCallLoweringInfo( 926 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, 927 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), 928 false); 929 if (!VarArgDisallowed) 930 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); 931 932 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); 933 934 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; 935 936 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); 937 SI.ID = SD.StatepointID.getValueOr(DefaultID); 938 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); 939 940 SI.DeoptState = 941 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); 942 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); 943 SI.EHPadBB = EHPadBB; 944 945 // NB! The GC arguments are deliberately left empty. 946 947 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { 948 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); 949 setValue(Call, ReturnVal); 950 } 951 } 952 953 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( 954 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { 955 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, 956 /* VarArgDisallowed = */ false, 957 /* ForceVoidReturnTy = */ false); 958 } 959 960 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { 961 // The result value of the gc_result is simply the result of the actual 962 // call. We've already emitted this, so just grab the value. 963 const GCStatepointInst *I = CI.getStatepoint(); 964 965 if (I->getParent() != CI.getParent()) { 966 // Statepoint is in different basic block so we should have stored call 967 // result in a virtual register. 968 // We can not use default getValue() functionality to copy value from this 969 // register because statepoint and actual call return types can be 970 // different, and getValue() will use CopyFromReg of the wrong type, 971 // which is always i32 in our case. 972 Type *RetTy = I->getActualReturnType(); 973 SDValue CopyFromReg = getCopyFromRegs(I, RetTy); 974 975 assert(CopyFromReg.getNode()); 976 setValue(&CI, CopyFromReg); 977 } else { 978 setValue(&CI, getValue(I)); 979 } 980 } 981 982 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { 983 #ifndef NDEBUG 984 // Consistency check 985 // We skip this check for relocates not in the same basic block as their 986 // statepoint. It would be too expensive to preserve validation info through 987 // different basic blocks. 988 if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) 989 StatepointLowering.relocCallVisited(Relocate); 990 991 auto *Ty = Relocate.getType()->getScalarType(); 992 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) 993 assert(*IsManaged && "Non gc managed pointer relocated!"); 994 #endif 995 996 const Value *DerivedPtr = Relocate.getDerivedPtr(); 997 SDValue SD = getValue(DerivedPtr); 998 999 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) { 1000 // Lowering relocate(undef) as arbitrary constant. Current constant value 1001 // is chosen such that it's unlikely to be a valid pointer. 1002 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64)); 1003 return; 1004 } 1005 1006 auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; 1007 auto SlotIt = SpillMap.find(DerivedPtr); 1008 assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); 1009 Optional<int> DerivedPtrLocation = SlotIt->second; 1010 1011 // We didn't need to spill these special cases (constants and allocas). 1012 // See the handling in spillIncomingValueForStatepoint for detail. 1013 if (!DerivedPtrLocation) { 1014 setValue(&Relocate, SD); 1015 return; 1016 } 1017 1018 unsigned Index = *DerivedPtrLocation; 1019 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); 1020 1021 // All the reloads are independent and are reading memory only modified by 1022 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of 1023 // this this let's CSE kick in for free and allows reordering of instructions 1024 // if possible. The lowering for statepoint sets the root, so this is 1025 // ordering all reloads with the either a) the statepoint node itself, or b) 1026 // the entry of the current block for an invoke statepoint. 1027 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot() 1028 1029 auto &MF = DAG.getMachineFunction(); 1030 auto &MFI = MF.getFrameInfo(); 1031 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); 1032 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 1033 MFI.getObjectSize(Index), 1034 MFI.getObjectAlign(Index)); 1035 1036 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 1037 Relocate.getType()); 1038 1039 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, 1040 SpillSlot, LoadMMO); 1041 PendingLoads.push_back(SpillLoad.getValue(1)); 1042 1043 assert(SpillLoad.getNode()); 1044 setValue(&Relocate, SpillLoad); 1045 } 1046 1047 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { 1048 const auto &TLI = DAG.getTargetLoweringInfo(); 1049 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), 1050 TLI.getPointerTy(DAG.getDataLayout())); 1051 1052 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular 1053 // call. We also do not lower the return value to any virtual register, and 1054 // change the immediately following return to a trap instruction. 1055 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, 1056 /* VarArgDisallowed = */ true, 1057 /* ForceVoidReturnTy = */ true); 1058 } 1059 1060 void SelectionDAGBuilder::LowerDeoptimizingReturn() { 1061 // We do not lower the return value from llvm.deoptimize to any virtual 1062 // register, and change the immediately following return to a trap 1063 // instruction. 1064 if (DAG.getTarget().Options.TrapUnreachable) 1065 DAG.setRoot( 1066 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 1067 } 1068