1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachinePassRegistry.h" 47 #include "llvm/CodeGen/MachineRegisterInfo.h" 48 #include "llvm/CodeGen/SchedulerRegistry.h" 49 #include "llvm/CodeGen/SelectionDAG.h" 50 #include "llvm/CodeGen/SelectionDAGNodes.h" 51 #include "llvm/CodeGen/StackProtector.h" 52 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DiagnosticInfo.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/InlineAsm.h" 67 #include "llvm/IR/InstIterator.h" 68 #include "llvm/IR/InstrTypes.h" 69 #include "llvm/IR/Instruction.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Intrinsics.h" 73 #include "llvm/IR/Metadata.h" 74 #include "llvm/IR/Type.h" 75 #include "llvm/IR/User.h" 76 #include "llvm/IR/Value.h" 77 #include "llvm/MC/MCInstrDesc.h" 78 #include "llvm/MC/MCRegisterInfo.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/KnownBits.h" 88 #include "llvm/Support/MachineValueType.h" 89 #include "llvm/Support/Timer.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Target/TargetIntrinsicInfo.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <string> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 #define DEBUG_TYPE "isel" 108 109 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 110 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 111 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 112 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 113 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 114 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 115 STATISTIC(NumFastIselFailLowerArguments, 116 "Number of entry blocks where fast isel failed to lower arguments"); 117 118 static cl::opt<int> EnableFastISelAbort( 119 "fast-isel-abort", cl::Hidden, 120 cl::desc("Enable abort calls when \"fast\" instruction selection " 121 "fails to lower an instruction: 0 disable the abort, 1 will " 122 "abort but for args, calls and terminators, 2 will also " 123 "abort for argument lowering, and 3 will never fallback " 124 "to SelectionDAG.")); 125 126 static cl::opt<bool> EnableFastISelFallbackReport( 127 "fast-isel-report-on-fallback", cl::Hidden, 128 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 129 "falls back to SelectionDAG.")); 130 131 static cl::opt<bool> 132 UseMBPI("use-mbpi", 133 cl::desc("use Machine Branch Probability Info"), 134 cl::init(true), cl::Hidden); 135 136 #ifndef NDEBUG 137 static cl::opt<std::string> 138 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 139 cl::desc("Only display the basic block whose name " 140 "matches this for all view-*-dags options")); 141 static cl::opt<bool> 142 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 143 cl::desc("Pop up a window to show dags before the first " 144 "dag combine pass")); 145 static cl::opt<bool> 146 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 147 cl::desc("Pop up a window to show dags before legalize types")); 148 static cl::opt<bool> 149 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 150 cl::desc("Pop up a window to show dags before legalize")); 151 static cl::opt<bool> 152 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 153 cl::desc("Pop up a window to show dags before the second " 154 "dag combine pass")); 155 static cl::opt<bool> 156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 157 cl::desc("Pop up a window to show dags before the post legalize types" 158 " dag combine pass")); 159 static cl::opt<bool> 160 ViewISelDAGs("view-isel-dags", cl::Hidden, 161 cl::desc("Pop up a window to show isel dags as they are selected")); 162 static cl::opt<bool> 163 ViewSchedDAGs("view-sched-dags", cl::Hidden, 164 cl::desc("Pop up a window to show sched dags as they are processed")); 165 static cl::opt<bool> 166 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 167 cl::desc("Pop up a window to show SUnit dags after they are processed")); 168 #else 169 static const bool ViewDAGCombine1 = false, 170 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 171 ViewDAGCombine2 = false, 172 ViewDAGCombineLT = false, 173 ViewISelDAGs = false, ViewSchedDAGs = false, 174 ViewSUnitDAGs = false; 175 #endif 176 177 //===---------------------------------------------------------------------===// 178 /// 179 /// RegisterScheduler class - Track the registration of instruction schedulers. 180 /// 181 //===---------------------------------------------------------------------===// 182 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 183 RegisterScheduler::Registry; 184 185 //===---------------------------------------------------------------------===// 186 /// 187 /// ISHeuristic command line option for instruction schedulers. 188 /// 189 //===---------------------------------------------------------------------===// 190 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 191 RegisterPassParser<RegisterScheduler>> 192 ISHeuristic("pre-RA-sched", 193 cl::init(&createDefaultScheduler), cl::Hidden, 194 cl::desc("Instruction schedulers available (before register" 195 " allocation):")); 196 197 static RegisterScheduler 198 defaultListDAGScheduler("default", "Best scheduler for the target", 199 createDefaultScheduler); 200 201 namespace llvm { 202 203 //===--------------------------------------------------------------------===// 204 /// This class is used by SelectionDAGISel to temporarily override 205 /// the optimization level on a per-function basis. 206 class OptLevelChanger { 207 SelectionDAGISel &IS; 208 CodeGenOpt::Level SavedOptLevel; 209 bool SavedFastISel; 210 211 public: 212 OptLevelChanger(SelectionDAGISel &ISel, 213 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 214 SavedOptLevel = IS.OptLevel; 215 if (NewOptLevel == SavedOptLevel) 216 return; 217 IS.OptLevel = NewOptLevel; 218 IS.TM.setOptLevel(NewOptLevel); 219 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 220 << IS.MF->getFunction().getName() << "\n"); 221 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 222 << NewOptLevel << "\n"); 223 SavedFastISel = IS.TM.Options.EnableFastISel; 224 if (NewOptLevel == CodeGenOpt::None) { 225 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 226 LLVM_DEBUG( 227 dbgs() << "\tFastISel is " 228 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 229 << "\n"); 230 } 231 } 232 233 ~OptLevelChanger() { 234 if (IS.OptLevel == SavedOptLevel) 235 return; 236 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 237 << IS.MF->getFunction().getName() << "\n"); 238 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 239 << SavedOptLevel << "\n"); 240 IS.OptLevel = SavedOptLevel; 241 IS.TM.setOptLevel(SavedOptLevel); 242 IS.TM.setFastISel(SavedFastISel); 243 } 244 }; 245 246 //===--------------------------------------------------------------------===// 247 /// createDefaultScheduler - This creates an instruction scheduler appropriate 248 /// for the target. 249 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 250 CodeGenOpt::Level OptLevel) { 251 const TargetLowering *TLI = IS->TLI; 252 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 253 254 // Try first to see if the Target has its own way of selecting a scheduler 255 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 256 return SchedulerCtor(IS, OptLevel); 257 } 258 259 if (OptLevel == CodeGenOpt::None || 260 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 261 TLI->getSchedulingPreference() == Sched::Source) 262 return createSourceListDAGScheduler(IS, OptLevel); 263 if (TLI->getSchedulingPreference() == Sched::RegPressure) 264 return createBURRListDAGScheduler(IS, OptLevel); 265 if (TLI->getSchedulingPreference() == Sched::Hybrid) 266 return createHybridListDAGScheduler(IS, OptLevel); 267 if (TLI->getSchedulingPreference() == Sched::VLIW) 268 return createVLIWDAGScheduler(IS, OptLevel); 269 assert(TLI->getSchedulingPreference() == Sched::ILP && 270 "Unknown sched type!"); 271 return createILPListDAGScheduler(IS, OptLevel); 272 } 273 274 } // end namespace llvm 275 276 // EmitInstrWithCustomInserter - This method should be implemented by targets 277 // that mark instructions with the 'usesCustomInserter' flag. These 278 // instructions are special in various ways, which require special support to 279 // insert. The specified MachineInstr is created but not inserted into any 280 // basic blocks, and this method is called to expand it into a sequence of 281 // instructions, potentially also creating new basic blocks and control flow. 282 // When new basic blocks are inserted and the edges from MBB to its successors 283 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 284 // DenseMap. 285 MachineBasicBlock * 286 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 287 MachineBasicBlock *MBB) const { 288 #ifndef NDEBUG 289 dbgs() << "If a target marks an instruction with " 290 "'usesCustomInserter', it must implement " 291 "TargetLowering::EmitInstrWithCustomInserter!"; 292 #endif 293 llvm_unreachable(nullptr); 294 } 295 296 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 297 SDNode *Node) const { 298 assert(!MI.hasPostISelHook() && 299 "If a target marks an instruction with 'hasPostISelHook', " 300 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 301 } 302 303 //===----------------------------------------------------------------------===// 304 // SelectionDAGISel code 305 //===----------------------------------------------------------------------===// 306 307 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 308 CodeGenOpt::Level OL) : 309 MachineFunctionPass(ID), TM(tm), 310 FuncInfo(new FunctionLoweringInfo()), 311 SwiftError(new SwiftErrorValueTracking()), 312 CurDAG(new SelectionDAG(tm, OL)), 313 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)), 314 AA(), GFI(), 315 OptLevel(OL), 316 DAGSize(0) { 317 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 318 initializeBranchProbabilityInfoWrapperPassPass( 319 *PassRegistry::getPassRegistry()); 320 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 321 initializeTargetLibraryInfoWrapperPassPass( 322 *PassRegistry::getPassRegistry()); 323 } 324 325 SelectionDAGISel::~SelectionDAGISel() { 326 delete SDB; 327 delete CurDAG; 328 delete FuncInfo; 329 delete SwiftError; 330 } 331 332 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 333 if (OptLevel != CodeGenOpt::None) 334 AU.addRequired<AAResultsWrapperPass>(); 335 AU.addRequired<GCModuleInfo>(); 336 AU.addRequired<StackProtector>(); 337 AU.addPreserved<GCModuleInfo>(); 338 AU.addRequired<TargetLibraryInfoWrapperPass>(); 339 AU.addRequired<TargetTransformInfoWrapperPass>(); 340 if (UseMBPI && OptLevel != CodeGenOpt::None) 341 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 342 MachineFunctionPass::getAnalysisUsage(AU); 343 } 344 345 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 346 /// may trap on it. In this case we have to split the edge so that the path 347 /// through the predecessor block that doesn't go to the phi block doesn't 348 /// execute the possibly trapping instruction. If available, we pass domtree 349 /// and loop info to be updated when we split critical edges. This is because 350 /// SelectionDAGISel preserves these analyses. 351 /// This is required for correctness, so it must be done at -O0. 352 /// 353 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 354 LoopInfo *LI) { 355 // Loop for blocks with phi nodes. 356 for (BasicBlock &BB : Fn) { 357 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 358 if (!PN) continue; 359 360 ReprocessBlock: 361 // For each block with a PHI node, check to see if any of the input values 362 // are potentially trapping constant expressions. Constant expressions are 363 // the only potentially trapping value that can occur as the argument to a 364 // PHI. 365 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 366 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 367 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 368 if (!CE || !CE->canTrap()) continue; 369 370 // The only case we have to worry about is when the edge is critical. 371 // Since this block has a PHI Node, we assume it has multiple input 372 // edges: check to see if the pred has multiple successors. 373 BasicBlock *Pred = PN->getIncomingBlock(i); 374 if (Pred->getTerminator()->getNumSuccessors() == 1) 375 continue; 376 377 // Okay, we have to split this edge. 378 SplitCriticalEdge( 379 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 380 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 381 goto ReprocessBlock; 382 } 383 } 384 } 385 386 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 387 MachineModuleInfo &MMI) { 388 // Only needed for MSVC 389 if (!TT.isKnownWindowsMSVCEnvironment()) 390 return; 391 392 // If it's already set, nothing to do. 393 if (MMI.usesMSVCFloatingPoint()) 394 return; 395 396 for (const Instruction &I : instructions(F)) { 397 if (I.getType()->isFPOrFPVectorTy()) { 398 MMI.setUsesMSVCFloatingPoint(true); 399 return; 400 } 401 for (const auto &Op : I.operands()) { 402 if (Op->getType()->isFPOrFPVectorTy()) { 403 MMI.setUsesMSVCFloatingPoint(true); 404 return; 405 } 406 } 407 } 408 } 409 410 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 411 // If we already selected that function, we do not need to run SDISel. 412 if (mf.getProperties().hasProperty( 413 MachineFunctionProperties::Property::Selected)) 414 return false; 415 // Do some sanity-checking on the command-line options. 416 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 417 "-fast-isel-abort > 0 requires -fast-isel"); 418 419 const Function &Fn = mf.getFunction(); 420 MF = &mf; 421 422 // Reset the target options before resetting the optimization 423 // level below. 424 // FIXME: This is a horrible hack and should be processed via 425 // codegen looking at the optimization level explicitly when 426 // it wants to look at it. 427 TM.resetTargetOptions(Fn); 428 // Reset OptLevel to None for optnone functions. 429 CodeGenOpt::Level NewOptLevel = OptLevel; 430 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 431 NewOptLevel = CodeGenOpt::None; 432 OptLevelChanger OLC(*this, NewOptLevel); 433 434 TII = MF->getSubtarget().getInstrInfo(); 435 TLI = MF->getSubtarget().getTargetLowering(); 436 RegInfo = &MF->getRegInfo(); 437 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 438 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 439 ORE = make_unique<OptimizationRemarkEmitter>(&Fn); 440 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 441 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 442 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 443 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 444 445 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 446 447 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 448 449 CurDAG->init(*MF, *ORE, this, LibInfo, 450 getAnalysisIfAvailable<LegacyDivergenceAnalysis>()); 451 FuncInfo->set(Fn, *MF, CurDAG); 452 SwiftError->setFunction(*MF); 453 454 // Now get the optional analyzes if we want to. 455 // This is based on the possibly changed OptLevel (after optnone is taken 456 // into account). That's unfortunate but OK because it just means we won't 457 // ask for passes that have been required anyway. 458 459 if (UseMBPI && OptLevel != CodeGenOpt::None) 460 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 461 else 462 FuncInfo->BPI = nullptr; 463 464 if (OptLevel != CodeGenOpt::None) 465 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 466 else 467 AA = nullptr; 468 469 SDB->init(GFI, AA, LibInfo); 470 471 MF->setHasInlineAsm(false); 472 473 FuncInfo->SplitCSR = false; 474 475 // We split CSR if the target supports it for the given function 476 // and the function has only return exits. 477 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 478 FuncInfo->SplitCSR = true; 479 480 // Collect all the return blocks. 481 for (const BasicBlock &BB : Fn) { 482 if (!succ_empty(&BB)) 483 continue; 484 485 const Instruction *Term = BB.getTerminator(); 486 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 487 continue; 488 489 // Bail out if the exit block is not Return nor Unreachable. 490 FuncInfo->SplitCSR = false; 491 break; 492 } 493 } 494 495 MachineBasicBlock *EntryMBB = &MF->front(); 496 if (FuncInfo->SplitCSR) 497 // This performs initialization so lowering for SplitCSR will be correct. 498 TLI->initializeSplitCSR(EntryMBB); 499 500 SelectAllBasicBlocks(Fn); 501 if (FastISelFailed && EnableFastISelFallbackReport) { 502 DiagnosticInfoISelFallback DiagFallback(Fn); 503 Fn.getContext().diagnose(DiagFallback); 504 } 505 506 // If the first basic block in the function has live ins that need to be 507 // copied into vregs, emit the copies into the top of the block before 508 // emitting the code for the block. 509 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 510 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 511 512 // Insert copies in the entry block and the return blocks. 513 if (FuncInfo->SplitCSR) { 514 SmallVector<MachineBasicBlock*, 4> Returns; 515 // Collect all the return blocks. 516 for (MachineBasicBlock &MBB : mf) { 517 if (!MBB.succ_empty()) 518 continue; 519 520 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 521 if (Term != MBB.end() && Term->isReturn()) { 522 Returns.push_back(&MBB); 523 continue; 524 } 525 } 526 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 527 } 528 529 DenseMap<unsigned, unsigned> LiveInMap; 530 if (!FuncInfo->ArgDbgValues.empty()) 531 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 532 if (LI.second) 533 LiveInMap.insert(LI); 534 535 // Insert DBG_VALUE instructions for function arguments to the entry block. 536 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 537 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 538 bool hasFI = MI->getOperand(0).isFI(); 539 unsigned Reg = 540 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 541 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 542 EntryMBB->insert(EntryMBB->begin(), MI); 543 else { 544 MachineInstr *Def = RegInfo->getVRegDef(Reg); 545 if (Def) { 546 MachineBasicBlock::iterator InsertPos = Def; 547 // FIXME: VR def may not be in entry block. 548 Def->getParent()->insert(std::next(InsertPos), MI); 549 } else 550 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 551 << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); 552 } 553 554 // If Reg is live-in then update debug info to track its copy in a vreg. 555 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 556 if (LDI != LiveInMap.end()) { 557 assert(!hasFI && "There's no handling of frame pointer updating here yet " 558 "- add if needed"); 559 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 560 MachineBasicBlock::iterator InsertPos = Def; 561 const MDNode *Variable = MI->getDebugVariable(); 562 const MDNode *Expr = MI->getDebugExpression(); 563 DebugLoc DL = MI->getDebugLoc(); 564 bool IsIndirect = MI->isIndirectDebugValue(); 565 if (IsIndirect) 566 assert(MI->getOperand(1).getImm() == 0 && 567 "DBG_VALUE with nonzero offset"); 568 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 569 "Expected inlined-at fields to agree"); 570 // Def is never a terminator here, so it is ok to increment InsertPos. 571 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 572 IsIndirect, LDI->second, Variable, Expr); 573 574 // If this vreg is directly copied into an exported register then 575 // that COPY instructions also need DBG_VALUE, if it is the only 576 // user of LDI->second. 577 MachineInstr *CopyUseMI = nullptr; 578 for (MachineRegisterInfo::use_instr_iterator 579 UI = RegInfo->use_instr_begin(LDI->second), 580 E = RegInfo->use_instr_end(); UI != E; ) { 581 MachineInstr *UseMI = &*(UI++); 582 if (UseMI->isDebugValue()) continue; 583 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 584 CopyUseMI = UseMI; continue; 585 } 586 // Otherwise this is another use or second copy use. 587 CopyUseMI = nullptr; break; 588 } 589 if (CopyUseMI) { 590 // Use MI's debug location, which describes where Variable was 591 // declared, rather than whatever is attached to CopyUseMI. 592 MachineInstr *NewMI = 593 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 594 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 595 MachineBasicBlock::iterator Pos = CopyUseMI; 596 EntryMBB->insertAfter(Pos, NewMI); 597 } 598 } 599 } 600 601 // Determine if there are any calls in this machine function. 602 MachineFrameInfo &MFI = MF->getFrameInfo(); 603 for (const auto &MBB : *MF) { 604 if (MFI.hasCalls() && MF->hasInlineAsm()) 605 break; 606 607 for (const auto &MI : MBB) { 608 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 609 if ((MCID.isCall() && !MCID.isReturn()) || 610 MI.isStackAligningInlineAsm()) { 611 MFI.setHasCalls(true); 612 } 613 if (MI.isInlineAsm()) { 614 MF->setHasInlineAsm(true); 615 } 616 } 617 } 618 619 // Determine if there is a call to setjmp in the machine function. 620 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 621 622 // Determine if floating point is used for msvc 623 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 624 625 // Replace forward-declared registers with the registers containing 626 // the desired value. 627 MachineRegisterInfo &MRI = MF->getRegInfo(); 628 for (DenseMap<unsigned, unsigned>::iterator 629 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 630 I != E; ++I) { 631 unsigned From = I->first; 632 unsigned To = I->second; 633 // If To is also scheduled to be replaced, find what its ultimate 634 // replacement is. 635 while (true) { 636 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 637 if (J == E) break; 638 To = J->second; 639 } 640 // Make sure the new register has a sufficiently constrained register class. 641 if (TargetRegisterInfo::isVirtualRegister(From) && 642 TargetRegisterInfo::isVirtualRegister(To)) 643 MRI.constrainRegClass(To, MRI.getRegClass(From)); 644 // Replace it. 645 646 647 // Replacing one register with another won't touch the kill flags. 648 // We need to conservatively clear the kill flags as a kill on the old 649 // register might dominate existing uses of the new register. 650 if (!MRI.use_empty(To)) 651 MRI.clearKillFlags(From); 652 MRI.replaceRegWith(From, To); 653 } 654 655 TLI->finalizeLowering(*MF); 656 657 // Release function-specific state. SDB and CurDAG are already cleared 658 // at this point. 659 FuncInfo->clear(); 660 661 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 662 LLVM_DEBUG(MF->print(dbgs())); 663 664 return true; 665 } 666 667 static void reportFastISelFailure(MachineFunction &MF, 668 OptimizationRemarkEmitter &ORE, 669 OptimizationRemarkMissed &R, 670 bool ShouldAbort) { 671 // Print the function name explicitly if we don't have a debug location (which 672 // makes the diagnostic less useful) or if we're going to emit a raw error. 673 if (!R.getLocation().isValid() || ShouldAbort) 674 R << (" (in function: " + MF.getName() + ")").str(); 675 676 if (ShouldAbort) 677 report_fatal_error(R.getMsg()); 678 679 ORE.emit(R); 680 } 681 682 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 683 BasicBlock::const_iterator End, 684 bool &HadTailCall) { 685 // Allow creating illegal types during DAG building for the basic block. 686 CurDAG->NewNodesMustHaveLegalTypes = false; 687 688 // Lower the instructions. If a call is emitted as a tail call, cease emitting 689 // nodes for this block. 690 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 691 if (!ElidedArgCopyInstrs.count(&*I)) 692 SDB->visit(*I); 693 } 694 695 // Make sure the root of the DAG is up-to-date. 696 CurDAG->setRoot(SDB->getControlRoot()); 697 HadTailCall = SDB->HasTailCall; 698 SDB->resolveOrClearDbgInfo(); 699 SDB->clear(); 700 701 // Final step, emit the lowered DAG as machine code. 702 CodeGenAndEmitDAG(); 703 } 704 705 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 706 SmallPtrSet<SDNode*, 16> VisitedNodes; 707 SmallVector<SDNode*, 128> Worklist; 708 709 Worklist.push_back(CurDAG->getRoot().getNode()); 710 711 KnownBits Known; 712 713 do { 714 SDNode *N = Worklist.pop_back_val(); 715 716 // If we've already seen this node, ignore it. 717 if (!VisitedNodes.insert(N).second) 718 continue; 719 720 // Otherwise, add all chain operands to the worklist. 721 for (const SDValue &Op : N->op_values()) 722 if (Op.getValueType() == MVT::Other) 723 Worklist.push_back(Op.getNode()); 724 725 // If this is a CopyToReg with a vreg dest, process it. 726 if (N->getOpcode() != ISD::CopyToReg) 727 continue; 728 729 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 730 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 731 continue; 732 733 // Ignore non-integer values. 734 SDValue Src = N->getOperand(2); 735 EVT SrcVT = Src.getValueType(); 736 if (!SrcVT.isInteger()) 737 continue; 738 739 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 740 Known = CurDAG->computeKnownBits(Src); 741 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 742 } while (!Worklist.empty()); 743 } 744 745 void SelectionDAGISel::CodeGenAndEmitDAG() { 746 StringRef GroupName = "sdag"; 747 StringRef GroupDescription = "Instruction Selection and Scheduling"; 748 std::string BlockName; 749 bool MatchFilterBB = false; (void)MatchFilterBB; 750 #ifndef NDEBUG 751 TargetTransformInfo &TTI = 752 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 753 #endif 754 755 // Pre-type legalization allow creation of any node types. 756 CurDAG->NewNodesMustHaveLegalTypes = false; 757 758 #ifndef NDEBUG 759 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 760 FilterDAGBasicBlockName == 761 FuncInfo->MBB->getBasicBlock()->getName()); 762 #endif 763 #ifdef NDEBUG 764 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 765 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 766 ViewSUnitDAGs) 767 #endif 768 { 769 BlockName = 770 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 771 } 772 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 773 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 774 << "'\n"; 775 CurDAG->dump()); 776 777 if (ViewDAGCombine1 && MatchFilterBB) 778 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 779 780 // Run the DAG combiner in pre-legalize mode. 781 { 782 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 783 GroupDescription, TimePassesIsEnabled); 784 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 785 } 786 787 #ifndef NDEBUG 788 if (TTI.hasBranchDivergence()) 789 CurDAG->VerifyDAGDiverence(); 790 #endif 791 792 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 793 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 794 << "'\n"; 795 CurDAG->dump()); 796 797 // Second step, hack on the DAG until it only uses operations and types that 798 // the target supports. 799 if (ViewLegalizeTypesDAGs && MatchFilterBB) 800 CurDAG->viewGraph("legalize-types input for " + BlockName); 801 802 bool Changed; 803 { 804 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 805 GroupDescription, TimePassesIsEnabled); 806 Changed = CurDAG->LegalizeTypes(); 807 } 808 809 #ifndef NDEBUG 810 if (TTI.hasBranchDivergence()) 811 CurDAG->VerifyDAGDiverence(); 812 #endif 813 814 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 815 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 816 << "'\n"; 817 CurDAG->dump()); 818 819 // Only allow creation of legal node types. 820 CurDAG->NewNodesMustHaveLegalTypes = true; 821 822 if (Changed) { 823 if (ViewDAGCombineLT && MatchFilterBB) 824 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 825 826 // Run the DAG combiner in post-type-legalize mode. 827 { 828 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 829 GroupName, GroupDescription, TimePassesIsEnabled); 830 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 831 } 832 833 #ifndef NDEBUG 834 if (TTI.hasBranchDivergence()) 835 CurDAG->VerifyDAGDiverence(); 836 #endif 837 838 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 839 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 840 << "'\n"; 841 CurDAG->dump()); 842 } 843 844 { 845 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 846 GroupDescription, TimePassesIsEnabled); 847 Changed = CurDAG->LegalizeVectors(); 848 } 849 850 if (Changed) { 851 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 852 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 853 << "'\n"; 854 CurDAG->dump()); 855 856 { 857 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 858 GroupDescription, TimePassesIsEnabled); 859 CurDAG->LegalizeTypes(); 860 } 861 862 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 863 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 864 << "'\n"; 865 CurDAG->dump()); 866 867 if (ViewDAGCombineLT && MatchFilterBB) 868 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 869 870 // Run the DAG combiner in post-type-legalize mode. 871 { 872 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 873 GroupName, GroupDescription, TimePassesIsEnabled); 874 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 875 } 876 877 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 878 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 879 << "'\n"; 880 CurDAG->dump()); 881 882 #ifndef NDEBUG 883 if (TTI.hasBranchDivergence()) 884 CurDAG->VerifyDAGDiverence(); 885 #endif 886 } 887 888 if (ViewLegalizeDAGs && MatchFilterBB) 889 CurDAG->viewGraph("legalize input for " + BlockName); 890 891 { 892 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 893 GroupDescription, TimePassesIsEnabled); 894 CurDAG->Legalize(); 895 } 896 897 #ifndef NDEBUG 898 if (TTI.hasBranchDivergence()) 899 CurDAG->VerifyDAGDiverence(); 900 #endif 901 902 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 903 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 904 << "'\n"; 905 CurDAG->dump()); 906 907 if (ViewDAGCombine2 && MatchFilterBB) 908 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 909 910 // Run the DAG combiner in post-legalize mode. 911 { 912 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 913 GroupDescription, TimePassesIsEnabled); 914 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 915 } 916 917 #ifndef NDEBUG 918 if (TTI.hasBranchDivergence()) 919 CurDAG->VerifyDAGDiverence(); 920 #endif 921 922 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 923 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 924 << "'\n"; 925 CurDAG->dump()); 926 927 if (OptLevel != CodeGenOpt::None) 928 ComputeLiveOutVRegInfo(); 929 930 if (ViewISelDAGs && MatchFilterBB) 931 CurDAG->viewGraph("isel input for " + BlockName); 932 933 // Third, instruction select all of the operations to machine code, adding the 934 // code to the MachineBasicBlock. 935 { 936 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 937 GroupDescription, TimePassesIsEnabled); 938 DoInstructionSelection(); 939 } 940 941 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 942 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 943 << "'\n"; 944 CurDAG->dump()); 945 946 if (ViewSchedDAGs && MatchFilterBB) 947 CurDAG->viewGraph("scheduler input for " + BlockName); 948 949 // Schedule machine code. 950 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 951 { 952 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 953 GroupDescription, TimePassesIsEnabled); 954 Scheduler->Run(CurDAG, FuncInfo->MBB); 955 } 956 957 if (ViewSUnitDAGs && MatchFilterBB) 958 Scheduler->viewGraph(); 959 960 // Emit machine code to BB. This can change 'BB' to the last block being 961 // inserted into. 962 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 963 { 964 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 965 GroupDescription, TimePassesIsEnabled); 966 967 // FuncInfo->InsertPt is passed by reference and set to the end of the 968 // scheduled instructions. 969 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 970 } 971 972 // If the block was split, make sure we update any references that are used to 973 // update PHI nodes later on. 974 if (FirstMBB != LastMBB) 975 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 976 977 // Free the scheduler state. 978 { 979 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 980 GroupDescription, TimePassesIsEnabled); 981 delete Scheduler; 982 } 983 984 // Free the SelectionDAG state, now that we're finished with it. 985 CurDAG->clear(); 986 } 987 988 namespace { 989 990 /// ISelUpdater - helper class to handle updates of the instruction selection 991 /// graph. 992 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 993 SelectionDAG::allnodes_iterator &ISelPosition; 994 995 public: 996 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 997 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 998 999 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1000 /// deleted is the current ISelPosition node, update ISelPosition. 1001 /// 1002 void NodeDeleted(SDNode *N, SDNode *E) override { 1003 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1004 ++ISelPosition; 1005 } 1006 }; 1007 1008 } // end anonymous namespace 1009 1010 // This function is used to enforce the topological node id property 1011 // property leveraged during Instruction selection. Before selection all 1012 // nodes are given a non-negative id such that all nodes have a larger id than 1013 // their operands. As this holds transitively we can prune checks that a node N 1014 // is a predecessor of M another by not recursively checking through M's 1015 // operands if N's ID is larger than M's ID. This is significantly improves 1016 // performance of for various legality checks (e.g. IsLegalToFold / 1017 // UpdateChains). 1018 1019 // However, when we fuse multiple nodes into a single node 1020 // during selection we may induce a predecessor relationship between inputs and 1021 // outputs of distinct nodes being merged violating the topological property. 1022 // Should a fused node have a successor which has yet to be selected, our 1023 // legality checks would be incorrect. To avoid this we mark all unselected 1024 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1025 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1026 // We use bit-negation to more clearly enforce that node id -1 can only be 1027 // achieved by selected nodes). As the conversion is reversable the original Id, 1028 // topological pruning can still be leveraged when looking for unselected nodes. 1029 // This method is call internally in all ISel replacement calls. 1030 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1031 SmallVector<SDNode *, 4> Nodes; 1032 Nodes.push_back(Node); 1033 1034 while (!Nodes.empty()) { 1035 SDNode *N = Nodes.pop_back_val(); 1036 for (auto *U : N->uses()) { 1037 auto UId = U->getNodeId(); 1038 if (UId > 0) { 1039 InvalidateNodeId(U); 1040 Nodes.push_back(U); 1041 } 1042 } 1043 } 1044 } 1045 1046 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1047 // NodeId with the equivalent node id which is invalid for topological 1048 // pruning. 1049 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1050 int InvalidId = -(N->getNodeId() + 1); 1051 N->setNodeId(InvalidId); 1052 } 1053 1054 // getUninvalidatedNodeId - get original uninvalidated node id. 1055 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1056 int Id = N->getNodeId(); 1057 if (Id < -1) 1058 return -(Id + 1); 1059 return Id; 1060 } 1061 1062 void SelectionDAGISel::DoInstructionSelection() { 1063 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1064 << printMBBReference(*FuncInfo->MBB) << " '" 1065 << FuncInfo->MBB->getName() << "'\n"); 1066 1067 PreprocessISelDAG(); 1068 1069 // Select target instructions for the DAG. 1070 { 1071 // Number all nodes with a topological order and set DAGSize. 1072 DAGSize = CurDAG->AssignTopologicalOrder(); 1073 1074 // Create a dummy node (which is not added to allnodes), that adds 1075 // a reference to the root node, preventing it from being deleted, 1076 // and tracking any changes of the root. 1077 HandleSDNode Dummy(CurDAG->getRoot()); 1078 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1079 ++ISelPosition; 1080 1081 // Make sure that ISelPosition gets properly updated when nodes are deleted 1082 // in calls made from this function. 1083 ISelUpdater ISU(*CurDAG, ISelPosition); 1084 1085 // The AllNodes list is now topological-sorted. Visit the 1086 // nodes by starting at the end of the list (the root of the 1087 // graph) and preceding back toward the beginning (the entry 1088 // node). 1089 while (ISelPosition != CurDAG->allnodes_begin()) { 1090 SDNode *Node = &*--ISelPosition; 1091 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1092 // but there are currently some corner cases that it misses. Also, this 1093 // makes it theoretically possible to disable the DAGCombiner. 1094 if (Node->use_empty()) 1095 continue; 1096 1097 #ifndef NDEBUG 1098 SmallVector<SDNode *, 4> Nodes; 1099 Nodes.push_back(Node); 1100 1101 while (!Nodes.empty()) { 1102 auto N = Nodes.pop_back_val(); 1103 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1104 continue; 1105 for (const SDValue &Op : N->op_values()) { 1106 if (Op->getOpcode() == ISD::TokenFactor) 1107 Nodes.push_back(Op.getNode()); 1108 else { 1109 // We rely on topological ordering of node ids for checking for 1110 // cycles when fusing nodes during selection. All unselected nodes 1111 // successors of an already selected node should have a negative id. 1112 // This assertion will catch such cases. If this assertion triggers 1113 // it is likely you using DAG-level Value/Node replacement functions 1114 // (versus equivalent ISEL replacement) in backend-specific 1115 // selections. See comment in EnforceNodeIdInvariant for more 1116 // details. 1117 assert(Op->getNodeId() != -1 && 1118 "Node has already selected predecessor node"); 1119 } 1120 } 1121 } 1122 #endif 1123 1124 // When we are using non-default rounding modes or FP exception behavior 1125 // FP operations are represented by StrictFP pseudo-operations. They 1126 // need to be simplified here so that the target-specific instruction 1127 // selectors know how to handle them. 1128 // 1129 // If the current node is a strict FP pseudo-op, the isStrictFPOp() 1130 // function will provide the corresponding normal FP opcode to which the 1131 // node should be mutated. 1132 // 1133 // FIXME: The backends need a way to handle FP constraints. 1134 if (Node->isStrictFPOpcode()) 1135 Node = CurDAG->mutateStrictFPToFP(Node); 1136 1137 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1138 Node->dump(CurDAG)); 1139 1140 Select(Node); 1141 } 1142 1143 CurDAG->setRoot(Dummy.getValue()); 1144 } 1145 1146 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1147 1148 PostprocessISelDAG(); 1149 } 1150 1151 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1152 for (const User *U : CPI->users()) { 1153 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1154 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1155 if (IID == Intrinsic::eh_exceptionpointer || 1156 IID == Intrinsic::eh_exceptioncode) 1157 return true; 1158 } 1159 } 1160 return false; 1161 } 1162 1163 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1164 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1165 // and store the mapping in the function. 1166 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1167 const CatchPadInst *CPI) { 1168 MachineFunction *MF = MBB->getParent(); 1169 // In case of single catch (...), we don't emit LSDA, so we don't need 1170 // this information. 1171 bool IsSingleCatchAllClause = 1172 CPI->getNumArgOperands() == 1 && 1173 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1174 if (!IsSingleCatchAllClause) { 1175 // Create a mapping from landing pad label to landing pad index. 1176 bool IntrFound = false; 1177 for (const User *U : CPI->users()) { 1178 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1179 Intrinsic::ID IID = Call->getIntrinsicID(); 1180 if (IID == Intrinsic::wasm_landingpad_index) { 1181 Value *IndexArg = Call->getArgOperand(1); 1182 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1183 MF->setWasmLandingPadIndex(MBB, Index); 1184 IntrFound = true; 1185 break; 1186 } 1187 } 1188 } 1189 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1190 (void)IntrFound; 1191 } 1192 } 1193 1194 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1195 /// do other setup for EH landing-pad blocks. 1196 bool SelectionDAGISel::PrepareEHLandingPad() { 1197 MachineBasicBlock *MBB = FuncInfo->MBB; 1198 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1199 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1200 const TargetRegisterClass *PtrRC = 1201 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1202 1203 auto Pers = classifyEHPersonality(PersonalityFn); 1204 1205 // Catchpads have one live-in register, which typically holds the exception 1206 // pointer or code. 1207 if (isFuncletEHPersonality(Pers)) { 1208 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1209 if (hasExceptionPointerOrCodeUser(CPI)) { 1210 // Get or create the virtual register to hold the pointer or code. Mark 1211 // the live in physreg and copy into the vreg. 1212 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1213 assert(EHPhysReg && "target lacks exception pointer register"); 1214 MBB->addLiveIn(EHPhysReg); 1215 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1216 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1217 TII->get(TargetOpcode::COPY), VReg) 1218 .addReg(EHPhysReg, RegState::Kill); 1219 } 1220 } 1221 return true; 1222 } 1223 1224 // Add a label to mark the beginning of the landing pad. Deletion of the 1225 // landing pad can thus be detected via the MachineModuleInfo. 1226 MCSymbol *Label = MF->addLandingPad(MBB); 1227 1228 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1229 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1230 .addSym(Label); 1231 1232 if (Pers == EHPersonality::Wasm_CXX) { 1233 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1234 mapWasmLandingPadIndex(MBB, CPI); 1235 } else { 1236 // Assign the call site to the landing pad's begin label. 1237 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1238 // Mark exception register as live in. 1239 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1240 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1241 // Mark exception selector register as live in. 1242 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1243 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1244 } 1245 1246 return true; 1247 } 1248 1249 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1250 /// side-effect free and is either dead or folded into a generated instruction. 1251 /// Return false if it needs to be emitted. 1252 static bool isFoldedOrDeadInstruction(const Instruction *I, 1253 FunctionLoweringInfo *FuncInfo) { 1254 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1255 !I->isTerminator() && // Terminators aren't folded. 1256 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1257 !I->isEHPad() && // EH pad instructions aren't folded. 1258 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 1259 } 1260 1261 /// Collect llvm.dbg.declare information. This is done after argument lowering 1262 /// in case the declarations refer to arguments. 1263 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) { 1264 MachineFunction *MF = FuncInfo->MF; 1265 const DataLayout &DL = MF->getDataLayout(); 1266 for (const BasicBlock &BB : *FuncInfo->Fn) { 1267 for (const Instruction &I : BB) { 1268 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1269 if (!DI) 1270 continue; 1271 1272 assert(DI->getVariable() && "Missing variable"); 1273 assert(DI->getDebugLoc() && "Missing location"); 1274 const Value *Address = DI->getAddress(); 1275 if (!Address) 1276 continue; 1277 1278 // Look through casts and constant offset GEPs. These mostly come from 1279 // inalloca. 1280 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1281 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1282 1283 // Check if the variable is a static alloca or a byval or inalloca 1284 // argument passed in memory. If it is not, then we will ignore this 1285 // intrinsic and handle this during isel like dbg.value. 1286 int FI = std::numeric_limits<int>::max(); 1287 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1288 auto SI = FuncInfo->StaticAllocaMap.find(AI); 1289 if (SI != FuncInfo->StaticAllocaMap.end()) 1290 FI = SI->second; 1291 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1292 FI = FuncInfo->getArgumentFrameIndex(Arg); 1293 1294 if (FI == std::numeric_limits<int>::max()) 1295 continue; 1296 1297 DIExpression *Expr = DI->getExpression(); 1298 if (Offset.getBoolValue()) 1299 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1300 Offset.getZExtValue()); 1301 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1302 } 1303 } 1304 } 1305 1306 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1307 FastISelFailed = false; 1308 // Initialize the Fast-ISel state, if needed. 1309 FastISel *FastIS = nullptr; 1310 if (TM.Options.EnableFastISel) { 1311 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1312 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1313 } 1314 1315 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1316 1317 // Lower arguments up front. An RPO iteration always visits the entry block 1318 // first. 1319 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1320 ++NumEntryBlocks; 1321 1322 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1323 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1324 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1325 1326 CurDAG->setFunctionLoweringInfo(FuncInfo); 1327 1328 if (!FastIS) { 1329 LowerArguments(Fn); 1330 } else { 1331 // See if fast isel can lower the arguments. 1332 FastIS->startNewBlock(); 1333 if (!FastIS->lowerArguments()) { 1334 FastISelFailed = true; 1335 // Fast isel failed to lower these arguments 1336 ++NumFastIselFailLowerArguments; 1337 1338 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1339 Fn.getSubprogram(), 1340 &Fn.getEntryBlock()); 1341 R << "FastISel didn't lower all arguments: " 1342 << ore::NV("Prototype", Fn.getType()); 1343 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1344 1345 // Use SelectionDAG argument lowering 1346 LowerArguments(Fn); 1347 CurDAG->setRoot(SDB->getControlRoot()); 1348 SDB->clear(); 1349 CodeGenAndEmitDAG(); 1350 } 1351 1352 // If we inserted any instructions at the beginning, make a note of 1353 // where they are, so we can be sure to emit subsequent instructions 1354 // after them. 1355 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1356 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1357 else 1358 FastIS->setLastLocalValue(nullptr); 1359 } 1360 1361 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1362 1363 if (FastIS && Inserted) 1364 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1365 1366 processDbgDeclares(FuncInfo); 1367 1368 // Iterate over all basic blocks in the function. 1369 StackProtector &SP = getAnalysis<StackProtector>(); 1370 for (const BasicBlock *LLVMBB : RPOT) { 1371 if (OptLevel != CodeGenOpt::None) { 1372 bool AllPredsVisited = true; 1373 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1374 PI != PE; ++PI) { 1375 if (!FuncInfo->VisitedBBs.count(*PI)) { 1376 AllPredsVisited = false; 1377 break; 1378 } 1379 } 1380 1381 if (AllPredsVisited) { 1382 for (const PHINode &PN : LLVMBB->phis()) 1383 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1384 } else { 1385 for (const PHINode &PN : LLVMBB->phis()) 1386 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1387 } 1388 1389 FuncInfo->VisitedBBs.insert(LLVMBB); 1390 } 1391 1392 BasicBlock::const_iterator const Begin = 1393 LLVMBB->getFirstNonPHI()->getIterator(); 1394 BasicBlock::const_iterator const End = LLVMBB->end(); 1395 BasicBlock::const_iterator BI = End; 1396 1397 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1398 if (!FuncInfo->MBB) 1399 continue; // Some blocks like catchpads have no code or MBB. 1400 1401 // Insert new instructions after any phi or argument setup code. 1402 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1403 1404 // Setup an EH landing-pad block. 1405 FuncInfo->ExceptionPointerVirtReg = 0; 1406 FuncInfo->ExceptionSelectorVirtReg = 0; 1407 if (LLVMBB->isEHPad()) 1408 if (!PrepareEHLandingPad()) 1409 continue; 1410 1411 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1412 if (FastIS) { 1413 if (LLVMBB != &Fn.getEntryBlock()) 1414 FastIS->startNewBlock(); 1415 1416 unsigned NumFastIselRemaining = std::distance(Begin, End); 1417 1418 // Pre-assign swifterror vregs. 1419 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1420 1421 // Do FastISel on as many instructions as possible. 1422 for (; BI != Begin; --BI) { 1423 const Instruction *Inst = &*std::prev(BI); 1424 1425 // If we no longer require this instruction, skip it. 1426 if (isFoldedOrDeadInstruction(Inst, FuncInfo) || 1427 ElidedArgCopyInstrs.count(Inst)) { 1428 --NumFastIselRemaining; 1429 continue; 1430 } 1431 1432 // Bottom-up: reset the insert pos at the top, after any local-value 1433 // instructions. 1434 FastIS->recomputeInsertPt(); 1435 1436 // Try to select the instruction with FastISel. 1437 if (FastIS->selectInstruction(Inst)) { 1438 --NumFastIselRemaining; 1439 ++NumFastIselSuccess; 1440 // If fast isel succeeded, skip over all the folded instructions, and 1441 // then see if there is a load right before the selected instructions. 1442 // Try to fold the load if so. 1443 const Instruction *BeforeInst = Inst; 1444 while (BeforeInst != &*Begin) { 1445 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1446 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1447 break; 1448 } 1449 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1450 BeforeInst->hasOneUse() && 1451 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1452 // If we succeeded, don't re-select the load. 1453 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1454 --NumFastIselRemaining; 1455 ++NumFastIselSuccess; 1456 } 1457 continue; 1458 } 1459 1460 FastISelFailed = true; 1461 1462 // Then handle certain instructions as single-LLVM-Instruction blocks. 1463 // We cannot separate out GCrelocates to their own blocks since we need 1464 // to keep track of gc-relocates for a particular gc-statepoint. This is 1465 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1466 // visitGCRelocate. 1467 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) && 1468 !isGCResult(Inst)) { 1469 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1470 Inst->getDebugLoc(), LLVMBB); 1471 1472 R << "FastISel missed call"; 1473 1474 if (R.isEnabled() || EnableFastISelAbort) { 1475 std::string InstStrStorage; 1476 raw_string_ostream InstStr(InstStrStorage); 1477 InstStr << *Inst; 1478 1479 R << ": " << InstStr.str(); 1480 } 1481 1482 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1483 1484 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1485 !Inst->use_empty()) { 1486 unsigned &R = FuncInfo->ValueMap[Inst]; 1487 if (!R) 1488 R = FuncInfo->CreateRegs(Inst); 1489 } 1490 1491 bool HadTailCall = false; 1492 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1493 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1494 1495 // If the call was emitted as a tail call, we're done with the block. 1496 // We also need to delete any previously emitted instructions. 1497 if (HadTailCall) { 1498 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1499 --BI; 1500 break; 1501 } 1502 1503 // Recompute NumFastIselRemaining as Selection DAG instruction 1504 // selection may have handled the call, input args, etc. 1505 unsigned RemainingNow = std::distance(Begin, BI); 1506 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1507 NumFastIselRemaining = RemainingNow; 1508 continue; 1509 } 1510 1511 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1512 Inst->getDebugLoc(), LLVMBB); 1513 1514 bool ShouldAbort = EnableFastISelAbort; 1515 if (Inst->isTerminator()) { 1516 // Use a different message for terminator misses. 1517 R << "FastISel missed terminator"; 1518 // Don't abort for terminator unless the level is really high 1519 ShouldAbort = (EnableFastISelAbort > 2); 1520 } else { 1521 R << "FastISel missed"; 1522 } 1523 1524 if (R.isEnabled() || EnableFastISelAbort) { 1525 std::string InstStrStorage; 1526 raw_string_ostream InstStr(InstStrStorage); 1527 InstStr << *Inst; 1528 R << ": " << InstStr.str(); 1529 } 1530 1531 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1532 1533 NumFastIselFailures += NumFastIselRemaining; 1534 break; 1535 } 1536 1537 FastIS->recomputeInsertPt(); 1538 } 1539 1540 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1541 bool FunctionBasedInstrumentation = 1542 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1543 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1544 FunctionBasedInstrumentation); 1545 } 1546 1547 if (Begin != BI) 1548 ++NumDAGBlocks; 1549 else 1550 ++NumFastIselBlocks; 1551 1552 if (Begin != BI) { 1553 // Run SelectionDAG instruction selection on the remainder of the block 1554 // not handled by FastISel. If FastISel is not run, this is the entire 1555 // block. 1556 bool HadTailCall; 1557 SelectBasicBlock(Begin, BI, HadTailCall); 1558 1559 // But if FastISel was run, we already selected some of the block. 1560 // If we emitted a tail-call, we need to delete any previously emitted 1561 // instruction that follows it. 1562 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1563 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1564 } 1565 1566 if (FastIS) 1567 FastIS->finishBasicBlock(); 1568 FinishBasicBlock(); 1569 FuncInfo->PHINodesToUpdate.clear(); 1570 ElidedArgCopyInstrs.clear(); 1571 } 1572 1573 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1574 1575 SwiftError->propagateVRegs(); 1576 1577 delete FastIS; 1578 SDB->clearDanglingDebugInfo(); 1579 SDB->SPDescriptor.resetPerFunctionState(); 1580 } 1581 1582 /// Given that the input MI is before a partial terminator sequence TSeq, return 1583 /// true if M + TSeq also a partial terminator sequence. 1584 /// 1585 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1586 /// lowering copy vregs into physical registers, which are then passed into 1587 /// terminator instructors so we can satisfy ABI constraints. A partial 1588 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1589 /// may be the whole terminator sequence). 1590 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1591 // If we do not have a copy or an implicit def, we return true if and only if 1592 // MI is a debug value. 1593 if (!MI.isCopy() && !MI.isImplicitDef()) 1594 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1595 // physical registers if there is debug info associated with the terminator 1596 // of our mbb. We want to include said debug info in our terminator 1597 // sequence, so we return true in that case. 1598 return MI.isDebugValue(); 1599 1600 // We have left the terminator sequence if we are not doing one of the 1601 // following: 1602 // 1603 // 1. Copying a vreg into a physical register. 1604 // 2. Copying a vreg into a vreg. 1605 // 3. Defining a register via an implicit def. 1606 1607 // OPI should always be a register definition... 1608 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1609 if (!OPI->isReg() || !OPI->isDef()) 1610 return false; 1611 1612 // Defining any register via an implicit def is always ok. 1613 if (MI.isImplicitDef()) 1614 return true; 1615 1616 // Grab the copy source... 1617 MachineInstr::const_mop_iterator OPI2 = OPI; 1618 ++OPI2; 1619 assert(OPI2 != MI.operands_end() 1620 && "Should have a copy implying we should have 2 arguments."); 1621 1622 // Make sure that the copy dest is not a vreg when the copy source is a 1623 // physical register. 1624 if (!OPI2->isReg() || 1625 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && 1626 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) 1627 return false; 1628 1629 return true; 1630 } 1631 1632 /// Find the split point at which to splice the end of BB into its success stack 1633 /// protector check machine basic block. 1634 /// 1635 /// On many platforms, due to ABI constraints, terminators, even before register 1636 /// allocation, use physical registers. This creates an issue for us since 1637 /// physical registers at this point can not travel across basic 1638 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1639 /// when they enter functions and moves them through a sequence of copies back 1640 /// into the physical registers right before the terminator creating a 1641 /// ``Terminator Sequence''. This function is searching for the beginning of the 1642 /// terminator sequence so that we can ensure that we splice off not just the 1643 /// terminator, but additionally the copies that move the vregs into the 1644 /// physical registers. 1645 static MachineBasicBlock::iterator 1646 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1647 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1648 // 1649 if (SplitPoint == BB->begin()) 1650 return SplitPoint; 1651 1652 MachineBasicBlock::iterator Start = BB->begin(); 1653 MachineBasicBlock::iterator Previous = SplitPoint; 1654 --Previous; 1655 1656 while (MIIsInTerminatorSequence(*Previous)) { 1657 SplitPoint = Previous; 1658 if (Previous == Start) 1659 break; 1660 --Previous; 1661 } 1662 1663 return SplitPoint; 1664 } 1665 1666 void 1667 SelectionDAGISel::FinishBasicBlock() { 1668 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1669 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1670 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1671 ++i) dbgs() 1672 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1673 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1674 1675 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1676 // PHI nodes in successors. 1677 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1678 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1679 assert(PHI->isPHI() && 1680 "This is not a machine PHI node that we are updating!"); 1681 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1682 continue; 1683 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1684 } 1685 1686 // Handle stack protector. 1687 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1688 // The target provides a guard check function. There is no need to 1689 // generate error handling code or to split current basic block. 1690 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1691 1692 // Add load and check to the basicblock. 1693 FuncInfo->MBB = ParentMBB; 1694 FuncInfo->InsertPt = 1695 FindSplitPointForStackProtector(ParentMBB); 1696 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1697 CurDAG->setRoot(SDB->getRoot()); 1698 SDB->clear(); 1699 CodeGenAndEmitDAG(); 1700 1701 // Clear the Per-BB State. 1702 SDB->SPDescriptor.resetPerBBState(); 1703 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1704 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1705 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1706 1707 // Find the split point to split the parent mbb. At the same time copy all 1708 // physical registers used in the tail of parent mbb into virtual registers 1709 // before the split point and back into physical registers after the split 1710 // point. This prevents us needing to deal with Live-ins and many other 1711 // register allocation issues caused by us splitting the parent mbb. The 1712 // register allocator will clean up said virtual copies later on. 1713 MachineBasicBlock::iterator SplitPoint = 1714 FindSplitPointForStackProtector(ParentMBB); 1715 1716 // Splice the terminator of ParentMBB into SuccessMBB. 1717 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1718 SplitPoint, 1719 ParentMBB->end()); 1720 1721 // Add compare/jump on neq/jump to the parent BB. 1722 FuncInfo->MBB = ParentMBB; 1723 FuncInfo->InsertPt = ParentMBB->end(); 1724 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1725 CurDAG->setRoot(SDB->getRoot()); 1726 SDB->clear(); 1727 CodeGenAndEmitDAG(); 1728 1729 // CodeGen Failure MBB if we have not codegened it yet. 1730 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1731 if (FailureMBB->empty()) { 1732 FuncInfo->MBB = FailureMBB; 1733 FuncInfo->InsertPt = FailureMBB->end(); 1734 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1735 CurDAG->setRoot(SDB->getRoot()); 1736 SDB->clear(); 1737 CodeGenAndEmitDAG(); 1738 } 1739 1740 // Clear the Per-BB State. 1741 SDB->SPDescriptor.resetPerBBState(); 1742 } 1743 1744 // Lower each BitTestBlock. 1745 for (auto &BTB : SDB->BitTestCases) { 1746 // Lower header first, if it wasn't already lowered 1747 if (!BTB.Emitted) { 1748 // Set the current basic block to the mbb we wish to insert the code into 1749 FuncInfo->MBB = BTB.Parent; 1750 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1751 // Emit the code 1752 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1753 CurDAG->setRoot(SDB->getRoot()); 1754 SDB->clear(); 1755 CodeGenAndEmitDAG(); 1756 } 1757 1758 BranchProbability UnhandledProb = BTB.Prob; 1759 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1760 UnhandledProb -= BTB.Cases[j].ExtraProb; 1761 // Set the current basic block to the mbb we wish to insert the code into 1762 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1763 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1764 // Emit the code 1765 1766 // If all cases cover a contiguous range, it is not necessary to jump to 1767 // the default block after the last bit test fails. This is because the 1768 // range check during bit test header creation has guaranteed that every 1769 // case here doesn't go outside the range. In this case, there is no need 1770 // to perform the last bit test, as it will always be true. Instead, make 1771 // the second-to-last bit-test fall through to the target of the last bit 1772 // test, and delete the last bit test. 1773 1774 MachineBasicBlock *NextMBB; 1775 if (BTB.ContiguousRange && j + 2 == ej) { 1776 // Second-to-last bit-test with contiguous range: fall through to the 1777 // target of the final bit test. 1778 NextMBB = BTB.Cases[j + 1].TargetBB; 1779 } else if (j + 1 == ej) { 1780 // For the last bit test, fall through to Default. 1781 NextMBB = BTB.Default; 1782 } else { 1783 // Otherwise, fall through to the next bit test. 1784 NextMBB = BTB.Cases[j + 1].ThisBB; 1785 } 1786 1787 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1788 FuncInfo->MBB); 1789 1790 CurDAG->setRoot(SDB->getRoot()); 1791 SDB->clear(); 1792 CodeGenAndEmitDAG(); 1793 1794 if (BTB.ContiguousRange && j + 2 == ej) { 1795 // Since we're not going to use the final bit test, remove it. 1796 BTB.Cases.pop_back(); 1797 break; 1798 } 1799 } 1800 1801 // Update PHI Nodes 1802 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1803 pi != pe; ++pi) { 1804 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1805 MachineBasicBlock *PHIBB = PHI->getParent(); 1806 assert(PHI->isPHI() && 1807 "This is not a machine PHI node that we are updating!"); 1808 // This is "default" BB. We have two jumps to it. From "header" BB and 1809 // from last "case" BB, unless the latter was skipped. 1810 if (PHIBB == BTB.Default) { 1811 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1812 if (!BTB.ContiguousRange) { 1813 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1814 .addMBB(BTB.Cases.back().ThisBB); 1815 } 1816 } 1817 // One of "cases" BB. 1818 for (unsigned j = 0, ej = BTB.Cases.size(); 1819 j != ej; ++j) { 1820 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1821 if (cBB->isSuccessor(PHIBB)) 1822 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1823 } 1824 } 1825 } 1826 SDB->BitTestCases.clear(); 1827 1828 // If the JumpTable record is filled in, then we need to emit a jump table. 1829 // Updating the PHI nodes is tricky in this case, since we need to determine 1830 // whether the PHI is a successor of the range check MBB or the jump table MBB 1831 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1832 // Lower header first, if it wasn't already lowered 1833 if (!SDB->JTCases[i].first.Emitted) { 1834 // Set the current basic block to the mbb we wish to insert the code into 1835 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1836 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1837 // Emit the code 1838 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1839 FuncInfo->MBB); 1840 CurDAG->setRoot(SDB->getRoot()); 1841 SDB->clear(); 1842 CodeGenAndEmitDAG(); 1843 } 1844 1845 // Set the current basic block to the mbb we wish to insert the code into 1846 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1847 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1848 // Emit the code 1849 SDB->visitJumpTable(SDB->JTCases[i].second); 1850 CurDAG->setRoot(SDB->getRoot()); 1851 SDB->clear(); 1852 CodeGenAndEmitDAG(); 1853 1854 // Update PHI Nodes 1855 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1856 pi != pe; ++pi) { 1857 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1858 MachineBasicBlock *PHIBB = PHI->getParent(); 1859 assert(PHI->isPHI() && 1860 "This is not a machine PHI node that we are updating!"); 1861 // "default" BB. We can go there only from header BB. 1862 if (PHIBB == SDB->JTCases[i].second.Default) 1863 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1864 .addMBB(SDB->JTCases[i].first.HeaderBB); 1865 // JT BB. Just iterate over successors here 1866 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1867 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1868 } 1869 } 1870 SDB->JTCases.clear(); 1871 1872 // If we generated any switch lowering information, build and codegen any 1873 // additional DAGs necessary. 1874 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1875 // Set the current basic block to the mbb we wish to insert the code into 1876 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1877 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1878 1879 // Determine the unique successors. 1880 SmallVector<MachineBasicBlock *, 2> Succs; 1881 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1882 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1883 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1884 1885 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1886 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1887 CurDAG->setRoot(SDB->getRoot()); 1888 SDB->clear(); 1889 CodeGenAndEmitDAG(); 1890 1891 // Remember the last block, now that any splitting is done, for use in 1892 // populating PHI nodes in successors. 1893 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1894 1895 // Handle any PHI nodes in successors of this chunk, as if we were coming 1896 // from the original BB before switch expansion. Note that PHI nodes can 1897 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1898 // handle them the right number of times. 1899 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1900 FuncInfo->MBB = Succs[i]; 1901 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1902 // FuncInfo->MBB may have been removed from the CFG if a branch was 1903 // constant folded. 1904 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1905 for (MachineBasicBlock::iterator 1906 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1907 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1908 MachineInstrBuilder PHI(*MF, MBBI); 1909 // This value for this PHI node is recorded in PHINodesToUpdate. 1910 for (unsigned pn = 0; ; ++pn) { 1911 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1912 "Didn't find PHI entry!"); 1913 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1914 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1915 break; 1916 } 1917 } 1918 } 1919 } 1920 } 1921 } 1922 SDB->SwitchCases.clear(); 1923 } 1924 1925 /// Create the scheduler. If a specific scheduler was specified 1926 /// via the SchedulerRegistry, use it, otherwise select the 1927 /// one preferred by the target. 1928 /// 1929 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1930 return ISHeuristic(this, OptLevel); 1931 } 1932 1933 //===----------------------------------------------------------------------===// 1934 // Helper functions used by the generated instruction selector. 1935 //===----------------------------------------------------------------------===// 1936 // Calls to these methods are generated by tblgen. 1937 1938 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1939 /// the dag combiner simplified the 255, we still want to match. RHS is the 1940 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1941 /// specified in the .td file (e.g. 255). 1942 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1943 int64_t DesiredMaskS) const { 1944 const APInt &ActualMask = RHS->getAPIntValue(); 1945 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1946 1947 // If the actual mask exactly matches, success! 1948 if (ActualMask == DesiredMask) 1949 return true; 1950 1951 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1952 if (!ActualMask.isSubsetOf(DesiredMask)) 1953 return false; 1954 1955 // Otherwise, the DAG Combiner may have proven that the value coming in is 1956 // either already zero or is not demanded. Check for known zero input bits. 1957 APInt NeededMask = DesiredMask & ~ActualMask; 1958 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1959 return true; 1960 1961 // TODO: check to see if missing bits are just not demanded. 1962 1963 // Otherwise, this pattern doesn't match. 1964 return false; 1965 } 1966 1967 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1968 /// the dag combiner simplified the 255, we still want to match. RHS is the 1969 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1970 /// specified in the .td file (e.g. 255). 1971 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1972 int64_t DesiredMaskS) const { 1973 const APInt &ActualMask = RHS->getAPIntValue(); 1974 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1975 1976 // If the actual mask exactly matches, success! 1977 if (ActualMask == DesiredMask) 1978 return true; 1979 1980 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1981 if (!ActualMask.isSubsetOf(DesiredMask)) 1982 return false; 1983 1984 // Otherwise, the DAG Combiner may have proven that the value coming in is 1985 // either already zero or is not demanded. Check for known zero input bits. 1986 APInt NeededMask = DesiredMask & ~ActualMask; 1987 KnownBits Known = CurDAG->computeKnownBits(LHS); 1988 1989 // If all the missing bits in the or are already known to be set, match! 1990 if (NeededMask.isSubsetOf(Known.One)) 1991 return true; 1992 1993 // TODO: check to see if missing bits are just not demanded. 1994 1995 // Otherwise, this pattern doesn't match. 1996 return false; 1997 } 1998 1999 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2000 /// by tblgen. Others should not call it. 2001 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2002 const SDLoc &DL) { 2003 std::vector<SDValue> InOps; 2004 std::swap(InOps, Ops); 2005 2006 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2007 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2008 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2009 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2010 2011 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2012 if (InOps[e-1].getValueType() == MVT::Glue) 2013 --e; // Don't process a glue operand if it is here. 2014 2015 while (i != e) { 2016 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2017 if (!InlineAsm::isMemKind(Flags)) { 2018 // Just skip over this operand, copying the operands verbatim. 2019 Ops.insert(Ops.end(), InOps.begin()+i, 2020 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2021 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2022 } else { 2023 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2024 "Memory operand with multiple values?"); 2025 2026 unsigned TiedToOperand; 2027 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2028 // We need the constraint ID from the operand this is tied to. 2029 unsigned CurOp = InlineAsm::Op_FirstOperand; 2030 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2031 for (; TiedToOperand; --TiedToOperand) { 2032 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2033 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2034 } 2035 } 2036 2037 // Otherwise, this is a memory operand. Ask the target to select it. 2038 std::vector<SDValue> SelOps; 2039 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2040 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2041 report_fatal_error("Could not match memory address. Inline asm" 2042 " failure!"); 2043 2044 // Add this to the output node. 2045 unsigned NewFlags = 2046 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2047 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2048 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2049 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 2050 i += 2; 2051 } 2052 } 2053 2054 // Add the glue input back if present. 2055 if (e != InOps.size()) 2056 Ops.push_back(InOps.back()); 2057 } 2058 2059 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2060 /// SDNode. 2061 /// 2062 static SDNode *findGlueUse(SDNode *N) { 2063 unsigned FlagResNo = N->getNumValues()-1; 2064 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2065 SDUse &Use = I.getUse(); 2066 if (Use.getResNo() == FlagResNo) 2067 return Use.getUser(); 2068 } 2069 return nullptr; 2070 } 2071 2072 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2073 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2074 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2075 bool IgnoreChains) { 2076 SmallPtrSet<const SDNode *, 16> Visited; 2077 SmallVector<const SDNode *, 16> WorkList; 2078 // Only check if we have non-immediate uses of Def. 2079 if (ImmedUse->isOnlyUserOf(Def)) 2080 return false; 2081 2082 // We don't care about paths to Def that go through ImmedUse so mark it 2083 // visited and mark non-def operands as used. 2084 Visited.insert(ImmedUse); 2085 for (const SDValue &Op : ImmedUse->op_values()) { 2086 SDNode *N = Op.getNode(); 2087 // Ignore chain deps (they are validated by 2088 // HandleMergeInputChains) and immediate uses 2089 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2090 continue; 2091 if (!Visited.insert(N).second) 2092 continue; 2093 WorkList.push_back(N); 2094 } 2095 2096 // Initialize worklist to operands of Root. 2097 if (Root != ImmedUse) { 2098 for (const SDValue &Op : Root->op_values()) { 2099 SDNode *N = Op.getNode(); 2100 // Ignore chains (they are validated by HandleMergeInputChains) 2101 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2102 continue; 2103 if (!Visited.insert(N).second) 2104 continue; 2105 WorkList.push_back(N); 2106 } 2107 } 2108 2109 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2110 } 2111 2112 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2113 /// operand node N of U during instruction selection that starts at Root. 2114 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2115 SDNode *Root) const { 2116 if (OptLevel == CodeGenOpt::None) return false; 2117 return N.hasOneUse(); 2118 } 2119 2120 /// IsLegalToFold - Returns true if the specific operand node N of 2121 /// U can be folded during instruction selection that starts at Root. 2122 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2123 CodeGenOpt::Level OptLevel, 2124 bool IgnoreChains) { 2125 if (OptLevel == CodeGenOpt::None) return false; 2126 2127 // If Root use can somehow reach N through a path that that doesn't contain 2128 // U then folding N would create a cycle. e.g. In the following 2129 // diagram, Root can reach N through X. If N is folded into Root, then 2130 // X is both a predecessor and a successor of U. 2131 // 2132 // [N*] // 2133 // ^ ^ // 2134 // / \ // 2135 // [U*] [X]? // 2136 // ^ ^ // 2137 // \ / // 2138 // \ / // 2139 // [Root*] // 2140 // 2141 // * indicates nodes to be folded together. 2142 // 2143 // If Root produces glue, then it gets (even more) interesting. Since it 2144 // will be "glued" together with its glue use in the scheduler, we need to 2145 // check if it might reach N. 2146 // 2147 // [N*] // 2148 // ^ ^ // 2149 // / \ // 2150 // [U*] [X]? // 2151 // ^ ^ // 2152 // \ \ // 2153 // \ | // 2154 // [Root*] | // 2155 // ^ | // 2156 // f | // 2157 // | / // 2158 // [Y] / // 2159 // ^ / // 2160 // f / // 2161 // | / // 2162 // [GU] // 2163 // 2164 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2165 // (call it Fold), then X is a predecessor of GU and a successor of 2166 // Fold. But since Fold and GU are glued together, this will create 2167 // a cycle in the scheduling graph. 2168 2169 // If the node has glue, walk down the graph to the "lowest" node in the 2170 // glueged set. 2171 EVT VT = Root->getValueType(Root->getNumValues()-1); 2172 while (VT == MVT::Glue) { 2173 SDNode *GU = findGlueUse(Root); 2174 if (!GU) 2175 break; 2176 Root = GU; 2177 VT = Root->getValueType(Root->getNumValues()-1); 2178 2179 // If our query node has a glue result with a use, we've walked up it. If 2180 // the user (which has already been selected) has a chain or indirectly uses 2181 // the chain, HandleMergeInputChains will not consider it. Because of 2182 // this, we cannot ignore chains in this predicate. 2183 IgnoreChains = false; 2184 } 2185 2186 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2187 } 2188 2189 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) { 2190 SDLoc DL(N); 2191 2192 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2193 SelectInlineAsmMemoryOperands(Ops, DL); 2194 2195 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2196 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops); 2197 New->setNodeId(-1); 2198 ReplaceUses(N, New.getNode()); 2199 CurDAG->RemoveDeadNode(N); 2200 } 2201 2202 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2203 SDLoc dl(Op); 2204 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2205 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2206 unsigned Reg = 2207 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), 2208 *CurDAG); 2209 SDValue New = CurDAG->getCopyFromReg( 2210 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2211 New->setNodeId(-1); 2212 ReplaceUses(Op, New.getNode()); 2213 CurDAG->RemoveDeadNode(Op); 2214 } 2215 2216 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2217 SDLoc dl(Op); 2218 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2219 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2220 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), 2221 Op->getOperand(2).getValueType(), 2222 *CurDAG); 2223 SDValue New = CurDAG->getCopyToReg( 2224 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2225 New->setNodeId(-1); 2226 ReplaceUses(Op, New.getNode()); 2227 CurDAG->RemoveDeadNode(Op); 2228 } 2229 2230 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2231 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2232 } 2233 2234 /// GetVBR - decode a vbr encoding whose top bit is set. 2235 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2236 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2237 assert(Val >= 128 && "Not a VBR"); 2238 Val &= 127; // Remove first vbr bit. 2239 2240 unsigned Shift = 7; 2241 uint64_t NextBits; 2242 do { 2243 NextBits = MatcherTable[Idx++]; 2244 Val |= (NextBits&127) << Shift; 2245 Shift += 7; 2246 } while (NextBits & 128); 2247 2248 return Val; 2249 } 2250 2251 /// When a match is complete, this method updates uses of interior chain results 2252 /// to use the new results. 2253 void SelectionDAGISel::UpdateChains( 2254 SDNode *NodeToMatch, SDValue InputChain, 2255 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2256 SmallVector<SDNode*, 4> NowDeadNodes; 2257 2258 // Now that all the normal results are replaced, we replace the chain and 2259 // glue results if present. 2260 if (!ChainNodesMatched.empty()) { 2261 assert(InputChain.getNode() && 2262 "Matched input chains but didn't produce a chain"); 2263 // Loop over all of the nodes we matched that produced a chain result. 2264 // Replace all the chain results with the final chain we ended up with. 2265 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2266 SDNode *ChainNode = ChainNodesMatched[i]; 2267 // If ChainNode is null, it's because we replaced it on a previous 2268 // iteration and we cleared it out of the map. Just skip it. 2269 if (!ChainNode) 2270 continue; 2271 2272 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2273 "Deleted node left in chain"); 2274 2275 // Don't replace the results of the root node if we're doing a 2276 // MorphNodeTo. 2277 if (ChainNode == NodeToMatch && isMorphNodeTo) 2278 continue; 2279 2280 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2281 if (ChainVal.getValueType() == MVT::Glue) 2282 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2283 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2284 SelectionDAG::DAGNodeDeletedListener NDL( 2285 *CurDAG, [&](SDNode *N, SDNode *E) { 2286 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2287 static_cast<SDNode *>(nullptr)); 2288 }); 2289 if (ChainNode->getOpcode() != ISD::TokenFactor) 2290 ReplaceUses(ChainVal, InputChain); 2291 2292 // If the node became dead and we haven't already seen it, delete it. 2293 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2294 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2295 NowDeadNodes.push_back(ChainNode); 2296 } 2297 } 2298 2299 if (!NowDeadNodes.empty()) 2300 CurDAG->RemoveDeadNodes(NowDeadNodes); 2301 2302 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2303 } 2304 2305 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2306 /// operation for when the pattern matched at least one node with a chains. The 2307 /// input vector contains a list of all of the chained nodes that we match. We 2308 /// must determine if this is a valid thing to cover (i.e. matching it won't 2309 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2310 /// be used as the input node chain for the generated nodes. 2311 static SDValue 2312 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2313 SelectionDAG *CurDAG) { 2314 2315 SmallPtrSet<const SDNode *, 16> Visited; 2316 SmallVector<const SDNode *, 8> Worklist; 2317 SmallVector<SDValue, 3> InputChains; 2318 unsigned int Max = 8192; 2319 2320 // Quick exit on trivial merge. 2321 if (ChainNodesMatched.size() == 1) 2322 return ChainNodesMatched[0]->getOperand(0); 2323 2324 // Add chains that aren't already added (internal). Peek through 2325 // token factors. 2326 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2327 if (V.getValueType() != MVT::Other) 2328 return; 2329 if (V->getOpcode() == ISD::EntryToken) 2330 return; 2331 if (!Visited.insert(V.getNode()).second) 2332 return; 2333 if (V->getOpcode() == ISD::TokenFactor) { 2334 for (const SDValue &Op : V->op_values()) 2335 AddChains(Op); 2336 } else 2337 InputChains.push_back(V); 2338 }; 2339 2340 for (auto *N : ChainNodesMatched) { 2341 Worklist.push_back(N); 2342 Visited.insert(N); 2343 } 2344 2345 while (!Worklist.empty()) 2346 AddChains(Worklist.pop_back_val()->getOperand(0)); 2347 2348 // Skip the search if there are no chain dependencies. 2349 if (InputChains.size() == 0) 2350 return CurDAG->getEntryNode(); 2351 2352 // If one of these chains is a successor of input, we must have a 2353 // node that is both the predecessor and successor of the 2354 // to-be-merged nodes. Fail. 2355 Visited.clear(); 2356 for (SDValue V : InputChains) 2357 Worklist.push_back(V.getNode()); 2358 2359 for (auto *N : ChainNodesMatched) 2360 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2361 return SDValue(); 2362 2363 // Return merged chain. 2364 if (InputChains.size() == 1) 2365 return InputChains[0]; 2366 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2367 MVT::Other, InputChains); 2368 } 2369 2370 /// MorphNode - Handle morphing a node in place for the selector. 2371 SDNode *SelectionDAGISel:: 2372 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2373 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2374 // It is possible we're using MorphNodeTo to replace a node with no 2375 // normal results with one that has a normal result (or we could be 2376 // adding a chain) and the input could have glue and chains as well. 2377 // In this case we need to shift the operands down. 2378 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2379 // than the old isel though. 2380 int OldGlueResultNo = -1, OldChainResultNo = -1; 2381 2382 unsigned NTMNumResults = Node->getNumValues(); 2383 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2384 OldGlueResultNo = NTMNumResults-1; 2385 if (NTMNumResults != 1 && 2386 Node->getValueType(NTMNumResults-2) == MVT::Other) 2387 OldChainResultNo = NTMNumResults-2; 2388 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2389 OldChainResultNo = NTMNumResults-1; 2390 2391 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2392 // that this deletes operands of the old node that become dead. 2393 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2394 2395 // MorphNodeTo can operate in two ways: if an existing node with the 2396 // specified operands exists, it can just return it. Otherwise, it 2397 // updates the node in place to have the requested operands. 2398 if (Res == Node) { 2399 // If we updated the node in place, reset the node ID. To the isel, 2400 // this should be just like a newly allocated machine node. 2401 Res->setNodeId(-1); 2402 } 2403 2404 unsigned ResNumResults = Res->getNumValues(); 2405 // Move the glue if needed. 2406 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2407 (unsigned)OldGlueResultNo != ResNumResults-1) 2408 ReplaceUses(SDValue(Node, OldGlueResultNo), 2409 SDValue(Res, ResNumResults - 1)); 2410 2411 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2412 --ResNumResults; 2413 2414 // Move the chain reference if needed. 2415 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2416 (unsigned)OldChainResultNo != ResNumResults-1) 2417 ReplaceUses(SDValue(Node, OldChainResultNo), 2418 SDValue(Res, ResNumResults - 1)); 2419 2420 // Otherwise, no replacement happened because the node already exists. Replace 2421 // Uses of the old node with the new one. 2422 if (Res != Node) { 2423 ReplaceNode(Node, Res); 2424 } else { 2425 EnforceNodeIdInvariant(Res); 2426 } 2427 2428 return Res; 2429 } 2430 2431 /// CheckSame - Implements OP_CheckSame. 2432 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2433 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2434 SDValue N, 2435 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2436 // Accept if it is exactly the same as a previously recorded node. 2437 unsigned RecNo = MatcherTable[MatcherIndex++]; 2438 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2439 return N == RecordedNodes[RecNo].first; 2440 } 2441 2442 /// CheckChildSame - Implements OP_CheckChildXSame. 2443 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2444 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2445 SDValue N, 2446 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, 2447 unsigned ChildNo) { 2448 if (ChildNo >= N.getNumOperands()) 2449 return false; // Match fails if out of range child #. 2450 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2451 RecordedNodes); 2452 } 2453 2454 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2455 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2456 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2457 const SelectionDAGISel &SDISel) { 2458 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2459 } 2460 2461 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2462 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2463 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2464 const SelectionDAGISel &SDISel, SDNode *N) { 2465 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2466 } 2467 2468 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2469 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2470 SDNode *N) { 2471 uint16_t Opc = MatcherTable[MatcherIndex++]; 2472 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2473 return N->getOpcode() == Opc; 2474 } 2475 2476 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2477 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2478 const TargetLowering *TLI, const DataLayout &DL) { 2479 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2480 if (N.getValueType() == VT) return true; 2481 2482 // Handle the case when VT is iPTR. 2483 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2484 } 2485 2486 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2487 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2488 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2489 unsigned ChildNo) { 2490 if (ChildNo >= N.getNumOperands()) 2491 return false; // Match fails if out of range child #. 2492 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2493 DL); 2494 } 2495 2496 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2497 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2498 SDValue N) { 2499 return cast<CondCodeSDNode>(N)->get() == 2500 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2501 } 2502 2503 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2504 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2505 SDValue N) { 2506 if (2 >= N.getNumOperands()) 2507 return false; 2508 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2509 } 2510 2511 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2512 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2513 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2514 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2515 if (cast<VTSDNode>(N)->getVT() == VT) 2516 return true; 2517 2518 // Handle the case when VT is iPTR. 2519 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2520 } 2521 2522 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2523 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2524 SDValue N) { 2525 int64_t Val = MatcherTable[MatcherIndex++]; 2526 if (Val & 128) 2527 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2528 2529 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2530 return C && C->getSExtValue() == Val; 2531 } 2532 2533 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2534 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2535 SDValue N, unsigned ChildNo) { 2536 if (ChildNo >= N.getNumOperands()) 2537 return false; // Match fails if out of range child #. 2538 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2539 } 2540 2541 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2542 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2543 SDValue N, const SelectionDAGISel &SDISel) { 2544 int64_t Val = MatcherTable[MatcherIndex++]; 2545 if (Val & 128) 2546 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2547 2548 if (N->getOpcode() != ISD::AND) return false; 2549 2550 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2551 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2552 } 2553 2554 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2555 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2556 SDValue N, const SelectionDAGISel &SDISel) { 2557 int64_t Val = MatcherTable[MatcherIndex++]; 2558 if (Val & 128) 2559 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2560 2561 if (N->getOpcode() != ISD::OR) return false; 2562 2563 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2564 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2565 } 2566 2567 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2568 /// scope, evaluate the current node. If the current predicate is known to 2569 /// fail, set Result=true and return anything. If the current predicate is 2570 /// known to pass, set Result=false and return the MatcherIndex to continue 2571 /// with. If the current predicate is unknown, set Result=false and return the 2572 /// MatcherIndex to continue with. 2573 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2574 unsigned Index, SDValue N, 2575 bool &Result, 2576 const SelectionDAGISel &SDISel, 2577 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2578 switch (Table[Index++]) { 2579 default: 2580 Result = false; 2581 return Index-1; // Could not evaluate this predicate. 2582 case SelectionDAGISel::OPC_CheckSame: 2583 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2584 return Index; 2585 case SelectionDAGISel::OPC_CheckChild0Same: 2586 case SelectionDAGISel::OPC_CheckChild1Same: 2587 case SelectionDAGISel::OPC_CheckChild2Same: 2588 case SelectionDAGISel::OPC_CheckChild3Same: 2589 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2590 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2591 return Index; 2592 case SelectionDAGISel::OPC_CheckPatternPredicate: 2593 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2594 return Index; 2595 case SelectionDAGISel::OPC_CheckPredicate: 2596 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2597 return Index; 2598 case SelectionDAGISel::OPC_CheckOpcode: 2599 Result = !::CheckOpcode(Table, Index, N.getNode()); 2600 return Index; 2601 case SelectionDAGISel::OPC_CheckType: 2602 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2603 SDISel.CurDAG->getDataLayout()); 2604 return Index; 2605 case SelectionDAGISel::OPC_CheckTypeRes: { 2606 unsigned Res = Table[Index++]; 2607 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2608 SDISel.CurDAG->getDataLayout()); 2609 return Index; 2610 } 2611 case SelectionDAGISel::OPC_CheckChild0Type: 2612 case SelectionDAGISel::OPC_CheckChild1Type: 2613 case SelectionDAGISel::OPC_CheckChild2Type: 2614 case SelectionDAGISel::OPC_CheckChild3Type: 2615 case SelectionDAGISel::OPC_CheckChild4Type: 2616 case SelectionDAGISel::OPC_CheckChild5Type: 2617 case SelectionDAGISel::OPC_CheckChild6Type: 2618 case SelectionDAGISel::OPC_CheckChild7Type: 2619 Result = !::CheckChildType( 2620 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2621 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2622 return Index; 2623 case SelectionDAGISel::OPC_CheckCondCode: 2624 Result = !::CheckCondCode(Table, Index, N); 2625 return Index; 2626 case SelectionDAGISel::OPC_CheckChild2CondCode: 2627 Result = !::CheckChild2CondCode(Table, Index, N); 2628 return Index; 2629 case SelectionDAGISel::OPC_CheckValueType: 2630 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2631 SDISel.CurDAG->getDataLayout()); 2632 return Index; 2633 case SelectionDAGISel::OPC_CheckInteger: 2634 Result = !::CheckInteger(Table, Index, N); 2635 return Index; 2636 case SelectionDAGISel::OPC_CheckChild0Integer: 2637 case SelectionDAGISel::OPC_CheckChild1Integer: 2638 case SelectionDAGISel::OPC_CheckChild2Integer: 2639 case SelectionDAGISel::OPC_CheckChild3Integer: 2640 case SelectionDAGISel::OPC_CheckChild4Integer: 2641 Result = !::CheckChildInteger(Table, Index, N, 2642 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2643 return Index; 2644 case SelectionDAGISel::OPC_CheckAndImm: 2645 Result = !::CheckAndImm(Table, Index, N, SDISel); 2646 return Index; 2647 case SelectionDAGISel::OPC_CheckOrImm: 2648 Result = !::CheckOrImm(Table, Index, N, SDISel); 2649 return Index; 2650 } 2651 } 2652 2653 namespace { 2654 2655 struct MatchScope { 2656 /// FailIndex - If this match fails, this is the index to continue with. 2657 unsigned FailIndex; 2658 2659 /// NodeStack - The node stack when the scope was formed. 2660 SmallVector<SDValue, 4> NodeStack; 2661 2662 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2663 unsigned NumRecordedNodes; 2664 2665 /// NumMatchedMemRefs - The number of matched memref entries. 2666 unsigned NumMatchedMemRefs; 2667 2668 /// InputChain/InputGlue - The current chain/glue 2669 SDValue InputChain, InputGlue; 2670 2671 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2672 bool HasChainNodesMatched; 2673 }; 2674 2675 /// \A DAG update listener to keep the matching state 2676 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2677 /// change the DAG while matching. X86 addressing mode matcher is an example 2678 /// for this. 2679 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2680 { 2681 SDNode **NodeToMatch; 2682 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2683 SmallVectorImpl<MatchScope> &MatchScopes; 2684 2685 public: 2686 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2687 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2688 SmallVectorImpl<MatchScope> &MS) 2689 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2690 RecordedNodes(RN), MatchScopes(MS) {} 2691 2692 void NodeDeleted(SDNode *N, SDNode *E) override { 2693 // Some early-returns here to avoid the search if we deleted the node or 2694 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2695 // do, so it's unnecessary to update matching state at that point). 2696 // Neither of these can occur currently because we only install this 2697 // update listener during matching a complex patterns. 2698 if (!E || E->isMachineOpcode()) 2699 return; 2700 // Check if NodeToMatch was updated. 2701 if (N == *NodeToMatch) 2702 *NodeToMatch = E; 2703 // Performing linear search here does not matter because we almost never 2704 // run this code. You'd have to have a CSE during complex pattern 2705 // matching. 2706 for (auto &I : RecordedNodes) 2707 if (I.first.getNode() == N) 2708 I.first.setNode(E); 2709 2710 for (auto &I : MatchScopes) 2711 for (auto &J : I.NodeStack) 2712 if (J.getNode() == N) 2713 J.setNode(E); 2714 } 2715 }; 2716 2717 } // end anonymous namespace 2718 2719 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2720 const unsigned char *MatcherTable, 2721 unsigned TableSize) { 2722 // FIXME: Should these even be selected? Handle these cases in the caller? 2723 switch (NodeToMatch->getOpcode()) { 2724 default: 2725 break; 2726 case ISD::EntryToken: // These nodes remain the same. 2727 case ISD::BasicBlock: 2728 case ISD::Register: 2729 case ISD::RegisterMask: 2730 case ISD::HANDLENODE: 2731 case ISD::MDNODE_SDNODE: 2732 case ISD::TargetConstant: 2733 case ISD::TargetConstantFP: 2734 case ISD::TargetConstantPool: 2735 case ISD::TargetFrameIndex: 2736 case ISD::TargetExternalSymbol: 2737 case ISD::MCSymbol: 2738 case ISD::TargetBlockAddress: 2739 case ISD::TargetJumpTable: 2740 case ISD::TargetGlobalTLSAddress: 2741 case ISD::TargetGlobalAddress: 2742 case ISD::TokenFactor: 2743 case ISD::CopyFromReg: 2744 case ISD::CopyToReg: 2745 case ISD::EH_LABEL: 2746 case ISD::ANNOTATION_LABEL: 2747 case ISD::LIFETIME_START: 2748 case ISD::LIFETIME_END: 2749 NodeToMatch->setNodeId(-1); // Mark selected. 2750 return; 2751 case ISD::AssertSext: 2752 case ISD::AssertZext: 2753 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2754 CurDAG->RemoveDeadNode(NodeToMatch); 2755 return; 2756 case ISD::INLINEASM: 2757 case ISD::INLINEASM_BR: 2758 Select_INLINEASM(NodeToMatch, 2759 NodeToMatch->getOpcode() == ISD::INLINEASM_BR); 2760 return; 2761 case ISD::READ_REGISTER: 2762 Select_READ_REGISTER(NodeToMatch); 2763 return; 2764 case ISD::WRITE_REGISTER: 2765 Select_WRITE_REGISTER(NodeToMatch); 2766 return; 2767 case ISD::UNDEF: 2768 Select_UNDEF(NodeToMatch); 2769 return; 2770 } 2771 2772 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2773 2774 // Set up the node stack with NodeToMatch as the only node on the stack. 2775 SmallVector<SDValue, 8> NodeStack; 2776 SDValue N = SDValue(NodeToMatch, 0); 2777 NodeStack.push_back(N); 2778 2779 // MatchScopes - Scopes used when matching, if a match failure happens, this 2780 // indicates where to continue checking. 2781 SmallVector<MatchScope, 8> MatchScopes; 2782 2783 // RecordedNodes - This is the set of nodes that have been recorded by the 2784 // state machine. The second value is the parent of the node, or null if the 2785 // root is recorded. 2786 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2787 2788 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2789 // pattern. 2790 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2791 2792 // These are the current input chain and glue for use when generating nodes. 2793 // Various Emit operations change these. For example, emitting a copytoreg 2794 // uses and updates these. 2795 SDValue InputChain, InputGlue; 2796 2797 // ChainNodesMatched - If a pattern matches nodes that have input/output 2798 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2799 // which ones they are. The result is captured into this list so that we can 2800 // update the chain results when the pattern is complete. 2801 SmallVector<SDNode*, 3> ChainNodesMatched; 2802 2803 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2804 2805 // Determine where to start the interpreter. Normally we start at opcode #0, 2806 // but if the state machine starts with an OPC_SwitchOpcode, then we 2807 // accelerate the first lookup (which is guaranteed to be hot) with the 2808 // OpcodeOffset table. 2809 unsigned MatcherIndex = 0; 2810 2811 if (!OpcodeOffset.empty()) { 2812 // Already computed the OpcodeOffset table, just index into it. 2813 if (N.getOpcode() < OpcodeOffset.size()) 2814 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2815 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2816 2817 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2818 // Otherwise, the table isn't computed, but the state machine does start 2819 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2820 // is the first time we're selecting an instruction. 2821 unsigned Idx = 1; 2822 while (true) { 2823 // Get the size of this case. 2824 unsigned CaseSize = MatcherTable[Idx++]; 2825 if (CaseSize & 128) 2826 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2827 if (CaseSize == 0) break; 2828 2829 // Get the opcode, add the index to the table. 2830 uint16_t Opc = MatcherTable[Idx++]; 2831 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2832 if (Opc >= OpcodeOffset.size()) 2833 OpcodeOffset.resize((Opc+1)*2); 2834 OpcodeOffset[Opc] = Idx; 2835 Idx += CaseSize; 2836 } 2837 2838 // Okay, do the lookup for the first opcode. 2839 if (N.getOpcode() < OpcodeOffset.size()) 2840 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2841 } 2842 2843 while (true) { 2844 assert(MatcherIndex < TableSize && "Invalid index"); 2845 #ifndef NDEBUG 2846 unsigned CurrentOpcodeIndex = MatcherIndex; 2847 #endif 2848 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2849 switch (Opcode) { 2850 case OPC_Scope: { 2851 // Okay, the semantics of this operation are that we should push a scope 2852 // then evaluate the first child. However, pushing a scope only to have 2853 // the first check fail (which then pops it) is inefficient. If we can 2854 // determine immediately that the first check (or first several) will 2855 // immediately fail, don't even bother pushing a scope for them. 2856 unsigned FailIndex; 2857 2858 while (true) { 2859 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2860 if (NumToSkip & 128) 2861 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2862 // Found the end of the scope with no match. 2863 if (NumToSkip == 0) { 2864 FailIndex = 0; 2865 break; 2866 } 2867 2868 FailIndex = MatcherIndex+NumToSkip; 2869 2870 unsigned MatcherIndexOfPredicate = MatcherIndex; 2871 (void)MatcherIndexOfPredicate; // silence warning. 2872 2873 // If we can't evaluate this predicate without pushing a scope (e.g. if 2874 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2875 // push the scope and evaluate the full predicate chain. 2876 bool Result; 2877 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2878 Result, *this, RecordedNodes); 2879 if (!Result) 2880 break; 2881 2882 LLVM_DEBUG( 2883 dbgs() << " Skipped scope entry (due to false predicate) at " 2884 << "index " << MatcherIndexOfPredicate << ", continuing at " 2885 << FailIndex << "\n"); 2886 ++NumDAGIselRetries; 2887 2888 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2889 // move to the next case. 2890 MatcherIndex = FailIndex; 2891 } 2892 2893 // If the whole scope failed to match, bail. 2894 if (FailIndex == 0) break; 2895 2896 // Push a MatchScope which indicates where to go if the first child fails 2897 // to match. 2898 MatchScope NewEntry; 2899 NewEntry.FailIndex = FailIndex; 2900 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2901 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2902 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2903 NewEntry.InputChain = InputChain; 2904 NewEntry.InputGlue = InputGlue; 2905 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2906 MatchScopes.push_back(NewEntry); 2907 continue; 2908 } 2909 case OPC_RecordNode: { 2910 // Remember this node, it may end up being an operand in the pattern. 2911 SDNode *Parent = nullptr; 2912 if (NodeStack.size() > 1) 2913 Parent = NodeStack[NodeStack.size()-2].getNode(); 2914 RecordedNodes.push_back(std::make_pair(N, Parent)); 2915 continue; 2916 } 2917 2918 case OPC_RecordChild0: case OPC_RecordChild1: 2919 case OPC_RecordChild2: case OPC_RecordChild3: 2920 case OPC_RecordChild4: case OPC_RecordChild5: 2921 case OPC_RecordChild6: case OPC_RecordChild7: { 2922 unsigned ChildNo = Opcode-OPC_RecordChild0; 2923 if (ChildNo >= N.getNumOperands()) 2924 break; // Match fails if out of range child #. 2925 2926 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2927 N.getNode())); 2928 continue; 2929 } 2930 case OPC_RecordMemRef: 2931 if (auto *MN = dyn_cast<MemSDNode>(N)) 2932 MatchedMemRefs.push_back(MN->getMemOperand()); 2933 else { 2934 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2935 dbgs() << '\n'); 2936 } 2937 2938 continue; 2939 2940 case OPC_CaptureGlueInput: 2941 // If the current node has an input glue, capture it in InputGlue. 2942 if (N->getNumOperands() != 0 && 2943 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2944 InputGlue = N->getOperand(N->getNumOperands()-1); 2945 continue; 2946 2947 case OPC_MoveChild: { 2948 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2949 if (ChildNo >= N.getNumOperands()) 2950 break; // Match fails if out of range child #. 2951 N = N.getOperand(ChildNo); 2952 NodeStack.push_back(N); 2953 continue; 2954 } 2955 2956 case OPC_MoveChild0: case OPC_MoveChild1: 2957 case OPC_MoveChild2: case OPC_MoveChild3: 2958 case OPC_MoveChild4: case OPC_MoveChild5: 2959 case OPC_MoveChild6: case OPC_MoveChild7: { 2960 unsigned ChildNo = Opcode-OPC_MoveChild0; 2961 if (ChildNo >= N.getNumOperands()) 2962 break; // Match fails if out of range child #. 2963 N = N.getOperand(ChildNo); 2964 NodeStack.push_back(N); 2965 continue; 2966 } 2967 2968 case OPC_MoveParent: 2969 // Pop the current node off the NodeStack. 2970 NodeStack.pop_back(); 2971 assert(!NodeStack.empty() && "Node stack imbalance!"); 2972 N = NodeStack.back(); 2973 continue; 2974 2975 case OPC_CheckSame: 2976 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2977 continue; 2978 2979 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 2980 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 2981 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 2982 Opcode-OPC_CheckChild0Same)) 2983 break; 2984 continue; 2985 2986 case OPC_CheckPatternPredicate: 2987 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2988 continue; 2989 case OPC_CheckPredicate: 2990 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2991 N.getNode())) 2992 break; 2993 continue; 2994 case OPC_CheckPredicateWithOperands: { 2995 unsigned OpNum = MatcherTable[MatcherIndex++]; 2996 SmallVector<SDValue, 8> Operands; 2997 2998 for (unsigned i = 0; i < OpNum; ++i) 2999 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3000 3001 unsigned PredNo = MatcherTable[MatcherIndex++]; 3002 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3003 break; 3004 continue; 3005 } 3006 case OPC_CheckComplexPat: { 3007 unsigned CPNum = MatcherTable[MatcherIndex++]; 3008 unsigned RecNo = MatcherTable[MatcherIndex++]; 3009 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3010 3011 // If target can modify DAG during matching, keep the matching state 3012 // consistent. 3013 std::unique_ptr<MatchStateUpdater> MSU; 3014 if (ComplexPatternFuncMutatesDAG()) 3015 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3016 MatchScopes)); 3017 3018 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3019 RecordedNodes[RecNo].first, CPNum, 3020 RecordedNodes)) 3021 break; 3022 continue; 3023 } 3024 case OPC_CheckOpcode: 3025 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3026 continue; 3027 3028 case OPC_CheckType: 3029 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3030 CurDAG->getDataLayout())) 3031 break; 3032 continue; 3033 3034 case OPC_CheckTypeRes: { 3035 unsigned Res = MatcherTable[MatcherIndex++]; 3036 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3037 CurDAG->getDataLayout())) 3038 break; 3039 continue; 3040 } 3041 3042 case OPC_SwitchOpcode: { 3043 unsigned CurNodeOpcode = N.getOpcode(); 3044 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3045 unsigned CaseSize; 3046 while (true) { 3047 // Get the size of this case. 3048 CaseSize = MatcherTable[MatcherIndex++]; 3049 if (CaseSize & 128) 3050 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3051 if (CaseSize == 0) break; 3052 3053 uint16_t Opc = MatcherTable[MatcherIndex++]; 3054 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3055 3056 // If the opcode matches, then we will execute this case. 3057 if (CurNodeOpcode == Opc) 3058 break; 3059 3060 // Otherwise, skip over this case. 3061 MatcherIndex += CaseSize; 3062 } 3063 3064 // If no cases matched, bail out. 3065 if (CaseSize == 0) break; 3066 3067 // Otherwise, execute the case we found. 3068 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3069 << MatcherIndex << "\n"); 3070 continue; 3071 } 3072 3073 case OPC_SwitchType: { 3074 MVT CurNodeVT = N.getSimpleValueType(); 3075 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3076 unsigned CaseSize; 3077 while (true) { 3078 // Get the size of this case. 3079 CaseSize = MatcherTable[MatcherIndex++]; 3080 if (CaseSize & 128) 3081 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3082 if (CaseSize == 0) break; 3083 3084 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3085 if (CaseVT == MVT::iPTR) 3086 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3087 3088 // If the VT matches, then we will execute this case. 3089 if (CurNodeVT == CaseVT) 3090 break; 3091 3092 // Otherwise, skip over this case. 3093 MatcherIndex += CaseSize; 3094 } 3095 3096 // If no cases matched, bail out. 3097 if (CaseSize == 0) break; 3098 3099 // Otherwise, execute the case we found. 3100 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3101 << "] from " << SwitchStart << " to " << MatcherIndex 3102 << '\n'); 3103 continue; 3104 } 3105 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3106 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3107 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3108 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3109 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3110 CurDAG->getDataLayout(), 3111 Opcode - OPC_CheckChild0Type)) 3112 break; 3113 continue; 3114 case OPC_CheckCondCode: 3115 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3116 continue; 3117 case OPC_CheckChild2CondCode: 3118 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3119 continue; 3120 case OPC_CheckValueType: 3121 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3122 CurDAG->getDataLayout())) 3123 break; 3124 continue; 3125 case OPC_CheckInteger: 3126 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3127 continue; 3128 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3129 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3130 case OPC_CheckChild4Integer: 3131 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3132 Opcode-OPC_CheckChild0Integer)) break; 3133 continue; 3134 case OPC_CheckAndImm: 3135 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3136 continue; 3137 case OPC_CheckOrImm: 3138 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3139 continue; 3140 case OPC_CheckImmAllOnesV: 3141 if (!ISD::isBuildVectorAllOnes(N.getNode())) break; 3142 continue; 3143 case OPC_CheckImmAllZerosV: 3144 if (!ISD::isBuildVectorAllZeros(N.getNode())) break; 3145 continue; 3146 3147 case OPC_CheckFoldableChainNode: { 3148 assert(NodeStack.size() != 1 && "No parent node"); 3149 // Verify that all intermediate nodes between the root and this one have 3150 // a single use. 3151 bool HasMultipleUses = false; 3152 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 3153 if (!NodeStack[i].getNode()->hasOneUse()) { 3154 HasMultipleUses = true; 3155 break; 3156 } 3157 if (HasMultipleUses) break; 3158 3159 // Check to see that the target thinks this is profitable to fold and that 3160 // we can fold it without inducing cycles in the graph. 3161 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3162 NodeToMatch) || 3163 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3164 NodeToMatch, OptLevel, 3165 true/*We validate our own chains*/)) 3166 break; 3167 3168 continue; 3169 } 3170 case OPC_EmitInteger: { 3171 MVT::SimpleValueType VT = 3172 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3173 int64_t Val = MatcherTable[MatcherIndex++]; 3174 if (Val & 128) 3175 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3176 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3177 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3178 VT), nullptr)); 3179 continue; 3180 } 3181 case OPC_EmitRegister: { 3182 MVT::SimpleValueType VT = 3183 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3184 unsigned RegNo = MatcherTable[MatcherIndex++]; 3185 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3186 CurDAG->getRegister(RegNo, VT), nullptr)); 3187 continue; 3188 } 3189 case OPC_EmitRegister2: { 3190 // For targets w/ more than 256 register names, the register enum 3191 // values are stored in two bytes in the matcher table (just like 3192 // opcodes). 3193 MVT::SimpleValueType VT = 3194 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3195 unsigned RegNo = MatcherTable[MatcherIndex++]; 3196 RegNo |= MatcherTable[MatcherIndex++] << 8; 3197 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3198 CurDAG->getRegister(RegNo, VT), nullptr)); 3199 continue; 3200 } 3201 3202 case OPC_EmitConvertToTarget: { 3203 // Convert from IMM/FPIMM to target version. 3204 unsigned RecNo = MatcherTable[MatcherIndex++]; 3205 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3206 SDValue Imm = RecordedNodes[RecNo].first; 3207 3208 if (Imm->getOpcode() == ISD::Constant) { 3209 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3210 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3211 Imm.getValueType()); 3212 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3213 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3214 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3215 Imm.getValueType()); 3216 } 3217 3218 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3219 continue; 3220 } 3221 3222 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3223 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3224 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3225 // These are space-optimized forms of OPC_EmitMergeInputChains. 3226 assert(!InputChain.getNode() && 3227 "EmitMergeInputChains should be the first chain producing node"); 3228 assert(ChainNodesMatched.empty() && 3229 "Should only have one EmitMergeInputChains per match"); 3230 3231 // Read all of the chained nodes. 3232 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3233 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3234 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3235 3236 // FIXME: What if other value results of the node have uses not matched 3237 // by this pattern? 3238 if (ChainNodesMatched.back() != NodeToMatch && 3239 !RecordedNodes[RecNo].first.hasOneUse()) { 3240 ChainNodesMatched.clear(); 3241 break; 3242 } 3243 3244 // Merge the input chains if they are not intra-pattern references. 3245 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3246 3247 if (!InputChain.getNode()) 3248 break; // Failed to merge. 3249 continue; 3250 } 3251 3252 case OPC_EmitMergeInputChains: { 3253 assert(!InputChain.getNode() && 3254 "EmitMergeInputChains should be the first chain producing node"); 3255 // This node gets a list of nodes we matched in the input that have 3256 // chains. We want to token factor all of the input chains to these nodes 3257 // together. However, if any of the input chains is actually one of the 3258 // nodes matched in this pattern, then we have an intra-match reference. 3259 // Ignore these because the newly token factored chain should not refer to 3260 // the old nodes. 3261 unsigned NumChains = MatcherTable[MatcherIndex++]; 3262 assert(NumChains != 0 && "Can't TF zero chains"); 3263 3264 assert(ChainNodesMatched.empty() && 3265 "Should only have one EmitMergeInputChains per match"); 3266 3267 // Read all of the chained nodes. 3268 for (unsigned i = 0; i != NumChains; ++i) { 3269 unsigned RecNo = MatcherTable[MatcherIndex++]; 3270 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3271 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3272 3273 // FIXME: What if other value results of the node have uses not matched 3274 // by this pattern? 3275 if (ChainNodesMatched.back() != NodeToMatch && 3276 !RecordedNodes[RecNo].first.hasOneUse()) { 3277 ChainNodesMatched.clear(); 3278 break; 3279 } 3280 } 3281 3282 // If the inner loop broke out, the match fails. 3283 if (ChainNodesMatched.empty()) 3284 break; 3285 3286 // Merge the input chains if they are not intra-pattern references. 3287 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3288 3289 if (!InputChain.getNode()) 3290 break; // Failed to merge. 3291 3292 continue; 3293 } 3294 3295 case OPC_EmitCopyToReg: { 3296 unsigned RecNo = MatcherTable[MatcherIndex++]; 3297 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3298 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3299 3300 if (!InputChain.getNode()) 3301 InputChain = CurDAG->getEntryNode(); 3302 3303 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3304 DestPhysReg, RecordedNodes[RecNo].first, 3305 InputGlue); 3306 3307 InputGlue = InputChain.getValue(1); 3308 continue; 3309 } 3310 3311 case OPC_EmitNodeXForm: { 3312 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3313 unsigned RecNo = MatcherTable[MatcherIndex++]; 3314 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3315 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3316 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3317 continue; 3318 } 3319 case OPC_Coverage: { 3320 // This is emitted right before MorphNode/EmitNode. 3321 // So it should be safe to assume that this node has been selected 3322 unsigned index = MatcherTable[MatcherIndex++]; 3323 index |= (MatcherTable[MatcherIndex++] << 8); 3324 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3325 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3326 continue; 3327 } 3328 3329 case OPC_EmitNode: case OPC_MorphNodeTo: 3330 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3331 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3332 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3333 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3334 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3335 // Get the result VT list. 3336 unsigned NumVTs; 3337 // If this is one of the compressed forms, get the number of VTs based 3338 // on the Opcode. Otherwise read the next byte from the table. 3339 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3340 NumVTs = Opcode - OPC_MorphNodeTo0; 3341 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3342 NumVTs = Opcode - OPC_EmitNode0; 3343 else 3344 NumVTs = MatcherTable[MatcherIndex++]; 3345 SmallVector<EVT, 4> VTs; 3346 for (unsigned i = 0; i != NumVTs; ++i) { 3347 MVT::SimpleValueType VT = 3348 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3349 if (VT == MVT::iPTR) 3350 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3351 VTs.push_back(VT); 3352 } 3353 3354 if (EmitNodeInfo & OPFL_Chain) 3355 VTs.push_back(MVT::Other); 3356 if (EmitNodeInfo & OPFL_GlueOutput) 3357 VTs.push_back(MVT::Glue); 3358 3359 // This is hot code, so optimize the two most common cases of 1 and 2 3360 // results. 3361 SDVTList VTList; 3362 if (VTs.size() == 1) 3363 VTList = CurDAG->getVTList(VTs[0]); 3364 else if (VTs.size() == 2) 3365 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3366 else 3367 VTList = CurDAG->getVTList(VTs); 3368 3369 // Get the operand list. 3370 unsigned NumOps = MatcherTable[MatcherIndex++]; 3371 SmallVector<SDValue, 8> Ops; 3372 for (unsigned i = 0; i != NumOps; ++i) { 3373 unsigned RecNo = MatcherTable[MatcherIndex++]; 3374 if (RecNo & 128) 3375 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3376 3377 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3378 Ops.push_back(RecordedNodes[RecNo].first); 3379 } 3380 3381 // If there are variadic operands to add, handle them now. 3382 if (EmitNodeInfo & OPFL_VariadicInfo) { 3383 // Determine the start index to copy from. 3384 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3385 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3386 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3387 "Invalid variadic node"); 3388 // Copy all of the variadic operands, not including a potential glue 3389 // input. 3390 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3391 i != e; ++i) { 3392 SDValue V = NodeToMatch->getOperand(i); 3393 if (V.getValueType() == MVT::Glue) break; 3394 Ops.push_back(V); 3395 } 3396 } 3397 3398 // If this has chain/glue inputs, add them. 3399 if (EmitNodeInfo & OPFL_Chain) 3400 Ops.push_back(InputChain); 3401 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3402 Ops.push_back(InputGlue); 3403 3404 // Create the node. 3405 MachineSDNode *Res = nullptr; 3406 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3407 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3408 if (!IsMorphNodeTo) { 3409 // If this is a normal EmitNode command, just create the new node and 3410 // add the results to the RecordedNodes list. 3411 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3412 VTList, Ops); 3413 3414 // Add all the non-glue/non-chain results to the RecordedNodes list. 3415 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3416 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3417 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3418 nullptr)); 3419 } 3420 } else { 3421 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3422 "NodeToMatch was removed partway through selection"); 3423 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3424 SDNode *E) { 3425 CurDAG->salvageDebugInfo(*N); 3426 auto &Chain = ChainNodesMatched; 3427 assert((!E || !is_contained(Chain, N)) && 3428 "Chain node replaced during MorphNode"); 3429 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); 3430 }); 3431 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3432 Ops, EmitNodeInfo)); 3433 } 3434 3435 // If the node had chain/glue results, update our notion of the current 3436 // chain and glue. 3437 if (EmitNodeInfo & OPFL_GlueOutput) { 3438 InputGlue = SDValue(Res, VTs.size()-1); 3439 if (EmitNodeInfo & OPFL_Chain) 3440 InputChain = SDValue(Res, VTs.size()-2); 3441 } else if (EmitNodeInfo & OPFL_Chain) 3442 InputChain = SDValue(Res, VTs.size()-1); 3443 3444 // If the OPFL_MemRefs glue is set on this node, slap all of the 3445 // accumulated memrefs onto it. 3446 // 3447 // FIXME: This is vastly incorrect for patterns with multiple outputs 3448 // instructions that access memory and for ComplexPatterns that match 3449 // loads. 3450 if (EmitNodeInfo & OPFL_MemRefs) { 3451 // Only attach load or store memory operands if the generated 3452 // instruction may load or store. 3453 const MCInstrDesc &MCID = TII->get(TargetOpc); 3454 bool mayLoad = MCID.mayLoad(); 3455 bool mayStore = MCID.mayStore(); 3456 3457 // We expect to have relatively few of these so just filter them into a 3458 // temporary buffer so that we can easily add them to the instruction. 3459 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3460 for (MachineMemOperand *MMO : MatchedMemRefs) { 3461 if (MMO->isLoad()) { 3462 if (mayLoad) 3463 FilteredMemRefs.push_back(MMO); 3464 } else if (MMO->isStore()) { 3465 if (mayStore) 3466 FilteredMemRefs.push_back(MMO); 3467 } else { 3468 FilteredMemRefs.push_back(MMO); 3469 } 3470 } 3471 3472 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3473 } 3474 3475 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3476 << " Dropping mem operands\n"; 3477 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3478 << " node: "; 3479 Res->dump(CurDAG);); 3480 3481 // If this was a MorphNodeTo then we're completely done! 3482 if (IsMorphNodeTo) { 3483 // Update chain uses. 3484 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3485 return; 3486 } 3487 continue; 3488 } 3489 3490 case OPC_CompleteMatch: { 3491 // The match has been completed, and any new nodes (if any) have been 3492 // created. Patch up references to the matched dag to use the newly 3493 // created nodes. 3494 unsigned NumResults = MatcherTable[MatcherIndex++]; 3495 3496 for (unsigned i = 0; i != NumResults; ++i) { 3497 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3498 if (ResSlot & 128) 3499 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3500 3501 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3502 SDValue Res = RecordedNodes[ResSlot].first; 3503 3504 assert(i < NodeToMatch->getNumValues() && 3505 NodeToMatch->getValueType(i) != MVT::Other && 3506 NodeToMatch->getValueType(i) != MVT::Glue && 3507 "Invalid number of results to complete!"); 3508 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3509 NodeToMatch->getValueType(i) == MVT::iPTR || 3510 Res.getValueType() == MVT::iPTR || 3511 NodeToMatch->getValueType(i).getSizeInBits() == 3512 Res.getValueSizeInBits()) && 3513 "invalid replacement"); 3514 ReplaceUses(SDValue(NodeToMatch, i), Res); 3515 } 3516 3517 // Update chain uses. 3518 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3519 3520 // If the root node defines glue, we need to update it to the glue result. 3521 // TODO: This never happens in our tests and I think it can be removed / 3522 // replaced with an assert, but if we do it this the way the change is 3523 // NFC. 3524 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3525 MVT::Glue && 3526 InputGlue.getNode()) 3527 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3528 InputGlue); 3529 3530 assert(NodeToMatch->use_empty() && 3531 "Didn't replace all uses of the node?"); 3532 CurDAG->RemoveDeadNode(NodeToMatch); 3533 3534 return; 3535 } 3536 } 3537 3538 // If the code reached this point, then the match failed. See if there is 3539 // another child to try in the current 'Scope', otherwise pop it until we 3540 // find a case to check. 3541 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3542 << "\n"); 3543 ++NumDAGIselRetries; 3544 while (true) { 3545 if (MatchScopes.empty()) { 3546 CannotYetSelect(NodeToMatch); 3547 return; 3548 } 3549 3550 // Restore the interpreter state back to the point where the scope was 3551 // formed. 3552 MatchScope &LastScope = MatchScopes.back(); 3553 RecordedNodes.resize(LastScope.NumRecordedNodes); 3554 NodeStack.clear(); 3555 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3556 N = NodeStack.back(); 3557 3558 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3559 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3560 MatcherIndex = LastScope.FailIndex; 3561 3562 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3563 3564 InputChain = LastScope.InputChain; 3565 InputGlue = LastScope.InputGlue; 3566 if (!LastScope.HasChainNodesMatched) 3567 ChainNodesMatched.clear(); 3568 3569 // Check to see what the offset is at the new MatcherIndex. If it is zero 3570 // we have reached the end of this scope, otherwise we have another child 3571 // in the current scope to try. 3572 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3573 if (NumToSkip & 128) 3574 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3575 3576 // If we have another child in this scope to match, update FailIndex and 3577 // try it. 3578 if (NumToSkip != 0) { 3579 LastScope.FailIndex = MatcherIndex+NumToSkip; 3580 break; 3581 } 3582 3583 // End of this scope, pop it and try the next child in the containing 3584 // scope. 3585 MatchScopes.pop_back(); 3586 } 3587 } 3588 } 3589 3590 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3591 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3592 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3593 if (!C) 3594 return false; 3595 3596 // Detect when "or" is used to add an offset to a stack object. 3597 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3598 MachineFrameInfo &MFI = MF->getFrameInfo(); 3599 unsigned A = MFI.getObjectAlignment(FN->getIndex()); 3600 assert(isPowerOf2_32(A) && "Unexpected alignment"); 3601 int32_t Off = C->getSExtValue(); 3602 // If the alleged offset fits in the zero bits guaranteed by 3603 // the alignment, then this or is really an add. 3604 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off)); 3605 } 3606 return false; 3607 } 3608 3609 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3610 std::string msg; 3611 raw_string_ostream Msg(msg); 3612 Msg << "Cannot select: "; 3613 3614 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3615 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3616 N->getOpcode() != ISD::INTRINSIC_VOID) { 3617 N->printrFull(Msg, CurDAG); 3618 Msg << "\nIn function: " << MF->getName(); 3619 } else { 3620 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3621 unsigned iid = 3622 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3623 if (iid < Intrinsic::num_intrinsics) 3624 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3625 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3626 Msg << "target intrinsic %" << TII->getName(iid); 3627 else 3628 Msg << "unknown intrinsic #" << iid; 3629 } 3630 report_fatal_error(Msg.str()); 3631 } 3632 3633 char SelectionDAGISel::ID = 0; 3634